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1 Introduction

Covid-19 brings about unprecedented economic changes as well as policies that could not have

been foreseen before the advent of the pandemic. One of the sectors that suffers the most is the

retail sector (including restaurants and bars). This sector contributes typically about 8-10% of

GDP and is even larger in terms of employment. Hence, the productivity of retail activities is

paramount for the functioning of the economy. Moreover, busy shopping areas are considered by

many as being very important for the liveliness of cities (Jacobs 1961, Glaeser et al. 2001, Öner

2017).

The growth in online shopping in the last year has been unprecedented (about 80%, see Emerce

2020). Nevertheless, it accounted for merely 10% of overall retail sales before the start of the

pandemic (Van Welie 2020). Moreover, growth in online shopping is concentrated in a few

sectors, like clothing and household items, while other sectors, such as the food and beverages

(FNB), are unaffected.

In this paper, we consider the impact of Covid-19 and subsequent Covid-19 policies on the

productivity of shopping streets. Shopping streets are particularly important in Europe, whereas

shopping malls are typically rare. We gained access to unique real-time Wi-Fi data on footfall,

i.e. the daily visitor flow, measured for more than 500 locations across the Netherlands. Footfall

is a standard measure to explain the attractiveness of a shopping location (Graham 2016). Koster

et al. (2019) show that footfall is the main determinant of retail rent and report an elasticity of

rent with respect to footfall of about 0.50.

Given the obvious importance of footfall for retail income, it makes sense to study the effects of

different policies enacted during the pandemic on footfall. We focus on the Netherlands, where

since the outbreak of the pandemic, three types of policies have been implemented: (i) partial

and full lockdowns, (ii) the obligation to wear face masks inside shops as well as outdoors in

main shopping streets, and (iii) social distancing.

The main policy implemented to curtail the spread of the virus is lockdowns. The first lockdown

was enacted on March 15, 2020, and lasted for about two months. In October 2020, a ‘partial’

lockdown was introduced, where FNB stores were obliged to close. Since December 15, 2020, a

second full lockdown was implemented, which stipulated that all (offline) shops selling non-daily
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(”non-essential”) products were forced to close. One expects these lockdowns to reduce footfall

sharply because everyone is advised to stay at home. Although shops were allowed to be open

during the first lockdown, many shops closed for a myriad of reasons (e.g. health safety, lack of

employees, lack of demand) (Schelfaut 2020). Using a temporal Regression Discontinuity Design

(RDD) in the spirit of Brodeur et al. (2021), we identify (discrete) shocks to local footfall around

the implementation of lockdowns where we further allow the effect of lockdowns to vary by

shopping street characteristics (i.e., number of shops in the vicinity; type of shops), as shopping

streets are extremely heterogeneous in these characteristics. Important and dense shopping

streets are typically located within (historic) city centers in the Netherlands.

Our results show that the lockdown implies reductions in footfall of about 50%. There is

considerable heterogeneity in this effect, with dense shopping streets being the most affected.

The second policy we consider is the legal requirement of wearing face masks inside shops as

well as outdoors in busy shopping streets. A priori, the effect of face mask restrictions on footfall

is ambiguous. On the one hand, it may increase demand for offline shopping, as it increases

health safety. On the other hand, it may decrease demand if the (psychological) cost of wearing

a face mask are increased.

Shoppers are obliged to wear face masks inside shops to limit transmission of the virus as of

December 1, 2020. The face mask requirement was preceded by the government advice to wear

masks inside shops from 30 September 2020.1 Before the pandemic, Dutch shoppers did not wear

face masks. In our econometric analysis, we will exploit the exact date of the implementation of

the law. We emphasize that this date does not coincide with the introduction of other policies,

allowing us to identify the effects of face mask requirements on footfall. We do not find any

evidence that the law, or the advice to wear face masks inside shops, reduced footfall.

To measure the effects of outdoor face mask restrictions, we exploit a short-lived policy pilot

applied to several busy shopping streets in the two largest Dutch cities (i.e. Amsterdam and

Rotterdam). Using daily panel data and spatial differencing, we identify the effect of the outside

face mask restriction on local footfall. We document a substantial 25% reduction in footfall

1In contrast to many other countries, the Dutch national government has not announced a state of emergency
because of the pandemic, and therefore the introduction of a law which obliged shoppers to wear a mask inside
public buildings needed a change of the law, which took time.

2



for regulated streets, and a slightly smaller effect for shopping streets nearby. These results

suggest that the (psychological) costs of wearing a face mask outdoors are non-negligible, but

also indicate that spatial substitution may be important as shoppers can go to other shopping

streets where no restrictions apply.

Another important policy that was implemented to control the pandemic was social distancing,

which was enforced on March 15 2020. More specifically, individuals from different households

were advised to keep a 1.5 m distance from each other at all times. We investigate whether this

may have reduced demand for shopping as Dutch shops are not very spacious and shopping

streets, which are often located in historical city centers, tend to be crowded. We use a difference-

in-differences design to compare footfall during social distancing with footfall on the same day

of the same week in the previous years, following Ostermeijer et al. (2021). We also focus on

heterogeneity in enforcement effects. Social distancing also implies strong reductions in footfall

of about 45%, with the densest shopping streets (in terms of the number of shops) being the

most affected.2

To investigate the implications of these above-mentioned results on retail income, we estimate the

elasticity of footfall with respect to retail rents employing an instrumental-variables methodology

introduced by Koster et al. (2019). Importantly, we show that this elasticity is positive at 0.50,

but also far below one, implying that the rental income losses from a reduction in footfall are

less than proportional. Hence, despite the sizable reductions in footfall, the reductions in retail

sales are expected to be smaller.3

Do our results say something about when the pandemic is over? This is the case for at least two

reasons. First, it is plausible that footfall levels in shopping streets located in employment centers

do not return to pre-Covid levels, because permanent increases in the number of individuals

working from home are expected (see studies cited in Brueckner et al. 2021). Second, many

persons are now used to buy their products online and may be inclined to keep doing so when

the pandemic is over. In this context, the results on social distancing are interesting, because

2Another contributing factor might be restrictions on the use of public transport. This contribution is likely
small as the majority of shoppers uses the bicycle or the car. However, the contribution of restrictions on transport
may have been stronger for footfall in historic city centers, where a larger share of shoppers makes use of public
transport.

3We caution that the relationship between retail sales and footfall may be different during the pandemic
because shopping trip-chaining is likely to be less common.

3



there were no other strong restrictions on visiting shops and infection rates were low. Still, we

observe reductions in footfall of up to 45% during social distancing periods. Hence, we envisage

that the long-run effects of Covid-19 on footfall are not negligible, and that shopping streets

may not recover from the pandemic any time soon.

2 Data and context

2.1 Related literature

Our paper relates to an emerging economics literature on the causes and consequences of Covid-19

in an urban setting. These studies typically focus on the effects and consequences of Covid, but

ignore the impact of policies related to Covid. For example, Kuchler et al. (2020) examine the

impact of social networks on the spread of Covid between regions, while Glaeser et al. (2020)

investigate how mobility of individuals, measured by cellphone data, can affect the spread of the

virus. Brueckner et al. (2021) further examine the effects of Covid on the spatial structure of the

economy. Our study on the effect of Covid policies on footfall will be of interest to scholars who

seeks to understand the effectiveness of lockdown policies in curtailing the spread of the virus.

Findings of this paper are relevant to many other countries as they suspend retail activities and

restrict the mobility of individuals - policies akin to those implemented in the Netherlands - to

curb the spread of the pandemic.

While we show that Covid-19 policies reduced footfall and adversely affected the retail sector,

studies such as Baker et al. (2020) have shown that households initially increased spending on

retail and footfall during the first lockdown, before decreasing consumption in the subsequent

lockdowns. Binder (2020) further report that 40% of surveyed consumers prioritized spending on

food. Hence, expenses on food products are unlikely to fall during lockdowns. Using cellphone

data from SafeGraph, Althoff et al. (2020) document strong reductions in the visits to specific

retail establishments, such as hotels and restaurants, due to the pandemic.4 To the best of

our knowledge, no paper has yet investigated the economic consequences of Covid-19 policies

through changes in shopping behavior.

Our paper further contributes to a broader literature on retail productivity (Pashigian & Gould

1998, Gould et al. 2005) and in particular retail policy. For example, we find that local outside

4For a more complete review, see Brodeur et al. (2020).
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face mask restrictions induce sizable reductions on local retail demand, in line with studies that

show that local retail policies have strong spatial effects (Cheshire et al. 2015, Sanchez-Vidal

2016). Moreover, in line with the literature, we observe that the effects of national retail policies

have implications that vary strongly over space (Bertrand & Kramarz 2002, Schivardi & Viviano

2011, Haskel & Sadun 2012).

2.2 Footfall data

We exploit a novel dataset on daily footfall in shopping streets provided by Bureau RMC, which

places Wi-Fi sensors for shops, retail associations and municipalities. Footfall is recorded from

2018 onwards using 530 sensors that detect unique Wi-Fi signals emitted by mobile telephones

carried by by-passing pedestrians.5 Figure A1 in Appendix A.1 shows the locations of all these

RMC sensors across major cities in the Netherlands.

This novel way of measuring footfall allows us to filter out signals that are not relevant for

footfall – e.g. signals by personnel or residents living nearby – and avoids double counting (which

happens when a person passes a sensor several times during a shopping trip), improving the

accuracy of footfall measurement. Furthermore, we record daily footfall data, which is a stark

improvement from the previous literature that relies on manually collected footfall data on an

annual basis (Teulings et al. 2017, Koster et al. 2019). Our high frequency data allows us to

accurately capture the effects of lockdown, facemask and social distancing policies on footfall.

In Figure 1, we show average weekly footfall levels for the years 2018, 2019, 2020 and (the

first 8 weeks of) 2021. The impacts of the Covid policies on footfall are evidently depicted in

this figure. First, we record a sizable drop in footfall after the first lockdown was implemented

(March 15 2020). We then observe a slight increase in footfall after the first lockdown is relaxed.

Footfall did not change much during the partial lockdowns but dipped sharply after the second

lockdown is enforced on Dec 15 2020. One may be worried, as indicated in the figure, that

footfall was already lower before the first lockdown. A plausible reason why footfall prior to the

first lockdown in 2020 is lower compared to footfall in 2018 and 2019 is that Dutch people are

5For some sensors, we do not have observations for each day so we have an unbalanced panel. For that reason,
in all our analyses we will include sensor fixed effects. We will also show that our results are insensitive to the
inclusion of sensors with missing observations. To comply with privacy regulation, Wi-Fi signals (i.e. MAC
addresses) are anonymized. Sensors are calibrated at the time of installation using information from manual
counts. A (small) proportion of shoppers do not carry a mobile phone (see Soundararaj et al. 2020), which we will
treat as random measurement error.
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Figure 1 – Footfall over time
Notes: We show the log of weekly footfall during first lockdown (1st), partial lockdown (Partial) and
second lockdown (2nd) in the year of pandemic (2020 and 2021), 1 year before (2019) and 2 years before
(2018).

already avoiding crowded shopping streets as they are concerned about getting infected even

before the outbreak. What is important is that our results do not hinge on this pre-trend, as we

will show in Appendix A.4.

2.3 Other data

We also use yearly data on the universe of shops within the Netherlands from Locatus. For each

non-vacant retail establishment, we know the 8-digit retail sector. In the analysis, we distinguish

between four aggregated sectors to facilitate interpretation (i.e. Daily Shopping, FNB, Clothing

and Other Retail). Using the exact location of RMC Wi-Fi sensors, we calculate the number of

shops, as well as the share of type of shops within 500 m of each measurement point.6

In some sensitivity analyses, the number of Covid hospital admissions is used to control for the

probability of getting infected by Covid. These data are derived from RIVM (i.e. the National

Institute for Public Health and the Environment). National weather data from KNMI (i.e. the

Royal Netherlands Meteorological Institute) are used to construct control variables. For detailed

6Changing the buffers to 200m has an immaterial impact on the estimates. See Table A8 in Appendix A.4.
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description of the variables employed in the analysis, refer to Table A1 in Appendix A.1.

We report descriptive statistics in Appendix A.1 for different samples used in the econometric

analyses. The main takeaway of these descriptives is that shopping streets are extremely diverse

in terms of shop density (the median density is 355 shops within 500 m, whereas the density can

be as high as 1622 shops), but also in terms of shop type. In Appendix A.2, we show that in

city centers, shopping streets have a high density of shops and a high share of clothing stores: a

5 km increase in distance to the city center reduces density by two-thirds, whereas the share of

clothing store drops by almost one third.

3 The effect of lockdowns

3.1 Econometric framework

We exploit the temporal variation in footfall to capture the effects of the start of various lockdown

events, labelled by the subscript n, on log footfall across the Netherlands.7 Here, we examine

the effects of the start of the 1st lockdown (15th of March 2020), 2nd lockdown (15th of December

2020) and a ‘partial’ lockdown (14th of October 2020).8 Hence, n = 1, 2, p.

We start by estimating the following temporal regression discontinuity model:

ln(Fit) = αi +
∑
n

γnLnt + fn(Dit) +X ′itδ + εint, (1)

where the dependent variable, ln(Fit), is the natural logarithm of footfall recorded by RMC sensor

i on day t. Our key variable of interest is Lnt, which is a binary variable that takes the value of

1 at day t after type n lockdown is enforced. Hence, γn captures (approximately) the percentage

change in footfall across all RMC sensors from type n lockdown. fn(Dit) is a polynomial function

of the number of days from the lockdown event n and we allow these trends of footfall to vary

before and after the enforcement by interacting these polynomials with Lnt. We allow footfall

trends to vary flexibly by including second-order polynomials to ensure that the discontinuous

jumps in footfall around the lockdown events are not driven by pre or post event trends in

7Hence, we concentrate on the period around the start of a lockdown rather than the end of the lockdown.
The main reason we do so is that lockdowns were not announced before, so anticipation effects are minimal. In
contrast, the end of the lockdowns is announced, so anticipation effects, as well as induced-demand effects after
the lockdown, make the interpretation of the end of the lockdown effects problematic.

8The lockdown was partial because only food and beverage (FNB) stores were forced to close.
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footfall. αi denotes RMC sensor fixed effects that partial-out time-invariant unobserved differences

between locations. We further control for public and school holidays, and weather conditions.9

These control variables are captured by Xit. To mitigate bias from unobserved time shocks, we

constrain our analysis to observations within a window of 90 days around the type n lockdown.

We are particularly interested to examine whether effects of lockdown policies systematically

differ across locations, as captured by k shopping street characteristics, i.e. shop density and

share of shop type within 500 m. Note that these characteristics strongly vary over space, as

analysed in Appendix A.2. We aim to capture heterogeneous spatial effects through structural

characteristics that characterize shopping streets to improve on the external validity of our

study.10 Hence, we allow the effects of lockdown to vary across locations by interacting Lnt with

demeaned shopping street characteristics, Zik − Z̄k. The estimation equation takes the following

form:

ln(Fit) = αi +
∑
n

γnLnt +
∑
n

∑
k

γnkLnt[Zik − Z̄k] + fn(Dit) +X ′itδ + εint. (2)

These estimates are meaningful as they capture the efficacy of lockdowns across different locations

as captured by the shopping street characteristics. In our approach, we treat the interaction

term with shop density as exogenous. However, one may argue that the shop count could be

correlated with unobserved factors that affect footfall. Moreover, there could be concerns of

reverse causality as retail firms are more likely to be situated at locations with high footfall.

Interestingly, in our context, endogeneity is not necessarily problematic, because an interaction

term between endogenous and exogenous variables may be treated as exogenous if the conditional

expectation of the endogenous variable and the error term does not depend on the exogenous

regressor with which the endogenous variable is interacted, as demonstrated by Bun & Harrison

(2019).11 Nevertheless, to deal with potential endogeneity issues, we instrument shop density

with the number of cinemas in 1930 within 500 m. Historically, cinemas were small with one

screen only and were located in shopping streets.

9We do not control for the number of Covid cases per municipality, as this variable is likely a ‘bad control’.
Inclusion of this variable does not change the results for lockdowns, see Panel C in Table A8 in Appendix A.4.

10For example, dense shopping areas may be located outside city centers in other countries.
11The validity of this assumption can be tested using a standard Hausman test, which compares the results of

the model where the interaction term is treated as endogenous with the model in which it is treated as exogenous.
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3.2 Results

It is common to support regression-discontinuity designs with graphs. In Figure 2, we show

the effects of the first and second lockdown on log footfall. Perhaps surprisingly, the effects of

both lockdowns appear very similar with a reduction of about 0.6-0.7 log points, despite the

differences in restrictions imposed. In the first lockdown, shops were advised, but not required

to close, while in the second lockdown, all shops were required to close except for those selling

daily products (e.g. supermarkets and pharmacies). Our econometric analysis also implies that

the point estimates of the first and the second lockdown are virtually the same (see Panel A and

B of Table A7 in Appendix A.4). Hence, we will show results where we restrict the effects of

these two lockdowns to be the same such that γ1 = γ2.

We also examine the impacts of the partial lockdown, but we do not discern any effect of the

partial lockdown on footfall (see Figure A3 in Appendix A.3 in Appendix A.4). Hence, we ignore

the effects of the partial lockdown from hereon (γp ≈ 0).

In column (1) of Table 1, we show the results of the baseline regression discontinuity model

(without interacting with shop counts and types) based on equation (1). It appears that these

lockdowns attributed to a substantial 47% (exp(−0.635) − 1 ≈ −47%) reduction in footfall. In

column (2), we demonstrate that the reduction is much stronger in dense shopping streets. For

instance, footfall in the densest shopping streets (with a density that is two log points above the

average, which is about two standard deviations) is 67% lower after the lockdowns are enforced.

In column (3), we examine the heterogeneous effects of lockdowns according to shop types

without controlling for shop density. It seems that the types of shops in the vicinity influence the

impact of lockdowns on footfall. In particular, we observe that shopping streets with clothing

shops are more affected by the lockdowns. However, when we control for shop density, in column

(4), it turns out that these results are largely spurious as shop density and the shop type are

strongly correlated. Specifically, we document, imprecisely estimated, and moderate, differences

of lockdowns across different shop types. For example, the maximum share of clothing stores is

0.40, which is 20 percentage points above the mean. For these shopping streets, the effect of

lockdowns is around exp(−1.215 × 0.20 − 0.624) − 1 ≈ −58%. In column (5), we examine the

heterogeneous effect while instrumenting for shop density. The instrument is sufficiently strong

9



Figure 2 – Lockdowns and footfall
Notes: We show log daily footfall 90 days before and after first and second lockdown.
We employ an Epanechnikov kernel and control for a second-order polynomial on both
sides of the threshold. Dashed line denotes 95% confidence interval associated with
second-order polynomial footfall trends. For additional figures that employ higher
order polynomials for time trends, we refer to Figure A3 in Appendix A.3.

(and has the expected sign).12 The Hausman T -test of equality between the coefficient of shop

density in the IV and the OLS estimate is equal to 2.14, suggesting that the OLS estimate is

biased (e.g. because of reverse causation). When instrumenting for shop density, we do not find

evidence that shop type plays a role, while the effect of shop density is even more pronounced.

For additional results based on alternative polynomial functions and other bandwidths, we refer

to Table A6 in Appendix A.4.

12The first-stage results are not reported due to space constraints but are available upon request.
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Table 1 – The impact of lockdowns and social distancing on footfall

Panel A: Lockdowns (RDD)

(1) (2) (3) (4) (5)
Baseline Shop Count Shop Type Combined Combined (IV)

Lockdowns -0.635a -0.622a -0.629a -0.624a -0.616a

(0.078) (0.071) (0.075) (0.071) (0.071)
Lockdowns × Log Shop Counts -0.199a -0.157a -0.369a

(0.032) (0.049) (0.111)
Lockdowns × Share of Other Retail Shops -1.497a -0.782c 0.184

(0.354) (0.433) (0.721)
Lockdowns × Share of Clothing Shops -3.229a -1.215c 1.503

(0.445) (0.706) (1.541)
Lockdowns × Share of FNB shops -1.728a -1.005b -0.030

(0.499) (0.434) (0.759)

Obs 91822 90773 90773 90773 90773
Adj R2 0.79 0.78 0.78 0.78 0.36
Kleibergen-Paap F statistic 15.05

Panel B: Social Distancing (DID)

(6) (7) (8) (9) (10)
Baseline Shop Count Shop Type Combined Combined (IV)

Social Distancing -0.626a -0.618a -0.627a -0.623a -0.623a

(0.034) (0.029) (0.035) (0.029) (0.029)
Social Distancing × Log Shop Counts -0.138a -0.194a -0.203b

(0.029) (0.049) (0.089)
Social Distancing × Share of Other Retail Shops 0.312 1.207a 1.247b

(0.380) (0.445) (0.507)
Social Distancing × Share of Clothing Shops -0.702c 1.768a 1.878c

(0.403) (0.674) (1.100)
Social Distancing × Share of FNB shops -0.092 0.825 0.866

(0.712) (0.700) (0.819)

Obs 234152 233148 233148 233148 233148
Adj R2 0.85 0.86 0.85 0.86 0.21
Kleibergen-Paap F statistic 16.16

Notes: The dependent variable is the natural log of visitor footfall at RMC sensor i on day t. Reported variables denote binary variables that take the value of 1 (Lockdowns)
for RMC sensors after the 1st Lockdown (15th of March 2020) and 2nd Lockdown (15th of Dec 2020) for Panel A. RDD regressions from columns (1) to (5) in Panel A include
controls for public and school holidays, weather conditions, RMC fixed effects and time trends (days to event) at second order polynomial of time trends (quadratic). We further
restrict the analysis to a window 90 days from the event. Reported variables denote binary variables that take the value of 1 (Social Distancing) for RMC sensors after the social
distancing is enforced (from 1st June 2020 to 13th October 2020) for Panel B. DID regressions from columns (6) to (10) in Panel B include RMC fixed effects, day-of-week
fixed effects (Monday to Sunday) and week fixed effects (1-52 weeks) and year fixed effects. Baseline effects of lockdowns and social distancing are reported in columns (1) and
(5) respectively. In columns (2) and (7), we further interact these binary variables with the demean natural logarithm of shop counts within 500m from the RMC. In columns
(3) and (8), we interact binary event variables with demean share of shops (whether Daily shopping, Clothing, Food and Beverages(FNB) or other retail) within 500m from
the RMC. In columns (4) and (9), we collectively estimate how shop counts and shop types can affect the impacts of lockdowns and social distancing on footfall. In columns
(5) and (10), we repeat the analysis in columns (4) and (9) but we instrument log shop counts with the counts of historical cinemas in 1930. Two-way clustered standard at
postcode and date levels are reported in the parentheses. c p<0.10, b p<0.05, a p<0.01.

4 The effect of face mask regulation

4.1 Econometric framework

We now examine the effects of the obligation to wear face masks outdoors. As this policy was

introduced in a limited number of dense shopping streets for a short period of time, we measure

the impact of this regulation using a difference-in-differences approach. We estimate how the

face mask requirements, denoted by Tit, for Wi-Fi sensor i at day t, affected footfall, Fit. Let

dit denote the distance to the nearest treatment area. We estimate the following two-way fixed

effects model:

ln(Fit) = αi + ζ1Tit + ζ2T
0−500m
it + τt + εit, if dit < dmax (3)
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where Tit takes the value of 1 for RMC sensors where outdoor face mask wearing is compulsory

between the 5th and 30th of August, 2020. The effect on log footfall due to mandatory face

mask regulation is captured by ζ1. To examine spillover effects on neighboring shopping streets,

we include T 0−500m
it , a dummy indicator with a value of 1 for RMC sensors within 500m from a

regulated shopping street. The spillover effect is captured by ζ2. We expect that ζ1 < ζ2 < 0.

Put differently, we are comparing changes in footfall before and after the face mask regulations

are enforced between regulated and unregulated shopping streets, where we allow for spillover

effects. We include RMC sensor and date fixed effects, where the latter control for general trends

in footfall across areas, and other time-varying variables, which are thought to be important

such as public and school holidays and the number of Covid cases.

Our identification hinges on the assumption that regulated and unregulated shopping streets

have similar footfall trends. This assumption may not hold because regulated shopping streets

are located around the city centers of the largest cities in the Netherlands. To address this,

we restrict our sample to RMC sensors within 10 km from the regulation boundary to ensure

that the trends in footfall are comparable between regulated and unregulated areas (hence,

we set dmax = 10). We further show the sensitivity of the results by restricting the sample to

unregulated areas not more than 1km from regulated areas.

To further investigate the national implementation of equirements to wear face masks inside

shops on September 30th (the advice) and December 1st (the law), we adopt the same temporal

RDD approach as in Section 3.

4.2 Results

In Figure A2 in Appendix A.3, we provide a visual plot of log footfall for 90 days before and after

the introduction of outdoors face mask regulation. Here, we distinguish between i) regulated

shopping streets, ii) unregulated shopping streets and iii) streets within 500 m from face mask

shopping streets. Our results suggest comparable trends in footfall across the three types of

shopping streets before the regulation, and a reduction in footfall along regulated shopping

streets.

Table 2 shows the results from the estimation of equation (3) based on a sample of RMC sensors

within 10km from regulated streets. Our baseline estimate in column (1) implies that once outdoor

12



Table 2 – Effects of Outdoor Face mask regulations on footfall

(1) (2) (3) (4) (5)
Baseline 50% obs RMC Within 1km Placebo

Trends 1 Yr Bef

Face mask regulation -0.262a -0.290a -0.124b -0.217a -0.008
(0.051) (0.050) (0.048) (0.031) (0.073)

within 0-500m -0.158b -0.192b -0.103c -0.122c -0.089
(0.066) (0.071) (0.055) (0.059) (0.086)

Obs 58113 54791 54791 43852 27851
No. of FE 59 51 51 41 40
Adj R2 0.89 0.90 0.93 0.90 0.93
% ∆ (Facemask) -23.06 -25.14 -11.63 -19.51 -0.78
Absolute Effects (Facemask) -2582.99 -2873.65 -1329.02 -2229.50 -113.35
% ∆ (within 0-500m) -14.63 -17.48 -9.77 -11.48 -8.54
Absolute Effects (within 0-500m) -956.19 -1022.52 -571.32 -671.30 -647.84

Notes: The dependent variable is the log of visitor footfall. Face mask regulation is a binary variable that takes the value of 1
when face mask regulation is enforced. Within 0-500 m is a binary variable that takes a value of 1 when regulation is enforced
within 500 m, but the street is unregulated. All regressions include RMC and date fixed effects and the sample is restricted
to 10km from the regulation boundaries unless otherwise stated. Standard errors reported in the parenthesis are clustered at
postcode level. Absolute effects denote the changes in footfall due to the face mask regulations and are computed by multiply
the relative effects with pre-treatment mean footfall. Two-way clustered standard at postcode and date levels are reported in
the parentheses. c p<0.10, b p<0.05, a p<0.01.

face mask wearing is enforced, footfall changes by exp(−0.262) − 1 ≈ −23%, corresponding to a

reduction of about 2,500 shoppers per day. These findings are consistent with the notion that

mandatory face mask regulations reduce footfall if shoppers care more about the hassle to wear

face masks rather than the reduced probability of getting Covid. Footfall in shopping streets

near regulated streets is also adversely affected by this regulation. Specifically, we document a

smaller, but still substantial drop of 14.6% in footfall, which implies a reduction of around 1,000

shoppers.

To ensure that ζ1 and ζ2 measure causal effects, we subject our results to a battery of robustness

tests. In column (2), we re-estimate models where we only include sensors with less than 50%

missing observations. It appears then that the results become slightly more pronounced. In

column (3), we relax the parallel trends assumption by additionally controlling for the interaction

of postcode areas (which contain on average about four sensors) with year-month dummies.

Despite adding many additional trend controls, we still find a statistically significant negative

effect, about half of the original effect size.

In column (4), we further constrain our analysis to RMC sensors within just 1 km from the

face mask regulation boundaries to ensure that RMC locations affected and unaffected by the

regulation are comparable, as to minimize the risk of unobserved shocks correlated with the

13



regulation. Although our sample now is now substantially smaller, we document a robust 19.5%

and 11.5% reduction in footfall in shopping streets where face mask are required and in shopping

streets within 500 m of the regulated streets, respectively.

It is common to do placebo tests to ensure that enforcement effects are not documented spuriously

around other dates. Therefore, in column (5), we move the regulation window one year before

the actual treatment date. Of course, any observations post 2020 are omitted to prevent the

Covid-19 from driving our estimates. Here, we observe no statistically significant changes in

footfall during the placebo period, suggesting that our results are unlikely to be driven by

spurious time trends.

Finally, we also investigate the effect of the (national) advice (from September 30 onwards) as

well as the formal requirement (from December 1 onwards) to wear face masks inside shops

using a similar type of regression discontinuity methodology as applied to lockdowns. Here, we

do not find any substantial effects on footfall, either when we plot the unconditional footfall

using graphs or when we perform more rigorous regression analysis.13 The absence of an effect

of the national policy to require face masks in shops may be surprising, given that we find

an effect for local outside face mask restrictions. We think that this may be indicative that

Dutch shoppers have a strong disutility of wearing face masks outside, while they care less about

wearing face masks inside buildings. Furthermore, with local face mask regulation, spatial and

temporal substitution is likely. That is, people may have visited other shopping streets without

restrictions or postponed their shopping trips until the local restrictions were lifted.

5 The effect of social distancing

5.1 Econometric framework

To capture the effect of social distancing on footfall, we apply a difference-in-differences approach

where we compare footfall on days when social distancing policies are active with footfall one

year or two years before. In other words, observations in years unaffected by the pandemic (in

2018 and 2019), which is the control group, should capture footfall trends in the absence of these

13Refer to Figure A3 in Appendix A.3 for a RDD plot of footfall around national face mask regulations. We do
not report regression analysis of national facemask regulations on footfall due to space constraints but they are
available upon request.
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lockdown events. We estimate the following specification:

ln(Fit) = αi + βSt +Q′itδ + τt∈d + τt∈w + εit. (4)

Our key variable of interest, St, is a binary variable taking the value of one on dates after social

distancing is enforced. To disentangle the effect of social distancing from other policies, we

exclude observations on days where other Covid policies are active.

Footfall fluctuates over the year due to time-varying factors such as public holidays, school

holidays and weather conditions. We add those as controls, denoted by Qit. While this is

unlikely to affect the consistency of our estimates, we control for temporal fluctuations in footfall

to improve efficiency by including day-of-week fixed effects, τt∈d, and week-of-the-year fixed

effects, τt∈w. Note further that RMC fixed effects, αi, are included to control for time-invariant

unobserved geographical differences in footfall unrelated to social distancing. The identifying

assumption with this approach is that there are no unobserved correlated shocks on footfall

in years before the pandemic that could bias our estimates. Earlier footfall trends in Figure 1

suggest that this is unlikely the case as pre-Covid footfall levels are comparable in 2018 and

2019.

5.2 Results

Panel B of Table 1 summarizes the impacts of social distancing on footfall.14 In column (6) we find

a strong reduction in footfall due to social distancing of exp(−0.626) − 1 ≈ 47%. Unsurprisingly,

the effect is considerably stronger in dense shopping streets (see column (7)). When we control

for (the interaction with) retail type, it appears that the effect of shop density is somewhat

stronger. These results hold even when we instrument shop density with historical counts of

cinemas in 1930. It implies for example that the densest shopping streets (with a density that is

two log points above the average) have reductions in footfall of 60%.

The effects associated with shop types are less clear cut (see columns (8)-(10)). When one does

not control for shop density, it is suggested that clothing shops are more negatively affected,

but the effect is only marginally significant once we control and instrument for shop density.

14Note that we exclude observations in (partial) lockdowns as well as face mask areas in these regressions so
that we are only measuring the impacts of social distancing on footfall.
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Hence, these results also indicate that shop density is the main shopping street characteristic

that explains the heterogeneity of the effect of social distancing, as also found for the effect of

lockdowns.

6 Footfall, retail rents and income

We find sizable effects of the different Covid-19 policies on footfall. To interpret these effects, we

now provide a back-of-the-envelope assessment on retail income. Following Pashigian & Gould

(1998), Gould et al. (2005) and Koster et al. (2019), we use retail rents as a proxy for retail

income, which is an intuitive measure as retail firms are willing to pay higher rents at more

productive locations.

The productivity effects of Covid policies depend on the elasticity of retail income with respect

to footfall, which can be estimated based on the elasticity of rents with respect to footfall.15

In Appendix A.5, we estimate this elasticity using OLS as well as IV, using the methodology

introduced by Koster et al. (2019). Our preferred (IV) estimate is 0.50, with a standard error of

0.11, so it is substantially less than one (these results are essentially identical to Koster et al.

2019). The latter is important, as it implies that the rental income losses of a reduction in footfall

are less than proportional to the reduction in footfall. More specifically, these estimates suggest

that rental income losses because of Covid-19 policies are approximately half the reduction in

footfall and therefore still considerable.

We calculate the total negative external effects of the lockdown and social distancing through

reductions in footfall for (approximately) one year of Covid-19 policies for a representative shop

in a shopping street. From March 15, 2020, until March 14, 2021, there were 168 lockdown days.

We consider the preferred estimate to be the one reported in column (1), Table 1. The loss due to

these lockdown days is about 11% of annual rental income (≈ 0.50×(exp(−0.635)−1)×(168/365)),

which is non-trivial. Social distancing was applied the whole year. Hence, the total costs are

considerably larger. Using the estimate in column (5), Table 1, we calculate the costs to be 23%

of rental income (≈ 0.50 × (exp(−0.632) − 1)).

These figures mask extreme differences between different shopping streets and ignore that

15Footfall also decreases shop vacancies. Koster et al. (2019) show that the effect of footfall on rental income
through a change in vacancies is very moderate, and will be ignored here.
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several policies were combined. For example, outdoor face mask requirements were implemented

when social distancing was also required. It appears that dense shopping streets (usually

with many clothing stores), bear the largest income losses. For example, the annual losses of

lockdowns, despite that lockdowns were absent half of the time, are estimated to be about

16% (≈ 0.50 × (exp(−0.620 − 2 × 0.265) − 1) × (168/365)) of rental income for shops located in

dense shopping streets. On the other hand, losses for shops in low-density shopping streets are

estimated to be about 2% (≈ 0.50 × (exp(−0.620 + 2 × 0.265) − 1) × (168/365)) and therefore

barely noticeable.

Our focus is on the effects of Covid policies on the income of shops through reductions in footfall.

Our estimates are silent about the increases in online sales on shops in shopping streets induced

by Covid policies, which may compensate for the income losses induced by reductions in footfall.

Given that the online sale increases are small as a percentage of overall sales (in the order of

about 5-10%), combined with the plausible assumption that increases in online sales are not

systematically related to shop location, our estimates can be essentially interpreted as the effect

of Covid policies on retail income including online sales.

7 Conclusions and implications

The current paper has four main messages. First, we show sizable economic costs of the different

Covid-19 policies that restricted the mobility of the population to curb the spread of the virus

through substantial reductions in footfall in shopping streets. We find large, persistent and

heterogeneous effects of lockdowns, with an average reduction of 50% in footfall in Dutch

shopping streets. A 6-months lockdown as observed in the Netherlands has induced losses

equivalent to a reduction of 11% of yearly rental income for the retail sector. According to our

estimates, the cost of the first and second lockdown in the Netherlands are of equal size, despite

the fact that these lockdowns were quite different in terms of the number and types of shops that

had to cease operation. This makes sense as positive shopping externalities play an important

role: when a substantial number of shops closes, neighboring shops are negatively affected by

the reduction in footfall.

Second, we observe that these policies are particularly effective in reducing footfall in dense

shopping streets, mostly located in city centres. This result is important not only because of the
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spatial implications of these policies on reducing rental income, but also because the spread of

the virus is more likely to occur along these streets. Hence, if these policies aim to reduce the

spread of the virus through changes in shopping behavior in busy shopping streets, then these

policies can be considered successful.

Third, we find that the obligation to wear face masks outdoors in busy shopping streets induces

strong reductions in footfall in these streets (with an average reduction of 25%), but also

substantial reductions in adjacent shopping streets, showing once more the importance of

positive agglomeration externalities in shopping behavior. Finally, we report negative estimates

of social distancing on footfall, i.e. we find a strong reduction in footfall during periods where

there are no other Covid-19 policies.

Although our estimates are only informative on the current situation, we reckon that social

distancing, lockdowns and face mask regulations is unlikely to be relaxed in the short run given

the impediments involved in vaccinating the population. It is plausible that pandemic could

bring about long-term changes in offline retail even when the pandemic is over because of the

increase in work from home arrangements and the reliance on online shopping platforms. Hence,

the substantial reductions in footfall we documented during the enforcement of Covid policies

provide useful insights on what may happen to the retail sector in the near future, and suggest

that long-run effects of Covid-19 on the retail income of shops in shopping streets may be

non-negligible.
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Online Appendix

The appendix reports auxiliary details and analyses to the main paper. We first provide more

details and additional visualizations of the data used in the empirical analysis. We then report

additional results and several robustness checks of our main specifications.

A.1 Data Description

A.1.1 Spatial distribution of RMC sensors

The RMC network consists of around 500 different Wi-Fi sensors distributed across shopping

districts within the Netherlands. These sensors require an internet connection and access to

electricity, which is provided by the shop where the sensor is placed. To comply with privacy

regulation, shops need to give permission for the use of these sensors. Therefore, sensor placement

is based on contracts with retailers, municipalities and retail associations. The sensor coverage

of cities is heterogeneous, since certain municipalities have a contract for many sensors, while

others have a contract for only one Wi-Fi sensor.

Figure A1 presents the spatial distribution of RMC sensors across the Netherlands. We observe

that most of the RMC sensors are located in major cities such as Amsterdam, Rotterdam, and

The Hague, with some sensors located in other cities such as Groningen, Eindhoven, and Utrecht.

Most of these sensors are saturated around city centers. Another noticeable observation is that

the recorded footfalls are much higher for the RMC sensors in Rotterdam and Amsterdam.
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Figure A1 – Spatial distribution of RMC sensors
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Table A2 – Descriptive Statistics of shops within 500 m of RMC sensors

Mean Std. Dev Median Min Max

Number of Shops 433.95 331.17 355.00 2.00 1622.00
Number of Shops (Log) 5.69 1.03 5.87 0.69 7.39
Share of Daily Shopping shops 0.11 0.06 0.09 0.00 0.35
Share of Clothing shops 0.20 0.09 0.23 0.00 0.39
Share of Food and Beverage (FNB) shops 0.26 0.11 0.24 0.01 1.00
Share of Other Retail shops 0.42 0.13 0.43 0.00 0.94

A.1.3 Summary statistics

Table A2 provides summary statistics for the entire sample of RMC sensors. There are, on average,

around 434 shops within 500m from these RMC sensors. Around 20% of the shops sell clothing,

11% of the shops are for daily shopping (e.g. supermarkets, pharmacies), 26% of the shops are

restaurants and bars etc., while the other 42% of shops refer to other retail types.

Table A3 further presents summary statistics associated with RMC sensors within the outdoor

face mask regulated areas and unregulated areas. Shop profiles are quite different between

regulated and unregulated face mask areas. There are a total of 23 RMC sensors within face

mask regulated areas. Compared to areas outside, footfall levels are much higher within these

regulated areas, suggesting that policy makers select populous streets for mandatory face mask

wearing to prevent the spreading of the virus. These areas are typically closer to the city center,

are more densely populated with shops and have a greater share of food and beverage shops

compared to unregulated areas. We further constraint our analysis to areas 0 to 500m, 500 to

1000m and 1 to 5km from the regulation boundaries. Here, we observe that the daily footfall

and shop profiles are more comparable for areas right outside (0-500m) but footfall is still

considerably lower than those reported in regulated areas.

Finally, in Table A4, we present the mean levels of footfall and hospital admissions due to

Covid-19 90 days before and after the first, second and partial lockdowns. Consistent with the

main findings of this paper, we observe a stark decrease of around 46% in footfall after the first

and second lockdowns are implemented. The relative effects on footfall are quite similar between

the first and second lockdown, while the impact of the partial lockdown is negligible. It is also

evident that the lockdowns are stop-gap measures strategically implemented to curb the sudden

surge of cases. We observe a surge in the number of Covid-19 hospital admissions right after the

lockdowns are enforced.
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Table A3 – Descriptive Statistics for regulated and unregulated outdoor face
mask zones

Regulated Unregulated 0-500m 500-1000m 1-5km

Daily Footfall 11282.44 3624.33 5773.15 4018.30 4010.46
(75.77) (9.93) (43.23) (32.33) (42.54)

Daily Footfall (Log) 8.81 7.64 8.25 8.21 7.90
(0.01) (0.00) (0.01) (0.01) (0.01)

Number of Shops 961.32 392.60 677.47 449.93 252.14
(2.27) (0.55) (1.57) (1.57) (0.68)

Share of Daily Shopping shops 0.12 0.11 0.11 0.11 0.17
(0.00) (0.00) (0.00) (0.00) (0.00)

Share of Clothing shops 0.28 0.20 0.24 0.21 0.24
(0.00) (0.00) (0.00) (0.00) (0.00)

Share of Food and Beverage (FNB) shops 0.32 0.26 0.34 0.37 0.19
(0.00) (0.00) (0.00) (0.00) (0.00)

Share of Other Retail shops 0.28 0.43 0.31 0.31 0.40
(0.00) (0.00) (0.00) (0.00) (0.00)

Obs 25510 274824 16137 2205 10939
RMC sensors 23 312 16 2 10

Notes: Mean and standard error of means for regulated areas and non-regulated areas but within 0-500m, 500-1000m and 1-5km from the face
mask regulation areas.

Table A4 – Descriptive Statistics before and after various lockdown events
1st Lockdown Partial 2nd Lockdown

Before After Before After Before After

Daily Footfall 3230.09 1718.59 2448.00 2325.02 2234.21 1201.09
(48.61) (10.77) (16.85) (21.53) (16.87) (9.79)

Daily Footfall (Log) 7.58 7.07 7.33 7.12 7.11 6.57
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

COVID-19 hospital admissions (Daily) 0.22 2.11 1.59 4.11 3.96 3.17
(0.01) (0.03) (0.02) (0.05) (0.04) (0.03)

Obs 5229 20350 26443 19626 28228 16159

Notes: Mean and standard error of means for footfall and Covid-19 admissions 90 days before and after the 1st, Partial and 2nd

lockdowns are enforced.

A.2 Distance to the city center and shopping streets characteristics

Here we explore the associative relationship between distance to the city center and ‘structural’

shopping street characteristics (shop type shares and shop density). We first determine the city

center for all major cities. Then, for each RMC sensor, we calculate the distance to the nearest

city center. While the average distance is 5 km, most RMC sensors are within 25 km from the

city center. Table A5 reports the results of a regression of shopping street characteristics on

distance (in kilometres), while including municipality fixed effects.

We find a strong association between distance to the city center and shop density. For a 1 km

increase to the city center, shop density decreases by 22%. Furthermore, the share of daily stores

is considerably higher away from city centers. For a kilometer increase in distance to the city
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Table A5 – Distance to city center and shop counts and types
(1) (2) (3) (4)

Log Shop Share Share Share
counts daily clothing FNB

Distance to the city centre -0.2262a 0.0107a -0.0119a -0.0043
(0.0305) (0.0027) (0.0039) (0.0056)

Municipality fixed effects Yes Yes Yes Yes

Number of observations 502 502 502 502
R2 0.5223 0.3610 0.4183 0.3927

Notes: Robust standard errors are in parentheses. a p < 0.01, b p < 0.05, c p < 0.10.

center, the share of daily shops decreases by 1.1 percentage point (about 10%). By contrast, the

share of clothing stores is substantially higher in city centers. A 1 km increase in distance to the

center, decreases the share of clothing stores by 1.2 percentage points, so approximately 6%. For

other shop shares we do not see a robust pattern.

Overall, in the Netherlands, the type of shops varies considerably with distance to the city center.

Hence, as footfall affects the type of shops differently, Covid-19 policies also has a differential

spatial impact within cities.

A.3 Additional graphical evidence

Figure A2 plots the natural logarithm of daily footfall 90 days before and after the face mask

areas are designated for areas within the regulation boundaries, for areas outside, and for areas

outside but within 0-500m from the regulation boundaries. Consistent with the regression results

recorded in Table 2, we document a larger drop in footfall in areas within the regulated areas

compared to areas outside in terms of unconditional footfall. We also observe that footfall

0-500m outside are more comparable to the footfall within face mask regulation areas, justifying

our strategy of limiting the analysis to areas right outside the regulation boundaries to mitigate

endogeneity concerns driven by unobserved differences between areas.

In Panel A and B in Figure A3 we plot the natural logarithm of daily footfall 90 days before

and after various events and we control for a fourth-order polynomial (instead of a quadratic

polynomial) on both sides of the threshold. Similar to Figure 2, we document a stark discontinuous

drop in footfall after the 1st and 2nd lockdown is enforced. These results illustrate that the

discontinuous drop in the footfall after the lockdowns are enforced is not sensitive to the

specification of the time trend.
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Figure A2 – Outdoor face mask regulation and footfall
Notes: We show the log of footfall 90 days before and after face mask regulation for areas inside, outside
and within 0-500m from regulated areas.

In Panel C in Figure A3 we investigate the effects of the partial lockdown. It is very clear

that we do not observe any discontinuity in footfall around the implementation of the partial

lockdown. We think this is not too surprising, as shops were still allowed to be open during the

partial lockdown. Only part of the FNB sector (such as restaurants and pubs) was forced to

cease operation while fast-food stores and ‘on-the-go’ food stores were still allowed to be open.

Panel D shows no jump in footfall after the 1st lockdown is relaxed. A plausible reason is that

many shops remained closed right after the 1st lockdown. However, it is evident that footfall

increases over time, as shops reopen with lockdown restrictions relaxed. Imperceptible changes

in footfall are also recorded around the implementation of partial lockdown and face mask

regulations (30th September and 1st of December). This could be due to the fact that these

events are not so stringent in restricting the mobility of people.16

16We also estimate the impact of these events on footfall using difference-in-differences specifications. Similar
to Figure A3, we do not record a discernible change in footfall around the partial lockdown, the removal of the 1st

lockdown and the enforcement of face mask regulation on 30th September and 1st December 2020. We do not
report these results due to space constraints but they are available upon request.
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(a) 1st Lockdown (b) 2nd Lockdown

(c) Partial Lockdown (d) 1st Lockdown Removal

(e) Facemask Regulation (30th Sep) (f) Facemask Regulation (1st Dec)

Figure A3 – Lockdowns, Facemask Regulations and footfall
Notes: We show the log daily footfall 90 days before and after various events. We
employ an Epanechnikov kernel and control for a fourth-order polynomial on both
sides of the threshold. Dashed line denotes 95% confidence interval associated with
fourth-order polynomial footfall trends.
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Table A6 – Effects of lockdowns on footfall (alternate specifications)
(1) (2) (3) (4) (5) (6)

Polynomials/Event Window First Second Third Fourth 60days 30days

Lockdowns -0.653a -0.635a -0.580a -0.646a -0.640a -0.647a

(0.081) (0.078) (0.085) (0.106) (0.077) (0.102)

Obs 91822 91822 91822 91822 66773 35981
Adj R2 0.78 0.79 0.79 0.79 0.78 0.78

Notes: The dependent variable is the natural log of visitor footfall at RMC sensor i on day t. Reported variables denote
binary variables that take the value of 1 (Lockdowns) for RMC sensors after the 1st Lockdown (15th of March 2020)
and 2nd Lockdown (15th of Dec 2020). All regressions include RMC fixed effects and time trends (days to event) at
various orders of polynomial as denoted by column headers. In (1)-(4), we estimate the effects of various events using
single (linear) to fourth order polynomials of time trends. In (5) and (6), we further restrict the analysis to 60 and
30 days to a lockdown after controlling for second order polynomials of time trends (quadratic). Two-way clustered
standard at postcode and date levels are reported in the parentheses. p<0.10, b p<0.05, a p<0.01.

A.4 Additional regression results

Table A6 presents baseline results of lockdowns on footfall from alternate specifications related

to the Regression Discontinuity Design (RDD). In columns (1) to (4), we include first to fourth

order polynomials of time trends before trimming down the sample to observations 60 and 30

days from the lockdowns respectively in columns (5) and (6). The rationale is to test whether

baseline estimates in Table 1 holds under alternative specifications. It is comforting to observe

that the estimates remain fairly robust in size and statistical significance across specifications

and are comparable to main findings we report in Table 1, suggesting that our main findings are

robust to other specifications and time windows.

Panels A and B of Table A7 present the stratified effects of the first and second lockdown on

footfall separately. These results inform us on whether the effects associated with the 1st and

2nd lockdown on footfall are different from one another. As observed, we report a substantial

drop in footfall after the 1st and 2nd lockdown are enforced and the estimated effects are quite

comparable in size between the two events, and also similar to those reported in Table 1.

Additional regressions suggest that density of shops matter as the effects of lockdowns are much

greater along streets with a higher shop concentration. These results remain robust even we

instrument shop counts with historical counts of cinema within 500m. These findings are again

quite similar to those reported in Table 1.

Panels A and B of Table A8 repeat our analysis in Table 1, but we now examine the impact

of shop counts and types for shops within 200m from the RMC sensors. The concern is whether

computing shop counts and types within 500m is too broad. As observed, our reported estimates

are quite similar to our initial findings reported in Table A8 in terms of size and direction. In

IX



Table A7 – Effects of 1st and 2nd lockdowns on footfall
Panel A: 1st Lockdown

(1) (2) (3) (4) (5)
Baseline Shop Count Shop Type Combined IV

1st Lockdown -0.728a -0.714a -0.730a -0.725a -0.722a

(0.145) (0.140) (0.143) (0.141) (0.141)
1st Lockdown × Log Shop Counts -0.248a -0.226a -0.379a

(0.038) (0.055) (0.131)
1st Lockdown × Share of Other Retail Shops -0.400 0.597 1.274c

(0.359) (0.452) (0.737)
1st Lockdown × Share of Clothing Shops -2.773a 0.102 2.056

(0.463) (0.778) (1.743)
1st Lockdown × Share of FNB shops -1.399b -0.411 0.261

(0.641) (0.518) (0.737)

Obs 49620 49258 49258 49258 49258
Adj R2 0.81 0.82 0.82 0.82 0.41
Kleibergen-Paap F statistic 15.28

Panel B: 2nd Lockdown
(6) (7) (8) (9) (10)

Baseline Shop Count Shop Type Combined IV

2nd Lockdown -0.708a -0.699a -0.692a -0.688a -0.673a

(0.122) (0.122) (0.123) (0.122) (0.122)
2nd Lockdown × Log Shop Counts -0.138a -0.074 -0.356a

(0.036) (0.053) (0.116)
2nd Lockdown × Share of Other Retail Shops -3.132a -2.787a -1.466c

(0.496) (0.565) (0.822)
2nd Lockdown × Share of Clothing Shops -3.981a -3.032a 0.602

(0.567) (0.836) (1.605)
2nd Lockdown × Share of FNB shops -2.375a -2.019a -0.656

(0.532) (0.534) (1.006)

Obs 42202 41515 41515 41515 41515
Adj R2 0.80 0.79 0.79 0.79 0.25
Kleibergen-Paap F statistic 14.84

Notes: The dependent variable is the natural log of visitor footfall at RMC sensor i on day t. Reported variables denote binary variables that take the value
of 1 (1st Lockdown) for RMC sensors after the 1st Lockdown (15th of March 2020) for Panel A, and denote binary variables that take the value of 1 (2nd

Lockdown) for RMC sensors after the 2nd Lockdown (15th Dec 2020) for Panel B. All regressions control for public and school holidays, weather conditions,
RMC fixed effects and time trends (days to event) at second order polynomial of time trends (quadratic). We further restrict the analysis to a window 90
days from the event. In columns 5 and 10, we repeat the analysis in columns 4 and 9 (for all Panels) but we instrument log shop counts with the counts of
historical cinemas in 1930. Two-way clustered standard at postcode and date levels are reported in the parentheses. c p<0.10, b p<0.05, a p<0.01.

Panel C, we repeat the analysis of Panel A in Table A8 but we further control for the daily

number of hospital admissions due to Covid-19. We exclude this variable from our main analysis

due to the concern that this variable could be a ‘bad control’, but we observe that the inclusion

does not matter much to our estimates. If anything, the estimated effects of lockdowns on

footfall are slightly smaller but they remain statistically significant. This is expected given

that we do not expect much changes in the number of Covid-19 hospital admissions around the

enforcement of the lockdowns.

A.5 Footfall and retail rents

In this subsection, we replicate the findings by Koster et al. (2019), who uses an alternative

(and arguably, inferior) measure of footfall, to measure the effect of footfall on retail rents. We

use two data sources (Strabo; Vastgoeddata) for the period 2010-2020 with information on
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Table A8 – Effects of lockdowns and social distancing on footfall (Robustness
Tests)

Panel A: Lockdowns(RDD) (200m)

(1) (2) (3) (4) (5)
Baseline Shop Count Shop Type Combined(OLS) Combined (IV)

Lockdowns -0.635a -0.618a -0.628a -0.623a -0.609a

(0.078) (0.073) (0.076) (0.073) (0.076)
Lockdowns × Log Shop Counts -0.179a -0.121a -0.411

(0.032) (0.045) (0.372)
Lockdowns × Share of Other Retail Shops -1.173a -0.973a -0.495

(0.203) (0.237) (0.656)
Lockdowns × Share of Clothing Shops -2.314a -1.479a 0.522

(0.259) (0.370) (2.628)
Lockdowns × Share of FNB shops -1.241a -1.098a -0.757

(0.253) (0.231) (0.566)

Obs 91822 90456 90456 90456 90456
Adj R2 0.79 0.78 0.78 0.78 0.35
Kleibergen-Paap F statistic 3.98

Panel B: Social Distancing(DID) (200m)

(6) (7) (8) (9) (10)
Baseline Shop Count Shop Type Combined(OLS) Combined (IV)

Social Distancing -0.626a -0.621a -0.631a -0.627a -0.629a

(0.034) (0.034) (0.038) (0.034) (0.038)
Social Distancing × Log Shop Counts -0.091b -0.149b -0.071

(0.039) (0.061) (0.188)
Social Distancing × Share of Other Retail Shops -0.186 0.066 -0.066

(0.244) (0.321) (0.367)
Social Distancing × Share of Clothing Shops -0.484b 0.547 0.007

(0.189) (0.448) (1.342)
Social Distancing × Share of FNB shops -0.361 -0.192 -0.281

(0.375) (0.344) (0.459)

Obs 234152 232689 232689 232689 232689
Adj R2 0.85 0.85 0.85 0.85 0.21
Kleibergen-Paap F statistic 3.77

Panel C: Lockdowns (RDD) (Control for Covid-19 Hospital Admissions)

(11) (12) (13) (14) (15)
Baseline Shop Count Shop Type Combined(OLS) Combined (IV)

Lockdowns -0.620a -0.607a -0.613a -0.607a -0.595a

(0.081) (0.076) (0.079) (0.076) (0.076)
Lockdowns × Log Shop Counts -0.155a -0.114b -0.362a

(0.029) (0.047) (0.111)
Lockdowns × Share of Other Retail Shops -1.406a -0.881c 0.268

(0.374) (0.467) (0.757)
Lockdowns × Share of Clothing Shops -2.746a -1.287c 1.904

(0.413) (0.698) (1.516)
Lockdowns × Share of FNB shops -1.397a -0.864b 0.300

(0.450) (0.411) (0.786)

Obs 72095 71192 71192 71192 71192
Adj R2 0.78 0.77 0.77 0.77 0.24
Kleibergen-Paap F statistic 14.91

Notes: The dependent variable is the natural log of visitor footfall at RMC sensor i on day t. Reported variables denote binary variables that take the value of 1 (Lockdowns) for RMC

sensors after the 1st Lockdown (15th of March 2020) and 2nd Lockdown (15th of Dec 2020) for Panel A. RDD regressions from columns (1) to (5) in Panel A include controls for public and
school holidays, weather conditions, RMC fixed effects and time trends (days to event) at second order polynomial of time trends (quadratic). We further restrict the analysis to a window
90 days from the event. Reported variables denote binary variables that take the value of 1 (Social Distancing) for RMC sensors after the social distancing is enforced (from 1st June 2020
to 13th October 2020) for Panel B. DID regressions from columns (6) to (10) in Panel B include RMC fixed effects, day-of-week fixed effects (Monday to Sunday) and week fixed effects
(1-52 weeks) and year fixed effects. Baseline effects of lockdowns and social distancing are reported in columns (1) and (5) respectively. In columns (2) and (7), we further interact these
binary variables with the demean natural logarithm of shop counts within 200m from the RMC. In columns (3) and (8), we interact binary event variables with demean share of shops
(whether Daily shopping, Clothing, Food and Beverages(FNB) or other retail) within 200m from the RMC. In columns (4) and (9), we collectively estimate how shop counts and shop
types can affect the impacts of lockdowns and social distancing on footfall. In columns (5) and (10), we repeat the analysis in columns (4) and (9) but we instrument log shop counts with
the counts of historical cinemas in 1930. RDD regressions from columns (11) to (15) in Panel C is similar to Panel A of Table 1 but we further control for daily Covid-19 hospitalizations.
Two-way clustered standard at postcode and date levels are reported in the parentheses. c p<0.10, b p<0.05, a p<0.01.
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commercial retail rents, size and construction year of 966 retail establishments close to RMC

points (within 100m). We also extend the RMC data back to 2010.

Let pijt be the rent paid by retail firm i in shopping district j in year t which is a function of

footfall (fijt). Furthermore, let xijt be other shop and location characteristics (e.g. shop size,

construction year, etc.). The basic equation to be estimated yields:

log pijt = α log fijt + βxijt + ηj + θt + εijt, (A.1)

where α and β are parameters to be estimated, ηj are district fixed effects, θt are year fixed

effects and εijt is a random error term. Because our dataset is not very large, we cannot include

the detailed shopping street fixed effects as in Koster et al. (2019), but rely on slightly more

aggregate district fixed effects.

We are worried that footfall is correlated to unobserved locational characteristics so we instrument

footfall with the number of cinemas in 1930 <200m. Historically, most cinemas were small with

one screen only, and were located in shopping streets. Hence, the buildings hosting these cinemas

were not very different from the surrounding buildings. One may be concerned that cinemas

themselves create footfall, while this does not necessarily imply shopping externalities (as people

may only visit the cinema and not visit other shops). We therefore control for the number of

cinemas in the vicinity in 2010. The buildings of the closed cinemas from the 1930s are now

frequently used as shops, but also attract other businesses.

The main identifying assumption when relying on long-lagged instruments is that past unob-

servable characteristics of either stores or locations are uncorrelated to current unobservables.

Conditional on the controls and district fixed effects, we think this assumption is tenable (but

for a longer discussion and a host of robustness checks, we refer to Koster et al. 2019).

We report the results in Table A9. In column (1) we estimate a somewhat naive specification

where we only control for property controls and year fixed effects. The elasticity is 0.312,

implying that doubling footfall leads to rents that are 22% higher. The effect is somewhat

smaller when we control for location characteristics and district fixed effects.

In the next two columns of Table A9 we instrument for footfall with the number of cinemas in
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Table A9 – Results for the effect of footfall on retail rents
(1) (2) (3) (4) (5) (6)
OLS OLS 2SLS 2SLS 2SLS 2SLS

Log of Footfall 0.3124a 0.2196a 0.6030 0.6291c 0.5145a 0.4864b

(0.0300) (0.0414) (0.3844) (0.3701) (0.1144) (0.1902)
Cinemas in 2010 <200m -0.0088 -0.0498 -0.0124

(0.0449) (0.0422) (0.0394)

Property controls Yes Yes Yes Yes Yes Yes
Location controls No Yes Yes Yes Yes Yes
District fixed effects No Yes Yes Yes No No
Municipality fixed effects No No No No No Yes
Year fixed effects Yes Yes Yes Yes Yes Yes

Number of observations 983 966 966 966 983 975
R2 0.3641 0.5339
Kleibergen-Paap F -statistic 1.931 3.135 36.97 8.211

Notes: The dependent variable is the log of rent per m2. Bold indicates instrumented. In columns (3) and
(4) we instrument for footfall with the number of cinemas in 1930. Property controls include the log of size
of the property and 10 construction year decade dummies. Location controls include the number of busstops
<200m, as well as the number of listed buildings <200m. Robust standard errors are clustered at the RCM

scanner level and in parentheses. a p < 0.01, b p < 0.05, c p < 0.10.

1930 within 200m of the property. The elasticity increases considerably to about 0.60. Because

of a weak instrument problem (i.e. the first stage F -statistic is substantially below the required

rule-of thumb-of 10), and the estimate is not significant at conventional significance levels.

To address the latter issue, we remove the district fixed effects in column (5). This implies that

the instrument is now considerably stronger. However, the point estimate is hardly affected. In

column (6) we include municipality fixed effects rather than district fixed effects. As in Koster

et al. (2019) the elasticity is now 0.50, implying that doubling footfall leads to rents that are

35% higher. Note that the Hausman T -tests of equality between the corresponding OLS and

the latter IV estimates are 1.8 and 1.5 for columns (5) and (6) respectively, suggesting that

the IV estimates are preferred. However, note that the Hausman T -tests are only statistically

significant at the 10% and 15%, respectively.
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