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1 Introduction

Market power has an impact on both inequality and efficiency. As market power increases, the share

of output accrues disproportionately to owners of monopolistic firms and less to workers. In addition,

market power creates inefficiencies in the allocation of resources as prices are too high which leads to

deadweight loss and a reduction in welfare. Therefore, we ask whether taxes should reflect the extent

of market power, and if so, how? In this paper, we aim to answer the question by investigating optimal

taxation in conjunction with market power. Starting with Mirrlees (1971), an extensive and influential

literature on optimal taxation has analyzed what determines the properties of income tax schedules. Given

that market power changes both efficiency and inequality, understanding the effect of market power on

optimal tax rates is an important objective, especially in light of the rise of market power in recent years.

We, therefore, contribute to the existing literature by embedding market power in an otherwise canonical

setting of optimal income taxation.

The most obvious way to address the distortionary effect of market power is to eradicate the root cause

of market power itself with antitrust policy. But the optimal antitrust policy may not be achievable,1 so

instead we ask what optimal policy should be when we can rely on income and goods taxation only. The

Mirrleesian tax provides the correct incentives that trade-off efficient effort supply with inequality. In

addition, now the optimal tax system simultaneously corrects the externalities that derive from market

power in the goods market. The income tax thus also plays the role of a Pigouvian tax: a tax that corrects a

market failure, whether it be pollution or in this case, market power. An important insight of our analysis

is how to optimally trade-off different objectives: inequality, efficiency, and correcting externalities from

market power.

Our contribution is twofold. First, in an otherwise canonical Mirrlees (1971) taxation framework, we

embed endogenous market power as well as a clear distinction between wage-earning workers and profit-

earning entrepreneurs. The novelty in the setup is that we add the inefficiency of market power in the

hands of entrepreneurs which interacts with the unobservable effort supply of heterogeneous agents. We

do this in a setting that allows for oligopolistic competition between a finite number of firms. We show

that this model captures a number of empirically relevant features that link inequality to market power, in

particular, how market power creates inequality. Even under Laissez-faire, our model generates novel pre-

dictions regarding the effect of market power on equilibrium allocation and inequality. Second, we derive

the optimal taxation policy to implement the planner’s second-best allocation. Our results advance the

optimal taxation literature by deriving explicit analytical expressions for the tax rate as a function of market

power. The nature of the optimal tax scheme now combines a Pigouvian correction of the externality due

to market power with the design of the Mirrleesian incentive problem.

The main result of our analysis can be divided into two parts: the Laissez-faire economy and the econ-

omy under optimal taxation. In the absence of taxes, the Laissez-faire equilibrium predicts an increase in

1Antitrust policy faces many challenges, not least because the determinants of market power have multiple origins that can
often not easily be corrected: those origins based in technology such as entry barriers, returns to scale and the heterogeneity in
productivity between firms; and those based on the market such Mergers and Acquisitions. See amongst others Sutton (1991,
2001) and De Loecker, Eeckhout, and Mongey (2019).
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inequality as aggregate markups increase. The labor income of workers decreases due to the decline in the

general equilibrium wage rate as well as the decline in their hours worked in response to the lower wage

rate. At the same time, entrepreneurs see an increase in their income. This is consistent with the decline

in the labor share that has been documented and that coincides with the rise of market power.2 The rise of

market power also results in a decrease in output and social welfare. In addition, inequality within the pool

of heterogenous entrepreneurs increases while inequality within the pool of workers remains constant. Be-

cause each entrepreneur owns a different firm, rising markups lead to higher dispersion in productivity

and profits between firms, yet the inequality between workers within the firm remains unchanged. This

feature of our model where inequality between firms increases is consistent with the facts on increasing

between-firm inequality.

In the presence of market power, the optimal taxation policy has the following properties.3 First, when

all agents are identical, the government only needs to address the incentives to provide effort without con-

cern for heterogeneous abilities. Then the marginal tax rate is negative and declines as markups increase.

In the absence of market power, the marginal tax rate would be zero. While markups create a distortion,

they also lower the incentives to work. The workers work less because the wages are lower, and the en-

trepreneurs work less because they price higher and thus sell and produce less. The Planner, therefore,

offers incentives through negative marginal tax rates to both workers and entrepreneurs. Second, when

agents are heterogeneous, the marginal tax rate for all agents now reflects the motive for redistribution and

depends on the type of agent, with lower tax rates for low earners and higher tax rates for high earners.

Interestingly, for any two types of entrepreneurs and workers and under monopolistic competition, the

net marginal tax rate of entrepreneurs is now higher (less negative) relative to that of workers because the

Planner takes into account also the effect of market power in the incentive constraint. Intuitively, raising

market power expands the productivity within the pool of entrepreneurs, which requires higher marginal

profit tax rates to narrow the income inequality within the group of entrepreneurs. Third, when there

is oligopolistic competition, because of strategic interaction between competitors in the same market, the

marginal tax rate for entrepreneurs decreases again (becomes more negative). This is because a decreasing

profit tax raises the output of firms which in turn decreases the price of firm-level output and relaxes the

entrepreneurs’ incentive constraint. And fourth and finally, once markups are heterogeneous, the marginal

tax rate of entrepreneurs changes depending on the entrepreneurs’ productivity. The marginal tax rate is

now lower for high-productivity entrepreneurs. The Planner wants to use the tax incentives to induce more

productive entrepreneurs to produce more, which it does with lower marginal tax rates.

While our most general result gives an implicit relation between market power and the optimal tax

rate, an important contribution of our paper is to obtain explicit expressions for the tax rates in terms of the

markup under certain conditions. For example, for a parametric restriction on the labor supply elasticity

2See Karabarbounis and Neiman (2014), De Loecker et al. (2020), and Autor et al. (2020).
3We allow for taxes on the income of workers and entrepreneurs, and also on the sales of consumer goods. However, we

show that we can focus attention exclusively on the tax on entrepreneurs and workers, and not on the sales tax. It is well-known
in the literature (see for example Chari and Kehoe (1999) and Golosov et al. (2003)) that multiple tax policies can implement the
same second-best allocation. In our setting, because the entrepreneurs are the residual claimants of output, a sales tax can without
further distortions equivalently be substituted by a levy on the entrepreneurs’ profits. Therefore, we assume sales taxes are zero.
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and the elasticity of substitution in production in conjunctions with the returns to scale, we can analytically

solve a key integral equation. Another analytical solution is for the case of elasticities of substitution in

production between different markets that are common across markets. To obtain these results, we rely

on the theory of integral equations to formalize the model and to solve these important cases. The setup

with endogenous markups leads to a complicated form of the integral equations in which tax formulas are

expressed. Despite those mathematical complexities, we are able to solve for those equations analytically.

These explicit analytical solutions are a major theoretical advance of the optimal taxation literature.

In sum, the optimal marginal tax rates are a delicate balancing act trading off incentives to produce

output with the distortions from market power as well as the desire to restore equity. The effect of correct-

ing the externality from market power is, somewhat surprisingly, a decrease of marginal tax rates for both

workers and firms as market power goes up. However, there are also several indirect effects from market

power that affect the entrepreneur only. Two channels decrease the marginal tax rate (indirect redistribu-

tion and reallocation) while one channel generally increases the tax rate (technological differences across

sectors that affect markups and hence the productivity of entrepreneurs).

Of course, the average taxes paid and the tax burden are not necessarily evolving in the same direction

as the marginal tax rates. After all, we know that market power has a general equilibrium effect that lowers

the wage rate, which increases inequality between workers and entrepreneurs. Whereas the marginal tax

rates ensure an optimal allocation of resources and production through optimal incentive provision, the

tax burden determines the optimal redistribution of income for a given social welfare function. Because

we cannot analytically solve for the tax burden in our model, we simulate the economy and map the full

implications of optimal taxation.

Our simulations show that as market power increases, the wage rate, output, and welfare decrease.

At the same time, profits increase and the labor share declines. Both entrepreneurs and workers supply

less labor as market power increases. Entrepreneurs are better off in consumption and utility, and workers

are worse off. The planner’s optimal taxation response sets a positive marginal tax rate on average for

both workers and entrepreneurs, and it increases market power for entrepreneurs while it decreases for

workers. The lump-sum tax for entrepreneurs is substantially higher than for workers. For entrepreneurs,

the average tax rate and the total tax burden are positive and increase in market power, for workers it is

negative and decreases. Across types within an occupation, higher-skilled agents (in both occupations)

face lower marginal tax rates (as is the case for superstars, Scheuer and Werning (2017)), but the tax burden

is non-monotonic. The optimal taxation allocation increases welfare relative to Laissez-faire (trivially), but

output and the wage rate are lower, and markups increase. With taxes, inequality decreases substantially,

especially for entrepreneurs.

Finally, to investigate the robustness of our setup, we discuss three alternative specifications of our base-

line model: we introduce non-linear sales taxes, we allow for the planner to condition taxes on markups,

and we have capital investment. This analysis shows that our results are robust to these variations of the

model setup. An important new insight from the second robustness exercise is the discovery of a new

friction. Even if the planner can condition on markups, the solution is still not first best. The reason is that
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entrepreneurs will adjust their decisions – effort as well as the number of workers hired – in response to

the planner’s optimal tax schedule. In other words, there is an incentive constraint the planner needs to

take into account when solving for the optimal tax rate, even when conditioning on markups.

Related Literature. There is a growing policy literature on the relation between markups and inequality

(e.g., see Stiglitz (2012); Atkinson (2015); Baker and Salop (2015); Khan and Vaheesan (2017)), yet existing

optimal tax papers with market power generally focus on indirect taxes, which abstracts from distribution

concerns (Stern (1987); Myles (1989), Cremer and Thisse (1994); Anderson, Palma, and Kreider (2001);

Colciago (2016); Atesagaoglu and Yazici (2021)). These papers generally assume that lump-sum tax is not

enforceable and study how can the government raise revenue efficiently. In a recent paper, Atesagaoglu

and Yazici (2021) analyze the effect of optimal taxation on the labor share in a Ramsey problem with capital.

They ask a different but related question, namely whether it is optimal to tax capital rather than labor when

there is pure profit and the planner cannot distinguish capital income from profits.

We embed a Mirrleesian tax problem into an economy with market power.4 To model the economy

with imperfect competition, we introduce market power in a market framework similar to Atkeson and

Burstein (2008) where a finite number of oligopolistic firms have market power in their local market.5

This setting allows us to model the influence of market structure on the optimal design of the tax system,

which is often ambiguous in the literature. The technology that an entrepreneur employs is as in Lucas

(1978), where a skilled entrepreneur chooses the optimal amount of labor as an input to produce output.

Unlike Lucas (1978), the entrepreneur has market power and chooses prices strategically when reporting

their types. Therefore the presence of market power in the principal-agent problem is notably distinct

from the existing literature on optimal taxation with market power (e.g., see Kaplow (2019), Kushnir and

Zubrickas (2019), Jaravel and Olivi (2019), Gürer (2021), and Boar and Midrigan (2021)).6 In this literature,

Boar and Midrigan (2021) is the only paper that also introduces entrepreneurs. They consider an alterna-

tive incentive problem between the planner and the entrepreneur where a profit tax does not affect the

entrepreneur’s incentive constraint. As a result, their optimal policy prescription is quantity regulation in-

stead of a profit tax. In addition, we consider different production technologies and market structures. The

source of market power in our model is the number of firms that are in oligopolistic competition, instead of

preferences via the Kimball aggregator in monopolistic competition. These different modeling choices have

implications for the policy conclusions. Because in our setup the markup enters the entrepreneur’s incen-

tive constraint, it affects the optimal policy not only through the Pigouvian channel (correcting the market

power externality), but the optimal profit tax depends also on the markup through the Mirrleesian channel

(redistribution), and the Mirrleesian channel leads to an increase of the marginal tax rate as markups in-

4The taxation is Mirrleesian in the sense that both labor income and profit taxes are allowed to be arbitrarily non-linear and
lump-sum taxes (or transfers) are enforceable.

5We have a nested CES structure in inputs of production, instead of in preferences over consumption goods.
6Agents in Kaplow (2019), Kushnir and Zubrickas (2019) and Jaravel and Olivi (2019) treat prices and profits as given. Thus,

the strategic actions of agents are not dependent on the market power in these papers. Moreover, the share of profits received by
the agents in their models are either zero or determined by exogenous functions of individual ability or labor income. Thus, if
profit tax is introduced in their models, it acts as lump-sum taxes. While these papers study optimal labor income taxes, they do
not analyze optimal profit taxes. Specifically, Kaplow (2019) and Jaravel and Olivi (2019) abstract the problem from profit tax and
Kushnir and Zubrickas (2019) considers an exogenous profit tax.
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crease. This is at the heart of the role that Mirrleesian taxes play as opposing forces of Pigouvian taxes. By

considering different modeling choices and the resulting differences in findings and policy prescriptions,

our paper and Boar and Midrigan (2021) offer complementary insights into the problem of taxation in the

presence of market power.

Our paper is also related to the literature on optimal taxation with endogenous prices or wages (e.g., see

Stiglitz (1982); Naito (1999) and Naito (2004); Saez (2004); Scheuer (2014); Sachs, Tsyvinski, and Werquin

(2020); Cui, Gong, and Li (2021)). This literature emphasizes the general equilibrium effect of taxes on

prices of factors, which brings an indirect redistribution between agents providing different factors. While

most of these papers treat agents as price takers, agents in our model have price-setting power. We show

that the indirect redistribution effect of taxes now is dependent on the market structure. In particular, a

reduction in the profit tax encourages entrepreneurial effort and output, thereby decreasing the price of the

competitor’s product which leads to redistribution indirectly. Interestingly, when there is no competitor

in the submarket, i.e., under monopolistic competition, this strategic effect of taxation disappears, which,

together with the entrepreneur’s price-setting, eliminates the tax policy’s first-order effect on prices.

The paper also contributes to the literature on optimal taxation and technology (e.g., see Ales, Kurnaz,

and Sleet (2015); Ales and Sleet (2016); Scheuer and Werning (2017); Ales, Bellofatto, and Wang (2017)).

Diamond and Mirrlees (1971) and Scheuer and Werning (2017) observed that the parametric optimal tax

rate is not dependent on the curvature of technology. Our results extend their findings to an economy

with market power: the curvature of firm-level production technology (with respect to labor inputs) does

not affect the optimal labor income and profit tax rates. On the other hand, we find a novel route for the

technology to affect the optimal tax rate. Since the markup is dependent on the elasticity of substitution

between products and the productivity of entrepreneurs are determined by the technology as well as the

markup, markup affects optimal taxation together with the technology.

Lastly, our paper belongs to the literature on optimal taxation with externality (e.g., Sandmo (1975); Ng

(1980); Bovenberg and van der Ploeg (1994); Kopczuk (2003); Farhi and Gabaix (2020)). As suggested by

Kopczuk (2003), one of the main results of this literature is the “additivity property”:7 optimal taxation in

the presence externalities can be expressed additively by some Pigouvian taxes. However, we find that the

additivity property generally does not hold in an economy with heterogeneous agents and market power.

Not only the Pigouvian tax – the tax used to restore efficiency – changes with the externality induced by

market power, but also the redistributive tax does. This is because social welfare weights change with

the extent of market power. And even if the social welfare weights are exogenous, the redistributive tax

changes because of output is endogenous changes with market power.

2 The Model Setup

Environment. The economy is static. Production of the final consumption good needs the composite

input of an intermediate good produced by an entrepreneur (idea), and the effort of workers.

7The additivity property can be treated as a special case of the “principle of targeting“proposed by Dixit (1985).
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Agents and Preferences. Agents belong to one of two occupations o ∈ {e, w}, entrepreneur or worker.

The occupational types are fixed. Within each occupation, agents are heterogeneous in their productivity.

Denote the type of an agent by θo ∈ Θo ⊂ R+, distributed according to the cumulative density function

Fo(θo) with density fo(θo). The measure of entrepreneurs is N; the measure of workers is normalized to

one. There is a representative firm producing final goods in a competitive market and making zero profits.

Both worker and entrepreneur have a preference over consumption and effort. We denote by Uo(θo) =

co − φo(lo) the utility function of an agent of type o (worker or entrepreneur), where lo refers to work-

ing hours.8 The cost of effort functions −φo(·) are twice continuously differentiable and strictly concave.

To make the analysis transparent and in the simulations, we will consider utility function with constant

elasticity of labor supply, i.e., εo ≡ φ′o(lo)
loφ′′o (lo)

is constant. We denote by Vo(θo) the optimal utility of agent θo.

Market Structure. The labor and final good markets are perfectly competitive. Instead, the intermediate

goods market exhibits market power. There are two levels of production: intermediate inputs and final

goods. The market structure in the intermediate goods market is a variation of the structure in Atkeson

and Burstein (2008), but with product differentiation in production rather than in preferences.

At the intermediate goods level, identical entrepreneurs of type θe compete producing differentiated

inputs, that consist of a small number of close substitutes (say Coke and Pepsi, or Toyota and Ford), and a

continuum of less substitutable input goods (say soft drinks and cars). The most granular market is small,

where a finite number of I entrepreneurs (with I ≥ 1) of equal type θe produce a differentiated input good

under imperfect competition. In this market, an entrepreneur i = 1, ..., I Cournot competes against I − 1

competitors. The number of competitors I determines the degree of market power. The output produced

within this market is differentiated with a common elasticity of substitution η(θe) across all I goods. There

are a continuum of these imperfectly competitive markets, denoted by j with measure J(θe) =
N f (θe)

I . Each

of those markets j has I goods (with elasticity of substitution within the market η (θe) and produced by

identical entrepreneurs θe), and the elasticity of substitution σ across markets (between soft drinks and

cars) is smaller than within markets (between Coke and Pepsi): σ < η(θe). In order to rule out abnormal

markup, throughout this paper we assume that σ is greater than 1.9

At the final goods level, the inputs produced in markets i, j by heterogeneous entrepreneurs θe is ag-

gregated to a final output good with the same elasticity of substitution σ. Thus, one individual firm i in a

market j that produces an intermediate with entrepreneurs θe is fully identified by the triple (i, j, θe).

Technology. Heterogeneous agents supply efficiency units of labor: an agent of type θo who works lo

hours supplies xo(θo)lo efficiency units of labor.10 Because in general, the equilibrium labor inputs depends

8Our utility function is separable between consumption and labor, and we eliminate income effects. The assumption is crucial
for the tractability of the optimal tax problem, and it is not crucial to the economic implication of this paper. The empirical
literature using detailed micro data sets has typically not rejected a zero income elasticity on labor supply or found very small
effects (e.g., see Gruber and Saez (2002); Kleven and Schultz (2014)). Readers who are interested in how the complementarity and
substitution between consumption and labor can refer to Atkinson and Stiglitz (1976), Mirrlees (1976) and Christiansen (1984).

9See equation 22 below for details.
10The assumption of efficiency units drastically simplifies the solution of the model but it is not innocuous. The efficiency units

assumption rules out sorting because firms are indifferent across worker types as long as they provide exactly the same efficiency
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on the firm (i, j, θe), we denote the efficiency units of labor demand and entrepreneurial effort by Lw,ij (θe)

and xe(θe)le,ij(θe) respectively, where le,ij(θe) is the working hours of entrepreneur.

The firm level production technology of the intermediate good is as in Lucas (1978), with one hetero-

geneous entrepreneur hiring an endogenous number of workers to maximize profits. Because the produc-

tivity of entrepreneurs and workers is expressed in efficiency units, the technology takes efficiency units as

inputs instead of bodies. The quantity of output of a θe entrepreneur is therefore:

Qij(θe) = xe(θe)le,ij (θe) · Lw,ij (θe)
ξ , (1)

where Lw,ij (θe) is the quantity of labor in efficiency units the entrepreneur hires to work in the firm and

0 < ξ ≤ 1.11 Note that because of the efficiency units assumption, output Qij(θe) does not depend on the

worker types θw that are employed. There is no capital in our model. Therefore we assume that, as in Lucas

(1978) or Prescott and Visscher (1980), the entrepreneur is the residual claimant of output, i.e., they “own”

the technology θe. Therefore, the entrepreneur hires labor to maximize profits.

Given the technology, we can aggregate the firm-level output first within the market with I close substi-

tutes (with elasticity η (θe)) to Qj (θe), then across all J (θe) markets (with elasticity σ) to Q (θe), and finally

from aggregated inputs (with the same elasticity σ)12 to output goods Q:

Qj(θe) =

[
I−

1
η(θe)

I

∑
i=1

Qij (θe)
η(θe)−1

η(θe)

] η(θe)
η(θe)−1

(2)

Q(θe) =

[
J(θe)

− 1
σ

∫
j
Qj (θe)

σ−1
σ dj

] σ
σ−1

(3)

Q = A
[∫

θe

χ̃(θe)Q (θe)
σ−1

σ dθe

] σ
σ−1

(4)

where χ̃(θe) is a distribution parameter. As illustrated by Ales et al. (2015), variations in χ(θe) captures

the technological or preference-based variations in demand for different skills and intermediate goods. To

abstract from the love-of-variety effect related to I, we normalize the firm-level and market-level output by

I−
1

η(θe) and J(θe)−
1
σ . Then we introduce χ(θe) =χ̃(θe) f θe

(θe)−
1
σ as a modified distribution parameter (note

that J(θe) =
N f (θe)

I ).

units. See amongst others Sattinger (1975a), Sattinger (1993) and Eeckhout and Kircher (2018) how the assumption of efficiency
implies an absence of sorting. To date, we know of no way how to solve the optimal taxation problem with market power in the
presence of sorting.

11The case where ξ = 1, is common in the literature that models imperfect competition through imperfect substitutes (see
e.g. Melitz (2003), Atkeson and Burstein (2008), De Loecker et al. (2019)). The linear technology considerably simplifies the
derivations, and in addition, there is no indeterminacy in the firm size because all goods are imperfect substitutes that determine
the boundaries of the firm.

12For notational simplicity and without loss, we assume the elasticity of substitution between intermediate inputs θe is the same
as the the elasticity of substitution between inputs in different markets j as there is no market power at both levels of aggregation.
The Key is that the elasticity within the small markets η (θe) where firms have market power is different from the elasticity across
markets where there is a continuum of other products and hence 0 market power.
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Prices, Wages and Market Clearing. Denote the price of intermediate goods produced by firm (i, j, θe)

by Pij(θe) and the income of a worker by y(θw) and the profits of an entrepreneur by π(θe). The profits

of the entrepreneurs are determined by the fact that the entrepreneur is the residual claimant of revenue

after paying for wages to the workers. The workers’ wages are determined in a competitive labor market,

subject to market clearing. Denote by W the competitive wage any firm pays for an efficient unit of labor.

Because of the efficiency wage assumption and competitive labor markets, there is a unique equilibrium

wage W that solves market clearing for workers, given optimal labor supply lw and optimal labor demand

Lij(θe). Obviously, labor supply increases in W and labor demand decreases in W. In the next equation we

equating aggregate labor demand (left hand side) and aggregate labor supply (right hand side) to solve for

equilibrium wages W:

∫
θe

∫
j

I

∑
i=1

Lw,ij(θe; W)djdθe =
∫

θw

xw (θw) lw(θw; W) fw(θw)dθw (5)

Note that in equilibrium lw,ij(θe) = lw(θw) for all θw because we assume labor markets are perfectly com-

petitive and all firms pay the same W for one efficiency unit. Therefore, y(θw) = Wxw (θw) lw(θw).13

Information. In the tradition of Mirrleesian taxation, we assume that types θo are not observable, while

labor income y(θw) ∈ R+ and profits of the entrepreneur π(θe) ∈ R+ are observable. This assumption is

equivalent to say that direct taxes can only depend on labor incomes and entrepreneurial profits.

We are interested in analyzing the role of wage and profit taxes in the presence of market power. To

that effect we assume that markups are unobservable and the planner does not condition the optimal tax

scheme on them. There are sound empirical reasons for this assumption. Markups are not easily obtained

because they are the ratio of prices and marginal costs. While in some settings we have price information,

the problem is obtaining information on marginal costs which are not directly observable. In the light of the

academic research that is behind the estimation of markups, it is unlikely that the government will be able

to easily generate markup estimates on which to condition taxes for all firms. It is important to stress that

our assumption of unobservable markups does not imply that if markups were observable, the planner’s

solution would be first best. The reason is that markups, like profits, are endogenous and are vary with

effort and output.14 Moreover, in practice, trade between related parties can be used to change the reported

markup (see Chari et al. (2012), where in their terminology, the markup would be a manipulable signal).

Policy, Taxation, and the Planner’s Objective. We now specify how the government intervenes in the

economy. Government uses taxation as an instrument to affect the equilibrium allocation in this economy.

Following the literature, we assume the government levies taxes to collect an exogenous amount of revenue

13Throughout this paper we assume that labor factors supplied by workers of different abilities are perfectly substituable. For
readers who are interested in imperfectly substitutable labor factors, please refer to Sachs et al. (2020) and Cui et al. (2021).

14It is true that in equilibrium, there may be a one-to-one mapping between markups and types (though the monotonicity of
the mapping is not guaranteed). But even then, if the planner bases taxes on the realized markup, then entrepreneurs will take
the tax on markups into consideration when choosing their quantity or effort. Thus the planner can not achieve the first best with
a tax on markups.
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R. Given R, the government objective is to choose tax policies to maximize the social welfare:

∑
o∈{w,e}

No

∫
θo

G (Vo(θo)) f̃o (θo) dθo, (6)

where G : R+ 7−→ R+ is a twice differentiable social welfare function. We assume that both G(·) and G′(·)
are strictly positive and G′′(·) ≤ 0. The PDF f̃θ (·) is a Pareto weights schedule, which is assumed to be

continuous (e.g., see Saez and Stantcheva (2016)).

We assume that the government levies a linear sales tax, or a linear tax on labor inputs (such as salary

tax), which is typically used in the real economy. In the Discussion section below, we consider non-linear

sales tax.

Because types are not directly observable, the planner solves for the constrained optimal allocation, or

second best. The first best allocation is unattainable given workers and entrepreneurs have private infor-

mation over their type θo. Specifically, we consider that the government can use profit and labor income

taxes Te : π 7→ R and Tw : y 7→ R to be arbitrarily non-linear in the Mirrlees tradition. These direct taxes

together with a sales tax ts ∈ R compose the tax policy system T ≡ {Te, Tw, ts} that we consider in our

benchmark model.15

Equilibrium. We formally define equilibrium below once we have solved for the equilibrium best re-

sponses of all agents. We now give an informal definition of equilibrium. Given the tax regime T , a

competitive tax equilibrium allocation and price system are such that the resulting allocation maximizes

the final good producer’s profit, maximizes the entrepreneur’s utility subject to the budget constraint and

maximizes the worker’s utility subject to the budget constraint. In addition, the price system satisfies

Cournot equilibrium, wages are set competitively, all markets clear, and the government’s budget con-

straint is satisfied, which, given other budget constraints, is equivalent to say that the social resource con-

straint is satisfied.

3 Solution

3.1 The Cournot Competitive Tax Equilibrium

Final Goods Market Solution. We start with the final goods market where we normalize the price of

final good to one. The final good producer chooses the inputs of intermediate goods to maximize its profit.

15Both the linear sales tax and linear tax on the salary pay act as tax wedges between the marginal cost and income of labor
inputs Lw,ij. Since the prediction of optimal taxation is about tax wedges while not about specific tax policies (e.g., see Chari and
Kehoe (1999); Golosov et al. (2003); Salanié (2003), pages 64-66), there is no need to introduce both of these indirect taxes. To see
this, consider equation (10) below, where if we levy an additional tax tl on the labor cost of the firm, the ratio of the marginal
income of Lw,ij to the marginal cost of Lw,ij is 1+tl

1−ts
, which means the role of τl as a tax wedge can be replaced by ts. Later in section

3.2, we will introduce the tax wedges considered in this paper.
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The demand Qij (θe) for the intermediate input solves:

Π = max
Qij(θe)

Q−
∫

θe

∫
j

[
I

∑
i=1

QD
ij (θe) Pij (θe)

]
djdθe, (7)

where Pij (θe) is the price and QD
ij (θe) is the quantity demanded from firm (i, j, θe).

Entrepreneur’s Solution. In our benchmark model, we consider the Cournot Competitive Tax Equilib-

rium in intermediate goods market j between I firms. Because there are a continuum of intermediate good

markets j and θe, there is only strategic interaction within a market j and all firms treat the output decisions

in other intermediate goods markets as given.

All firms treat others’ outputs as given. We denote by Pij
(
Qij(θe), θe

)
the inverse-demand function

faced by the entrepreneur with firm (i, j, θe), whose problem is:

Ve (θe) ≡ max
le,Lw,ij

ce − φe (le) (8)

s.t. ce = πij − Te
(
πij
)

(9)

πij = Pij
(
Qij(θe), θe

)
Qij(θe) (1− ts)−WLw,ij(θe), (10)

where Qij(θe) is the quantity supplied of the intermediate good as defined in equation (1). Denote by

le,ij (θe) , ce,ij (θe) , πij (θe), and Lw,ij (θe) the solution to the above problem.

Worker’s Solution. Type θw workers choose labor supply and consumption to maximize their utility,

given the wage rate W:

Vw (θw) ≡ max
lw

cw − φw (lw) (11)

s.t. cw = Wxw (θw) lw − Tw (Wxw (θw) lw) . (12)

We denote by cw (θw), and lw (θw) the solution to (11). Besides, we denote by yw (θw) = Wxw (θw) lw (θw)

the labor income of θw-type worker.

Market Clearing. Commodity and labor markets clearing require that for any (i, j, θe), the quantity de-

manded in the output sector QD
ij (θe) from equation (7) equals the quantity supplied QS

ij (θe) from equation

(8):

QD
ij (θe) = QS

ij (θe) (13)

and

Q =
∫

θw

cw(θw) fw(θw)dθw +
∫

θe

∫
j

[
I

∑
i=1

ce,ij (θe)

]
djdθe + R, (14)
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and ∫
θw

xw (θw) lw (θw) fw(θw)dθw =
∫

θe

∫
j

[
I

∑
i=1

Lw,ij (θe)

]
djdθe, (15)

where R is the exogenous government revenue.

Solving individuals and final good producer’s problems gives the following equilibrium conditions:

Pij (θe) =
∂Q

∂Qij (θe)
, (16)

and
W

1− ts
=

∂
[
Pij
(
Qij (θe) , θe

)
Qij (θe)

]
∂Lw,ij (θe)

, (17)

and

Wκw (θw)
[
1− T′w (Wκw (θw) lw (θw))

]
= φ′w (lw (θw)) , (18)

and
Pij (θe)

µij (θe)

∂Qij (θe)

∂le,ij (θe)
(1− ts)

[
1− T′e

(
πij (θe)

)]
= φ′e

(
le,ij (θe)

)
. (19)

When first-order conditions are both necessary and sufficient to individuals’ and final good producer’s

problems, the equilibrium allocations are determined by (13) to (19) and individuals’ budget constraints.

Equilibrium. Throughout this paper we will consider the following symmetric Cournot competitive tax

equilibrium, where we refer to the allocation set A = {Lw, lw, le, cw, ce} as a combination of consumption

schedules co : Θo 7−→ R+, labor supply schedules lo : Θo 7−→ R+ and labor demand schedule Lw : Θw →
R+ which are independent on (i, j). Prices P = {P, W} in the equilibrium is a combination of wage rate

W and price schedule P : Θe 7−→ R+ that independent on (i, j). Formally, we consider the following

symmetric Cournot tax equilibrium:

Definition 1 A Symmetric Cournot Competitive Tax Equilibrium (SCCTE) is a combination of tax system T , sym-

metric allocation A, and symmetric price system P , such that given the policy and price system, the resulting al-

location maximize the final good producer’s profit (7); maximize entrepreneurs’ utilities (8) subject to the budget

constraint (9); maximize workers’ utilities (11) subject to the budget constraint (12); the price system satisfies (17)

and (16); and labor and commodity markets are cleared, i.e., (13) to (15) are satisfied.

Note that we do not need to impose the government’s budget constraint in our definition of SCCTE,

since under the Walras’s law, given the agent’s budget constraints, and commodity market clear condition,

the government’s budget constraint must be satisfied.

We now make some common restrictions on the equilibria that we consider throughout the paper. First,

we assume that the mechanisms (tax policies) are sufficiently differentiable. Second, we assume that:

Assumption 1 In a Symmetric Cournot Competitive Tax Equilibrium:

(i) y(θw) is differentiable, strictly positive, and strictly increasing in θw;
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(ii) π (θe) is differentiable, strictly positive, and positive increasing in θe;

(iii) µij (θe)
∂ ln P(Qij(θe),θe)

∂θe
+ x′e(θe)

xe(θe)
is strictly positive.

An incentive compatible allocation under the Spence-Mirrlees condition requires labor income to be

non-decreasing in wage.16 For simplicity, we assume that y (θw) is strictly increasing in θw, which in turn

implies x′w (·) > 0. With Assumption 1, we can define Fy (y(θw)) = fw(θw) and fy (y(θw)) = F′y (y(θw))

as the CDF and PDF of labor incomes. Besides, Assumption 1 excludes cases with mass points. Similar

to the assumption on monotonicity of labor income, we assume monotonicity on π (θe). We define the

distribution function of profits as Fπ (π(θe)) = Fe(θe) with PDF fπ (π(θe)) = F′π (π(θe)).

Part three of Assumption 1 is used to guarantee that higher-skilled entrepreneur has a higher gross

utility.17 Such an assumption is needed to identify individuals of heterogeneous types when prices or

wages of factors are endogenous (e.g., see Sachs et al. (2020) and Cui et al. (2021)).

Notation. In what follows, where there is no confusion, we will drop the subscript ij. For example, in the

symmetric equilibrium the markup in each market {i, j, θe} is the same for all entrepreneurs with types θe.

Therefore, we often denote the markup µij(θe) by µ(θe) and the labor demand Lw,ij (θe) by Lw (θe).

Markups. Following the literature on market power, we define the markup as the ratio of price to marginal

cost

µij(θe) ≡
Pij (θe)

MCij(θe)
=

Pij (θe)
W

∂Qij(θe)

∂Lw,ij (θe)
(1−ts)

. (20)

The firm’s first order condition delivers a relationship, known as the Lerner Rule, between the inverse-

demand elasticity εQij(θe) ≡
∂ ln P(Qij(θe),θe)

∂ ln Qij(θe)
and markups µ(θe).18 As in Atkeson and Burstein (2008), under

the benchmark technology with nested CES preferences, the inverse-demand elasticity can be written in

weighted form:19

εQij(θe) = −
[

1
η (θe)

(
1− sij

)
+

1
σ

sij

]
≥ − 1

σ
, (21)

where sij is the sales share of firm i in market j. The markup is thus related to the demand elasticity:

µij(θe) =
1

1 + εQij(θe)
≤ σ

σ− 1
. (22)

The higher the demand elasticity (the lower the inverse demand elasticity), the higher the markup. There-

fore, the markup depends on the weighted sum of the elasticity of substitution between intermediate

16See e.g., see Salanié (2003), p. 87. When the Spence-Mirrlees condition is not satisfied, the analysis becomes much more
complicated as local incentive compatibility becomes insufficient for global incentive compatibility (see, e.g., Schottmüller (2015)).
These assumptions can be relaxed when considering free entry in the intermediate goods market, where individuals choose their
occupations.

17See (B5) in Lemma B.1 for details.
18This follows from profit maximization, in equation (17), which implies W = Pij

(
Qij (θe) , θe

)
[1 + γ (θe)]

∂Qij(θe)
∂Lw,ij(θe)

(1− ts) .
19See Appendix A.6.2 for details.
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goods, and the intensity of competition in the submarket. The lower the η(θe) and σ, the less substi-

tutable the goods are within and between markets, and the higher the markup. Most crucially, the markup

increases as the sales share sij, and hence the number of competitors I, decreases within a market. The

smaller the number of competitors I, the smaller the weight on the within market elasticity higher the

weight on 1
η(θe)

and the higher the weight on 1
σ . Firms that face little competition face little substitution and

hence markups.20

In our results under the SCCTE, we will also use the economy-wide aggregate markup defined as:

µ ≡
∫

θe
µ (θe) Lw (θe) fe (θe) dθe∫

θe
Lw (θe) fe (θe) dθe

. (24)

It is the employment weighted (by Lw(θe)) sum of the firm level markups.

The Labor Share. In our model, the firm’s labor share is simply the ratio of the firm’s total wage bill to

its revenue. In the absence of capital, the residual therefore is the income to the entrepreneur, i.e., the profit

share. Denote by νij(θe) the labor share which can be defined as

νij(θe) ≡
WLw,ij(θe)

Pij (θe) Qij (θe) (1− ts)
. (25)

While superficially this expression hints at an apparent positive relation between the sales tax rate ts (an

increase in ts increases the labor share), taxes also affect the other variables such Lw,ij, Pij and Qij, all of

which are endogenous. When we use the firm’s first order condition, we can rewrite the labor share as

νij(θe) =
ξ

µij(θe)
. (26)

Although the firm-level labor share is exogenous, the aggregate labor share is endogenous. Denote the

aggregate labor share by

ν ≡
W
∫

xw (θw) lw (θw) fw (θw) dθw

Q
. (27)

Then we summarize the results on the equilibrium labor share in the following Proposition 1:

Proposition 1 (i) The firm labor share νij(θe) is independent of taxes and is decreasing in the markup µij(θe);

(ii) In the Laissez-faire economy,21 the aggregate labor share ν is decreasing in market power (decrease in I) when

1 + εw

εw
− ξ (εe + 1) > 0, (28)

20We can derive the equivalent inverse demand elasticity under Bertrand competition which is different from the residual
demand elasticity under Cournot:

εQij (θe) = −
[(

1− sij

)
η (θe) + sijσ

]−1
. (23)

In fact, all our results go through under Bertrand and are similar to Cournot once we adjust equation (21).
21See the following section 3.1 for details about the Laissez-faire economy.
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and
1

εe + 1
+

1
σ− 1

> ξ. (29)

Proof. See Appendix A.3.

Part one of Proposition 1 already hints at the fact that taxes cannot “solve” the effect that market power

has on both efficiency and inequality. To achieve the first best, which we define below, the planner needs

to tackle the problem at its root cause, either through antitrust enforcement or regulation of firms and

industries. The objective of this paper is to show that optimal taxation can nonetheless restore second-best

efficiency and most importantly, we show that the optimal policy varies with market power.

This result also confirms a well-known theoretical property, namely that firms with higher individual

markups have a lower labor share. This result is an immediate consequence of the firm’s first-order con-

dition. Higher markups mean that the firm sells and produces fewer units, even though sales are higher.

Therefore, the firm lowers needs fewer labor inputs, and the labor share falls. De Loecker et al. (2020) and

Autor et al. (2020) show that negative relation at the firm level between markups and the labor share is

borne out in the data.

Part two of Proposition 1 is strong in the sense that it is not dependent on the assumptions on η(θe).

The two restrictions on the parameters are weak and are generally satisfied for the range of parameter

values used in the quantitative literature.22 In addition, the parameter restrictions have intuitive economic

interpretations. Condition (28) guarantees that the equilibrium wage is increasing in TFP (e.g., see (A22)),

while condition (29) ensures the labor demand is decreasing in W (e.g., see (A12)).

The Laissez-faire Economy. We further analyze the properties of the model economy that we just laid

out without government intervention: the government revenue R is zero and no taxes are levied. We ask

what the effect is of market power on the equilibrium allocation. This serves as a benchmark to understand

the workings of the model before we introduce the role of optimal taxation. In the Laissez-faire economy,

we consider the comparative statics effect of a rise in the markup. We consider an increase in markups

economy-wide by changing the number of competing firms I in all markets simultaneously. This compar-

ative statics effect economy-wide affects individual firm outcomes, as well as aggregates. We summarize

the results in the following proposition.

Proposition 2 Let conditions (28) and (29) hold and let η(θe) be constant. When the number of firms I decreases in

all markets, the markup µij(θe) increases in all markets. Then:

(i) At the individual level, the labor share νij(θe), the quantity Qij(θe), sales Pij(θe)Qij(θe), entrepreneurial ef-

fort le,ij(θe), worker effort lw(θw), income yw(θw) and utility Vw(θw) decrease; The price Pij(θe) remains

unchanged; The effects on entrepreneur utility Vij,e(θe) and entrepreneur profits πij(θe) are ambiguous;

22The literature typically uses parameters in the range η ∈ [3, 10], σ ∈ (1, 4], ξ ∈ [0.7, 1]εw, εe ∈ [0.1, 0.5]. See amongst others
Atkeson and Burstein (2008), Hendel and Nevo (2006), Broda and Weinstein (2006), Lucas (1978), Chetty et al. (2011).
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(ii) At the aggregate level, the wage rate W, the aggregate labor share ν, output Q, aggregate worker consumption

Cw and aggregate worker utility Vw decline. The effects on aggregate entrepreneur profits Π and aggregate

entrepreneur utility Ve are ambiguous.

Individual and aggregate entrepreneur profits increase if and only if

µij(θe) ≤
ξ

εe
1+εe

+ εw
εw+1 ξ

, (30)

and individual and aggregate entrepreneur utility increase if and only if

µij(θe) ≤
ξ + εe

εe+1
εe

εe+1 +
εw

1+εw
ξ

. (31)

Proof. See Appendix A.4.

Overall, the effect of the rise of market power is negative for workers and, under the conditions, pos-

itive for entrepreneurs. Market power lowers the income and the utility of workers and it increases the

profits and the utility of entrepreneurs. In addition, the rise of market power has a negative impact on the

aggregate economy: the wage rate declines, and aggregate output, sales, and labor share decline.

The restrictions for increasing profits (30) and increasing utility (31) are satisfied for typical values used

in quantitative studies. For example, with εe = εw = 0.25 and ξ = 0.85, the condition for increasing profits

is satisfied for all firms with markup µij(θe) < 2.3 and the second is condition for increasing utility is

satisfied for µij(θe) < 2.8.

3.2 The Planner’s Problem

The planner’s problem can be treated in a number of different ways. In the heuristic argument that follows,

the planner adopts feasible direct truthful mechanisms {cw(θw), y(θw)} for workers and similarly adopts

{ce(θe), π(θe)} for entrepreneurs to implement allocation rules that maximize social welfare under other

information and resource constraints. Specifically, the planner asks each of the entrepreneurs and workers

to report their types and assigns a reward contingent based on the announced type. A worker who reports

θ′w obtains y (θ′w) in labor income, which results in cw(θ′w) of after-tax income. Similarly, an entrepreneur

who reports θ′e obtains π(θ′e) in profit and ce(θ′e) in after-tax profit.

Incentive Compatibility of the Worker. Workers are atomistic and take the offered mechanisms as given.

They report their types to maximize their gross utility Vw(θw):

Vw (θw) ≡ max
θ′w∈Θw

cw
(
θ′w
)
− φw

(
y(θ′w)

xw (θw)W

)
. (32)
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Denote Vw(θ′w|θw) = cw (θ′w) − φw

(
y(θ′w)

xw(θw)W

)
as the utility of θw worker who reports θ′w. Using envelope

theory, we obtain

V ′w(θw) = lw(θw)φ
′
w (lw(θw))

x′w (θw)

xw (θw)
. (33)

Under our monotonicity assumption on y (θw), (33) is not only a necessary but also a sufficient condition

to the worker’s problem (see Mirrlees (1971)).

Incentive Compatibility of the Entrepreneur. Entrepreneurs report a type θ′e to maximize their gross

utility

Ve (θe) = max
θ′∈Θe

Ve(θ
′
e|θe), (34)

where Ve(θ′e|θe) = ce (θ′e)− φe (le (θ′e|θe)) is the utility of the θe entrepreneur who reports θ′e and le (θ′e|θe) is

the entrepreneurial labor supply needed to finish the task, which is given by

le
(
θ′e|θe

)
= min

Lw,le
le

s.t. P
(
Qij, θe

)
Qij (1− ts)−WLw = π

(
θ′e
)

.

The first-order necessary incentive condition requires the following: ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe = 0. In Appendix B.1,

we prove that

Lemma 1 Under Assumption 1, we have the following results:

(i) The first-order necessary incentive condition ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe = 0 is not only a necessary but also a sufficient

condition to the entrepreneur’s problem;

(ii) Given Ve(θ) = ce (θe)− φe (le (θe)) and the inverse demand function in the SCCTE, the first-order necessary

incentive condition is equivalent to

V ′e (θe) = φ′e (le (θe)) le (θe)

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
x′e (θe)

xe (θe)

]
, (35)

where
∂ ln P

(
Qij (θe) , θe

)
∂θe

=
χ′ (θe)

χ (θe)
+ εQ−ij(θe)

Q′ij (θe)

Qij (θe)
, (36)

and εQ−ij(θe) =
[

1
η(θe)
− 1

σ

]
I−1

I < 0 is the cross inverse-demand elasticity, θe ∈ Θe.23

Proof. See Appendix B.1.

Lemma 1 is useful because it demonstrates that the incentive- compatible constraint of the entrepreneur

boils down to condition (35), which has an intuitive economic explanation. Because of its critical impor-

tance, we name x′w(θw)
xw(θw)

= d ln xw(θw)
dθw

as θw-type worker’s productivity premium, which is the percentage

23The cross inverse-demand elasticity is the elasticity of an entrepreneur’s inverse demand function with respect to her com-
petitor’s output. See Appendix A.6.2 for details about this elasticity.
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change of the individual productivity with respect to skill θw. The worker’s productivity premium together

with the skill distribution determines the distribution of wage. More importantly, it determines V ′w(θw)

given labor supply lw (θw). Analogously, we call µ (θe)
∂ ln P(Qij(θe),θe)

∂θe
+ x′e(θe)

xe(θe)
the θe-type entrepreneur’s

productivity since it determines V ′e (θe) given entrepreneurial effort le (θe). Our incentive constraints thus

highlight the interaction between technology and market power in determining productivity premiums

and differences in gross utility. Now we explain the incentive condition in two different situations: (1)

When I = 1, the entrepreneurial productivity is µ (θe)
χ′(θe)
χ(θe)

+ x′e(θe)
xe(θe)

. It is increasing in market power µ (θe)

when χ′(θe)
χ(θe)

> 0. This is because, other things being equal, the disutility induced by obtaining one extra

unit of profit is lower for entrepreneurs with higher production efficiency or higher pricing powers.

A key feature of the incentive condition is that the price component is multiplied by the markup, which

suggests that xe (θe) and χ (θe) affect the gross utility in different ways. More specifically, given inputs,

raising χ (θe) increases the price directly. With the increase of price, the effort needed to finish a task

becomes lower, and since the price goes up with the reduction of effort, there is a multiplier effect from

raising χ (θe), which is in terms of markup. On the other hand, increasing xe (θe) raises output and lowers

the price. Therefore, in order to obtain the same growth in profit, xe (θe) should be increased at a higher

rate compared to χ (θe).

(2) When I > 1, the sign of
∂ ln P(Qij(θe),θe)

∂θe
is ambiguous. In particular, if χ′(θe)

χ(θe)
= 0,

∂ ln P(Qij(θe),θe)
∂θe

is generally negative, because Qij (θe) is generally increasing in the skill of the entrepreneur. One may

now think that when χ′(θe)
χ(θe)

= 0, rising markup loosens the incentive constraint instead of tightening it.

This is not necessarily true, because εQ−ij(θe)
Q′ij(θe)

Qij(θe)
also changes when the markup increases. In Appendix

A.2, we show that in the Laissez-faire economy with constant markup and satisfies condition (29), θe-type

entrepreneur’s productivity increases in markup when d ln X(θe)
dθe

> 0, where

X(θe) ≡ xe(θe)
σ−1

σ χ(θe)

is a composite productivity of the θe-type entrepreneurs. Moreover, we show that the entrepreneurial pro-

ductivity and d ln Ve(θe)
dθe

grows with the introduce of markup inequality, even if χ′(θe)
χ(θe)

= 0.

One interesting feature of the incentive condition is that it depends on
∂ ln P(Qij(θe),θe)

∂θe
instead of d ln P(θe)

dθe
.

This is because entrepreneurs can change the price by changing their own output Qij. As a result, a tax

reform has no first-order effect on the relative price through its effect on a firm’s own output Qij. There are

two interesting findings with the incentive condition:

(1) Taking I = 1 as an illustration, one can see that the indirect redistribution route present in a com-

petitive economy is closed in our economy since
∂ ln P(Qij(θe),θe)

∂θe
is exogenous. Intuitively, when tax policy is

changed, entrepreneurs react to the tax reform by changing prices until any marginal change in price has

no first-order effect on entrepreneurial gross utilities. Thus, tax has no first-order effect on the gross utility

of entrepreneurs through its effect on the prices of products.

(2) When I > 1, the indirect redistribution effect emerges. It is dependent on the strategic interaction

between competitors in a submarket, which is shown by the last term on the right side of equation (36).
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Specifically, an increase in the competitors’ outputs decreases the price of goods in the submarket, which

is caught in the incentive constraint by the cross inverse-demand elasticity εQ−ij(θe). Without strategic

interaction between competitors in a submarket, the inverse demand of the firm is not dependent on the

outputs of other firms in the same submarket (because εQ−ij(θe) = 0), and the indirect redistribution route

is closed.

Tax Wedges. In the second-best allocation, marginal distortions in agents’ choices can be described with

wedges. Entrepreneurs have three possible choices (consumption, working hours, and hiring workers),

while workers have two possible choices (consumption and working hours). In total, there are three tax

wedges: (i) the tax wedge τs (θe) between the marginal cost and marginal income of labor inputs Lw (θe),

(ii) the tax wedge τw(θw) between the marginal disutility and income of the labor supply lw, and (iii) the tax

wedge τe(θe) between the marginal disutility and income of the entrepreneur’s labor supply le. Specifically,

we shall define the three types of tax wedges as

τs (θe) = 1− W
v (θe)

, τw (θw) = 1− φ′w (lw (θw))

Wxw (θw)
, and τe (θe) = 1− φ′e (le (θe)) / [1− τs (θe)]

∂[P(Qij(θe),θe)Qij(θe)]
∂le(θe)

, (37)

where

v (θe) ≡
∂
[
P
(
Qij (θe) , θe

)
Qij (θe)

]
∂Lw (θe)

(38)

and
∂[P(Qij(θe),θe)Qij(θe)]

∂le(θe)
are the marginal revenue of labor inputs and entrepreneurial effort, respectively.

Due to the policy constraint, the government cannot levy firm-specific or non-linear sales tax, which

means τs (θe) is restricted to be uniform. Then these tax wedges can be implemented by the tax system

previously introduced (i.e., T ). From the FOCs of the workers, the entrepreneurs, and the final good

producer, we obtain τs = ts, τw (θw) = 1− [1− T′w (y (θw))] and τe (θe) = 1− [1− T′e (π (θe))].24 Observe

that the sales tax enforces a uniform tax on both labor factors. Thus, the effective tax rates on labor factors

are captured by 1− [1− T′w (y (θw))] (1− ts) and 1− [1− T′e (π (θe))] (1− ts).

As is known from the optimal tax literature, generally there are multiple tax systems that can implement

the second-best allocation (e.g., see Chari and Kehoe (1999); Golosov et al. (2003)). In our model, as long as

τs (θe) is restricted to be uniform and income taxes are free, there is no need to enforce a sales tax. Hence,

in the following analysis, we will assume ts = 0, where τw (θw) and τe (θe) are the effective tax rates on

labor factors. In the model extension, we loosen the policy constraint and provide the optimal tax wedges

including τs (θe).

Implementability. In this subsection we show how the second-best allocation can be implemented by the

tax system studied in this paper. In addition, we demonstrate that ts is redundant.

24The FOCs imply ts = 1− W
P(θe )
µ(θe )

∂Qij (θe )

∂Lw (θe )

, T′w (y (θw)) = 1− φ′w(lw(θw))
Wxw(θw)

and T′e (π (θe)) = 1− φ′e(le(θe))
P(θe )
µ(θe )

∂Qij (θe )

∂le (θe )
(1−ts)

.
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Lemma 2 Suppose that the FOCs of the agents and the final good producer are both necessary and sufficient. Suppose

ts = 0. A symmetric Cournot competitive tax equilibrium {A, T ,P} with ts = 0 satisfies the following conditions

jointly:

(i) Incentive conditions (33) and (35) are satisfied;

(ii) Prices and wage satisfy (16) and (17);

(iii) Market clearing conditions (13) to (15) are satisfied.

Conversely, suppose ts = 0 and the allocation A and price P satisfy the properties in parts 1 to 3 above. Then

there exists a tax system T with ts = 0 such that the allocation A can be implemented at the prices P by the tax

system T .

Proof. See Appendix B.2.

Lemma 2 establishes that if sales tax is restricted to be uniform, we can focus on a tax system where sales

tax is zero. Under this tax system, τo (θo) captures the effective tax rate on the labor factor.25 Intuitively, the

effective tax rates on the labor factors can be manipulated by the labor and profit tax rates. Thus, the sales

tax is redundant when labor income and profit taxes are free.26

Reformulating the Planner’s Problem. We can treat the planner’s problem in a number of different

ways. In the heuristic argument that follows, the planner adopts feasible direct, truthful mechanisms

{π(θe), ce(θe)}θe∈Θe
and {y(θw), cw(θw)}θw∈Θw

to implement an allocation that maximizes the social welfare

function under the feasibility conditions and information constraints.

This turns out to be easier if we take as the planner’s control variables Vo (θo) instead of co(θo). To this

end, the planner now chooses the variables {Vw(θw), lw (θw) , Ve(θe), Lw(θe), le (θe) , W}θo∈Θo
to maximize

the social welfare (6), subject to the incentive conditions (33) and (35); the feasibility conditions (13) to

(15); and condition (17) with ts = 0. Condition (17) can be treated as a policy constraint in the planner’s

problem. Since the planner cannot levy a firm-specific sales tax or differential tax on the labor inputs of

firms, the marginal revenue of labor inputs must be equal for firms. Since W is controllable, the uniform-

sales-tax policy constraint can be rewritten as d ln v(θe)
dθe

= 0. Accordingly, we can save a variable (i.e., W) in

the planner’s problem.

In this reformulated planner’s problem, we can now introduce some shorthand notation for the social

welfare weights and the elasticities that appear in the solution to the planner’s problem. We denote go(θo)

25In our model, we allow profit and labor income tax to be different, which governs the wage rate, so that there is no need to
use the sales tax to manipulate W to achieve indirect redistribution between the entrepreneur and worker. However, the sales tax
is needed if income taxes are restricted to be uniform (e.g., see Scheuer (2014)).

26To see this, suppose that {Tw (y) , Te (π) , ts} is the optimal tax that implements the second-best allocation and that there
exists another optimal tax system

{
T#

w (y) , T#
e (π) , t#

s
}

that can implement the second-best allocation with t#
s = 0. Then the tax

system can be constructed such that 1− T#
o (x) = [1− T′o (x)] (1− ts) , x ∈ R+.
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and ḡo(θo) as the marginal and weighted social welfare weights, respectively:

go(θo) ≡
G′(Vo(θo)) f̃o (θo)

λ fo (θo)
and ḡo(θo) ≡

∫ θo
θo

g(x) f̃o (x) dx
1− Fo(θo)

,

where λ =
∫

θo
G′(Vo(θo)) f̃o(θo)dθo is the shadow price (Lagrange multiplier) of government revenue.

We denote εv
Lw
(θe), εv

le (θ) and εQ−ij(θe) as the own elasticities of wage with respect to labor inputs and

effort, and cross inverse-demand elasticity, respectively. These elasticities under our technology are given

by:27

εv
Lw
(θe) = ξ

σ− 1
σ
− 1, εv

le (θe) =
σ− 1

σ
and εQ−ij(θe) = −

1
µ (θe)

+
σ− 1

σ
. (39)

We define a linear elasticity of profit with respect to net-tax income rate as:

επ
1−τe

(θe) ≡
1

1+εe
εe

[µ (θe)− ξ]− 1
. (40)

This elasticity captures θe firm’s reaction to the net-tax income rate when it is taking others’ actions as given

and a linear profit tax is in place. Notably, the elasticity is decreasing in the markup. See Appendix A.6 for

details about these elasticities.

4 Main Results

We now analyze the properties of the economy that we have laid out under optimal taxation by the planner

to solve for the second-best economy. We start by enunciating the most general result on the tax formula in

Theorem 1. Because of the complexity of the expression of the main result, we then show a series of results

that pertain to special cases: (i) homogeneous agents, (ii) monopolistic competition (I = 1), (iii) oligopolis-

tic competition with uniform markups (µ (θe) = µ), and (iv) the general case of oligopolistic competition

with heterogeneous markups. Each of these special cases gradually reveal the different components of the

optimal tax wedges.

Theorem 1 For any θw ∈ Θw and θe ∈ Θe, the optimal tax wedges satisfy the following:

1
1− τw (θw)

=
1 + [1− ḡw(θw)]

1+εw
εw

1−Fw(θw)
fw (θw)

x′w(θw)
xw(θw)

µ
, (41)

1
1− τe (θe)

=

1+[1−ḡe(θe)]H(θe)
1

επ
1−τe

(θe)

µ(θe)
+

σ
σ−1
σ

σ−1−ξ IRE (θe)

1− ξ
σ

σ−1−ξ RE (θe)
. (42)

The Reallocation Effect RE (θe), Indirect Redistribution Effect IRE (θe), and Virtual Hazard Ratio of Profit H(θe)

27An alternative expression for εQ−ij (θe) is εQ−ij (θe) =
[

1
η(θe)

− 1
σ

]
I−1

I .
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are defined as

RE (θe) ≡
µ

µ (θe)
− 1, (43)

IRE (θe) ≡ εQ−ij(θe) {[1− ge(θe)]− [1− ḡe(θe)] H(θe)} , (44)

H(θe) ≡
1− Fe(θe)

fe (θe)


σ−1

σ
1+εe

εe
d

dθe

[
ln X(θe)

µ(θe)

]
1+εe

εe

(
σ

σ−1 − ξ
)
− 1

+
d ln [µ (θe)− ξ]

dθe

 . (45)

Last, the average markup satisfies

µ =
∫

θe

µ (θe)ω (θe) dθe (46)

where µ (θe) =
1

1−
[

1
η(θe)

I−1
I + 1

σ
1
I

] , and

ω (θe) =

[
[1− τe (θe)]

(
X(θe)
µ(θe)

) εe+1
εe

σ
σ−1
] 1

1+εe
εe ( σ

σ−1−ξ)−1
fe (θe)

∫
θe

[
[1− τe (θe)]

(
X(θe)
µ(θe)

) εe+1
εe

σ
σ−1
] 1

1+εe
εe ( σ

σ−1−ξ)−1
fe (θe) dθe

. (47)

Proof. See Appendix C.2.

The formulas (41), (42), and the average markup (46) determine the optimal tax rates. The term RE (θe)

captures the reallocation effect of taxes. When the markup of firm θe is higher than the modified average

markup µ, the RE (θe) of tax decreases τe (θe), and it increases τe (θe) otherwise. This is because the labor

demand of a high-markup firm is inefficiently lower than that of a low-markup firm. Thus, interventions

in the product market should reallocate labor factors to the high-markup firms.

The term IRE (θe) captures the indirect redistribution effect of the profit tax through prices. IRE (θe)

contains two redistribution effects caused by a percentage change in Q−ij(θe): a local redistribution effect

captured by εQ−ij(θe) [1− ge(θe)] and a cumulative redistribution effect εQ−ij(θe) [1− ḡe(θe)]
1−Fπ(π(θe))

fπ(π(θe))π(θe)
.

Intuitively, decreasing τe (θe) increases the output of firms in θe submarket (i.e., Q−ij(θe)), which in turn

decreases the price of products in θe submarket (P (θe)). Meanwhile, a decrease of price P (θe) reduces the

after-tax income of θe entrepreneur, which promotes equality and social welfare if and only if ge(θe) < 1.

This decrease in price triggers an incentive-compatible redistribution between the government and all the

entrepreneurs with skills higher than θe. Since ḡe(θe) ≤ 1, this cumulative indirect redistribution effect

induced by the decrease of price always requires a lower τe (θe).

Following Saez (2001)’s definition of virtual density of income, we define the virtual hazard ratio of profit

H(θe). H(θe) is exogenous and equals 1−Fπ(π(θe))
π(θe) fπ(π(θe))

when τ′e (θe) = 0.28 Thus, it equals the empirical profit

hazard ratio if the profit tax in the real economy is linear. Under condition (29), we have 1+εe
εe

(
σ

σ−1 − ξ
)
−

1 > 0 and thus H(θe) increases in d ln X(θe)
dθe

. Last, ξ
σ

σ−1−ξ = −ξ
εv

le (θe)

εv
Lw (θe)

> 0 and
σ

σ−1
σ

σ−1−ξ = 1− ξ
εv

le (θe)

εv
Lw (θe)

> 0, where

ξ is the elasticity of firm-level output with respect to the labor inputs.

28See the proof of Theorem 1. In particular, equation (C42).
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Theorem 1 fully describes the optimal tax wedges, but the tax rate for the entrepreneurs τe(θe) cannot be

written explicitly because the weights ω(θe) in equation (47) and hence the average markup µ is a function

of the tax rate τe(θe). In what follows, we can write the tax rate explicitly under a particular parameter

configuration. Than we can solve explicitly for the weights ω(θe) and therefore we can write the average

markup µ explicitly in the following Corollary:

Corollary 1 When 1+εe
εe

(
σ

σ−1 − ξ
)
= 2, we have

µ =

(
σ

σ−1 + ξ
) ∫

θe
γ(θe)µ (θe) dθe

2ξ
−
√

∆
2ξ

,

where

γ(θe) =
γ(θe)∫

θe
γ(θe)dθe

,

γ(θe) =

(
X(θe)
µ(θe)

) εe+1
εe

σ
σ−1 fe (θe)

1 + [1− ḡe(θe)] H(θe)
[

1
εe

µ (θe)− 1+εe
εe

ξ + 1
σ−1

]
+
[
µ (θe)− σ

σ−1

]
[1− ge(θe)]

,

∆ =

(
σ

σ− 1
− ξ

)2 [∫
θe

γ(θe)µ (θe) dθe

]2

− 4
σ

σ− 1
ξ

[∫
θe

µ (θe)
2 γ(θe)dθe −

(∫
θe

γ(θe)µ (θe) dθe

)2
]

.

Proof. See Appendix C.3.

Corollary 1 provides a special case where we can provide explicit optimal tax formulas with given

social welfare weights. Note that 1+εe
εe

(
σ

σ−1 − ξ
)
= 2 is consistent with condition (29). Corollary 1 thus

suggests that under some reasonable parameter values, there is a unique and well-defined solution to the

equation system (42) and (46).

(i) Homogeneous Agents

To make the results more transparent, we first analyze the optimal taxation formulas when workers and

entrepreneurs are homogeneous. As is in Akcigit et al. (2016), without asymmetric information, the gov-

ernment can achieve the first best and correct the externality by Pigovian taxes.

Proposition 3 When worker and entrepreneur types are homogeneous, the optimal tax wedges satisfy the following:

τw = τe = 1− µ. (48)

Proof. When worker and entrepreneur types are homogeneous, ḡo = go = 1, and the optimal tax formulas

(41) and (42) can be simplified to (48).

A few aspects of this finding deserve mention. First, note that since all entrepreneurs are identical,

the firm-level markup µ(θe) is equal to the average weighted markup µ, and the optimal tax wedge is
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independent of the firm type. Second, this result holds irrespective of the number of competitors I in each

market and includes cases of monopolistic competition and oligopolistic competition. Third, not only the

profit tax rate but also the labor income tax rate are negative and decrease in the markup.

The interpretation of the optimal tax formula is straightforward. When agents are identical, the incen-

tive constraints are muted because they are trivially satisfied. As a result, the optimal tax wedge exactly

offsets the distortion due to the markup. This may seem surprising, but it affects both workers and en-

trepreneurs equally because the planner can only impact output by affecting their incentives to produce

and provide effort.29

The tax rate is negative in order to incentivize workers and entrepreneurs to supply labor in order to

offset the distortion from market power. Because there is no heterogeneity within groups (workers and

entrepreneurs), the only role the planner bestows on the tax wedges is to correct the externality or markup

distortion. As a result, we can think of the tax wedge here playing the role of a Pigouvian tax. In fact, when

the output market is competitive and markups are equal to one, the marginal tax rate is zero, and there is

no role for efficiency-enhancing taxes. In that case, the economy is Pareto efficient.

Even though the tax wedges are the same, that does not mean workers and entrepreneurs will face

the same tax burdens. non-linear tax system facilitates a transfer between entrepreneurs and workers.

The tax burden of each occupation thus depends on the social welfare function. Under a utilitarian social

welfare function, the burden is indeterminate, whereas it is determinate under a concave social welfare

function. Here market power and the level of the markup µ play a key role in determining the tax burden.

As we have seen from Proposition 2, a rise in market power accompanied by an increase in µ leads to a

redistribution of income from workers to firms (mainly through a lower wage rate W) as well as a decrease

in welfare. Therefore, with non-linear welfare weights, the tax burden will change as markups change.

(ii) Monopolistic Competition and Uniform Markups

We now turn to an economy without strategic interaction within each market j, that is, with a monopolistic

producer in each market where I = 1. In addition, we assume that markups are uniform; that is, the

residual demand elasticity is constant, η(θe) = η. Entrepreneurs are heterogeneous in productivity θe,

but their markets all face the same demand. Under monopolistic competition and uniform markups, the

solution to the planner’s problem yields the following optimal taxation policy:

Proposition 4 When I = 1, optimal labor income tax satisfies (41) and optimal profit tax can be simplifies as:

1
1− τe (θe)

=
1 + [1− ḡe(θe)]

1+εe
εe

1−Fe(θe)
fe(θe)

[
µ

χ′(θe)
χ(θe)

+ x′e(θe)
xe(θe)

]
µ

, ∀θe ∈ Θe. (49)

Proof. When I = 1, µ (θe) = µ and εQ−ij(θe) = 0. Then (C35) can be reduced to (49). Alternatively, we can

derive the above equation by reducing (42).

29The planner would also be able to achieve this outcome with a sales tax wedge τs, but as we have shown above, the outcome
of a sales tax can always be mimicked with appropriate income taxes. Because at the margin the contribution of effort from the
workers and entrepreneurs to the output is the same, the income tax wedges τw and τe are identical.
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Comparing the optimal tax rates under heterogeneous and homogeneous agents establishes that the

heterogeneity between agents calls for a higher tax wedge. The numerators on the right sides of the optimal

tax formulas immediately stem from the incentive constraint for both the worker and the entrepreneur.

The numerators are larger than one, and thus, the marginal tax is lower than in the case of homogeneous

agents and identical markups. When the government has a preference for equality, it will raise the tax rate

to generate tax revenue from high-income individuals and transfer the revenue to low-income individuals.

However, the government should also take tax’s distortion on effort into consideration. In the end the

trade-off between deadweight loss and the redistribution of benefits is captured by the numerator.

For both workers and entrepreneurs, the extent to which the marginal tax rate is higher depends on

the Pareto weight ḡo(θo), the elasticity of labor supply εo, and the hazard ratio of the skills 1−Fo(θo)
fo(θo)

x′o(θo)
xo(θo)

,

which captures the trade-off between efficiency and equality. As the product of productivity (xo (θo)) and

the population ( fo(θo)
x′o(θo)

) of θo-type agents increase, the tax wedge decreases in order to reduce distortion. As

the population of agents with skills higher than xo (θo) (i.e., 1− Fo(θo)) increases, the tax wedge increases

to enhance the redistribution.

While there is a lot of similarity in the expression of the tax wedge for the workers and the entrepreneurs,

market power induces one marked difference between the two. The tax wedge between the worker and the

entrepreneur differs through the term µ
∂ ln P(Q(θe),θe)

∂θe
, which is equal to µ

χ′(θe)
χ(θe)

when I = 1. This term is only

present for entrepreneurs, not workers. It captures the two key forces. First, it depends on the technology

and how different sectors differ in productivity χ(θe), and second, it is influenced by how big the markup

is. This difference in the numerator on the right side of (49) goes to the heart of one of the main findings

of this paper. It highlights the interaction between market power and technology and how this interaction

affects optimal taxation.

The two components (χ (θe) and xe (θe)) that play a crucial role in pinning down the optimal tax for-

mulas are both determinants of the productivity of a firm. In Appendix A.5, we show that the equilibrium

labor supply and sales income only depend on the composite productivity term X(θe). However, χ (θe)

and xe (θe) are not perfect substitutes in the sense that the equilibrium prices depend on the specific values

of χ (θe) and xe (θe). This comes from the fact that χ (θe) directly enters the demand function and thus

interacts with the markup while xe (θe) does not.

(iii) Oligopolistic Competition with Uniform Markups

We now consider cases with I > 1 but still restrict the markup to be uniform; that is, η (θe) is constant. This

setting introduces interfirm strategic action but still abstracts from the effect of markup inequality between

firms. A planner who intends to take advantage of the general equilibrium price effect and ease the incen-

tive constraint would like to decrease the relative price of goods produced by high-skilled entrepreneurs.

However, whether the planner should encourage the factor inputs of high-skilled entrepreneurs remains

ambiguous because there are two opposing forces. On the one hand, raising the labor inputs of competitors

in the same submarket reduces the relative price of goods in the submarket; on the other hand, raising the

labor inputs increases entrepreneurial effort’s marginal productivity.

24



Proposition 5 Let η (θ) = η be constant then we have the following result (i). In addition, let the social welfare

weights be exogenous, then we have the following result (ii) and (iii):

(i) For any θe ∈ Θe, the optimal profit tax wedge satisfies:

1
1− τe (θe)

=
1 + [1− ḡe(θe)] H(θe)

1
επ

1−τe (θe)

µ
+

σ
σ−1

σ
σ−1 − ξ

IRE (θe) ; (50)

(ii) For any θe ∈ Θe, τe (θe) increases in µ iff

ge(θe) <
ξ (σ− 1)

σ

{
1 + [1− ḡe(θe)] H(θe)

[
εe + 1

εe

(
σ

σ− 1
− ξ

)
− 1
]}

; (51)

1−τw(θw)
1−τe(θe)

increases in µ iff

ge(θe) < 1 + [1− ḡe(θe)] H(θe)

[
εe + 1

εe

(
σ

σ− 1
− ξ

)
− 1
]

; (52)

(iii) When ge(θe) = ḡe(θe) and H(θe) > 0, τe (θe) increases in µ if ge(θe) ≤ ξ(σ−1)
σ ; 1−τw(θw)

1−τe(θe)
increases in µ if

ge(θe) < 1.

Proof. See Appendix C.4.

Part one of Proposition 5 provides an explicit optimal profit tax formula when all firms have identical

markups and the social welfare weights are exogenous. Compared to the tax formula under monopolistic

competition (49), there is now an additional term, IRE (θe)
σ

σ−1
σ

σ−1−ξ , that captures the indirect redistribution

effect of profit tax.

The term
σ

σ−1
σ

σ−1−ξ = 1− ξ
εv

le (θe)

εv
Lw (θe)

is the percentage change of Qij (θe) with one percentage increase of le(θe).

To see this, note that one percentage increase of le(θe) induces one percentage increase of Qij (θe) directly.

In addition, the labor demand Lw(θe) will increase by−ξ
εv

le (θe)

εv
Lw (θe)

= ξ
σ

σ−1−ξ percent as a result of a one percent

increase in le(θe). This change of Lw(θe) ensures that the marginal productivity of Lw is uniform between

firms. This crowding in effect of le(θe) on Lw(θe) induces a ξ
σ

σ−1−ξ percentage increase in Qij (θe). In sum,

under general equilibrium, a one percentage increase of le(θe) triggers a 1 + ξ
σ

σ−1−ξ > 1 percentage increase

of Qij (θe). On the other hand, as explained before, IRE (θe) is a marginal redistribution effect of Qij (θe).

Thus,
σ

σ−1
σ

σ−1−ξ IRE (θe) is the indirect redistribution effect induced by one percentage increase of le(θe).

Our optimal tax formula suggests that the optimal profit tax rate increases in the IRE(θe). Notice that
σ

σ−1
σ

σ−1−ξ εQ−ij(θe) ≤ 0;30 ge(θe) and ḡe(θe) approach zero, and thus IRE(θe) approaches εQ−ij(θe)H(θe), when

the planner has a preference for equality and θe is large enough. Introducing the indirect redistribution

effect generally requires a lower profit tax rate for high-skilled entrepreneurs if H(θe) < 1.31 Intuitively,

30Equation (22) implies µ ≤ σ
σ−1 .

31The hazard ratios of top income in the United States is around 0.5 in 1992 and 1993 (Saez (2001)) and around 2
3 in 2005

(Diamond and Saez (2011)). In 2007, the hazard ratio of top labor, capital and total incomes in the United States are around 0.62,
0.76 and 0.71, respectively (e.g., see Saez and Stantcheva (2018)).
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decreasing the profit tax rate on high-skilled entrepreneurs can enhance the output of intermediate goods in

the submarket, which in turn reduces the price of intermediate goods and improves the predistribution.32

While IRE requires a lower profit tax rate on high-skilled entrepreneurs, it also suggests that the op-

timal top profit tax rate may increase with the rise of markups, because the indirect redistribution effect

become weaker with the rise of market power (i.e.,
∣∣∣εQ−ij(θe)

∣∣∣ become smaller with the rise of µ (θe)). Part

two of Proposition 5 provides a general criteria for when should the profit tax rate increases with the

markup. It suggests that (a) given H(θe), when ge(θe) (the social welfare weight for θe-type entrepreneur)

is low enough as relative to ḡe(θe) (the average social welfare weight for entrepreneurs with types higher

than θe), τe (θe) should increase with µ; and (b) when εe+1
εe

(
σ

σ−1 − ξ
)
> 1 (which is true under condition

(29)), the larger the H(θe), the larger the possibility that τe (θe) increase with µ. This is because H(θe), as an

approximation of hazard ratio of profit,33 is a statistic reflecting the trade-off between redistribution and

efficiency. The larger the H(θe), the larger the redistribution benefit of marginal tax as relative to the effi-

ciency cost of marginal tax.34 To see this, consider the following experiments: when H(θe) → 0, condition

(51) is equivalent to ge(θe) <
ξ(σ−1)

σ ; when H(θe) → 1 and ge(θe) = ḡe(θe), condition (51) is equivalent to

ge(θe) <
εe+1

εe ξ

1+ εe+1
εe ξ

. In both cases, τe (θe) increases in µ when ge(θe) is low enough or equivalently θe is large

enough (when the planner has a preference for equality).

Part two of Proposition 5 also gives a condition under which 1−τw(θw)
1−τe(θe)

increases in µ. It can be seen that

such a condition is weaker than the condition for τe (θe) to be increasing in µ. Moreover, since the right

sides of condition (51) and (52) are positive there generally exists θe satisfies the condition. Interestingly,

under condition (29), condition (51) as well as condition (52) are satisfied only if ge(θe) < 1.

Part three of Proposition 5 suggests that under reasonable H(θe), the top profit tax rate will increase

with the rise of market power when the social welfare weights ge(θe) for the top is constant (such that for

the top types ge(θe) = ḡe(θe)) and low enough. Moreover, we find that 1−τw(θw)
1−τe(θe)

increases in µ if ge(θe) < 1,

where 1 is the shadow price of government revenue.

Note that in the above analysis, we just assume that the social welfare weights are exogenous. Doing

so, we get abstract from the influence of market power on changing social welfare weights and thus on

the optimal taxation. This allows us to highlight the incentive elements. Our analysis of the Laissez-faire

economy suggests that the gross utility of entrepreneurs generally increases with market power. If this is

also the case under optimal taxation the marginal social welfare weights for entrepreneurs will decrease

which in turn increases the optimal profit tax rates.35 This finding has been emphasized by previous studies

32In Theorem 2, we illustrate that the indirect redistribution effect can be split into the local and cumulative indirect redistribu-
tion effects. Actually, the local effect generally dominates the cumulative effect (e.g., see the numerical analysis in Cui et al. (2021)).
Then one can see that the sign of IRE (θe) is mainly determined by εQ−ij (θe) [1− ge (θe)], which is positive when ge (θe) > 1.

33H(θe) equals the hazard ratio of profit at π (θe) when dτe(θe)
dθe

= 0.
34To see this, consider a marginal rise of τe (θe) (see Saez (2001) for a more rigorous analysis). The larger the numerator of

the hazard ratio ( 1−Fπ(π(θe))
π(θe) fπ(θe)

), the larger the population of entrepreneurs with profit larger than π (θe), and thus the more the
additional tax collected from individuals with profit larger than π (θe). On the other hand, due the suppression on labor supply
of θe entrepreneurs, the tax revenue is reduced, and the larger the π (θe) fπ (θe), the more the reduced tax revenue.

35Note that since the government can make a lump-sum transfer between the entrepreneurs and workers, the gross utility of
an entrepreneur increases only if the benefit from rising market power exceeds the rise of taxes including the lump-sum part. One
possible scenario is that the gross utility of some enterprises increase, while others decrease, because the lump-sum transfer from
the entrepreneurs to the workers probably increases with the market power.
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(see e.g., Kushnir and Zubrickas (2019)). A reason for segregating the effect of endogeneity of the social

welfare weight is that a generalized social welfare weight may depend on factors other than the gross

utility and those factors may also change with the market structure (see Saez and Stantcheva (2016) for

generalized social welfare weight). For example, a generalized social welfare weight may depend on the

revenue contribution of an entrepreneur relative to that of a worker (see Scheuer (2014)). More generally,

it depends on the gap between the social and private value of being an entrepreneur. By segregating the

endogeneity of social welfare weight, the criterion becomes more applicable. Besides, we demonstrate that

the optimal profit tax rate may increase with the markup even if the social welfare weights are exogenous.

Market Structure, Indirect Redistribution, and Optimal Tax. One interesting finding of this paper is

that the market structure is crucial to the indirect redistribution effect (or supply-side effect) of taxation.

Many previous studies on endogenous prices and optimal taxation, taxes have a first-order effect on rela-

tive prices and thus can be used to ease the incentive constraints and improve income distribution (e.g., see

Naito (1999); Stiglitz (2018); Sachs et al. (2020); Cui et al. (2021)). Specifically, when the marginal productiv-

ity of the labor factor (wage) decreases with labor inputs, the planner can compress the wage distribution

by reducing the marginal tax rate of high-skilled agents and enhance the high-skilled agents’ labor supply.

Saez (2004) argued that tax’s indirect redistribution effect collapse when agents make endogenous human

capital investments. Under that case, the agents determine their wages, and the tax’s effect on prices be-

comes second order. As a response to Saez (2004), Naito (2004) defended by showing that when agents

have heterogeneous comparative advantages in accumulating different human capital, relative wages are

still endogenous to taxes. Our finding contributes to the debate by demonstrating that the indirect redis-

tribution of tax depends on the market structure. If the agents monopolize the market of the goods they

provide, the indirect redistribution of taxes does fail. As long as the agent can not determine the price

alone, taxes play a role in indirect redistribution. In the end, the strength of indirect redistribution depends

on the agent’s market power on the factor or goods provided.

(iv) Oligopolistic Competition with Heterogeneous Markups

Finally, we get to the full-blown tax formulas with both oligopolistic competition and heterogeneous

markups from Theorem 1. Now the planner faces firms with heterogeneous markups and hence can use

taxes to implement an efficiency-enhancing reallocation of factors.

For the workers, the tax formula (41) remains unchanged compared to the case with uniform markups.

The introduction of heterogenous markups introduces the last change in the tax formula for the entrepreneurs

(42), which is captured by the denominator on the right side of (42):

1− RE (θe)
ξ

σ
σ−1 − ξ

= 1 +
1

µ (θe)

ξ [µ (θe)− µ]
σ

σ−1 − ξ
.
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Notice that

µ (θe)W = P (θe)
∂Qij (θe)

∂Lw (θe)
and µW =

∫
θe

P
(
θ′e
) ∂Qij (θ

′
e)

∂Lw (θ′e)

Lw (θ′e) fe (θ′e)∫
Lw (θe) fe (θe) dθe

dθ′e.

One can see that [µ (θe)− µ]W is the increase in the total output of transferring Lw(θ′e)∫
Lw(θe) fe(θe)dθe

units of labor

factors from a type θ′e firm to a type θe firm. As a result, the labor input in each type of firm is decreased by
1∫

Lw(θe) fe(θe)dθe
percent, and the marginal productivity of the labor inputs of different firms are still uniform.

On the other hand, ξ
σ

σ−1−ξ = −ξ
εv

le (θe)

εv
Lw (θe)

is the percentage increase of labor demand Lw(θe) that ensures the

marginal productivity of labor inputs are uniform between firms when le(θe) is increased by one percent.

In conclusion, ξ[µ(θe)−µ]
σ

σ−1−ξ captures the aggregate output that increases with a one percent increase of le(θe)

and the resulting interfirm reallocation of workers’ labor inputs. Our optimal tax formula thus suggests

that the reallocation effect requires a lower (higher) tax rate on firms with a markup higher (lower) than

the average markup because the labor inputs to these firms are relatively inefficiently low.36 The above

findings provide a novel explanation (i.e., markup inequality) for why profit tax in the real economy is less

progressive than labor income tax (e.g., see Scheuer (2014)).

Technology, Monopoly Power, and Optimal Tax. It is of our interest to see how technology affects the

optimal tax rate. As an illustration, we present the top tax rate. Top tax rate is crucial because top earners

account for the vast majority of income. Moreover, current changes in technology are biased toward top-

income individuals; thus, it’s important to see how technologies affect the top tax rates. Specifically, we

will focus on the impact of µ (·) and ξ, the concavity of firm-level production technology with respect to

the labor inputs, e.g., see equation (1). Note that µ (·) is determined by the market structure as well as the

technology. Also note that ξ is a mirror of the superstar effect considered by Scheuer and Werning (2017).

We can establish Corollary 2:

Corollary 2 Assume that there exists θ∗e ∈
(
θe, θe

)
such that µ (θe) = µ̂ and 1−Fe(θe)

fe(θe)
d ln X(θe)

dθe
are constant in(

θ∗e , θe
)
.37 Then the virtual hazard ratio H (θe) = Ĥ is also constant in θ∗e ∈

(
θe, θe

)
. Assume that there exists θ?e ∈(

θe, θe
)

such that for any θe ≥ θ?e , ge(θe) = ĝe < 1 is constant. We call entrepreneurs with a skill θe ≥ max {θ∗e , θ?e }
the top entrepreneurs, and profit tax rates faced by the top entrepreneurs (i.e., τe (θe) for θe ≥ max {θ∗e , θ?e }) the top

profit tax rates. Then:

36Since there is no use to set a marginal tax rate larger than one, the right side of (42) is positive. Supposing τe (θe) < 1, the
numerator of the right side of (42) is positive if the denominator 1− ξ

σ
σ−1−ξ RE (θe) > 0, which is true because µ < σ

σ−1 .

37When the firm-level markup is constant, H(θe) = 1−Fe(θe)
fe(θe)

d ln X(θe)
dθe

1+εe
εe

1+εe
εe (1−ξ σ−1

σ )− σ−1
σ

(e.g., see (45)). Therefore, given that

µ (θe) = µ̂ is constant on
(
θ∗e , θe

)
, 1−Fe(θe)

fe(θe)
d ln X(θe)

dθe
is constant on

(
θ∗e , θe

)
if and only if the virtual profit hazard ratio H(θe) is

constant on
(
θ∗e , θe

)
. This finding suggests that the assumption that there exists θ∗e ∈

(
θe, θe

)
such that 1−Fe(θe)

fe(θe)
d ln X(θe)

dθe
is constant

on
(
θ∗e , θe

)
is not a strong assumption if the hazard ratio of profit is constant in the real economy.
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(i) The top profit tax rate is constant. Denote it as τ̂e. We have:

1
1− τ̂e

=

1
µ̂

[
1 + (1− ĝe) Ĥ 1

ε̂π
1−τe

]
+

1− σ
σ−1

1
µ̂

σ
σ−1−ξ (1− ĝe)

(
1− Ĥ

)
1− ξ

σ
σ−1−ξ

µ−µ̂
µ̂

, (53)

where ε̂π
1−τe
≡ 1

1+εe
εe (µ̂−ξ)−1

is the elasticity of profit and hazard ratio for the top entrepreneurs;

(ii) Supposing ĝe is exogenous, one sufficient condition for τ̂e to be increasing with the decrease of I is:

ĝe < 1− 1
2 · Ĥ

. (54)

Proof. See Appendix C.5.

Note that if the top profit tax in the real economy is linear, Ĥ equals the empirical top profit hazard

ratio.38 Corollary 2 is powerful in the sense that it suggests that under reasonable assumptions, one can

use original observable statistics including Ĥ to derive the optimal top profit tax rate and judge whether

to increase the top profit tax. It is worth noting that Ĥ won’t change with the tax policies. However, Ĥ

changes with the markup. As a special case, when I = 1 and markup is uniform, for any θe ≥ max {θ∗e , θ?e }:

1
1− τ̂e

=
1 + (1− ĝe) Ĥ 1

ε̂π
1−τe

µ
. (55)

Formula (55) generalizes the familiar top tax rate result of Saez (2001) (in which ξ = 0 and µ = 1) to a

CES production function under a monopoly competitive economy. Comparing the above result to Corol-

lary 5 of Sachs et al. (2020), we see how market structure and technology affect the top tax rate given the

hazard ratio of profit. While this statistics-based optimal tax formulas facilitate tax design (they are robust

tax formulas in the sense of their independence from technology), one should note that profit distribution

is endogenous to the markup, and when analyzing how profit tax changes with the technology and mar-

ket structure, we see that both the effects of markups on the elasticity of profit and on profit distribution

should be taken into consideration.

Combining Corollary 2 and Proposition 4 delivers interesting insights in the light of the findings by

Scheuer and Werning (2017). When we look into the elasticity of profit and hazard ratio, one can see that

an increase in ξ (a superstar effect) changes the elasticity of profit (40) as well as the hazard ratio. Moreover,

when I = 1 and markup is uniform, these two effects will cancel each other out such that the relative net-

tax income rate is unchanged with ξ. However, this is not true under general cases, where ξ affects the top

tax rate through the indirect redistribution effect and reallocation effect. Rising ξ enlarges the influence of

reallocation effect (because ξ
σ

σ−1−ξ increases with ξ) while it effect on indirect redistribution effect is more

ambiguous.

Proposition 4 has demonstrated how optimal profit tax changes with market power is dependent on the

38See the proof of Theorem 1. In particular, equation (C42).
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technology. In addition, Proposition 5 provides useful criteria which help to judge the change of optimal

profit tax. There we demonstrate that without markup inequality, the optimal profit tax rate for the top

entrepreneurs generally increases with the rising markup. Comparing to (50) in Proposition 5, (53) suggests

how may introducing markup inequality affects optimal profit taxation. A key question here is, considering

the reallocation effect, should the government increase the top profit tax rate with the rise of market power?

Condition (53) suggests that whether the optimal top profit tax rate increases crucially depends on the value

of Ĥ. Specifically, if ĝe → 0, condition (54) is equivalent to Ĥ > 1
2 . (54) is a sufficient but not necessary

condition for τ̂e to be increasing with the marginal in I.39 At this stage, it is important to remind that the

hazard ratios of top income in the United States is around 0.5 in 1992 and 1993 (Saez (2001)) and around 2
3

in 2005 (Diamond and Saez (2011)). In 2007, the hazard ratio of top labor, capital and total incomes in the

United States are around 0.62, 0.76 and 0.71, respectively (e.g., see Saez and Stantcheva (2018)).

In conclusion, our optimal tax formulas deliver three stark findings regarding the profit tax: (i) while

optimal profit tax rate may decrease with the rise of markup, it generally increases relative to the labor

income tax rate; (ii) while the optimal profit tax rate in an economy with market power may be lower

than that in a competitive economy, it may at the same time increase with the rise of markup; (iii) whether

the optimal profit tax rate increases with the market power depend heavily on the relative value of social

welfare weight to the virtual hazard ratio. We believe these are novel insights in the optimal taxation

literature in the presence of market power.

5 Discussion and Robustness

We consider three alternative specifications of our benchmark model and show that our main findings are

still robust in these settings.40

5.1 Non-linear Sales Taxes

In our benchmark model, we consider an environment with uniform linear sales tax, which restricts τs (θe)

to be constant. In this section we remove this policy constraint and allow for non-linear sales tax as con-

sidered by Ales et al. (2017). To do this, we allow the planner to contract with entrepreneurs on sales

income S(θe) ≡ P (θe) Qij (θe) in addition to π(θe). An entrepreneur reporting θ′e should obtain π(θ′e) in

profit, S(θ′e) in sales income, and receive ce(θ′e) in after-tax profit. Thus, a θe-type entrepreneur reporting

θ′e should choose Lw and le to satisfy the following two promise-keeping constraints:

P
(
Qij, θe

)
Qij = S

(
θ′e
)

and P
(
Qij, θe

)
Qij −WLw = π

(
θ′e
)

.

The two promise-keeping constraints determine the combination of Lw and le that are needed to com-

39In Appendix C.3, we also provide a looser sufficient condition: ĝe < 1− 1[
ξ(1−µ σ−1

σ ) 1+εe
εe

+1+
σ

σ−1 −ξµ σ−1
σ

σ
σ−1 −ξ

]
Ĥ

, where the term in

the bracket of the right side of the above inequality is not less than 2, because µ ≤ σ
σ−1 .

40To facilitate the analysis, in this section we assume that the relevant monotonicity hypothesis of the incentive problem are
always tenable and we can rely on the first-order approach.
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plete the tasks of sales income and profit. Denote Lw (θ′e|θe) and le (θ′e|θe) as the labor input and effort

needed to complete the tasks, respectively. Denote Qij (xe (θe) le, Lw) as the firm-level production function.

Combining these two constraints we immediately have

Lw
(
θ′e|θe

)
=

S (θ′e)− π (θ′e)

W
,

and le (θ′e|θe) satisfies

P
(

Qij

(
xe (θe) le

(
θ′e|θe

)
,

S (θ′e)− π (θ′e)

W

)
, θe

)
Qij

(
xe (θe) le

(
θ′e|θe

)
,

S (θ′e)− π (θ′e)

W

)
= S

(
θ′e
)

.

Two things worth noting here. First, by enforcing tasks of sales income and profit, the planner can

directly control the amount of labor inputs. That is to say, Lw (θ′e|θe) is independent of θe. Second, notice

that
∂[P(Qij,θe)Qij]

∂Qij
= P

(
Qij, θe

) [
1 + εQij(θe)

]
and εQij(θe) > −1. As long as Qij strictly increases in le (θ′e|θe)

with P
(
Qij (0, ·) , θe

)
Qij (0, ·) = 0, there exists a unique solution le (θ′e|θe) for any S (θ′e) ≥ 0.

Therefore, under out setup, we can reformulate the entrepreneur’s problem as:

Ve (θe) ≡ max
θ′e

ce
(
θ′e
)
− φe

(
le
(
θ′e|θe

))
. (56)

Solving the above problem, as in the benchmark model, we have

∂le (θ′e|θe)

∂θe
= −

∂P(Qij,θe)
∂θe

Qij + P
(
Qij, θe

) [
1 + εQij(θe)

]
∂Qij

∂xe(θe)
x′e (θe)

P
(
Qij, θe

) [
1 + εQij(θe)

]
∂Qij

∂le(θ′e|θe)

(57)

and

V ′e (θe) =
φ′e (le (θe)) Qij (θe)

∂Qij(θe)

∂le(θe)

[
∂ ln P

(
Qij (θe) , θe

)
∂θe

1
1 + εQij(θe)

+
∂ ln Qij (θe)

∂xe (θe)
x′e (θe)

]
(58)

which is equivalent to the benchmark incentive-compatible constraint (35), because in the benchmark

model µ (θ) = 1
1+εQij (θe)

, Qij(θe)
∂Qij(θe)

∂le(θe)

= le (θe) and ∂ ln Qij(θe)

∂xe(θe)
x′e (θe) =

x′e(θe)
xe(θe)

.

The worker’s problem remains the same as before. Therefore, all incentive-compatible allocations sat-

isfying (33), (35) and the resource constraints are feasible. The planner’s problem is similar to the one in

the benchmark model, except that the policy constraint d ln v(θe)
dθe

= 0 is now relaxed.

Denote by τE
w (θw), τE

e (θe) and τE
s (θe) the tax wedges in this extension. See Appendix D.2 for additional

explicit expressions for the tax wedges. Analogous to Theorem 1, Theorem 2 provides the most general

result on the optimal tax formula in this extension.
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Theorem 2 The optimal tax wedges satisfy the following:

τE
w (θw)

1− τE
w (θw)

=
1− µ̃ + [1− ḡw(θw)]

1−Fw(θw)
fw(θw)

x′w(θw)
xw(θw)

1+εw
εw

µ̃
, (59)

τE
e (θe)

1− τE
e (θe)

=
1− µ̃ + [1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
µ̃

, (60)

τE
s (θe)

1− τE
s (θe)

=

R̃E(θe)︷ ︸︸ ︷[
µ̃

µ (θe)
− 1
]
+
[
1− τE

e (θe)
]

ĨRE(θe)︷ ︸︸ ︷
εQ−ij(θe)

 [1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]
fe(θe)

×
[

1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

] , (61)

where

µ̃ ≡

∫
θe

µ(θe)
1−τE

s (θe)
Lw (θe) fe (θe) dθe∫

θe
Lw (θe) fe (θe) dθe

(62)

is a modified average markup.

Proof. See Appendix D.1.

In line with our benchmark model, µ̃ is reduced to µ when the sales tax is zero. R̃E (θe) and ĨRE (θe)

are analogous to RE (θe) and IRE (θe) defined in Theorem 1. In particular, R̃E (θe) and RE (θe) ( ĨRE (θe)

and IRE (θe)) are equivalent to each other under linear taxes.

Comparing Theorems 1 and 2, we see that allowing for a non-linear sales tax can indeed improve

welfare. However, the first best still cannot be achieved. Since an entrepreneur controls both efforts and

labor inputs, contracting on both sales income and profit cannot fully reveal the type. In the benchmark

model, labor income and profit taxes mimic the role of a non-linear sales tax. By assuming away non-linear

sales tax, our benchmark model offers a clean way to investigate the effects of the profit tax, which is the

effective tax rate on factors of production, as well as to conduct numerical analysis.

5.2 Conditioning Taxes on Markups

In our setup so far, the planner can not condition the tax on markup. We believe there are sound practical

and empirical reasons for this assumption because markups are hard to measure. Markups are the ratio

of price to marginal cost. Quality data on output prices are rare to come by, but it exists for some mar-

kets. What is particularly challenging is obtaining measures of marginal costs. There are different ways to

robustly calculate marginal costs – most notably through demand estimation (see for example Berry et al.

(1995)) or through cost minimization (see for example De Loecker and Warzynski (2012) and De Loecker

et al. (2020)) – but each method requires a theoretical and statistical model. It is plausible to assume that a

taxation agency will not have the time and resources to do this estimation.

Nonetheless, we now derive the solution even if the planner has the ability to obtain these markup

estimates. We show that in our model setup of production functions, the optimal solution where taxes
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condition on markups as well as profits is equivalent to the solution in Section 5.1 with non-linear sales

tax schedules.41 This equivalence leads us to conclude that the first-best can not be achieved when taxes

condition on markups.

Formally, as in the non-linear sales tax case, we do not artificially impose policy constraints, so as to

focus on the information problem itself. A Planner who wants to regulate firms based on their market

power can levy a profit tax and punish the firms based on their markups (a tax on markups for example).

In particular, it can design the following mechanism: an entrepreneur who reports θ′e should set the firm-

level markup at µ (θ′e) and earn π (θ′e) units of profit. Then the entrepreneur will receive ce (θ′e) units

of consumption. Supposing there is a unique solution to the promise-keeping constraints, the bundle

Lw (θ′e|θe) and le (θ′e|θe) satisfies:

P
(
Qij, θe

) ∂Qij
∂Lw

W
= µ

(
θ′e
)

and P
(
Qij, θe

)
Qij −WLw = π

(
θ′e
)

. (63)

The entrepreneur’s problem can again be formulated as in equation (56). Thus, the incentive condition

of entrepreneur is the same as that in Section 5.1, if and only if (57) holds here too. A sufficient condition

for (57) is that Lw (θ′e|θe) is independent of θe, which is true under our benchmark model. To see this,

combine the promise-keeping constraints to derive Lw (θ′e|θe) = π(θ′e)
W[µ(θ′e)/ξ−1] , where we substitute ∂Qij

∂Lw
1

Qij

by ξ
Lw

. Now that the incentive condition remains the same, we know from the solution to the non-linear

sales tax problem that the first best is not achievable. The main insight of this robustness exercise is that

we highlight an important new friction in the optimal taxation analysis: market power, even if observable,

With more general firm-level technology however – for example when there is sorting and a worker’s

labor is not supplied in efficiency units –, Lw (θ′e|θe) may depend on θe. Then,

∂le (θ′e|θe)

∂θe
= −

∂P(Qij,θe)
∂θe

Qij + P
(
Qij, θe

) [
1 + εQij(θe)

] [
∂Qij

∂xe(θe)
x′e (θe) +

∂Qij
∂Lw(θ′e|θe)

∂Lw(θ′e|θe)
∂θe

]
−W ∂Lw(θ′e|θe)

∂θe

P
(
Qij, θe

) [
1 + εQij(θe)

]
∂Qij

∂le(θ′e|θe)

,

and (57) no longer holds, unless P
(
Qij, θe

) [
1 + εQij(θe)

]
∂Qij

∂Lw(θ′e|θe)
= W. Since the latter equation does not

generally hold everywhere, the incentive condition of entrepreneur is different from that in subsection

5.1. The optimal markup tax as well as all other taxes therefore depend on the details of the production

technology.

5.3 Capital Investment

We do not explicitly model capital in our benchmark model. However, the the problem can be modeled

parallel with capital in place of entrepreneurial effort. The most relevant assumption is that part of the cost

(or benefit) from factors cannot be deducted before the profit tax (either because the cost is unobservable

or legally excluded from the deductible costs).

41In general, for different production technologies, this equivalence result may not hold.
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Formally, consider an economy where the entrepreneur chooses labor inputs Lw and capital investment

K, instead of effort, to maximize the utility:

max
K,Lw

P
(
Qij (K, Lw) , θe

)
Qij (K, Lw)−WLw − rK− φK (K, θe)− Te (π)

Qij (K, Lw) is a firm-level production function of capital and labor inputs, and r is the market price of

capital,42 and φK (K, θe) is the unobservable cost of investment, which may be dependent on the type of

entrepreneur.

In the real economy, although the market price of capital (i.e., r) can be observed, the total opportunity

costs of investments generally cannot be observed. The unobservable part of cost is captured by φK (K, θe),

which may include the cost of raising and managing funds.43 An alternative explanation for φK (K, θe)

is the preference for asset (wealth). Under this case, φK (K, θe) can be negative, which means investment

directly generates positive utility. The common ground of the above situations is that the elasticity of

investment may be finite, which is the key point of Saez and Stantcheva (2018). In the above cases, π =

P
(
Qij (K, Lw) , θe

)
Qij (K, Lw)−WLw − rK.

In the real economy, not all costs of investment are deductible before the profit tax. For example, the in-

terest of debt can is deductible before tax, but the equity investment is not. Although equity investments oc-

cupy the case flow of shareholders and thus also generate costs. Under this case, even if φK (K, θe) = 0, there

are capital costs that cannot be deducted before the tax. Moreover, π = P
(
Qij (K, Lw) , θe

)
Qij (K, Lw) −

WLw. It is worth noting that in all the cases above, our main results will still hold.

6 Numerical Analysis

Our general results depend on the social preferences for redistribution. To see the overall impact of market

power on optimal taxation, we numerically analyze an economy with concave social welfare functions

with G (V) = V1−k

1−k . The parameter k governs the concavity of the social welfare function and, therefore,

the desire for redistribution by the planner. We provide the optimal tax rates for k = 1 (as is in Sachs,

Tsyvinski, and Werquin (2020)). Our objective is to measure the variation in the equilibrium allocation and

the optimal tax policy as market power, measured by the number of competitors I within each market. The

fewer competitors I, the more market power firms have.

We maintain the following assumptions for the numerical analysis as follow. We treat θe and θw as the

42The model can easily be extended to be dynamic, where the introduction of K and r will be more intuitive (e.g., see Cui
et al. (2021)). Alternatively, one can consider a small open economy, where r is exogenous, or one can introduce a technology
for the production of capital, which will also fix r. In the latter case, we can assume that the final goods can be used as either
consumption goods or investments and that the conversion rate between consumption and investment is one. Then r = 1, and
the social resource constraint is transformed to be

Q− Ne

∫
θe

K(θe) fe(θe)dθe − ∑
o∈{e,w}

No

∫
θo

co(θe) fo(θe)dθe − R ≥ 0,

where K (θe) is the investment of θe firms.
43Under this illustration, φK (K, θe) can still be treated as the utility cost of entrepreneurial effort, where the entrepreneurs use

their knowledge to manage the factor inputs (more generally, one can take φK (K, Lw, θe)).
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quantiles of π (θe) and y (θw), which means fo = 1 is uniform on Θo = [0, 1]. Since the functions xo (θo)

and χ (θe) are used to govern the heterogeneity, there is no loss to assume that the distribution is uniform.

The full parameterization is detailed in Table 1.

Table 1: Parameterization

G (V) = V1−k

1−k social welfare function
k ∈ {1, 3} concavity of the social welfare function; k = 1 is benchmark
fo(θo) = 1 PDF of skills
Ne = 0.2 measure of entrepreneurs
A = 104 the TFP of final good production technology Q
ξ = 0.85 concavity of technology Qij
σ = 1.5 elasticity of substitution between submarkets
η (θe) = 10− 8θe elasticity of substitution within submarkets
xo (θo) = θo individual-level productivity
χ (θe) = θe distribution parameter
εo = 0.33 the elasticity of labor supply (Chetty (2012))

(a) Output, wage rate, social welfare (b) Average Labor Supply (c) Average Consumption

(d) Average Utility (e) Average markup and labor share (f) Variance of Utility

Figure 1: Laissez-faire economy: Effect of market Power (number of competitors I); normalize to 1 when
I = 10

Laissez-faire Economy. To benchmark our taxation results, we first summarize the properties of the com-

petitive equilibrium allocation without taxation. Figure 1 summarizes the effect of a change in market

power in all submarkets. We plot the number of competitors on the horizontal axis in a decreasing order,
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to indicate increasing market power. The number of competitors within a market varies between I = 10

(competitive) and I = 2, duopoly. Most striking is the massive decline in the wage rate W by 70% (Figure

1a). Output drops by 18% and welfare by 6%. The welfare effect is mitigated due to the decline in labor

supply by 11% (Figure 1b). Also, entrepreneurs decrease their labor supply despite the fact that they get

higher profits and higher consumption. The reason is that with the Lucas (1978) span-of-control technol-

ogy, the effort of entrepreneurs and workers are complements. Consumption (Figure 1c) and utility (Figure

1d) is increasing for entrepreneurs and decreasing for workers. This is the main inequality generating force

of markups: the division of output between profits and labor income. This is consistent with the increase

in the aggregate markup and the decrease in the average labor share (Figure 1e). Finally, inequality within

entrepreneurs is increasing while inequality within workers is decreasing (Figure 1f). The latter stems from

the labor supply response of the workers to a lower wage rate W.

In Figure 2, we report how the equilibrium outcomes vary by skill. The labor supply of all agents is

increasing in skill for most types, except at the very top of the entrepreneur’s type distribution. Finally,

markups are increasing and the labor shares are decreasing in entrepreneur type.

(a) Labor Supply (b) Utility (c) Markups and Labor Share

Figure 2: Laissez-faire economy: Variation by skill θ

Optimal Taxation. Next, we analyze how optimal taxation policy varies with market power. To set the

stage, in Table 2 we summarize the different tax measures that we use in the numerical analysis.

Figure 3 graphically represents how optimal taxation changes as market power increases. In this ex-

ercise, we set the tax revenue to be collected by the government equal to zero: R = 0. First, we find that

the lump sum taxes increase in market power for both workers and entrepreneurs (Figure 3a). Lump-sum

taxes are negative because the marginal tax rate is on average positive. Over the entire distribution, Figure

3b shows that the mean of the marginal tax rate is increasing in market power for the entrepreneurs and

decreasing for workers. The same is true for the mean of the average tax rate (Figure 3c). This tells us

that the optimal tax acts as a Pigouvian tax to correct the inefficiency (externality) due to market power:

the higher profits that the entrepreneurs earn and the lower labor income that the workers earn are due

to an inefficiency that the tax system corrects. The variable component of the average tax rate is increas-

ing for entrepreneurs and decreasing for workers (Figure 3d), while the lump-sum component is constant

for entrepreneurs and decreasing for workers (Figure 3e). In line with this, the total tax burden for the
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Table 2: Summary of Tax Measures

to Lump-sum tax (depends on occupation, not on incomes)
τo (θo) Marginal tax rate
To (y(θo)) Tax burden
ATRo (θo) =

To(y(θo))
y(θo)

Average tax rate

AVTRo (θo) =
To(y(θo))−to

y(θo)
Average variable tax rate

TTo = No
∫

θo
To (y (θo)) fθo (θo) dθo Total tax burden

MMTRo =
∫

θo
τo (θo) fθo (θo) dθo Mean marginal tax rate

MATRo =
TTo

No
∫

θo
y(θo) fθo (θo)dθo

Mean average tax rate

MAVTRo =
TTo−to∗No

No
∫

θo
y(θo) fθo (θo)dθo

Mean average variable tax rate

Mto =
to∫

θo
y(θo) fθo (θo)dθo

Mean lump-sum tax share

Note: we denote profits by π(θe) = y(θe).

entrepreneurs is increasing while it is decreasing for the workers (Figure 3f).

(a) Lump sum tax (b) Mean Marginal Tax Rate (c) Mean Average Tax Rate

(d) Mean Average Variable Tax Rate (e) Mean Lump-sum Tax Share (f) Total Tax Burden

Figure 3: Optimal Taxation: Effect of market Power (number of competitors I)

Next, in Figure 4, we report how optimal taxes vary by skill. The marginal tax rate is decreasing in

skill (except for those with very low skills), in order to provide incentives to exert effort (Figure 4a). This

is the standard Mirrleesian incentive property. To provide incentives to the top entrepreneurs, a sharp

decline until negative in the marginal rate is needed. Because the incomes are large, the total tax burden is

mostly increasing, but it decreases at the top entrepreneurs (Figure 4b). The average variable tax rate and

37



(a) Marginal Tax Rate (b) Tax Burden

(c) Average Variable Tax Rate (d) Average Tax Rate

Figure 4: Optimal Taxation: Variation by skill θ

the average tax rates are inverted U-shaped because the marginal tax rate is generally decreasing in skills,

which is higher than the average tax rate at the beginning and lower than the average tax after a certain

income level.

Comparing economies with and without taxes. Next, in Figure 5 we compare the equilibrium outcome

of the Laissez-faire economy with the optimal taxation economy. Not surprisingly, social welfare is higher

under optimal taxation than in Laissez-faire (Figure 5a). However, the output is lower (Figure 5b), where

the output decline is lowest under high market power. This is due to the fact that under optimal taxes,

there is a decline in effort (Figure 5c). Note that although the average labor supply decreases after the tax,

the labor supplies of high-skill entrepreneurs actually increase. Also, the firm-level labor supply suggests

that although before tax labor supplies of entrepreneurs may decrease with the skill, it is increasing with

the skill after the tax.

As a result of the lower output produced and hence the lower aggregate demand for labor, there is a

decline in the equilibrium wage rate W (Figure 5d). In equilibrium, optimal taxation has an adverse effect.

It increases the markup and decreases the labor share (Figure 5e). Though the effect is small, it is important

to see how taxation of income has adverse effects on market power and labor share. This adverse effect

also shows up in the before-tax profit rates that are higher under optimal taxation. Due to the Reallocation

Effect, the regressive tax reallocates factors from the low-markup firms to the high-markup firms. Finally,

taxes sharply reduce inequality. The variance of gross utility is lower for both entrepreneurs and workers

(Figure 5f), but remarkably more so for entrepreneurs.
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(a) Social Welfare (b) Output (c) Effort

(d) Equilibrium wage rate W (e) Markup and Labor Share (f) Variance of Utility

Figure 5: Comparing variables under zero tax and optimal tax

7 Conclusion

The best way to address market power is to cut out the root cause with an antitrust policy. In its absence,

we ask what the role is for income taxation to address the inefficiency and inequality that market power

creates. In a standard partial equilibrium setting, taxing profits redistributes resources but does not affect

optimal production. In a Mirrleesian setting, income and profit taxes do affect optimal production due to

the incentive constraint and endogenous labor supply and general equilibrium wages.

We show in the Laissez-faire economy that market power increases profits, lowers the equilibrium wage

rate and that it leads to lower effort, output and welfare. In response, optimal taxation can help correct the

externality caused by market power, and the income tax plays a Pigouvian role. Typically, higher market

power leads to higher marginal tax rates on entrepreneurs and lower marginal rates on workers.
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APPENDIX

A Environment

A.1 The Cournot Competitive Tax Equilibrium

When first-order conditions are both necessary and sufficient to both the individuals’ and final good pro-

ducer’s problems, the equilibrium allocations are determined by (13) to (19) and the individuals’ budget

constraints. Under the technology considered in this paper and φo (lo) = l
1+ 1

εo
o

1+ 1
εo

, we have the following

conditions in the symmetric equilibrium:

1. First-order conditions

P(θe) = [N fe(θe)]
− 1

σ χ̃(θe)A
σ−1

σ Qij (θe)
− 1

σ Q
1
σ , (A1)

and [
1 +

∂ ln P
(
Qij(θe), θe

)
∂ ln Qij(θe)

]
ξP
(
Qij(θe), θe

)
Qij(θe)

Lw(θe)
− W

1− ts
= 0 (A2)

and

Wxw (θw)
[
1− T′w (Wxw (θw) lw (θw))

]
= lw (θw)

1
εw , (A3)

and [
1 +

∂ ln P
(
Qij(θe), θe

)
∂ ln Qij(θe)

]
P(θe)Qij(θe) (1− ts)

[
1− T′e (π (θe))

]
= le (θe)

1+ 1
εe , θo ∈ Θo. (A4)

Combination of (A2) and (20) (i.e., µ(θe) =
P(θe)

W/
[

∂Qij(θe)

∂Lw(θe)
(1−ts)

] =
ξP(θe)Qij(θe)(1−ts)

WLw(θe)
) delivers (22). Substitut-

ing 1 +
∂ ln P(Qij(θe),θe)

∂ ln Qij(θe)
by (22), we have

WLw(θe) =
ξ (1− ts)

µ (θe)
P(θe)Qij(θe), (A5)

and
P(θe)Qij(θe) (1− ts)

µ (θe)

[
1− T′e (π (θe))

]
= le (θe)

1+ 1
εe , θe ∈ Θe. (A6)

2. Inverse demand function

P(Qij, θe) = χ(θe)A
σ−1

σ Q
− 1

η(θe)
ij I−

[
1

η(θe)
− 1

σ

]
η(θe)

η(θe)−1

 (I − 1) Qij (θe)
η(θe)−1

η(θe)

+Q
η(θe)−1

η(θe)
ij


[

1
η(θe)
− 1

σ

]
η(θe)

η(θe)−1 [
Q
N

] 1
σ

, (A7)

where Qij (θe) is treated as given by the entrepreneurs.



3. Labor market clear condition∫
θw

xw (θw) lw (θw) fw(θw)dθw = Wεw

∫
θw

[κ (θw)]
εw+1 [1− tw (θw)]

εw fw(θw)dθw (A8)

4. Meanwhile, in the equilibrium, we have

Q =
∫

θe

N fe (θe)
[
P(θe)Qij(θe)

]
dθe. (A9)

The above parts 1 to 4 solve the symmetric equilibrium allocation {Lw(θe), le (θe) ,lw (θw)}, price system

{P(θe),W}, and total output Q. Lastly, one can derive other allocations with individuals’ budget con-

straints.

A.2 Laissez-faire Economy

Combining (A5), (A6), and (A1) gives

le (θe) =

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σεe
εe+σ

Lw (θe)
ξ(σ−1)εe

εe+σ (A10)

Substituting P(θe) and Qij (θe) in (A5) with (A1) and Qij (θe) = [xe (θe) le (θe)] Lw (θe)
ξ , respectively, we

have

Lw(θe) =
ξ

Wµ (θe)
χ(θe)

[
xe(θe)le (θe) Lw (θe)

ξ
] σ−1

σ

(
Q
N

) 1
σ

(A11)

=
ξ

W

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
εe+σ

Lw (θe)
ξ(σ−1)(εe+1)

σ+εe ,

where we substitute le (θe) with (A10) in the second equation.

Rearranging the above equation gives

Lw(θe) =

(
ξ

W

) σ+εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
σ+εe−ξ(σ−1)(εe+1)

. (A12)

Substituting the above equation into (A10), we have

P(θe)Qij(θe) = µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

(A13)

and

le (θe) =

(
ξ

W

) ξ(σ−1)εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σεe
εe+σ−ξ(σ−1)(εe+1)

. (A14)



Equation (A3) gives

lw (θw) = [Wxw (θw)]
εw . (A15)

The three equations above together with (A8) and (A9) solve the symmetric equilibrium allocation

{Lw(θe), le (θe) ,lw (θw)}, price system {P(θe),W}, and total output Q. Lastly, one can derive other alloca-

tions with individuals’ budget constraints. See below for details.

For later use, we define

A1 =
∫

θe

N fe (θe) µ (θe)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe) N
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe, (A16)

A2 =
∫

N fe(θe)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe) N
1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe,

A3 = Nwξεw

∫
θw

x (θw)
εw+1 fw(θw)dθw.

Substituting Lw(θe) in (A5) with (A12), we have

P(θe)Qij(θe) = µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

(A17)

Substituting P(θe)Qij(θe) in (A9) with (A17), we have

Q =
∫

θe

N fe (θe) µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe,

which gives the following equation by the definition of A1:

Q =

(
ξ

W

) ξ(εe+1)
1−ξ(εe+1)

A
σ+εe−ξ(σ−1)(εe+1)

1−ξ(εe+1)
1

σ−1

1 . (A18)

Similarly, substituting Lw(θe) in (A8) with (A12), we have the aggregate labor demand

LD ≡
(

ξ

W

) 1
1−ξ(εe+1)

(A1)
εe+1

(σ−1)[1−ξ(εe+1)] A2. (A19)

On the other hand, according to (A8) and (A15), we have the aggregate labor supply

LS ≡ Nw [W]εw

∫
θw

x (θw)
εw+1 fw(θw)dθw =

[
W
ξ

]εw

A3. (A20)



Combining (A19) and (A20) gives

[
W
ξ

]εw+
1

1−ξ(εe+1)

= (A1)
εe+1

(σ−1)[1−ξ(εe+1)]
A2

A3
, (A21)

that is

W = ξ

[
(A1)

εe+1
(σ−1)[1−ξ(εe+1)]

A2

A3

] 1
εw+ 1

1−ξ(εe+1) . (A22)

Lastly, substituting W in (A18) with (A22), we have

Q =

 A3

A2A
εe+1

(σ−1)[1−ξ(εe+1)]
1

 1
εw+ 1

1−ξ(εe+1)

ξ(εe+1)
1−ξ(εe+1)

A
εe+σ−ξ(σ−1)(εe+1)
(σ−1)[1−ξ(εe+1)]

1 . (A23)

Then we can derive lw(θw), Lw(θe), and le (θe) by substituting Q and W into (A12), (A14), and (A15).

Moreover, by definition, we have

ce(θe) = [µ (θe)− ξ]

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

, (A24)

and

Qij (θe) = xe(θe)

(
ξ

W

) ξσ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)ξ+σεe
εe+σ−ξ(σ−1)(εe+1)

, (A25)

and

P(θe) =
µ (θe)

xe(θe)

(
ξ

W

) −ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ xe(θe)

σ−1
σ χ(θe)

µ (θe)

(
Q
N

) 1
σ

] σ−σ(εe+1)ξ
εe+σ−ξ(σ−1)(εe+1)

. (A26)

In addition, we have

V(θe) = ce(θe)− le(θe)
εe+1

εe =

[
µ (θe)− ξ − εe

εe + 1

]
le(θe)

εe+1
εe . (A27)



According to the above results, we have

d ln le (θe)

dθe
=

d ln X(θe)/µ(θe)
dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
) ,

d ln Lw (θe)

dθe
=

εe+1
εe

d ln X(θe)/µ(θe)
dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
) ,

d ln Qij (θe)

dθe
=

d ln xe(θe)

dθe
+

σ (εe + 1) ξ + σεe

εe + σ− ξ (σ− 1) (εe + 1)
d ln X(θe)/µ (θe)

dθe
,

d ln
[
Qij (θe) P(θe)

]
dθe

=
(1− σ) [εe + ξ (εe + 1)] d ln µ(θe)

dθe
+ σ (εe + 1) d ln X(θe)

dθe

εe + σ− ξ (σ− 1) (εe + 1)
,

d ln V(θe)

dθe
=

µ′ (θe)

µ (θe)−
(

ξ + εe
εe+1

) +
σ

σ−1
d ln X(θe)/µ(θe)

dθe

σ
σ−1 −

(
εe

εe+1 + ξ
) .

Note that εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
)

, εe + σ− ξ (σ− 1) (εe + 1) and σ
σ−1 −

(
εe

εe+1 + ξ
)

are positive under con-

dition (29). Under such a condition, whether le (θe), Lw (θe), Qij (θe), Qij (θe) P(θe) and V(θe) increases with

θe is determined by the relative change of X(θe) to µ (θe). In addition, we have

d ln V(θe)

dθe
=

 µ (θe)

µ (θe)−
(

ξ + εe
εe+1

) − σ
σ−1

σ
σ−1 −

(
ξ + εe

εe+1

)
 µ′ (θe)

µ (θe)
+

σ
σ−1

d ln X(θe)
dθe

σ
σ−1 −

(
εe

εe+1 + ξ
)

≥
σ

σ−1
d ln X(θe)

dθe

σ
σ−1 −

(
εe

εe+1 + ξ
) ,

where the second inequality is derived by µ (θe) ≤ σ
σ−1 . Thus, d ln V(θe)

dθe
increases with d ln X(θe)

dθe
and intro-

ducing market power inequality rises d ln V(θe)
dθe

.

Also,

V ′e (θe) = le (θe) φ′ (le (θe))

[
µ (θe)

∂ ln P(Qij(θe), θe)

∂θe
+

x′e(θe)

xe(θe)

]
, (A28)

and

µ (θe)
∂ ln P(Qij, θe)

∂θe
+

x′e(θe)

xe(θe)
(A29)

= µ (θe)

{
χ′(θe)

χ(θe)
+

[
σ− 1

σ
− 1

µ (θe)

]
d ln Qij (θe)

dθe

}
+

x′e(θe)

xe(θe)

=
σ (εe + 1) [µ (θe)− ξ]− σεe

εe + σ− ξ (σ− 1) (εe + 1)
d ln X(θe)

dθe

+
(σ− 1) [εe + ξ (εe + 1)]

[
σ

σ−1 − µ (θe)
]

εe + σ− ξ (σ− 1) (εe + 1)
d ln µ (θe)

dθe
.

Notice that εe + σ− ξ (σ− 1) (εe + 1) is positive under condition (29). The entrepreneurial skill premium

increases with d ln X(θe)
dθe

. Moreover, since µ (θe) ≤ σ
σ−1 , the second term on the right side of (A29) is posi-



tive under condition (29), which suggests that the θe-type entrepreneur’s skill premium increases with the

introduce of d ln µ(θe)
dθe

.�

A.3 Proof of Proposition 1

Part 1 of Proposition 1 can be derived by (17) and (22). We now prove part 2. By (A23), (A22), and (A20),

we have

ν(I) ,
WL
ξQ

=
A2

A1
, (A30)

where L is the aggregate labor inputs. Substituting A1 and A2 by (A16), we have

ν(I) =

∫
fe(θe)

[
xe(θe)

σ−1
σ χ(θe)

µ(θe)

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe

∫
θe

fe (θe) µ (θe)

[
xe(θe)

σ−1
σ χ(θe)

µ(θe)

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

dθe

. (A31)

For the convenience of analysis, define

h (θe) ≡ fe (θe)
[

xe(θe)
σ−1

σ χ(θe)
] σ(εe+1)

εe+σ−ξ(σ−1)(εe+1) ,

g(I, θe) ≡
[

1
µ (θe)

](σ−1) εe+ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

,

fs(θe, I) ≡ g(I, θe)h (θe)∫
θe

g(I, θe)h (θe) dθe
, ∀θe ∈ Θe.

Then we have

ν (I) =
∫

θe

fs(θe, I)
µ (θe)

dθe. (A32)

In addition,

dν(I)
d ln I

∝
∫

θe

fs(θe, I)

[( σ

σ− 1

)
1

µ (θe)
− ν (I)

(
εe

εe + 1
+ ξ

)] d ln
[

1
µ(θe)

]
d ln I

 dθ

=

(
σ

σ− 1
− εe

εe + 1
+ ξ

) ∫
θe

fs(θe, I)
1

µ (θe)

d ln
[

1
µ(θe)

]
d ln I

+

(
εe

εe + 1
+ ξ

) ∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθ.

Since
(

σ
σ−1 −

εe
εe+1 + ξ

)
> 0 and

d ln
[

1
µ(θe)

]
d ln I > 0, we have

(
σ

σ− 1
− εe

εe + 1
+ ξ

) ∫
θe

fs(θe, I)
1

µ (θe)

d ln
[

1
µ(θe)

]
d ln I

dθe > 0.



On the other hand, notice that

d ln
[

1
µ(θe)

]
d ln I

=

[
1− σ− 1

σ
µ (θe)

]
I

I − 1

is decreasing in µ (θe), so we now try to prove that

∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe ≥ 0.

To do this, note that by (A32), we have

∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe = 0

where fs(θe, I)
[

1
µ(θe)
− ν (I)

]
is positive if and only if 1

µ(θe)
− ν (I) is positive. Define

Ω ≡
{

θe|µ (θe) <
1

ν (I)

}

such that fs(θe, I)
[

1
µ(θe)
− ν (I)

]
> 0 if and only if θe ∈ Ω.

Notice that∫
θe∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe +
∫

θe /∈Ω∗
fs(θe, I)

[
1

µ (θe)
− ν (I)

]
dθe = 0,∫

θe∈Ω∗
fs(θe, I)

[
1

µ (θe)
− ν (I)

]
dθe > 0

and that
d ln
[

1
µ(θe)

]
d ln I < 0. One can see that for any θe ∈ Ω,

d ln
[

1
µ(θe)

]
d ln I

≥
d ln

[
1

µ(θe)

]
d ln I

|µ(θe)=ν(I)=

[
1− σ− 1

σ
ν (I)

]
I

I − 1
.

Thus,

∫
θe∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe (A33)

≥
[

1− σ− 1
σ

ν (I)
]

I
I − 1

∫
θe∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe.

On the other hand, for any θe /∈ Ω, one has

d ln
[

1
µ(θe)

]
d ln I

≤
[

1− σ− 1
σ

ν (I)
]

I
I − 1

, fs(θe, I)
[

1
µ (θe)

− ν (I)
]
≤ 0.



Thus,

∫
θe /∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe (A34)

≥
[

1− σ− 1
σ

ν (I)
]

I
I − 1

∫
θe /∈Ω∗

fs(θe, I)
[

1
µ (θe)

− ν (I)
]

dθe.

Combining (A33) and (A34) gives

∫
θe

fs(θe, I)
[

1
µ (θe)

− ν (I)
] d ln

[
1

µ(θe)

]
d ln I

dθe ≥ 0,

which suggests dν(I)
d ln I ≥ 0.�

A.4 Proof of Proposition 2

Assume that markups are constant. (A22) and (A23) give

W
ξ

=

[
(A1)

εe+1
(σ−1)[1−ξ(εe+1)]

A2

A3

] 1−ξ(εe+1)
εw [1−ξ(εe+1)]+1

∝
[

1
µ

] (εe+1)
εw [1−ξ(εe+1)]+1

Q ∝
[

1
µ

]− ξ(εe+1)
εw [1−ξ(εe+1)]+1

(εe+1)
1−ξ(εe+1)

µ

(
1
µ

) (εe+1)
1−ξ(εe+1)

=

[
1
µ

] (εw+1)εe+εwξ(εe+1)
εw [1−ξ(εe+1)]+1

.

Substituting W and Q in (A12) with the above equations, we have

Lw(θe) ∝
[

1
µ

] (σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
1
µ

] εw(εe+1)−σ+1
εw [1−ξ(εe+1)]+1

εe+1
εe+σ−ξ(σ−1)(εe+1)

=

[
1
µ

] (εe+1)εw
εw [1−ξ(εe+1)]+1

, ∀θe ∈ Θe.



Similarly, we have

S(θe) ∝
[

1
µ

] εe(εw+1)+εwξ(εe+1)
εw [1−ξ(εe+1)]+1

,

le(θe) ∝
[

1
µ

] (εw+1)εe
εw [1−ξ(εe+1)]+1

,

Qij(θe) ∝
[

1
µ

] (εe+1)εwξ+(εw+1)εe
εw [1−ξ(εe+1)]+1

,

P(θe) ∝
[

1
µ

]0

,

ce(θe) ∝ [µ− ξ]

[
1
µ

] (εw+1)(εe+1)
εw [1−ξ(εe+1)]+1

,

Ve(θe) ∝
[

µ− ξ − εe

εe + 1

] [
1
µ

] (εw+1)(εe+1)
εw [1−ξ(εe+1)]+1

, ∀θe ∈ Θe.

It’s easy to see that under the conditions (28) and (29), Lw(θe), S(θe), le(θe), Qij(θe), and P(θe) go down

with the decrease of I. Moreover, since the markup is uniform, firm-level labor shares must go down too.

Changes of ce(θe) and Ve(θe) are ambiguous.

Notice that
d ln c(θe)

d ln µ
≥ 0⇔ µ− ξ

µ
≤ εw + 1− εwξ (εe + 1)

(εw + 1) (εe + 1)
.

One can see that

µ ≤ ξ
εe

εe+1 +
εw

εw+1 ξ

is the condition for d ln cij(θe)
d ln µ ≥ 0.

On the other hand,
dVe(θe)

d ln µ
∝
[

ξ +
εe

εe + 1

]
−
[

εw

1 + εw
ξ +

εe

εe + 1

]
µ,

thus,

µ ≤
ξ + εe

εe+1
εe

εe+1 +
εw

1+εw
ξ

is a condition for dVe(θe)
d ln µ ≥ 0.�

A.5 Technology and Equilibrium

xe and χ have different economic meanings. They can refer to quantity-augmenting and quality-augmenting

(Rosen (1981)), ability and talent (Sattinger (1975b)), and effort-augmenting and total-productivity-augmenting

(non-effort-augmenting) elements (Ales et al. (2017)), all of which catch the difference between an en-

trepreneur and a worker.

The expressions for allocations and prices in Appendix A.1 show that Qij(θe) and P(θe) are generally

dependent on the specific values of xe(θe) and χ(θe) instead of only depending on the value of X(θe) =



xe(θe)
σ−1

σ χ(θe). Specifically, according to (A25) and (A26), we have

Qij(θe) = xe(θe)

(
ξ

W

) ξσ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ X(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)ξ+σεe
εe+σ−ξ(σ−1)(εe+1)

,

and

P(θe) =
µ (θe)

xe(θe)

(
ξ

W

) −ξ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ X(θe)

µ (θe)

(
Q
N

) 1
σ

] σ−σ(εe+1)ξ
εe+σ−ξ(σ−1)(εe+1)

, ∀θe ∈ Θ.

On the other hand, given X(θe), we see that P(θe)Qij(θe), Lw(θe), le(θe), and Ve(θe) are independent

of the specific values of χ(θe) and xe(θe). According to (A12) to (A14), and (A27), we have the following

results:

Lw(θe) =

(
ξ

W

) σ+εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ X(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
σ+εe−ξ(σ−1)(εe+1)

,

P(θe)Qij(θe) = µ (θe)

(
ξ

W

) ξ(σ−1)(εe+1)
εe+σ−ξ(σ−1)(εe+1)

[
A

σ−1
σ X(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

,

le (θe) =

(
ξ

W

) ξ(σ−1)εe
σ+εe−ξ(σ−1)(εe+1)

[
A

σ−1
σ X(θe)

µ (θe)

(
Q
N

) 1
σ

] σεe
εe+σ−ξ(σ−1)(εe+1)

,

and

V(θe) =

[
µ (θe)− ξ − εe

εe + 1

] (
ξ

W

) ξ(σ−1)(εe+1)
σ+εe−ξ(σ−1)(εe+1)

×
[

A
σ−1

σ X(θe)

µ (θe)

(
Q
N

) 1
σ

] σ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

.

Similarly, one can see that W, lw (θw), and Vw (θw) are also only dependent on X(θe).

Lastly, we find that given d ln X(θe)
dθe

, V′(θe)
V(θe)

is independent of the specific values of χ(θe) and xe(θe). Com-

bining (A28) and (A29) gives

V ′(θe) = [le(θe)]
εe+1

εe

 σ(εe+1)µ(θe)−σεe−ξσ(εe+1)
εe+σ−ξ(σ−1)(εe+1)

d ln X(θe)
dθe

− (σ−1)[εe+ξ(εe+1)][µ(θe)− σ
σ−1 ]

εe+σ−ξ(σ−1)(εe+1)
d ln µ(θe)

dθe

 , ∀θe ∈ Θe.

Combining (A27) and (A28) gives

V ′(θe)

V(θe)
=

µ (θe)
∂ ln P(Qij(θe),θe)

∂θe
+ x′e(θe)

xe(θe)

µ (θe)− ξ − εe
εe+1

(A35)

=

σ(εe+1)[µ(θe)−ξ]−σεe
εe+σ−ξ(σ−1)(εe+1)

d ln X(θe)
dθe

+
(σ−1)[εe+ξ(εe+1)][ σ

σ−1−µ(θe)]
εe+σ−ξ(σ−1)(εe+1)

d ln µ(θe)
dθe

µ (θe)− ξ − εe
εe+1

,



where the second equation is derived by (A29) and (A28). Specially, when markup is constant, we have

V ′(θe)

V(θe)
=

σ (εe + 1)
εe + σ− ξ (σ− 1) (εe + 1)

d ln X(θe)

dθe
, ∀θe ∈ Θe. (A36)

A.6 Elasticities

A.6.1 Profit Elasticity

Note that we have assumed that the linear elasticity εe = φ′e(le(θ))
le(θ)φ′′e (le(θ))

is constant in the model setup to

simplify the notation. We define the non-linear elasticity of profit with respect to the net-tax income rate as

(A41). To understand the elasticity, consider the following tax reform.

Consider a small increase (i.e., dτ) in the marginal tax rate faced by the θe-type entrepreneur, and sup-

pose that the tax reform has no first-order effects on the aggregate values and the actions of other types.

Then, based on the entrepreneur’s problem, the optimal choice of the θe-type entrepreneur (i.e., Lw and le)

satisfy the following first-order conditions:

WLw = P
(
Qij, θe

)
Qij

ξ

µ (θe)
,

and

φ′e (le) =
[
1− T′e(P

(
Qij, θe

)
Qij −WLw)− dτ

] P
(
Qij, θe

)
Qij

µ (θe)

1
le(θe)

=

[
1− T′e

((
µ (θe)

ξ
− 1
)

WLw

)
− dτ

]
WLw

ξ

1
le

,

where the second equation is derived by WLw = P
(
Qij, θe

)
Qij

ξ
µ(θe)

. Assumption 1 ensures that the first-

order condition corresponds to a unique global maximum; thus, we can apply the implicit function group

theorem to derive the elasticities of effort and factor demand according to the net profit tax rate.

The θe-type entrepreneur treats µ (θe), W, and other firms’ outputs (i.e., outputs other than Qij (θ)) as

given. In such a scenario, its reaction to the tax reform can be described by differential equations of the

first-order conditions. On the one hand,

φ′′e (le) dle =
[
1− T′e(π)

] [WdLw

ξ

1
le
− WLw

ξ

dle

le

1
le

]
−
[

T′′e (π)

(
µ (θe)

ξ
− 1
)

WdLw

]
WLw

ξ

1
le
− dτ

WLw

ξ

1
le

.

Divide both sides of the above equation by φ′e (le) or [1− T′e (π)] WLw
ξ

1
le , and we have

φ′′e (le) le

φ′e (le)

dle

le
=

[
dLw

Lw
− dle

le

]
−
[

πT′′e (π)

1− T′e(π)

dLw

Lw

]
− dτ

1− T′e(π)
.



That is,
1 + εe

εe

dle

le
=

dLw

Lw

[
1− πT′′e (π)

1− T′e(π)

]
− dτ

1− T′e(π)
. (A37)

On the other hand, based on WLw = P
(
Qij, θe

)
Qij

ξ
µ(θe)

, we have

WdLw = PQij
ξ

µ (θe)
2

[
dle

le
+ ξ

dLw

Lw

]
.

Dividing both sides of the above equation by WLw or PQij
ξ

µ(θe)
gives

dLw

Lw
=

1
µ (θe)

[
dle

le
+ ξ

dLw

Lw

]
. (A38)

Combining (A37) and (A38) gives

dLw

Lw
=

− dτ
1−T′e(π)

1+εe
εe

[µ (θe)− ξ]−
[
1− πT′′e (π)

1−T′e(π)

] . (A39)

Lastly, based on π = PQij −WLw and WLw = PQij
ξ

µ(θe)
, we have dπ = P

µ(θe)
dQ
dLw

dLw + P
µ(θ)

dQ
dle dle −

WdLw. Thus,

dπ

π
=

PQij

π

ξ

µ (θe)

dLw

Lw
+

PQij

π

1
µ (θe)

dle

le
− WLw

π

dLw

Lw
(A40)

=

 ξ
µ(θe)

1− ξ
µ(θe)

−
ξ

µ(θe)

1− ξ
µ(θe)

 dLw

Lw
+

1
µ(θe)

1− ξ
µ(θe)

dle

le

=

1
µ(θe)

1− ξ
µ(θe)

dle

le

=
dLw

Lw

where the last equation is derived by (A38). Moreover, we can also obtain the above equation through

WLw = (π + WLw)
ξ

µ(θe)
, which is a combination of π = PQij −WLw and WLw = PQij

ξ
µ(θe)

.

Combining (A39) and (A40) gives a non-linear elasticity of profit with respect to the net tax income rate:

ε̃π
1−τe

(θe) ≡
dπ(θe)
π(θe)

− dτ
1−T′e(π(θe))

=
1

1+εe
εe

[µ (θe)− ξ]−
[
1− π(θe)T′′e (π(θe))

1−T′e(π(θe))

] . (A41)

We thus create a linear elasticity of profit with respect to the net tax income rate as επ
1−τe

(θe) (e.g., see (40)),

which is the elasticity of profit when Te (·) is linear. Such a linear elasticity of profit can be observed from

the data if the profit tax in the real economy is linear.



A.6.2 Price Elasticity

To make the expression more compact, we denote P
(
Qij, θe

)
as the short form of the inverse demand

function and P (θe) as the price. Solving the final good producer’s problem, we immediately find the

following in the equilibrium for any θe ∈ Θe:

P(θe) = χ(θe)N−
1
σ A

σ−1
σ Qij (θe)

− 1
σ Q

1
σ , (A42)

and the inverse demand function

P(Qij, θe) = χ(θe)N−
1
σ A

σ−1
σ Q

− 1
η(θe)

ij I−
[

1
η(θe)
− 1

σ

]
η(θe)

η(θe)−1

 (I − 1) Qij (θe)
η(θe)−1

η(θe)

+Q
η(θe)−1

η(θe)
ij


[

1
η(θe)
− 1

σ

]
η(θe)

η(θe)−1

Q
1
σ . (A43)

For later use, we define the own price elasticity, own inverse-demand elasticity, and cross inverse-

demand elasticity as

εP
Qij

(θe) ≡
∂ ln P (θe)

∂ ln Qij (θe)
= − 1

σ
, (A44)

εQij(θe) ≡
∂ ln P

(
Qij, θe

)
∂ ln Qij

|Qij=Qij(θe) = −
[

1
η (θe)

I − 1
I

+
1
σ

1
I

]
,

εQ−ij(θe) ≡
∂ ln P

(
Qij, θe

)
∂ ln Qij (θe)

|Qij=Qij(θe) =

[
1

η (θe)
− 1

σ

]
I − 1

I
, ∀θe ∈ Θe.

Notice that µ (θe) =
1

1+εQij (θe)
, we have

εQ−ij (θe) = −
1

µ (θe)
+

σ− 1
σ

, ∀θe ∈ Θe. (A45)

Under our production technology, we have

εQij(θe) = εP
Qij

(θe)− εQ−ij(θe),



and

∂ ln P(Qij, θe)

∂θe
|Qij=Qij(θe) (A46)

=
d ln P(Qij (θe) , θe)

dθe
− εQij(θe)

d ln Qij (θe)

dθe

=
χ′(θe)

χ(θe)
− 1

σ

Q′ij (θe)

Qij (θe)
+

[
I − 1

I
1

η (θe)
+

1
I

1
σ

] Q′ij (θe)

Qij (θe)

=
χ′(θe)

χ(θe)
+

[
1

η (θe)
− 1

σ

]
I − 1

I

Q′ij (θe)

Qij (θe)

=
χ′(θe)

χ(θe)
+ εQ−ij(θe)

d ln Qij (θe)

dθe
, ∀θe ∈ Θe.

Specially, when I = 1, we have
∂ ln P(Qij,θe)

∂θe
= χ′(θe)

χ(θe)
.

A.6.3 Wage Elasticity

We have defined v (θe) =
P(θe)
µ(θe)

∂Qij(θe)

∂Lw(θe)
. In addition, we define

εv
Lw
(θe) =

∂ ln v(θe)

∂ ln Lw(θe)
− εv

Lw
(θe, θe), and εv

le (θe) =
∂ ln v(θe)

∂ ln le(θe)
− εv

le (θe, θe) (A47)

as the own elasticity of wage with respect to labor inputs and effort, respectively, where

εv
Lw
(θ′e, θe) =


∂ ln v(θ′e)
∂ ln Lw(θe)

, θ′e 6= θe,

limθ′e→θe
∂ ln v(θ′e)
∂ ln Lw(θe)

, θ′e = θe
and (A48)

εv
le (θ
′
e, θe) =


∂ ln v(θ′e)
∂ ln Le(θe)

, θ′e 6= θe,

limθ′e→θe
∂ ln v(θ′e)
∂ ln le(θe)

, θ′e = θe;
(A49)

are the cross elasticity of wage with respect to labor and capital inputs, respectively, (θe, θ′e) ∈ Θ2
e .

Observe that under the assumptions on the technology, εv
Lw
(θ′e, θe) and εv

le (θ
′
e, θe) are not dependent on

θ′e. Specifically, we have

Pij(θe) = χ(θe)N−
1
σ A

σ−1
σ Qij (θe)

− 1
σ Q

1
σ ,

Qij (θe) = xe (θe) le (θe) Lw (θe)
ξ ,

v (θe) =
χ(θe)N−

1
σ A

σ−1
σ Qij (θe)

− 1
σ Q

1
σ

µ (θe)
ξxe (θe) le (θe) Lw (θ)ξ−1 .

Then by definition, we have

εv
Lw
(θe) = ξ

(
1− 1

σ

)
− 1 < 0, and εv

le (θ) = 1− 1
σ
> 0. (A50)



Note that both εv
Lw
(θe) and εv

le (θ) are constants.

B Solution

B.1 Proof of Lemma 1

(i) According to the definition of Ve(θ′e|θe), we have

∂Ve(θ′e|θe)

∂θ′e
= c′e

(
θ′e
)
− φ′e

(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e
(B2)

According to the first-order incentive condition, we have limθe→θ′e
∂Ve(θ′e|θe)

∂θ′e
= 0. That is,

0 =

[
c′e
(
θ′e
)
− φ′e

(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e

]
|θe=θ′e , (B3)

Adding (B2) into (B3), we have

∂Ve(θ′e|θe)

∂θ′e
=

[
φ′e
(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e

]
|θe=θ′e − φ′e

(
le
(
θ′e|θe

)) ∂le (θ′e|θe)

∂θ′e

Using the mean value theorem, the sign of the right-hand side is given by

d
[
φ′e (le (θ′e|θ∗e ))

∂le(θ′e|θ∗e )
∂θ′e

]
dθ∗

(
θ′e − θe

)

for some θ∗e that lies between θ′e and θe. If one has
d
[

φ′e(le(θ′e|θ∗e ))
∂le(θ′e |θ∗e )

∂θ′e

]
dθ∗ < 0 for any (θ∗e , θ′e) ∈ Θ2, the function

Ve(θ′e|θe) will increase with θ′e until θ′e = θe and then decreases with θ′e. In conclusion, there is a unique local

maximum point that is also the global maximizer of Ve(θ′e|θe). Thus under Assumption 1, the first-order

incentive condition is not only necessary but also sufficient for the agent’s problem.

Notice that

d
[
φ′e (le (θ′e|θ∗e ))

∂le(θ′e|θ∗e )
∂θ′e

]
dθ∗

= φ′′e
(
le
(
θ′e|θ∗e

)) ∂le (θ′e|θ∗e )
∂θ∗e

∂le (θ′e|θ∗e )
∂θ′e

+ φ′e
(
le
(
θ′e|θ∗e

)) ∂2le (θ′e|θ∗e )
∂θ∗e ∂θ′e

= φ′e
(
le
(
θ′e|θ∗e

))
le
(
θ′e|θ∗e

)  φ′′e (le(θ′e|θ∗e ))le(θ′e|θ∗e )
φ′e(le(θ′e|θ∗e ))

∂ ln le(θ′e|θ∗e )
∂θ∗e

∂ ln le(θ′e|θ∗e )
∂θ′e

+ ∂2 ln le(θ′e|θ∗e )
∂θ∗e ∂θ′e

,


so we have

sign

d
[
φ′e (le (θ′e|θ∗e ))

∂le(θ′e|θ∗e )
∂θ′e

]
dθ∗

 = sign

 φ′′e (le(θ′e|θ∗e ))le(θ′e|θ∗e )
φ′e(le(θ′e|θ∗e ))

∂ ln le(θ′e|θ∗e )
∂θ∗e

∂ ln le(θ′e|θ∗e )
∂θ′e

+ ∂2 ln le(θ′e|θ∗e )
∂θ∗e ∂θ′e





Since φ′′e (le(θ′e|θ∗e ))le(θ′e|θ∗e )
φ′e(le(θ′e|θ∗e ))

is positive, it follows that ∂ ln le(θ′e|θ∗e )
∂θ∗e

∂ ln le(θ′e|θ∗e )
∂θ′e

< 0 and ∂2 ln le(θ′e|θ∗e )
∂θ∗e ∂θ′e

= 0 is a sufficient

condition for
d
[

φ′e(le(θ′e|θ∗e ))
∂le(θ′e |θ∗e )

∂θ′e

]
dθ∗ < 0.

le (θ′e|θe) is determined by

P
(
Qij
(
xe (θe) le

(
θ′e|θe

)
, Lw

(
θ′e|θe

))
, θe
)

Qij
(
xe (θe) le

(
θ′e|θe

)
, Lw

(
θ′e|θe

))
(1− ts)−WLw

(
θ′e|θe

)
= π

(
θ′e
)

,

(B4)

where Lw (θ′e|θe) is the optimal labor input given that θe entrepreneur reports θ′e. The inverse demand

function P
(
Qij, θe

)
is given by (A43). In the following proof of part (i), we refer to P

(
Qij, θe

)
and Qij as

the short forms of P
(
Qij (xe (θe) le (θ′e|θe) , Lw (θ′e|θe)) , θe

)
and Qij (xe (θe) le (θ′e|θe) , Lw (θ′e|θe)), respectively.

Based on (B4), we have

∂le (θ′e|θe)

∂θe
= −

∂[P(Qij,θe)Qij]
∂Qij

∂Qij
∂θe

+
∂P(Qij,θe)

∂θe
Qij

∂[P(Qij,θe)Qij]
∂Qij

∂Qij
∂le

(B5)

= −

∂Qij
∂θe

+
∂P(Qij ,θe)

∂θe
Qij

P(Qij,θe)
[
1+εQij (θe)

]
∂Qij
∂le

= − x′e (θe)

xe (θe)
le
(
θ′e|θe

)
−

∂ ln P
(
Qij, θe

)
∂θe

le (θ′e|θe)

1 + εQij (θe)
< 0

and

∂le (θ′e|θe)

∂θ′e
= − −π′ (θ′e)

∂[P(Qij,θe)Qij]
∂Qij

∂Qij
∂le(θ′e|θe)

(B6)

= − −π′ (θ′e)
∂ ln[P(Qij,θe)Qij]

∂ ln Qij

∂Qij
∂le(θ′e|θe)

le(θ′e|θe)
Qij

P(Qij,θe)
le(θ′e|θe)

= − −π′ (θ′e)[
1 + εQ−ij(θe)

]
P(Qij,θe)
le(θ′e|θe)

> 0.

In addition, we have

∂ ln le (θ′e|θe)

∂θe
= − x′e (θe)

xe (θe)
−

∂ ln P
(
Qij (xe (θe) le (θ′e|θe) , Lw (θ′e|θe)) , θe

)
∂θe

1
1 + εQij (θe)

< 0 (B7)

and
∂2 ln le (θ′e|θe)

∂θe∂θ′e
= −

∂2 ln P
(
Qij, θe

)
∂θe∂Qij

∂Qij

∂θ′e

1
1 + εP

Qij
(θe)

. (B8)



According to (A46),

∂ ln P
(
Qij, θe

)
∂θe

=
χ̃′(θe)

χ̃(θe)
− 1

σ

f ′e(θe)

fe(θe)
+

[
σ− 1

σ
− 1

µ (θe)

] Q′ij (θe)

Qij (θe)
, (B9)

∂ ln P(Qij,θe)
∂θe

is independent of Qij (note that the
Q′ij(θe)

Qij(θe)
on the right side of the above equation is treated as

given by the agents when they report their types). Thus, we have
∂2 ln P(Qij,θ)

∂θ∂Qij
= 0 and ∂2 ln le(θ′|θ)

∂θ∂θ′ = 0. In

conclusion, we have
d
[

φ′e(le(θ′|θ∗))
∂le(θ′ |θ∗)

∂θ′

]
dθ∗ < 0.

(ii) Now we prove part (ii) of Lemma 1 (i.e., given (B10), (B11) is satisfied if and only if (35) is satisfied).

According to the definition of Ve(θ), we have

Ve(θe) = ce (θe)− φe (le(θe)) .∀θe ∈ Θe (B10)

Notice that

Ve(θ
′
e|θe) = ce

(
θ′e
)
− φe

(
le
(
θ′e|θe

))
,

where le (θ′e|θe) is the effort θe entrepreneur needs to finish the θ′e task. The first-order incentive condition

( ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe = 0) can be expressed as

0 =

[
c′e
(
θ′e
)
− φ′e

(
le
(
θ′e|θe

)) ∂le (θ′|θ)
∂θ′

]
|θ′=θ , ∀θe ∈ Θe. (B11)

First, note that by

Ve(θe) = max
θ′e

Ve(θ
′
e|θe),

we have

V ′e (θe) =
∂Ve(θ∗e (θe) |θe)

∂θ∗e (θe)

dθ∗e (θe)

dθe
+

∂Ve(θ∗e (θe) |θe)

∂θe
(B12)

where we use θ∗e (θe) to denote the optimal choice of θe entrepreneur.

Second, by the definition of Ve(θ′e|θe), we have

∂Ve(θ∗e (θe) |θe)

∂θe
= −φ′e (le (θ

∗
e (θe) |θ))

∂le (θ∗e (θe) |θe)

∂θe
, (B13)

where by (B5), we have

∂le (θ∗e (θe) |θe)

∂θe
= − x′e (θe)

xe (θe)
le (θ

∗
e (θe) |θe) (B14)

−
∂ ln P

(
Qij (xe (θe) le (θ∗e (θe) |θe) , Lw (θ∗e (θe) |θe)) , θe

)
∂θe

le (θ∗e (θe) |θe)

1 + εQ−ij(θe)
.



Last, a combination of (B12), (B13), and (B14) suggests that

V ′e (θe) = φ′e (le (θ
∗
e (θe) |θe)) le (θ

∗
e (θe) |θe)

 x′e(θe)
xe(θe)

+

µ (θe)
∂ ln P(Qij(xe(θe)le(θ∗e (θe)|θe),Lw(θ∗e (θe)|θe)),θe)

∂θe

 (B15)

if and only if ∂Ve(θ∗e (θe)|θe)
∂θ∗e (θe)

dθ∗e (θe)
dθe

= 0, which means that when the first-order incentive condition ( ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe =

0) is satisfied, we have (35); and if (35) holds (i.e., (B15) holds at θ∗e (θe) = θe), we must have ∂Ve(θ′e|θe)
∂θ′e

|θ′e=θe =

0 (unless dθ∗e (θe)
dθe

= 0, which is ruled out by Assumption 1).�

B.2 Proof of Lemma 2

We first show that a symmetric Cournot competitive tax equilibrium must satisfy parts 1 to 3. First, by

the definition of SCCTE, (16) to (17) and (13) to (15) must be satisfied. Second, by the definition of SCCTE,

agents maximize their utilities, which means (33) and (35) should be satisfied (e.g., see Lemma 1).

Next, suppose that we are given an allocation A and price P to satisfy the properties in parts 1 to 3.

We now construct the tax system T (with ts = 0), which together with the given allocation A and price P
constructs an SCCTE. We first construct a policy system with the given allocation A and price P . We then

show that this constructed policy system together with A and P constructs an SCCTE.

First, we construct the policy system. By the definition of tax wedges and ts = 0, the marginal tax rates

are constructed as follows:

T′w (y (θw)) = 1− φ′w (lw (θw))
P(θe)
µ(θe)

∂Qij(θe)

∂Lw(θe)
xw (θw)

and

T′e (π (θe)) = 1− φ′e (le (θe))
P(θe)
µ(θe)

∂Qij(θe)

∂le(θe)

.

We use agents’ budget constraints to fix the labor income taxes. We first construct Tw (·). To do this, we

substitute

Tw (y(θw)) = Tw (y(θw)) +
∫ y(θw)

y(θw)
T′w (y) dy

into

y(θw)− Tw (y(θw))− cw(θw) = 0

and show that there exists Tw (y(θw)) such that given allocation A, price P and {T′w (y(θw))}θw∈Θw
, the

above equation is satisfied for any θw ∈ Θw.

To be consistent with the θw-type agent’s budget constraint, Tw (y(θw)) must satisfy

y(θw)− Tw (y(θw))− cw(θw) = 0.

We should show this Tw (y(θ)) is also consistent with other agents’ budget constraints. This is equivalent



to say that

y′(θw)
[
1− T′w (y(θw))

]
− c′w(θw) = 0.

Substituting 1− T′w (y(θw)) with the FOC (18), the above equation is equivalent to

c′w(θw)−
φ′w (lw(θw))

Wxw (θw)
y′(θw) = 0.

The above equations are true since we have

V ′w(θw) =
φ′w (lw(θw)) lw(θw)x′w (θw)

xw (θw)
(B16)

= c′w(θw)−
y′(θw)

Wxw (θw)
φ′w (lw(θw)) +

φ′w (lw(θw)) lw(θw)x′w (θw)

xw (θw)
.

The first equation of (B16) is the incentive condition, and the second equation is derived through the def-

inition of Vw(θw). In conclusion, given the allocation, we can construct a unique labor income tax that is

consistent with the allocation in the equilibrium.

The construction of Te (·) is similar to the construction of Tw (·). Note that Tw (y(θw)) can be different

from Te (π(θe)). We substitute

Te (π(θe)) = Te (π(θe)) +
∫ π(θe)

π(θe)
T′e (π) dπ

into

π(θe)− Te (π(θe))− ce(θe) = 0

and show that there exists Te (π(θe)) such that given allocationA, price P and {T′e (π(θe))}θe∈Θe
, the above

equation is satisfied for any θe ∈ Θe:

To be consistent with the θe-type agent’s budget constraint, Te (π(θe)) must satisfy

π(θe)− Te (π(θe))− ce(θe) = 0.

We should show this Te (π(θe)) is also consistent with other agents’ budget constraints. This is equivalent

to saying that

π′(θe)
[
1− T′e (π(θe))

]
− c′e(θe) = 0.

Substituting 1− T′e (π(θe)) with the FOC (19), the above equation is equivalent to

c′e(θe)−
φ′e (le (θe))
P(θe)
µ(θe)

∂Qij(θe)

∂le(θe)

π′(θe) = 0,



which is further equivalent to

c′e(θe)− µ (θe)
φ′e (le (θe)) le (θe)

P (θe) Qij (θe)
π′(θe) = 0. (B17)

The above equations are true since we have

V ′e (θe) = φ′e (le (θe)) le (θe)

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
κ′e (θe)

κe (θe)

]
(B18)

= c′e(θe)− φ′e (le (θe)) le (θe)
l′e (θe)

le (θe)
,

and

π′(θe) = Qij(θe)P
(
Qij (θe) , θe

)  ∂ ln P(Qij(θe),θe)
∂θe

+[
1 +

∂ ln P(Qij(θe),θe)
∂ ln Qij(θe)

] [
x′e(θe)
xe(θe)

+ l′e(θe)
le(θe)

]
 . (B19)

Substituting l′e(θe)
le(θe)

in (B18) by (B19) and using 1 +
∂ ln P(Qij(θe),θe)

∂ ln Qij(θe)
= 1

µ(θe)
delivers (B17) immediately. The

first equation of (B18) is the incentive condition, and the second equation is derived through the definition

of Ve(θe). (B19) is derived from the definition of π(θe) (i.e., π(θe) = P
(
Qij(θe), θe

)
Qij(θe)−WLw(θe)) and

the fact that the derivative of π(θe) with respect to Lw(θe) is zero.

In conclusion, given the allocation, we can construct a unique combination of labor income tax and

profit tax that is consistent with the allocation in the equilibrium.

We now show that the allocation A and price P satisfying parts 1 to 3 and the constructed tax system

T construct an SCCTE. First, the allocation satisfies the incentive conditions (33) and (35). Thus, according

to the analysis in the subsections given before (see Lemma 1 for example), the allocation is consistent with

agents’ optimal choice. Second, the price P satisfies (16) and (17). Third, the market clear conditions (13)

to (15) are satisfied. Lastly, agents’ budget constraints (9) and (12) are embedded in the definitions of gross

utilities and the construction of income taxes. In conclusion, the constructed tax system T together with

the given allocation A and price P constructs an SCCTE.�



C Benchmark Results

C.1 Optimal Taxation

C.1.1 Lagrangian and First-order Conditions

We now take Lagrange multipliers to solve the planner’s optimization problem.44 The Lagrangian function

for the planner’s problem is

£ (Lw, lw, le, Vw, Ve, δ, ∆; λ, ψw, ψe)

= ∑
o∈{w,e}

No

∫
θo

G (Vo(θo)) f̃o (θo) dθo + λ

[
Q− ∑

o∈{w,e}
No

∫
θo

[Vo (θo) + φo (lo (θo))] fo (θo) dθo − R

]

+λ′
[∫

θw

xw (θw) lw (θw) fw (θw) dθw − N
∫

θe

Lw (θe) fe (θe) dθe

]
+
∫

θe

ϕ (θe)
d ln v (θe, θele (θe) , Lw (θe) , Q)

dθe
dθe

+
∫

θe

κ (θe)

[
δ (θe)−

d ln Qij (θe)

dθe

]
dθe

+
∫

θw

ψw (θw)

[
lw (θw) φ′w (lw (θw))

x′w (θe)

xw (θe)
−V ′w(θw)

]
dθw

+
∫

θe

ψe (θe)

[
φ′e (le (θe)) le (θe)

[
µ(θe)

(
χ′ (θe)

χ (θe)
− 1

σ

f ′e(θe)

fe(θe)
+ εQ−ij (θ) δ (θe)

)
+

x′e (θe)

xe (θe)

]
−V ′e (θe)

]
dθe,

where χ′(θe)
χ(θe)

− 1
σ

f ′e(θe)
fe(θe)

+ εQ−ij(θe)δ (θe) =
∂ ln P(Qij(θe),θe)

∂θe
. Note that we have introduced δ (θe) =

d ln Qij(θe)
dθe

as

a control value and that ln Qij (θe) can be treated as a state variable. Constraint d ln v(θe,θe le(θe),Lw(θe),Q)
dθe

= 0

is used to guarantee that v (θe) = P(θe)
µ(θe)

∂Qij(θe)

∂Lw(θe)
is constant, which is a result of uniform sales taxes on the

goods produced by firms.

Taking partial integrals yields the following:

−
∫

θe

κ (θe)
d ln Qij (θe)

dθe
dθe = ln Qij (θe) κ (θe)− ln Qij

(
θe
)

κ
(
θe
)
+
∫

θe

κ′ (θe) ln Qij (θe) dθo,

and ∫
θe

ϕ (θe)
d ln v (θe)

dθe
dθe = ϕ

(
θe
)

ln v
(
θe
)
− ϕ (θe) ln v (θe)−

∫
θe

ϕ′ (θe) ln v (θe) dθe,

and

−
∫

θe

ψo(θe)V ′o(θe)dθe = Vo(θo)ψo(θo)−Vo(θo)ψo(θo) +
∫

θo

ψ′o(θo)Vo(θo)dθo.

The derivatives with respect to the endpoint conditions yield boundary conditions:

κ(θe) = κ(θe) = ϕ
(
θe
)
= ϕ (θe) = ψo(θo) = ψo(θo) = 0, o ∈ {w, e} . (C2)

44See Luenberger (1997) for details about the Lagrangian techniques, and Mirrlees (1976), Golosov et al. (2016), Findeisen and
Sachs (2017) for its application in the field of public economics.



Thus, ∫
θe

ϕ′ (θe) dθe = 0, (C3)

Substituting the above conditions into the Lagrangian function, yields the following first-order conditions:

∂£
∂Vo(θo)

= G′(Vo(θo))No f̃o (θo) + ψ′o(θo)− λNo fo (θo) = 0, o ∈ {w, e} , (C4)

∂£
∂δ (θe)

= κ (θe) + ψe (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe) = 0, (C5)

∂£
∂lw (θw)

= −λNwφ′w (lw (θw)) fw (θw) + λ′Nwxw (θw) fw (θw) + ψw (θw)
φ′w (lw (θw))

xw (θw)

1 + εw

εw
= 0, (C6)

∂£
∂Lw(θe)

=

[
λP (θe)

∂Qij (θe)

∂Lw(θe)
− λ′

]
N fe (θe) +

 κ′(θe)
Lw(θe)

∂ ln Qij(θe)

∂ ln Lw(θe)

−
∫

Θe
ϕ′(θ′e)

∂ ln v(θ′e)
∂ ln Lw(θe)

dθ′e
Lw(θe)

 = 0, (C7)

and

∂£
∂le(θe)

= ψe (θe) φ′e (le (θe))
1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C8)

+λ

[
P (θe)

∂Qij (θe)

∂le (θe)
− φ′e (le (θe))

]
N fe (θe)

+
κ′ (θe)

le (θe)

∂ ln Qij (θe)

∂ ln le(θe)
−

∫
Θ ϕ′ (θ′e)

∂ ln v(θ′e)
∂ ln le(θe)

dθ′e

le (θe)
= 0, ∀θo ∈ Θo.

C.1.2 Social Welfare Weight

Unless otherwise specified, the following equations in this subsection are derived for any θo ∈ Θo. Accord-

ing to ∂£
∂Vo(x) and φo(θo) = φo(θo) = 0, we have:

λ =
∫

θo

G′(Vo(θo)) f̃o(θo)dθo. (C9)

Set

go(θo) =
G′(Vo(θo)) f̃o (θo)

λ fo (θo)
(C10)

as the monetary marginal social welfare weight for θo agent of o occupation. Set

ḡo(θo) =

∫ θo
θo

g(x) fo (x) dx
1− Fo(θo)

(C11)

as the weighted monetary social welfare weight for agents whose abilities are higher than θe.

Substituting go(θo) into ∂£
∂Vo(θo)

gives

ψ′o(θo)

λNo fo (θo)
= 1− go(θo) (C12)



Taking integration and using the boundary conditions gives

−ψo(θo)

λNo
=

∫ θo

θo

[1− go(x)] fo(x)dx (C13)

= [1− ḡo(θo)] [1− Fo(θo)] .

In addition, based on ∂£
∂δ(θe)

, we have

κ (θe) = −ψe (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe) (C14)

= −ψe (θe) P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe),

where the second equation is derived by

φ′e (le (θe)) le (θe) =
φ′e (le (θe)) le (θe)

∂Qij(θe)

∂Le(θe)
Le(θe)
Qij(θe)

(C15)

=
φ′e (le (θe))

P(θe)
µ(θe)

∂Qij(θe)

∂Le(θe)
xe (θe)

1
Qij(θe)

µ(θe)
P(θe)

=
P (θe) Qij (θe)

µ (θe)
[1− τe (θe)] (1− τs) .

In addition, we have

κ′ (θe) = −
d
[
ψe (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe)

]
dθe

(C16)

= −


ψ′e (θe) φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe)+

ψe (θe) φ′e (le (θe))
1+εe

εe
l′e (θe) µ(θe)εQ−ij(θe)+

ψe (θe) φ′e (le (θe)) le (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe


= −φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe)

 ψe (θe)
1+εe

εe

l′e(θe)
le(θe)

+

ψ′e (θe) + ψe (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe


= −P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe)

 ψe (θe)
1+εe

εe

l′e(θe)
le(θe)

+

ψ′e (θe) + ψe (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

 .

Substituting ψe (θe) and ψ′e (θe) in (C16) and (C14) with (C12) and (C13), we have

κ (θe) = λNe [1− ḡe(θe)] [1− Fe(θe)] φ′e (le (θe)) le (θe) µ(θe)εQ−ij(θe) (C17)

= λNe [1− ḡe(θe)] [1− Fe(θe)] P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe),



and

κ′ (θe)

λNe fe (θe)
= −P (θe) Qij (θe) [1− τe (θe)] (1− τs) εQ−ij(θe)


[1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]

fe(θe)

×

 1+εe
εe

l′e(θe)
le(θe)

+

d ln
[
µ(θe)εQ−ij (θe)

]
dθe


 . (C18)

C.2 Proof of Theorem 1

Unless otherwise specified, the following equations in this subsection are derived for any θo ∈ Θo and

τs = 0.

(i) According to ∂£
∂Lw(θe)

, one has:

P (θe)
∂Qij (θe)

∂Lw(θe)
=

λ′

λ
− κ′ (θe)

λLw (θe) N fe (θe)

∂ ln Qij (θe)

∂ ln Lw(θe)
+

∫
θe

ϕ′ (θ′e)
∂ ln v(θ′e)
∂ ln Lw(θe)

dθ′e

λLw (θe) N fe (θe)

=
λ′

λ
− κ′ (θe) ξ

λLw (θe) N fe (θe)
+

ϕ′ (θe) εv
Lw
(θe)

λLw (θe) N fe (θe)
,

where
∫

θe
ϕ′ (θ′e)

∂ ln v(θ′e)
∂ ln Lw(θe)

dx′ = ϕ′ (θe) εv
Lw
(θe) since εv

Lw
(θ′e, θe) is independent of θ′e and

∫
θe

ϕ′ (θ′e) dθ′ = 0.

Substituting P (θe)
∂Qij(θe)

∂Lw(θe)
by Wµ (θe) gives

Wµ (θe) =
λ′

λ
− κ′ (θe) ξ

λLw (θe) N fe (θe)
+

ϕ′ (θe) εv
Lw
(θe)

λLw (θe) N fe (θe)
. (C19)

Dividing both sides by
εv

Lw (θe)

Lw(θe)N fe(θe)
and integrating across θe gives

W
∫

θe

µ (θe)
Lw (θe) N fe (θe)

εv
Lw
(θe)

dθe =
λ′

λ

∫
θe

Lw (θe) N fe (θe)

εv
Lw
(θe)

dθe −
∫

θe

κ′ (θe)

λεv
Lw
(θe)

ξdθe,

where we use
∫

θe
ϕ′ (θ′e) dθ′ = 0 again. Reformation of the above equation gives

1 =

λ′

λ

∫
θe

Lw(θe)N fe(θe)
εv

Lw (θe)
dθe

W
∫

θe
µ (θe)

Lw(θe)N fe(θe)
εv

Lw (θe)
dθe
−

∫
θe

κ′(θe)
λεv

Lw (θe)
ξdθe

W
∫

θe
µ (θe)

L(θe)N fe(θe)
εv

Lw (θe)
dθe

(C20)

=

λ′

λ

∫
θe

Lw(θe)N fe(θe)
εv

Lw (θe)
dθe

W
∫

θe
µ (θe)

Lw(θe)N fe(θe)
εv

Lw (θe)
dθe

+
∫

θe

κ (θe)

λ

d ξ
εv

Lw (θe)
/dθe

W
∫

Θe
µ (θe)

Lw(θe)N fe(θe)
εv

Lw (θe)
dθe

dθe,

where the second equation is derived by κ(θe) = κ(θe) = 0 and integration by parts.

Define

ε
Qij
1−τ(θe) ≡

ξ
εv

Lw (θe)∫
θe

µ (θe)
WL(θe)N fe(θe)

εv
Lw (θe)

dθe
(C21)

Note that under our production function, labor inputs are perfectly substitutable. Thus, εv
Lw
(θe) is indepen-



dent of θe and dε
Qij
1−τ(θe)
dθe

= 0. Combining the above definitions and (C20) gives

1 =
λ′

λWµ
+
∫

θe

κ′ (θe)

λ

dε
Qij
1−τ(θe)

dθe
dθe (C22)

=
λ′

λWµ
,

where the second equation is derived by dε
Qij
1−τ(θe)
dθe

= 0.

According to (C7), we have

1
φ′w(lw(θw))

xw(θw)

=
λ

λ′

[
1− x′w (θw)

xw (θw)

ψw(θw)

λNw fw (θw)

1 + εw

εw

]
. (C23)

Substituting φ′w(lw(θw))
xw(θw)

with [1− τw (θw)]W gives

1
1− τw (θw)

=
Wλ

λ′

[
1− x′w (θw)

xw (θw)

ψw(θw)

λNw fw (θw)

1 + εw

εw

]
(C24)

Second, combining (C24), (C13), and (C22) gives

1
1− τw (θw)

=
1
µ

[
1 + [1− ḡw(θw)]

1− Fw(θw)

fw(θw)

x′w (θw)

xw (θw)

1 + εw

εw

]
. (C25)

(ii) We derive an optimal profit tax formula in part (a) of the following proof. Then we simplify the

expression in parts (b) and (c).

(a) Divide both sides of (C8) by λNe fe (θe) P (θe)
∂Qij(θe)

∂Le(θe)
, and we have

1− φ′e (le (θe))

P (θe)
∂Qij(θe)

∂le(θe)

(C26)

= − ψe (θe)

λNe fe (θe)

φ′e(le(θe))

P (θe)
∂Qij(θe)

∂le(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]

− κ′ (θe)

λle (θe) P (θe)
∂Qij(θe)

∂le(θe)
N fe (θe)

+
ϕ′ (θe) εv

le (θe)

λle (θe) P (θe)
∂Qij(θe)

∂le(θe)
N fe (θe)

,

where we use ∂ ln Qij(θe)

∂ ln le(θe)
= 1 and

∫
Θ ϕ′ (θ′e)

∂ ln v(θ′e)
∂ ln le(θe)

dθe = ϕ′ (θe) εv
le (θe) to simplify the expression.

For the convenience of derivation, we define

1− τ̃e (θe) ≡
[1− τe (θe)] (1− τs)

µ (θe)
=

φ′e (le (θe))

P (θe)
∂Qij(θe)

∂le(θe)

.



Then one has

τ̃e (θe) = − ψe (θe)

λNe fe (θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
[1− τ̃e (θe)]

− κ′ (θe)

λP (θe) Qij (θe) N fe (θe)
+

ϕ′ (θe) εv
le (θe)

λP (θe) Qij (θe) N fe (θe)
,

where we use ∂ ln Qij(θe)

∂ ln le(θe)
= 1 to simplify the expression. In the same vein, we have

τ̃e (θe)

1− τ̃e (θe)
= − ψe (θe)

λNe fe (θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C27)

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

[
κ′ (θe)

λNe fe (θe)
− ϕ′ (θe)

λNe fe (θe)
εv

le (θe)

]
or

1
1− τ̃e (θe)

= 1− ψe (θe)

λNe fe (θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C28)

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

[
κ′ (θe)

λNe fe (θe)
− ϕ′ (θe)

λNe fe (θe)
εv

le (θe)

]
.

Combining (C27) and (C13) gives

τ̃e (θe)

1− τ̃e (θe)
= [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
− 1

1− τ̃e (θe)

1
P (θe) Qij (θe)

κ′ (θe)

λNe fe (θe)

+
1

1− τ̃e (θe)

1
P (θe) Qij (θe)

ϕ′ (θe) εv
le (θe)

λNe fe (θe)
.

Using (C19) to substitute
ϕ′(θe)εv

le (θe)

λNe fe(θe)
,45 we have

τ̃e (θe)

1− τ̃e (θe)
= [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(C29)

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

κ′ (θe)

λNe fe (θe)

[
1− ξ

εv
le (θe)

εv
Lw
(θe)

]

− 1
1− τ̃e (θe)

Lw (θe)

P (θe) Qij (θe)

λ′

λ

[
1− λ

λ′
Wµ (θe)

1− τs

]
εv

le (θe)

εv
Lw
(θe)

.

We now transform the three terms on the right side of the above equations one by one. First, substitut-

45Equation (C19) suggests that
ϕ′(θe)εv

le (θe)

λNe fe(θe)
=
[[

Wµ(θ)
1−τs

− λ′

λ

]
Lw (θe) +

κ′(θe)ξ
λNe fe(θe)

]
εv

le (θe)

εv
Lw (θe)

.



ing κ′ (θe) with (C18), we have the following equation:46

− 1
1− τ̃e (θe)

1
P (θe) Qij (θe)

κ′ (θe)

λNe fe (θe)
(C30)

=
1− τe (θe)

1− τ̃e (θe)
εQ−ij(θe)


[1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]

fe(θe)

×

 1+εe
εe

l′e(θe)
le(θe)

+

d ln
[
µ(θe)εQ−ij (θe)

]
dθe


 .

Second, notice that Lw(θe)W
P(θe)Qij(θe)

= ξ
µ(θe)

and λ′

λW = µ (e.g., see (C22)). The last term of (C29) equals

− 1
1− τ̃e (θe)

Lw (θe)

P (θe) Qij (θe)

λ′

λ

[
1− λ

λ′
Wµ (θe)

1− τs

]
εv

le (θe)

εv
Lw
(θe)

(C31)

= − 1− τs

1− τ̃e (θe)

ξ

µ (θe)
µ

[
1− µ (θe)

µ

]
εv

le (θe)

εv
Lw
(θe)

= − ξ

1− τ̃e (θe)

[
µ

µ (θe)
− 1
]

εv
le (θe)

εv
Lw
(θe)

.

Combining equations (C30) to (C31) gives

τ̃e (θe)

1− τ̃e (θe)
(C32)

= [1− ḡe(θe)]
1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
x′e (θe)

xe (θe)

]

+
1− τe (θe)

1− τ̃e (θe)
εQ−ij(θe)


[1− ge(θe)]−

[1−ḡe(θe)][1−Fe(θe)]
fe(θe)

 1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe



[

1− ξ
εv

le (θe)

εv
Lw
(θe)

]

− ξ

1− τ̃e (θe)

[
µ

µ (θe)
− 1
]

εv
le (θe)

εv
Lw
(θe)

.

46Note that we consider the case with τs = 0.



In addition, substituting 1− τ̃e (θe) by 1−τe(θe)
µ(θe)

, we have

1
1− τe (θe)

(C33)

=

[
1 + [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P
(
Qij (θe) , θe

)
∂θe

+
x′e (θe)

xe (θe)

]]
1

µ (θe)

+εQ−ij(θe)


[1− ge(θe)]−

[1−ḡe(θe)][1−Fe(θe)]
fe(θe)

 1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe



[

1− ξ
εv

le (θe)

εv
Lw
(θe)

]

+
1

1− τe (θe)

[
1− µ

µ (θe)

]
ξ

εv
le (θe)

εv
Lw
(θe)

.

Using

RE (θe) ≡
[

µ

µ (θe)
− 1
]

and

ĨRE (θe) ≡ εQ−ij(θe)

 [1− ge(θe)]− [1−ḡe(θe)][1−Fe(θe)]
fe(θe)

×
[

1+εe
εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

]  ,

we have

1
1− τe (θe)

=
1 + [1− ḡe(θe)]

1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
µ (θe)

(C34)

+ ĨRE (θe)

Elasticity of Qij w.r.t le︷ ︸︸ ︷[
1− ξ

εv
le (θe)

εv
Lw
(θe)

]

+
1

1− τe (θe)
ξRE (θe)

Elasticity of Lw w.r.t le︷ ︸︸ ︷[
−

εv
le (θe)

εv
Lw
(θe)

]
,

which is equivalent to

1
1− τe (θe)

=

1+[1−ḡe(θe)]
1−Fe(θe)

fe(θe)
1+εe

εe

[
µ(θe)

∂ ln P(Q(θe),θe)
∂θe

+
x′e(θe)
xe(θe)

]
µ(θe)

+ ĨRE (θe)
[
1− ξ

εv
le (θe)

εv
Lw (θe)

]
1 + RE (θe) ξ

εv
le
(θe)

εv
Lw (θe)

. (C35)

(b) To derive optimal profit tax formular in termes of parameters, we first derive d ln Lw(θe)
dθe

, d ln le(θe)
dθe

and
d ln π(θe)

dθe
in terms of θe and profit tax rate. Using (A1) and Qij (θe) = xe (θe) le (θe) Lw,ij (θe)

ξ to substitute

P (θe) and Qij (θe) in (A5) and rearrange the equation, we have the following in the equilibrium when



ts = 0:

Lw (θe) =

[
X(θe)

µ (θe)

ξA
σ−1

σ Q
1
σ

WN
1
σ

e

le (θe)
σ−1

σ

] 1
1−ξ σ−1

σ

, (C36)

and
d ln Lw (θe)

dθe
=

1
1− ξ σ−1

σ

d ln X(θe)/µ (θe)

dθe
+

σ−1
σ

1− ξ σ−1
σ

l′e (θe)

le (θe)
, ∀θ ∈ Θ. (C37)

The entrepreneurial effort le (θe) satisfies the first order condition (e.g., see (A6))

P (θe) Qij (θe)

µ (θe)
[1− τe (θe)] = le (θe)

1+ 1
εe ,

where τe (θe) = T′(π (θe)). Using (A1) and the expression of Qij (θe) to substitute Pij (θe) and Qij (θe) again,

we have [
X(θe)

µ (θe)

ξA
σ−1

σ Q
1
σ

WN
1
σ

e

] 1
1−ξ σ−1

σ

[1− τe (θe)]W = le (θe)

εe+1
εe −

σ−1
σ (1+ εe+1

εe ξ)
1−ξ σ−1

σ . (C38)

Taking the derivation of the items on both sides of the above formula to obtain the following equation:

d ln le (θe)

dθe
=

d ln X(θe)/µ(θe)
dθe

+
[
1− ξ σ−1

σ

] d ln[1−τe(θe)]
dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
) , ∀θ ∈ Θ. (C39)

Combination of firm’s first order condition (A5), and the definition of π (θe), π (θe) = Pij (θe) Qij (θe)−
WLw,ij (θe), gives

π (θe) =
µ (θe)− ξ

µ (θe)
P (θe) Qij (θe) , ∀θ ∈ Θ. (C40)

Substituting Pij (θe) Qij (θe) in (C40) by (A5), and then Lw (θe) by (C36), we have

π (θe) = [µ (θe)− ξ]
X(θe)

µ (θe)
le (θe)

σ−1
σ Lw (θe)

ξ σ−1
σ

A
σ−1

σ Q
1
σ

WN
1
σ

e

W (C41)

= [µ (θe)− ξ]

[
X(θe)

µ (θe)

ξ A
σ−1

σ Q
1
σ

WN
1
σ

e

] 1
1−ξ σ−1

σ

le (θe)
1− 1

σ

1−ξ σ−1
σ W, ∀θ ∈ Θ,

Taking the derivation of the items on both sides of (C41) and substitute d ln le(θe)
dθe

by the above equation,

we have
d ln π (θe)

dθe
=

1+εe
εe

d ln[X(θe)/µ(θe)]
dθe

+ σ−1
σ

d ln[1−τe(θe)]
dθe

1+εe
εe

(
1− ξ σ−1

σ

)
− σ−1

σ

+
d ln [µ (θe)− ξ]

dθe
, ∀θ ∈ Θ. (C42)

Therefore, we define

H(θe) ≡
1− Fe(θe)

fe (θe)

 1+εe
εe

d ln[X(θe)/µ(θe)]
dθe

1+εe
εe

(
1− ξ σ−1

σ

)
− σ−1

σ

+
d ln [µ (θe)− ξ]

dθe

 , ∀θ ∈ Θ,



which is 1−Fe(θe)
fe(θe)

d ln π(θe)
dθe

(the hazard ratio of profit at π (θe)) when dτe(θe)
dθe

= 0. Note that once π (θe) is

established by the data, H(θe) can be derived by the profit distribution when the original profit tax is

linear.

(c) We now derive a more explicit expression of µ (θe)
∂ ln P(Qij(θe),θe)

∂θe
+ x′e(θe)

xe(θe)
. Remind that (e.g., see (A45)

and (A46)) εQ−ij (θe) = − 1
µ(θe)

+ σ−1
σ and

∂ ln P
(
Qij, θe

)
∂θe

=
χ′(θe)

χ(θe)
+ εQ−ij (θe)

d ln Qij (θe)

dθe
, ∀θ ∈ Θ. (C43)

where

d ln Qij (θe)

dθe
=

x′e (θe)

xe (θe)
+

d ln le (θe)

dθe
+ ξ

d ln Lw,ij (θe)

dθe

=
x′e (θe)

xe (θe)
+

1
1− ξ σ−1

σ

l′e (θe)

le (θe)
+

ξ

1− ξ σ−1
σ

d
dθe

ln
X(θe)

µ (θe)
.

The second equation of the above equations is derived by (C37). Substituting l′e(θe)
le(θe)

by (C39), we have

d ln Qij (θe)

dθe

=
x′e (θe)

xe (θe)
+

ξ

1− ξ σ−1
σ

d
dθe

ln
X(θe)

µ (θe)
+

1
1− ξ σ−1

σ

d
dθe

ln X(θe)
µ(θe)

+
[
1− ξ σ−1

σ

] d ln[1−τe(θe)]
dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
)

=
x′e (θe)

xe (θe)
+

(
1 + ξ εe+1

εe

)
d

dθe
ln X(θe)

µ(θe)
+ d ln[1−τe(θe)]

dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
)

Substituting d ln Qij(θe)
dθe

in (A46) by the above equation gives

µ (θe)
∂ ln P

(
Qij(θe), θe

)
∂θe

+
x′e (θe)

xe (θe)

= µ (θe)

[
χ′(θe)

χ(θe)
+ εQ−ij (θe)

d ln Qij (θe)

dθe

]
+

x′e (θe)

xe (θe)

= µ (θe)
χ′(θe)

χ(θe)
+
[
µ (θe) εQ−ij (θe) + 1

] x′e (θe)

xe (θe)
+

µ (θe) εQ−ij (θe)

(
1 + ξ εe+1

εe

)
d

dθe
ln X(θe)

µ(θe)
+ d ln[1−τe(θe)]

dθe

εe+1
εe

(
1− ξ σ−1

σ

)
− σ−1

σ

,



where

µ (θe)
χ′(θe)

χ(θe)
+
[
µ (θe) εQ−ij (θe) + 1

] x′e (θe)

xe (θe)

= µ (θe)
χ′(θe)

χ(θe)
+ µ (θe)

σ− 1
σ

x′e (θe)

xe (θe)

= µ (θe)
d

dθe

[
ln

X(θe)

µ (θe)

]
+ µ (θe)

d ln µ (θe)

dθe

=
[
µ (θe) εQ−ij (θe) + 1

] σ

σ− 1
d

dθe

[
ln

X(θe)

µ (θe)

]
+ µ (θe)

d ln µ (θe)

dθe
.

The first and third equations of the above equations are derived by εQ−ij (θe) = − 1
µ(θe)

+ σ−1
σ , and the

second equation is derived by X(θe) = χ (θe) xe (θe)
σ−1

σ . Therefore, we have

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P
(
Qij(θe), θe

)
∂θe

+
x′e (θe)

xe (θe)

]

=
1− Fe(θe)

fe(θe)

1 + εe

εe


[
µ (θe) εQ−ij (θe) + 1

]
σ

σ−1
d

dθe

[
ln X(θe)

µ(θe)

]
+ µ (θe)

d ln µ(θe)
dθe

+µ (θe) εQ−ij (θe)
(1+ξ εe+1

εe ) d
dθe

[
ln X(θe)

µ(θe)

]
+ d ln[1−τe(θe)]

dθe
εe+1

εe (1−ξ σ−1
σ )− σ−1

σ


=

1− Fe(θe)

fe(θe)

d ln [µ (θe)− ξ]

dθe

1 + εe

εe
[µ (θe)− ξ] +

1− Fe(θe)

fe(θe)

1+εe
εe

d
dθe

ln X(θe)
µ(θe)

1+εe
εe

(
1− ξ σ−1

σ

)
− σ−1

σ

 [µ (θe) εQ−ij (θe) + 1
]

σ
σ−1

εe+1
εe

−
(

1 + ξ εe+1
εe

) 
+

1− Fe(θe)

fe(θe)

1 + εe

εe

µ (θe) εQ−ij (θe)
d ln[1−τe(θe)]

dθe
1+εe

εe

(
1− ξ σ−1

σ

)
− σ−1

σ

,

where the second equation is derived by µ (θe)
d ln µ(θe)

dθe
= [µ (θe)− ξ]

d ln[µ(θe)−ξ]
dθe

and combine terms multi-

plied by d
dθe

ln X(θe)
µ(θe)

. Using (45), which implies

1− Fe(θe)

fe (θe)

1+εe
εe

d
dθe

ln X(θe)
µ(θe)

1+εe
εe

(
1− ξ σ−1

σ

)
− σ−1

σ

= H(θe)−
1− Fe(θe)

fe (θe)

d ln [µ (θe)− ξ]

dθe
,

we have

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P
(
Qij(θe), θe

)
∂θe

+
x′e (θe)

xe (θe)

]

=
1− Fe(θe)

fe(θe)

d ln [µ (θe)− ξ]

dθe

1 + εe

εe

[
µ (θe) +

εe

εe + 1
−
[
µ (θe) εQ−ij (θe) + 1

] σ

σ− 1

]
+H(θe)

εe + 1
εe

[
σ

σ− 1

[
µ (θe) εQ−ij (θe) + 1

]
− εe

εe + 1
− ξ

]
+

1− Fe(θe)

fe(θe)

1 + εe

εe

µ (θe) εQ−ij (θe)
d ln[1−τe(θe)]

dθe
1+εe

εe

(
1− ξ σ−1

σ

)
− σ−1

σ

,



where according to εQ−ij (θe) = − 1
µ(θe)

+ σ−1
σ ,
[
µ (θe) εQ−ij (θe) + 1

]
σ

σ−1 = µ (θe).

Therefore,

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P
(
Qij(θe), θe

)
∂θe

+
x′e (θe)

xe (θe)

]
(C44)

=
1− Fe(θe)

fe(θe)

d ln [µ (θe)− ξ]

dθe
+ H(θe)

[
εe + 1

εe
[µ (θe)− ξ]− 1

]
+

1− Fe(θe)

fe(θe)

1 + εe

εe

µ (θe) εQ−ij (θe)
d ln[1−τe(θe)]

dθe
1+εe

εe

(
1− ξ σ−1

σ

)
− σ−1

σ

.

Substituting l′e(θe)
le(θe)

in ĨRE (θe) by (C39), we have, for any θe ∈ Θe,

ĨRE (θe) = [1− ge(θe)] εQ−ij(θe)− εQ−ij(θe) [1− ḡe(θe)]


H(θe) +

1−Fe(θe)
fe(θe)

d ln[µ(θe)−ξ]
dθe[

1−ξ
εv
le
(θe)

εv
Lw

(θe)

]
µ(θe)εQ−ij (θe)

+
1+εe

εe
1−Fe(θe)

fe(θe)
d ln[1−τe(θe)]

dθe[
1−ξ

εv
le
(θe)

εv
Lw

(θe)

]
[ εe+1

εe −
σ−1

σ (1+ εe+1
εe ξ)]

 . (C45)

Last, substituting 1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Qij(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
and ĨRE (θe) in (C35) by (C44) and (C45),

respectively, we have, for any θe ∈ Θe,

1 + RE (θe) ξ
εv

le (θe)

εv
Lw (θe)

1− τe (θe)

=

1 + [1− ḡe(θe)]

 H(θe)
[

εe+1
εe

[µ (θe)− ξ]− 1
]
+

1−Fe(θe)
fe(θe)

[
d ln[µ(θe)−ξ]

dθe
+

1+εe
εe µ(θe)εQ−ij (θe)

1+εe
εe (1−ξ σ−1

σ )− σ−1
σ

d ln[1−τe(θe)]
dθe

] 
µ (θe)

+

[
1− ξ

εv
le (θe)

εv
Lw
(θe)

]
[1− ge(θe)] εQ−ij(θe)

−
[

1− ξ
εv

le (θe)

εv
Lw
(θe)

]
εQ−ij(θe) [1− ḡe(θe)]


H(θe) +

1−Fe(θe)
fe(θe)

d ln[µ(θe)−ξ]
dθe[

1−ξ
εv
le
(θe)

εv
Lw

(θe)

]
µ(θe)εQ−ij (θe)

+
1+εe

εe
1−Fe(θe)

fe(θe)
d ln[1−τe(θe)]

dθe[
1−ξ

εv
le
(θe)

εv
Lw

(θe)

]
[ 1+εe

εe (1−ξ σ−1
σ )− σ−1

σ ]

 .

Notice that 1− ξ
εv

le (θe)

εv
Lw (θe)

= 1
1−ξ σ−1

σ

(e.g., see (39)), one can see that the sum of terms multiplied by d ln[1−τe(θe)]
dθe

equals zero. Moreover, the sum of terms multiplied by d ln[µ(θe)−ξ]
dθe

also equals zero. Last, using the defini-

tion of IRE (θe) (e.g., see (44)), we have (42).



On the other hand, combining (C36) and (C38), we have

Lw (θe) =

(X(θe)

µ (θe)

ξA
σ−1

σ Q
1
σ

WN
1
σ

e

) εe+1
εe

[1− τe (θe)]
σ−1

σ W
σ−1

σ


1

1+εe
εe (1−ξ σ−1

σ )− σ−1
σ

.

Substituting Lw (θe) in (24) by the above equation, we have (46) and (47).�

C.3 Proof of Corollary 1

Substituting elasticities, RE (θe) and IRE (θe) in (42) by (39), (40), (43) and (44), we have

1− τe (θe) =

σ
σ−1
σ

σ−1−ξ −
ξ

σ
σ−1−ξ

µ
µ(θe)

1+[1−ḡe(θe)]H(θe)[ 1
εe µ(θe)− 1+εe

εe ξ+ 1
σ−1 ]+[µ(θe)− σ

σ−1 ][1−ge(θe)]

µ(θe)

Notice that 1 < σ < η(θe), σ
σ−1 ≥ µ (θe) =

1
1−
[

1
η(θe)

I−1
I + 1

σ
1
I

] > 1, 0 ≤ ξ < 1. We have

1− ξ
σ

σ−1 − ξ
RE (θe) =

1
σ

σ−1 − ξ

[
σ

σ− 1
µ (θe)

µ
− ξ

]
> 0.

Then, we have

1 + [1− ḡe(θe)] H(θe)

[
1
εe

µ (θe)−
1 + εe

εe
ξ +

1
σ− 1

]
+

[
µ (θe)−

σ

σ− 1

]
[1− ge(θe)] ≥ 0

since 1 − τe (θe) ≥ 0. According to the above inequality, we have γ(θe) ≥ 0 and γ(θe) ≥ 0. When

1+εe
εe

(
σ

σ−1 − ξ
)
= 2, we have

µ =

∫
θe

µ (θe) [1− τe (θe)]
(

X(θe)
µ(θe)

) εe+1
εe

σ
σ−1 fe (θe) dθe∫

θe
[1− τe (θe)]

(
X(θe)
µ(θe)

) εe+1
εe

σ
σ−1 fe (θe) dθe

=

∫
θe

µ (θe) γ(θe)
[

σ
σ−1 µ (θe)− ξµ

]
dθe∫

θe
γ(θe)

[
σ

σ−1 µ (θe)− ξµ
]

dθe
,

where the second equation is derived by the relationship between γ(θe) and [1− τe (θe)]. Accordingly, we

have

σ

σ− 1
µ
∫

θe

γ(θe)µ (θe) dθe − ξµ2
∫

θe

γ(θe)dθe

=
σ

σ− 1

∫
θe

µ (θe)
2 γ(θe)dθe − ξµ

∫
θe

µ (θe) γ(θe)dθe,



or equivalently

0 = ξµ2 −
[(

σ

σ− 1
+ ξ

) ∫
θe

γ(θe)µ (θe) dθe

]
µ +

σ

σ− 1

∫
θe

µ (θe)
2 γ(θe)dθe, (C46)

which is a quadratic equation of µ.

We define

∆ =

(
σ

σ− 1
− ξ

)2 [∫
θe

γ(θe)µ (θe) dθe

]2

− 4
σ

σ− 1
ξ

[∫
θe

µ2 (θe) γ(θe)dθe −
(∫

θe

γ(θe)µ (θe) dθe

)2
]

as the discriminant of (C46). Set

Eγ (µ) =
∫

θe

γ(θe)µ (θe) dθe, Varγ (µ) =

[∫
θe

µ2 (θe) γ(θe)dθe −
(∫

θe

γ(θe)µ (θe) dθe

)2
]

and

µ̃ (θe) = (σ− 1) [µ (θe)− 1] .

We have µ̃ (θe) ∈ (0, 1], because µ (θe) ∈ (1, σ
σ−1 ]. Set

Eγ (µ̃) =
∫

θe

γ(θe)µ̃ (θe) dθe, Eγ

(
µ̃2) = ∫

θe

γ(θe)µ̃ (θe)
2 dθe

Varγ (µ̃) =

[∫
θe

µ̃ (θe)
2 γ(θe)dθe −

(∫
θe

γ(θe)µ̃ (θe) dθe

)2
]

.

Then, we have

∆ =

(
σ

σ− 1
− ξ

)2 [
1 +

1
σ− 1

Eγ (µ̃)

]2

− 4
σ

σ− 1
ξ

(σ− 1)2 Varγ (µ) .

One necessary condition for the exist of solution to (C46) is ∆ ≥ 0. Notice that Eγ

(
µ̃2) ≤ Eγ (µ̃). We

have

∆ =

(
σ

σ− 1
− ξ

)2

+
2

σ− 1

(
σ

σ− 1
− ξ

)2

Eγ (µ̃) +

(
σ

σ−1 + ξ
)2

(σ− 1)2 [Eγ (µ̃)]
2 (C47)

− 2
σ− 1

(
σ

σ− 1

)2 2ξ

σ
Eγ

(
µ̃2)

≥ ∆H (Eγ (µ̃)) ,

where we set

∆H (Eγ (µ̃)) =

(
σ

σ− 1
− ξ

)2

− 2
σ− 1

(
σ

σ− 1

)2
[

2ξ

σ
−
(

1− σ− 1
σ

ξ

)2
]

Eγ (µ̃) +

(
σ

σ−1 + ξ
)2

(σ− 1)2 [Eγ (µ̃)]
2

as a quadratic function of Eγ (µ̃).



The minimium value of ∆H is derived at µ∗ ≡
(σ−1)

[
2σ−1

σ2 ξ2−(1−ξ)2
]

(1+ σ−1
σ ξ)

2 < 1. However, Eγ (µ̃) ∈ (0, 1], and

thus µ∗ may not belong to the domain of Eγ (µ̃).

If µ∗ ≤ 0, to prove that ∆ ≥ 0, we only need to prove that ∆H ≥ 0 when Eγ (µ̃) = 1 and Eγ (µ̃) = 0.

This is true. According to (C47), when Eγ (µ̃) = 1, we have

∆H =

(
σ

σ− 1
− ξ

)2

− 2
σ− 1

(
σ

σ− 1

)2
[

2ξ

σ
−
(

1− σ− 1
σ

ξ

)2
]
+

(
σ

σ−1 + ξ
)2

(σ− 1)2

=

(
σ

σ− 1

)2 ( σ

σ− 1
− ξ

)2

−
(

σ

σ− 1

)2 2
σ− 1

2ξ

σ
+

(
σ

σ− 1

)2 2
σ− 1

2ξ

σ

=

(
σ

σ− 1

)2 ( σ

σ− 1
− ξ

)2

> 0

When Eγ (µ̃) = 0, we have

∆H =

(
σ

σ− 1
− ξ

)2

> 0.

If µ∗ > 0 (note that µ∗ must be lower than one), to prove ∆ ≥ 0, we only need to prove that ∆H (µ∗) ≥ 0.

To see this, first note that when µ∗ ∈ (0, 1), we have

2σ− 1
σ2 >

(
1
ξ
− 1
)2

and
2

σ− 1

(
σ

σ− 1

)2
[

2ξ

σ
−
(

1− σ− 1
σ

ξ

)2
]
> 0.

We set

∆̃ =

{
2

σ− 1

(
σ

σ− 1

)2
[

2ξ

σ
−
(

1− σ− 1
σ

ξ

)2
]}2

− 4
(

σ

σ− 1
− ξ

)2 ( σ
σ−1 + ξ

)2

(σ− 1)2

as the discriminant of ∆H (Eγ (µ̃)) > 0. ∆̃ < 0 is a sufficient condition for ∆ > 0. To prove ∆̃ < 0, we only

need to show that

1
σ− 1

(
σ

σ− 1

)2
[

2ξ

σ
−
(

1− σ− 1
σ

ξ

)2
]
<

(
σ

σ−1 − ξ
) (

σ
σ−1 + ξ

)
(σ− 1)

,

which is equivalent to

2 ·
(

σ

σ− 1

)2

(1− ξ) > 0.

Notice that the above inequality must hold. Thus, we must have ∆ > 0. In conclusion, there are two

solutions to the quadratic equation (C46). However, ∆ > 0 does not necessarily mean that the solutions are

all in the domain of µ (i.e., (1, σ
σ−1 ]).

In the following analysis, we prove that there exist unique solution in the domain of µ. The two poten-



tial solutions are µ1 and µ2:

µ1 =

(
σ

σ−1 + ξ
) ∫

θe
γ(θe)µ (θe) dθe

2ξ
−
√

∆
2ξ
≥
∫

θe

γ(θe)µ (θe) dθe

µ2 =

(
σ

σ−1 + ξ
) ∫

θe
γ(θe)µ (θe) dθe

2ξ
+

√
∆

2ξ
≤ σ

σ− 1
1
ξ

∫
θe

γ(θe)µ (θe) dθe.

In the following analysis, we prove that µ2 > σ
σ−1 and µ1 ∈ (1, σ

σ−1 ]. To prove this, we only need to

show that √
∆ >

∣∣∣∣2ξ
σ

σ− 1
−
(

σ

σ− 1
+ ξ

) ∫
θe

γ(θe)µ (θe) dθe

∣∣∣∣ .

In particular, µ2 > σ
σ−1 is equivalent to

µ2 =

(
σ

σ−1 + ξ
) ∫

θe
γ(θe)µ (θe) dθe

2ξ
+

√
∆

2ξ
>

σ

σ− 1
,

i.e., √
∆ > 2ξ

σ

σ− 1
−
(

σ

σ− 1
+ ξ

) ∫
θe

γ(θe)µ (θe) dθe.

Substituting µ (θe) in the above inequality by µ (θe) = 1 + 1
σ−1 µ̃ (θe), we have

√
∆ > 2ξ

σ

σ− 1
−
(

σ

σ− 1
+ ξ

) [
1 +

1
σ− 1

Eγ (µ̃)

]
=

(
σ + 1
σ− 1

ξ − σ

σ− 1

)
−
(

σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃) .

When ξ ≤ σ
σ+1 , the above inequality must holds. When ξ > σ

σ+1 , to prove the above inequality, we only

need to show

∆−
[(

σ + 1
σ− 1

ξ − σ

σ− 1

)
−
(

σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃)

]2

> 0.

To see this, notice that

∆−
[(

σ + 1
σ− 1

ξ − σ

σ− 1

)
−
(

σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃)

]2

=

(
σ

σ− 1
− ξ

)2

+
2

σ− 1

(
σ

σ− 1
− ξ

)2

Eγ (µ̃) +

(
σ

σ−1 + ξ
)2

(σ− 1)2 [Eγ (µ̃)]
2

− 2
σ− 1

(
σ

σ− 1

)2 2ξ

σ
Eγ

(
µ̃2)− [(σ + 1

σ− 1
ξ − σ

σ− 1

)
−
(

σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃)

]2

> ∆M,

where

∆M = ∆H (Eγ (µ̃))−
[(

σ + 1
σ− 1

ξ − σ

σ− 1

)
−
(

σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃)

]2

.



Rearranging the right side the the above equation, we have

∆M =
2

σ− 1
2σ

σ− 1
ξ (1− ξ) [1− Eγ (µ̃)] ≥ 0.

Since

∆−
[(

σ + 1
σ− 1

ξ − σ

σ− 1

)
−
(

σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃)

]2

> ∆M > 0,

we have

µ2 =
σ

σ− 1
1
ξ

∫
θe

γ(θe)µ (θe) dθe >
σ

σ− 1
.

We now prove that

σ

σ− 1
≥ µ1 =

(
σ

σ−1 + ξ
) ∫

θe
γ(θe)µ (θe) dθe

2ξ
−
√

∆
2ξ

> 1

First, µ1 ≥
∫

θe
γ(θe)µ (θe) dθe, where µ (θe) ∈ (1, σ

σ−1 ] and γ(θe) is a densify with support Θe. Thus,

µ1 > 1. Second, notice that

∆−
[(

σ + 1
σ− 1

ξ − σ

σ− 1

)
−
(

σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃)

]2

≥ 0,

(e.g., see (C47)) we have

√
∆ ≥

(
σ

σ− 1
+ ξ

) [
1 +

1
σ− 1

Eγ (µ̃)

] (
σ

σ− 1
+ ξ

)
− 2ξσ

σ− 1

=

(
σ

σ− 1
+ ξ

)
1

σ− 1
Eγ (µ̃)−

(
σ + 1
σ− 1

ξ − σ

σ− 1

)
The above inequality implies

√
∆ ≥

(
σ

σ− 1
+ ξ

) ∫
θe

γ(θe)µ (θe) dθe −
2ξσ

σ− 1
,

which gives

µ1 =

(
σ

σ−1 + ξ
) ∫

θe
γ(θe)µ (θe) dθe

2ξ
−
√

∆
2ξ
≤ σ

σ− 1
.

In conclusion, we have

µ =

(
σ

σ−1 + ξ
) ∫

θe
γ(θe)µ (θe) dθe

2ξ
−
√

∆
2ξ

.

�

C.4 Proof of Proposition 5

(i) Rewriting the general tax formula for the entrepreneurs in equation (42) for the case with uniform

markups, we have part one of Proposition 5. By the definitions of επ
1−τe

(θe) and εQ−ij (θe) (i.e., (40) and



(39)), we have

1
1− τe (θe)

=
1 + [1− ḡe(θe)] H(θe)

[
1+εe

εe
[µ− ξ]− 1

]
µ

+

σ
σ−1

σ
σ−1 − ξ

[
σ− 1

σ
− 1

µ

]
{[1− ge(θe)]− [1− ḡe(θe)] H(θe)} .

(ii) Supposing go (·) (such that ḡo (·)) is exogenous, we have

d
[

1
1−τe(θe)

]
dµ

=
1
µ2

 µ [1− ḡe(θe)] H(θe)
εe+1

εe
− [1− ḡe(θe)] H(θe)

[
(µ− ξ) εe+1

εe
− 1
]

+
σ

σ−1
σ

σ−1−ξ {[1− ge(θe)]− [1− ḡe(θe)] H(θe)} − 1


=

1
µ2

 [1− ḡe(θe)] H(θe)
[
ξ εe+1

εe
+ 1
]

+
σ

σ−1
σ

σ−1−ξ {[1− ge(θe)]− [1− ḡe(θe)] H(θe)} − 1


=

1
µ2

 [1− ḡe(θe)] H(θe)ξ
[

εe+1
εe
− 1

σ
σ−1−ξ

]
+ [1− ge(θe)]

σ
σ−1
σ

σ−1−ξ − 1


and

d
[

1−τw(θw)
1−τe(θe)

]
dµ

=
1− τw (θw)

µ

d
[

µ
1−τe(θe)

]
dµ

=
1− τw (θw)

µ

 [1− ḡe(θe)] H(θe)
εe+1

εe
+

1
σ

σ−1−ξ {[1− ge(θe)]− [1− ḡe(θe)] H(θe)}

 .

According to the above equations, τe (θe) increases in µ iff

[1− ḡe(θe)] H(θe)ξ

[
εe + 1

εe
− 1

σ
σ−1 − ξ

]
+ [1− ge(θe)]

σ
σ−1

σ
σ−1 − ξ

− 1 > 0,

i.e.,

ge(θe) < 1−
1− [1− ḡe(θe)] H(θe)ξ

[
εe+1

εe
− 1

σ
σ−1−ξ

]
σ

σ−1
σ

σ−1−ξ

(C48)

=
ξ (σ− 1)

σ

{
1 + [1− ḡe(θe)] H(θe)

[
εe + 1

εe

(
σ

σ− 1
− ξ

)
− 1
]}

.

1−τw(θw)
1−τe(θe)

increases in µ iff

[1− ḡe(θe)] H(θe)
εe + 1

εe
+

1
σ

σ−1 − ξ
{[1− ge(θe)]− [1− ḡe(θe)] H(θe)} > 0,



i.e.,

ge(θe) < 1 + [1− ḡe(θe)] H(θe)

[
εe + 1

εe

(
σ

σ− 1
− ξ

)
− 1
]

, (C49)

or equivalently

ge(θe)− 1 + [1− ḡe(θe)] H(θe) < [1− ḡe(θe)] H(θe)
εe + 1

εe

(
σ

σ− 1
− ξ

)
,

which must be true when [1− ge(θe)]− [1− ḡe(θe)] H(θe) > 0 and H(θe) > 0.

(iii) When ge(θe) = ḡe(θe) and H(θe) > 0, inequality (C48) is equivalent to

ge(θe) <

ξ(σ−1)
σ

{
1 + H(θe)

[
εe+1

εe

(
σ

σ−1 − ξ
)
− 1
]}

1 + ξ(σ−1)
σ H(θe)

[
εe+1

εe

(
σ

σ−1 − ξ
)
− 1
] ,

where
1+H(θe)[ εe+1

εe ( σ
σ−1−ξ)−1]

σ
ξ(σ−1)+H(θe)[ εe+1

εe ( σ
σ−1−ξ)−1]

increases in H(θe)
[

εe+1
εe

(
σ

σ−1 − ξ
)
− 1
]
, because σ

ξ(σ−1) > 1. Besides, under

condition (29), we have εe+1
εe

(
σ

σ−1 − ξ
)
− 1 > 0 and that H(θe)

[
εe+1

εe

(
σ

σ−1 − ξ
)
− 1
]

increases in H(θe).

Thus, when H(θe) > 0, the above inequality holds if

ge(θe) ≤
ξ (σ− 1)

σ
.

Analogously, when ge(θe) = ḡe(θe) < 1 and H(θe) > 0, inequality (C49) must holds.�

C.5 Proof of Corollary 2

(i) When firm-level markup is constant, we have H (θe) =
1−Fe(θe)

fe(θe)
d ln X(θe)

dθe

1+εe
εe

1+εe
εe (1−ξ σ−1

σ )− σ−1
σ

, which is constant

if 1−Fe(θe)
fe(θe)

d ln X(θe)
dθe

is constant. Thus H (θe) is constant for θe ≥ θ∗e . On the other hand, notice that if for any

θe ≥ θ?e , ge(θe) = ĝe is constant, for any θe ≥ θ?e , ge(θe) is also constant and equal to ĝe. With the above two

findings, part one of Corollary 2 follow directly from Theorem 1.

(ii) To prove part two of Corollary 2, first note that 1
1−τ̂e

and thus τ̂e increases with µ. Notice that for any

θe ∈ Θe, µ (θe) non-decreases with the decrease of I, µ as a weighted average of µ (θe) must non-decreases

with the decrease of I. Thus a condition guarantees that, given µ, 1
1−τ̂e

increases with µ̂ is a sufficient

condition for τ̂e to be increasing with the decrease of I. We now show that (C50) is such a condition.

To see this, we first treat ĝe and µ as given and take the derivative of 1
1−τ̂e

with respect to µ̂:

d
(

1
1−τ̂e

)
dµ̂

=
− 1

µ̂2

[
1 + (1− ĝe) Ĥ 1

ε̂π
1−τe

]
+ 1

µ̂ (1− ĝe) Ĥ 1+εe
εe

+
σ

σ−1
1

µ̂2
σ

σ−1−ξ (1− ĝe)
(

1− Ĥ
)

1− ξ
σ

σ−1−ξ
µ−µ̂

µ̂

−

ξ
σ

σ−1−ξ
µ
µ̂2

[
1
µ̂

[
1 + (1− ĝe) Ĥ 1

ε̂π
1−τe

]
+

1− σ
σ−1

1
µ̂

σ
σ−1−ξ (1− ĝe)

(
1− Ĥ

)]
[
1− ξ

σ
σ−1−ξ

µ−µ̂
µ̂

]2



Rearranging the right side of the above equation, we find that d
dµ̂

(
1

1−τ̂e

)
> 0 if and only if

(1− ĝe) Ĥ

 ( σ
σ−1 − ξ

) [(
µ̂− ξµ σ−1

σ

) 1+εe
εe
− 1

ε̂π
1−τe

]
+
(

σ
σ−1 − ξµ σ−1

σ

)
 >

σ

σ− 1
− ξ.

Note that the term in the bracket is positive, because for any θe ∈ Θe, µ (θe) ≤ σ
σ−1 . Thus, we have

1− ĝe >
σ

σ−1 − ξ

Ĥ

 ( σ
σ−1 − ξ

) [(
µ̂− ξµ σ−1

σ

) 1+εe
εe
− 1

επ
1−τe

]
+
(

σ
σ−1 − ξµ σ−1

σ

)
 .

Dividing both the numerator and denominator of the right side of the above inequality by σ
σ−1 − ξ and

substituting 1
ε̂π

1−τe
by 1+εe

εe
(µ̂− ξ)− 1, we have

ĝe < 1− 1[
ξ
(
1− µ σ−1

σ

) 1+εe
εe

+ 1 +
σ

σ−1−ξµ σ−1
σ

σ
σ−1−ξ

]
Ĥ

. (C50)

(C50). Notice that µ ≤ σ
σ−1 , the term in the bracket of the right side of (53) is not less than 2. Thus, condition

(53) satisfies if ĝe < 1− 1
2Ĥ

.

Last, since for any I > 1, (54) is a sufficient condition for τ̂e to be increasing with the marginal decrease

of I (just suppose that I is continuous), and τ̂e is twice continuously differentiable with respect to I, accord-

ing to the mean value theorem, (54) is also a sufficient condition for τ̂e to be increasing with the decrease of

I from n + 1 to n, where n ∈N+.�



D Discussion and Robustness

D.1 Proof of Theorem 2

We prove Theorem 2 following the Lagrangian problem presented in Appendix C.1.1. Note that the ex-

pression of markup (20) is now generalized to be µ(θe) =
P(θe)

∂Qij(θe)

∂Lw(θe)
[1−τs(θe)]

W . By the definition of v (θe)

(e.g., see (38)), we have v (θe) = P
(
Qij (θe) , θe

) [
1 + εQij(θe)

]
∂Qij(θe)

∂Lw(θe)
. Notice that 1− τs (θe) =

W
v(θe)

, as in

the benchmark model, we hvae µ (θe) =
1

1+εQij (θe)
.

(i) When the uniform restriction on v (θe, θele (θe) , Lw (θe) , Q) is loosened and ϕ (θe) = 0. Under this

case, according to the expression of ∂£
∂Lw(θe)

(e.g., (C7)), we have

P (θe)
∂Qij (θe)

∂Lw(θe)
=

λ′

λ
− κ′ (θe)

λLw (θe) N fe (θe)

∂ ln Qij (θe)

∂ ln Lw(θe)
(D2)

=
λ′

λ
− κ′ (θe) ξ

λLw (θe) N fe (θe)
.

Dividing both sides by
εv

Lw (θe)

Lw(θe)N fe(θe)
and integrating across θe gives

∫
θe

P (θe) Qij (θe) ξ
N fe (θe)

εv
Lw
(θe)

dθe =
λ′

λ

∫
θe

Lw (θe) N fe (θe)

εv
Lw
(θe)

dθe −
∫

θe

κ′ (θe)

λεv
Lw
(θe)

ξdθe,

Using κ(θe) = κ(θe) = 0 and integration by parts, we have

λ′

λW
=

ξ
∫

θe
P (θe) Qij (θe) N fe (θe) dθe

W
∫

θe
Lw (θe) N fe (θe) dθe

=
ξ
∫

θe

P(θe)Qij(θe)

WLw(θe)
WLw (θe) N fe (θe) dθe∫

θe
WLw (θe) N fe (θe) dθe

=
ξ
∫

θe

µ(θe)
ξ[1−τE

s (θe)]
WLw (θe) N fe (θe) dθe∫

θe
WLw (θe) N fe (θe) dθe

= µ̃.

where the third equation is derived by the generalized definition of markup (i.e., µ(θe) =
P(θe)

∂Qij(θe)

∂Lw(θe)
[1−τs(θe)]

W ).



By the definition of tax wedges (e.g., see (37)), we can substitute P (θe)
∂Qij(θe)

∂Lw(θe)
in (D2) with Wµ(θe)

1−τE
s (θe)

:

1
1− τE

s (θe)
=

λ′

λWµ (θe)
− κ′ (θe) ξ

λLw (θe) N fe (θe)Wµ (θe)
(D3)

=
µ̃

µ (θe)
− κ′ (θe) ξ

λLw (θe) N fe (θe)Wµ (θe)

=
µ̃

µ (θe)
+

P (θe) Qij (θe)
[
1− τE

s (θe)
]

ξ
[
1− τE

e (θe)
]

εQ−ij(θe)

 ψe (θe)
1+εe

εe

l′e(θe)
le(θe)

+

ψ′e (θe) + ψe (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe


Lw (θe)Wµ (θe) λN fe (θe)

=
µ̃

µ (θe)
+
[
1− τE

e (θe)
]

εQ−ij(θe)

 [1− ge(θe)]−
[1−ḡe(θe)][1−Fe(θe)]

fe(θe)

[
1+εe

εe

l′e(θe)
le(θe)

+
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

]  ,

where the third equation is derived by the modified (C16):

κ′ (θe) = −
d
[
ψe (θe) φ′e (le (θe)) le (θe) µ̂(θe)εQ−ij(θe)

]
dθe

(D4)

= −


ψ′e (θe) φ′e (le (θe)) le (θe) µ̂(θe)εQ−ij(θe)+

ψe (θe) φ′e (le (θe))
1+εe

εe
l′e (θe) µ̂(θe)εQ−ij(θe)+

ψe (θe) φ′e (le (θe)) le (θe)
d ln
[
µ̂(θe)εQ−ij (θe)

]
dθe


= −φ′e (le (θe)) le (θe) µ̂(θe)εQ−ij(θe)

 ψe (θe)
1+εe

εe

l′e(θe)
le(θe)

+

ψ′e (θe) + ψe (θe)
d ln
[
µ̂(θe)εQ−ij (θe)

]
dθe


and the tax wedge, 1− τE

e (θe) =
φ′e(le(θe))

P(θe)
µ(θe)

∂Qij(θe)

∂le(θe)
[1−τE

s (θe)]
(e.g., see (37)). These two equations implies

κ′ (θe) = −P (θe) Qij (θe)
[
1− τE

e (θe)
] [

1− τE
s (θe)

]
εQ−ij(θe)

 ψe (θe)
1+εe

εe

l′e(θe)
le(θe)

+

ψ′e (θe) + ψe (θe)
d ln
[
µ(θe)εQ−ij (θe)

]
dθe

 .

The last equation of (D3) is derived by (C12), (C13) and 1− τE
s (θe) =

Wµ(θe)

P(θe)
∂Qij(θe)

∂Lw(θe)

= WLw(θe)µ(θe)
ξP(θe)Qij(θe)

.

(ii) According to the expression of ∂£
∂lw(θw)

(e.g., (C6)), we have

1
φ′w(lw(θw))

xw(θw)

=
λ

λ′

[
1− x′w (θw)

xw (θw)

ψw(θw)

λNw fw (θw)

1 + εw

εw

]
. (D5)

Substituting φ′w(lw(θw))
xw(θw)

by
[
1− τE

w (θw)
]

W gives

1
1− τE

w (θw)
=

1
µ̃

[
1 + [1− ḡw(θw)]

1− Fw(θw)

fw(θw)

x′w (θw)

xw (θw)

1 + εw

εw

]
.



(iii) According to the expression of ∂£
∂le(θe)

(e.g., (C8)), we have

τ̃e (θe)

1− τ̃e (θe)
= [1− ḡe(θe)]

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
− 1

1− τ̃e (θe)

WLw (θe)

P (θe) Qij (θe)

1
ξ

κ′ (θe) ξ

λNe fe (θe)WLw (θe)
.

Reminber that 1− τ̃e (θe) =
φ′e(le(θe))

P(θe)
∂Qij(θe)

∂le(θe)

=
[1−τE

e (θe)][1−τE
s (θe)]

µ(θe)
.

Using µ(θe)
1−τE

s (θe)
= µ̃ − κ′(θe)ξ

λWLw(θe)N fe(θe)
to substitute κ′(θe)ξ

λWLw(θe)N fe(θe)
and

ξ[1−τE
s (θe)]

µ(θe)
to substitute WLw(θe)

P(θe)Qij(θe)
,

we have

1
1− τ̃e (θe)

= 1 + [1− ḡe(θe)]
1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
(D6)

+
1

1− τ̃e (θe)

[
1− µ̃

1− τE
s (θe)

µ (θe)

]
.

Lastly, substituting 1− τ̃e (θe) with [1−τE
e (θe)][1−τE

s (θe)]
µ(θe)

, we have (60).�

D.2 Supplement to Theorem 2: A More Explicit Expression

According to the definitions of tax wedges, we have

ξ
[
1− τE

s (θe)
]

µ (θe)
P (θe) Q (θe) = WLw (θe) (D7)

and
P(θe)Qij(θe)

[
1− τE

s (θe)
]

µ (θe)

[
1− τE

e (θe)
]
= le (θe)

1+ 1
εe . (D8)

Substituting P (θe) and Q (θe) in (D7) by (A1) and Qij (θe) = xe (θe) le (θe) Lw (θe)
ξ , we have

([
1− τE

s (θe)
] χ (θe) xe (θe)

1− 1
σ

µ (θe)

)
ξA

σ−1
σ Q

1
σ

N
1
σ W

le (θe)
1− 1

σ Lw (θe)
ξ σ−1

σ = Lw (θe)

and therefore

Lw (θe) =

(
X (θe)

[
1− τE

s (θe)
]

µ (θe)

) 1
1−ξ σ−1

σ

le (θe)
1− 1

σ

1−ξ σ−1
σ

(
ξ A

σ−1
σ Q

1
σ

WN
1
σ

) 1
1−ξ σ−1

σ

On the other hand, combining the two first order conditions delivers

WLw (θe)

ξ

[
1− τE

e (θe)
]
= le (θe)

1+ 1
εe .



Combining the above two equations, we can solve for Lw (θe) and le (θe) and derive

d ln Lw (θe)

dθe
=

d
dθe

[
ln

X(θe)[1−τE
s (θe)]

µ(θe)

]
1− ξ σ−1

σ

+
σ−1

σ

1− ξ σ−1
σ

l′e (θe)

le (θe)

and

d ln le (θe)

dθe
=

d
dθe

[
ln

X(θe)[1−τE
s (θe)]

µ(θe)

]
+
[
1− ξ σ−1

σ

] d ln[1−τE
e (θe)]

dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
) (D9)

Comparing the above two equations to (C37) and (C39), one can see that they are the same except that

now X (θe) is replaced by X (θe)
[
1− τE

s (θe)
]
. In addition, we have

µ (θe)
∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

= µ (θe)
χ′(θe)

χ(θe)
+

x′e (θe)

xe (θe)
+ µ (θe) εQ−ij(θe)

d ln Qij (θe)

dθe

= µ (θe)
χ′(θe)

χ(θe)
+
[
1 + µ (θe) εQ−ij(θe)

] x′e (θe)

xe (θe)
+

µ (θe) εQ−ij(θe)

1− ξ σ−1
σ

d ln le (θe)

dθe

+
ξµ (θe) εQ−ij(θe)

1− ξ σ−1
σ

d
[
ln X(θe)

µ(θe)
+ ln

[
1− τE

s (θe)
]]

dθe
,

where

µ (θe)
χ′(θe)

χ(θe)
+
[
1 + µ (θe) εQ−ij(θe)

] x′e (θe)

xe (θe)

= µ (θe)

[
χ′(θe)

χ(θe)
+

σ− 1
σ

x′e (θe)

xe (θe)

]

= µ (θe)
d ln X(θe)

µ(θe)

dθe
+

dµ (θe)

dθe
.



Therefore, we have

µ (θe)
∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

=
µ (θe) εQ−ij(θe)

1− ξ σ−1
σ

d ln le (θe)

dθe
+

µ (θe)− ξ

1− ξ σ−1
σ

d ln [X (θe) /µ (θe)]

dθe

+
ξµ (θe) εQ−ij(θe)

1− ξ σ−1
σ

d ln
[
1− τE

s (θe)
]

dθe
+

dµ (θe)

dθe

=

[
(µ (θe)− ξ)

εe + 1
εe
− 1
] d ln[X(θe)/µ(θe)]

dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
)

+µ (θe) εQ−ij(θe)

(
1 + ξ εe+1

εe

)
d ln[1−τE

s (θe)]
dθe

+
d ln[1−τE

e (θe)]
dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
) +

dµ (θe)

dθe
,

where the second equation is derived by (D9). In addition, we have

1− Fe(θe)

fe(θe)

1 + εe

εe

[
µ (θe)

∂ ln P (Q (θe) , θe)

∂θe
+

x′e (θe)

xe (θe)

]
=

[
(µ (θe)− ξ)

εe + 1
εe
− 1
]

H(θe) +
1− Fe(θe)

fe (θe)

d ln [µ (θe)− ξ]

dθe

+µ (θe) εQ−ij(θe)
1− Fe(θe)

fe(θe)

1 + εe

εe

(
1 + ξ εe+1

εe

)
d ln[1−τE

s (θe)]
dθe

+
d ln[1−τE

e (θe)]
dθe

εe+1
εe
− σ−1

σ

(
1 + εe+1

εe
ξ
)

Substituting 1−Fe(θe)
fe(θe)

1+εe
εe

[
µ (θe)

∂ ln P(Q(θe),θe)
∂θe

+ x′e(θe)
xe(θe)

]
and d ln le(θe)

dθe
in (60) and (61) by the above equation

and (D9), respectively, and rearrange the formulas, we have

1
1− τE

e (θe)
=

1 + [1− ḡe(θe)]



[
(µ (θe)− ξ) εe+1

εe
− 1
]

H(θe)+
1−Fe(θe)

fe(θe)
d ln[µ(θe)−ξ]

dθe
+

µ (θe) εQ−ij(θe)
1−Fe(θe)

fe(θe)

(1+ξ εe+1
εe )

d ln[1−τE
s (θe)]

dθe
+

d ln[1−τE
e (θe)]

dθe
1− σ−1

σ ( εe
1+εe +ξ)


µ̃

and

1
1− τE

s (θe)
=
[
1− τE

e (θe)
] [1− ḡe(θe)]

[
1−Fe(θe)

fe(θe)

σ−1
σ ξ

µ(θe)
d ln[µ(θe)−ξ]

dθe
−

σ−1
σ µ(θe)−[µ(θe)−ξ] εe+1

εe
µ(θe)

H(θe)

]
+εQ−ij(θe) [1− ge(θe)]− 1

µ(θe)

 .



Setting

H0 (θe) =

 [1− ḡe(θe)]
{

1−Fe(θe)
fe(θe)

σ−1
σ ξ

µ(θe)
d ln[µ(θe)−ξ]

dθe
−
[

σ−1
σ −

(
1− ξ

µ(θe)

)
εe+1

εe

]
H(θe)

}
+εQ−ij(θe) [1− ge(θe)]− 1

µ(θe)



H1 (θe) =

1 + [1− ḡe(θe)]



[
[µ (θe)− ξ] εe+1

εe
− 1
]

H(θe)

+ 1−Fe(θe)
fe(θe)

d ln[µ(θe)−ξ]
dθe

−µ (θe) εQ−ij(θe)
1−Fe(θe)

fe(θe)
1+εe

εe

(1+ξ εe+1
εe ) d ln H0(θe)

dθe
εe+1

εe −
σ−1

σ (1+ εe+1
εe ξ)


µ̃

H2 (θe) =
[1− ḡe(θe)] µ (θe) εQ−ij(θe)

1−Fe(θe)
fe(θe)

1+εe
εe ξ

1− σ−1
σ ( εe

1+εe +ξ)

µ̃
,

we have
1

1− τE
s (θe)

= H0 (θe)
[
1− τE

e (θe)
]

and
1

1− τE
e (θe)

= H1 (θe)− H2 (θe)
d ln

[
1− τE

e (θe)
]

dθe
.

Solving the above differential equation, we have

1− τE
e (θe) =

[
1− τE

e
(
θe
)]

e−
∫ θe

θe
H1(s)
H2(s)

ds
+
∫ θe

θe

e−
∫ s

θe
H1(u)
H2(u)

du 1
H2 (s)

ds,

Last, according to (60), when θe is finite, such that 1− Fe
(
θe
)
= 1,

τE
e (θe)

1−τE
e (θe)

= 1−µ̃
µ̃ .�
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