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1. Introduction

Progress in information technologies has reduced information processing costs (due to

improvement in computing power) and considerably increased the volume and diversity

of available data (due to digitization and increase in storage capacities). This evolution is

affecting many economic activities, in particular the production of financial information.1

The active asset management industry (whose size is $16.5 trillion in 2019) is a case in

point. Managers of actively managed mutual funds and hedge funds devote consider-

able effort and money to find new investment signals (predictors of asset cash-flows or

returns). To do so, they increasingly use so called “alternative data” (e.g., social media,

web traffic, credit card and point-of-sale, geolocation and satellite imagery etc.) and rely

on computer-based methods.2 In this paper, we study the effects of this evolution on

the heterogeneity of asset managers’ signals (does progress in information technologies

increase or reduce the diversity of predictors?) and the informativeness of asset prices

about fundamentals (does progress in information technologies enhance or impair the

informational role of financial markets?)

Data abundance and improvements in computing power are related but distinct phe-

nomena. For instance, unstructured data such as satellite images or text from social

media expand the set of variables to obtain predictors of asset returns.3 However, they

do not per se reduce the cost of processing data for obtaining these predictors. Thus, un-

derstanding the effects of data abundance requires analyzing the effect of expanding the

search space for predictors holding the cost of data processing constant (and vice versa).

This is not possible in existing models of financial information acquisition (e.g., Verrec-

chia (1982)) because they do not explicitly formalize information acquisition as a search

problem. In this paper, we do so and we show that the effects of data abundance and

progress in computing power on equilibrium outcomes in financial markets are different.

Our model features a continuum of risk averse speculators (asset managers). In the

1See Goldfarb and Tucker (2019) and Nordhaus (2015) for a discussion of the economic implications
of this evolution.

2Marenzi (2017) estimates that asset managers have spent more than four billion in alternative data
in 2017 (see also “Asset managers double spending in new data in hunt for edge”, Financial Times, May 9,
2018. Abis (2018) finds that quantitative funds (using computer-driven models to analyze large datasets)
have quadrupled in size from 1999 to 2015 and that their growth has been more than twofold that of
discretionary funds. Moreover, Grennan and Michaely (2019) find that about 87% of the FinTechs in
their sample (190 FinTechs) specialize in producing investment signals using artificial intelligence.

3For instance, Martin and Nagel (2020) note (on p.2) that: “As technology has improved, the set of
available and potentially valuation-relevant predictor variables has expanded enormously over time.”



first stage (the “exploration stage”), each speculator optimally scours available data to

find a predictor of the payoff of a risky asset. In the second stage (the “trading stage”),

each speculator observes the realization of her predictor and optimally chooses her trad-

ing strategy. We formalize the trading stage as a standard rational expectations model

(similar to Vives (1995)). The novelty of our model (and its implications) stems from

the exploration stage. Here, instead of following the standard approach (e.g., Grossman

and Stiglitz (1980) or Verrecchia (1982)), whereby speculators obtain a predictor of a

given precision in exchange of a payment, we explicitly model the search for a predictor

as a sequential process and we analyze how the optimal search strategy depends on (i)

the cost of exploration and (ii) the amount of data available for exploration (the “search

space”).

We model the search for predictors as follows. We assume that existing data can

be combined to generate predictors differing in their signal-to-noise ratios (“quality”).

The search space is determined by the quality of the most informative predictor (the

“data frontier”), denoted τmax, and the least informative predictor, which is just noise.

The distribution of the quality of predictors on this interval is exogenous. Given this

distribution, each speculator simultaneously and independently explores (“mines”) the

data. Each new exploration costs c and returns a predictor whose quality is drawn from

the distribution of predictors’ quality. After obtaining a predictor, a speculator can decide

either to explore the data further, to possibly obtain an even better predictor, or to trade

on the predictor she just found.

As a motivation for our approach, consider using accounting variables to forecast fu-

ture stock earnings. There are many ways to combine these variables to obtain predictors.

For instance, Yan and Zheng (2017) build more than 18, 000 trading signals combining

240 accounting variables, and find that many of these yield significant abnormal returns

(even after accounting for the risk of data snooping). The data mining cost, c, repre-

sents the labor and computing costs of finding a particular predictor, designing a trading

strategy based on this predictor, and backtesting it. After obtaining a predictor, each

manager can decide to start trading on it or to keep searching for another, more precise,

predictor.

New datasets enable speculators to use new variables to forecast asset payoffs and
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should therefore push back the data frontier, i.e., increase τmax.4 In fact, the interest of

alternative data by asset managers is often described as a gold rush for this reason. Indeed,

it is expected that the exploitation of these data with new forecasting techniques (machine

learning) should enable asset managers to discover more precise predictors.5 We refer to

this dimension of data abundance as the “hidden gold nugget” effect. However, data

abundance also creates “a needle in the haystack problem”: It results in a proliferation of

datasets and only a fraction of these datasets contains useful information for forecasting

asset payoffs. Separating the wheat from the shaff can only be done through explorations,

which is costly. To capture this dimension of data abundance, we assume that each

exploration returns an informative predictor with probability α < 1. In sum, we analyze

the effect of data abundance on equilibrium outcomes by considering either an increase

in τmax (the hidden gold nugget effect) or a decrease in α (the needle in the haystack

problem).6

As for greater computing power, it reduces the cost of exploring a new dataset.7 Thus,

we study the effect of greater computing power by considering the effect of a decrease in

the cost of exploration, c, on equilibrium outcomes.

In equilibrium, each speculator’s optimal search strategy follows a stopping rule: She

stops searching for a predictor after finding one whose quality (signal-to-noise ratio)

exceeds an endogenous threshold, denoted τ ∗ (we refer to such a predictor as being

“satisficing”). This threshold is such that the speculator’s expected utility of trading on

a predictor of quality τ ∗ is just equal to her expected utility of searching for another

4Recent empirical findings support this conjecture. For instance, Katona et al. (2019) find that
combining satellite images of parking lots of U.S. retailers from two distinct data providers improves the
accuracy of the forecasts of retailers’ quarterly earnings (see also Zhu (2019)). Also, van Binsbergen
et al. (2020) find that, with machine learning techniques, one can obtain more precise forecasts of firms’
future earnings than analysts’ forecasts (they use random forests regressions combining more than 70
accounting variables with analysts’ forecasts). Last, Gu et al. (2020) consider 900+ predictors of stock
and market returns and find that machine learning techniques (trees and neural networks) considerably
increase out-of-sample R2 of predictive models.

5See, for instance, “Hedge funds see a gold rush in data mining”, Financial Times, August 28, 2017.
6As an illustration, consider searching for medication to cure the Coronavirus in the scientific liter-

ature. There have been more than 23,000 scientific papers written on this topic between January and
June 2020 (see da Silva et al. (2020)). As this number grows, the fraction of truly informative papers
might drop, even though the chance of a scientific discovery that stops the virus goes up.

7For instance, an increase in computing power reduces the time costs of finding predictors. Brogaard
and Zareei (2019) use a genetic algorithm approach to select technical trading rules. They note that “the
average time needed to find the optimum trading rules for a diversified portfolio of ten NYSE/AMEX

volatility assets for the 40 year sample using a computer with an IntelÂ® Core(TM) CPU i7-2600 and
16 GM RAM is 459.29 days (11,022.97 hours).” For one year it takes approximately 11.48 days.” They
conclude that their analysis would not be possible without the considerable increase in computing power
in the last 20 years.
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predictor. The latter reflects the prospect of obtaining a larger expected trading profit

by finding a predictor of higher quality deflated by the total expected cost of search

to find such a predictor (i.e., the per-exploration cost, c times the expected number of

explorations required to find a predictor with a quality higher than τ ∗).

All speculators use the same stopping rule because they are ex-ante identical (same

preferences, search cost etc.). However, as explorations’ outcomes are random, specu-

lators find and trade on predictors of different quality. Thus, in equilibrium, (i) only

predictors of sufficiently high quality are used for trading and (ii) speculators endoge-

nously exploit predictors of different quality. Specifically, the quality of predictors used

in equilibrium ranges from τ ∗ (the least informative predictor used in equilibrium) to

τmax (most informative).

Greater computing power induces speculators to adopt a more stringent stopping rule

in equilibrium, i.e., a decrease in c raises τ ∗. Indeed, a decrease in the per-exploration

cost, c, directly reduces the total expected utility cost of launching a new exploration

after finding a predictor. Hence, it raises the value of searching for another predictor after

finding one and therefore it induces speculators to be more demanding for the quality,

τ ∗, of the least informative predictor used in equilibrium. An indirect consequence (the

“competition effect”) is that, on average, speculators trade more aggressively on their

signal. Indeed, they face less uncertainty on the asset payoff because their predictors are

better on average. As a result, the informativeness of the asset price about the payoff of

the asset increases. The competition effect dampens the positive effect of a reduction in

the exploration cost on the value of searching for a better predictor. However, it is never

strong enough to fully offset it.

The needle in the haystack problem (a drop in α) does not affect the per exploration

cost, c. However, it raises the total expected utility cost of search for speculators because

it reduces the chance of finding a satisficing predictor in each exploration. For this reason,

it leads speculators to be less demanding for the quality of the least informative predictor,

τ ∗.

The effect of pushing back the data frontier (an increase in τmax) on speculators’

optimal search strategy (τ ∗) is more subtle because it directly affects the value of searching

for another predictor in two opposite directions. One the one hand, it raises this value

for two reasons. First, holding investors’ stopping rule constant, it enlarges the range of
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satisficing predictors, which raises the probability that each exploration is successful. This

effect reduces the total expected cost of search. Second, holding price informativeness

constant, it increases the expected utility of trading on a satisficing predictor due to the

prospect of finding even more informative predictors (the “hidden gold nugget effect”).

However, an increase in the quality of the best predictor also has a direct positive effect

on price informativeness because it raises the average quality of predictors and therefore

the average aggressiveness with which speculators exploit their signals. This competition

effect reduces the value of searching for predictors. We show that it dominates when τmax

is high enough. Then, a push back of the data frontier leads speculators to follow a less

demanding search policy (i.e., τ ∗ drops). Thus, the model implies an inverse U-shape

relationship between the quality of the least informative predictor used in equilibrium

(τ ∗) and the quality of the most informative predictor.

In sum, the model highlights two channels through which data abundance can reduce

the quality of the least informative predictor used in equilibrium: (i) It reduces the trad-

ing value of predictors by intensifying competition among speculators (the “competition

effect”) and (ii) it increases the total expected cost of search, even though it does not

change the per exploration cost (“needle in the haystack effect”).

The model has several testable implications. First, it has implications for the distribu-

tion of investment skills across funds (or managers of these funds). Several papers (e.g.,

Kacperczyk and Seru (2007) or Kacperczyk et al. (2014)) relate these skills to the quality

(precision) of asset managers’ signals and interpret heterogeneity in skills as heterogeneity

in the quality of these signals. In our model, speculators’ skills are heterogeneous even

though speculators are ex-ante identical. This heterogeneity is not due to innate differ-

ences in abilities or differences in efforts (in the model, speculators who happen to pay

a larger search cost and therefore seem to exert more effort do not necessarily trade on

predictors of higher quality). Rather, it reflects the fact that, even though all speculators

follow the same optimal search strategy to find predictors, the outcome of their search for

predictors is random. Shocks to computing power, data abundance and other parameters

of the model affect the equilibrium search policy followed by speculators and thereby the

distribution of skills between speculators (e.g., the difference in skills between funds in

the lowest and top skill deciles). For instance, the model predicts that improvements in

computing power should reduce heterogeneity in funds’ skills (because it increases τ ∗)
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while data abundance (a push back of the data frontier or the needle in the haystack

problem) can have the opposite effect (because it can reduce τ ∗). The model also implies

that an increase in prior uncertainty (the variance of the asset payoff) or the volume of

uninformed (noise) trading should reduce heterogeneity in funds’ skills because it induces

speculators to be more demanding for the quality of their predictors in equilibrium.

Our second set of predictions is about the informativeness of asset prices for fundamen-

tals. Our model predicts that greater computing power improves price informativeness

because it leads speculators to be more demanding for the quality of their predictors.8

In contrast, the effect of data abundance on asset price informativeness is more complex.

On the one hand, it can lead speculators to be less demanding for the quality, τ ∗, of

the least satisficing predictor. On the other hand, it pushes back the data frontier and

improves the quality of the most informative predictor. The first effect reduces the av-

erage quality of predictors used by investors while the second improves it. As a result,

the effect of data abundance on price informativeness is ambiguous in our model. In the

absence of the needle in the haystack problem (α = 1), we show that the second effect

dominates and therefore data abundance improves price informativess. In contrast, if

data abundance also makes the needle in the haystack problem more severe (α decreases)

then the first effect can dominate so that price informativeness drops when more data

become available.9.

Our third set of predictions regards effects of computing power and data abundance

on speculators’ trading profits (excess returns) and the crowdedness of their strategies

(measured by the correlation of their holdings). The model predicts an inverse U-shape

relationship between speculators’ average trading profits and computing power. Indeed,

greater computing power raises the average quality of the predictors used in equilibrium

and therefore price informativeness. The first effect raises speculators’ expected trading

profit while the second reduces it. The former dominates if and only if speculators’ cost of

exploration, c, is small enough. A push back of the data frontier has the same effect for the

same reasons. The needle in the haystack problem reduces price informativeness and the

8In line with this prediction, Gao and Huang (2019) find that the introduction of the EDGAR system
in the U.S. (which allows investors to have internet access to electronic filings by firms) had a positive
effects on measures of price efficiency. One possible reason, as argued by Gao and Huang (2019), is that
the EDGAR system reduced the cost of accessing data (a component of exploration cost) for investors.

9Given that technological progress has both enlarged the search space and reduced search costs, these
implications of our model can explain why the empirical literature on the effect this progress on asset
price informativeness reports conflicting results. See Section 5.2 for a discussion.
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average quality of predictors used in equilibrium. The second (first) effect dominates when

this problem becomes sufficiently severe (α is low enough). Hence, ultimately, the model

also predicts an inverse U-shape relationship between speculators’ average trading profits

and data abundance. Overall the model implies that progress in information technologies

initially benefit to all speculators until a point where it starts reducing their profits. We

also show that greater computing power or an improvement in the data frontier reduce the

pairwise correlation in speculators’ trades while a drop in the proportion of informative

datasets (α) has the opposite effect. Finally, in the last part of the paper, we show that

data abundance can reduce speculators’ expected utility in equilibrium so that speculators

would be better off if they could commit not to exploit new datasets.

2. Related Literature

Our paper contributes to the literature on informed trading in financial markets when

information acquisition is endogenous (e.g., Grossman and Stiglitz (1980), Verrecchia

(1982); see Veldkamp (2011) for a survey). This literature often takes a reduced-form

approach to model the cost of acquiring a signal of given precision. For instance, Verrec-

chia (1982) (and several subsequent papers) assumes that this cost is a convex function

of the precision of the signal. The learning technology in our model is different. The

relationship between a speculator’s total expected cost of obtaining information and the

expected precision of her signal is endogenous and micro-founded by an optimal search

model.10 As explained previously, this approach gives us a way to analyze separately the

effects of greater computing power (a decrease in the cost of processing data) and data

abundance (an expansion of the search space).

Banerjee and Breon-Drish (2020) consider a model in which one informed investor

can dynamically control his timing for information acquisition about the payoff of a

10Han and Sangiorgi (2018) offers an interesting micro-foundation for the specification of information
acquisition costs based on a model in which an agent can draw normally distributed signals from a fixed
set (an “urn”), with replacement (so that the agent can draw the same signal multiple times). Each
draw is costly in their model. They show that the relationship between the precision of the average
signal obtained by the agent (a sufficient statistics for all his signals) and her total investment in drawing
signals is convex and becomes linear when the number of possible signals goes to infinity. Han and
Sangiorgi (2018) use this specification to analyze an optimal forecasting problem. Our approach differs
in many respects. In particular, we jointly solve for the equilibrium of the market for a risky asset and
speculators’ optimal search for predictors (in Han and Sangiorgi (2018), the number of draws by an agent
is exogenous and they do not apply their model to trading in financial markets).
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risky asset. In this model, the informed investor optimally alternates between periods

in which she searches for information (when the volume of noise trading is high enough)

and periods in which she does not (when the volume of noise trading is low). When she

searches for information, the investor finds a signal of a given precision according to a

Poisson process and starts trading on this signal as soon as she finds it. Interestingly,

Banerjee and Breon-Drish (2020) shows that this dynamic model generates predictions

different from the standard static model in which the informed investor must decide to

acquire a signal before trading. In contrast, we depart from the traditional standard static

model by modeling informed investors’ search for signals of different precisions (in a static

environment because there is no time-variation in parameters affecting the profitability

of informed trading over exploration rounds in our model) and we compare the effects

(e.g., on the heterogeneity in signals’ precisions) of a reduction in search costs with the

effects of expanding the search space (data abundance).

Our paper is also related to the recent literature analyzing the economic effects of

progress in information technologies (see, Goldfarb and Tucker (2019) and Veldkamp and

Chung (2020) for a review) and more specifically theoretical papers analyzing the ef-

fects of these technologies for the production of financial information (e.g., Abis (2018),

Dugast and Foucault (2018), Farboodi and Veldkamp (2019), Milhet (2020) or Huang

et al. (2020)). Theories in these papers explore ramifications of the idea that progress in

information technologies reduces the cost of processing information or relax investors’ at-

tention constraints. In contrast, our model focuses on another dimension of this progress,

namely data abundance, i.e., the expansion of investors’ search space for predictors. We

show that the effects of data abundance and the cost of processing data (c in our model)

are different and derive several implications that should allow empiricists to test whether

these differences matter empirically. Also, we explicitly analyze the acquisition of finan-

cial information as a search problem and consider the effects of reducing the cost of search

(c) and increasing the search space on equilibrium outcomes. Goldfarb and Tucker (2019)

and Agrawal et al. (2019) highlight the importance of doing so to understand economic

implications of digitization and artificial intelligence.

8



3. Model

We consider a financial market with a unit mass continuum of risk averse (CARA) spec-

ulators, a risk neutral and competitive market maker, and noise traders. Investors can

invest in a risky asset and a risk free asset with interest rate normalized to zero. Specu-

lators have no initial endowments in the risky and the riskless assets. Figure 1 describes

the timing of the model.

Period 0

Exploration :

� Each speculator
searches for a
predictor of the
asset payoff.

� In each search
round, a speculator
finds a predictor
with probability
αPr(θ ∈ [θ, π2 ])).

Period 1

Trading :

� Each speculator
observes the realization
of her predictor (sθ)
and chooses a trading
strategy, x(sθ, p).

� Speculators, noise
traders and dealers
trade.

� Market clears : The
asset price is realized.

Period 2

Asset
payoff, ω, is
realized.

Figure 1: Timing

The payoff of the risky asset, ω, is realized in period 2 and is normally distributed

with mean zero and variance σ2. Speculators search for predictors of the asset payoff in

period 0 (the “exploration stage”). Then, in period 1 (the “trading stage”), they observe

the realization of these predictors and can trade on them in the market for the risky asset.

We now describe these two stages in details.

The exploration stage. In period 0, each speculator i searches for a predictor of the

asset payoff, ω. There is a continuum of potential predictors. Each predictor, sθ, is

9



characterized by its type θ and is such that:

sθ = cos(θ)ω + sin(θ)εθ, (1)

where θ ∈ [0, π/2] and the εθs are normally and independently distributed with mean

zero and variance σ2. Moreover, εθ is independent from ω. Let τ(θ) ≡ cos2(θ)/ sin2(θ) =

cot2(θ) denote the signal-to-noise ratio for a predictor with type θ. We refer to this ratio

as the “quality” of a predictor.11 The quality of a predictor decreases with its type, θ and

varies from zero (θ = π
2 to infinity when θ goes to zero). It is unrelated to the uncertainty

about the asset payoff, σ2, because Var[εθ] = Var[ω] = σ2. Without this assumption, the

quality of all predictors would, counter-intuitively, increase with uncertainty.

We assume that predictors’ types, θs, are distributed according to the cumulative

probability distribution Φ(.) (density φ(.)) on [0, π/2]. Speculators discover predictors’

types in period 0 via a sequential search process. Each search round corresponds to a

new exploration (“mining”) of available data to obtain a new type of predictor. Each

exploration costs c. It is unsuccessful, i.e., yields no predictor (or equivalently a predictor

that is just noise), with probability (1 − αPr(θ ∈ [θ, π2 )), where 0 < α ≤ 1. Otherwise

the exploration is successful and returns a predictor of type θ ∈ [θ, π2 ] with probability

φ(.). After each exploration, a speculator can decide (i) to stop searching and trade in

period 1 on the predictor she just found or (ii) to start a new exploration in the hope

of finding an even better predictor. We assume that there is no limit on the number of

explorations.

It is worth stressing that speculators observe the realization of their chosen predictor,

sθ, in period 1, not in period 0. In period 0, they just choose the type (quality) of the

predictor whose realization they will observe at date 1. A predictor can be viewed as

a particular combination of variables from various datasets (e.g., past earnings, satellite

images and consumer transactions data) that forecast the payoff of the asset. One explo-

ration consists in testing the predicting power of a particular combination with prediction

tools (e.g., linear regressions or machine learning techniques). For instance, one can inter-

pret each exploration as collecting various variables and running a regression of the asset

11Observe that the predictor sθ is equivalent (in terms of informativeness) to the predictor ŝθ =
ω + cot(θ)−1εθ, whose precision is τ(θ)/σ2. Thus, a predictor of high quality is a predictor with high
precision.
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payoff (e.g., stock earnings) on these variables. The estimates of the coefficients of this

regression can then be used to compute the predicted value of the regression, sθ, at date

1 after observing the realization of the variables used in this regression at this date.12

Thus, a predictor does not need to be interpreted as a single variable. It can be viewed

as a combination of variables whose weights have been optimally chosen to minimize

the predictor’s forecasting error in-sample. In this interpretation, speculators can try

to improve the quality of their predictors by trying new combinations (e.g., by buying

datasets with new variables).

As more datasets become available (“data abundance”), the number of possible com-

binations of variables that one can use to predict asset payoffs increases. This evolution

has two consequences controlled by parameters θ and α in the model. First, it pushes

back the “data frontier”, i.e., it increases the chance (at least weakly) of finding even

more informative predictors than those existing before. We refer to this dimension of

data abundance as the “hidden gold nugget effect.” For instance, by combining satellite

images of retailers’ parking lots and point of sale data with more traditional account-

ing data, one might be able to find more informative predictors of future earnings for

these retailers than using accounting data alone. This dimension of data abundance is

controlled by θ in our model: When θ decreases, the quality of the best predictor (the

“hidden gold nugget”), denoted τmax ≡ τ(θ), improves.

Second, the share of combinations that yield informative predictors might fall as

the number of all possible combinations explodes. For instance, there are myriads of

ways in which one could combine traffic data in large cities with other data to predict

economic growth. However, only a few are likely to be informative and discovering these

combinations take time. We refer to this dimension of data abundance as the “needle in

the haystack problem.”13 It is controlled by α in our model: As α decreases, each round

12In this approach, the R2 of the regression is a measure of the quality of the predictor. Indeed, the
theoretical R2 of a regression of ω on sθ (i.e., 1 − Var[ω | sθ]/Var[ω]) is equal to cos2(θ). Thus, the
higher the quality of a predictor, the higher the R2 of a regression of the asset payoff on the predictor.
In other words, searching for predictors of high quality in the model is the same thing as searching for
predictors with high R2s. Note that, as usual in rational expectations model, we assume that there is no
uncertainty on θ, i.e., on the true predictive model relating the payoff of the asset to the predictor. In
reality, investors might be uncertain about the true R2 of a predictive model (e.g., because of too few
past observations for past cash-flows relative to the number of variables used to forecast these cash-flows)
and learn it over time (see Martin and Nagel (2020)). In our model, this means that speculators would
learn about the true θ of a predictor (e.g., after observing an estimate of θ). We leave this extension for
the future.

13Agrawal et al. (2019) discusses a related problem for the generation of new scientific ideas. Specifi-
cally, as the space of possible combinations of existing ideas to create new ones enlarges, it becomes more
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of exploration is less likely to be successful as if the share of informative predictors was

falling.14

Finally, parameter c represents the cost of exploring a specific dataset to identify a

predictor. Greater computing power reduces this cost. For instance, with more powerful

computers, one can explore more datasets in a fixed amount of time. So the time cost of

data mining is smaller. Thus, we analyze the effect of progress in computing power by

considering the effect of a decrease in c on the equilibrium.15

We focus on equilibria in which each speculator follows an optimal stopping rule θ∗i .

That is, speculator i stops searching for new predictors once she finds a predictor with

type θ ≤ θ < θ∗i (a predictor of sufficiently high quality in the feasible range). We denote

by Λ(θ∗i ; θ, α) the likelihood of this event (the probability of success) for speculator i in a

given search round. That is:

Λ(θ∗i ; θ, α) ≡ αPr(θ ∈ [θ, θ∗i ]) = α× (Φ(θ∗i )− Φ(θ)) (2)

Thus, a decrease in θ raises the likelihood of finding a predictor in a given exploration,

holding α constant. This effect captures the idea that while data abundance might reduce

the fraction of informative datasets, it increases the chance of finding a good predictor

once one has identified an informative dataset.

As the outcome of each exploration is random, the realized number of explorations

varies across speculators (even if they use the same stopping rule). We denote by ni

the realized number of search rounds for speculator i. This number follows a geometric

distribution with parameter Λ(θ∗i ; θ, α). Thus, the expected number of explorations for a

given speculator (a measure of her search intensity) is:

E[ni] = Λ(θ∗i ; θ, α)−1. (3)

difficult to identify new useful combinations. One can think of the search for predictors at date 0 as a
search for new “ideas” to forecast asset payoff. Each new idea is characterized by its forecasting power.

14See for instance “The quant fund investing in humans not algorithms” (AlphaVille, Financial Times,
December 6, 2017), reporting discussions with a manager from TwoSigma noting that: “Data are noise.
Drawing a tradable signal from that noise, meanwhile, takes work, since the signal is continuously evolving
[...] Crucially, Duncombe added, there’s qualitative data decay going on too. Back in the day, star
managers may have had access to far smaller data sets, but the data in hand was of much higher quality.”

15We assume that the data frontier, θ and the cost of exploration, c are identical for all speculators.
Thus, speculators are ex-ante identical and heterogeneity in their performance is endogenous. In a more
complex model, these parameters may also differ across speculators (e.g., θ may be lower for institutions
who accumulated more data over time). We leave the analysis of this case for future work.
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To simplify the exposition, we assume that speculators cannot “store” predictors that

they turn down (i.e., the search for predictors is without recall). We show in Section 1 of

the online appendix that this assumption is innocuous.

A last observation is in order. In our model, launching a new exploration does not

guarantee that one will necessarily obtain a better predictor than in previous explorations.

At the first glance, this may look counter-intuitive because one might think that as

speculators observe more predictors, they should be able to obtain an increasingly precise

signal about the asset payoff (e.g., by just taking the average of all signals). However,

at date 0, speculators discover in each exploration the type of a particular predictor, not

its future realization (signals are observed only at date 1). And, as previously explained,

we see an exploration as experimenting with a new combination of variables (a new

“investment idea”) to build a predictor of the asset payoff. As this combination is new, it

does not necessarily have a higher forecasting power than previous combinations.

The trading stage. Trading begins after all speculators find a predictor with satisficing

quality. At the beginning of period 1, each speculator observes the realization of her

predictor, sθ and chooses a trading strategy, i.e., a demand schedule, xi(sθ, p), where, p,

is the asset price in period 1.

As in Vives (1995), speculators trade with noise traders and risk-neutral market mak-

ers. Noise traders’ aggregate demand is price-inelastic and equal to η, where η ∼ N (0, ν2)

(η is independent of ω and errors’ in speculators’ signals). Market-makers observe in-

vestors’ aggregate demand, D(p) =
∫
xi(sθ, p)di+ η and behave competitively. The equi-

librium price, p∗ is equal to their expectation of the asset payoff conditional on aggregate

demand from noise traders and speculators:

p∗ = E [ω |D(p∗) ] . (4)

Speculators’ objective function. At t = 2, the asset pays off and speculator i’s final

wealth is

Wi = xi(sθ, p)(ω − p)− nic. (5)

The number of explorations for speculator i, ni, is independent from the asset payoff, its

price, and the realization of the speculator’s predictor, sθ, because ni is determined in
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period 0, before the realizations of these variables. Thus, the ex-ante expected utility of

a speculator can be written:

E [− exp(−ρWi)] = E [− exp(−ρ(xi(sθ, p)(ω − p))]︸ ︷︷ ︸
Expected Utility from Trading

× E [exp(ρ(nic))]︸ ︷︷ ︸
Expected Utility Cost of Exploration

(6)

The first term in this expression represents the ex-ante expected utility that a speculator

derives from trading gross of her total exploration cost while the second term represents

the expected utility of the total cost paid to find a predictor (we call it the expected utility

cost of exploration). The expected utility from trading depends both on the investor’s

optimal trading strategy (xi(sθ,i, p)) and her optimal stopping rule (θ∗i ) because this rule

determines the distribution of sθ. The expected utility cost of exploration depends on the

speculator’s stopping rule, θ∗i , because it determines the distribution of ni. In the existing

literature (e.g., Grossman and Stiglitz (1980)), ni = 1 (investors pays a cost and gets one

signal of known quality). In our model, ni is random and its distribution is controlled by

the speculator via her stopping rule.

Each speculator chooses her stopping rule, θ∗i , and her trading strategy, xi(sθ,i, p), to

maximize her ex-ante expected utility.

4. Equilibrium Data Mining

4.1 Equilibrium

We focus on symmetric equilibria in which all speculators choose the same stopping rule,

θ∗. We solve for such an equilibrium as follows. First, we solve for the equilibrium of

the trading stage in period 1 taking θ∗ as given and we deduce the ex-ante expected

utility achieved by speculator i when she chooses a predictor of type θ in period 0. We

then observe that a speculator should stop searching when she finds a predictor such that

the expected utility of trading on this predictor is larger than or equal to the expected

utility she can obtain by launching a new exploration. The optimal stopping rule of each

investor, θ∗i (θ∗), is such that this condition holds as an equality (so that the speculator is

just indifferent between searching more or stopping). Finally, we pin down θ∗ by observing

that, in a symmetric equilibrium, each speculator’s best response to other speculators’

stopping rule, θ∗, must be identical, i.e., θ∗i (θ∗) = θ∗.
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Equilibrium of the asset market in period 1. The outcome of the exploration

phase is characterized by the distribution of the predictors’ types found by speculators.

Let φ∗(θ; θ∗; θ, α) be this distribution given that speculators follow the stopping rule θ∗:

φ∗(θ; θ∗; θ, α) = αφ(θ)
Λ(θ∗; θ, α) . (7)

This distribution characterizes the heterogeneity of speculators’ predictors in equilib-

rium. We denote the average quality of predictors across all speculators in period 1 by

τ̄(θ∗, θ, α) ≡ E [τ(θ)| θ ≤ θ ≤ θ∗] and we make the following assumption on the distribu-

tion φ(·):

A.1: The distribution of predictors’ type, φ(.), is such that for all θ∗ > 0, τ̄(θ∗; 0, α)

exists.

This technical condition guarantees that the equilibrium remains well defined even

when θ = 0.16 Proposition 1 provides the equilibrium of the asset market in period 1.

Proposition 1. In period 1, the equilibrium trading strategy of a speculator with type θ

is:

x∗(sθ, p) = E[ω|sθ, p]− p
ρVar[ω|sθ, p]

= τ(θ)
ρσ2 (ŝθ − p) , (8)

where ŝθ = ω + τ(θ)−1/2εθ and the equilibrium price of the asset is:

p∗ = E[ω|D(p)] = λ(θ∗)ξ. (9)

where

ξ ≡ ω + ρσ2τ̄(θ∗; θ, α)−1η, and λ(θ∗) ≡ τ̄(θ∗; θ, α)2

τ̄(θ∗; θ, α)2 + ρ2σ2ν2 , (10)

This result extends Proposition 1.1 in Vives (1995) to the case in which speculators

have signals of heterogenous precisions (determined by their θ in our model). The predic-

tor sθ is informationally equivalent to the predictor ŝθ = ω + τ(θ)−1/2εθ. A speculator’s

optimal position in the asset is equal to the difference between ŝθ and the price of the

asset (her expected dollar return) scaled by a factor that increases with the quality of the

predictor and decreases with the speculator’s risk aversion. The scaling factor measures

the speculator’s aggressiveness in trading on her predictor. Speculators with predictors

16Indeed, for some distributions of predictors’ type, φ(.), τ̄(θ∗; θ, α) can diverge because τ(θ) goes
to infinity when θ goes to zero. Assumption A.1 means that we exclude these distributions from our
analysis.
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of higher quality trade more aggressively on their signal because they face less risk (their

forecast of the asset payoff is more precise).

The total demand for the asset (D(p)) aggregates speculators’ orders and therefore

reflects their information. Observing this demand is informationally equivalent to observ-

ing the signal ξ, whose informativeness increases with the average quality of speculators’

predictors, τ̄(θ∗; θ, α). Thus, the market maker can form a more precise forecast of the

asset payoff and the asset price is therefore more informative about this payoff when the

average quality of speculators’ predictors, τ̄(θ∗; θ, α), is higher. Formally, let measure

the informativeness of the asset price by I(θ∗; θ, α) = Var[ω | p∗]−1 as in Grossman and

Stiglitz (1980). Using Proposition 1, we obtain:

I(θ∗; θ, α) = τω + τ̄(θ∗; θ, α)2τ 2
ω

ρ2ν2 , (11)

where τω = 1/σ2 is the precision of speculators’ prior about the asset payoff. As expected,

the asset price is more informative when the average quality of speculator’s predictors

increases. Thus, the informativeness of the asset price is inversely related to θ∗ because

τ̄(θ∗; θ, α) decreases with θ∗. Thus, other things equal, price informativeness is smaller

when speculators chooses a less stringent stopping rule for the quality of the predictors

on which they trade.

Equilibrium of the exploration phase. Using the characterization of the equilibrium

of the asset market, we compute a speculator’s expected utility from trading ex-ante, i.e.,

before observing the realization of her predictor and the equilibrium price, when her

predictor has type θ and other speculators follow the stopping rule θ∗. We denote this

ex-ante expected utility by g(θ, θ∗) and refer to it as the trading value of a predictor with

type θ. Formally:

g(θ, θ∗) ≡ E [− exp(−ρ(x∗(sθ, p∗)(ω − p∗)) | θi = θ] . (12)

Lemma 1. In equilibrium, the trading value of a predictor with type θ is:

g(θ, θ∗) = −
(

1 + Var[E[ω|sθ, p∗]− p∗]
Var[ω|sθ, p∗]

)− 1
2

= −
(

1 + τ(θ)τω
I(θ∗; θ, α)

)− 1
2

. (13)
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The trading value of a predictor increases with its quality and decreases with the

informativeness of the asset price.17 Thus, it is inversely related to the average quality

of predictors used by speculators. Hence, the value of a given predictor for a speculator

depends on the search strategy followed by other speculators: It is smaller if other spec-

ulators are more demanding for the quality of their predictors (i.e., when θ∗ decreases).

Armed with Lemma 1, we can now derive a speculator’s optimal stopping rule given

that other speculators follow the stopping rule θ∗. Let θ̂i be an arbitrary stopping rule

for speculator i. The speculator’s continuation utility (the expected utility of launching

a new round of exploration) after turning down a predictor is:

J(θ̂i, θ∗) = exp(ρc)
(
Λ(θ̂i; θ, α) E

[
g(θ, θ∗)

∣∣∣θ ≤ θ ≤ θ̂i
]

+ (1− Λ(θ̂i; θ, α))J(θ̂i, θ∗)
)

(14)

The first term (exp(ρc)) in eq.(14) is the expected utility cost of running an additional

search. The second term is the likelihood that the next exploration is successful times

the average trading value of a predictor conditional on the type of this predictor being

satisficing (i.e., in [θ, θ̂i]). Finally, the third term is the likelihood that the next explo-

ration is unsuccessful times the speculator’s continuation utility when she turns down a

predictor. Solving eq.(14) for J(θ̂i, θ∗), we obtain:

J(θ̂i, θ∗) =
[

exp(ρc)Λ(θ̂i; θ, α)
1− exp(ρc)(1− Λ(θ̂i; θ, α))

]
︸ ︷︷ ︸
Expected Utility Cost from Exploration

×E
[
g(θ, θ∗)| θ ≤ θ ≤ θ̂i

]
︸ ︷︷ ︸
Expected Utility from Trading

(15)

The continuation value of the speculator when she turns down a predictor does not depend

on the outcomes of past explorations because these outcomes do not affect the speculator’s

opportunity set in future explorations. Thus, J(θ̂i, θ∗) is also the speculator’s ex-ante

expected utility before starting any exploration in period 0. As explained previously, it is

the product of the expected utility cost from explorations and the expected utility from

trading.

Now suppose that speculator i has obtained a predictor with quality θ. If the spec-

17 Observe that Var[E[ω|sθ,p∗]−p∗]
Var[ω|sθ,p∗] = E[(E[ω|sθ,p∗]−p∗)2]

Var[ω|sθ,p] because E[ω|sθ, p∗]−p∗ = 0. Thus, eq.(13) implies

that, τ(θ)τω
I(θ∗;θ,α) = E

[
( E(Rθ|sθ)
σRθ|sθ

)2
]
, where Rθ = ω/p∗ − 1 is the excess return of a speculator with type θ

(the riskless rate ofd return is normalized to zero) and σRθ|sθ is the standard deviation of this return

conditional on the observation of sθ. In other words, τ(θ)τω
I(θ∗;θ,α) is the equilibrium value of the expected

square Sharpe ratio of a speculator trading on a predictor with type θ.
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ulator stops exploring the data at this stage, her expected utility is g(θ, θ∗) (her cost of

exploration to obtain this predictor is sunk). If instead the speculator decides to launch

a new round of exploration, her expected utility is J(θ̂i, θ∗). Thus, her optimal decision

is to stop searching for a predictor if g(θ, θ∗) ≥ J(θ̂i, θ∗) and to keep searching otherwise.

As g(θ, θ∗) decreases with θ, the optimal stopping rule of the speculator, θ∗i (θ∗), is the

value of θ such that the speculator is just indifferent between these two options:

g(θ∗i , θ∗) = J(θ∗i , θ∗). (16)

In a symmetric equilibrium, it must be that θ∗i (θ∗) = θ∗. We deduce that θ∗ solves:

g(θ∗, θ∗) = J(θ∗, θ∗). (17)

Using the expression for J(., θ∗) in eq.(14), we can equivalently rewrite this equilibrium

condition as:

F (θ∗) = exp(−ρc), (18)

where:

F (θ∗) ≡ α
∫ θ∗

θ
r(θ, θ∗)φ(θ)dθ + (1− Λ(θ∗; θ, α)) , for θ∗ ∈

[
θ,
π

2

]
, (19)

with

r(θ, θ∗) ≡ g(θ, θ∗)
g(θ∗, θ∗) =

(
τ(θ∗)τω + I(θ∗; θ, α)
τ(θ)τω + I(θ∗; θ, α)

) 1
2

, (20)

where the second equality in eq.(20) follows from eq.(13). Assumption A.1 guarantees

that F (θ∗) is well defined even when θ = 0. The next proposition shows that there is

a unique interior solution (i.e., θ∗ ∈ (θ, π2 )) to the equilibrium condition (18) when c is

small enough.

Proposition 2. There is a unique symmetric interior equilibrium of the exploration phase

in which all speculators are active (i.e., a unique stopping rule such that θ < θ∗ < π/2

common to all speculators) if and only if F (π/2) < exp(−ρc) < 1.

When exp(−ρc) ≤ F (π/2) (i.e., c large enough), there is no symmetric interior equi-

librium. However, in this case, one can build an equilibrium in which only a fraction of

all speculators are active, i.e., search for a predictor and trade (if c is not too large). In
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this equilibrium, active speculators search for a predictor with a stopping rule equal to

θ∗ = π/2 while others remain completely inactive (do not search and do not trade). More-

over, the fraction of speculators who are active is such that all speculators are indifferent

between being active or not. Henceforth,we focus on the case in which the equilibrium

is interior (i.e., F (π/2) < exp(−ρc) < 1 because (i) we are interested in what happens

when the cost of exploration becomes small and (ii) this shortens the exposition.

4.2 Data abundance, computing power and optimal data min-

ing.

We now analyze how data abundance (a decrease in θ and/or α) and computing power

(a decrease in c) affect the quality of the worst predictor on which speculators trade

in equilibrium, i.e., τ(θ∗). Indeed, the quality of this predictor determines the range of

predictors used in equilibrium and ultimately several equilibrum outcomes of interest (see

next section).

Proposition 3. A decrease in the cost of exploration, c, always reduces the stopping rule

θ∗ used by speculators in equilibrium (∂θ∗/∂c > 0). Thus, greater computing power raises

the quality, τ(θ∗), of the worst predictor used by speculators in equilibrium.

The economic mechanism for this finding is as follows. Holding θ∗ constant, a decrease

in the per-exploration cost, c, directly reduces the expected utility cost of launching a

new exploration after finding a predictor (the first term in bracket in eq.(15)). Hence, it

raises the value of searching for another predictor after finding one (i.e., J(θ∗, θ∗)). This

direct effect induces speculators to be more demanding for the quality of their predictor

and therefore works to decrease θ∗. One indirect consequence of this behavior is that,

on average, speculators trade more aggressively on their signal (the “competition effect”)

because they face less uncertainty on the asset payoff (their predictors are better on

average). As a result, price informativeness increases. This indirect effect reduces the

expected utility from trading on a satisficing predictor (the second term in bracket in

eq.(15)) and therefore dampens the direct positive effect of a decrease in c on the value

of searching for a better predictor after finding one. However, it is never strong enough

to fully offset it.

We now consider the effect of data abundance on speculators’ optimal stopping rule.
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Remember that data abundance has two consequences in the model: (i) it pushes back

the data frontier by raising the quality of the best predictor and (ii) it increases the risk

for speculators of using datasets which, after exploration, proves to be useless (the needle

in the haystack problem).

Proposition 4.

1. A decrease in the fraction of informative datasets, α, always increases speculators’

stopping rule, θ∗, in equilibrium (∂θ∗/∂α < 0). Thus, the needle in the haystack

problem reduces the quality, τ(θ∗), of the worst predictor used by speculators in

equilibrium.

2. The effect of a decrease in θ on speculators’ stopping rule is ambiguous. However,

when θ is less than θtr(c), a decrease in θ always increases speculators’ stopping

rule in equilibrium (∂θ∗/∂θ < 0 for θ < θtr(c)) and reduces the quality, τ(θ∗), of

the worst predictor used by speculators in equilibrium.

When the needle in the haystack problem becomes more acute, speculators become

less demanding for the quality of their predictors. Intuitively, a drop in α increases the

expected utility cost of launching a new exploration after finding a predictor (the first

term in bracket in eq.(15)) because it reduces the likelihood of finding a predictor in a

given exploration (Λ). Thus, after turning down a predictor, speculators expect to go

through a larger number of explorations rounds before finding a satisficing predictor,

which increases their total cost of search. This direct effect induces speculators to be less

demanding for the quality of their predictor and therefore works to increase θ∗ (reduce

τ(θ∗)). Indirectly, this behavior reduces asset price informativeness and therefore raises

the expected utility from trading on a satisficing predictor (the second term in bracket

in eq.(15)), which alleviates the direct negative effect of a decrease in α on the value of

searching for a better predictor after finding one. However, this indirect effect is never

strong enough to fully offset the direct effect. In sum, qualitatively, the effect of a drop

in α is similar to that of an increase in the per exploration cost.18

18Given this, one might be tempted to capture the needle in the haystack effect by just considering
the effect of increasing c (on the ground that it becomes more costly to find good datasets). But
this approach is inconsistent with the argument that progress in information technology has reduced
information processing costs. This point illustrates the importance of having separate parameters to
capture the effects of (i) greater information processing power (a decrease in c in our model) on the one
hand and (ii) data abundance on the other hand.
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The effect of pushing back the data frontier on speculators’ stopping rule is more com-

plex. Counterintuitively, it can lead speculators to trade on predictors of worse quality,

even though the quality of the best predictor increases. The reason is as follows. On the

one hand, pushing back the data frontier increases the chance of finding a satisficing pre-

dictor holding the search strategy, θ∗ constant (Λ(θ∗; θ, α) increases when θ goes down).

This effect reduce the expected number of rounds required to find a predictor and there-

fore reduces the expected utility cost of searching for a new predictor after rejecting one.

Therefore, it increases the continuation value of searching for a predictor (see eq.(15)).

On the other hand, a push back of the data frontier affects the expected utility from

trading for two reasons. First, it gives the possibility to obtain more informative predictors

than those existing before (“the hidden gold nugget effect”), which raises the expected

utility from trading on a satisficing predictor. Second, it increases price informativeness

(other things equal, I(θ∗; θ, α) increases when θ decreases) because speculators who obtain

the most informative predictors trade even more aggressively than before the change in

the data frontier. As a result, speculators’ aggregate demand and therefore the asset

price are more informative, which reduces the value of being informed (“the competition

effect”). This effect reduces the expected utility from trading on a satisficing predictor.

Thus, the sign of a change in the data frontier (holding θ∗ constant) on the expected

utility from trading is ambiguous.

To analyze this more formally, we differentiate the expected utility from trading,

E [g(θ, θ∗)| θ ≤ θ ≤ θ∗], with respect to θ (holding θ∗ constant):

∂ E [g(θ, θ∗)| θ ≤ θ ≤ θ∗]
∂θ

= αφ(θ)
Λ(θ∗; θ, α)

E [g(θ, θ∗)| θ ≤ θ ≤ θ∗]− g(θ, θ∗)︸ ︷︷ ︸
Hidden Gold Nugget Effect; <0

+
∫ θ∗

θ

∂g(θ, θ∗)
∂θ

φ(θ)dθ︸ ︷︷ ︸
Competition Effect;>0


(21)

When θ becomes small enough, the competition effect dominates the hidden gold

nugget effect and the expected utility from trading on a satisficing predictor drops. The

second part of Proposition 4 shows that there is always a sufficiently low value of θ such

that this drop more offsets the reduction in the expected utility cost of finding a predictor.

When this happens, pushing back the data frontier further reduces the continuation value

of exploration. Hence, speculators choose a less stringent stopping rule in equilibrium and
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some optimally choose to trade on less informative predictors (τ(θ∗) decreases).

We illustrate Proposition 4 with two particular specifications of the distribution for

θ: (i) φ(θ) = 3 cos(θ) sin2(θ) and (ii) φ(θ) = 5 cos(θ) sin4(θ). With these specifications,

one can compute all variables of interest in closed forms (see Section 3 in the internet

appendix).19 Figure 2 below shows the effect of a change in the exploration cost (c)

and the data frontier (θ) on the equilibrium value of θ∗. In either case, as implied by

Proposition 4, a push back of the data frontier initially raises the quality of the worst

predictor used by speculators in equilibrium (reduces θ∗) but, eventually, at some point

this effect is reversed.
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Figure 2: Left-hand-side: Equilibrium search threshold, θ∗, as a function of the search
cost, c (other parameter values are θ = π/8, ρ = σ2 = ν2 = 1). Right-hand-side:
Equilibrium search threshold, θ∗, as a function of the data frontier, θ (other parameter
values are c = 0.03, ρ = σ2 = ν2 = 1). Upper graphs: φ(θ) = 3 cos(θ) sin2(θ). Lower
graphs: φ(θ) = 5 cos(θ) sin4(θ).

Proposition 5. The quality of the worst predictor used in equilibrium, τ(θ∗), increases

with the volume of noise trading, ν2, or the volatility of the asset payoff, σ2.

An increase in the volume of noise trading or the volatility of the asset reduces the

informativeness of the equilibrium price. This effect raises the expected value of trad-

ing, holding the search policy, θ∗, constant. Thus, the continuation value from searching

19Assumption A.1 is satisfied in both examples. The main difference is that the mass is shifted to the
left in the first case. That is, the likelihood of finding a predictor of high quality in a given exploration
is higher with the first distribution than with the second. See Section 3 in the internet appendix.
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increases and speculators become therefore more demanding for their predictors (θ∗ de-

creases).

5. Testable Implications

5.1 Data Abundance, Computing Power, and Managerial Skills

As explained in the previous section, the model has implications for the effects of data

abundance and computing power on the distribution of the quality of predictors used by

speculators in equilibrium, in particular the lower bound of this distribution τ(θ∗). To

test these implications, one can use data on active funds’ holdings and their returns on

these holdings and regress the position of each fund (speculator) in a given asset (xi(sθ, p∗)

in the model), at a given point in time on their return on this position ((ω − p∗) in the

model). In the model, the coefficient of this regression, βθ, is:

βθ = Cov(x(sθ, p∗), ω − p∗)
Var[ω − p∗] = τ(θ)

ρσ2 , (22)

where the last equality follows from Proposition 1. Intuitively, βθ is a measure of a

speculator’s stock picking ability or investment “skills”.20 Equation (22) shows that,

holding risk aversion constant, a ranking of speculators based on their stock picking

ability (measured by βθ) is identical to a ranking based on the (unobservable) quality of

their predictors, τ(θ).

Thus, one could test the implications of Propositions 3 and 4 by ranking speculators

(e.g., managers of active mutual funds or hedge funds) based on their stock picking ability

(measured by βs) and test whether shocks to computing power or data abundance have

the effects predicted by Propositions 3 and 4.21 For instance, one could test whether

20Kacperczyk et al. (2014) measure mutual funds’ stock picking ability in a similar way. See Section
I.B in their paper. More generally, this measure is related to holdings based measures of mutual funds
performance; see Grinblatt and Titman (1993) and Daniel et al. (1997)

21Alternatively, one could proceed as in Kacperczyk and Seru (2007) to measure asset managers’
investment skills and rank these. Specifically, Kacperczyk and Seru (2007) measures the precision of
asset managers’ signals (their “skill”) by the sensitivity of their holdings to public information. The
higher is this sensitivity, the lower is the precision of a manager’s private signals. This would also be the
case in a simple extension of our model in which speculators receive a public signal at date 1 in addition
to their private signal sθ.
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positive shocks to computing power increase the stock picking ability (measured by β)

of the funds with the lowest βs’ (say in the lowest decile) while positive shocks to data

abundance (e.g., the availability of new alternative data as in Zhu (2019) or Dessaint

et al. (2021)) have the opposite effect (even though they may increase the stock picking

ability of the best performing funds). One could also test whether the difference between

the stock picking ability of speculators with the lowest and highest ability is reduced in

periods of heightened fundamental volatility or noise trading, as implied by Proposition

5.

Kacperczyk and Seru (2007) (and others) find that there is considerable heterogeneity

in asset managers’ skills (see their Table I). Our model suggests that one source of het-

erogeneity might be managers’ luck in their search for a predictor, rather than differences

in innate abilities to find investment ideas or effort. Indeed, in our model, all speculators

are ex-ante identical and choose the same effort in terms of search in the sense that their

stopping rule (and therefore expected total cost of search) is identical. Yet, they end up

trading on predictors of different qualities because the outcome of the search process is

random. This implies in particular that a speculator might end up paying a large total

search cost (nic) and yet appear as having low skills (trading on a signal of poor quality).

5.2 Data Abundance, Computing Power, and Asset Price In-

formativeness

Progress in information technologies have improved investors’ ability to forecast asset

payoffs in two ways. On the one hand, these technologies reduce the cost of filtering

out noise from raw data (e.g., greater computing power enables asset managers to use

powerful statistical techniques, such as deep neural networks, to form their forecasts). On

the other hand, they allow to collect and store increasing volume of data. Propositions 6

and 7 show that these two different distinct dimensions of technological progress do not

affect asset price informativeness in the same way.

Proposition 6. In equilibrium, an increase in computing power (a decrease in c) raises

the average quality of speculators’ predictors and therefore price informativeness.

Greater computing power induces speculators to be more demanding for the quality

of their predictors (to put more effort in the search of good predictors) because it re-
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duces the cost of exploring new data to obtain a predictor (see Proposition 3). Thus,

speculators obtain signals of higher quality on average. Hence, on average, they trade

more aggressively on their signals, their aggregate demand for an asset becomes more

informative and, for this reason, price informativeness increases (see eq.(11)).

Proposition 7.

1. In equilibrium, an improvement in the quality of the most informative predictor

(a decrease in θ) raises the average quality of speculators’ predictors and therefore

price informativeness.

2. In equilibrium, a decrease in the proportion of informative datasets (a decrease in

α) reduces the average quality of speculators’ predictors and therefore price infor-

mativeness.

Thus, the effect of data abundance on price informativeness is ambiguous. Holding

α constant, data abundance (a decrease in θ) improves asset price informativeness, even

when it induces speculators to be less demanding for the quality of their predictors (i.e.,

when a decrease in θ reduces τ(θ∗); see Proposition 4). The reason is that the negative

effect of the drop in the quality of the worst predictor used in equilibrium (when it

happens) on the average quality of speculators’ signals is never sufficient to offset the

positive effect of the improvement in the quality of the best predictor in equilibrium.

As a result, a push back of the data frontier raises the average quality of predictors

and speculators’ average trading aggressiveness. In contrast, holding θ constant, data

abundance (a decrease in α) leads speculators to be less demanding for the quality of their

predictors. As a result, the average quality of predictors drops, speculators’ aggregate

demand is less informative and therefore price informativeness drops.

In reality, data abundance is likely to both push back the data frontier (reduce θ) and

exacerbate the needle in the haystack problem (reduce α). As a result, the net effect of

data abundance on the long run evolution of asset price informativeness is ambiguous, as

shown in Figure 3 (in which we assume that α = min{1, 0.32 + 0.8× θ})).
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Figure 3: This graph shows the evolution of price informativeness in equilibrium, I(θ∗, θ)
as a function of the data frontier, θ when φ(θ) = 3 cos(θ) sin2(θ) and α = min{1, 0.32 +
0.8 ∗ θ}. Other parameter values, c = 0.03, ρ = 1, σ2 = 1, ν2 = 1.

Consistent with these implications, empirical findings regarding the effect of progress

in information technologies on price informativeness are ambiguous. For instance, Bai

et al. (2016) find that the price stocks in the S&P500 has become more informative over

time while Farboodi et al. (2019) find the opposite patterns for all stocks, except for large

growth stocks. Using controlled experiments, Zhu (2019) finds that the availability of

alternative data (satellite images and consumer transactions data) improves stock price

informativeness while Goldstein et al. (2020) find a drop in the sensitivity of corporate

investment to stock prices after the digitization of firms’ regulatory filings, which they

explain by a decline in the production of private information. Our results suggests that

considering shocks that only affect computing power or abundance (rather than both

dimensions simultaneously) would help to make progress in understanding how progress

in information technologies affect asset price informativeness.

5.3 Data abundance, Computing Power and Trading Profits

In equilibrium, the total trading profit (“excess return”), π(sθ), of a speculator with type

θ on his position in the risky asset is:

π(sθ) = x∗(sθ, p∗)× (ω − p∗), (23)
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where x∗(sθ, p∗) and p∗ are given by eq.(8) and eq.(9), respectively. Using eq.(8), we

deduce that:

x∗(sθ, p∗) = 1
ρσ2

(
τ(θ)(ω − p∗) + τ(θ)1/2εθ

)
. (24)

Using eq.(23), the expected trading profit of a speculator with type θ is therefore

π̄(θ) = E[π(sθ)|θ] = τ(θ)
ρσ2 Var[ω − p∗] = τ(θ)τω

ρI(θ∗, θ) , (25)

where the last equality follows from the fact that p∗ = E(ω | p∗) so that Var[ω − p∗] =

Var[ω | p∗] = (I(θ∗, θ))−1 (by definition of I(θ∗, θ)).

Thus, the unconditional expected trading profit of all speculators (the average trading

profit across all speculators) is:

E[π̄(θ)] = τ̄(θ∗; θ, α)
ρσ2I(θ∗, θ) = 1

ρσ2

(
τω

τ̄(θ∗; θ, α) + τ̄(θ∗; θ, α)
ρ2ν2

)−1

, (26)

and the variance of trading profits for speculators (the dispersion of trading profits across

all speculators) is:

Var[π(θ)] = Var[τ(θ) | θ < θ < θ∗]
σ4ρ2I2(θ∗, θ) . (27)

Empirically, E[π̄(θ)] and Var[π̄(θ)] could be measured by the cross-sectional mean and

variance of trading profits of active funds (for instance in a given quarter). Another

possibility is to consider the distribution (across funds) of the squared Sharpe Ratio (the

ratio of average excess returns for a fund divided by the standard deviation of returns) of

active funds. Indeed, π̄(θ) is equal to the expected squared Sharpe ratio of a speculator

with type θ, divided by her risk aversion (see Footnote 17). Thus, E[π̄(θ)] and Var[π̄(θ)]

can also be interpreted as the mean and variance of the distribution of squared Sharpe

ratios across funds.

An increase in the average quality of predictors (τ̄(θ∗; θ, α) has an ambiguous effect

on speculators’ expected profit. On the one hand, this increase improves speculators’s

stock picking ability (see Section 5.1). On the other hand, it increases asset price infor-

mativeness because it makes speculators’ aggregate demand more informative. As shown

by eq.(26) (the term equal to τ̄(θ∗;θ,α)
ρσ2I(θ∗,θ)), the first effect raises speculators’ expected profit

while the second reduces it. Using eq.(26), we find that the first effect dominates if and

only if τ̄(θ∗; θ, α) ≤ (τωρ2ν2)1/2. Thus, speculators’ average expected profit reaches its

27



maximum for τ̄(θ∗(θ, c, α), θ, α) = (τωρ2ν2)1/2 if there are values of (θ, c, α) for which this

equality holds (we write θ∗ as a function of θ,c,α to emphasize that it depends on the

value of these parameters). We deduce the following result.

Proposition 8.

1. If τ̄(θ∗(θ, 0, α), θ, α) > (τωρ2ν2)1/2 then speculators’ expected profit is a hump shaped

function of c, which reaches its maximum for c = ĉ (characterized in the proof of the

proposition). Otherwise, speculators’ expected profit decreases with c and reaches its

maximum for c = 0

2. If τ̄(θ∗(0, c, α), 0, α) > (τωρ2ν2)1/2 then speculators’ expected profit is a hump shaped

function of θ, which reaches its maximum for θ = θ̂ (characterized in the proof of the

proposition). Otherwise, speculators’ expected profit decreases with θ and reaches

its maximum for θ = 0.

3. If τ̄(θ∗(θ, c, 1), θ, 1) > (τωρ2ν2)1/2 then speculators’ expected profit is a hump shaped

function of α, which reaches its maximum for α = α̂ (characterized in the proof

of the proposition). Otherwise, speculators’ expected profit increases with α and

reaches its maximum for α = 1

Thus, data abundance or greater computing power do not necessarily improve spec-

ulators’ expected trading profit. Consider first a decrease in c or θ. Such a decrease

leads speculators to be more demanding for the quality of their predictors and raises the

average quality of their signals. However, for this reason, it raises price informativeness.

The first effect has a positive effect on speculators’ expected profit while the second has

a negative effect. The latter effect always dominates when c or θ are small enough (see

Figure 4 for a numerical example). A decrease in α has the opposite effects: It reduces

the average quality of speculators’ signals and price informativeness. The first effect re-

duces speculators’ expected profit while the second increases this expected profit. The

former effect always dominates when α is small enough. Overall, these findings suggest

that there can be a point at which further improvements in computing power or data

availability reduces speculators’ expected profit.
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Figure 4: Left: Speculators’ expected profits, E(π̄), as a function of the search cost,
c (other parameter values are θ = π/5, ρ = σ2 = ν2 = 1). Right: Speculators’ ex-
pected profits, E(π̄), as a function of the data frontier, θ (other parameter values are
c = 0.05, ρ = σ2 = ν2 = 1). Upper graphs: φ(θ) = 3 cos(θ) sin2(θ). Lower graphs:
φ(θ) = 5 cos(θ) sin4(θ).

Now consider the effect of changes in the cost of processing data and data abundance

on the dispersion (Var[π(θ)]) of expected trading profits across speculators. Using eq.(27),

we obtain the following result.

Proposition 9.

1. Other things equal, the dispersion of speculators’ expected trading profit decreases

when the cost of processing data goes down for c small enough (dVar[π(θ)]/dc > 0

for c sufficiently close to zero).

2. Other things equal, the dispersion of speculators’ expected profit increases when the

data frontier is pushed back for θ small enough (dVar[π(θ)]/dθ < 0 for θ sufficiently

close to zero).

To understand the first part of the proposition, suppose that c = 0. In this case, all

speculators search for a predictor until they find one with the highest possible quality,

i.e., θ∗ = θ. As a result, all speculators trade on predictors of the same quality (Var[τ(θ) |

θ < θ < θ∗] = 0) and therefore the dispersion of expected trading profits is nil (see

(eq.(27)). Now consider a small increase in c starting from the situation in which c = 0.
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This increase raises θ∗ and therefore the dispersion of the quality of predictors used by

speculators (Var[τ(θ) | θ < θ < θ∗] increases). As a result, the dispersion of trading profits

increases as well. This increase is amplified by the fact that price informativeness goes

down, which works to increase the dispersion in trading profits as well (see the expression

for Var[π(θ)] in eq.(27)). As these effects still hold for larger values of c, we conjecture

that the first part of Proposition 9 holds for all values of c but we have not been able

to show it analytically (numerical simulations suggest that our conjecture is correct; see

Figure 5 below for an example).

When θ < θtr(c), pushing back the data frontier further raises the quality of the best

predictor and reduces the quality of the worst predictor used by speculators (see Propo-

sition 4). Thus, the range of quality for the predictors used in equilibrium widen. This

effect increases the dispersion of the quality of predictors used by speculators (Var[τ(θ)]

increases), which increases the dispersion of speculators’ expected profits, holding price

informativeness constant. In equilibrium, price informativeness improves, which damp-

ens the previous effect (since Var[π(θ)] is inversely related to price informativeness; see

eq.(27)). However, for θ small enough, this second effect is not sufficient to offset the

first. This explains the second part of the proposition.

In sum, data abundance and improvements in computing power have similar effects

on speculators’ expected profits but can have opposite effects on the dispersion of these

profits (see Figure 5).
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Figure 5: Left: Variance of speculators’ expected profits, Var[π(θ)], as a function of the
search cost, c (other parameter values are θ = π/5, ρ = 1, σ2 = 1, ν2 = 1). Right: Variance
of speculators’ expected profits as a function of the data frontier, θ (other parameter values
are c = 0.05, ρ = 1, σ2 = 1, ν2 = 1). Upper graphs: φ(θ) = 3 cos(θ) sin2(θ). Lower graphs:
φ(θ) = 5 cos(θ) sin4(θ).

5.4 Data Abundance, Computing Power and Crowding

Practitioners refers to the tendency for investors to follow the same trading strategy and

exploit the same signals as “crowding”.22 Let Cov(x(sθi , p∗), x(sθj , p∗)) be the covariance

between the equilibrium holdings of a speculator with type θi and a speculator with type

θj. Using eq.(24) and the fact that Var[ω − p∗] = (I(θ∗, θ))−1, we obtain:

Cov(x∗(sθi , p∗), x∗(sθj , p∗)) = τ(θi)τ(θj)
σ4ρ2 Var[ω − p∗] = τ(θi)τ(θj)

σ4ρ2I(θ∗, θ) . (28)

We deduce that the pairwise correlation between the equilibrium positions of a speculator

with type θi and a speculator with type θj (a measure of crowding) is:

Corr(x∗(sθi , p∗), x∗(sθj , p∗)) =
(

1 + I(θ∗, θ)
τ(θi)τω

)− 1
2
(

1 + I(θ∗, θ)
τ(θj)τω

)− 1
2

(29)

22Shanta Putchler, the CEO of Mannumeric (a quantitative investment fund) notes that: “The single
largest contributor to crowding is the simple fact that investors tend to do the same sorts of things. There
is a real propensity for investors to analyse the same datasets, with the same statistical techniques, and
hence end up with largely overlapping positions.” See https://www.man.com/maninstitute/crowding.
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Thus, holding the quality of the predictors used by two speculators constant, their po-

sitions become less correlated when price informativeness is higher. The reason is that

speculators trade on the component of their forecast of the asset payoff that is orthogonal

to the price. This component reflects both the component of the fundamental, ω, that is

not reflected into the equilibrium price and the noise in speculators’ signal. The higher

the first component relative to the second, the higher the pairwise correlation in specula-

tors’ positions in the asset. As the price becomes more informative, the first component

becomes smaller relative to the noise component and as a result, the pairwise correlation

between speculators’ positions drops. Using Proposition 7, we deduce the following result.

Proposition 10.

1. Greater computing power (a decrease in c) reduces the pairwise correlation of spec-

ulators’ positions.

2. Data abundance has an ambiguous effect on the pairwise correlation of speculators’

positions. It reduces it if it improves price informativeness but increases it other-

wise.

Testing Proposition 10 requires measuring the pairwise correlation of speculators’

positions, holding the quality of their signal constant. One possibility is to estimate the

cross-sectional distribution of funds’ predictors quality using the method described in

Section 5.1 and analyze the effect of shocks to computing power or data abundance on

the correlation in the positions of funds in different quantiles of the distribution.

6. Speculators’ Welfare and Data Abundance

In this section, we analyze how data abundance and computing power affects speculators’

ex-ante expected utility, which, in equilibrium, is J(θ∗, θ∗) = g(θ∗, θ∗) (see Section 4.1).

That is, each speculator’s expected utility is just equal to the expected utility from trading

on the worst predictor used in equilibrium. The reason is that the increase in the expected

utility from trading associated with further explorations for a speculator who has found

a predictor with type θ∗ is just offset by the expected utility cost of further explorations.

As can be seen from eq.(13), the data frontier, θ, affects speculators’ ex-ante expected

utility only via its effects on (i) the quality of the worst predictor, τ(θ∗) and (ii) the
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informativeness of the asset price, I(θ∗; θ, α). Now, a decrease in θ always raises price

informativeness (Proposition 7) and, when θ < θtr(c), it reduces the quality of the worst

predictor (Proposition 4). Thus, it unambiguously reduces speculators’ expected utility

because g(θ∗, θ∗) decreases with the informativeness of the asset price and increases with

the quality of the worst predictor (τ(θ∗)).

Proposition 11. When θ < θtr(c), pushing back the data frontier (a decrease in θ)

reduces speculators’ expected utility.

An increase in computing power raises the quality of the worst predictor and price

informativeness in equilibrium. Thus, its effect on speculators’ welfare is ambiguous.

Numerical simulations show that the first effect dominates unless c becomes very small.

Thus, in contrast to a push back of the data frontier, an improvement in computing power

raises speculators’ welfare (even though, it can reduce their average gross trading profits;

see Proposition 8). Figure 6 illustrates this point. For similar reasons, the needle in the

haystack problem (a decrease in α) has an ambiguous effect on speculators’ welfare: It

reduces price informativeness but it also decreases the quality of the worst predictor. The

first effect improve speculators’ welfare while the second reduces it. Numerical simulations

show that the second effect dominates for α low enough.
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Figure 6: Speculators’ ex-ante expected utility as a function of θ and c when φ(θ) =
3 cos(θ) sin2(θ) (other parameter values: ρ = 1, σ2 = 1, ν2 = 1).

Thus, data abundance can make speculators worse off in equilibrium. One might then

wonder whether it would not be optimal for a speculator to ignore new data. This is

not the case, however. To see this, suppose that the emergence of new datasets enable

investors to reduce θ from θ0 to θ1 < θ0 but that speculators agree not to take advantage

of the new datasets. In this case, each speculator obtains an expected utility equal to
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J(θ∗(θ0), θ∗(θ0)). If an investor secretely deviates by acquiring the new data, she does not

affect the equilibrium of the trading stage. Hence, price informativeness is unchanged. It

follows that if the investor finds a predictor with a type in [θ0, θ
∗(θ0)], her expected utility

of trading on this predictor is unchanged. However, in addition, the speculator has the

possibility to finds a predictor with a type in [θ1, θ
∗(θ0)] and her expected utility from

trading on a predictor with a type in this range is strictly higher than her expected utility

from trading on a predictor with a type in [θ0, θ
∗(θ0)]. Thus, the deviation is profitable

for the speculator. In other words, each speculator individually finds optimal to use the

new datasets, if she expects others not to do so. Hence, unless speculators can credibly

commit not using the new datasets, all of them do, which makes them collectively worse

off than if they did not.

Thus, data abundance can be “excessive” from speculators’ viewpoint in the sense

that they would be better off if the data frontier could not be improved. We now show

that speculators’ average investment in search is also excessive in the sense that, holding

all exogenous parameters constant, they would be better off if they could commit to use

a less demanding stopping rule (and therefore predictors of lower quality on average).

To see this, let assume that speculators can collectively choose a stopping rule, θr and

commit to this choice. In this case, speculators would optimally choose the stopping rule

θ∗∗r such that:

θ∗∗r = arg max
θr

J(θr, θr). (30)

Proposition 12. In a symmetric interior equilibrium of the exploration phase, the stop-

ping rule used by speculators is more demanding than the optimal stopping rule with

commitment, that is, θ∗ < θ∗∗r . Thus, in equilibrium, speculators’ investment in search

for predictors, E(nic), is higher than the investment that would maximize their welfare if

they could collectively choose their stopping rule.

Thus, there is excessive investment in search for predictors in equilibrium from spec-

ulators’ viewpoint. The reason is as follows. When speculators choose a more stringent

stopping rule, they expect to trade on a predictor of better quality on average, which

raises their expected utility. However, this choice raises their expected utility cost of

exploration (as it will take more exploration rounds to find a predictor) and price infor-

mativeness (as speculators trade more aggressively on more precise signals). Both effects

reduce their expected utility. When they individually choose their stopping rule, each
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speculator accounts for the first cost but ignores the second (as each speculator is too

“small’ to affect price informativeness). In contrast, a central planner organizing the

search for predictors in speculators’ interests internalizes both costs and therefore choose

a less stringent stopping rule than that chosen individually by speculators.

7. Conclusion

Progress in information technologies enable investors to have access to more data (data

abundance), both in terms of volume and diversity, and greater computing power, so

that they can deploy more powerful techniques to extract information from raw data. In

this paper, we propose a new model of information acquisition to analyze separately the

effects of these two distinct dimensions of technological progress.

In our model, speculators search (mine data) for predictors via trials and optimally

stop searching when they find a predictor with a signal-to-noise ratio larger than an en-

dogenous threshold. As the outcome of speculators’ search process is random, speculators

discover different predictors. Thus, even though they are homogenous ex-ante, speculators

are heterogeneous ex-post in terms of the quality of their predictors, their performance,

their holdings etc. In this way, our model generates predictions about the effects of data

abundance and computing power on the distribution of asset managers’ skills (precisions

of their signals), the distribution of their trading profits, or the correlation in their hold-

ings. Moreover, asset price informativeness is determined by speculators’ optimal data

mining strategy because this strategy determines the average quality of their signals and

thereby the informativeness of their aggregate demand.

The main message of our model is that the effects of data abundance and greater com-

puting power are not the same. For instance, greater computing power always induces

speculators to be more demanding for the minimal quality of their predictors while this

is not necessarily the case for data abundance. As a result, positive shocks to computing

power improve and homogenize predictors’ quality across speculators and, for this rea-

son, improve price informativeness. In contrast, data abundance can result in a greater

dispersion of predictors’ quality across speculators and a drop in price informativeness.
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A. Proofs

Proof of Proposition 1. We show that x∗(sθ, p) and p∗ as given by eq.(8) and eq.(9)

form an equilibrium. First, suppose that x∗(sθ, p) is given by x∗(sθ, p) = a(θ)(ŝ(θ)− p) .

In this case, the aggregate demand for the asset is given by:

D(p) =
∫
x∗(sθ, p) + η = ā(ω − p) + η, (31)

where ā is the average value of a(θ) across all speculators (ā = E[a(θ) | θ ∈ [θ, θ∗]]).

Hence, observing D(p) (and p) is informationally equivalent to observing ξ = ω + ā−1η.

Thus:

p∗ = E [ω | D(p)] = E[ω | η] =
(

σ2

σ2 + ā−2ν2

)
ξ =

(
τξ

τω + τξ

)
ξ, (32)

where τξ ≡ ā2

ν2 is the precision of ξ as a signal about ω.

Now consider speculators. Using standard calculations in the CARA gaussian frame-

work, we obtain that the optimal demand for the risky asset of a speculator with signal

sθ is:

x∗(sθ, p) = E[ω|sθ, p]− p
ρVar[ω|sθ, p]

, (33)

As speculators have rational expectations on the price, they anticipate that it is linear in

ξ, as in eq.(32). Moreover, let ŝθ ≡ ω + τ(θ)− 1
2 εθ, so that sθ = cos(θ)ŝθ. Thus,

E[ω|sθ, p] = E[ω|ŝθ, ξ]. (34)

and

Var[ω|sθ, p] = Var[ω|ŝθ, ξ]. (35)

Note that the precision of ŝθ is τ(θ)τω. Thus, as all variables are normally distributed

and εθ and η (the noises in ŝθ and ξ) are independent, standard calculations yield:

E[ω|ŝθ, ξ] = τ(θ)τωŝθ + τξξ

τω + τ(θ)τω + τξ
. (36)

and

Var[ω|sθ, p] = 1
τω + τ(θ)τω + τξ

. (37)
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Thus, we can rewrite eq.(33) as:

x∗(sθ, p) = τ(θ)τωŝθ + τξξ − (τω + τ(θ)τω + τξ)p
ρ

, (38)

Using the fact that p = τξ
τω+τξ

ξ we deduce that:

x∗(sθ, p) = τ(θ)τω
ρ

(ŝθ − p) = τ(θ)
ρσ2 (ŝθ − p). (39)

Thus, x∗(sθ, p) is as conjectured (and as in eq.(8)) if and only if a(θ) = τ(θ)
ρσ2 . If follows

that ā = τ̄(θ)
ρσ2 . Eq.(9) and eq.(10) in the text immediately follow from substituting this

expression for ā in eq.(32).

In sum we have shown that (i) if dealers expect speculators to follow the trading

strategy x∗(sθ, p) given by eq.(8) then they set a price given by eq.(9) and (ii) if dealers

set a price given by eq.(9) then speculators follow the trading strategy x∗(sθ, p) given

by eq.(8). Thus, eq.(8) and eq.(9) form an equilibrium. More generally, it is possible to

show that this is the unique equilibrium in which speculators’ trading strategy is a linear

function of their signal and the price.

Proof of Lemma 1. Conditional on the realization of the price at date 1 and her signal,

sθ, the expected utility of trading for an investor given her optimal trading strategy is:

E[− exp(−ρx∗(sθ, p)(ω − p)) | sθ, p] =

−E
[
exp

(
−ρ

(
x∗(sθ, p)(E[ω | sθ, p]− p)−

ρ(x∗(sθ, p))2

2 Var[ω | sθ, p]
))]

.
(40)

Substituting x∗(sθ, p) by its expression in eq.(33), we deduce that:

E [− exp(−ρx∗(sθ, p)(ω − p)) | sθ, p)] = − exp
(
−(E[ω|sθ, p]− p)2

2 Var[ω|sθ, p]

)
(41)

Thus:

g(θ, θ∗) = −E
[
exp

(
−(E[ω|sθ, p∗]− p∗)2

2 Var[ω|sθ, p∗]

)]
. (42)

For a normally distributed variable Z with mean 0 and variance σ2
Z , E[exp(−Z2)] =

(1 + 2σ2
Z)−1/2. As E[ω|sθ, p] − p, is normally distributed with mean zero, defining Z =
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E[ω|sθ, p]− p, we deduce that:

g(θ, θ∗) = −
(

1 + Var [E[ω|sθ, p∗]− p]
Var[ω|sθ, p∗]

)−1/2

(43)

Observe that:

Var[E[ω|sθ, p∗]− p∗]
Var[ω|sθ, p∗]

= ρ2 Var[ω|sθ, p∗] Var[x∗(sθ, p∗)]. (44)

Now using the expression for x∗(sθ, p∗) in eq.(39), we obtain that:

Var[x∗(sθ, p∗)] = τ(θ)2τ 2
ω

ρ2 [Var(ŝθ) + Var(p∗)− 2 Cov(ŝθ, p∗)]. (45)

Using the expression for p∗ in eq(32) and the fact that ŝθ = ω+ τ(θ)− 1
2 εθ, we obtain after

some algebra that:

Var[x∗(sθ, p∗)] = τ(θ)τω(τω + τωτ(θ) + τξ)
ρ2(τω + τξ)

. (46)

Thus, using the expression for Var[ω|sθ, p∗] in eq.(37), we deduce that:

Var[x∗(sθ, p∗] = τ(θ)τω
ρ2(τω + τξ) Var[ω|sθ, p∗]

. (47)

Hence, using eq.(44) and the fact that τξ = τ̄(θ∗;θ,α)2τ2
ω

ρ2ν2 , we deduce that:

Var[E[ω|sθ, p]− p]
Var[ω|sθ, p]

= τωτ(θ)
τω + (τω τ̄(θ∗;θ,α))2

ρ2ν2

. (48)

This yields the expression for g(θ, θ∗).

Proof of Proposition 2. The derivative of F (θ∗) is

∂F

∂θ∗
= α

∫ θ∗

θ

∂r(θ, θ∗)
∂θ∗

φ(θ)dθ, (49)

where r(θ, θ∗) is defined in eq.(20). As θ∗ increases, both τ(θ∗) and I(θ∗; θ, α) decreases.

We deduce that r(θ, θ∗) decreases in θ∗. Thus, ∂F
∂θ∗ < 0. Moreover, we have (i) F (θ) = 1,

(ii) 0 < F (π/2) < 1 and (iii) exp(−ρc) < 1 (since c > 0). Thus, there is a unique

solution to the condition F (θ∗) = exp(−ρc) and this solution is in (θ, π/2) if and only if
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F (π/2) ≤ exp(−ρc) < 1.

Proof of Proposition 3. In equilibrium, F (θ∗) = exp(−ρc). We have shown that

F (.) decreases in θ∗ in the proof of Proposition 2. It immediately follows from these two

observations that θ∗ increase in c.

Proof of Proposition 4.

Part 1. It directly follows from eq.(19) that ∂F
∂α

= −
∫ θ∗

θ (1 − r(θ, θ∗)φ(θ)dθ) < 0, since

r < 1. Thus, F (θ∗) decreases in α. As F (.) also decreases in θ∗ and, in equilibrium,

F (θ∗) = exp(−ρc), it immediately follows that θ∗ increases in α, as claimed in the first

part of the proposition.

Part 2. Remember that I(θ∗; θ, α) = τω + τ̄(θ∗;θ,α)2τ2
ω

ρ2ν2 . Thus, we can rewrite r(θ, θ∗) given

in eq.(20) as:

r(θ, θ∗) = g(θ, θ∗)
g(θ∗, θ∗) =

(
ρ2σ2ν2τ(θ∗) + ρ2σ2ν2 + τ̄ 2(θ∗; θ, α)
ρ2σ2ν2τ(θ) + ρ2σ2ν2 + τ̄ 2(θ∗; θ, α)

) 1
2

. (50)

The ratio (a+ x)/(b+ x) increases with x iff a < b. Thus, as τ(θ) > τ(θ∗), the sign of ∂r
∂θ

is the same as the sign of ∂τ̄
∂θ

because τ(θ) > τ(θ∗). We obtain:

∂τ̄(θ∗; θ, α)
∂θ

= −φ∗(θ) (τ(θ)− τ̄(θ∗; θ, α)) < 0, (51)

where the last inequality follows from the fact τ(θ) decreases with θ. Thus, ∂r
∂θ
< 0.

We deduce from the expression for ∂r
∂θ

that r(θ, θ∗) decreases with θ (∂r
∂θ
< 0). Using

the expression for F (.) in eq.(19), we deduce that:

∂F

∂θ
= αφ(θ)(1− r(θ, θ∗))︸ ︷︷ ︸

>0

+α
∫ θ∗

θ

∂r

∂θ︸︷︷︸
<0

φ(θ)dθ. (52)

Thus, the effect of θ on F (.) and therefore the equilibrium stopping rule θ∗ is ambiguous.

We now show that this effect becomes negative when θ is close enough to zero. To see

this, observe that eq.(52) implies that:

∂F

∂θ
< αφ(θ)

1 +
∫ θ∗

θ
∂r
∂θ
φ(θ)dθ

φ(θ)

 (53)

We show in Section 4 of the internet appendix that

∫ θ∗

θ
∂r
∂θ
φ(θ)dθ

φ(θ) goes to −∞ when θ goes
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to zero. Thus, ∂F
∂θ

< 0 for θ small enough. Let θtr be the smallest value of θ such that

∂F
∂θ
< 0. As in equilibrium, F (θ∗) = exp(−ρc) and F (.) decreases in θ∗, it follows that θ∗

increases in θ when θ < θtr, as claimed in the second part of the proposition.

Proof of Proposition 5. It follows from direct inspection of the expression for r(θ, θ∗)

given in eq.(50) that r(θ, θ∗) decreases with σ2, and ν2 because τ(θ) > τ(θ∗). Thus, from

eq.(19), we deduce that F (θ∗) decreases with σ2, and ν2. It follows from this observation,

the fact F (θ∗) decreases with θ∗ and the equilibrium condition F (θ∗) = exp(−ρc) that θ∗

decreases with σ2 and ν2.

Proof of Proposition 6. Follows from the text after the proposition.

Proof of Proposition 7.

Part 1. When a decrease in θ reduces θ∗, it is clear that it raises the average quality

of predictors and therefore price informativeness. Now consider the other possible case,

i.e., the case in which a decrease in θ increases θ∗. We know that this possibility arises

when θ is low enough (see Proposition 4). We prove below, by contradiction, that price

informativeness, I(θ∗; θ, α), is also inversely related to θ in this case.

Suppose (to be contradicted) that there is a value of θ such that when ∂θ∗

∂θ
< 0 then

∂I(θ∗;θ,α)
∂θ

> 0. Let L(θ∗i , θ∗) be:

L(θ∗i , θ∗) ≡ α
∫ θ∗

i

θ

g(θ, θ∗)
g(θ∗i , θ∗)

φ(θ)dθ + 1− α
∫ θ∗

i

θ
φ(θ)dθ. (54)

Function L is decreasing with θ∗i because:

∂L

∂θ∗i
= α

∫ θ∗
i

θ

∂

∂θ∗i

(
g(θ, θ∗)
g(θ∗i , θ∗)

)
φ(θ)dθ < 0. (55)

Now, using the expression for J(.) given in eq.(15), we can rewrite the indifference con-

dition (16) as:

L(θ∗i , θ∗) = exp(−ρc). (56)

Moreover: L(θ, θ∗) = 1 and 0 < L(π/2, θ∗) < 1. Thus, as L(θ∗i , θ∗) decreases in θ∗i ,

eq.(54) has a unique solution θ∗i (θ∗) when c is small enough. This solution defines the

best response of a speculator when other speculators choose the stopping rule θ∗.
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Next, for θ∗i ≥ θ ≥ θ, define

l(θ, θ∗i , θ∗) = g(θ, θ∗)
g(θ∗i , θ∗)

=
(
ρ2σ2ν2τ(θ∗i ) + ρ2ν2 + σ2τ̄(θ∗; θ, α)2

ρ2σ2ν2τ(θ) + ρ2ν2 + σ2τ̄(θ∗; θ, α)2

) 1
2

=
(
τ(θ∗i )τω + I(θ∗; θ, α)
τ(θ)τω + I(θ∗; θ, α)

) 1
2

.

(57)

Clearly, l(θ, θ∗i , θ∗) increases when I(θ∗; θ, α) increases. Thus, if ∂I(θ∗;θ,α)
∂θ

< 0, then

∂l(θ,θ∗
i ,θ

∗)
∂θ

> 0 since θ affects l(θ, θ∗i , θ∗) only through its effect on price informativeness.

This implies that:
∂l

∂θ
+ ∂l

∂θ∗
∂θ∗

∂θ
> 0. (58)

As:

L(θ∗i , θ∗) ≡ α
∫ θ∗

i

θ
l(θ, θ∗i , θ∗) + 1− α

∫ θ∗
i

θ
φ(θ)dθ, (59)

we deduce that:

dL

dθ
= ∂L

∂θ
+ ∂L

∂θ∗
∂θ∗

∂θ
= αφ(θ)(1− l(θ, θ∗i , θ∗))︸ ︷︷ ︸

>0

+α
∫ θ∗

i

θ

(
∂l

∂θ
+ ∂l

∂θ∗
∂θ∗

∂θ

)
φ(θ)dθ. (60)

Eq.(58) implies that the second term is also positive. Thus, dL
dθ
> 0. Thus, a decrease in

θ results in a smaller value of L, holding θ∗i constant. As ∂L/∂θ∗i < 0 and L(θ∗i , θ∗) =

exp(−ρc), it follows that in this case θ∗i increases with θ. As, in equilibrium, θ∗i = θ∗, this

also implies that ∂θ∗

∂θ
> 0. A contradiction with our starting hypothesis. We deduce that

when ∂θ∗

∂θ
< 0 then ∂I(θ∗;θ,α)

∂θ
< 0. Thus, for all values of θ, a decrease in θ improves price

informativeness.

Part 2. By definition, τ̄(θ∗; θ, α) =
∫ θ∗

θ τ(θ)φ∗(θ)θ. Using the definition of φ∗(θ), we

deduce that ∂τ̄(θ∗;θ,α)
∂α

= ∂θ∗

∂α
(φ∗(θ∗)(τ(θ∗) − τ̄(θ∗; θ, α)) > 0, where the last inequality

follows from the fact that τ(θ) decreases with θ and ∂θ∗

∂α
< 0 (see Proposition 4). Hence,

price informativeness increases with α because (i) I(θ∗; θ, α) increases with τ̄(θ∗) and

(ii) depends on α only through τ̄(θ∗) (see eq.(11). This proves the second part of the

proposition.

Proof of Proposition 8. Consider the effect of θ on speculators’ expected prof-

its. We know from Proposition 7 that τ̄(θ∗(θ, c, α), θ, α) decreases with θ. Moreover,

lim
θ→π

2

τ̄(θ∗(θ, c, α), θ, α) = τ(π2 ) = 0. Thus, if τ̄(θ∗(0, c, α), 0, α) > (τωρ2ν2)1/2, there is a

unique value of θ, denoted θ̂, such that τ̄(θ∗(θ̂, c, α), θ̂, α) = (τωρ2ν2)1/2. Consequently,

when θ varies, holding other parameters constant, speculators’ expected profit reaches
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its maximum for τ̄(θ∗, θ̂, α) = τωρ
2ν2. If instead, τ̄(θ∗(0, c, α), 0, α) ≤ τωρ

2ν2, then spec-

ulators’ expected profit always increases as θ decreases. This proves Part 2 of Propo-

sition 8. The proofs of Parts 1 and 3 are similar and therefore omitted the proofs for

brevity. In these cases, one obtains that ĉ and α̂ are the unqiue solutions of, respectively,

τ̄(θ∗(θ, ĉ, α), θ, α) = (τωρ2ν2)1/2 and τ̄(θ∗(θ, c, α̂), θ, α̂) = (τωρ2ν2)1/2.

Proof of Proposition 9.

Part 1. For a given θ, when c = 0 we have θ∗ = θ and therefore Var[π(θ)] = 0, and when

c > 0, θ∗ > θ and therefore Var[π(θ)] > 0. Hence, it must be the case that Var[π(θ)] is

strictly increasing with c, for c close enough to 0.

Part 2. In order to analyze the effect of θ, it is useful to rewrite Var[π(θ)] as follows

(using eq.(27) and the definition of I(θ∗; θ, α)):

Var[π(θ)] = ρ2σ4ν4 (m2(θ∗, θ, α)− τ̄(θ∗, θ, α)2)
(τ̄(θ∗, θ, α)2 + ρ2σ2ν2)2 . (61)

where m2(θ∗, θ, α) ≡ E [cot4(θ)| θ ≤ θ ≤ θ∗] is the second order moment of the variable

τ(θ) (the distribution of the quality of speculators’ predictors). The first moment of this

distribution is τ̄(θ∗, θ, α̂). For a given search cost c, we must distinguish two cases. First,

if the second moment of the distribution for the variable τ(θ) diverges when θ goes to zero

(that is, limθ→0m2(θ∗, θ, α) = +∞,), then we also have limθ→0 Var[π(θ)] = +∞. Thus,

Var[π(θ)] is strictly decreasing with θ, for θ close enough to 0.

If the second moment of the distribution for the variable τ(θ) converges when θ goes

to zero, the analysis is more complex.23 Indeed, as shown below, both the second and

the first moments of the distribution for τ(θ) decreases with θ. If the effect on the

second moment dominates then Var[π(θ)] decreases with θ while if the effect on the first

moment dominates then Var[π(θ)] increases with θ (see eq.(61)). We show below that for

θ sufficiently close to zero the first effect dominates.

We have:
dτ̄(θ∗, θ, α̂)

dθ
= ∂τ̄(θ∗, θ, α̂)

∂θ
+ ∂τ̄(θ∗, θ, α̂)

∂θ∗
∂θ∗

∂θ
(62)

23Notice first that m2(θ∗, θ, α) < ∞ (the second moment converges) implies that φ(θ) cot4(θ) can
be integrated in 0. Locally around θ = 0, since cot(θ) ∼ sin−1(θ) ∼ θ−1, we have φ(θ) cot4(θ) ∼
φ(θ) cot2(θ)θ−2 As θ−2 cannot be integrated in 0, it must be the case limθ→0 φ(θ) cot2(θ) = 0. This is a
necessary condition so that φ(θ) cot4(θ) can be integrated.

44



Thus:

dτ̄(θ∗, θ, α̂)
dθ

= −
(
φ∗(θ)(τ(θ)− τ̄(θ∗, θ, α̂)) + φ∗(θ∗) (τ̄(θ∗, θ, α)− τ(θ∗)) ∂θ

∗

∂θ

)
(63)

According to Proposition 7, we have dτ̄(θ∗,θ,α̂)
dθ

< 0, and according to Proposition 4, we

have ∂θ∗/∂θ < 0 for θ < θtr(c) small enough. Hence, using eq.(62), we deduce that for θ

close to 0 we have

0 < −∂θ
∗

∂θ
< φ(θ)×

(∗)︷ ︸︸ ︷
τ(θ)− τ̄(θ∗, θ, α̂)

φ(θ∗) (τ̄(θ∗, θ, α)− τ(θ∗)) . (64)

The term (∗) is dominated by the term τ(θ) for θ small enough. Then, for θ small, there

is a constant K1 > 0 such that

0 < −∂θ
∗

∂θ
< K1φ(θ)τ(θ). (65)

and therefore, inserting inequality (65) in equation (62), we obtain that there exists a

constant K2 such that

0 < −dτ̄(θ∗, θ, α̂)
dθ

< K2φ(θ)τ(θ). (66)

Next, we compute the derivative of the second moment in equilibrium and obtain

dm2(θ∗, θ, α)
dθ

= −
(
φ∗(θ)

(
τ 2(θ)−m2(θ∗, θ, α)

)
+ φ∗(θ∗)

(
m2(θ∗, θ, α)− τ 2(θ∗)

) ∂θ∗
∂θ

)
(67)

As the order of magnitude of ∂θ∗/∂θ is (at best) φ(θ)τ(θ), we deduce from the previous

equation that:
dm2(θ∗, θ, α)

dθ
∼ −φ∗(θ)τ 2(θ), (68)

when θ is small. Hence, around θ = 0, dm2(θ∗,θ,α)
dθ

dominates dτ̄(θ∗,θ,α̂)
dθ

by an order of

magnitude. Indeed, the ratio between the second derivative and the first is bounded by

1/τ(θ), which goes to zero when θ goes to zero.

Proof of Proposition 10. Direct from the arguments in the text.

Proof of Proposition 11 Direct from the arguments in the text.

Proof of Proposition 12. In a symmetric interior equilibrium of the exploration phase,

we have θ∗ < π
2 , i.e., F (π/2) < exp(−ρc) (see Proposition 2). Remember, from eq.(15),
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that any stopping rule θ̂ (e.g., θ∗ or θ∗∗r ) must satisfy:

J(θ̂, θ̂) =
Λ(θ̂; θ, α)

H(θ̂)

× E
[
g(θ, θ̂)

∣∣∣ θ ≤ θ ≤ θ̂
]

(69)

where H(θ̂) = exp(−ρc)−(1−Λ(θ̂; θ, α)). Observe that H(θ̂) increases with θ̂. Moreover,

under the condition F (π/2) < exp(−ρc), we have: H(π/2) > 0. Let θmin be the value

of θ̂ such that H(θmin) = 0 (if any). The equilibrium stopping rule θ∗ must be strictly

greater than θmin. Indeed, if it was smaller then for J(θ∗‘, θ∗) would be strictly positive,

which is impossible since J(θ∗‘, θ∗) is the ex-ante expected utility of a speculator and

it cannot exceed zero (since speculators have CARA utility functions). Moreover, for

θ̂ → θ+
min, J(θ̂, θ̂)→ −∞; A speculator can avoid such a low expected utility by choosing

a stopping rule equal to θ̂ = π
2 . Thus, it must be that the equilibrium stopping rule, θ∗,

is strictly larger than θmin. Therefore, H(θ∗) > 0.

Now consider J(θr, θr). Eq.(69) and the fact that ∂H
∂θr

= αφ(θr) implies that:

H(θr)
∂J

∂θr
+ αφ(θr)J(θr) = αφ(θr)g(θr, θr) + α

∫ θr

θ

∂g

∂θr
φ(θ)dθ (70)

⇔ H(θr)
∂J

∂θr
= αφ(θr)

H(θr)g(θr, θr)− α
∫ θr
θ g(θ, θr)φ(θ)dθ

H(θr)
+ α

∫ θr

θ

∂g

∂θr
φ(θ)dθ (71)

⇔ H(θr)
∂J

∂θr
= −αφ(θr)g(θr, θr)

H(θr)
(F (θr)− exp(−ρc))︸ ︷︷ ︸

>0 iff θr≤θ∗

+α
∫ θr

θ

∂g

∂θr
φ(θ)dθ︸ ︷︷ ︸

>0

(72)

Thus, at θr = θ∗, ∂J/∂θr |θr=θ∗> 0 since the equilibrium stopping rule θ∗ solves: F (θ∗) =

exp(−ρc) and H(θ∗) > 0. This implies that by slightly increasing θr at θr = θ∗, one can

make all speculators better off. Thus, the value of θr that maximizes J(θr, θr) is strictly

larger than θ∗ (θ∗ < θ∗∗r . The expected investment in search of speculator i for a given

stopping rule θ∗i is E(ni)c = c
Λ(θ∗

i ;θ,α) (see eq.(3)). Now, Λ(θ∗i ; θ, α) increases with θ∗i . It

then follows from the fact that θ∗ < θ∗∗ that the expected investment in search is larger

when θ∗i = θ∗ than when θ∗i = θ∗∗, as claimed in the second part of the proposition.
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