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Negative results in science: Blessing or (winner’s) curse ?∗

Catherine Bobtcheff†, Raphaël Levy‡, Thomas Mariotti§

April 7, 2021

Abstract

Two players receiving independent signals on a risky project with common value
compete to be the first to innovate. We characterize the equilibrium of this preemp-
tion game as the publicity of signals varies. Private signals create a winner’s curse:
investing first implies that the rival has abstained from investing, possibly because he
has privately received adverse information about the project. Since players want to
gather more evidence in support of the project as a compensation, they invest later
when signals are more likely to be private. Because of preemption, the NPV of in-
vestment is zero at equilibrium regardless of the publicity of signals. However, for a
conservative planner who cares about avoiding unprofitable investments, this implies
that investment arises too early at equilibrium, and such a planner then prefers signals
to be private. This provides a rationale against the mandatory disclosure of nega-
tive results in science, notably when competition is severe. Our results suggest that
policy interventions should primarily tackle winner-takes-all competition, and regulate
transparency only once competition is sufficiently mild.

1 Introduction

There is abundant evidence that scientific negative results suffer from little publicity. Franco,

Malhotra and Simonovits (2014), for instance, show that studies that yield null results are

40% less likely to be published, and 60% less likely to be written up in any form than

those with statistically significant results.1 The sparsity of negative results in academic

publishing is arguably harmful to the efficiency of the scientific process. First, it may bias

∗We thank audiences at the Canadian Economic Theory conference, the Paris Game Theory seminar, the
Barcelona GSE Summer Forum, the Bergamo IO workshop, Paris School of Economics and University of
Cergy, as well as Matthew Mitchell for their comments.
†CNRS, Paris School of Economics and CEPR.
‡HEC Paris.
§CNRS and Toulouse School of Economics.
1In addition, Fanelli (2012) shows that the share of academic articles showing positive support for the

hypothesis tested has consistently increased since 1990 in all disciplines and countries, at the expense of
negative results. Kanaan et al. (2011) points that, although some negative results are actually published,
they are disproportionately more likely to be published in journals with lower impact factors, hence are less
visible.
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the interpretation of existing knowledge. In particular, meta-analyses supposed to offer a

good representation of the state of the art then report positive results in a disproportionate

way.2 Such biases may also have important consequences since public policy (e.g., health

policy, economic policy...) is more likely to be responsive when there is an apparent strong

consensus among scientists.3 Second, other researchers unaware of past failed trials may

engage in a socially wasteful duplication of efforts. While this problem has been well-known

since Rosenthal (1979) coined it as the “file drawer problem”, it has received renewed interest

in the recent years. In particular, there has been a recent push for the systematic publication

of negative results. The World Health Organization has notably taken a strong stand on

this issue in its 2015 Statement on Public Disclosure of Clinical Trial Results:

“Researchers have a duty to make publicly available the results of their research...

Negative and inconclusive as well as positive results must be published or other-

wise made publicly available.”4

In line with this objective, scientific research has recently experienced several major changes

going in the direction of greater transparency. First, several journals, institutions and grants

now request the preregistration of scientific studies in a public registry. Preregistration has

become a standard in medical research, and is increasingly important in most disciplines.5

Second, some journals have started to promote a new editorial policy whereby the acceptance

decision can be based on the empirical strategy of an article and not necessarily on its

results. For instance, the Journal of Development Economics offers authors the opportunity

“to have their prospective empirical projects reviewed and approved for publication before

the results are known.6 Third, and relatedly, there is an increasing pressure on authors

2Turner et al. (2008), for instance, showed that, while 94% of published studies of antidepressants used
by the FDA to make approval decisions had positive results, this fraction fell to 51% once one included
unpublished studies.

3For instance, in a meta-analysis on the impact of the minimum wage, Card and Krueger (1995) suggest
that the literature relying on time series data may have been affected by publication bias, leading to an
overrepresentation of statistically significant results in the published literature. In a similar spirit, Ashenfelter
and Greenstone (2004) find that publication bias may explain a strong upward bias in the reported estimates
of the value of statistical life, a key determinant of health and environment regulation.

4See https://www.who.int/ictrp/results/WHO_Statement_results_reporting_clinical_trials.

pdf.
5Top medical journals only publish studies that have been registered, notably on the most widely used

registry clinicaltrials.org. In economics, the AEA RCT registry created in 2012 receives an increasing number
of registrations.

6In a similar spirit, 8 health economics journals editors have issued a common statement that “studies that
utilize appropriate data in a sound and creative manner (....) have potential scientific and publication merit
regardless of whether such studies’ empirical findings do or do not reject null hypotheses that may be speci-
fied”. See https://www.cambridge.org/core/journals/health-economics-policy-and-law/article/

editorial-statement-on-negative-findings/E7326C8D32F70D3461655D58B7CAE679.
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to publish a pre-analysis plan so as to avoid cherry-picking of results.7 Finally, several new

journals specializing in the publication of negative results have emerged (e.g., “Missing pieces

Collection” by PLOS One, Journal of Negative Results, Journal of Pharmaceutical Negative

Results...). All these evolutions undoubtedly contribute to greater transparency and a more

systematic dissemination of negative results.

However, these initiatives also arise in a context where the incentives to publish for

academic researchers have become extremely salient (“publish or perish”), which allegedly

biases incentives towards positive results even further. In this paper, we examine the

welfare impact of public information in a preemption game, and argue that promoting the

publication of negative results may actually have an adverse effect on welfare, especially

when competition is fierce. Beyond the example of negative results in science, the question

that this paper addresses is also relevant for innovation or patent races. Indeed, when a firm

receives bad news about the value of the innovation and thus exits the race, the possibility

for its rivals to observe exit generates an information spillover. However, we show that this

positive spillover is not per se enough to guarantee that observing exit does actually increase

welfare.

We consider a model of investment timing that features both competition and learning.

Two players (firms, researchers...) observe (conditionally) independent processes that may

stochastically reveal bad news about the common value of the project which they contemplate.8

They compete by choosing the date at which they invest, if they ever do. A player gets a

positive payoff upon investing if and only if he is the first one to invest (winner-takes-all

competition), and the project is of high quality (hence the learning rationale). We allow

the extent to which each player observes his rival’s signal to vary between the two polar

cases of public and private signals. The public signals case corresponds to a situation where

negative results are systematically disclosed (alternatively, exit is observable); the private

signals case to one where they never are. We establish that, as soon as signals are not public,

the possibility of preemption creates, on top of the usual payoff externality, an information

externality. Indeed, when seeing that one’s rival has not invested yet, one becomes wary

that lack of investment might result from the rival having privately observed bad news on

the project. This creates a winner’s curse: being the first one to invest then becomes all

else equal bad news. Since this effect is stronger when signals are more likely to be private,

7Pre-analysis plans notably specify the primary outcome variable, the statistical model specification, and
the set of covariates to be included in the study. See Olken (2015) on this issue, and Christensen and Miguel
(2018) for a more general survey on publication bias.

8One possible interpretation is that such arrival of bad news is a negative result.
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investment then arises later in equilibrium. Actually, the winner’s curse provides an incentive

to delay investment in order to gain extra confidence on the project through one’s own signal.

In terms of welfare, the impact of the publicity of signals on the quality of decision-making

is a priori ambiguous. Conditional on a given investment strategy, players are better informed

when signals are public thanks to the information spillover. However, since players then tend

to invest earlier, they accumulate less confidence in the project. Overall, because competition

fully dissipates rents, the NPV of the project is equal to zero at any equilibrium investment

date: by investing later, a player gains exactly as much when the project is bad (because

he is then more likely to find out and, hence, save the investment cost) than he loses from

delaying investment when it is good, so that the two effects exactly compensate each other.

Regulating information disclosure in the aim of promoting information spillovers is thus vain:

the benefits arising from these spillovers are always fully eroded by competition. However, a

social planner with different preferences over type I and type II errors might strictly prefer

one environment to the other. In particular, a planner who cares more than players about

the costs of unsuccessful investments and is thus more conservative prefers an environment

where signals are private, as investment then arises later. This provides a possible rationale

against the mandatory disclosure of negative results.

We then extend our analysis to n players, and show that all our results carry over. An

interesting insight emerging from this analysis is the complementarity between the extent of

competition and the publicity of signals in the planner’s welfare. Specifically, we establish

that more competition (a higher number of players) increases welfare as long as the regime

of publicity of signals is optimal from the planner’s perspective. For instance, if the planner

is more conservative, hence prefers signals to be private, more competition increases his

welfare when signals are actually private, but it instead decreases welfare when signals are

public. Accordingly, competition magnifies differences of welfare between the two regimes

of disclosure, which suggests that the question of the optimal level of publicity of negative

results of is all the more critical as the environment is competitive.

Finally, we examine the impact of policy interventions aiming at fostering the publication

of negative results (e.g., subsidies). A natural intuition is that such subsidies would provide

incentives to experiment longer because obtaining a negative result is now rewarded. Since

negative results would then be public, such a policy would arguably allow to achieve the best

of two worlds: reap the benefit of information spillovers without this leading to excessively

early investment. It happens that this intuition is incorrect. Indeed, even when negative

results are rewarded, the equilibrium investment strategy remains independent of the subsidy
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(though the equilibrium payoff increases) because of competition. Investment strategies

are indeed only driven by the fear of preemption – actually, they are pinned down by

the condition that one must be indifferent between winning the preemption race or not.

Accordingly, promoting the disclosure of negative results matters only to the extent that

signals become public. To address the question of the optimal regime of publicity of signals

in a more general context, we also relax the assumption of winner-takes-all competition, and

show that public signals are more likely to be optimal when competition becomes less fierce.

Public signals may notably be suboptimal for the planner under winner-takes-all competition,

but become optimal when the second mover gets a sufficiently large payoff. Accordingly,

policies aiming at regulating information disclosure or transparency may be useless – and

even detrimental – when competition is too severe. This suggests a pecking order in

regulation whereby policy-makers should primarily tackle winner-takes-all competition (e.g.,

through policies related to patents and intellectual property), and regulate transparency only

once competition is softer.

Our paper relates to the literatures on preemption and learning externalities in timing

games. Since the seminal papers of Reinganum (1981) and Fudenberg and Tirole (1985) on

preemption races, several papers have generalized the basic preemption framework in terms

of payoff functions (Hoppe and Lehmann-Grube, 2005), number of firms (Argenziano and

Schmidt-Dengler, 2014) and uncertainty about the presence of competitors (Bobtcheff and

Mariotti, 2012; Bobtcheff, Bolte and Mariotti, 2017). Another stream of papers consider

timing games where preemption concerns are absent and, on the contrary, players have

incentives to wait in the hope of learning from others (Décamps and Mariotti, 2004; Murto

and Välimäki, 2011; Kirpalani and Madsen, 2019; Margaria, 2020).

Our model combines both preemption and learning externalities, as in Chen, Ishida

and Mukherjee (2018). However, their analysis does not cover the case of winner-takes-all

competition which is at the core of our analysis. In addition, they only consider private

signals while we stress the comparison between public and private news to highlight the

pros and cons of the publication of negative results. This focus also relates our paper to a

series of papers that compare public and private learning in timing games. Hopenhayn and

Squintani (2011) analyze the impact of players being privately informed about their payoff

from exiting. However, since they consider a private value setup, there is no information

externality, hence no winner’s curse. Moscarini and Squintani (2010) consider the impact

of private signals in a model where private information is on the arrival rate of payoffs,

so that staying in the game signals positive information to the competitor. Akcigit and
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Liu (2015) also consider the inefficiency created by private information. While observable

signals take the form of breakthroughs (good news) in their model, we consider bad news

learning, which generates a winner’s curse. As a result, we are able to exhibit the downside

of public information, a concern which is absent in their setup where public information is

always optimal. Hoppe-Wewetzer, Katsenos and Ozdenoren (2019) consider pure-strategy

equilibria in a discrete-time preemption race. Because they consider good news learning,

there is no winner’s curse in their model either, while we show that private news induce a

winner’s curse problem, which in turn precludes the existence of pure-strategy equilibria,

giving rise to a different dynamics of beliefs.

Finally, some papers show that private learning can dominate public learning in different

contexts. Klein and Wagner (2018) consider a setup with learning externalities in which

the possibility of signaling which private information brings allows to encourage investment,

thereby mitigating free-riding. Henry (2009) and Herresthal (2017) consider environments

where an agent running experiments can voluntarily disclose the outcomes of his tests to a

principal, and establish that hidden testing may be superior to transparency.

The paper is organized as follows. In Section 2, we introduce the model and solve for

the benchmark case of a single decision-maker. We then characterize the equilibrium of the

two-player preemption game in Section 3, and examine its welfare properties in Section 4.

In Section 5, we study the n-player game. Finally, in Section 6, we relax the assumption of

winner-takes-all competition and examine whether rewarding negative results can improve

welfare. Section 7 concludes.

2 The Model

2.1 An investment timing game

Time is continuous and indexed by t ≥ 0. Two players (firms, researchers...) contemplate

investing in a project of ex ante unknown but common quality. The quality of the project is

high with probability p0, and low with probability 1−p0. Investment involves an irreversible

cost I ∈ (p0, 1). Each player decides at which time to invest in the project, if he ever does.

Upon investing, a player obtains a revenue of 1 if and only if the project is of high quality

and he is the first player to invest.9 In all other cases, his revenue is zero. Both players are

risk-neutral and discount future revenues and costs at rate r.

9If both players attempt to invest at the same time, a fair public device randomly selects one of them, as
in Dutta and Rustichini (1993).
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As long as he has not invested, each player learns about the quality of the project by

observing for free a personal signal. If the project is of low quality, this signal generates a

failure at a time that is exponentially distributed with rate λ > 0. In the example of scientific

research, one can interpret such a failure as a negative result, for instance, a counterexample

to a theorem. In the case of a pharmaceutical firm, such a failure could be interpreted as

the detection of significant side-effects that preclude the marketing of the drug regardless

of its effectiveness.10 Instead, when the project is good, nothing is ever observed. Thus,

players become increasingly optimistic about the quality of the project as long as no failure

has been observed.11 The players’ signals are conditionally independent given the quality of

the project. We assume that a player that observes a failure immediately exits the game,

that is, each player’s signal generates at most one failure.

That a player observes a failure, and thus exits, may or may not be observed by his rival.

Specifically, we assume that exit is public (hence immediately observed) with probability x,

and private with probability 1−x, in which case it will never be discovered by the other player.

Notice that since the learning technology can only produce failures, and failures immediately

trigger exit, observing the personal signal of one’s rival is equivalent to observing his exit (as

long as exit is observed with no delay). The two polar cases have a natural interpretation.

The case x = 1 corresponds to public signals, i.e., both players observe a common signal that

is twice more informative than the signal observed in isolation. Alternatively, each player

observes his own signal only, but immediately observes when the other exits, which implies

that both players have the same beliefs at any point in time. The case x = 0 corresponds

to private signals (or unobserved exit), in which case each player is unsure whether the rival

has exactly the same beliefs or is out of the game.

To allow for a finer comparative statics analysis, we let x vary continuously between

these two polar cases. In a first stage, we take x to be an exogenous parameter reflecting

the informational environment. For instance, drug development is highly regulated in that

pharmaceutical firms are mandated to register their clinical trials and to disclose their results,

so that it seems appropriate to think of this market as one with high x. At any point in time,

competitors can observe whether or not a given firm is moving to the next phase of trials, and

10In these interpretations, the irreversible investment I could consist of submitting one’s paper in the
example of academic research, and of marketing one’s product in the example of an innovation (drug).
Notice that, in the example of scientific research, the fact that one obtains a payoff of 1 when the project is
good and 0 otherwise implies that the refereeing process is assumed to be perfect. Therefore, we abstract
from issues related to the quality of certification or refutability that are studied, e.g., in Bernard (2020).

11In such a bad news model, it is therefore impossible to obtain conclusive news that the project is good.
If we allowed for conclusive good news, it is easy to see that it would always be optimal to invest as soon as
good news arises in the preemption game.
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thus interpret the fact of not moving further as exiting even if exit is not publicly announced.

In the example of scientific research, incentives to publish negative results are low, so that

it is typically difficult to observe whether other researchers have moved to another topic.

This case corresponds to low values of x. Studying how welfare varies as a function of x

will allow us to draw policy implications regarding the promotion of transparency between

competitors. In a second stage, we allow a social planner to subsidize the publication of

negative results, thereby endogenizing the publicity of signals.

To conclude the description of the model, we assume that investment is immediately

observable to the rival. This implies that a strategy for each player specifies at what time

to invest conditional on observing neither a failure – from his or his rival’s signal – nor the

rival investing. Our equilibrium concept is perfect Bayesian equilibrium.

2.2 The Single-player Benchmark

Let us first consider the benchmark case where there is a single player (monopolist) and,

hence, no preemption concerns.12 Let V m(t) denote the expected payoff of the monopolist

viewed from date 0 when his strategy is to invest at date t conditional on having observed no

bad news by then. There is a probability p0 + (1− p0)e−λt that no failure arises before date

t, and conditional on reaching t without a failure, the probability of success is p0
p0+(1−p0)e−λt

,

so this expected payoff reads

V m(t) = e−rt
(
p0 + (1− p0)e−λt

)( p0

p0 + (1− p0)e−λt
− I
)

= e−rt
(
p0(1− I)− (1− p0)e−λtI

)
.

This expression illustrates the tradeoff between discounting and learning: while waiting

delays the realization of the payoff, it allows to learn. The value of learning increases with λ,

that is, with the probability that a failure reveals that the project is of low quality, in which

case the decision maker avoids inefficiently sinking the investment outlay I. The optimal

investment time tm reflects this tradeoff:

tm ≡ −1

λ
ln

(
rp0(1− I)

(r + λ)(1− p0)I

)
> 0. (1)

It is clear that tm is decreasing in p0 and r, and increasing in I. Besides, as shown in

Bobtcheff and Levy (2017), tm is decreasing in λ because the ex-ante NPV of the project is

negative (p0 < I).13

12The monopoly benchmark is the same as in Décamps and Mariotti (2004) and Bobtcheff and Levy
(2017).

13This last result is not immediate. Indeed, there are two effects at play: on the one hand, when λ increases
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3 Competition with two players

3.1 Preliminaries

Strategies As in the single-player case, a (pure) strategy for player i consists of a date

at which player i invests conditional on having observed nothing, i.e., neither a failure –

from his or j’s signal – nor j investing. Since future beliefs can be perfectly anticipated at

date 0, if the strategy t is optimal viewed from date 0, it will also be optimal to invest at

t if this date is reached before anything is observed. So there is no loss in considering that

strategies are chosen at date 0 and simply executed whenever nothing happens. Likewise,

a mixed strategy is a distribution of investment dates F i(t) chosen at date 0. A date t is

drawn at date 0 from the distribution F i and investment is implemented at date t as long as

player i has observed nothing by then. Because a failure or investment by player j effectively

terminates the game, the distribution F i fully captures player i’s strategy. Notice that one

must behave in the same way when the project is of high quality and when it is of low quality

but no failure has been observed since one cannot tell these two events apart.

Payoffs In order to express the objective function of player i, let us first derive the ex ante

probability that player i turns out to invest in the project if he chooses a strategy t, which

we denote N i(t). As long as F j has no atom at t, this probability is just the probability

that date t is reached without i observing either a failure – from his own or player j’s signal

– or j investing.14 It is the sum of the probabilities of two disjoint events. First, if the

project is of high quality, no failure will arise and the probability that nothing happens by

date t is simply the probability that player j does not invest by then, that is, 1 − F j(t).

Second, if the project is of low quality, player i observes no failure from his own signal with

probability e−λt. Regarding player j, we distinguish two disjoint sub-events. Either player

j has observed no failure from his signal and has not invested by time t; this occurs with

probability e−λt[1−F j(t)]. Or player j has observed a failure from his signal at a date before

the date at which he was supposed to invest, but this failure (or the ensuing exit) has not

been observed by player i; this occurs with probability (1 − x)
∫ t

0
λe−λs[1 − F j(s)] ds. We

(faster learning), one reaches a given level of optimism on the project sooner, which provides incentives to
invest early; on the other hand, improved learning opportunities increase the value of learning further, which
tends to delay investment. If the project had positive ex-ante NPV (p0 ≥ I), then tm would be single-peaked
in λ (Bobtcheff and Levy, 2017).

14At atoms of F j , the probability that i invests is possibly determined by the public randomization device,
which complicates the expression of N i. This will become apparent when we discuss the existence of pure-
strategy equilibria. Except for the particular case where a pure-strategy equilibrium exists, we will show
that equilibrium distributions must be atomless, so that these considerations are irrelevant and we ignore
them in the exposition for clarity.
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derive

N i(t) = p0[1−F j(t)]+(1−p0)e−λt
(
e−λt[1− F j(t)] + (1− x)

∫ t

0

λe−λs[1− F j(s)] ds

)
. (2)

Let us denote by pit the posterior probability that player i assigns to the project being

good conditional on having observed nothing at date t. From Bayes’ rule, this probability is

equal to

pit =
p0[1− F j(t)]

N i(t)
. (3)

Overall, the expected discounted payoff of player i from investing at time t reads

V i(t) ≡ e−rtN i(t)
(
pit − I

)
. (4)

Winner’s curse As usual in preemption games, investment by the rival prevents from

investing in one’s project, which creates a payoff externality. In addition, the possibility for

the rival to invest creates an information externality. To see this, let us remark that, as soon

as F j(t) < 1, one can rewrite pit as follows.

pit =
p0

p0 + (1− p0)e−λt
(
e−λt + (1− x)

∫ t
0
λe−λs 1−F j(s)

1−F j(t) ds
) (5)

=
p0

p0 + (1− p0)e−λt
(

1− x+ xe−λt + (1− x)
∫ t

0
λe−λs F

j(t)−F j(s)
1−F j(t) ds

) . (6)

Let us first look at what happens as long as the competitor is not supposed to invest, i.e.,

for F j(t) = 0. In that case, beliefs at date t are equal to p0
p0+(1−p0)e−λt(1−x+xe−λt)

, an increasing

function of x, reflecting the fact that, whenever the signals received by the competitor (or his

exit) become more observable, each player learns at a faster pace. However, as soon as F j(t)

is positive, player i should infer additional information from the absence of investment of his

rival. Indeed, the investment decision of player j depends on some underlying information

which i does not observe perfectly (as long as x < 1), namely j’s signal. Actually, lack

of investment of j is bad news for i when j is supposed to invest with positive probability

because it may be that player j has observed a failure (hence has exited) before the time at

which his strategy prescribed him to invest. This is analogous to the winner’s curse problem

in common-value auctions.

As is clear from (6), the term (1 − x)
∫ t

0
λe−λs F

j(t)−F j(s)
1−F j(t) ds captures this additional

informational content. This term is obviously zero when x = 1 (public signals). Indeed, since

i then observes whatever j observes, lack of investment by j cannot signal anything relevant

that i would not know of, so there is no winner’s curse. In that case, pit = p0
p0+(1−p0)e−2λt and
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each player actually learns twice faster than in the single-player case. However, one remarks

from inspecting (6) that if x = 0, one has

pit =
p0

p0 + (1− p0)e−λt + (1− p0)e−λt
∫ t

0
λe−λs F

j(t)−F j(s)
1−F j(t) ds

<
p0

p0 + (1− p0)e−λt
,

that is, a player is less optimistic upon seeing nothing before t than when alone: this is

because not only he cannot observe the other’s signal, hence learn from it, but the winner’s

curse imposes to shade his beliefs downward to take into account that lack of investment by

the rival is bad news.

Overall, an increase in F j(t) has both a real effect, by reducing the probability that

player i is the first to invest, and an informational effect, by increasing the winner’s curse.

This can be best seen by rewriting the objective function V i as follows:

V i(t) = e−rt
(
1− F j(t)

) (
p0(1− I)− (1− p0)Ie−λt(1− x+ xe−λt)

)
− (1− x)(1− p0)Ie−(r+λ)t

∫ t

0

λe−λs[F j(t)− F j(s)] ds (7)

One sees that as long as F j = 0, the payoff is e−rt
(
p0(1− I)− (1− p0)Ie−λt(1− x+ xe−λt)

)
,

which corresponds to the single-player payoff once one takes into account that the decision

maker observes a signal of quality λ with probability 1−x and of quality 2λ with probability

x. The presence of the rival imposes a payoff externality in that this payoff is obtained with

probability 1−F j(t) only, i.e., as long as the rival does not preempt, as well as an information

externality captured by the winner’s curse term e−(r+λ)t(1 − x)(1 − p0)I
∫ t

0
λe−λs[F j(t) −

F j(s)] ds.While the payoff externality induces players to hurry investment, the winner’s curse

provides incentives to delay investment. In what follows, we further explore the interplay

between these two effects and examine more specifically the role of the publicity of signals

x on investment incentives.

3.2 Equilibrium analysis

The first natural avenue to look for is whether there are pure-strategy equilibria. In any

such equilibrium, it must be the case that each player invests at the first date at which the

expected value of the project conditional on no failure becomes nonnegative, that is, at t̂(x)

such that
p0

p0 + (1− p0)e−λt̂(x)
(
1− x+ xe−λt̂(x)

) = I. (8)

To see that both players must invest at t̂(x) in a pure-strategy equilibrium, consider what

would happen otherwise. First, investing before t̂(x) yields a negative profit, hence cannot
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be optimal as one could always secure a payment of 0 by never investing; second, if one had

tj > ti > t̂(x), then j would strictly increase his profit by investing at any date between t̂(x)

and ti; third, if tj > t̂(x) = ti, then i would strictly increase his profit by investing at any

date between t̂(x) and tj; finally, if ti = tj > t̂(x), any player could increase his payoff by

slightly undercutting his rival.15

Let us look at whether both players investing at t̂(x) is an equilibrium, and consider

first the case x < 1. When F j has an atom at t, the formulae given by (2), (3) and

(4) do not readily apply since both players attempt to invest at the same date with a

non-zero probability, in which case the “winner” of the preemption race is determined by

the tie-breaking rule. In such a situation, the relevant belief pit is the probability that the

project is good conditional on observing nothing by date t and winning the race.16 In the

pure-strategy equilibrium we consider, each player turns out to win with probability 1
2

upon

observing nothing by t̂(x). This means that, conditioning on winning the race and observing

no failure, each player has beliefs

pit̂(x) =
1
2
p0

1
2
p0 + (1− p0)e−λt̂(x)

(
1
2
e−λt̂(x) + (1− x)(1− e−λt̂(x))

)
<

p0

p0 + (1− p0)e−λt̂(x)
(
1− x+ xe−λt̂(x)

)
= I.

Therefore, each player gets a negative expected payoff so this cannot be an equilibrium.

The reason why it is not is the winner’s curse problem. Since in the bad state the competitor

might have observed a failure and thus exited, one is more likely to win in the bad state

than in the good state, which implies that winnng is bad news.17 Correcting for this winner’s

curse, the expected value of the project – that is arbitrarily close to 0 right before t̂(x) –

jumps and becomes negative at t̂(x). Therefore, such a pure-strategy equilibrium cannot

exist. Notice that this holds only if x < 1. In the case where x = 1, there is no winner’s

curse, that is, even conditioning on the fact of winning, one still has pi
t̂(x)

= I. Indeed,

winning is then only a matter of luck. In this case, a pure-strategy equilibrium exists: both

players invest at t̂(1) and get an expected payoff of 0.

15Undercutting indeed increases the likelihood of being the one who invests, and increases the probability
of success conditional on investing. That is, both N i(t) and pit have a downward discontinuity at t = tj . See
the proof of Lemma 1 in the Appendix for details.

16When a player’s strategy is to invest at a date t that is not an atom of F j , he wins the race with
probability 1 conditional on observing nothing by date t, so conditioning on winning does not change beliefs
further.

17Notice that this argument would hold for any tie-breaking rule in case of simultaneous investment.
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It is therefore the presence of the winner’s curse that precludes the existence of pure-strategy

equilibria if x < 1. We now establish that, in that case, there exists a unique mixed-strategy

equilibrium where players randomize over the interval [t̂(x),∞).

Proposition 1 The game admits a unique equilibrium in which both players get an expected

payoff of zero:

• If x = 1, both players invest at t̂(1) such that p0(1− I)− (1− p0)Ie−2λt̂(1) = 0.

• If x < 1, both players follow a mixed strategy described by a cdf Fx given by

Fx(t) = 1− e−λ[t−t̂(x)]

(
p0(1− I)− (1− p0)Ie−2λt̂(x)

p0(1− I)− (1− p0)Ie−2λt

) 1+x
2

(9)

for all t ≥ t̂(x).

Proof: In the Appendix.

Notice that because p0(1− I)− (1−p0)Ie−2λt̂(1) = 0, for any sequence (xτ )τ∈N converging

to 1, the corresponding sequence of distribution functions (Fxτ )τ∈N given by (9) converges

weakly to the jump distribution 1[t̂(1),∞). That is, as signals (or exit) become close to

perfectly observable, the sequence of mixed-strategy equilibria converges to the pure-strategy

equilibrium. We now derive how the equilibrium investment strategy changes as the publicity

of signals x varies.

Proposition 2 If x′ < x < 1, the investment time under x is smaller than the investment

time under x′ in the hazard-rate order.

Proof: In the Appendix.

Proposition 2 notably implies that equilibrium distributions can be ranked in terms

of (first order) stochastic dominance: if x > x′, Fx′(t) ≤ Fx(t) for all t. In other words,

players invest sooner when signals are more observable. Notice also that, since t̂(1) < t̂(x),

investment occurs sooner when x = 1 than for any x < 1. The result of Proposition 2 is

illustrated in Figure 1, where we depict the equilibrium distribution of investment dates for

two different values of x.

The intuition that investment arises sooner when signals are more likely to be publicly

observed rests on three distinct effects. First, learning is faster when the publicity of signals

increases. Holding the investment strategy of his rival fixed, a player is more confident

about the project upon seeing no failure as x increases since he learns from overall more
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Figure 1: Equilibrium distribution for x = 0.2 and x = 0.8 [p0 = 0.5, I = 0.7, λ = 0.8]

informative signals. This direct effect would be present even in the absence of competition,

as an increase in the speed of arrival of news unambiguously leads to earlier investment

when there are no preemption concerns.18 This direct effect is exacerbated by the strategic

interaction between players, which generates two additional forces. On the one hand, because

each player should expect his rival to invest earlier, he should in turn be more aggressive

for fear of being preempted. This is due to the strategic complementarity in preemption

games, which arises even in the absence of information externality. On the other hand, as

x decreases, the winner’s curse problem worsens, which provides incentives to further delay

investment so as to gain extra confidence on the project through one’s own signal. These

three effects compound to generate earlier investment when signals are more likely to be

public. To underline that earlier investment is not simply the mechanical consequence of

more information being available to each player, let us compare what happens when signals

are public (x = 1) and the rate of arrival of bad news is λ
2

for each player on the one hand,

and when signals are private (x = 0) and the arrival rate of bad news is λ on the other

hand, so that the total arrival rate is the same (equal to λ) in the two situations. In the first

scenario, both players invest at t such that p0(1− I)− (1− p0)e−2λ
2
t = 0, that is, at t̂(0). In

the second scenario, players randomize over all dates t ≥ t̂(0). This shows that the presence

of the winner’s curse alone is enough to generate later investment when signals are private.

We now turn to the analysis of the welfare impact of such delayed investment.

18An increase in x is here qualitatively similar to an increase in λ in the single-player case. As we observed
in Section 2.2, tm decreases in λ when the ex-ante NPV of the project is negative.
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4 Welfare

In Proposition 1, we establish that players get an expected payoff of zero regardless of the

publicity of signals. As usual in winner-takes-all models of competition, preemption leads

to full dissipation of rents in equilibrium (Fudenberg and Tirole, 1985). The intuition in the

pure-strategy equilibrium (x = 1) is standard: if the equilibrium payoff was positive, it would

be possible for one player to increase his profit by slightly undercutting his rival.19 When

x < 1, the intuition reflects the winner’s curse problem. In such a case, the equilibrium can

only be in mixed strategy and the support of the distribution of investment dates Fx must be

unbounded. Otherwise, the payoff from investing at the upper bound of the support would

be strictly negative, because each player could reflect that this upper bound may be reached

without his rival investing only if the latter has observed a failure that has not been publicly

observed. Because of discounting, this implies that the equilibrium payoff must exactly be

zero.

A property of the equilibrium strategy is thus that players’ beliefs remain constant –

specifically, pit = I – over the whole support of investment dates. Relatedly, the probability

that investment takes place conditional on the project being bad is independent of x.

Denoting α this probability and fx the density of the distribution of investment dates, one

indeed can check:20

α =
1

1− p0

∫ ∞
t̂(x)

2 (N(t)− p0[1− Fx(t)]) fx(t) dt

=
1

1− p0

∫ ∞
t̂(x)

2
1− pt
pt

p0[1− Fx(t)]fx(t) dt

=
p0

1− p0

1− I
I

∫ ∞
t̂(x)

2[1− Fx(t)]fx(t) dt

=
p0

1− p0

1− I
I

The first equality uses (3), the second follows from pt = I for all t ≥ t̂(x). Therefore,

because rents are fully dissipated anyway, imposing different standards of disclosure for

negative results has no impact on the quality of investments, and policy interventions that

affect x would have no efficiency impact.

However, in the applications we have in mind, such as drug development or scientific

research, the social planner’s objective function may differ from the players’ in several ways.

19Of course, such undercutting strategy is possible because no player ever invests at date 0 (the ex ante
NPV is negative). If we had p0 > I, there would be a pure-strategy equilibrium where both players invest
at date 0 and make positive profits.

20Since the equilibrium is symmetric, we simplify the notation: N i(t) = N j(t) = N(t), and pit = pjt = pt.
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For instance, the planner may not fully internalize the profits of pharmaceutical companies,

but may instead care about consumer surplus. The social value of investment may also differ

from its private value when investment generates positive externalities, as is the case for the

development of a vaccine, or when part of the investment is financed by public funds, e.g., for

scientific research. Finally, the social cost of unsuccessful investments is often significantly

larger than the investment costs borne by innovating firms. For instance, in the case of drug

development, the social cost may capture the cost of public funds if an ineffective drug is

reimbursed by a public health insurance scheme, or the health costs generated by a drug’s

negative side effects. In academic research, there is no reason to expect the private value of

a publication (better career prospects, prestige...) to match its social value.

To be as flexible as possible, let us assume that the planner’s payoffs in case of successful

and unsuccessful investment are respectively 1− I + ∆S ≥ 0 and −(I + ∆F ) ≤ 0. Thus ∆S

and ∆F parametrize how social objectives depart from private ones in each state. With such

preferences, a planner that would have access to the signal would invest at a date t∗ such

that

t∗ ≡ max

{
−1

λ
ln

(
rp0(1− I + ∆S)

(r + λ)(1− p0)(I + ∆F )

)
, 0

}
. (10)

As in Section 2.2, the investment strategy reflects the tradeoff between discounting and

learning. One remarks that

tm < t∗ ⇔ 1− I + ∆S

I + ∆F

<
1− I
I
⇔ ∆S

∆F

<
1− I
I

.

If (1 − I + ∆S)/(I + ∆F ) < (1 − I)/I, the planner cares relatively more about avoiding

failures as compared to players, thus has a stronger motive for learning. As a consequence,

his investment policy is more conservative and he invests later.

With this premise in mind, let us go back to the preemption game and derive how the

welfare of the planner at equilibrium varies with the publicity of signals x.

Proposition 3 More frequently disclosing negative results (a higher x) decreases the plan-

ner’s welfare if ∆S/∆F < (1−I)/I, and increases the planner’s welfare if ∆S/∆F > (1−I)/I.

Proof: Let W (x) denote the planner’s welfare at the equilibrium of the preemption game.

If x < 1, W (x) is given by

(1− I + ∆S)

∫ +∞

t̂(x)

2e−rtp0[1− Fx(t)]fx(t) dt− (I + ∆F )

∫ ∞
t̂(x)

2e−rt (N(t)− p0[1− Fx(t)]) fx(t) dt
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Using (3) as well as pt = I for all t ≥ t̂(x), one derives

W (x) = p0

(
∆S −∆F

1− I
I

)∫ ∞
t̂(x)

2e−rt[1− Fx(t)]fx(t) dt. (11)

From Proposition 2, for all x′ < x < 1, Fx′ first-order stochastically dominates Fx, which

implies ∫ ∞
t̂(x′)

2e−rt[1− Fx′(t)]fx′(t) dt <
∫ ∞
t̂(x)

2e−rt[1− Fx(t)]fx(t) dt.

If x = 1,

W (1) = e−rt̂(1)
(
p0(1− I + ∆S)− (1− p0)(I + ∆F )e−λt̂(1)

)
= p0

(
∆S −∆F

1− I
I

)
e−rt̂(1).

Since t̂(1) < t̂(x),
∫∞
t̂(x)

2e−rt[1− Fx(t)]fx(t) dt < e−rt̂(1) for any x < 1.

We can thus conclude that W (x) is increasing in x if and only if ∆S/∆F > (1− I)/I. �

In the presence of competition, the tradeoff between discounting and learning we highlight

in the single-player case is muted, since the fear of preemption induces players to stop learning

as soon as the NPV of investment is zero. Since this holds regardless of x, the preference

of the planner over the publicity of signals simply reflects his time preferences given that

players will invest at their zero-NPV cutoff. This can be best seen by decomposing the

planner’s welfare W (x) as follows:

W (x) = (I∆S − (1− I)∆F )︸ ︷︷ ︸
Planner’s NPV upon investment

×
∫ ∞
t̂(x)

2
p0

I
e−rt[1− Fx(t)]fx(t) dt︸ ︷︷ ︸

Present value of obtaining 1 at the first investment date

(12)

Let us first look at the first term. At any equilibrium investment date, a player has beliefs

pt = I. With such a probability of success, the NPV of investment from the perspective of

the planner is

pt(1− I + ∆S)− (1− pt)(I + ∆F ) = I∆S − (1− I)∆F .

To figure out the interpretation of the second term (the integral), let us denote by Gx the

cdf of the random variable equal to the first date at which investment arises at equilibrium.

If one player invests, then the other will never invest so that Gx(t) is simply worth twice the

probability that a given player invests by date t, that is, Gx(t) = 2
∫ t
t̂(x)

N(s)fx(s) ds. Using

pt = I for all t ≥ t̂(x) together with (3) yields

Gx(t) =
p0

I

∫ t

t̂(x)

2[1− Fx(s)]fx(s) ds. (13)
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2p0
I

(1−Fx)fx is thus the density of the first investment date, and
∫∞
t̂(x)

2p0
I
e−rt[1−Fx(t)]fx(t) dt

is the present value of obtaining 1 whenever investment first occurs.

In this context, the intuition for Proposition 3 is as follows. When ∆S/∆F > (1− I)/I,

the planner is more prone to investing than players, so, from his perspective, the NPV when

players invest is positive. Since the NPV is also the same at any equilibrium investment

date, he would like investment to take place as early as possible, hence a preference for public

signals. However, if ∆S/∆F < (1 − I)/I, the planner is more conservative: his NPV upon

investment is negative (and constant), so that he prefers investments to be delayed, hence a

preference for private signals. In the special case r = 0, the publicity of signals is irrelevant

to the planner, since the probability that investment ever takes place is independent of x.

Notice in this respect that, since Fx is independent of r, nothing in the above analysis hinges

on the assumption that the social planner has the same discount rate as the players.21

In a nutshell, while public signals generate a positive information spillover (better learning),

the benefits created by these spillovers are fully eroded by competition. The publicity of

signals is thus irrelevant to players, and can matter only to a planner that has different

preferences over type I and type II errors. In particular, a planner who cares a lot about

the costs of failed investments prefers more conservative investment policies, hence private

signals. Indeed, the resulting winner’s curse provides incentives to delay investment, thereby

softening the incentives to accelerate investment caused by preemption concerns. This

provides a possible rationale against the mandatory disclosure of negative results.

5 Competition with n players

We have so far assumed that there are only two players. In this section, we examine the

impact of an increase in competition on investment strategies, and hence, on welfare. Suppose

that there are now n identical players. As in the previous section, it can be easily shown that

there cannot be a pure-strategy equilibrium as soon as x < 1. In the case of public signals

(x = 1), there exists a pure-strategy equilibrium in which all players invest at the first date

at which the NPV becomes nonnegative, that is, at t̂(1, n) such that

p0(1− I)− (1− p0)Ie−λnt̂(1,n) = 0 (14)

21In particular, this implies that if the only conflict of interests between players and the planner was
different preferences for the present, the welfare of the planner would be independent of the publicity of
news. Formally, if the planner has discount rate rP 6= r and ∆F = ∆S = 0, then W (x) = 0 for all x.
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More generally, we establish in the following Proposition that all the properties of the

equilibrium characterized in Proposition 1 go through with n players.22

Proposition 4 The game admits a unique symmetric equilibrium in which all players get

an expected payoff of zero:

• If x = 1, all players invest at t̂(1, n).

• If x < 1, all players follow a mixed strategy described by a cdf Fx,n such that

Fx,n(t) = 1− e−
1

n−1
λ[t−t̂(x,n)]

(
( p0

1−p0
1−I
I

)
1

n−1 − e−
n
n−1

λt̂(x,n)

( p0
1−p0

1−I
I

)
1

n−1 − e−
n
n−1

λt

) 1+(n−1)x
n

(15)

for all t ≥ t̂(x, n), where t̂(x, n) is defined by

p0(1− I)− (1− p0)Ie−λt̂(x,n)
[
1− x+ xe−λt̂(x,n)

]n−1

= 0 (16)

If x > x′, the investment time under x is smaller than the investment time under x′ in

the hazard-rate order.

Finally, the planner’s welfare W (x, n) is nondecreasing in x iff ∆S

∆F
≥ 1−I

I
.

Proof: In the Appendix.

Based on the results of Proposition 4, let us now study the welfare impact of competition,

that is, how W (x, n) varies with n (holding x fixed). For the sake of simplicity, let us compare

the two polar cases x = 0 and x = 1 (private and public news).

Proposition 5 Suppose ∆S

∆F
≥ 1−I

I
(resp. ∆S

∆F
≤ 1−I

I
). If x = 1, more competition (a higher

n) increases (resp. decreases) the planner’s welfare. If x = 0, more competition decreases

(resp. increases) the planner’s welfare.

Proof: In the Appendix.

Proposition 5 basically states that, as long as we are in the optimal regime of publicity

of signals for the planner, more competition increases the planner’s welfare. However, in a

regime where the publicity of signals is not optimal, more competition will exacerbate the

inefficiency. Suppose for instance that ∆S

∆F
≤ 1−I

I
, that is, the planner prefers signals to be

private, but that signals are instead public (x = 1). In that case, an increase in competition

22The only difference is that we show equilibrium uniqueness in the two-player case, while we only show
that there is a unique symmetric equilibrium in the n-player case.
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will prompt investment even further, which hurts the planner. An increase in competition

in the market for drugs may accordingly have an adverse effect for a planner who primarily

cares about avoiding side-effects. In the same vein, a planner who does not internalize the

cost for researchers of having their papers rejected but just cares about positive results being

published will suffer from an increase of competition. An immediate corollary of Proposition

5 is that |W (1, n)−W (0, n)| is increasing in n. That is, competition amplifies differences of

welfare between the two regimes of disclosure. This suggests that reaching the optimal level

of publicity is all the more critical as the environment is competitive. While the ongoing

initiatives going towards more transparency in scientific research may accordingly be an

optimal response to increased competition, our paper suggests that, because transparency is

not necessarily optimal, they might also create even more damage.

6 Should negative results be rewarded?

In line with the main question of the paper, we examine in this section whether the planner

could increase welfare by promoting the publicity of signals, for instance, by subsidizing the

publication of negative results. Specifically, we assume that a player obtains a prize c ≥ 0

from publishing a negative result if he is the first to publish one and if no one has invested

in the project (otherwise failure reveals that the project is bad and there is no reward for a

negative result that proves what is already known). Moreover, we also relax the assumption

of winner-takes-all competition and assume that a player obtains a payoff L ≥ 0 from moving

second (if and only if the project is good). The analysis of this more general case allows to

examine how the optimal regime of publicity of signals may change as competition increases.

In terms of policy implications, it also allows to understand whether a planner can increase

welfare by subsidizing second movers and/or negative results, and which of the two policy

instruments is more effective.

In order to build intuition on the possible role of c, let us first look at the benchmark

case of a single decision maker. Given a prize c, the decision maker maximizes

e−rt
(
p0(1− I)− (1− p0)Ie−λt

)
+ (1− p0)c

∫ t

0

λe−(r+λ)s ds. (17)

One easily checks that this function is maximum at

tm(c) = −1

λ
ln

rp0(1− I)

(1− p0)((λ+ r)I + λc)
> 0. (18)

Hence the decision maker invests later as c increases: indeed, learning longer now brings the

extra benefit that a negative result could be obtained. If the planner could set c, he would
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choose c = 0 if ∆S/∆F > (1−I)/I ⇔ t∗ < tm since the decision maker already invests too late

from the planner’s perspective even with c = 0. However, if ∆S/∆F < (1− I)/I ⇔ t∗ > tm,

the planner would choose c such that tm(c) = t∗ and thus realign the investment strategy of

the decision maker with what we would himself do.23

With this in mind, a natural intuition is that rewarding negative results could allow

the planner to get the best of two worlds: on the one hand, it promotes information

sharing, which generates positive spillovers; one the other hand, c could be fine-tuned to

increase players’ incentives to delay investment so as to counteract the adverse effect that

public signals entail earlier investment. It happens that this intuition is incorrect, and that

increasing c has indeed no direct impact on investment strategies, hence on welfare, because

of competition. To see this formally, let us assume that when c > 0 all players publish their

negative results whenever they have one, while they withhold it if c = 0.24 In that context,

we derive the following proposition:

Proposition 6

• Suppose c > 0 and x = 1. There is an equilibrium in pure strategies whereby each

player invests at t1(L) such that

p0(1− I)− (1− p0)Ie−2λt1(L) = p0L

• Suppose c = 0 and x = 0. There exists a cutoff Lmax < 1 − I such that, as long

as L ≤ Lmax, there is a symmetric equilibrium in mixed strategy whereby each player

invests following a cdf F̃ with support [t(L), t(L)].25

Proof: In the Appendix.

Proposition 6 generalizes the equilibrium of Proposition 1 to the case where moving

second and negative results are rewarded. As in Proposition 1, the equilibrium is in pure

strategies as soon as signals are public, while with private signals, the presence of the winner’s

curse imposes to have a mixed-strategy equilibrium.26 Proposition 6 formally establishes

23One can check that the optimal c is then λ+r
λ

(1−I)∆F−∆SI
1−I+∆S

> 0.
24This is equivalent to assuming an infinitesimal cost of publishing negative result. More realistically, one

could assume that the probability of publishing a negative result x increases continuously with c, which
would arise, for instance, when players have a random outside option. We abstract from these considerations
for conciseness and to better illustrate our point that c does not impact equilibrium strategies beside its
impact on the rate of disclosure x.

25Since the expression of F̃ brings no intuition, we do not report it here for conciseness, and refer to the
Appendix, notably Eq. (A.23).

26Notice that the reason why such a mixed-strategy equilibrium exists only when L is sufficiently small
is that the game changes from a preemption game to a war of attrition as L gets too large. In this case,
investing second becomes preferable to investing first since it does not entail the risk of failure.
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that, as long as signals are public, the equilibrium strategy (and, hence, the planner’s welfare)

is independent of c. Indeed, investment strategies are driven by the fear of preemption,

which forces players to invest as soon as they are indifferent between winning or losing the

preemption race, that is, at a date which is independent of the prize from publishing a

negative result. Allegedly, if the subsidy is costly to the planner, he will thus choose to set

either c = 0 or c arbitrarily close to 0 according to the regime of publicity of signals he wants

to promote.

In this respect, let us now compare the equilibrium strategies, payoffs and welfare in the

two regimes where signals are public and private.

Proposition 7 In the equilibrium with public signals (x = 1 and c > 0), players invest

sooner and obtain a larger expected payoff than in the equilibrium with private signals (x = 0

and c = 0). The NPV upon investment is larger with public signals. Finally, there exists a

cutoff ∆ < 1−I
I

∆F − (1 + ∆F

I
)L such that the planner’s welfare is larger with public signals

if and only if ∆S ≥ ∆.

Proof: In the Appendix.

Like in the case where L = 0, the presence of the winner’s curse implies that investment

always takes place earlier when signals are public: t(L) > t1(L). When L > 0, we derive the

additional result that players get a positive payoff at equilibrium, and that this equilibrium

payoff is strictly larger with public signals (even if c is arbitrarily close to 0) than with private

signals. The intuition is also related to the winner’s curse. The winner’s curse captures the

negative information externality which players impose onto each other by not disclosing

their negative results. Accordingly, players are better off when such an externality is absent.

When L = 0, whether signals are public or not is irrelevant because rents are fully dissipated

in both regimes, but as soon as L becomes positive and players obtain rents, they prefer the

regime where negative results are disclosed in which the rent erosion is milder. Notice finally

that increasing c increases the equilibrium payoff (without affecting equilibrium strategies),

hence reinforces the preference of players for public signals.

The most noteworthy finding we draw from this analysis has to do with welfare. As in

Section 4, the planner prefers negative results to be public as soon as ∆S is sufficiently large

(alternatively, ∆F is sufficiently small). In addition, the cutoff ∆ is strictly smaller than

the counterpart cutoff under winner-takes-all competition, that is, ∆F
1−I
I
. This implies that

whenever the planner prefers public signals under winner-takes-all competition (L = 0), he a
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fortiori prefers public signals once the second-mover gets a positive prize L. However, there

are situations where the planner would strictly prefer private signals under winner-takes-all

competition, but strictly prefers news to be public once competition is milder. This is the

case when, e.g., −(1 + ∆F

I
)L < ∆S− 1−I

I
∆F < 0. This condition is more likely to be satisfied

as L increases. Essentially, a larger L, by softening competition, increases the relative merit

of public signals in two respects. First, because there is no winner’s curse, the NPV of

investment is larger in the public signals case. Investment is then more efficient, which is

valuable to the planner regardless of his preferences for type I and type II errors. Second,

softer competition reduces incentives to hurry investment, thereby attenuating the additional

incentives to prompt investment which public signals bring.

A few conclusions emerge from this analysis. While rewarding negative results may

be optimal for the planner when there is a single decision maker, it becomes less relevant

as soon as there is competition. Indeed, with competition, c matters only to the extent

that it determines whether signals are public, but otherwise affects neither investment

strategies nor welfare. In this regard, while public signals may be detrimental to welfare

under winner-takes-all competition, they may become optimal once preemption concerns

become milder. Accordingly, mandating the disclosure of negative results can be efficient as

a complement to a policy that relaxes winner-takes-all competition, but in the impossibility

to resort to such policies, mandating the disclosure of negative results may actually backfire.

This suggests a pecking order whereby the optimal regulation should first and foremost

address winner-takes-all competition, and promote transparency only once competition is

less severe.

7 Conclusion

In this paper, we consider a model of investment timing in which firms (or researchers) face

a tradeoff between learning and discounting. Waiting allows to learn about the value of the

project, which potentially allows to avoid unprofitable investments, but delays the payoff

when investing is profitable. In the case where the planner cares a lot about the social costs

of failed investments, hence would invest later than firms (researchers) in the absence of

preemption, the presence of competition is essentially bad for the planner, since the fear of

preemption induces earlier investment. In this context, we show that private signals can

be optimal, because the resulting winner’s curse provides incentives to delay investment,

thereby softening the negative impact of preemption from the planner’s perspective. In such
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situations, mandating (or incentivizing) the disclosure of negative results backfires, notably

when competition is too fierce. Accordingly, our analysis suggests that a public policy aiming

at increasing the disclosure of negative results has a positive impact when it is paired with

a policy aiming at reducing winner-takes-all competition, but may have an adverse impact

on welfare otherwise.

Notice also that, as information in our model comes for free, the social value of disclosing

negative results does not stem from any wasteful duplication of costs in case signals are

private, an argument often put forward to promote the mandatory disclosure of negative

results. Instead, the possible optimality of public signals in our model results from the

fact that investment takes place earlier when signals are public, which is valuable when the

planner cares about getting investment done. Therefore, our paper on the one hand raises

doubts as to the fact that mandatory disclosure of negative results might be universally

optimal, but on the other hand provides an alternative and complementary reason for why

it might be.
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Appendix

Proof of Proposition 1.

Let us recall from (7) that the expected payoff of player i from investing at a date t that

is not an atom of F j reads

V i(t) = e−rt
(
1− F j(t)

) (
p0(1− I)− (1− p0)Ie−λt(1− x+ xe−λt)

)
− (1− x)(1− p0)Ie−(r+λ)t

∫ t

0

λe−λs[F j(t)− F j(s)] ds (A.1)

Before deriving equilibrium strategies, we first establish two lemmas which provide a set

of conditions which any equilibrium must satisfy. Let Si denote the support of player i’s

investment dates.

Lemma 1 Suppose x < 1. In any equilibrium, Si = Sj = S = [t̂(x),+∞) and F i is contin-

uous and strictly increasing on S. All players get an equilibrium payoff of 0.

The proof involves several claims, which we prove sequentially. Let ti and ti be the

smallest and largest elements of Si.

Claim 1: t1 = t2 and t1 = t2.

Proof : Suppose that ti < tj. Then, using (A.1), for any t ≥ ti,

V j(t) = −(1− x)(1− p0)Ie−(r+λ)t

∫ ti

0

λe−λs[1− F i(s)] ds < 0.

Thus, dates t ∈ (ti, tj] cannot belong to the support Sj. This proves t1 = t2 = t.

Suppose now that ti < tj, and let a(t) = e−rt
(
p0(1− I)− (1− p0)Ie−λt(1− x+ xe−λt)

)
.

It is easy to see that a is single-peaked. Let t∗(x) denote the argmax of a(t).

Using (A.1), we observe that V i(t) = a(t) for all t ≤ tj and V i(t) < a(t) for all t > tj.

Therefore, if ti > t∗(x), investing at ti cannot be profit-maximizing for i since investing at

t∗(x) does strictly better. If ti < t∗(x), then player i could strictly increase profit by investing

at ti + ε. If ti = t∗(x), player j whose payoff V j(tj) is bounded away from a[t∗(x)] could get a

payoff arbitrarily close to a[t∗(x)] by investing slightly before t∗(x). This proves t1 = t2 = t.

Claim 2: If t is an atom of F j then t does not belong to the support Si.

Proof : Consider a date t0 that is an atom of F j and let F j(t0)− lim
ε→0

F j(t0 − ε) = a > 0.

When i invests at t0, N
i and pit are modified as follows:

N i(t0) = p0[1−F j(t0)+
1

2
a]+(1−p0)e−λt0

(
(1− x)

∫ t0

0

λe−λs[1− F j(s)] ds+ e−λt0 [1− F j(t0) +
1

2
a]

)
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pit0 =
p0[1− F j(t0) + 1

2
a]

N i(t0)

Recalling V i(t0) = e−rtN i(t0)(pit0 − I), we infer

V i(t0) = e−rt0
{
p0(1− I)[1− F j(t0) +

1

2
a]− (1− p0)Ie−λt0

(
(1− x)

∫ t0

0
λe−λs[1− F j(s)] ds+ e−λt0 [1− F j(t0) +

1

2
a]

)}

In turn, for ε > 0, V i(t0 − ε) reads

e−r(t0−ε)
{
p0(1− I)[1− F j(t0 − ε)]− (1− p0)Ie−λ(t0−ε)

(
(1− x)

∫ t0−ε

0
λe−λs[1− F j(s)] ds+ e−λ(t0−ε)[1− F j(t0 − ε)]

)}

We derive

V i(t0)− lim
ε→0

V i(t0 − ε) = e−rt0
(
p0(1− I)− (1− p0)Ie−2λt0

)(
1− F j(t0) +

1

2
a− 1 + lim

ε→0
F j(t0 − ε)

)
= −1

2
ae−rt0

(
p0(1− I)− (1− p0)Ie−2λt0

)
< 0.

The last inequality makes use of the fact that one must have

e−rt
(
p0(1− I)− (1− p0)Ie−2λt0

)
> 0.

Indeed, since V i(t) < e−rt
(
p0(1− I)− (1− p0)Ie−2λt

)
for all t, i and x < 1, if we had

e−rt
(
p0(1− I)− (1− p0)Ie−2λt0

)
≤ 0, t0 could not be in the support Sj.

Therefore, if t0 is an atom of F j, the objective function of player i has a downward

discontinuity at t0, and it cannot maximize player i’s payoff to invest at t0.

Claim 3: There cannot be an atom at t or t.

Proof : Claim 3 is an immediate corollary from Claims 1 and 2. Let us remark that Claim

3 proves that there cannot be a pure-strategy equilibrium as soon as x < 1.

Claim 4: In any equilibrium, both players get an expected payoff of zero.

Proof : To prove the result, we prove that t = +∞. Suppose, by way of contradiction,

that t is finite. Since F j has no atom at t, one can write

V i(t) = −(1− x)(1− p0)Ie−(r+λ)t

∫ t

0

λe−λs[1− F (s)] ds < 0.

The equilibrium payoff cannot be negative since the player could secure 0 by never investing.

This implies that the support of F j must unbounded, i.e., t = ∞. The equilibrium payoff

must thus be equal to lim
t→∞

V i(t) = 0.
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In turn, this implies that t = t̂(x). Indeed, V i(t) < 0 for any t < t̂(x), and if one had

t > t̂(x), it would be possible for one player to obtain a strictly positive profit by investing

at date between t̂(x) and t.

Claim 5: For each player, the support of investment dates is an interval.

Proof : Suppose that there exist ta and tb with t̂(x) < ta < tb such that ta ∈ Si and

(ta, tb) 6⊂ Si. Then for any t ∈ (ta, tb), F
i(t) = F i(ta), hence

V j(t) = e−rt[1− F i(ta)]
(
p0(1− I)− (1− p0)Ie−λt

(
b+ xe−λt

))
,

where b ≡ (1− x)
(

1−
∫ ta

0
λe−λs F

i(ta)−F i(s)
1−F i(ta)

ds
)
> 0.

We derive

V j′(t) = −rV j(t) + λ(1− p0)Ie−(r+λ)t[1− F i(ta)]
(
b+ 2xe−λt

)
.

Since at equilibrium V j(t) ≤ 0 for all t and j, we derive that V j′(t) > 0 on t ∈ (ta, tb),

which implies that the interval (ta, tb) cannot belong to the support Sj either.

In turn (using the same argument), this implies that V i(t) is increasing on t ∈ (ta, tb).

In addition, ta ∈ Si, so V i(ta) = 0. From Claim 2, ta ∈ Si also implies that F j cannot

have an atom at ta. Therefore, V i is continuous at ta, and there must be a neighbourhood

[ta, ta+ ε] on which V i is positive, which contradicts that the equilibrium payoff is zero. This

implies that the support of each player’s startegy is an interval.

Claim 6: For all i, F i has no atom.

Proof : Suppose that F i has an atom at t. From the proof of Claim 2, V j has a downward

discontinuity at t. Since V j can never have an upward discontinuity, this implies that there

is an ε such that the interval [t, t+ ε] does not belong to Sj. From Claim 5, this is impossible.

From all these claims, we conclude that Si = Sj = S = [t̂(x),+∞) and F i is continuous

and strictly increasing on S. �

Lemma 2 Suppose x = 1. In the only equilibrium, both players invest at t = t̂(1).

Proof : In the case of public news (x = 1), each player maximizes

V i(t) = e−rt
(
p0(1− I)− (1− p0)Ie−2λt

) (
1− F j(t)

)
.

Let us first show that the equilibrium payoff must be 0. Suppose first that t1 = t2. In that

case, the equilibrium payoff must be V i(ti) = 0, so the result is immediate. Suppose instead
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that ti > tj. This implies that the equilibrium payoff of player i is V i(ti) = 0. Suppose now

that the equilibrium payoff of player j is positive. This implies that tj > t̂(1). In that case,

player i could secure a positive payoff from investing at a date t ∈ [t̂(1), tj]. A contradiction.

This proves that both players must have an equilibrium payoff of 0.

This in turn implies that, for any t that belongs to the support of investment dates,(
p0(1− I)− (1− p0)Ie−2λt

)
(1− F j(t)) = 0. Suppose F j[t̂(1)] < 1. This implies that there

is a value t > t̂(1) such that F j(t) < 1, so that V i(t) > 0. This contradicts the fact that

the equilibrium payoff must be zero. So F j[t̂(1)] = 1. Since it is clear that investment never

takes place before t̂(1), we derive that a necessary equilibrium condition is that both players

invest at t̂(1). It is immediate to see that this is indeed an equilibrium. �

Let us now derive the equilibrium strategies in the case x < 1. From Lemma 1, the

equilibrium payoff is zero. Therefore, for any t ≥ t̂(x), pit = I, which, using (5), can be

written

e−λt
(
e−λt + (1− x)

∫ t

0

λe−λs
1− F j(s)

1− F j(t)
ds

)
=

p0

1− p0

1− I
I

. (A.2)

Differentiating (A.2) over [t̂(x),∞) yields

(1− x)e−λt
∫ t

0

λe−λs
1− F j(s)

1− F j(t)
ds

[
f j(t)

1− F j(t)
− λ
]

= (1 + x)λe−2λt (A.3)

for all t ≥ t̂(x), where f j is the density of F j. Substituting (A.3) into (A.2) and simplifying,

we obtain that, for any such t,

f j(t)

1− F j(t)
= λ+

(1 + x)(1− p0)Iλe−2λt

p0(1− I)− (1− p0)Ie−2λt
. (A.4)

Integrating between t̂(x) and t, we obtain

ln[1− F j[t̂(x)]]− ln[1− F j(t)] = λ(t− t̂(x)) +
1 + x

2
ln

p0(1− I)− (1− p0)Ie−2λt

p0(1− I)− (1− p0)Ie−2λt̂(x)
(A.5)

Using F j[t̂(x)] = 0, we can now conclude that the solution to the problem is given by

F j(t) = 1− e−λ[t−t̂(x)]

(
p0(1− I)− (1− p0)Ie−2λt̂(x)

p0(1− I)− (1− p0)Ie−2λt

) 1+x
2

It is clear that F j is nondecreasing in t, is worth 0 at t = t̂(x) and goes to 1 as t→∞, so

F j is indeed a cdf. Since all that precedes holds for all j = 1, 2, the equilibrium is symmetric

and we denote the solution F 1 = F 2 = Fx.

Fx is the only equilibrium in the class of equilibria such that Fx is continuous and strictly

increasing over its support. Using Lemma 1, this equilibrium is therefore unique. �
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Proof of Proposition 2. Suppose x′ < x < 1. From (A.4), we have fx(t)
1−Fx(t)

>
fx′ (t)

1−Fx′ (t)
.

Note that this inequality also holds on the interval [t̂(x), t̂(x′)] where fx(t) > 0 = fx′(t). This

immediately implies that the investment time under x is smaller than the investment time

under x′ in the hazard-rate order.

�

Proof of Proposition 4. Let us first remark that the various claims of Lemma 1 equally

hold with n players, so at equilibrium all players get 0 and play according to a continuous

and increasing cdf. For simplicity, let us focus here on symmetric equilibria where all players

follow the same strategy, which we denote Fx,n.

Let us denote by Vx,n(t) the expected payoff from investing at t when all other players

follow the strategy Fx,n. It equals

Vx,n(t) = e−rt

{
p0(1− I)[1− Fx,n(t)]n−1 − (1− p0)Ie−λt

(
(1− x)

∫ t

0

λe−λs[1− Fx,n(s)] ds+ e−λt[1− Fx,n(t)]

)n−1
}

As long as Fx,n(t) = 0,

Vx,n(t) = e−rt
{
p0(1− I)− (1− p0)Ie−λt

(
(1− x)(1− e−λt) + e−λt

)n−1
}
.

Therefore, it must be the case that the lower bound of the support is the first date at

which the NPV of the project becomes nonnegative, that is, t̂(x, n) such that

p0(1− I)− (1− p0)Ie−λt̂(x,n)
[
1− x+ xe−λt̂(x,n)

]n−1

= 0

In addition, Vx,n(t) = 0 over [t̂(x, n),∞), that is,

p0(1−I)[1−Fx,n(t)]n−1−(1−p0)Ie−λt
(

(1− x)

∫ t

0

λe−λs[1− Fx,n(s)] ds+ e−λt[1− Fx,n(t)]

)n−1

= 0

⇔ e−λt
(

(1− x)

∫ t

0

λe−λs
1− Fx,n(s)

1− Fx,n(t)
ds+ e−λt

)n−1

=
p0

1− p0

1− I
I

. (A.6)

Differentiating (A.6) over [t̂(x, n),∞) yields

(1− x)

∫ t

0

λe−λs
1− Fx,n(s)

1− Fx,n(t)
ds

[
(n− 1)

fx,n(t)

1− Fx,n(t)
− λ
]

= [1 + (n− 1)x]λe−λt (A.7)

for all t ≥ t̂(x, n), where fx,n is the density of Fx,n. Substituting (A.7) into (A.6) and using

α = p0
1−p0

1−I
I
, we obtain that, for any such t,

(n− 1)
fx,n(t)

1− Fx,n(t)
= λ+ [1 + (n− 1)x]

λe−
n
n−1

λt

α
1

n−1 − e−
n
n−1

λt
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Let us remark at this stage that, if x > x′, we can derive from the previous equality

that fx,n(t)

1−Fx,n(t)
>

fx′,n(t)

1−Fx′,n(t)
, which implies that the investment date under x is smaller than the

investment time under x′ in the hazard-rate order.

Finally, remarking that
∫ t
t̂(x,n)

λe
− n
n−1λs

α
1

n−1−e
− n
n−1λs

ds = n−1
n

ln α
1

n−1−e
− n
n−1λt

α
1

n−1−e
− n
n−1λt̂(x,n)

, and using F [t̂(x, n)] =

0, we conclude

Fx,n(t) = 1− e−
1

n−1
λ[t−t̂(x,n)]

(
α

1
n−1 − e−

n
n−1

λt̂(x,n)

α
1

n−1 − e−
n
n−1

λt

) 1+(n−1)x
n

(A.8)

If x < 1, the expected welfare W (x, n) equals

p0(1− I + ∆S)

∫ +∞

t̂(x,n)
ne−rt [1− Fx,n(t)]n−1 fx,n(t) dt

− (1− p0)(I + ∆F )

∫ +∞

t̂(x,n)
ne−(r+λ)t

(
(1− x)

∫ t

0
λe−λs[1− Fx,n(s)] ds+ e−λt[1− Fx,n(t)]

)n−1

fx,n(t) dt

Using the fact that Vx,n(t) = 0 for all t ≥ t̂(x, n), we derive:

W (x, n) = p0

(
∆S −∆F

1− I
I

)∫ +∞

t̂(x,n)

ne−rt[1− Fx,n(t)]n−1 fx,n(t) dt (A.9)

∫ +∞
t̂(x,n)

ne−rt[1−Fx,n(t)]n−1 fx,n(t) dt is the value at 0 of receiving 1 at the first date at which

investment takes place conditional on the project being good. Suppose x′ < x < 1. Since

the investment date under x is smaller than the investment time under x′ in the hazard-rate

order, we have∫ +∞

t̂(x,n)

ne−rt[1− Fx,n(t)]n−1 fx,n(t) dt >

∫ +∞

t̂(x′,n)

ne−rt[1− Fx′,n(t)]n−1 fx′,n(t) dt.

If x = 1,

W (1, n) = e−rt̂(1,n)
(
p0(1− I + ∆S)− (1− p0)(I + ∆F )e−λt̂(1,n)

)
= p0

(
∆S −∆F

1− I
I

)
e−rt̂(1,n).

Since t̂(1, n) < t̂(x, n) for all x < 1, we conclude from all the above that

W (x, n) > W (x′, n)⇔ ∆S

∆F

>
1− I
I

.

�
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Proof of Proposition 5. Let us first start with the case of public signals (x = 1). As we

have seen,

W (1, n) = p0(∆S −∆F
1− I
I

)e−rt̂(1,n)

Since t̂(1, n) decreases in n, W (1, n) is increasing in n if ∆S ≥ ∆F
1−I
I

and decreasing

otherwise.

Let us now turn to the case of private signals (x = 0). One checks that t̂(0, n) is such

that p0(1− I) = (1− p0)Ie−λt̂(0,n), that is, t̂(0, n) = t̂(0) for all n.

W (0, n) = p0

(
∆S −∆F

1− I
I

)∫ +∞

t̂(0)

ne−rt[1− F0,n(t)]n−1f0,n(t) dt (A.10)

Integrating by parts, one rewrites the integral as

e−rt̂(0) − r
∫ +∞

t̂(0)

e−rt[1− F0,n(t)]n dt (A.11)

Using (A.8), we derive

[1− F0,n(t)]n = e−λ
n
n−1

(t−t̂(0))α
1

n−1 − e−λ
n
n−1

t̂(0)

α
1

n−1 − e−λ
n
n−1

t

=
α

1
n−1 eλ

n
n−1

t̂(0) − 1

α
1

n−1 eλ
n
n−1

t − 1

=
1
α
− 1

α
1

n−1 eλ
n
n−1

t − 1

Differentiating the denominator with respect to n, one gets

1

(n− 1)2
α

1
n−1 eλ

n
n−1

t (−λt− lnα) .

Since t ≥ t̂(0), we must have −λt ≤ −λt̂(0) = lnα. This implies that [1 − F0,n(t)]n is

increasing in n. We can now conclude that W (0, n) is decreasing in n if ∆S ≥ ∆F
1−I
I

and

increasing otherwise. �

Proof of Proposition 6 Let us first consider the situation where c is positive and signals

are public. Suppose that j invests at t1(L) whenever no one observes a failure. The expected

payoff from investing at t for i is thus
e−rt

(
p0(1− I)− (1− p0)Ie−2λt

)
+ (1− p0)c

∫ t
0
λe−(r+2λ)s ds if t < t1(L)

e−rt1(L)
(
p0(1−I)−(1−p0)Ie−2λt1(L)

2
+ p0L

2

)
+ (1− p0)c

∫ t1(L)

0
λe−(r+2λ)s ds if t = t1(L)

e−rtp0L+ (1− p0)c
∫ t1(L)

0
λe−(r+2λ)s ds if t > t1(L)
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Using the definition of t1(L), this expected payoff is continuous.

One can check that e−rt
(
p0(1− I)− (1− p0)Ie−2λt

)
is single-peaked in t and increasing at

t = t1(L), so we can infer that e−rt
(
p0(1− I)− (1− p0)Ie−2λt

)
+ (1 − p0)c

∫ t
0
λe−(r+2λ)s ds

is a fortiori increasing on [0, t1(L)]. We can conclude that investing at t1(L) maximizes the

expected payoff of player i, so such a pure-strategy equilibrium exists.

Let us now turn to the case where c = 0 and signals are private. We look for a regular

symmetric equilibrium in which the common distribution of investment dates F̃ conditional

on observing neither a failure nor one’s rival’s investing is continuous over [0,∞) and strictly

increasing and differentiable over the interior of its supporting interval. Let [t, t] denote the

support. In such an equilibrium, one should have for all t ∈ [t, t] :

e−rt
{
p0(1− I)[1− F̃ (t)] + p0LF̃ (t)− (1− p0)Ie−λt

(∫ t

0

λe−λs[1− F̃ (s)] ds+ e−λt[1− F̃ (t)]

)}
= Ṽ ,

(A.12)

where Ṽ denote the equilibrium payoff.27 Differentiating with respect to t yields

−r
{
p0(1− I)[1− F̃ (t)] + p0LF̃ (t)− (1− p0)Ie−λt

(∫ t

0

λe−λs[1− F̃ (s)] ds+ e−λt[1− F̃ (t)]

)}

−p0(1−I)F̃ ′(t)+p0LF̃
′(t)+λ(1−p0)Ie−λt

(∫ t

0

λe−λs[1− F̃ (s)] ds+ e−λt[1− F̃ (t)]

)
+(1−p0)Ie−2λtF̃ ′(t) = 0

Using (A.12), one can rewrite this as(
p0(1− I − L)− (1− p0)e−2λtI

)
F̃ ′(t) = λp0(1−I−L)[1−F̃ (t)]+λp0L−(λ+r)ertṼ (A.13)

Before going further, let us derive the following lemma, which provides conditions on t

and t.

Lemma 3 t and t must satisfy the following conditions:

1. t > t1(L)

2. t = h(t) ≡ 1
r

ln λp0L
(λ+r)Vm(t)

27Notice that, in this formulation, we implicitly assume that the second-mover obtains the payoff of L
at the date at which his strategy prescribes him to invest, and not at the date at which the first mover
actually invests. This allows to find a solution to the problem, which would be impossible otherwise. If
L were obtained at the date of the first investment, incentives to invest later would be increased, so that
the main result we underline, namely that investment takes place later with private signals, would be even
reinforced. Note that we made a similar assumption in deriving the pure-strategy equilibrium in the case
x = 1 for consistency, but in that case it is irrelevant.
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Proof: Let us first remark that, as long as t < t, the expected payoff of a player equals

the single-player payoff V m(t), which implies that Ṽ = V m(t). To show the first part, let us

take (A.13) at t = t, which gives(
p0(1− I − L)− (1− p0)e−2λtI

)
F̃ ′(t) = −rp0(1− I) + (λ+ r)(1− p0)Ie−λt

= ertV m′(t)

A necessary equilibrium condition is t ≤ tm. Otherwise, investing at tm would yield

strictly more than investing at t. This implies V m′(t) > 0.

Hence, F̃ ′(t) ≥ 0 =⇒ p0(1− I − L)− (1− p0)e−2λtI ≥ 0, that is, t ≥ t1(L).

To show the second point, let us take (A.13) at t = t. This gives(
p0(1− I − L)− (1− p0)e−2λtI

)
F̃ ′(t) = λp0L− (λ+ r)ertṼ (A.14)

Since t ≥ t ≥ t1(L), F̃ ′(t) ≥ 0 imposes

λp0L− (λ+ r)ertṼ ≥ 0 (A.15)

Now let us consider the objective function of a player for t ≥ t. It is equal to

e−rt

(
p0L− (1− p0)Ie−λt

∫ t

0

λe−λs[1− F̃ (s)] ds

)

Since we are looking for a regular equilibrium where the objective function is continuous,

an equilibrium condition is that it is locally decreasing in the right neighbourhood of t for

otherwise t could not be payoff-maximizing. This reads

(λ+ r)(1− p0)Ie−(r+λ)t

∫ t

0

λe−λs[1− F̃ (s)] ds− rp0Le
−rt ≤ 0

But since by definition the objective function is worth Ṽ at t, we can write

(1− p0)Ie−(r+λ)t

∫ t

0

λe−λs[1− F̃ (s)] ds = e−rtp0L− Ṽ

Accordingly, we derive from the two previous equations

λp0L− (λ+ r)ertṼ ≤ 0 (A.16)

Taking together (A.15) and (A.16), we derive

λp0L− (λ+ r)ertṼ = 0 (A.17)
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Notice that (A.17) is equivalent to F̃ ′(t) = 0.

Using Ṽ = V m(t) we derive the second point.

In order for t to be actually defined by h(t), one needs to make sure that h(t) ≥ t. It

is easy to see that h is decreasing. Since h[t̂(0)] = ∞ and h(tm) = 1
r

ln L
1−I + tm < tm,

there exists a cutoff date tc such that h(tc) = tc. Since we must have t > t1(L), we also

need to check that t1(L) < tc. This inequality holds true if t1(L) − h[t1(L)] < 0 ⇔ (λ +

r)
(
p0(1− I)−

√
p0(1− p0)I(1− I − L)

)
− λp0L < 0. This function is either increasing or

U-shaped, and negative at L = 0 so there exists a value Lmax such that t1(L) ≤ h[t1(L)] for

all L ≤ Lmax. We assume henceforth that L ≤ Lmax. �

Let b(t) ≡ λp0(1−I−L)
p0(1−I−L)−(1−p0)Ie−2λt and let C(t) be the function such that

1− F̃ (t) = C(t)e−
∫ t
t b(s) ds (A.18)

Differentating (A.18) wrt t yields

−F̃ ′(t) = C ′(t)e−
∫ t
t b(s) ds − [1− F̃ (t)]b(t)

Using (A.13), one derives that

C ′(t)e−
∫ t
t b(s) ds = − λp0L− (λ+ r)ertṼ

p0(1− I − L)− (1− p0)e−2λtI

This gives

C(t) = C(t)−
∫ t

t

λp0L− (λ+ r)erzṼ

p0(1− I − L)− (1− p0)e−2λzI
e
∫ z
t b(s) ds dz

From (A.18), it is clear that F̃ (t) = 0 =⇒ C(t) = 1.

It follows that

1− F̃ (t) =

(
1−

∫ t

t

λp0L− (λ+ r)erzṼ

p0(1− I − L)− (1− p0)e−2λzI
e
∫ z
t b(s) ds dz

)
e−

∫ t
t b(s) ds (A.19)

Recalling Ṽ = V m(t), and using F (t) = 1, we conclude that t is determined by the

solution of the following equation:

g(t) ≡
∫ h(t)

t

λp0L− (λ+ r)erzV m(t)

p0(1− I − L)− (1− p0)e−2λzI
e
∫ z
t b(s) ds dz = 1 (A.20)
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Differentiating g, we derive

g′(t) = b(t)−V m′(t)

(
ert

p0(1− I − L)− (1− p0)Ie−2λt
+

∫ h(t)

t

(λ+ r)erze
∫ z
t b(s) ds dz

p0(1− I − L)− (1− p0)Ie−2λz

)
−b(t)g(t)

At the solution t, we have g(t) = 1, which implies

g′(t) = −V m′(t)

(
ert

p0(1− I − L)− (1− p0)Ie−2λt
+

∫ h(t)

t

(λ+ r)erze
∫ z
t b(s) ds dz

p0(1− I − L)− (1− p0)Ie−2λz

)

Since we have seen that t < tm, we know that V m′(t) > 0, which implies that g′(t) < 0.

Since g is continuous in t, this implies that if g has a root, it is unique.

Let us show that there is a root in [t1(L), tc].

Remarking that ∫ z

t

b(s)ds =
1

2
ln

(1− p0)I − p0(1− I − L)e2λz

(1− p0)I − p0(1− I − L)e2λt
(A.21)

one can rewrite

g(t) =
1√

p0(1− I − L)− (1− p0)e−2λtI

∫ h(t)

t

λp0L− (λ+ r)erzV m(t)√
p0(1− I − L)− (1− p0)e−2λzI

eλ(z−t) dz

(A.22)

This implies that g[t1(L)] =∞. In turn, g(tc) = 0. Because g is continuous, there exists

a root to g(t) = 1 in [t1(L), tc].

It is clear that from (A.19) that F̃ is nondecreasing in t. By construction, it is worth 0

at t = t and to 1 at t so F̃ is indeed a cdf.

Notice that, rearranging (A.19), and relabelling t = t(L), F̃ can be rewritten

F̃ (t) = 1− e−λ[t−t(L)]

√
p0(1− I − L)− (1− p0)Ie−2λt(L)

p0(1− I − L)− (1− p0)Ie−2λt
(A.23)

+
e−λt√

p0(1− I − L)− (1− p0)Ie−2λt

∫ t

t(L)

λp0Le
λz − (λ+ r)e(r+λ)zV m[t(L)]√

p0(1− I − L)− (1− p))Ie−2λz
dz

�

Proof of Proposition 7 That investment takes place sooner with public news for all c is

a direct consequence of t1(L) < t(L), which is proven in Lemma 3 above.

Let us now compare equilibrium payoffs. In the public news case, the equilibrium payoff

is given by

e−rt1(L)p0L+ (1− p0)c
λ

r + 2λ

(
1− e−(r+2λ)t1(L)

)
,
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In the private news case, using (A.17), the equilibrium payoff Ṽ equals

λ

λ+ r
p0Le

−rt(L).

Since t(L) ≥ t(L) ≥ t1(L), we derive

λ

λ+ r
p0Le

−rt(L) ≤ λ

λ+ r
p0Le

−rt1(L)

≤ p0Le
−rt1(L)

≤ p0Le
−rt1(L) + (1− p0)c

λ

r + 2λ

(
1− e−(r+2λ)t1(L)

)
.

Therefore, for any c, the equilibrium payoff is larger with public signals.

Let us now compare the NPV of investment in the two regimes. With public signals,

beliefs at equilibrium are
p0

p0 + (1− p0)e−2λt1(L)
=

I

1− L
, (A.24)

using the definition of t1(L).

With private signals, using (5), beliefs are given by

p0

p0 + (1− p0)e−λt
(
e−λt +

∫ t
0
λe−λs 1−F̃ (s)

1−F̃ (t)
ds
) (A.25)

The difference (A.25)-(A.24) has the same sign as

p0(1− I − L)− (1− p0)Ie−λt

(
e−λt +

∫ t

0

λe−λs
1− F̃ (s)

1− F̃ (t)
ds

)
From (A.12), this is equal to ertṼ−p0L

1−F̃ (t)
.

In turn, using (A.17), this equals p0L

1−F̃ (t)

(
λ
λ+r

er(t−t(L)) − 1
)
≤ 0.

This proves that the NPV is larger with public signals.

Let us now turn to the comparison of the planner’s welfare across regimes.

With public signals, the welfare of the planner reads

e−rt1(L)
(
p0(1− I + ∆S)− (1− p0)e−2λt1(L)(I + ∆F )

)
= p0e

−rt1(L)

(
∆S −

1− I
I

∆F + (1 +
∆F

I
)L

)
≡ W̃ (1, L).

Note that the planner’s welfare does not depend on c since t1(L) is independent of c.
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Let W̃ (0, L) denote the welfare of the planner when signals are private (x = c = 0). It
equals

p0(1− I + ∆S)

∫ t(L)

t(L)
2e−rt[1− F̃ (t)]f̃(t) dt− (1− p0)(I + ∆F )

∫ t(L)

t(L)
2e−(r+λ)t

(∫ t

0
λe−λs[1− F̃ (s)] ds+ e−λt[1− F̃ (t)]

)
f̃(t) dt

Using (A.12), we can rewrite it

W̃ (0, L) = p0(1− I + ∆S)

∫ t(L)

t(L)
2e−rt[1− F̃ (t)]f̃(t) dt−

I + ∆F

I

∫ t(L)

t(L)
2
(
e−rt[p0(1− I − L)(1− F̃ (t)) + p0L]− Ṽ

)
f̃(t) dt

= p0

(
∆S −

∆F

I
(1− I) + (1 +

∆F

I
)L

)∫ t(L)

t(L)
2e−rt[1− F̃ (t)]f̃(t) dt− 2(1 +

∆F

I
)

(
p0L

∫ t(L)

t(L)
e−rtf̃(t) dt− Ṽ

)

Let us write the difference in the planner’s welfare in the two situations:

W̃ (1, L)− W̃ (0, L) = p0

(
∆S −

1− I
I

∆F + (1 +
∆F

I
)L)

)(
e−rt1(L) −

∫ t(L)

t(L)
2e−rt[1− F̃ (t)]f̃(t) dt

)

+ 2(1 +
∆F

I
)

(
p0L

∫ t(L)

t(L)
e−rtf̃(t) dt− Ṽ

)
.

Since investment takes place earlier when signals are public, i.e., t1(L) < t(L), we must

have

e−rt1(L) >

∫ t(L)

t(L)

2e−rt[1− F̃ (t)]f̃(t) dt.

We derive that W̃ (1, L) − W̃ (0, L) is increasing in ∆S. This implies that there exists a

cutoff ∆ such that

W̃ (1, L) ≥ W̃ (0, L)⇔ ∆S ≥ ∆.

In addition, using (A.17), we note that

Ṽ =
λ

λ+ r
p0Le

−rt(L) ≤ λ

λ+ r
p0L

∫ t(L)

t(L)

e−rtf̃(t)dt ≤ p0L

∫ t(L)

t(L)

e−rtf̃(t)dt.

This implies that ∆ < 1−I
I

∆F − (1 + ∆F

I
)L.

�
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