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of capital with varying degrees of automation. I derive conditions under which,

aggregating over heterogeneous production units, output can be represented as

a CES production function, the parameters of which are determined endoge-

nously by the distribution of technology. Through the lens of the canonical

model, I show how the distribution of automation technology determines its

aggregate e�ects; in the long run, only the distribution of technology matters.

The transition dynamics of the economy in response to an increase in frontier

automation technology are consistent with notable micro and macro US styl-

ized facts of recent decades: at the �rm level, a fall in the labor share driven by
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1 Introduction

In this paper I develop a model of automation as an embodied technology created via

irreversible investments: putty-clay automation. Paraphrasing Phelps (1963), in this

model, di�erent to the existing literature on automation, new robots (or any other

kind of capital that enables automation) are like putty; before they are installed they

can be designed to perform any technologically feasible number of tasks. Once robots

are created and installed, they are like hard-baked clay; they can perform only the

tasks for which they have been designed, even as new and better blueprints for robots

are discovered. In the model (as in the world), both new and old types of robots will

be created at any given time because old types are cheaper to make than new ones.

Thus, in equilibrium, the capital stock of the economy will be composed of many

di�erent types of capital, with varying degrees of automation.

To study this economy with heterogeneous capital in a tractable framework, I derive

conditions under which aggregate output in this economy can be represented using

the canonical constant elasticity of substitution (CES) function with capital and la-

bor aggregates as input, but here the parameters of CES are themselves functions

of the level and distribution of automation technology in the economy. This model

of the aggregate production function delivers sharp characterizations of the e�ect of

automation on the labor share and on aggregate productivity. The labor share de-

creases if the most automated capital in the economy become more automated but

increases if the least automated capital is scrapped. Aggregate productivity, on the

other hand, increases if automation increases anywhere in the economy. The aggre-

gation result also yields a theory of the aggregate elasticity of substitution between

capital and labor, σ in standard notation, which relates this parameter to the shape

of the distribution of automation capital.

Modeling automation as embodied technological progress provides several novel in-

sights. Salient among these is that labor's share of value added does not inevitably

decline in response to a permanent increase in automation: if and when technology

di�uses through the economy, the labor share returns to a stable long-run level that

is independent of the state of automation technology.

Studying this long-run, �natural� level, I show that it is directly related to the speed of

technological di�usion, and equivalently, to the ease with which the most productive

�rms (those with the most automated capital) can expand their scale relative to the
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least productive �rms in the economy. By implication, the �natural� level of the

labor share is directly related to the shape of the �rm-size (or automation capital)

distribution of the economy, and therefore to σ. A fall in the rate of technological

di�usion (or a technological change that favors the growth of the most productive

�rms) leads to a permanent fall in labor's share of value added that comes about

through a greater concentration of economic activity among low labor share �rms,

consistent with the empirical evidence presented by Autor et al. (2020) and Kehrig

and Vincent (2021). The theory is also consistent with the work of Akcigit and Ates

(2021) who relate the evolution of factor shares (among other macro aggregates) to

a slowdown in the rate of technological di�usion.

Furthermore, I show that along the transition path of the economy in response to an

exogenous increase in frontier automation technology the model does well in matching

the evidence presented by Kehrig and Vincent (2021). I replicate �gures from their

paper using model-simulated data and show that, as in the data, the fall in the

aggregate labor share in the putty-clay model is driven entirely by reallocation. The

model, in other words, can rationalize observed cross-sectional trends in the labor

share either as arising from a permanent change in technology that a�ects the long-run

�rm-size distribution, or as the endogenous response of the economy to an automation

shock.

The response of aggregate variables along the transition path also is consistent with

salient macro stylized facts of recent decades. The labor share falls along the transition

path1 and returns to its long-run level at a slow rate. The growth rate of total factor

productivity, which in the model is determined endogenously by the evolution of the

�rm-size distribution, and the real interest rate both decrease along the transition

path. Thus, in the putty-clay automation model, the �Solow productivity paradox�

(Solow (1987), Brynjolfsson et al. (2017)) � the observation that the appearance of

new technologies is accompanied by a slowdown in productivity growth � is not a

paradox after all.

Related Literature This paper contributes to a growing literature that, starting

with the seminal paper by Zeira (1998), models automation as a task-replacing tech-

1The timing and magnitude of the fall (if any) in the labor share in the US is inevitably dependent
on the de�nition used. In calibrating the model, I use US industry-level accounts and remove the
�nancial and real estate sectors and also the capitalization of intellectual property products from
value added, as in Koh et al. (Forthcoming).
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nology and considers its macroeconomic e�ects. The model in this paper starts from

di�erent primitives but shares features with Acemoglu and Restrepo (2018). The

latter develop a comprehensive theory of automation that features endogenous au-

tomation and the creation of new tasks that only labor can perform (the �race� to

which the title refers); when these two forces are evenly matched, the economy has a

balanced growth path. For the dynamic model described in Section 3 to have a bal-

anced growth path a closely related condition must hold. In the full Acemoglu and

Restrepo (2018) model, the endogenous creation of new tasks acts as a self-correcting

force that restores employment and the labor share even as automation technology

progresses. In the model of this paper, the di�usion of technology and the scrap-

ping of old technologies act as a self-correcting force that operates to restore long-run

stability, even if no new human-only tasks are introduced.

Aghion et al. (2017) present a model of automation that builds on the structure of

Zeira (1998). The authors examine the ability of such a model to generate dynamics

consistent with the Kaldor growth facts. Among other insights, the model connects

automation with the emergence of a Baumol (1967) �cost disease�; the authors also

explore the e�ect of a possible technological singularity leading to an explosion in

economic growth. Hémous and Olsen (Forthcoming) develop a model of automa-

tion and horizontal innovation that endogenously links automation to the rise in the

skilled-unskilled wage premium.

Hubmer and Restrepo (2021) develop a model with �rms that are heterogeneous in

their degree of automation, although, in contrast to the present paper, in stationary

equilibrium all �rms have the same degree of automation. Their model generates

transition paths in which the aggregate labor share declines and the median labor

share increases, consistent with the evidence in Kehrig and Vincent (2021). The

authors also extend their model to the case of imperfect competition and provide

a sector-level decomposition of the decline in the labor share into technological and

pro/anti-competitive channels.

The aggregation procedure I implement was �rst introduced in Houthakker (1955),

who shows that aggregation of micro-production units operating a Leontief technology

with Pareto-distributed productivities results in a Cobb-Douglas aggregate produc-

tion function. In a static setting in which the productivity distribution itself is the

primitive, Levhari (1968) and Sato (1975) extend the result to general CES functions.

Jones (2005) applies this aggregation result in a growth context to consider how the
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aggregate production changes over time and how technological change matters for the

shape of the production function. León-Ledesma and Satchi (2018) also study ag-

gregation in a model where �rms choose technology from a technology frontier. This

paper's central concern is similar in spirit but I focus on automation speci�cally. The

model I develop in Section 2 is closest to Lagos (2006), who develops an aggregative

model of total factor productivity. My model can be thought of as extending his

work to a model of both TFP and the share parameter (α). Ober�eld and Raval

(2021) use a closely related aggregation result to estimate industry-level elasticities of

substitution starting from plant-level elasticities. Dvorkin and Monge-Naranjo (2020)

obtain a related aggregation result in production under di�erent assumptions for an

economy with endogenous worker assignment.

The dynamic version of the model features a putty-clay vintage capital structure, �rst

introduced by Johansen (1959) and further developed by Massell (1962) and Phelps

(1963). The implementation of the putty-clay technology in this model is closely

related to Gilchrist and Williams (2000). As in Jovanovic and Yatsenko (2012), and

in contrast to most vintage capital models, an important feature of the model in this

paper is that investment occurs in both old and new vintages of capital.

The rest of the paper is organized as follows. Section 2 develops a static model

that presents, in the simplest possible setting, the main analytical results in the

paper. Section 3 embeds this static production structure into a dynamic model that,

in aggregate, closely resembles the standard neoclassical growth model and derives

the requirements for the existence and properties of a balanced growth path of the

economy. Section 4 analyzes the long- and short- run e�ects of automation. Section

5 concludes.

2 Static Model

I start with a static version of the model to simplify the exposition of technology

and the aggregation result that yields a constant elasticity of substitution (CES)

macro production function. The static economy consists of a continuum of �rms,

each operating a �rm-speci�c technology to produce a homogeneous good that is sold

in a competitive market. To produce, �rms must hire labor, which is supplied by

homogeneous workers in a competitive labor market.
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2.1 Firms

A continuum of competitive �rms produce a homogeneous �nal good Y . A �rm i is

characterized by its technology ãi and capital stock ki. Technology is embodied in

the capital stock, so a �rm's capital consists of ki units of capital that embody the

technology level ãi. I assume that each �rm owns exclusive rights to its technology,

so there is one �rm per technology ãi
2.

Technology Production of one �nal good requires the completion of a continuum of

all tasks in an interval [0, q]3. Both workers and machines can perform tasks. Workers

can perform all tasks in [0, q],4 whereas a machine of type ã can perform tasks in [0, ã],

with ã < q. So to produce one unit of the �nal good using a machine of type ã, a

worker must complete the remaining tasks [ã, q]. If it takes workers one unit of time

to complete all tasks in [0, q], a worker-machine pair would produce 1/ (q − ã) goods

in one unit of time; I further assume that the productivity of a worker-machine pair

is increasing in the quantity of tasks, and that the productivity gains from worker

specialization are governed by a parameter γ > 1. With these assumptions, the

productivity of a worker-machine pair is given by:

z (a) =

(
q

q − ã

)γ
=

(
1

1− a

)γ
, (1)

where I de�ne a ≡ ã
q
as the fraction of total tasks that the machine can complete,

which I call the machine's (and �rm's) degree of automation. When referring to

machine types, I adopt the notational convention that variables with a tilde measure

the highest level of task that a machine can perform, whereas variables without a

tilde measure the fraction of total production tasks that a machine can perform. The

function z (a) is related to span of control in models in which production is organized

2I refer to the locations at which each type of technology is operated as '�rms', but the reader
may prefer to think of these as plants or establishments given that the de�ning characteristic of a
�rm in the model is that it is a unit of production in which only one particular type of technology
may be operated.

3Following Becker and Murphy (1992), the production function in terms of tasks is the Leontief
function,

y = min
0<x<q

y (x)

with the interpretation that producing y goods requires that each task x be performed y (x) times.
4The assumption that workers can perform all tasks is not essential to the results, but it simpli�es

notation and algebra. What is important is that there are some tasks that only workers can perform.
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in knowledge hierarchies as in Garicano (2000) and Garicano and Rossi-Hansberg

(2006). In these papers, productivity gains arise when more knowledgeable workers

are employed at higher levels in the hierarchy of production. Here, productivity

gains occur when workers are paired with machines because workers are essential to

production (because ã < q) and machines save workers time by performing a portion

of the required tasks.5 The degree of productivity gains is scaled by the parameter γ,

which, in the spirit of Becker and Murphy (1992), I interpret as as capturing returns

to worker specialization.

Firm Production Function and Pro�t Maximization Each �rm i is charac-

terized by its technology ãi (equivalently, its degree of automation ai) and capital

stock ki. At the �rm level, I assume that the number of (e�ective) worker hours per

machine is technologically constrained to be in a �xed proportion, resulting in the

following (Leontief) production function for �rm i:

yi = z (ai) min (ki, H · ni) , (2)

where ki and ni are the �rm's capital stock and labor input. H is labor-augmenting

productivity, common to all workers, so that H · ni is the e�ciency adjusted number

of hours worked by �rm i's workers.

Firm-size Distribution I assume that each �rm has exclusive use of a technology,

so there is a one-to-one correspondence between i and ai, and I can model the �rm-size

distribution as the measure of capital at each degree of automation ai. I denote this

measure k (a), and assume that it has bounded support a ∈ [a`, ah], so that a` and ah

are, respectively, the least and the most automated types of capital in the economy.

Since a is a fraction and I have assumed that at least some level of worker-only tasks is

needed in production, the bounds satisfy 0 ≤ a` < ah < 1. Anticipating the discussion

of aggregation in the following section, the integral of k (a) is the aggregate capital

stock of the economy, K =
∫ ah
a`
k (a) da. Normalizing the �rm-size distribution by

5All things being equal, an increase in q decreases productivity per unit of output: the higher
is q, the more a worker-machine pair must work more to produce each good. I interpret q as a
quality margin; thus, the same good produced with higher q is of higher quality (more enjoyable to
consumers). In the dynamic model presented in Section 3, I make this quality interpretation explicit
by introducing q into consumer preferences.
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aggregate capital, I de�ne the PDF f (a) ≡ k(a)
K

, which is the density function of

degrees of automation in the economy. I de�ne the density g (z) as the distribution

of the function z (a) given that a has density f (a). The density function g (z) is the

measure of productivities associated with a given distribution of automation. Since

f (a) is bounded, so too is g(z), with lower bound z` ≡ z (a`) and upper bound

zh ≡ z (ah).

2.2 Equilibrium and Aggregation

I start by solving for aggregate labor demand. The pro�t maximization problem for

a �rm with productivity z is:

max
n

zmin (k (z) , H · n)−W · n (3)

It follows that the optimal choice of hours as a function of z is:

n (z) =


k(z)
H

if z ≥ W
H

0 if z < W
H

Since z is a function of a, I can rewrite the optimal choice of hours in terms of the

degree of automation of the marginal �rm.

n (a) =


k(a)
H

if a ≥ aw

0 if a < aw
,

where aw = 1 −
(
W
H

)σ−1
. Aggregate labor demand, N , is the integral over �rm

labor choices, N =
∫ zh
z`
n (z) dz. Substituting in the optimal choice of hours and

k (z) = K · g (z), the integral becomes N = K
H

∫ zh
W/H

g (z) dz. Denoting by G (·) the
CDF of z, integrating gives the aggregate labor demand as:

N =
K

H

[
1−G

(
W

H

)]
(4)

Aggregate labor demand is the product of the total capital stock, divided by worker

e�ciency, times the fraction of active �rms (1 minus the CDF at W
H
, the term in

square brackets). I assume an increasing labor supply function N s (W ). Equating
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N s (W ) to labor demand as in Equation 4 gives the equilibrium wage. With the

equilibrium wage in hand, aggregate output Y can be solved for as the integral over

�rm-level output, Y =
∫ zh
W/H

zk (z) dz = K
∫ zh
W/H

zg (z) dz, which can be expressed

as:

Y = K

[
1−G

(
W

H

)]
EG
(
z|z ≥ W

H

)
(5)

Aggregate output is the product of three terms: the capital stock, the fraction of

active �rms, and the average productivity of active �rms, given by the third term

(EG
(
z|z ≥ W

H

)
=
[
1−G

(
W
H

)]−1 ∫ zh
W/H

zg (z) dz).

2.3 From Automation to a CES Aggregate Production Func-

tion

Equation 5 expresses aggregate output as a function of the equilibrium wage. To

express aggregate output in a more familiar form � as a function of capital, labor

and technology � I start with an assumption about the distribution of degrees of

automation f (a). In particular, I assume that f (a) is a 3 parameter beta distribution6

that is characterized by one shape parameter, ρ, and lower and upper bounds a` and

ah. Using this assumption, the following lemma characterizes the distribution of z(a).

Lemma 1. If a ∼ B (1, ρ; a`, ah), so that the PDF of a, f (a) = ρ (ah−a)ρ−1

(ah−a`)ρ
, then

z (a) =
(

1
1−a

)γ
is distributed with CDF G (z):

G (z) = 1−

1−
1−

(
z`
z

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

(6)

and z ∈ [z`, zh], with z` =
(

1
1−a`

)γ
and zh =

(
1

1−ah

)γ
.

Proof. See Appendix A.1

With γ = 1, this lemma is equivalent to the derivation in Geerolf (2017) of a Pareto-

distributed span of control in an economy that has a simpli�ed Garicano (2000)

production function and a beta distribution for worker skills. The distribution G (z),

6The standard beta distribution is bounded in [0, 1] and is characterized by two shape parameters.
I restrict one of the shape parameters to equal 1 and set the bounds to 0 < a` < ah < 1.
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known to statisticians as a truncated beta-Pareto distribution7, is closely related to

the Pareto distribution; indeed, with ρ = 1, G (z) is exactly a Pareto distribution

with tail parameter 1
γ
and lower bound z`, truncated at an upper bound zh.

The distribution G (z) generalizes the distribution derived by Sato (1969) (which,

in turn, extends the result in Levhari (1968)) for z` > 0. Contrastin those papers,

the productivity distribution here is not a primitive; instead, I derive it from the

underlying distribution �rm-size (or automation technology) distribution F (a) and

the productivity function z (a). These di�erences are crucial because they allow me to

develop a theoretical link between automation and the aggregate production function.

They are also important in proving the existence of a balanced growth path and its

associated stationary distribution in the dynamic model that I present in Section 3.

Before proceeding, I place a further restriction on parameters: for the remainder of

the paper, I assume that γ = ρ + 1. This is not an innocuous restriction because,

in the logic of the model, γ can be thought of as a deep technological parameter

that governs �rm-level returns to automation, whereas ρ is the shape parameter of

the automation distribution, which means it is closer to an equilibrium object. The

gain from imposing this restriction is substantial: as shown in Proposition 1, with

this parametrization, aggregate output in the economy can be represented exactly as

a canonical CES production function. This knife-edge parametrization of the model

makes it possible to solve the integral in Equation 5 in closed form. I have veri�ed

numerically that the results presented in this section and the next are not substan-

tially a�ected by deviations from the knife-edge parametrization. To economize on

notation, and to be consistent with the literature, I also de�ne ρ ≡ σ
1−σ (σ will corre-

spond exactly to the elasticity parameter of the CES). In sum, I make the following

assumptions about the distributions F (a) and G (z):

Assumption 1: Distributions F (a) and G (z) Assume γ = ρ+1 = 1
1−σ and that

the automation distribution F (a) and its associated productivity distribution G (z),

with z (a) =
(

1
1−a

) 1
1−σ , are:

7Akinsete et al. (2008) and Lorenzutti et al. (2012) derive moments, MGF, etc., for this distri-
bution.

10



F (a) = 1−
(
ah − a
ah − a`

) σ
1−σ

and G (z) = 1−

1−
1−

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

The following proposition shows that, given this assumption, aggregate output can be

represented by a CES production function with elasticity of substitution 0 < σ < 1.

Proposition 1. Using Assumption 1, aggregate output for this economy can be rep-

resented as the CES production function with elasticity of substitution 0 < σ < 1,

Y = A
(
αK

σ−1
σ + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

(7)

where H is labor-augmenting productivity and the capital (K) and labor aggregates

(N) are:

K =

∫
Z

k (z) dz and N =
K

H

[
1−G

(
W

H

)]
where W is the market-clearing wage that solves N s (W ) = N . The total factor pro-

ductivity term A and the capital distribution parameter α are functions of parameters

of the productivity distribution G (z) or, equivalently, of the automation distribution

F (a):

A = (zh)
1−σ (z`)

σ =
1

(1− ah) (1− a`)
σ

1−σ
(8)

α = 1−
(
z`
zh

)1−σ

=
ah − a`
1− a`

(9)

Proof. See Appendix A.3.

Proposition 1 contains 3 linkages between the parameters of the automation distri-

bution F (a) and the aggregate production function. I discuss each of these in turn.

Elasticity of Substitution σ The elasticity of substitution σ of the aggregate

production function is related to the shape parameter of the underlying �rm-size dis-
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tribution8. Inspecting the CDF of a B
(
1, σ

1−σ

)
distribution, F (x) = 1− (1− x)

σ
1−σ

,

we see that the e�ect of increasing σ is to shift mass towards the left tail of the

distribution, which in the model means that �rms with relatively low automation

are relatively larger. The intuition for why this translates into a higher elasticity of

substitution is that the higher σ is, the larger the mass of �rms in the neighborhood

of the cuto� level of automation aw, and, consequently, the higher the mass of �rms

that go from active to idle in response to a small increase in the cuto� aw (corre-

sponding to a small increase in the wage). Because �rms in the neighborhood of this

cuto� require more labor per unit of output, the economy in aggregate becomes more

capital intensive when these �rms shut down. In other words, the aggregate economy

substitutes towards capital in response to an increase in the wage, and this e�ect is

stronger the higher σ is.

The aggregation result in Proposition 1 requires that σ be smaller than 1. The dis-

cussion in the previous paragraph hints why this is the case: σ > 1 would imply that

the economy becomes more labor intensive as the wage increases. Sato (1969) shows

that this is a general existence requirement in this class of aggregative models (Man-

gin (2015) proves a similar result using a di�erent approach). This is an important

theoretical insight in the long-running debate about the value of σ in macro models9.

A and α The TFP parameter A and the distribution parameter α are functions of

moments of the productivity distribution G (z); as shown in Online Appendix O5, A

is the mean of z and as such is increasing in both the lower and upper bounds of the

productivity distribution. TFP, therefore, is increasing in both ah and a`: the more

automated the capital stock, the higher the Total Factor Productivity. Substituting

for zh and z`, the distribution parameter α can be expressed in terms of ah and a`,

α = ah−a`
1−a`

. The distribution parameter, therefore, is increasing in ah and decreasing

in a`. Since the parameters of the distribution F (a) determine A and α, they also

determine factor shares in this economy, as the following proposition establishes.

8I have imposed γ = 1
1−σ so that, strictly speaking, σ is also related to the returns to automation

at the �rm level. In describing the e�ect of varying σ I have in mind a local approximation leaving
γ unchanged and varying the shape parameter of the beta distribution. The resulting aggregate
production function is not an exact CES function, but it is very close to CES for small deviations.

9Furthermore, as I show in Online Appendix O3.5, the dynamic version of the model can reconcile
the disconnect between estimates of σ < 1 in cross-sectional data (for example, Ober�eld and Raval
(2021)) and σ > 1 in time series data (notably Karabarbounis and Neiman (2014)).
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Proposition 2. The labor share is given by

LS =
1− ah
1− aw

(10)

Proof. The labor share with a CES production function can be expressed as:

LS = (1− α)σ Aσ−1
(
W
H

)1−σ
Substituting in for A and α from Equations 8 and 9,

and replacing zh =
(

1
1−ah

) 1
1−σ

and W
H

=
(

1
1−aw

) 1
1−σ

gives the result after algebraic

manipulation.

Proposition 2 provides an easily interpretable expression for the labor share in terms

of the automation distribution: the labor share is the ratio of the fraction of non-

automated tasks at the most automated �rm 1−ah over the fraction of non-automated

tasks at the least automated (active) �rm 1−aw. ah and aw are measures of automa-

tion that capture di�erent margins. An increase in ah can be interpreted as an ex-

tensive margin of automation because an increase in ah implies that new automation

technologies have been discovered and embodied as capital goods. On the other hand,

an increase in aw can be interpreted as an increase along an intensive margin: some

fraction of the least automated technologies installed in the economy is left idle or

scrapped, and so the average automation level of �rms that are still active increases.

This interpretation is related to the dynamics at work in models of innovation and

di�usion. Increasing ah is an innovation: a jump in the technology frontier. Increasing

aw corresponds to di�usion because the technology of the lowest active �rm is closer

to the frontier following an increase in aw. Benhabib et al. (2020) develop a model

in which the �rm productivity distribution has a �nite upper bound; thus, both

innovation (growth at the frontier) and di�usion (catch-up from �rms in the left tail

of the distribution) are present. They �nd that the presence of a �nite upper bound

a�ects the key properties of the BGP equilibrium. By analogy, the model in this

paper uses the same �rm level technology as Lagos (2006), but in the models of the

latter, the �rm productivity distribution is unbounded (so only the �di�usion� margin

is active). Introducing the upper bound here allows me to derive model of both the

TFP term A and capital share parameter α of the aggregate production function.

The expression for the labor share makes explicit my model's connection to David

Ricardo's theory of rent (Ricardo (1821)). In his original formulation, the pro�ts of

landowners are determined by the di�erence between the productivity of their own
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land and that of the best available rent-free land; this is so because the productivity

of the worst land determines the wages of landless laborers. This economic rent is

not competed away because new land cannot be readily created. By analogy, in my

model, the productivity of the least automated capital determines the wages of labor,

and owners of supra-marginal machines earn Ricardian rents (or quasi-rents in the

language of Phelps (1963)) from automation. These are pro�ts that arise not from

a lack of competition in product markets, but from frictions that impede the free

reallocation of resources to their most e�cient use. In the static model shown above,

this impediment to reallocation is assumed; in the dynamic model presented below,

it is sustained in equilibrium by capital irreversibility and adjustment costs that are

speci�c to each technology.

3 Dynamic Model and Balanced Growth

In this section, I embed the static structure of the previous section into a dynamic

model that, in aggregate, closely resembles a standard neoclassical growth model. I

introduce households that supply labor and make consumption and savings decisions

that determine the evolution of the capital stock and its distribution.

I introduce growth into the model by assuming exogenous growth paths for three

variables: the number of tasks necessary for the production of the �nal good, qt;

the frontier level of automation technology ãh,t; and labor augmenting technological

change Ht. The endogenous aggregate states of the dynamic economy are the ag-

gregate capital stock Kt and the distribution of automation technology (or �rm-size

distribution) Ft (a).

The production and investment technologies in the dynamic model are closely re-

lated to models with putty-clay technology and irreversible investment, introduced

by Johansen (1959) and further developed by Massell (1962) and Phelps (1963). The

vintage capital structure in a putty-clay model of irreversible investment is a natural

way to model an economy in which di�erent types of capital coexist in the economy

at any given time. In this model, a type or vintage of capital corresponds to capital

with di�erent levels of automation. The implementation of putty-clay technology in

this model is closely related to that of Gilchrist and Williams (2000): the �rm-level

Leontief production function leads to variable utilization, and old (less automated)
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capital is scrapped endogenously as newer (more automated) capital is installed. Im-

portantly, as in Chari and Hopenhayn (1991) and Jovanovic and Yatsenko (2012)

(but unlike most vintage capital models), here investment optimally occurs in both

old and new vintages of capital. Automation technologies di�use gradually in the

economy - there is a lag between the introduction of a new automation technology

and its peak usage - and it is incomplete technological di�usion that gives rise to

the �rm-size distribution Ft (a), which is equivalently the distribution of quantities of

capital of di�erent degrees of automation.

3.1 Firm Life Cycle

I start by describing the production and investment decision of an incumbent �rm,

followed by the endogenous scrapping and entry decisions.

Incumbent Firms A �rm is characterized by its degree of automation ai,t ≡ ãi
qt

and capital stock ki,t (for simplicity I refer to a unit of capital as a machine) and

produces �nal output by combining capital and labor, ni,t, in the Leontief production

function yi,t = z (ai,t) min [ki,t, Ht · ni,t], where z (ai,t) =
(

1
1−ai,t

) 1
1−σ

. As in Section

2.2, the �rms' optimal choice of hours is given by a cuto� rule: �rms with productivity

z (ai,t) <
Wt

Ht
do not hire labor in period t, and so their capital remains idle. The �rm's

pro�t function is therefore given by:

π (ai,t, ki,t) = ki,tπ (ai,t) = ki,t max

[
z (ai,t)−

Wt

Ht

, 0

]
(11)

A �rm's technology ãi is �xed at birth (�rm entry is described below). However,

because the number of tasks required to produce �nal output, qt, changes over time,

a �rm's automation, ai,t is not constant over time. In particular, the degree of au-

tomation of a machine that can perform tasks up to ãi decreases over time as qt grows

because that machine becomes less automated relative to the total measure of tasks

required to produce a unit of output. This gives rise to technological obsolescence

and endogenous scrapping (described below). The law of motion for ai,t is:

ai,t+1 =
ãi
qt+1

=
qt
qt+1

ai,t (12)
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At the end of each period, the �rm must pay a maintenance cost κ > 0 per machine

to keep a machine operational. If the �rm does not pay the maintenance cost, the

machine depreciates completely at the end of the period. In addition, machines fail

with i.i.d. probability δ. Incumbent �rms can invest in �rm speci�c capital to grow

their stock; investment is irreversible. I denote the value of a �rm with capital ki,t

and automation ai,t by V (ai,t, ki,t):

V (kt, at) = max
ιt

ktπt (at) + 1
[
−κkt − φ̄ιt − φ (ιt, at) + Λt,t+1V (kt+1, at+1)

]
, (13)

s.t.kt+1 = (1− δ) kt + ιt, (14)

ιt ≥ 0, (15)

where ιt is the �rm's choice of investment; φ̄ parameterizes the cost of investment

in terms of �nal goods; φ (ιt, at) is an increasing function in both arguments that

determines the marginal cost of investment; the indicator function re�ects the �rm's

choice to either pay the maintenance cost κkt or scrap its capital; and Λt,t+1 is the

time t discount factor of consumption at time t + 1. For simplicity, following Abel

(1983), I assume φ̄ = 0 and φ (ιt, at) = 1
2Υt

φ (at) ι
2
t , with φ (0) > 0, φ′ > 0 and

φ′′ > 0; and Υt > 0 is a scaling factor that grows at the same rate as aggregate

output to ensure the existence of a balanced growth path. As shown below, this

assumption ensures the �rm's investment is optimally always weakly positive; thus,

the irreversibility constraint never binds. Assuming for now that the �rm does not

scrap its capital, the �rst order condition for investment is

φ (at)

Υt

ιt = Λt,t+1Vk (kt+1, at+1) . (16)

Following Abel and Eberly (1997), I hypothesize that the solution to the value func-

tion V (·) is a linear function of the capital stock,

V (kt, at) = v (at) kt + ψ (at) (17)

where v (a) and ψ (a) are unknown functions. With this hypothesis, the solution to
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the �rm's investment problem is

ιt = Υt
Λt,t+1v (at+1)

φ (at)
, (18)

which, since every term on the right hand side is positive, con�rms that investment

is always weakly positive. To solve for the unknown functions v (a) and ψ (a), I

substitute Equation 17 into Equation 13, assuming for now that the �rm chooses not

to scrap its capital:

v (at) kt + ψ (at) = (πt (at)− κ+ Λt,t+1 (1− δ) v (at+1)) kt

− 1

2Υt

φ (at) ι
2
t + Λt,t+1 (v (at+1) ιt + ψ (at+1))

This equation must hold for all values of kt, so the term multiplying kt on the left

hand side must equal the sum of the terms multiplying kt on the right hand side, and

similarly for the terms not multiplying kt. These equalities give

v (at) = πt (at)− κ+ (1− δ) Λt,t+1v (at+1) , (19)

and, substituting in the solution to the investment problem (Equation 18),

ψ (at) =
Υt (Λt,t+1v (at+1))2

2φ (at)
+ Λt,t+1ψ (at+1) . (20)

The function v (at) is the value of each installed machine of type at, whereas ψ (at)

captures the present value of the rents accruing to the automation technology. For

convenience I also de�ne the �rm-speci�c price of installed capital as the discounted

continuation value of a machine of type at:

pι,t (at) ≡ Λt,t+1vt (at+1) . (21)

Scrapping If �rms do not pay the maintenance cost κ their capital fully depreci-

ates, but a �rm that scraps its capital still owns its technology (and associated rents

ψ (a)). The �rm therefore chooses not to scrap if the continuation value of a machine

exceeds the maintenance cost, (1− δ) Λt,t+1v (at+1) > κ. The machine value function,

incorporating the scrapping decision, is:
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v (at) = πt (at) + 1(1−δ)pι,t(at)>κ [(1− δ) Λt,t+1v (at+1)− κ] . (22)

It follows that the scrapping threshold at the end of the period is de�ned implicitly

by:

(1− δ) pι,t (at) = κ. (23)

The automation level of the lowest machine installed at the beginning of time t is

a`,t, so the scrapping threshold condition implies that machines in (a`,t, a`,t+1] are

scrapped each period. In terms of the CDF of the automation distribution, the

fraction of capital that is scrapped at the end of time t is ςt = Ft (a`,t+1).

New Automation Technologies and Firm Entry In each period, new automa-

tion technologies (ãh,t, ãh,t+1) are discovered. Potential entrants draw technologies

from the entire set and enter; consequently. a measure ãh,t+1 − ãh,t new �rms are

born each period with zero initial capital stock. The value function of a new �rm is:

V (0, at) = max
kt+1

− 1

2Υt

φ (at) (kt+1)2 + Λt,t+1V (kt+1, at+1) , (24)

s.t.kt+1 ≥ 0

and (similar to the above) initial investment is given by kt+1 = Υt
Λt,t+1v(at+1)

φ(at)
.

3.2 Households

The representative household chooses consumption Ct, savings St+1 and labor supply

Nt every period to solve the following intertemporal problem:

max
Ct,St+1,Nt

∞∑
t=0

βt
(
qtCte

−ν(Nt)
)1−η − 1

1− η
, (25)

where C is consumption; N is labor supply; and q is the task input into production

(which I interpret as the quality of production, such that consuming goods that

require a higher task input to produce gives households higher utility)10 and ν (N)

10I include qt explicitly in agent's preferences so as to introduce into the model the notion that
higher task input increases the quality of production. In the context of this model, omitting q
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is the utility cost of supplying labor11. This functional form for preferences satis�es

the conditions required for balanced growth (see King et al. (1988)). The household

is subject to the following budget constraint:

Ct = WtNt +RS,tStPS,t−1 − PS,tSt+1, (26)

with RS,t = Dt+Ps,t
Ps,t−1

. The household saves in a mutual fund that owns the shares St of

all �rms in the economy. Dt (de�ned below) is the aggregate dividend (per share) of

all �rms, and Ps,t is the time t price of a unit of this mutual fund; Wt is the wage. The

equilibrium conditions from household optimization are the standard intratemporal

labor supply condition and intertemporal Euler equation:

ν ′ (Nt) =
Wt

Ct
(27)

1 = Λt,t+1Rs,t+1, (28)

where Λt,t+1 is the discount factor between t and t+1, Λt,t+1 ≡ β

(
qt+1e

−ν(Nt+1)
)1−η

C−η
t+1

(qte−ν(Nt))
1−η

C−η
t

.

3.3 Aggregation

Similar to the static model of Section 2, aggregate output, labor input and the cap-

ital stock are given by Yt =
∫ ah,t
a`,t

zt (a) kt (a) da, Nt =
∫ ah,t
a`,t

nt (a) da and Kt =∫ ah,t
a`,t

kt (a) da, respectively, whereas aggregate investment and the aggregate price of

investment are:

It =

∫ ah,t

a`,t

ιt (a) da (29)

and

PI,t =

∫ ah,t

a`,t+1

pι,t (a) jt (a) da (30)

where jt (a) is the time-t distribution of investment, jt (a) ≡
(
ιt(a)
It

)
. The dividend is

the part of aggregate output that is not paid to workers in wages or used to invest in

from preferences would imply that increases in q result in technological regression (conceptually,
producing the same good requires higher e�ort the higher q is). An alternative modelling choice
is that of Acemoglu and Restrepo (2018), in which increasing q raises labor productivity because
human labor is assumed to be more productive in higher index tasks.

11ν is assumed to be continuously di�erentiable, increasing, and convex.
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new capital, per unit of capital12:

Dt =
Yt −WtNt − PI,t

2
It

Kt

. (31)

The aggregate (ex-dividend) value of all �rms in the economy is the sum of the

intangible plus tangible value of assets in the economy:

PS,tSt+1 = PK,tKt+1 + Ψt+1, (32)

where

PK,tKt+1 =

∫ ah,t

a`,t+1

pι,t (a) kt+1 (a) da (33)

is the aggregate value of installed capital (tangible value), and

Ψt+1 =

∫ ah,t

a`,t+1

ψt+1 (a) da (34)

is the aggregate value of rents accruing to technology (intangible value). The aggre-

gate capital stock of the economy evolves as follows:

Kt+1 = (1− δ) (1− ςt)Kt + It, (35)

where δ is exogenous depreciation and ςt is the fraction of capital that is scrapped

every period.

3.4 Dynamics of the Automation Distribution Ft (a)

Unlike in the static model of Section 2, here the �rm-size distribution ft (a) is an

endogenous state variable, determined by the entry, ongoing investment and scrapping

12Note that the aggregate resources used up in investment are given by the integral over goods
used for investment at each �rm, 1

2Υt

∫ ah,t
a`,t+1

φ (at) ιt (a)
2
da = 1

2

∫ ah,t
a`,t+1

pι,t (a) ιt (a) da =
PI,t

2 It,

where the second equality follows from �rms' �rst order condition for investment and the second
from Equation 30).
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decisions of �rms. The law of motion for f (a) is

ft+1 (a) =

 Kt
Kt+1

(1− δ) ft (a) + It
Kt+1

jt (a) a`,t+1 < a < ah,t+1

0 a ≤ a`,t+1

(36)

The �rst line is the evolution of the part of the capital stock that is not scrapped; it

comes from aggregating the law of motion of capital at the �rm level (Equation 14).

The value of ft+1 (a) is the weighted average of surviving capital plus new investment,

where the weights are given by Kt
Kt+1

(1− δ) and It
Kt+1

, respectively. The second line

corresponds to the part of the capital stock that is scrapped. The focus of analysis

in this paper is the equilibria of the economy that admit a CES representation of the

aggregate production function; per Proposition 1, the CES representation obtains if

the distribution F (a) is in the beta distribution family speci�ed in Assumption 1. I

make the following assumption:

Assumption 2. Cost function φ (a) and investment distribution jt (a). The

marginal cost function φ (a) ∈ Φ∗, where Φ∗ is the set of functions such that j (a) is

in the beta family speci�ed in Assumption 1, j (a) = σ
1−σ

(ah,t−a)
σ

1−σ−1

(ah,t−a`,t)
σ

1−σ
.

In other words, I parametrize the marginal cost of investment at each point in the

automation distribution such that the distribution of investment jt (a) is in the beta

family. The �rst-order condition for �rm investment (Equation 18) shows that φ (a)

determines investment as a function of a, and, thereby, it determines its distribution.

I derive the functional form of φ (a) in Online Appendix O4. This assumption guar-

antees that, in a stationary equilibrium, when ft+1 = ft = jt, the distribution f (a)

is in the beta family.

3.5 Equilibrium and Balanced Growth Path

An equilibrium of the dynamic model consists of sequences of: (i) aggregate alloca-

tions {Ct, It, Nt}; (ii) prices {Wt, PI,t, PK,t, Ψt+1}; (iii) �rm allocations {ιi,t, ni,t};
and (iv) �rm scrapping decisions, such that household and �rm equilibrium conditions

are satis�ed and markets for the �nal good savings and labor are cleared. Market

clearing in �nal goods requires that all production is either consumed or invested,

Yt = Ct +
PI,t

2
It, while savings market clearing requires that savings equal the aggre-
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gate capital stock, Kt+1 = St+1. The state variables of the model are the exogenous

states Ht, qt and ãh,t (labor augmenting technology, tasks and frontier automation

technology, respectively) and the endogenous states Kt, a`,t and ft (a) (the aggregate

capital stock, the lower bound of the automation distribution, and the �rm-size (or

automation) distribution, respectively).

Stationary Equilibrium and the Balanced Growth Path I introduce growth

into the economy by assuming deterministic growth paths for labor-augmenting tech-

nology Ht, automation technology ãh,t and tasks qt, which grow at rates g, ga and gq

respectively. I also assume that ah,t =
ãh,t
qt

< 1 ∀ t; thus, the economy never reaches a

state in which the frontier technology is such that all tasks are fully automated (see

Aghion et al. (2017) for a discussion of the economics of that possibility). I show

that in a stationary equilibrium the model has a steady state with constant growth

that satis�es the Jones and Scrimgeour (2008) de�nition of a balanced growth path.

To the usual requirements for existence of the balanced growth path I add that the

automation distribution F (a) is stationary; in fact, as shown below, stationarity of

F (a) is a necessary and su�cient condition for a balanced growth path.

Proposition 3. Balanced Growth. In a stationary equilibrium such that ft+1 = ft =

jt, and with ga = gq, the economy has a balanced growth path that satis�es the Jones

and Scrimgeour (2008) de�nition: aggregate quantities {Yt, Ct, It, Kt} grow at rate g

and factor shares are constant and strictly positive.

Proof. According to Assumption 2 and Proposition 1, aggregate output in this econ-

omy can be represented as a CES production function with elasticity of substitution

σ < 1, Yt = A
(
αK

σ−1
σ

t + (1− α) (Ht ·Nt)
σ−1
σ

) σ
σ−1

. The conditions for the existence

of a balanced growth path follow from the Uzawa (1961) growth theorem, which

states that the balanced growth path exists only if all technological growth is labor

augmenting, and that in that steady state {Yt, Ct, It, Kt} grow at the rate of labor aug-

menting technical progress, g. This requires that the TFP term At = (zh,t)
1−σ (z`,t)

σ

is constant in the steady state. Substituting in the de�nitions for zh and z` in terms

of the bounds of the automation distribution F (a) gives At =
(

1
1−ah,t

)(
1

1−a`,t

) σ
1−σ

.

Constant TFP therefore requires that ah =
ãh,t
qt

and a` =
ã`,t
qt

are both constant in the

steady state, so qt, ãh,t, and ã`,t must grow at the same rate; and that σ is constant.

The constancy of σ follows from Assumption 2, and qt and ãh,t grow at the same rate
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gq by assumption. I show in Appendix A.2 that ã` also grows at rate gq. Since ah,

a` and σ fully characterize the distribution F (a), the conditions for constant TFP in

the steady state and stationarity of the distribution F (a) are the same.

Proposition 3 establishes that the economy has a continuum of balanced growth paths,

which are indexed by the parameters of the stationary �rm-size distribution F (a):

{σ, ah, a`}. The distribution itself is an endogenous state variable determined by the

marginal cost of investment function φ (a). It follows that there exists a balanced

growth consistent with a CES representation of the aggregate production function for

any φ (a) that satis�es Assumption 2.

According to Proposition 3, improvements in automation technology that are matched

by growth in tasks do not lead to long-run growth, and the distribution of automation

F (a) does not a�ect the steady state growth rate13. The automation distribution

does, however, determine factor shares and TFP in any balanced growth path.

4 Long- and Short- Run E�ects of Increased Au-

tomation

Concerns about labor's share of national income have a long history in macroeco-

nomics (the �principal problem of Political Economy�, according to David Ricardo),

and this interest that has been revived due to the decline in recent decades in labor's

share of US value added. The adoption of automation technology has been cited as

one of the causes of this decline14. In this section I use a calibrated version of the

dynamic model to study comparative statics and transition dynamics of factor shares

and other macro and micro moments in response to an increase in frontier automation

technology ah.

As discussed above, the cost function φ (a) is crucial in determining the distribu-

tion of automation technology in the model, which in turn determines the e�ect of

13However, because q grows in the steady state, output measured in quality terms grows at rate
g + gq. Since growth in q that is not matched by growth in ãh reduces productivity in quantity
terms, growth in automation technology in the balanced growth path enables growth in quality.

14Bergholt et al. (2019), Autor and Salomons (2018), Hubmer and Restrepo (2021), among others.
The connection between corporate tax rates and the labor shares explored by Kaymak and Schott
(2019) is also consistent with automation. Moll et al. (2021) study the e�ects of automation on
inequality in a setting with heterogeneous skills and returns to wealth.
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automation on productivity and factor shares. The most interesting comparative

statics in this model, therefore, require comparisons of di�erent calibrations of the

function φ (a). To make comparative statics tractable and sharpen the focus on the

distribution of aggregate income, I specialize the model in two ways.

No-scrapping Limit First, I derive the limit of the economy described in the

previous section as κ → 0 and gq → 1, which is the no-scrapping limit (the full

equilibrium conditions are provided in Online Appendix O1). As the maintenance

cost κ and the growth rate of tasks (and, therefore, the growth rate of automation

technology) gq go to zero, both the �rm exit and �rm entry margins are shut down.

Therefore, in the limit, all �rms are active in equilibrium, which implies that aw →
a`; that the aggregate capital labor ratio converges to Ht (Kt/N̄ → Ht); and that

Yt → AtKt = AtHtN̄ .

Capitalist-Worker Model Second, I study a version of the model which, in a for-

mal sense, is the least favorable to workers. Rather than a representative household,

the economy is here populated by: i) a representative capitalist who owns the tech-

nology and capital of the economy and consumes dividends; and ii) a representative

worker who supplies labor and consumes but does not save. I solve a planning prob-

lem for this economy with a planner who only values the representative capitalist's

utility (in this sense the equilibria of this version of the model are the least favorable

to workers). The planner, who faces the same technological constraints to investment

as �rms, chooses the optimal investment distribution, subject to the constraint that

the distribution is in the beta family speci�ed in Assumption 2. The investment

distribution is fully characterized by three parameters: ah, σ and aw. Since ah and

σ are technological parameters, the planner's choice simpli�es to that of the optimal

aw, which is the lower bound of the distribution and the degree of automation of the

least automated capital in the economy. I summarize the existence and properties of

the equilibrium in the following proposition:

Proposition 4. Existence and uniqueness of the capitalist-worker equilibrium. There

exists a unique stationary equilibrium of the capitalist-worker, no-scrapping economy.

At the stationary equilibrium, the degree of automation of the least automated capital
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is given by:

a∗w = max

[
ah + σ − 1

σ
, 0

]
. (37)

Proof. See Appendix A.4. The full model and equilibrium conditions are in Online

Appendix O2.

Because here workers consume their wages every period, income and wealth e�ects

on labor supply cancel out and workers supply a constant amount of labor, Nt = N̄ .

Since the focus of this paper is not on the long run e�ects of automation on labor

supply, this simpli�es the exposition of the model considerably at negligible cost in

terms of intuition. I present the results for a version of the model with elastic labor

supply in Online Appendix O2.

4.1 Long-Run E�ect of an Increase in ah

Having solved the stationary equilibrium of the capitalist-worker model, I turn to the

analysis of comparative statics with respect to an increase in the frontier automation

level ah.

Proposition 5. Comparative statics with respect to frontier automation ah. In the

no-scrapping, capitalist-worker equilibrium the long run labor share is

LS∗ =

σ if ah + σ > 1

1− ah if ah + σ ≤ 1

Long run TFP is

TFP∗ =

σ
σ

1−σ

(
1

1−ah

) 1
1−σ

if ah + σ > 1

1
1−ah

if ah + σ ≤ 1

Proof. From Proposition 4, the optimal a∗w = max
[
ah+σ−1

σ
, 0
]
. Substituting a∗w into

Equation 8 (noting that a` → aw in the no-scrapping equilibrium) and Equation 10

gives the result.

As automation ah increases from zero (such that ah+σ < 1), the labor share declines

and productivity increases with frontier automation technology; thus, there is a trade-
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o� between the productivity of the economy and the distribution of aggregate income.

In this part of the parameter space, in equilibrium, the least automated �rms have

zero automation, a∗w = 0. Intuitively, low productivity translates into low labor

demand and wages, such that �rms with zero automation can pro�tably stay in the

market.

For su�ciently high ah (ah + σ > 1), the level of frontier technology has no further

long-run e�ect on the labor share, and only the distribution of automation technol-

ogy, as parametrized by σ, matters. Intuitively, an increase in automation increases

productivity and therefore labor demand, which, in pushing up wages, forces low au-

tomation �rms out of the market, thereby increasing wages and productivity. In the

long run, the di�usion of technological innovation through the cross-section of �rms

undoes the trade-o� between productivity and the aggregate distribution of income.

Proposition 5 suggests a theoretical explanation for the long-run stability of the labor

share, since as long as the parameter σ is constant, the labor share will tend to return

to this natural level. Using long time series data for the US, France and the UK,

Charpe et al. (2019) �nd evidence of long-term cycles in the labor share around a

stable long-run level, lending empirical support to the notion of a natural resting

point for the labor share. In addition to parametrizing the (short-run) elasticity of

substitution of the aggregate production function, the parameter σ has two additional

interpretations in the model, and they connect the theory in this paper to two salient

explanations for the decline in labor's share of income.

First, σ parametrizes the curvature of the cost function φ (a). In particular, the

second derivative of the cost function φ (a) with respect to a is increasing in σ15, which

implies that the higher σ is, the higher the cost of producing the most automated

types of capital in the economy relative to less automated types of capital. In the

stationary equilibrium, a lower σ, therefore, translates into a distribution f (a) that is

more right (negatively) skewed16. This also implies that the lower σ is, the higher the

concentration of value added in the �rms that have the highest degrees of automation,

and, therefore, the lowest labor shares.

The theory in this paper, therefore, posits a link between the cross-sectional distri-

bution of technology and the labor share. Two recent, in�uential papers examine

15

∂

(
∂2φ(a)

∂a2

)
∂σ > 0, ∀ a, σ ∈ (0, 1)

16The skewness of the PDF of a B
(
1; σ

1−σ

)
is 2−4σ

(2σ−3)
√

σ
2−σ

, an increasing function of σ.
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the connection between the cross-sectional distributions of the labor share and value

added and the aggregate labor share, Kehrig and Vincent (2021) (hereafter KV21)

and Autor et al. (2020). The empirical evidence in KV21 shows that, in the case of

manufacturing in the US, the aggregate labor share fell while establishment level labor

shares rose slightly. This was due to the reallocation of value added away from high

labor share establishments towards low labor share establishments. In the stationary

equilibrium of the model, the xth percentile of the �rm-level labor share distribution

is given by

LSx = (x+ σ (1− x))
1

1−σ , (38)

an increasing function of σ but with a slope smaller than one for all x and σ in (0, 1),

such that as σ changes, the aggregate labor share changes by more than the �rm-level

labor shares, consistent with the evidence in KV21. Autor et al. (2020) argue that the

concentration of value added in larger establishments ('superstars') underlies the fall

in sectoral labor shares. In the model, the value added share of the top x% of �rms

can be calculated as Cx,t =

∫ ah
ah−x(ah−aw)

yt(a) da

Yt
. After simpli�cation, in the stationary

equilibrium this reduces to:

Cx =

(
x

x+ σ(1− x)

) σ
1−σ

, (39)

a decreasing function of σ for any x ∈ (0, 1). The putty-clay automation model can,

therefore, rationalize the observation that an increased concentration of value added

in low labor share establishments has led to a fall in the aggregate labor share caused

by a fall in σ. Intuitively, a fall in σ is a change to technology that favors the growth

of �rms that have the most automated capital, to the detriment of �rms that have

less automated capital.

The parameter σ also has an interpretation as parameterizing the speed of technologi-

cal di�usion in the model. In the general model, with growth in tasks and automation,

technology di�uses gradually through the economy and there is a time lag between

the time a technology is �rst introduced and its peak usage. For σ > 0.5, the mode of

f (a) is at aw, which corresponds to the peak usage of a technology. Using Equation

12 I can solve for the di�usion lag τd in an economy with technology growing at rate

gq as ah (1 + gq)
−τd = aw, with the interpretation that τd is the number of periods it

takes for the degree of automation of a technology to fall from ah to aw, due to task
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growth at rate gq. Substituting in for the equilibrium a∗w and solving for τd gives:

τd = −
log
(
ah+σ−1
σah

)
log (1 + gq)

, (40)

which is a decreasing function of σ. Moreover, note that in this model the ratio of the

labor productivity of the frontier �rm and the technological laggard is z(ah)
z(aw)

,which,

substituting in for equilibrium values, gives

Productivity at frontier

Productivity of laggard
= σ

1
σ−1 , (41)

again, a decreasing function of σ. These two equations connect the putty-clay au-

tomation model to the theory of Akcigit and Ates (2021), in which a decrease in the

rate of technological di�usion leads to an increase in concentration and a fall in the

labor share. In this model, a decrease in σ results in a fall in the rate of technological

di�usion, increased concentration, a fall in the labor share, and a widening of the

labor productivity gap between frontier and laggard �rms.

To summarize, the putty-clay automation model can rationalize empirical �ndings

regarding the aggregate labor share and its distribution in the cross-section of �rms

as a fall in σ to a new stationary equilibrium. In the model, a fall in σ has three

interpretations: i) a decrease in the aggregate elasticity of substitution between capital

and labor; ii) a change in technology that makes it less costly for more productive

�rms to increase their scale relative to less productive �rms; and iii) a slowing down

of the di�usion of automation technology in the cross-section of �rms. Figure 1

summarizes these �ndings.

4.2 Transition Dynamics in Response to an Increase in ah

I now turn to the transition dynamics between steady states in response to a one-

time, unanticipated increase in the frontier technology ah. The transition path in the

capitalist-worker framework is the solution to a dynamic planning problem in which

the planner chooses the investment distribution along the transition path to maximize

the consumption of the representative capitalist.

As in the stationary problem, the planner's choice of distribution reduces to choosing
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Figure 1: The role of σ in the putty-clay automation model

The top left panel plots the aggregate labor share σ and the median, the 25th percentile, and the 75th percentile �rm-
level labor shares from Equation 38. The top right panel plots the share of value added of the top 10% of �rms in the
stationary equilibrium, Equation 39. The bottom left panel plots the productivity of the frontier �rm/productivity of
the laggard �rm, Equation 41. The bottom right panel plots the technology di�usion lag τd, measured in periods of
the model, Equation 40, for gq = 1%.

an increasing sequence {aw,t}Tt=1 for the lower bound of the automation distribution,

with boundary values a∗w,0 and a∗w,T the initial and �nal steady values of aw, respec-

tively. Conceptually, in each period the planner chooses how much of the existing

capital stock to scrap (an increase in aw), and scrapped capital is replaced in the

capital stock by investment in non-obsolete capital. The more capital is scrapped,

the higher the investment required to replace it, and the larger the reduction in

dividends to �nance increased investment; on the other hand, the faster capital is

scrapped, the faster the transition to the new steady state automation distribution,

with higher productivity and, therefore, dividends. Consistent with this intuition,

there are two broad classes of equilibria, and these lead to relatively fast or relatively

slow convergence to the steady state. I focus on the class of slow convergence equilib-

ria because equilibria with fast convergence exhibit empirically implausible dynamics

for real interest rates, productivity growth and investment, among other variables

(I show transition dynamics for both the slow and fast convergence equilibrium in

Online Appendix O3).

To calibrate the main parameters of the model, I use data from the BEA/BLS Inte-

grated Industry-Level Production Accounts for the United States. I set σ to match
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labor's share of value added from industry-level accounts at the start of the sample

(1987) and I size the automation shock to match the fall in the labor share over the

sample period � a decline of approximately 6 percentage points to the recent minimum

(2013)17. I use standard values for all other parameters (η = 1, δ = 0.075, β = 0.99).

The left panel of Figure 2 shows the transition path of the labor share in response to

the automation shock. Both the fall in the labor share and the return to its long run

level are gradual, but the increase from the minimum is much slower. Consistent with

the evidence presented by Charpe et al. (2019), the putty-clay framework generates

persistent deviations in the labor share from its long-run level. The dynamics of the

labor share result from two o�setting forces. On the one hand, scrapping obsolete

capital raises wages and increases the labor share; on the other hand, installing more

automated capital thickens the right tail of the automation distribution, increasing

output but not (directly) wages. The labor share falls initially because the latter

e�ect dominates. This is illustrated in the right panel of Figure 2, which plots the

initial (solid black), terminal (dotted red), and intermediate (dotted gray) values of

f (a). The distribution travels rightwards due to scrapping of obsolete capital, and

the right tail of the distribution thickens as newly introduced types of capital are

installed. At the start of the transition (the leftmost of the gray dotted lines), the

thick right tail of the distribution is visible, but the left boundary is almost the same

as in the steady state. Productivity, therefore, increases more than wages, and the

labor share falls.

4.2.1 Macro Trends: Slowing TFP, Declining Real Interest Rates

Along the transition path of the economy, the model can qualitatively replicate two

important stylized facts in US macro data of the past decades: a slowdown in total

factor productivity growth and a fall in real interest rates. Figure 2 shows the tran-

sition path of these two variables and the labor share over the part of the transition

path when the labor share is declining.

17As noted in several studies, the �nancial and real estate sectors play a signi�cant and speci�c
role in driving the decline in labor's share of GDP. Since these sectors are absent from the model
economy, I exclude them from both the denominator and numerator. Additionally, as pointed out
by Koh et al. (Forthcoming), the capitalization of intellectual property investment in value added
markedly changes the evolution of the labor share. To address this point, I exclude IPP investment
(from BEA table 3.7I) from the measure of value added. Finally, I use the sum of college and non-
college labor compensation as the measure of total labor compensation and obtain a labor share in
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Figure 2: Transition paths of the labor share and automation distribution f (a)

Transition path of the labor share (left panel) and f (a) (right panel) in response to an unanticipated increase in ah
at time zero. Parameters: ah,0 = 0.3, ah,T = 0.65, δ = 0.075, β = 0.99, η = 1 , σ = 0.71. In the right panel the
solid black line is the initial distribution, the red dashed line is the �nal distribution, and the gray dashed lines are
distributions along the transition path.

Figure 3: Transition path of macro stylized facts
Transition paths for macro stylized facts in response to an unanticipated increase in ah at time zero. Parameters:
ah,0 = 0.3, ah,T = 0.65, δ = 0.075, β = 0.99, η = 1 , σ = 0.71.
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Falling Total Factor Productivity Growth and Real Interest Rate As shown

in the top right panel of Figure 2, TFP growth decreases monotonically along the

transition path. It is true of any transition path of the model that TFP growth

must eventually fall because TFP grows due to the introduction and di�usion of new

automation technology. After a one-time shock to ah,t the di�usion process eventually

stops. As shown by Proposition 1, both improvements in technology at the frontier

and scrapping of obsolete capital raise TFP. Intuitively, the increase in TFP is largest

at the start of the transition path because, at that point, the productivity di�erence

between scrapped capital and the new capital introduced to replace it is maximal.

Similarly, the real interest rate decreases monotonically along the transition path.

The interest rate must increase initially to compensate the capitalist for the cut in

dividends required to �nance increased investment, undertaken to replace obsolete

with new capital. As TFP (and, hence, output) growth slows along the transition

path, the required compensation falls. By implication, the value of the �stock market�

(capital plus technology, PK,tKt+1+Ψt, de�ned in Equations 33 and 34) falls when the

automation shock hits; this is so because of the impending obsolescence of a fraction

of the capital stock and the reduced rents that accrue to the non-obsolete part of

the capital stock. The stock market rises, at a decreasing rate, along the transition

path as productivity grows. The model can, therefore, generate joint dynamics of

factor shares and asset prices that are qualitatively consistent with the �ndings of

Greenwald et al. (2019). This is a promising direction for future research.

4.2.2 Micro Trends: Reallocation Toward Low Labor Share Firms

In this section I show the performance of the model in matching notable stylized facts

with regards to the distribution of value-added, �rm-level labor shares and aggregate

industry-level shares that are analyzed by Hartman-Glaser et al. (2019), Autor et al.

(2020) and KV21, among others.

To do so, I calibrate the model to match the evidence for the manufacturing sector in

KV21. Thus, I set the following: σ = 0.61 to match the labor share in 1967; the size

of the shock so that, at the lowest point in the transition period, the labor share falls

to the level observed at the end of the KV21 sample, 0.41; and δ = 0.1125 so that

the model reaches the low point in the labor share in the same number of periods as

1987 of 0.71, which falls to 0.65 by 2013.
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in the KV21 data. The remaining parameters are as above. Note that the plots in

this section show transition paths from the initial period to the period in which the

labor share reaches its minimal value along the transition path. Consistent with the

results of the previous sections, the labor share eventually returns to its steady state

level.

Figure 4 plots the transition of the aggregate labor share and of the �rm-level quan-

tiles, and it is the model analog to Figure 2 in KV21. The aggregate labor share (solid

blue line) falls from 0.61 to 0.41 over the course of 46 periods, as in the KV21 data. At

the �rm level, the median and the top and bottom quartiles are essentially unchanged

during the transition. As in KV21, the fact that the aggregate labor share declines

sharply while the �rm-level quantiles are constant shows that the decline in the la-

bor share is driven entirely by reallocation in value added towards low labor-share

establishments.

Figure 4: Aggregate and �rm-level labor shares in the model
Transition paths for aggregate and �rm-level labor shares in response to an unanticipated increase in ah at time zero.
Parameters: ah,0 = 0.65, ah,T = 0.77, δ = 0.1125, β = 0.99, η = 1 , σ = 0.61.

Figure 5 plots the model cross-�rm distributions of labor shares in the initial period

(�1967�) and the end period (�2012�); it is also the model analog to Figure 3 in KV21.

The leftmost panels plot the share of establishments by labor share, the middle panels

the share of labor input, and the rightmost panels the share of value added. The share

of �rms by labor share (leftmost panels) is skewed in the model (unlike in the data)
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because the equilibrium �rm-size distribution is a beta distribution (per Assumption

2). Consistent with the evidence in KV21, there is no signi�cant change in the

distribution of establishments by labor share between the start and the end periods.

Comparing the top and bottom middle panels, there is, as in KV21, some reallocation

in labor input towards low labor share establishments. However, the rightmost panels

show that the fall in the aggregate labor share in the model is driven overwhelmingly

by reallocation in value added towards low labor share establishments, as in the data.

Figure 5: Model distribution of establishments, labor input and value-added condi-
tional on the labor share
Histograms of share of �rms, labor input and value added by labor share for the initial (�1967�) and the 46th (�2012�)
period of the transition path in response to an unanticipated increase in ah at time zero. Parameters: ah,0 = 0.65,
ah,T = 0.77, δ = 0.1125, β = 0.99, η = 1 , σ = 0.61.

KV21 further decompose the reallocation e�ect, summarized by the change in the

covariance between �rm-level labor shares (LSi) and �rm-level value added shares

(ωi) as ∆Cov (LSi, ωi) = Cov (∆LSi, ωi) +Cov (LSi,∆ωi) +Cov (∆LSi,∆ωi), which

they term, respectively, the �Big Player�, �Superstar� and �Rising Star� scenarios. The

mapping from �rms in the model to establishments in the data is imprecise because

�rms in the model operate only one type of technology and the entrance of new

technologies into the economy occurs only through the creation of new ��rms�. This

also means that entry and exit play a much bigger role in driving the dynamics of the
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labor share in the model than in the data. Moreover, in the model, unlike in the data,

the labor share increases at the �rm level as wages rise along the transition path.

These important caveats aside, I construct a model analog to the KV21 covariance

decomposition and �nd that the fall in Cov (LSi, ωi) is driven by the �Superstar� and

�Rising Star� components, with the former playing a larger role in the model than in

the KV21 data.

4.3 Discussion

The putty-clay automation model suggests two possible explanations for the evolution

of factor shares and other macro aggregates over the last decades. The �rst is a

technological change that has permanently (or very persistently) tilted the balance in

favor of �rms that operate more advanced technology and have higher productivity.

In the model, this is a decrease in σ,which decreases the marginal cost of creating

the most automated types of capital relative to the least automated types of capital.

Consistent with the theory of Akcigit and Ates (2021), a decrease in σ also translates

into a slowdown in the di�usion of automation technology in the cross-section of

�rms. Using an aggregation methodology closely related to the one I use in this paper,

Ober�eld and Raval (2021) estimate the elasticity of substitution in US manufacturing

(using NAICS industry de�nitions) from 1987 to 2007, and �nd that σ decreased from

0.72 to 0.54, lending further empirical support to this explanation.

The second explanation is that the economy is on a slow transition path back to

the steady state equilibrium following a shock (or perhaps a series of shocks) to

frontier automation technology. Due to the putty-clay structure of the model, this

technological shock propagates gradually through the economy, resulting in slow-

moving dynamics that, in practice, might be hard to disentangle from permanent

changes. The long-run labor share data analyzed by Charpe et al. (2019) lends

empirical support to this explanation, as it exhibits large long-run �uctuations around

a relatively stable level, even as successive waves of automation technology have

di�used through economies. A possible challenge to this explanation is that one might

expect that automation technology has to some extent di�used to most industrialized

countries, and yet the observed evolution of factor shares di�ers markedly across

space, as shown by Gutiérrez and Piton (2020).

Naturally, the two explanations are not mutually exclusive, and disentangling the two
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is an important question for future research.

The results in this section are derived under the implicit assumption that labor of

di�erent types is in perfectly elastic supply, such that workers can freely reallocate

across the task spectrum. As in Caselli and Manning (2019), this implies that workers

always gain from technological progress in absolute terms. Furthermore, the long-run

analysis in this paper shows that the di�usion of technology means that eventually

�workers'� position relative to �capitalists'� is also unchanged by technology. Yet

the transition to a new steady state may be very slow, and an important question

that this paper leaves unanswered is how workers of di�erent types might be a�ected

along that transition path, given that in reality human capital investment is also

at least partially irreversible. The work done by Hémous and Olsen (Forthcoming),

Jaimovich et al. (2020) and Bon�glioli et al. (2021), shows that di�erential impacts

of automation across occupations are a �rst-order concern.

5 Conclusion

This paper develops a model of automation as an embodied technology that di�uses

via irreversible investments. The theory in the paper highlights the critical role that

the distribution of automation technology (equivalently, in the model, the �rm-size

distribution) plays in mediating the e�ect of technology on macroeconomic aggregates.

In the long-run, the level of automation technology matters for productivity but not

for factor shares, which are determined entirely by the distribution. As long as human

labor is required in production, the process of technological di�usion acts as a self-

correcting force that raises wages and productivity and returns the labor share to its

natural level.

The �short-run�, however, is very long, suggesting that in practice it may be di�cult to

determine whether the recent drop in labor's share of income is a permanent change or

perhaps the result of a wave of automation sweeping through the economy, following

which the labor share will rise back to its long-run level as the di�usion process plays

out. To the extent that policy makers are concerned about �uctuations in factor shares

(for example, because a skewed distribution of asset ownership means that factor share

�uctuations translate into income and wealth inequality), distinguishing between the

two candidate explanations is critical for appropriate policy design. Furthermore,
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the paper in this model assumes that workers are able to seamlessly reallocate to

di�erent tasks. Studying the interaction of irreversibility in both automation and

human capital is an important direction for future research.

The putty-clay automation model also suggests that the Solow productivity paradox

� the observation that productivity growth has decreased, even as seemingly revolu-

tionary technologies have appeared in the economy � may not be a paradox after all.

Productivity growth is fastest at the start of a wave of technological di�usion because

at that point the productivity di�erence between new technologies and the ones that

are scrapped is at its widest. As that productivity gap inevitably shrinks, so too does

productivity growth.
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A Proofs

A.1 Proof of Lemma 1

Start with the CDF G (z), G (z) = 1 −

(
( z`z )

1
γ −
(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ

)ρ

. The random variable ũ =

G (z) is uniformly distributed in [0, 1] (by the probability integral transformation).

ũ = 1−


(
z`
z

) 1
γ −

(
z`
zh

) 1
γ

1−
(
z`
zh

) 1
γ


ρ

If ũ ∼ U [0, 1], then u = 1− ũ is also u ∼ U [0, 1]. Now, express z as a function of u:

z =

((
1

zh

) 1
γ

+

((
1

z`

) 1
γ

−
(

1

zh

) 1
γ

)
u

1
ρ

)−γ

By the probability integral transform, the random variable χ̃ = u
1
ρ is distributed

B(ρ, 1), χ̃ ∈ [0, 1]. It follows that the random variable χ = z
− 1
γ

h +

(
z
− 1
γ

` − z
− 1
γ

h

)
χ̃

is distributed B(ρ, 1) with support χ ∈
[
z
− 1
γ

h , z
− 1
γ

`

]
. So z = χ−γ has distribution

G (z). Now, let a ≡ 1 − χ. Since χ ∼ B

(
ρ, 1; z

− 1
γ

h , z
− 1
γ

`

)
, a ∼ B (1, ρ; a`, ah), with

a` ≡ 1− z
− 1
γ

` and ah ≡ 1− z
− 1
γ

h . Finally, let ã = qa. Then, ã ∼ B (1, ρ; ã`, ãh), with

a` = ã`
q
and ah = ãh

q
18, and z =

(
q

q−ã

)γ
=
(

1
1−a

)γ
18Proof: start with f (χ) =

ρ

(
χ−H− 1

γ

)ρ−1

(
L

− 1
γ −H− 1

γ

)ρ and substitute in a = 1− χ

f (x) =
ρ
(
1− a−H− 1

γ

)ρ−1

(
L− 1

γ −H− 1
γ

)ρ =
ρ ((1− ah)− a)ρ−1(

(1− ah)−
(
1− L− 1

γ

))ρ =
ρ (ah − a)ρ−1

(ah − a`)ρ

So x ∼ B (1, ρ; `, h, 1− ah). Now, let ã = qx.

f (ã) =
1

q

ρ
(
ah − ã

q

)ρ−1

(ah − a`)ρ
=

1

qρ
ρ (qah − ã)ρ−1

(ah − a`)ρ
=
ρ (ãh − ã)ρ−1

(ãh − ã`)ρ
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A.2 Proof of Proposition 3

To complete the proof of Proposition 3, I prove that the lower bound of the automation

distribution ã` grows at rate 1 + gq. In stationary equilibrium, the value of the

marginal machine that isn't scrapped at the end of period t is Λv (a`) = κ. Replacing

for v (a`,t+1),

κ = Λ

((
1

1− a`

)1−σ

− Wt+1

Ht+1

)

Solving for a` and since W̃ ≡ Wt

H
is constant in the balanced growth path, a` =

1 −
(
W̃ + κ

Λ

)σ−1

. Replacing a` =
ã`,t+1

qt+1
, ã`,t+1 = qt+1

(
1−

(
W̃ + κ

Λ

)σ−1
)
. Like-

wise, ã`,t+2 = qt+2

(
1−

(
W̃ + κ

Λ

)σ−1
)
. Since q grows at rate (1 + gq), ã`,t+2 =

(1 + gq) qt+1

(
1−

(
W̃ + κ

Λ

)σ−1
)
. Substituting completes the proof:

ã`,t+2 = (1 + gq) ã`,t+1.

A.3 Proof of Proposition 1

I show below how to go from the distribution G (z) to the CES aggregate production

function.

Aggregate output Y is:

Y =

∫ zh

W/H

zk (z) dz = K

∫ zh

W/H

zg (z) dz

Divide both sides by aggregate capital K to obtain:
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y =

∫ zh

W/H

zg (z) dz =

∫ zh

W/H

σ

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ

1−
1−

(
z`
z

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ−1

dz

= (zh)
1−σ (z`)

σ

 1−
(
z`
zh

)1−σ

1−
(
W/H
zh

)1−σ


σ
σ−1

Note

1−G (W/H) =


(

z`
W/H

)1−σ
−
(
z`
zh

)1−σ

1−
(
z`
zh

)1−σ


σ

1−σ

=
α

α + (1− α) (H · n)
σ−1
σ

Substitute in

y = (zh)
1−σ (z`)

σ

 1−
(
z`
zh

)1−σ

1−
(
W/H
zh

)1−σ


σ
σ−1

= A
(
α + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

Multiply both sides by K:

Y = A
(
αK

σ−1
σ + (1− α) (H ·N)

σ−1
σ

) σ
σ−1

,

which is the CES production function with A = (zh)
1−σ (z`)

σ and α = 1 −
(
z`
zh

)1−σ
.

Or, expressed in terms of the parameters of the automation distribution f (a), A =
(1−a`)

− σ
1−σ

1−ah
and α = ah−a`

1−a`
.

A.4 Proof of Proposition 4

The full description of the capitalist worker economy is provided in Online Appendix

O2. The planner's problem is to choose the optimal stationary, no-scrapping equi-

librium. Since the planner only values the consumption of the capitalist (CK), they

solve:
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max
CK,t,It,aw,t

∞∑
t=0

βt
(CK,t)

1−η − 1

1− η

s.t.

CK,t = RK,tKt −
PI,t
2
It

In the no-scrapping equilibrium, the capital-labor ratio is constant, Kt = HtNt and

the steady state investment rate Ī
K̄

= g + δ. Additionally, because workers work

and consume but do not save, the labor supply is perfectly inelastic in equilibrium

(Nt = N̄). Using these two facts and substituting in for prices from the equilibrium

conditions of the no-scrapping equilibrium (see O1),

CK,t =

(
ah − aw
1− ah

)
(1− aw)−

1
1−σ HtN̄ −

1

2

1

r + δ

(
ah − aw
1− ah

)
(1− aw)−

1
1−σ (g + δ)HtN̄

So everything on the RHS is a parameter except aw. The planner's problem therefore

reduces to choosing the optimal a∗w, a
∗
w = argmaxaw∈(0,ah) CK (ah, aw, σ), which has

the unique solution: a∗w = max
[
ah+σ−1

σ
, 0
]
. The SOC at a∗w is < 0 as long as g− 2r−

δ < 0.
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O1 Equilibrium Conditions

O1.1 Baseline Model

O1.1.1 Aggregate

1. Euler Equation

(
qte
−ν(Nt)

)1−η
C−ηt PS,t = β

(
qt+1e

−ν(Nt+1)
)1−η

C−ηt+1 (Ps,t+1 +Dt+1) (1)

2. Labor supply

ν ′ (Nt) =
Wt

Ct
(2)

3. Production function

Y = At

(
αtK

σ−1
σ + (1− αt) (HN)

σ−1
σ

) σ
σ−1

(3)

where

At =

(
1

1− ah,t

)(
1

1− a`,t

) σ
1−σ

(4)

αt =
ah,t − a`,t
1− a`,t

(5)
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4. Rental rate of capital

RK,t = αtAt

(
αt + (1− αt)

(
HtNt

Kt

)σ−1
σ

) 1
σ−1

(6)

5. Labor demand

Wt = (1− αt)AtHt

(
αt

(
Kt

HtNt

)σ−1
σ

+ (1− αt)

) 1
σ−1

(7)

6. Dividend

Dt =
Yt −WtNt − PI,t

2
It

Kt

(8)

7. Market clearing

Yt = Ct +
PI,t
2
It (9)

8. Capital LOM

Kt+1 = (1− δ) (1− ςt)Kt + It (10)

9. Scrapping

ςt = Ft (a`,t+1) = 1−
(
ah,t − a`,t+1

ah,t − a`t

) σ
1−σ

(11)

10. LOM for distribution

ft+1 (a) =

 Kt
Kt+1

(1− δ) ft (a) + It
Kt+1

jt (a) a`,t+1 < a < ah,t+1

0 a ≤ a`,t+1

(12)

O1.1.2 Firms

1. Value function

V (kt, at) = v (at) kt + ψ (at) (13)

where,

v (at) = πt (at) + 1(1−δ)Λt+1v(at+1)>κ [(1− δ) Λt+1v (at+1)− κ] (14)
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ψ (at) =
Υt (Λt+1v (at+1))2

2φ (at)
+ Λt+1ψ (at+1) (15)

πt (at) = max

[
z (at)−

Wt

Ht

, 0

]
(16)

z (at) =

(
1

1− at

) 1
1−σ

(17)

2. Labor demand

nt (a) =


kt(a)
Ht

if a ≥ aw,t

0 if a < aw,t
(18)

where

aw,t = 1−
(
Wt

Ht

)σ−1

(19)

3. Scrapping

Scrap =

1 if (1− δ) Λt+1v (at+1) ≤ κ

0 otherwise
(20)

4. Investment

ιt = Υt
Λt+1v (at+1)

φ (at)
(21)

5. New �rm investment

ιNt = Υt
Λt+1v (at+1)

φ (at)
(22)

O1.1.3 Aggregation

1. Aggregate output

Yt = Kt

∫ ah,t

aw,t

z (a) dFt (a) (23)

where

Ft (a) = 1−
(
ah,t − a
ah,t − a`,t

) σ
1−σ

(24)

2. Labor demand

Nt =
Kt

Ht

∫ ah,t

aw,t

f (a) d (a) (25)

3



3. Investment

It =

∫ Γq,tah,t

Γq,ta`,t

ιt (a) da (26)

4. Price of investment

PI,t =

(∫ Γq,tah,t

Γq,ta`,t

pι,t (a) jt (a) da

)
(27)

where

pι (at) ≡ Λt+1v (at+1) (28)

and

jt (a) ≡ ιt (a)

It
(29)

5. Price of capital

PK,t =

∫ ah,t

a`,t+1

pι,t (a) ft+1 (a) da (30)

6. Aggregate rents

Ψt+1 =

∫ ah,t

a`,t+1

ψt+1 (a) da (31)

O1.2 Stationary Equilibrium

Variables with bars grow at the rate g in the stationary balanced growth path, so,

for example Kt = (1 + g)t K̄. Variables with no bars are constant in the stationary

balanced growth path.

O1.2.1 Aggregate

1. Euler Equation
D

PS
=

(Γq)
η−1 (Γ)η

β
(32)

2. Labor supply

ν ′ (N) =
w̄

C̄
(33)

4



3. Rental rate of capital

RK = αA

(
α + (1− α)

(
H̄N

K̄

)σ−1
σ

) 1
σ−1

(34)

4. Labor demand

W̄ = (1− α)A

(
α

(
K̄

H̄N

)σ−1
σ

+ (1− α)

) 1
σ−1

(35)

5. Market clearing

Ȳ = C̄ +
PI
2
Ī (36)

6. Production function

Ȳ = Ā
(
αK̄

σ−1
σ + (1− α)

(
H̄N

)σ−1
σ

) σ
σ−1

(37)

7. Capital LOM
Ī

K̄
= 1 + g − (1− δ) (1− ς) (38)

8. Scrapping

ς = F (Γqa`) = 1−
(
ah − Γqa`
ah − a`

) σ
1−σ

(39)

9. Price of Investment

PI =
1

2

(∫ Γqah

Γqa`

pι (a) j (a) da

)
(40)

where,

j (a) =

(
Γ

Γ− (1− δ) (1− ς)

)
0 ∀ a < Γqa`

f (a)
(
gk (a)− (1−δ)

Γ

)
∀ a ∈ (Γqa`, ah)

f
(
a

Γq

)
∀ a ∈ (ah,Γqah)

(41)
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and,

gk (a) ≡

(
ah − a

Γq

ah − a

)ρ−1

(42)

10. Price of Capital

PK = PI (43)

O1.3 No-scrapping limit

This is the limit of the stationary equlibrium of the model as κ→ 0 and Γq → 0. In

this case, aw → a` and
K̄
N
→ H̄, and the distribution F is constant over time. The

omitted equilibrium conditions are as above.

1. Rental rate of capital

RK =

(
ah − a`
1− ah

)(
1

1− a`

) 1
1−σ

(44)

2. Labor demand

W̄ = (1− α)AH̄ (45)

3. Production function

Ȳ = Amin
(
K̄, H̄N

)
(46)

4. Capital LOM
Ī

K̄
= g + δ (47)

5. Price of Investment

PI =
αA

r + δ
(48)

O1.4 Capitalist-Worker Economy

In the capitalist-worker equilibrium, a∗w = max
[
ah+σ−1

σ
, 0
]
. The equilibrium alloca-

tions and prices of the model if ah + σ > 1 so a∗w > 0 are:

1. Aggregate output

Yt =
1

σ

(
σ

1− ah

) 1
1−σ

HtN̄ (49)
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2. Workers' consumption

CN,t =

(
σ

1− ah

) 1
1−σ

HtN̄ (50)

3. Wage

Wt =

(
σ

1− ah

) 1
1−σ

Ht (51)

4. Capitalist's consumption/Aggregate Dividend

CK,t = DK̄ =
1

2

(
1 +

r − g
r + δ

)(
1− σ
σ

)(
σ

1− ah

) 1
1−σ

HtN̄ (52)

5. Rental rate of capital

RK =

(
1− σ
σ

)(
σ

1− ah

) 1
1−σ

(53)

6. Price of investment

PI =
1

r + δ

(
1− σ
σ

)(
σ

1− ah

) 1
1−σ

(54)

7. Labor share

LS = σ (55)

O2 Capitalist-Worker Model

Consider an economy populated by a representative capitalist and worker. The capi-

talist invests in capital, receives returns from capital and consumes; the worker works

and consumes but does not save.

Worker The worker solves

max
CN,t,Nt

∞∑
t=0

βt
(
CN,te

−ν(Nt)
)1−η − 1

1− η

7



s.t.

CN,t = WtNt

So labor supply is given by ν ′ (Nt) = Wt

CN,t
= Wt

WtNt
. It follows that Ntν

′ (Nt) = 1

and the labor supply is �xed, Nt = N̄ . From 46, it follows that the capital stock is

Kt = HtN̄ .

Capitalist The capitalist saves in shares, earns returns and consumes.

max
CK,t,St

∞∑
t=0

βt
(CK,t)

1−η − 1

1− η

s.t.

CK,t = (Dt + Ps,t)St − PS,tSt+1,

where Dt =
Yt−WtNt−

PI,t
2
It

Kt
and PS,t = PK,t + Ψt+1

Kt
so that the price of �shares� St is

the sum of the price of installed capital PK,t and the per-unit-of-capital value of rents

Ψt+1.

Planner Now consider the problem of a planner that places welfare weight of one

on the capitalist's utility (zero weight on the worker's). I write the planner's problem

as a choice of investment in each type of capital, ιt (a) , ∀ a < ah,t, and the least

automated type of capital to invest in, aw,t+1.

max
aw,t+1,ιt(a)

∞∑
t=0

βt
(CK,t)

1−η − 1

1− η

s.t. consumption of capitalist:

CK,t =

∫ ah,t

aw,t

z (a) dF (a)︸ ︷︷ ︸
=Yt/Kt

−
(

1

1− aw,t

) 1
1−σ

︸ ︷︷ ︸
=Wt

− 1

2

∫ ah,t+1

aw,t+1

φt (a) ιt (a)2 da︸ ︷︷ ︸
=(PI,tIt)/2

LOM of the aggregate capital stock:

Kt+1 = (1− δ) (1− Ft (aw,t+1))Kt +

∫ ah,t+1

aw,t+1

ιt (a) da

8



LOM for non-scrapped part of capital stock (a > aw,t+1):

ft+1 (a) =
Kt

Kt+1

(1− δ) ft (a) +
ιt (a)

Kt+1

, ∀a > aw,t+1

LOM for scrapped part of capital stock:

ft+1 (a) = 0, ∀a ≤ aw,t+1

Since φt (a) ∈ Φ∗ by assumption, the function j (a) to belong to the Beta family

speci�ed in Assumption 2, and the problem can be written in much simpler form.

The distribution has three parameters, σ, ahand aw. I treat σ as a deep technological

parameter and ahas an exogenous state, which means that the choice of distribution

reduces to the optimal choice of aw,t+1. Furthermore, note that since Nt = N̄ , Kt =

HtN̄ . Abstracting from growth in Ht, Kt+1 = Kt and rearranging the LOM of

the aggregate capital stock, It = N̄ (1− (1− δ) (1− Ft (aw,t+1))). In the stationary

equilibrium, the problem reduces to

a∗w = arg max
aw∈(0,ah)

CK (ah, aw, σ)

In the stationary equilibrium (withKt = HtN̄ ,and (from Equation 47) It = (g + δ)Kt =

(g + δ)HtN̄), the planner therefore choses aw to maximize consumption:

CK,t =

(
ah − aw
1− ah

)
(1− aw)−

1
1−σ
(
HtN̄

)
− 1

2

1

r + δ

(
ah − aw
1− ah

)
(1− aw)−

1
1−σ (g + δ)HtN̄

=
1

2

(
1 +

r − g
r + δ

)(
ah − aw,t
1− ah

)
(1− aw,t)−

1
1−σ HtN̄ (56)

The �rst order condition w.r.t. aw,t gives:

0 =
1

2

(
1 +

r − g
r + δ

)
HtN̄

(
(1− aw)−

1
1−σ−1 (σ (1− aw)− (1− ah))

(1− ah) (1− σ)

)

Solving for aw,

a∗w = max

[
ah + σ − 1

σ
, 0

]
, (57)

where the max enters because aw > 0. Substituting for a∗w (assuming ah + σ > 1, so

a∗w > 0) into the equilibrium conditions of the no-scrapping stationary equilibrium

9



(presented in Appendix O1.3) gives the full characterization of the solution of the

stationary equilibrium of the capitalist-worker economy.

O2.1 Capitalist-worker model with elastic labor supply

In the capitalist-worker economy presented in the previous section, the labor supply

is constant across stationary balanced growth paths (since workers consume their

income every period, the income and wealth e�ects on labor supply cancel out). In

that special case, a∗w has a particularly simple form: the labor share is constant and

equal to σ. In this subsection I show that the result is not dependent on the labor

supply being constant. I assume the following the standard constant-elasticity form

for preferences over labor supply:

ν (Nt) =
N

1+ 1
ξ

t

1 + 1
ξ

,

where ξ is the Frisch elasticity of labor supply. With this formulation, the �rst

order condition for labor supply reads N
1
ξ

t = Wt

Ct
. In the stationary, no-scrapping

equilibrium, W
C

= (1−α)

N(1−( g+δr+δ )α)
. Substituting into Equation 56 gives:

CK = Ht
1

2

(
1 +

r − g
r + δ

)(
ah − aw
1− ah

)
(1− aw)−

1
1−σ

(
1− ah

1− aw −
(
g+δ
r+δ

)
(ah − aw)

) ξ
1+ξ

The FOC with respect to aw has a closed form solution. Substituting into the ex-

pression for the labor share, the labor share is independent of ah but depends on all

other parameters. Figure 1 compares the labor share in the model with inelastic labor

supply to the one with perfectly elastic labor supply, and an intermediate case of unit

elasticity (ξ = 1).

O3 Transition path

In this section I describe the solution algorithm for the transition path of the model

in response to an unanticipated increase in ah from ah,0 to ah,T at t = 0. I show �rst

the law of motion of the distribution ft (a).
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Figure 1: Labor share as a function of σ

O3.1 Law of motion for distribution

The �rm-size/automation distribution is the key state variable of the model. The law

of motion (given that the aggregate capital stock is constant, per the solution to the

capitalist-worker model, above) is:

ft+1 (a) =

(1− δ) ft (a) + It
K̄
jt (a) aw,t+1 < a < ah,t+1

0 a ≤ aw,t+1

(58)

Along the transition path, the distribution of investment at time t, jt(a), is in the

Beta family by assumption, and has support (aw,t+1, ah,T ). The initial steady state

distribution, f1 is also in the Beta family and has support (aw,1, ah,0):

jt (a) =
σ

1− σ
(ah,T − a)

σ
1−σ−1

(ah,T − aw,t+1)
σ

1−σ
and f1 (a) =

σ

1− σ
(ah,0 − a)

σ
1−σ−1

(ah,0 − aw,1)
σ

1−σ

With associated CDFs Jt (a) = 1 −
(

ah,T−a
ah,T−aw,t+1

) σ
1−σ

and Ft (a) = 1 −
(

ah,0−a
ah,0−aw,t

) σ
1−σ

At any point along the transition path, ft (a) for t ≥ 2 is

ft (a) = (1− δ)t−1 f1 (a)+(1− δ)t−2 I1

K̄
j1 (a)+ · · ·+ It−2

K̄
(1− δ) jt−2 (a)+

It−1

K̄
jt−1 (a)

(59)

11



where the support of ft (a) is (aw,t, ah,T ). Note that, de�ning f1,t = σ
1−σ

(ah,0−a)
σ

1−σ−1

(ah,0−aw,t)
σ

1−σ

as the truncation of the initial steady state distribution, f1 = (1− F1 (aw,t)) f1,t and

similarly, for τ > t, jt = (1− Jt (aw,τ )) jτ . Substituting Equations O3.1 and O3.1 into

Equation 59 gives:

ft (a) = (1− δ)t−1 (1− F1 (aw,t)) f1,t (a) +
t−1∑
i=1

(1− δ)i−1 Ii
K̄

(1− Ji (aw,t)) jt−1 (a)

(60)

Note that the distribution jt−1 (a) can be taken out of the summation on the RHS

since it is not indexed by i. Integrating both sides of Equation 60 from aw,t to ah,T

gives

1 =
[
(1− δ)t−1 (1− F1 (aw,t))

]
+

[
t−1∑
i=1

(1− δ)i−1 Ii
K̄

(1− Ji (aw,t))

]

since the three PDFs integrate to 1 by de�nition. I de�ne

υ1,t ≡ (1− δ)t−1 (1− F1 (aw,t)) , (61)

so υ1,t is the share of time the initial capital stock that remains in the total capital

stock at time t, when a fraction (1− δ)t−1 remains after random depreciation and a

fraction F1 (aw,t) has been scrapped. Writing the LOM of the distribution in terms

of υ1,t,

ft+1 (a) = υ1,tf1,t+1 (a) + (1− υ1,t) jt (a) (62)

so υ1,t and aw,t jointly characterize the law of motion of the distribution, which reduces

the state space from the entire distribution to two scalars.

12



O3.2 Variables along transition path

Total Factor Productivity and Output Starting with Equation 60, multiply

left and right by z (a) and integrating from (aw,t, ah,T ) gives:∫ ah,T

aw,t

z (a) ft (a) da = υ1,t

∫ ah,T

aw,t

z (a) f1,t (a) da+ (1− υ1,t)

∫ ah,T

aw,t

z (a) jt−1 (a) da

Integrating

At = υ1,tA (aw,t, ah,0) + (1− υ1,t)A (aw,t, ah,T ) , (63)

where A (aw, ah) = 1

(1−ah)(1−aw)
σ

1−σ
per Proposition 1 in the paper. So TFP at time

t is the weighted average of the TFP of the initial capital stock and the new capital

stock. Note also that Yt = AtK̄ so

Yt = (υ1,tA (aw,t, ah,0) + (1− υ1,t)A (aw,t, ah,T )) K̄. (64)

Investment Given that Kt = HtK̄ ∀ t,

It = 1− (1− δ) (1− ςt) (65)

where ςt ≡ 1 − (υ1,t (1− Ft (aw,t+1)) + (1− υ1,t) (1− Jt (aw,t+1))) is the fraction of

capital scrapped between times t and t+ 1.

Wages Wages along the transition path are (assume Ht = 1 wlog):

Wt =

(
1

1− aw,t

) 1
1−σ

(66)

Price of investment and dividends Dividends/capitalist's consumption are given

by:

CK,t = K̄Dt = At −Wt −
PI,t
2

It
K̄

(67)

And the price of investment is de�ned as:

PI,t = Λt,t+1

∫ ah,t

a`,t+1

vt (a) jt (a) da (68)

13



Where the discount factor in the capitalist-worker model is Λt,t+1 =
(

CK,t
CK.t+1

)η
. Sub-

stituting Equation 68 into 67,

CK,t = At −Wt − β
(

CK,t
CK.t+1

)η(∫ ah,t

a`,t+1

vt (a) jt (a) da

)
(69)

Note that if {CK,t+1, . . . , CK,T} is known, the above can be solved for CK.t. In the

computational algorithm I make use of this equation by iterating backwards from the

(known) terminal value of CK,T
1.

O3.3 Computational algorithm

1. Guess a path for {aw,t}Tt=0

2. Solve for υ1,t, Yt, Wt, It from Equations 61, 63, 64, 65 and 66.

3. Starting from the terminal (�nal steady state) values CK,T and PI,T , iterate

backwards on Equation 68, solving the polynomial for {CK.T−1, CK,T−2, . . . CK,1}
and {PI,T−1, PI,T−2, . . . PI,1}.

4. Compute capitalist's utility along transition path as UK =
∑T

t=0 β
tu (CK,t),

store UK .

5. Update guess of {aw,t}Tt=0, repeat

I parameterize the path for aw,t as a logistic function, a �exible two-parameter spec-

i�cation:

aw,t =
aw,0 (1 + exp (−k (1− t0)))− aw,T

exp (−k (1− t0))
+
aw,T −

(aw,0(1+exp(−k(1−t0)))−aw,T )
exp(−k(1−t0))

1 + exp (−k (t− t0))
, (70)

where the initial (aw,0) and terminal (aw,T ) values are known, and the parameters t0

(the midpoint of the sigmoid curve) and k (the logistic growth rate) control the speed

1Note that
∫ ah,t
a`,t+1

vt (a) jt (a) da = Λt,t+1 (A (aw,t+1, ah,T )−Wt+1) +

(1− δ) Λt,t+2 (1− Jt (aw,t+1)) (A (aw,t+2,ah,T )−Wt+2)+· · ·+(1− δ)T Λt,T (1− Jt (aw,T )) (A (aw,T,ah,T )−WT )+

. . . , with Λt,t+j =
(

CK,t
CK.t+j

)η
and A (aw,t,ah,t) =

(
1

1−ah,t

)(
1

1−aw,t

) 1
1−σ

and Wt = H
(

1
1−aw,t

) 1
1−σ

.

Note that given {aw,t}Tt=0, ah,T and {CK,i}Ti=t+1, the only unknown in this expression is CK,t.
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of adjustment. I implement the algorithm by searching over the {k, t0} parameter

space for the values that maximize UK . Finally, I divide the {k, t0} space into pairs

that result in fast and slow convergence (de�ned below). I report below the paths

that result in maximum utility within each set. In the paper, I report the results for

the UK-maximal path within the slow convergence set.

O3.4 Solution to the transition path

There are two broad classes of equilibria, that I call fast and slow convergence equi-

libria. I de�ne fast convergence equilibria as ones in which the labor share converges

to its steady state value from above - i.e. the labor share overshoots it's steady state

value and falls along the transition path. Conversely, I de�ne slow convergence equi-

libria as ones where the labor share converges to its steady state value from below.

In the main body of the paper I focus on the best slow convergence equilibrium, that

is to say the equlibrium with the highest utility among the ones in which convergence

of the labor share is from below. I do so because, even though nothing rules out these

equilibria a priori, fast transitions are characterized by implausible magnitudes for

the variables of interest. Study of fast convergence equilibria of the model, and their

existence in practice, is an interesting subject for further research.

Figure 2 plots the dynamics of 8 variables in the best fast and slow transition paths

of the model, calibrated as in the main body of the paper. Clockwise from top-

left, the �rst two panels show the di�erence in the speed of convergence: in the fast

equilibrium, old capital is scrapped quickly as shown by the fast increase in aw,t and

the fast fall in the share of year 0 capital in the capital stock (υ1,t, Equation 61). As

a result, the bottom right panel shows that even though the labor share falls initially,

it rises quickly and overshoots the steady state level, falling gradually to its long-run

equilibrium value of LS = σ. The fast scrapping and replacement of capital requires

a large jump in investment - which increases to almost 50% of output at the peak -

and therefore a large cut in dividends (and therefore consumption), which fall much

more than in the slow equilibrium. As a result, the real interest rate increases to 40%,

before falling sharply. Similarly, TFP growth increases sharply (to 15%) at the start

of the transition, and falls thereafter. Unlike in the slow equilibrium, the quality-

adjusted price of investment increases along the transition path. Figure 3 plots slow

transition paths for a number of the variables in the model. In addition to the variables
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Figure 2: Comparison of fast and slow transition paths
Comparison of slow and fast transition paths in response to an unanticipated increase in ah at time zero. Parameters:
ah,0 = 0.3, ah,T = 0.65, δ = 0.075, β = 0.99, η = 1 , σ = 0.71.

discussed above and in the main body in the text, an interesting feature of the putty-

clay automation model is that it delivers a rising value of intangibles/GDP along

the transition path (bottom right panel of Figure 3), in accordance with evidence

(Crouzet and Eberly (2018)), and with recent theories that link the rise in intangibles

to the decline in productivity growth and the labor share (de Ridder (2020)).

O3.5 Quality-Adjusted Price of Investment

The model has a vintage capital structure, which allows me to de�ne a meaningful

notion of a quality-adjusted price of investment. I show that with the chosen cal-

ibration, the quality-adjusted price of investment decreases endogenously along the

transition path as the labor share falls, consistent with empirical evidence. In an in-

�uential paper, Karabarbounis and Neiman (2014) show that for the canonical CES

model to reconcile a decreasing relative price of investment with declines in the labor

share, it must be the case that σ > 1, so that capital and labor are gross substitutes.
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Figure 3: Slow transition paths
Slow transition paths in response to an unanticipated increase in ah at time zero. Parameters: ah,0 = 0.3, ah,T =
0.65, δ = 0.075, β = 0.99, η = 1 , σ = 0.71.

However, the weight of evidence from empirical estimates points to σ < 12. In an

exercise similar in spirit to León-Ledesma and Satchi (2018), I run the Karabarbou-

nis and Neiman (2014) regressions using model-simulated data and �nd that, even

though in the model σ < 1, the estimated elasticity of substitution exceeds unity.

Thus, the putty-clay model can reconcile the disparate �ndings regarding σ in the

literature.

In the model, as in the world, new types of capital that have a higher degree of au-

tomation enter the economy and older types of capital become obsolete and eventually

disappear altogether. This allows me to calculate a meaningful quality-adjusted price

of investment in the model, following a procedure akin to the hedonic regression ap-

proach used by statistical agencies. Taking the initial steady state of the model as the

reference point, the challenge in computing changes in the price of investment along

the transition path is that the automation shock introduces into the economy new

types of capital that by de�nition do not exist in the initial steady state. However, I

2See Chirinko (2008) for a survey of estimates of σ.
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can use the structure of the model to price these types of capital as if they existed

in the initial steady state and calculate price changes using time zero prices as base

prices. Aggregating over these de�ated prices of investment gives the model analog

to the quality-adjusted price of investment.

The initial steady-state price of capital with automation degree a, p̄ι,0 (a), is the

discounted present value of pro�ts,p̄ι,0 (a) = π̄0(a)
r+δ

, where π0 (a) = z (a)− W̄0

H̄0
. (Because

I am studying the no-scrapping limit, the stream of pro�ts is discounted only by the

real interest rate r and exogenous depreciation rate δ). I de�ne the constant-quality,

time t price of type a capital as:

p̃ι,t (a) ≡ pι,t (a)

p̄ι,0 (a)
, (71)

that is, the time t price of type a capital divided by its price in the base period (the

initial steady state). Thus, the aggregate quality-adjusted price of investment at time

t is:

P̃I,t =

∫
p̃ι,t (a) jt (a) da, (72)

where, because jt (a) is the distribution of investment at time t, P̃I,t is the average

quality-adjusted price of the basket of investment goods.

The middle right panel of Figure 3 shows the evolution of P̃I,t along the transition

path. Intuitively, two forces drive the price of investment: the prices of each unit

of capital, and the changing composition of the investment bundle jt (a). The prices

of investment goods fall relative to the initial steady state because as the automa-

tion shock di�uses through the economy, wages increase, which decreases the pro�ts

(Ricardian rents) earned by capital. On the other hand, relative to the steady state

basket of investment goods, the new basket includes more automated, and, therefore,

more expensive, types of capital. Along the transition path, for the chosen calibration,

the �rst e�ect dominates and P̃I,t falls.

O3.6 A Karabarbounis and Neiman (2014) Regression

In an in�uential paper, Karabarbounis and Neiman (2014) (KN) estimate the elas-

ticity of substitution of the CES production function by running (in their baseline

speci�cation) a cross-country regression of long-run changes in the labor share pro-
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jected onto changes in the quality-adjusted price of capital. The authors show that

the coe�cient of interest in this regression is an estimate of σ̂ − 1, where σ̂ is the

estimated elasticity of substitution. They �nd that σ̂ > 1, suggesting that capital

and labor are gross substitutes on aggregate. This contrasts a large number of studies

that have found that labor and capital are gross complements, σ < 1 (e.g. Ober�eld

and Raval (2021)). To show that the putty-clay automation model can reconcile these

disparate �ndings, I run the KN regression using model-generated data. I simulate

transition paths for N identical economies, calibrated as above, each of which is hit

by the automation shock at a random time between t = 1 and t = 50. I then run the

following set of KN-type regressions:

LSi
1− LSi

∆kLSi = αk + βk∆k log P̃I,i + uk,i, (73)

for a range of values of k, where ∆k denotes the change between time zero and time

k in the labor share (LS) or in the log of the quality-adjusted price of investment

(P̃I,i), de�ned in Equation 72. Figure 4 plots the average β̂k from a large number

of repetitions of the simulation. The estimated β̂k are greater than zero for a large

range of k length di�erences, which leads to the conclusion that σ̂ > 1, even though

the true elasticity of substitution is less than 1 in the model. As in Gilchrist and

Williams (2000), in my model, the capital-labor substitutability along the transition

path is greater than the short-run substitutability, since along the transition path the

economy substitutes away from less to more automated capital.

O4 Characterization of j(a) and φ(a)

In this section I characterize the investment side of the model in the stationary equi-

librium of the dynamic model presented in the paper. Throughout I solve for an

equilibrium in which frontier automation technology ãh and task input qt grow at

constant rate 1 + gq ≡ qt+1

qt
=

ãh,t+1

ãh,t
and labor augmenting technology Ht grows at

constant rate 1 + g ≡ Ht+1

Ht
. In the stationary equilibrium, the �rm size distribution

is invariant and given by F (a) = 1−
(
ah−a
ah−a`

) σ
1−σ

.
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Figure 4: Coe�cients from a Karabarbounis and Neiman (2014)-style regression for
length k di�erences
Estimated coe�cients for regressions in Equation 73 for k = 10 to 50. Parameters: ah,0 = 0.3, ah,T = 0.65,
δ = 0.075, β = 0.99, η = 1 , σ = 0.71.

O4.1 Solving for v (a) in a balanced growth path

In this section I solve for the value function v (a) in a stationary equilibrium. The

value function of an installed machine with automation at is

v (at) = π (at) + 1(1−δ)Rt+1v(at+1)>κ [(1− δ) Λt+1v (at+1)− κ] ,

with pro�t function π (at) = max

[(
1

1−at

) 1
1−σ − Wt

Ht
, 0

]
and the law of motion of at is

at+1 = ã
qt+1

= qt
qt+1

at = at
1+gq

.

In the BGP, the wage wt grows at the same rate as Ht, so the e�ective wage W̃ ≡ Wt

Ht

is constant, as is the discount rate Λ. As q grows, incumbent �rms' automation falls,

as therefore do productivity and pro�ts. After a certain number of periods, pro�ts

are too low to cover the maintenance cost κ and the �rm scraps its capital. I denote

the remaining time to scrapping for any level of automation by T (a). Writing the
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problem sequentially and substituting in the law of motion for automation:

v (a) =

T (a)∑
j=0

((1− δ) Λ)j

( 1

1− a
(1+gq)

j

) 1
1−σ

− W̃ − κ

 .

The scrapping time T (a) solves

(
1

1− a

(1+gq)
T (a)

) 1
1−σ

−W̃−κ = 0, so T (a) =
log(a)−log

(
1−(W̃+κ)

σ−1
)

log(1+gq)
.

Note that a` = 1−
(
W̃ + κ

)σ−1

, so

T (a) =
log (a)− log (a`)

log (1 + gq)
(74)

O4.2 Distribution of investment j (a) and the cost function

φ (a) in stationary equilibrium

Incumbent �rms The capital stock of a �rm with automation a at time t, ex-

pressed relative to the aggregate capital stock using the �rm size distribution f (a) =
σ

1−σ
(ah−a)

σ
1−σ−1

(ah−a`)
σ

1−σ
is:

kt (a) = Kt

(
σ

1− σ

)
(ah − a)

σ
1−σ−1

(ah − a`)
σ

1−σ
.

Since in the BGP a �rm with automation a at time t has automation a
1+gq

at time

t+ 1, the same �rm's capital stock at time t+ 1 is:

kt+1

(
a

1 + gq

)
= Kt+1

(
σ

1− σ

) (ah − a
1+gq

) σ
1−σ−1

(ah − a`)
σ

1−σ
.

Solving for the growth rate of the �rms capital stock, and noting that in BGP Kt+1

Kt
=

Ht+1

Ht
= 1 + g,

kt+1

kt
=
Kt+1

(
σ

1−σ

) (ah− a
1+gq

) σ
1−σ−1

(ah−a`)
σ

1−σ

Kt

(
σ

1−σ

)
(ah−a)

σ
1−σ−1

(ah−a`)
σ

1−σ

= Γ

(
ah − a

1+gq

ah − a

) σ
1−σ−1
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For convenience I de�ne the following function:

gk (a) ≡

(
ah − a

1+gq

ah − a

) σ
1−σ−1

(75)

The law of motion for any �rm's capital stock (assuming the �rm does not scrap its

capital) is:

kt+1 = (1− δ) kt + ιt

Expressed using the �rm size distribution as above, the law of motion becomes

Kt+1

(
σ

1− σ

) (ah − a
1+gq

) σ
1−σ−1

(ah − a`)
σ

1−σ
= (1− δ)Kt

(
σ

1− σ

)
(ah − a)

σ
1−σ−1

(ah − a`)
σ

1−σ
+ ιt (a)

Solving for ι (a),

ιt (a) = Kt

(
σ

1−σ

)
(ah − a`)

σ
1−σ

(
(1 + g)

(
ah −

a

1 + gq

) σ
1−σ−1

− (1− δ) (ah − a)
σ

1−σ−1

)

= Ktf (a)

(1 + g)

(
ah − a

1+gq

ah − a

) σ
1−σ−1

− (1− δ)


Dividing both sides by It (and given that in the stationary equilibrium It

Kt
= Γ −

(1− δ) (1− ς)), the stationary distribution of investment for incumbent �rms that

don't scrap their capital is:

j (a) ≡ f (a)

(
(1 + g) gk (a)− (1− δ)

(1 + g)− (1− δ) (1− ς)

)
, ∀ a ∈ ((1 + gq) a`, ah) ,

where gk (a) is as de�ned in Equation 75. Note that �rms that scrap their capital

have zero investment by de�nition, so j (a) = 0, ∀ a < Γqa`.

New entrants New entrants are those that enter in (ãh,t, (1 + gq) ãh,t). Since they

enter with zero capital, the LOM for capital in the �rst period is simply kt+1 = ιt.

Expressed in relative terms,
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ιt (a) = Kt+1f

(
a

(1 + gq)

)
=

σ

1− σ

(
ah − a

(1+gq)

) σ
1−σ−1

(ah − a`)
σ

1−σ

Dividing both sides by It gives the stationary distribution of investment for �rms that

enter at the end of period t:

j (a) =

(
Γ

Γ− (1− δ) (1− ς)

)
f

(
a

(1 + gq)

)
, ∀ a ∈ (ah, (1 + gq) ah)

O4.2.1 Investment rate distribution

To summarize, the investment rate distribution is the following step wise function:

j (a) =

(
1 + g

1 + g − (1− δ) (1− ς)

)
0 ∀ a < (1 + gq) a`

f (a)
(
gk (a)− (1−δ)

1+g

)
∀ a ∈ ((1 + gq) a`, ah)

f
(

a
(1+gq)

)
∀ a ∈ (ah, (1 + gq) ah)

With gk (a) =

(
ah− a

(1+gq)
ah−a

) σ
1−σ−1

.

O4.2.2 Cost function φ(a)

The investment decision of incumbent and new �rms imply a distribution of invest-

ment over at,

ι (at) = Υt
Λt+1v (at+1)

φ (at)
.

Rearranging gives

φ (at) = Υt
Λt+1v (at+1)

ι (at)

Plugging in for v (a) and ι (a),
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φ (a) =



ε > 0 ∀ a ≤ (1 + gq) a`

ΥtΛt+1
∑T (a)
j=0 ((1−δ)Λ)j


 1

1− a

(1+gq)
1+j

 1
1−σ

−( 1
1−aw )

1
1−σ−κ


Kt

σ
1−σ

(ah−a`)
σ

1−σ

(
(1+g)

(
ah− a

(1+gq)

) σ
1−σ−1

−(1−δ)(ah−a)
σ

1−σ−1

) ∀ a ∈ ((1 + gq) a`, ah)

ΥtΛt+1
∑T (a)
j=1 ((1−δ)Λ)j−1


 1

1− a

(1+gq)
1+j

 1
1−σ

−( 1
1−aw )

1
1−σ−κ


Kt+1f

(
a

(1+gq)

) ∀ a ∈ (ah, (1 + gq) ah)

,

where T (a) is as de�ned in Equation 74. For completeness I specify that the cost of

investment for technologies below the scrapping threshold is some ε > 0 (conceptually

these technologies exist and could be invested in, but their productivity is too low for

it to pro�table to do so at any positive cost).

O5 Moments of �rm-level distribution

O5.1 Mean and Hazard Rate of G (z)

With ρ = σ
1−σ , the mean of z is EG (z) = (zh)

1−σ (z`)
σ. The hazard rate of G is

g(z)
1−G(z)

= σ

z

(
1−
(
z
zh

)1−σ) . So the hazard rate of G is equal to a constant times the

hazard rate of the truncated Pareto distribution with tail parameter 1− σ. If σ > 1
2

(σ < 1
2
), G (z) has higher (lower) hazard rate than F (z) for all z, in which it has

thinner (fatter) tails. For σ = 1
2
, the hazard rates (and hence distributions) are

identical, so G (z) is exactly the truncated Pareto for σ = 1
2
.

O5.2 Percentiles of labor share distribution

The xth percentile of the labor share distribution is LSx =
(

1−((1−x)aw+xah)
1−aw

) 1
1−σ

. In

the no-scrapping, capitalist-worker equilibrium the xth percentile is LS∗x = (x+ σ(1− x))
1

1−σ
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O5.3 Concentration

Output share of top x% of active �rms is given by Cx,t =

∫ ah
ah−x(ah−aw)

yt(a) da

Yt
. With full

utilization (Y = AK) this becomes: Cx,t =

(
x

1−ah
1−aW

+x
(
ah−aw
1−aW

)
) σ

1−σ

. In the stationary

no-scrapping economy this becomes Cx,t =
(

x
x+σ(1−x)

) σ
1−σ

.
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