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Abstract	

We	experimentally	examine	how	individuals	stop	risky	processes	such	as	the	evolution	of	prices	

when	they	have	commitment	power.	We	find	types	who	consistently	choose	stopping	rules	with	

large	potential	losses	and	small	potential	gains	to	induce	a	high	winning	probability	(L-types),	

although	such	choices	entail	a	considerable	downside	risk.	A	smaller	proportion	of	types	choose	

stopping	 rules	 with	 the	 opposite	 characteristics.	 While	 the	 latter	 pattern	 is	 consistent	 with	

cumulative	prospect	theory,	the	former	pattern	is	inconsistent	with	prominent	decision	theories.	

We	suggest	that	L-types	solve	the	prize-probability	tradeoff	in	a	qualitative	manner,	putting	more	

emphasis	on	the	winning	probability.	 
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1.	Introduction		
Stopping	problems	appear	in	numerous	contexts	 in	economics	and	 finance,	 ranging	 from	

option	pricing	and	 job	 search	 to	 experimentation,	 technology	 adoption,	 and	 gambling.	 In	

these	problems,	an	individual	observes	a	sequence	of	realizations	of	a	stochastic	process	and	

has	to	decide	when	to	stop	the	process.	According	to	several	prominent	theories	of	decision-

making	under	risk	 (e.g.,	 expected	utility),	 optimal	 stopping	can	be	described	by	a	 simple	

cutoff	rule,	namely,	stopping	the	process	once	an	individual’s	payoff	reaches	a	threshold.	

	 Remarkably,	despite	the	apparent	optimality	of	cutoff	rules	and	the	fact	that	they	are	

quite	simple	and	easy	to	describe,	individuals	often	exhibit	behavior	that	is	inconsistent	with	

following	a	cutoff	rule.	The	dynamic	nature	of	stopping	problems	triggers	emotions	such	as	

regret,	disappointment,	and	elation,	which	may	lead	to	dynamically	 inconsistent	behavior	

and	make	it	difficult	for	individuals	to	implement	their	preferred	stopping	rule.	For	example,	

Strack	 and	 Viefers	 (2021)	 document	 history-dependent	 behavior	 that	 is	 consistent	with	

regret	 aversion.	 Biases	 and	 departures	 from	 optimal	 stopping	 can	 lead	 to	 detrimental	

outcomes.	 For	 example,	 the	 negative	 feelings	 associated	 with	 realizing	 losses	 may	 lead	

investors	to	hold	on	to	badly	performing	stocks	(Shefrin	and	Statman,	1985).	Moreover,	these	

biases	 can	make	 it	 difficult	 to	 infer	 individuals’	 ex-ante	preferences	 from	 their	 observed	

behavior	and	hence	the	effect	of	these	biases	on	their	behavior.	

	 A	natural	way	 to	mitigate	biases	 that	arise	during	dynamic	play	 is	 to	commit	 to	a	

stopping	 plan	 in	 advance	 or	 delegate	 the	 execution	 to	 a	 third	 party.	 Perhaps	 the	 most	

prominent	manifestation	of	such	a	commitment	is	stop-loss	and	take-gain	orders	in	stock	

trading.	 The	 ability	 to	 commit	 enables	 individuals	 to	 choose	 an	 optimal	 stopping	 plan	

without	worrying	about	their	ability	to	implement	it.	Thus,	understanding	how	individuals	

choose	a	stopping	plan	when	they	have	commitment	power	not	only	can	help	us	understand	

behavior	in	real-world	stopping	problems,	but	it	can	also	help	us	grasp	the	biases	that	arise	

in	dynamic	play,	which	can	be	a	first	step	toward	mitigating	these	biases.	

	 Our	main	 research	 objective	 is	 to	 experimentally	 examine	 how	 individuals	 make	

stopping	plans	when	they	have	commitment	power	and	what	forces	shape	these	plans.	In	

particular,	 we	 shall	 explore	 whether	 there	 are	 circumstances	 in	 which	 individuals	

choose	stopping	rules	with	a	relatively	large	loss	and	a	small	potential	gain.	This	type	of	behavior	

is	consistent	with	the	disposition	effect	and	the	desire	to	reduce	the	probability	of	finishing	the	

process	at	a	loss.	We	also	study	in	which	circumstances	individuals	exhibit	the	opposite	behavior,	

namely,	choosing	to	stop	the	process	at	a	relatively	small	loss	and	a	large	gain,	which	induces	a	

small	downside	risk.		 	
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	 In	order	to	understand	our	setting,	consider	a	decision-maker	(DM)	who	faces	an	infinite	

sequence	of	lotteries,	where	each	lottery	pays	1	with	probability	p	and	−1	with	probability	1−p.	

This	binomial	process	can	approximate	the	movement	of	real	prices	or	the	value	of	a	stock.	Under	

various	theories	of	decision	under	risk,	the	DM’s	optimal	stopping	plan	can	be	described	by	an	

upper	bound	h>0	and	a	lower	bound	l≤0	such	that	the	DM	stops	the	process	once	her	payoff	hits	

one	of	these	bounds.		The	higher	h	is,	the	less	likely	the	process	is	to	reach	h	before	it	reaches	l;	

the	lower	 l	 is,	the	less	likely	the	process	is	to	reach	 l	before	it	reaches	h.	Thus,	when	choosing	

these	bounds,	the	DM	trades	off	between	the	probability	of	winning	and	the	size	of	the	potential	

gain/loss.1		This	tradeoff	is	at	the	heart	of	our	experimental	design.	

	 To	gain	intuition	for	the	problem,	consider	the	two	cutoff	rules	given	in	Figure	1.	Under	

both	rules,	the	sequence	stops	once	the	DM	accumulates	a	net	loss	of	20.	Under	a	(respectively,	

b),	the	sequence	stops	once	the	DM	accumulates	a	gain	of	10	(respectively,	30).	We	refer	to	cutoff	

rules	for	which	the	upper	bound	is	smaller	(respectively,	greater)	in	absolute	value	than	the	lower	

bound	as	left-biased	(respectively,	right-biased).	The	likelihood	that	the	sequence	ends	at	a	loss	is	

smaller	under	the	left-biased	rule	a,	while	the	potential	gain	is	greater	under	the	right-biased	rule	

b.	Thus,	when	the	DM	chooses	between	the	two	rules,	she	trades	off	between	the	potential	gain	

and	the	probability	of	a	gain.		In	our	experiment,	the	participants	faced	these	types	of	problems	

where,	in	each	problem,	the	participants	had	to	choose	one	rule	out	of	five	rules:	 two	right-

biased	ones,	two	left-biased	ones,	and	a	symmetric	rule.	

	

Rule	 Lower	bound	 Upper	bound	

a	 -20	 +10	

b	 -20	 +30	
	

Figure	1.	Two	cutoff	rules	with	the	same	lower	bound.	

	

In	 expectation,	 under	 the	 left-biased	 rule,	 the	DM	participates	 in	a	 smaller	number	of	

lotteries.	Thus,	when	the	baseline	 lottery	 is	unfair	(i.e.,	p<0.5),	a	risk-neutral/averse	expected	

utility	 maximizer	 would	 choose	 the	 left-biased	 rule.	 Our	 participants’	 choices	 match	 this	

prediction	quite	well,	as	63%	of	them	consistently	chose	(in	at	least	5	out	of	6	problems)	left-

                                                
1 Formally,	when	𝑝 ≠ 0.5,	the	probability	of	stopping	the	process	at	a	gain	is	 '()

*

'()+,*
,	where	𝑞 = '(/

/
. 
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biased	rules	in	cases	where	we	fixed	the	potential	loss	and	varied	the	potential	gain,	whereas	only	

12%	of	them	consistently	chose	right-biased	rules.	In	a	symmetric	manner,	when	the	baseline	

lottery	has	a	positive	expected	value,	a	risk-neutral	individual	would	choose	the	right-biased	rule	

b.	While	36%	of	our	participants	consistently	chose	right-biased	rules	in	this	case,	remarkably,	

many	 participants	 (37%)	 consistently	 put	 a	 larger	 weight	 on	 the	 winning	 probabilities	 (or,	

according	to	their	literal	explanations,	the	probability	of	not	losing)	and	chose	left-biased	rules	

(see	Table	2).	

Consider	the	symmetric	case	of	an	individual	who	has	to	choose	between	two	cutoff	rules	

that	share	the	same	upper	bound	as	in	Figure	2.	As	a	benchmark,	note	that	a	risk-neutral	expected	

utility	maximizer	will	prefer	the	left-biased	rule	d	if	the	baseline	lottery	is	fair	and	the	right-biased	

rule	c	if	p<0.5.	Despite	the	larger	potential	loss,	roughly	half	of	our	participants	consistently	chose	

a	 left-biased	 rule	 in	 problems	 in	 which	 the	 upper	 cutoff	 was	 fixed:	 52%	 when	 the	 baseline	

lotteries	were	unfair	and	48%	when	the	baseline	lotteries	were	fair.		

	

Rule	 Lower	bound	 Upper	bound	

c	 -10	 +20	

d	 -30	 +20	
	

Figure	2.	Two	cutoff	rules	with	the	same	upper	bound.	

	

Our	main	finding	is	a	general	tendency	to	either	consistently	choose	left-biased	rules	or	

consistently	choose	right-biased	ones,	across	qualitatively	different	choice	problems.		We	find	a	

larger	proportion	of	participants	who	consistently	choose	left-biased	rules	than	of	participants	

who	choose	right-biased	rules.	The	gap	between	these	proportions	is	greater	when	the	baseline	

lottery	is	unfair	compared	to	the	case	of	a	fair	baseline	lottery.	

Our	 experimental	 design	 allows	 us	 to	 test	whether	 or	 not	 the	 above	 findings	 can	 be	

explained	 by	 various	 theories	 of	 decision-making	 under	 risk.	 We	 examined,	 for	 each	

participant,	whether	her	behavior	 is	consistent	with	prominent	decision	 theories	 (expected	

utility	 theory;	 cumulative	 prospect	 theory,	 Kahneman	 and	 Tversky,	 1992;	 disappointment	

aversion,	Gul,	1991).	Roughly	speaking,	we	say	that	a	participant’s	behavior	is	consistent	with	

a	particular	theory	if	it	matches	the	theory’s	prediction	in	a	large	share	of	decision	problems	

(the	 precise	 definition	 appears	 in	 Section	 4).	 We	 found	 that	 when	 facing	 negative	 value	

lotteries,	the	behavior	of	most	of	our	participants	cannot	be	explained	by	any	of	these	theories.	
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However,	 when	 facing	 positive	 expected	 value	 lotteries,	 the	 behavior	 of	 many	 of	 our	

participants	 is	 consistent	with	 cumulative	prospect	 theory	 (where	different	degrees	of	 loss	

aversion	and	probability	distortion	explain	the	behavior	of	different	participants).	In	particular,	

all	participants	who	consistently	chose	right-biased	rules	fit	this	theory	(see	Barberis,	2012;	

Ebert	 and	 Strack,	 2015),	 while	 those	 who	 consistently	 chose	 left-biased	 rules	 cannot	 be	

explained	by	any	of	these	theories.			

In	light	of	the	negative	findings	discussed	above,	we	look	for	an	alternative	explanation	

for	the	participants’	behavior	and	especially	for	the	tendency	to	choose	left-biased	rules.	To	

this	end,	we	 first	 identified	the	participants	who	chose	 left-biased	or	right-biased	rules	 in	a	

large	share	of	the	decision	problems	and	classified	them	as	L-types	and	R-types	(the	share	is	

identical	 to	 the	one	above).	Second,	we	examined	these	 individuals’	ex-post	explanations	of	

their	choices	to	acquire	a	better	understanding	of	their	underlying	reasoning.	Over	63%	of	the	

participants	in	our	main	treatment	were	classified	as	L-	or	R-types,	where	the	vast	majority	of	

the	types	were	L.	Overall,	L-types	explained	that	they	focused	on	reducing	the	probability	of	

finishing	the	game	with	a	loss,	whereas	R-types	explained	that	they	put	a	relatively	large	weight	

on	the	size	of	the	potential	gains	and	losses.2	The	focus	of	L-types	on	the	stopping	rule’s	induced	

probabilities,	even	at	the	expense	of	a	greater	potential	loss	(e.g.,	choosing	rule	d	over	rule	c),	

is	 somewhat	 surprising	 as	 in	 one	 of	 our	 two	 treatments	 the	 rules’	 induced	 odds	were	 not	

explicitly	 given	 to	 the	 participants	 (only	 the	 baseline	 lottery’s	 odds	 p	 were	 given),	 which	

supposedly	made	the	gains	and	losses	more	salient	than	their	respective	probabilities.	

Our	 experimental	 design	 enables	 us	 to	 examine	 how	 each	 participant’s	 behavior	

depends	 on	 the	 favorability	 of	 the	 drift.	We	 find	 that	when	 the	 drift	 becomes	 positive,	 the	

number	of	times	an	individual	(whether	classified	as	a	type	or	not)	chooses	a	left-biased	rule	

weakly	decreases.	The	participants’	explanations	suggest	that	when	p<0.5	they	focus	on	the	

probability	of	 finishing	 the	game	with	a	 loss,	whereas	 in	 the	case	of	p>0.5	they	put	a	larger	

weight	on	the	size	of	the	potential	gain.		

The	participants’	behavior,	together	with	their	explanations,	suggests	that	most	of	them	

try	to	solve	a	simple	tradeoff	between	the	likelihood	of	winning	or	losing	and	the	size	of	the	

prizes.	The	particular	way	in	which	this	tradeoff	is	solved	depends	on	the	favorability	of	the	

baseline	 lottery	 and	 on	 whether	 or	 not	 the	 potential	 loss	 is	 fixed.	 However,	 for	 most	

participants,	 the	solution	is	virtually	unaffected	by	 the	 favorability	or	expected	value	of	 the	

                                                
2	Thus,	while	R	types	are	consistent	with	cumulative	prospect	theory,	their	explanations	suggest	that	a	
different	reasoning	underlies	their	behavior.	
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stopping	rules’	induced	lotteries.	This	holds	true	when	participants	are	not	provided	with	the	

induced	probabilities	(in	which	case	it	is	difficult	to	calculate	the	induced	lotteries’	odds),	but	

also	when	 they	 are	 provided	with	 these	 odds.	 This	 finding	 suggests	 that	 the	way	 in	which	

individuals	solve	this	tradeoff	is	qualitative,	and	that	it	is	mainly	affected	by	the	way	in	which	

they	perceive	 the	 favorability	 of	 the	drift	 rather	 than	 from	the	 fine	details	 of	 each	decision	

problem.			

 

Related	literature	

The	present	paper	 is	related	to	a	recent	strand	of	the	 literature	 that	 investigates	planning	 in	

dynamic	decision-making	under	risk.	The	closest	papers	to	our	paper	are	Heimer	et	al.	(2020)	

and	Dertwinkel-Kalt	 et	 al.	 (2020).	Heimer	 et	 al.	 document	 a	discrepancy	between	 investors’	

initial	plans	and	their	actual	behavior:	most	investors	choose	stopping	rules	that	are	right-biased	

(“loss	 exit”)	 ex	 ante,	 but	 their	 subsequent	 choices	 follow	 the	 reverse	 pattern.	 	 In	 an	 online	

experiment,	they	show	that	when	participants	face	fair	lotteries	and	can	commit	to	a	stopping	

rule,	the	vast	majority	of	participants	choose	a	right-biased	one.	The	aggregate	behavior	that	

they	find	is	consistent	with	cumulative	prospect	theory.	Dertwinkel-Kalt	et	al.	(2020)	conduct	a	

lab	experiment	in	which	they	test	the	predictions	of	Bordalo	et	al.’s	(2012)	salience	theory	in	a	

stopping	problem.	They	find	that	most	participants	plan	to	use	a	right-biased	strategy	(however,	

in	their	experiment,	there	is	no	commitment).3	

Our	experimental	setting	differs	from	the	above	papers	in	several	important	aspects.	First,	

losses	 in	 our	 experiment	 were	 framed	 as	 losses	 rather	 than	 as	 lower	 gains	 (as	 framed	 in	

Dertwinkel-Kalt	et	al.)	and	were	deducted	from	an	endowment	that	was	announced	a	week	prior	

to	 the	 experiment.	 Second,	 the	participants	 in	our	 experiment	were	 STEM	and	management	

students	 who	 are	 presumably	 more	 familiar	 with	 basic	 statistics	 and	 may	 have	 a	 better	

understanding	of	the	implications	of	different	stopping	rules	compared	to	the	typical	online	and	

offline	 subject	 pool.	 These	 differences	 may	 explain	 some	 of	 the	 differences	 in	 the	 papers’	

findings.	Finally,	the	most	crucial	difference	between	the	papers	is	in	the	experimental	design,	

which,	 in	 our	 paper,	 is	 tailored	 to	 examine	 individual	 rather	 than	 aggregate	 behavior.	 Our	

                                                
3 This	behavior	is	consistent	with	Bordalo	et	al.’s	theory	when	it	is	applied	to	the	two	attributes	gains	and	
losses.	However,	it	is	not	necessarily	consistent	with	their	theory	when	the	set	of	attributes	includes	the	
probability	of	a	gain.	In	our	experiment,	 the	participants’	explanations	suggest	 that,	 indeed,	gains	and	
losses	may	be	more	salient	than	probabilities	when	lotteries	are	fair,	but	when	the	process	is	unfair,	the	
probability	of	winning	becomes	more	prominent	than	the	actual	gains.		
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participants	made	36	decisions,	where	 each	was	a	 choice	between	 five	 given	stopping	 rules,	

whereas	in	Heimer	et	al.	and	Dertwinkel-Kalt	et	al.	the	participants	were	free	to	design	their	own	

stopping	rule	and	participated	in	a	small	number	of	such	decision	problems.	Our	design	allows	

us	to	explore	the	participants’	behavior	at	the	individual	level	in	different	contexts,	and	match	

the	diverse	patterns	in	the	data	to	various	decision	theories.		Our	results	when	the	lotteries	are	

fair	are	consistent	with	cumulative	prospect	theory	as	in	Heimer	et	al.	(2020).	By	contrast,	when	

lotteries	are	unfair	as	in	Dertwinkel-Kalt	et	al.,	our	results	are	qualitatively	different	from	those	

obtained	 in	 these	 papers	 and	 are	 inconsistent	 with	 prominent	 decision	 theories	 including	

expected	utility	theory	and	cumulative	prospect	theory.			

Fischbacher	 et	 al.	 (2017)	 show	 that	 stop-loss	 and	 take-gain	 strategies	 mitigate	 the	

disposition	effect.	Key	differences	from	our	setting	are	(i)	the	lack	of	commitment	power,	(ii)	the	

fact	that	each	participant	effectively	chooses	a	stopping	rule	once,	and	(iii)	the	lack	of	knowledge	

of	the	baseline	lottery’s	drift	(i.e.,	p).	Thus,	while	Fischbacher	et	al.’s	(2017)	elegant	design	allows	

them	to	investigate	the	effect	of	stop-loss	and	take-gain	strategies	on	individuals’	tendency	to	

hold	on	to	losing	assets,	it	cannot	be	used	to	examine	what	type	of	rules	people	choose,	what	

makes	 them	 choose	 these	 rules,	 the	 consistency	 of	 these	 choices,	 and	 how	 this	 consistency	

depends	on	the	favorability	of	the	underlying	process.		

Other	papers	study	stopping	decisions	without	planning.	In	Strack	and	Viefers	(2021),	the	

participants	choose	when	to	stop	a	multiplicative	random	walk	and	exhibit	history-dependent	

behavior,	which	is	consistent	with	regret	aversion	and	inconsistent	with	cutoff	rules.	Sandri	et	

al.	 (2010)	 examine	 exit	 decisions	 and	 find	 that	most	 individuals	 tend	 to	 hold	 on	 to	 a	 badly	

performing	asset	 longer	 than	 is	consistent	with	real	option	reasoning.	Aloui	and	Fons-Rosen	

(2017)	 find	 that	 grittier	 individuals	have	 a	higher	 tendency	 to	over-gamble	 relative	 to	 their	

original	plans.	In	their	experiment,	the	lotteries	are	unfair	and	most	of	the	individuals	choose	to	

play	even	though	they	are	not	obliged	to	do	so.		In	none	of	the	aforementioned	papers,	however,	

do	the	participants	have	commitment	power.	Moreover,	the	bulk	of	this	strand	of	the	literature	

focuses	 on	 dynamic	 play	 rather	 than	 planning	 (Aloui	 and	 Fons-Rosen,	 2017,	 being	 the	

exception).	

Stopping	 plans	 were	 studied	 indirectly	 in	 the	 experimental	 literature	 on	 dynamic	

inconsistency,	which	focuses	on	deviations	from	planning	when	individuals	face	a	small	number	

of	lotteries.	Barkan	and	Busmeyer	(1999,	2003)	and	Ploner	(2017)	find	evidence	of	dynamically	

inconsistent	 behavior	 in	 settings	 where	 individuals	 decide	 whether	 to	 participate	 in	 an	

additional	lottery	after	experiencing	one	outcome.	Cubitt	and	Sugden	(2001)	do	not	reject	the	
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dynamic	consistency	hypothesis	when	participants	have	to	decide	in	how	many	all-or-nothing	

additional	gambles	to	participate	after	winning	in	four	mandatory	rounds.			

Finally,	 our	work	 relates	 to	 the	 literature	on	 skewness-seeking	and	prudent	behavior.	

Skewness	corresponds	to	our	notion	of	left/right-biased	stopping	rules.	The	more	right-biased	

a	 rule	 is,	 the	 more	 positively	 skewed	 its	 induced	 lottery.	 Golec	 and	 Tamarkin	 (1998)	 find	

evidence	of	skewness-seeking	behavior	in	horse-race	betting.	Brunner	et	al.	(2011),	Deck	and	

Schlesinger	(2010,	2014),	Ebert	and	Weisen	(2011,	2014),	Ebert	(2015),	Grossman	and	Eckel	

(2015),	Maier	 and	Ruger	 (2012),	 and	Noussair	 et	al.	 (2014)	provide	 evidence	 for	 skewness-

seeking	and/or	prudent	behavior	in	lab	experiments.	Bleichrodt	and	van	Bruggen	(2018)	find	

prudent	behavior	in	the	gain	domain	and	imprudent	behavior	in	the	loss	domain.		

There	are	several	differences	between	our	setting	and	the	typical	setting	in	this	strand	of	

the	 literature.	The	 experiments	on	 skewness-seeking	and	prudent	behavior	 examine	 choices	

between	 lotteries	with	 identical	means	 and	 variance.	 By	 contrast,	 the	 stopping	 rules	 in	 our	

setting	induce	compound	lotteries	with	different	means	and	variance	such	that	prudence	does	

not	imply	a	tendency	to	choose	right-biased	rules	(e.g.,	facing	the	two	rules	in	Figure	1,	a	prudent	

individual	may	choose	the	left-biased	rule	when	p<0.5	as	it	induces	a	greater	expected	value	and	

a	smaller	variance	than	the	right-biased	rule).	Moreover,	reducing	a	stopping	rule	to	its	induced	

lottery	 is	 a	daunting	 task	 as	 the	 participants	 know	 only	 the	 probability	 of	winning	 a	 single	

baseline	 lottery.	 (For	 example,	 Halevy,	 2007,	 establishes	 that	 even	 in	 simpler	 settings	

individuals	often	fail	to	reduce	compound	lotteries.)	Thus,	stopping	problems	may	encourage	

reasoning	in	qualitative	terms,	which	is	less	likely	to	be	triggered	in	the	typical	setting	of	the	

literature	on	skewness-seeking	and	prudence.			

The	paper	proceeds	as	follows.	Section	2	presents	our	experimental	design	and	Section	3	

describes	the	results	at	both	the	aggregate	and	the	individual	levels.	In	Section	4,	which	is	the	

heart	of	the	paper,	we	classify	the	participants	into	theory-based	types	according	to	their	choices.	

In	Sections	5	and	6,	we	investigate	the	mechanisms	that	underlie	our	key	findings,	and	Section	7	

concludes.		

	

2.	Experimental	Design	
The	experiment	was	carried	out	in	the	Interactive	Decision-Making	Lab	at	Tel	Aviv	University	in	

April–May	 2017.	 The	 participants	 were	 114	 Tel	 Aviv	 University	 undergraduate	 students	 in	

management	and	STEM,	44%	of	whom	were	women.	The	average	age	was	25.	Recruitment	of	

participants	was	done	via	ORSEE	(Greiner,	2004).		
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Each	participant	received	55	NIS	(roughly	$15)	at	the	beginning	of	the	experiment.	In	an	

attempt	to	make	the	participants	internalize	this	endowment,	one	week	prior	to	the	session,	we	

notified	them	that	they	would	receive	this	amount	and	could	lose	part	of	it	(at	most	30	NIS)	or	

win	an	additional	amount,	depending	on	their	choices	in	the	experiment.	A	reminder	of	that	was	

sent	on	the	day	before	the	session	as	well.	The	experiment	included	57	computerized	decision	

problems	(we	refer	to	these	decision	problems	as	Questions	1–57	or	Q1–Q57),	one	of	which	was	

randomly	selected	at	the	end	of	the	experiment	to	determine	the	payment	for	the	participants.	

The	amount	won	(or	lost)	in	that	game	was	added	to	(or	subtracted	from)	the	initial	endowment.	

In	practice,	each	participant	could	win	at	most	an	additional	45	NIS	and	could	lose	at	most	28	NIS	

out	of	her	initial	endowment.	All	sessions	were	completed	within	an	hour.	

	

2.1	Detailed	description	of	the	experiment	

In	each	session,	the	participants	were	randomly	assigned	to	two	treatments,	denoted	by	T0	and	

Tp,	each	with	four	parts,	which	are	described	below.	Out	of	the	114	participants,	67	participants	

were	assigned	to	our	main	treatment,	T0,	and	47	were	assigned	to	Tp.	The	complete	questionnaire	

can	be	 found	 in	 the	appendix.	 In	short,	Part	A	(respectively,	Part	B)	examines	 the	choice	of	a	

stopping	rule	when	the	baseline	lottery	has	a	negative	(respectively,	positive)	expected	value,	and	

Part	C	explores	the	participants’	ability	to	estimate	the	rules’	induced	probabilities.	Part	D	studies	

the	participants’	behavior	in	a	simpler	setting	to	identify	whether	their	choices	in	Parts	A	and	B	

are	related	to	a	pure	taste	for	skewed	lotteries.		

	

Part	A.	In	this	part,	participants	faced	a	sequence	of	computerized	lotteries,	each	with	an	18/37	

probability	to	win	1	NIS	and	a	19/37	probability	to	lose	1	NIS.	These	probabilities	resemble	the	

win/loss	 probability	 in	 the	 “Red	 or	 Black”	 roulette	 game.	 In	 each	 decision	 problem,	 the	

participants	 were	 asked	 to	 choose	 a	 cutoff	 stopping	 rule.	 The	 participants	 faced	 18	 decision	

problems,	in	each	of	which	they	chose	one	out	of	five	alternative	cutoff	stopping	rules.	If	one	of	

these	problems	was	randomly	selected	for	payment,	then	the	stopping	rule	was	automatically	

and	instantaneously	implemented	by	the	computer.	

The	 only	difference	between	 the	 two	 treatments	was	 that	 in	Tp	 the	participants	were	

informed	of	the	probability	of	ending	the	game	with	a	gain	given	each	of	the	five	stopping	rules,	

whereas	 in	 T0	 they	 were	 not	 (in	 both	 treatments	 the	 participants	 were	 informed	 about	 the	

winning	probability	in	the	baseline	lottery).		This	difference	allows	us	to	examine	the	extent	to	

which	 the	choice	patterns	observed	 in	T0	were	affected	by	 the	participants’	knowledge	of	 the	

rule’s	 induced	probability	 of	winning	 in	Tp.	While	 the	 literature	 on	 stopping	 problems	 is	 not	
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insubstantial,	 to	 the	 best	 of	 our	 knowledge	 the	 difference	 between	 these	 two	 conditions	 is	

underexplored.	

In	order	to	distinguish	between	different	theories	of	decision-making	under	risk	that	may	

explain	the	participants’	behavior,	we	considered	three	types	of	decision	problems,	illustrated	in	

Figure	3.	 	In	Q1–Q6	(fixed	loss),	the	participants	are	required	to	choose	between	five	stopping	

rules	that	share	the	size	of	the	loss	in	which	the	process	is	stopped	and	vary	in	the	size	of	the	

respective	 gain.	 In	Q7–Q12	 (fixed	gain),	 the	participants	are	 required	 to	 choose	 between	 five	

stopping	rules	that	share	the	size	of	the	gain	in	which	the	process	is	stopped	and	vary	in	the	size	

of	the	respective	loss.	The	problems	Q13–Q18	(not	fixed)	vary	both	the	gain	and	loss.	Section	2.2	

describes	the	predictions	of	the	theories	we	examine.		

In	each	decision	problem,	there	are	two	rules	in	which	the	potential	loss	is	greater	than	

the	potential	gain,	two	rules	in	which	the	potential	gain	is	greater	than	the	potential	loss,	and	one	

rule	in	which	the	potential	gain	and	the	potential	loss	are	equal.	We	refer	to	these	rules	as	left-

biased,	right-biased,	and	symmetric	rules,	respectively.	We	shall	refer	to	choosing	the	most	left-

biased	rule	(i.e.,	with	the	largest	loss	and	the	smallest	gain)	as	Rule	1,	the	second-most	left-biased	

rule	as	Rule	2,	the	symmetric	rule	as	Rule	3,	the	most	right-biased	rule	(i.e.,	with	the	largest	gain	

and	smallest	loss)	as	Rule	5,	and	the	second-most	right-biased	rule	as	Rule	4.	The	five	stopping	

rules	were	presented	to	the	participants	either	in	order	from	the	left-biased	rule	with	the	largest	

loss	and	smallest	gain	to	the	right-biased	one	with	the	largest	gain	and	smallest	loss	(as	in	Figure	

3)	or	in	the	reverse	order.4	Thus,	the	five	stopping	rules	were	always	ordered	either	from	the	

highest	probability	of	a	gain	to	the	lowest	one	or	the	other	way	around.		

	

Part	B.	This	part	consists	of	18	decision	problems	(Q19–Q36)	and	is	similar	in	structure	to	Part	

A.	The	main	difference	between	 the	 two	parts	 is	 that	 the	probabilities	 of	 gain	 and	 loss	 in	 the	

baseline	lottery	are	reversed	in	Part	B	(i.e.,	the	probability	of	winning	in	a	single	lottery	is	19/37).	

In	addition,	we	tried	to	diversify	the	problems	in	Parts	A	and	B	to	prevent	a	sense	of	repetition.	

Thus,	the	stopping	rules	in	Part	B	are	similar	to	the	ones	in	Part	A,	yet	they	are	not	identical.	

	

	
	

                                                
4 The	randomly	selected	order	was	used	consistently	throughout	Parts	A	and	B.		The	results	suggest	that	
the	order	did	not	affect	the	choices	in	the	experiment	and	hence	we	merge	the	data	from	the	two	variations	
in	the	analysis.	
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Type	(i):	Fixed	loss	

	 Loss	 Gain Probability	of	gain	

Rule	1	 -21	 +9	 52%	

Rule	2	 -21	 +15	 35%	

Rule	3	 -21	 +21	 24%	

Rule	4	 -21	 +27	 17%	

Rule	5	 -21	 +33	 12%	

	

Type	(ii):	Fixed	gain	

	 Loss	 Gain Probability	of	gain	

Rule	1	 -20	 +12	 42%	

Rule	2	 -16	 +12	 39%	

Rule	3	 -12	 +12	 34%	

Rule	4	 -8	 +12	 %28	

Rule	5	 -4	 +12	 %18	

	

Type	(iii):	Not	fixed	

	 Loss	 Gain Probability	of	gain	

Rule	1	 -27	 +15	 38%	

Rule	2	 -24	 +18	 31%	

Rule	3	 -21	 +21	 24%	

Rule	4	 -18	 +24	 %19	

Rule	5	 -15	 +27	 %14	
	

Figure	3.	 The	 three	 types	of	questions	 in	Part	A. 	The	probability	of	a	gain	given	each	stopping	rule	 is	
provided	for	the	reader’s	convenience.	Only	participants	in	Tp	received	information	on	the	probability	of	a	
gain	and	a	loss	given	the	stopping	rule,	which	was	presented	in	a	sentence	below	the	description	of	the	
rule’s	upper	and	lower	cutoffs	(see	the	appendix).	
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Part	C.	This	part	includes	three	problems	(Q37–Q39),	where	each	problem	presents	a	different	

stopping	rule.	In	each	of	the	three	problems,	the	participants	were	asked	to	consider	a	baseline	

lottery	 that	 pays	 1	with	 probability	 18/37	and	 -1	with	 probability	 19/37	 (as	 in	 Part	 A)	 and	

estimate	the	probability	that	the	game	will	end	at	a	gain	given	the	stopping	rule.	In	particular,	in	

the	first	problem,	they	had	to	gauge	the	probability	of	finishing	the	game	with	a	gain	of	25	given	

that	the	stopping	rule	is	(-25,	+25).	The	second	and	third	problems	were	similar	except	that	the	

stopping	rules	were	(-25,	+50)	and	(-25,	+100),	respectively.	The	correct	answers	to	these	three	

questions	are	roughly	20.5%,	5%,	and	0.3%,	respectively.	The	payment	for	each	of	the	problems	

in	Part	C	(in	case	one	of	these	problems	was	selected	for	payment)	was	40	NIS	minus	the	size	(in	

absolute	terms)	of	the	error	in	the	participant’s	estimation.	There	was	no	difference	between	the	

two	treatments	in	this	part.	

	

Part	D.	In	this	part,	the	participants	faced	18	decision	problems	(Q40–Q57).	In	each	problem	they	

chose	between	two	binary	 lotteries	with	known	probabilities	of	loss	and	gain	(as	illustrated	in	

Figure	4).	In	each	problem,	the	two	lotteries	were	a	“mirror	image”	of	each	other	(i.e.,	–x	with	

probability	p	and	+y	with	probability	1-p	vs.	–y	with	probability	1-p	and	+x	with	probability	p),	

and	had	an	expected	value	of	0,	the	same	variance,	the	same	kurtosis,	but	different	skewness.	The	

departure	from	the	context	of	a	stopping	problem,	as	well	as	the	fact	that	the	lotteries	had	the	

same	expected	value	and	variance,	allowed	us	to	test	whether	some	individuals	have	a	“pure”	

taste	for	skewness.	Such	preferences	may	be	relevant	for	the	choice	of	a	stopping	rule	in	Parts	A	

and	B.	In	each	question,	the	order	of	appearance	of	the	two	available	lotteries	was	randomly	and	

independently	determined.	There	was	no	difference	between	the	two	treatments	in	this	part.	

	

Part	D:	Game	2	
	

Choose	your	preferred	lottery	from	the	following	two	lotteries:		
 

a. 

 

 

b. 

 

	
	

Figure	4.	An	example	of	a	decision	problem	in	Part	D.	

chance	 24%	 76%	

amount	 -25	 +8	

chance	 76%	 24%	

amount	 -8	 +25	



 
13 

At	the	end	of	Parts	A,	B,	and	D,	the	participants	were	asked	to	explain	the	principles	that	

guided	 them	 in	 their	 choices.	We	analyzed	 the	participants’	 explanations	 in	order	 to	obtain	 a	

better	understanding	of	their	reasoning	process.	

	

Discussion:	Choosing	from	a	fixed	set	of	rules	

In	each	of	the	decision	problems	in	Parts	A	and	B,	the	participants	chose	one	out	of	five	stopping	

rules.	Alternatively,	we	could	have	allowed	them	to	select	the	potential	gains	and	losses	(i.e.,	the	

stopping	rule’s	upper	and	 lower	bounds)	 from	an	unconstrained	set.	We	decided	 to	constrain	

their	choice	as	it	enabled	us	to	focus	on	the	effect	of	the	qualitative	properties	of	the	stopping	

rules	(e.g.,	the	effect	of	the	fairness	of	the	baseline	lotteries,	how	the	choices	differ	given	fixed	

loss/gain)	 while	 keeping	 the	 participants’	 decision	 problems	 relatively	 simple.	 The	 main	

advantage	of	the	“constrained”	problems	is	that	they	differ	from	one	another	and	therefore	allow	

us	to	examine	whether	participants	use	rules	that	share	similar	properties	in	a	large	number	of	

different	 problems.	 We	 believe	 that	 it	 would	 be	 significantly	 more	 difficult	 to	 make	 the	

participants	 perceive	 numerous	 unconstrained	 problems	 as	 different	 from	 one	 another,	

especially	in	situations	where	the	stopping	rules’	induced	probabilities	are	not	specified	as	in	our	

main	treatment.	

Our	restricted	set	of	options	resemble	risk	questionnaires	that	investment	banks	often	

use	to	elicit	 investors’	preferences	over	investment	strategies.	In	these	type	of	questionnaires,	

individual	investors	often	have	to	choose	pairs	of	cutoffs	that	represent	the	maximal	loss	that	

they	are	willing	to	bear	in	a	given	time	period	and	the	gains	that	they	expect	to	obtain	in	that	

period.	 In	practice,	 investors	are	often	given	a	 fixed	set	of	cutoffs	 to	choose	 from	rather	 than	

allowed	to	choose	the	cutoffs	freely.	Fixing	the	set	of	cutoffs	allows	the	bank	to	categorize	the	

investors	to	a	manageable	number	of	categories	and	implement	an	investment	strategy	suitable	

for	each	category.		

	

2.2	Theoretical	predictions	

First,	consider	the	behavior	of	a	risk-neutral	expected	utility	maximizer.	Such	an	individual	would	

try	 to	minimize	 the	 number	 of	 lotteries	 in	which	 he	 participates	 in	 Part	 A	where	 p<0.5	 and	

maximize	the	number	of	lotteries	in	which	he	participates	in	Part	B	where	p>0.5.	This	implies	

choosing	Rule	1	in	Q1–Q6	and	Q25–Q30	in	which	the	loss	is	fixed,	and	choosing	Rule	5	in	Q7–Q12	

and	Q19–Q24	in	which	the	gain	is	fixed.	
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Second,	consider	the	behavior	of	a	risk-averse	expected	utility	maximizer.	A	very	small	

degree	of	risk	aversion	would	make	the	individual	behave	as	if	she	were	risk-neutral.	However,	a	

sufficient	degree	of	risk	aversion5	would	lead	the	individual	to	minimize	the	expected	number	of	

lotteries	in	which	she	participates	in	both	parts	of	the	experiment.	This	implies	choosing	Rule	1	

in	Q1–Q6	and	Q19–Q24,	and	choosing	Rule	5	in	Q7–Q12	and	Q25–Q30.	

Third,	consider	the	behavior	predicted	by	cumulative	prospect	theory	(CPT).	Under	this	

theory,	individuals	put	a	higher	weight	on	losses	than	on	gains	and	distort	probabilities	of	gains	

and	 losses.	 In	particular,	 they	 assign	 a	 relatively	high	weight	 to	 low-probability	 events	and	a	

relatively	 low	weight	 to	high-probability	 events.	As	 shown	 in	Barberis	 (2012)	 and	Ebert	 and	

Strack	 (2015),	 this	 distortion	 makes	 right-biased	 stopping	 rules	 more	 attractive	 for	 such	

individuals.	If	this	effect	is	not	too	small,	it	leads	to	choosing	Rule	5	in	Q1–Q12	and	Q19–Q30.		

We	also	examined	the	predictions	of	Gul’s	(1991)	disappointment	aversion	(DA).	When	

the	underlying	utility	function	is	linear,	this	theory’s	predictions	in	the	above	24	problems	are	

similar	 to	 those	 of	 expected	 value	 maximization	 as	 long	 as	 the	 disappointment	 aversion	

coefficient	is	smaller	than	2.	

In	all	of	the	above	problems	(Q1–Q12,	Q19–Q24,	and	Q25–Q30),	the	theories’	predictions	

are	monotone.	That	 is,	 an	 individual	whose	behavior	 is	 consistent	with	one	of	 these	 theories	

either	 prefers	 rule	 𝑖	 to	 Rule	 𝑖 + 1	 for	 all	 𝑖 ∈ {1,2,3,4}	 or	 prefers	 Rule	 𝑖	to	Rule	𝑖 − 1	for	all	𝑖 ∈

{2,3,4,5}.		Figure	5	summarizes	this	discussion.	

		

Problem	 Risk	neutrality	 Risk	aversion	 CPT	 DA	

Q1–Q6	 1 > 2 > 3 > 4 > 5	 1 > 2 > 3 > 4 > 5	 5 > 4 > 3 > 2 > 1	 1 > 2 > 3 > 4 > 5	

Q7–Q12	 5 > 4 > 3 > 2 > 1	 5 > 4 > 3 > 2 > 1	 5 > 4 > 3 > 2 > 1	 5 > 4 > 3 > 2 > 1	

Q19–Q24	 5 > 4 > 3 > 2 > 1	 1 > 2 > 3 > 4 > 5	 5 > 4 > 3 > 2 > 1	 5 > 4 > 3 > 2 > 1	

Q25–Q30	 1 > 2 > 3 > 4 > 5	 5 > 4 > 3 > 2 > 1	 5 > 4 > 3 > 2 > 1	 1 > 2 > 3 > 4 > 5	
	

Figure	5.	The	prediction	of	prominent	decision	theories	under	risk	for	each	type	of	problem.	

	

In	 the	 remaining	 12	 decision	 problems	 (Q13–Q18	 and	 Q31–Q36,	 in	 which	 both	 the	

potential	gains	and	the	potential	 losses	vary),	the	theories’	predictions	are	more	nuanced:	the	

rules’	ranking	need	not	be	monotone	and	may	change	across	decision	problems	(this	depends	on	

the	functional	form	and	the	parameters	used).	These	problems	allow	us	to	distinguish	between	

                                                
5	We	allow	for	various	degrees	of	risk	aversion	when	we	classify	the	participants	into	types.		
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theories	that	cannot	be	distinguished	by	the	participants’	choices	in	Q1–Q12	and	Q19–Q30.	In	

particular,	the	predictions	for	disappointment	aversion	and	risk	neutrality	may	differ	from	one	

another	in	these	12	problems	even	for	degrees	of	disappointment	aversion	smaller	than	2.	

	

3.	General	Description	of	the	Participants’	Choices	
We	shall	now	focus	on	the	main	treatment,	𝑇F ,	in	which	the	participants	were	not	provided	with	

the	rules’	induced	probabilities.	In	Section	5.2	we	present	the	results	obtained	in	𝑇/,	in	which	the	

rules’	induced	probabilities	were	provided,	and	compare	them	to	the	results	in	T0.	We	present	the	

results	in	a	sequential	manner	in	order	to	avoid	repetition	and	focus	on	the	differences	between	

the	results	in	the	two	treatments.	

Recall	that,	in	each	problem,	the	participants	chose	between	five	stopping	rules:	two	left-

biased	ones,	a	symmetric	rule,	and	two	right-biased	rules.	The	behavior	in	𝑇F 	provides	indications	

of	two	general	patterns,	both	at	the	aggregate	level	and	at	the	individual	level.	First,	 in	Part	A,	

where	the	baseline	lottery	is	unfair,	there	is	a	strong	tendency	to	choose	Rules	1	and	2,	namely,	

left-biased	 stopping	 rules.	 Second,	 in	 Part	 B,	 this	 tendency	 is	 weaker	 compared	 to	 Part	 A.	

Nonetheless,	most	of	the	participants	make	more	left-biased	choices	than	right-biased	ones	in	

Part	B.	 

	

3.1	Aggregate-level	analysis	

At	the	aggregate	level,	 in	each	part	of	 the	experiment	 there	were	1,206	choices	(67	x	18).	We	

found	that	66%	of	the	choices	in	Part	A	were	of	left-biased	rules	and	only	25%	were	of	right-

biased	ones.	In	Part	B,	46%	of	the	chosen	rules	were	left-biased	whereas	35%	were	right-biased	

(see	Table	1).		

	

	 Part	A	 Part	B	

Rule	1	 31%	 23%	

Rule	2	 35%	 23%	

Rule	3	 9%	 19%	

Rule	4	 10%	 19%	

Rule	5	 15%	 16%	

Table	1.	The	proportions	of	choices	in	T0,	out	of	1,206	(67	x	18)	choices	that	were	made	in	each	part.		
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3.2	Individual-level	analysis		

Examining	 the	 participants’	 choices	 at	 the	 individual	 level	 reveals	 that	 many	 of	 them	 were	

consistent	in	their	tendency	to	choose	either	left-biased	rules	or	right-biased	rules,	but,	at	the	

same	time,	diversified	between	the	extremely	biased	rule	and	the	moderately	biased	rule.	In	both	

parts,	A	and	B,	the	differences	between	the	number	of	times	the	individuals	chose	Rule	1	and	the	

number	of	times	they	chose	Rule	2,	as	well	as	between	the	number	of	times	they	chose	Rule	4	and	

the	number	of	times	they	chose	Rule	5,	are	small	and	insignificant.		

Thus,	we	focus	here	on	the	choice	categories	of	left-biased	rules	and	right-biased	rules	

and	measure	 the	 tendency	 to	 consistently	 choose	 one	 of	 them.	 To	 this	 end,	we	 consider	 the	

number	of	times	each	individual	chose	a	left-biased	rule,	which	ranges	from	0	to	18	in	each	part	

of	 the	 experiment.	We	refer	 to	 this	measure	as	 the	number	of	 left-biased	choices. 		 In	a	similar	

manner,	we	consider	the	number	of	times	each	individual	chose	a	right-biased	rule	and	refer	to	

this	measure	as	the	number	of	right-biased	choices.	

The	 number	 of	 left-biased	 choices	 is	 higher	 on	 average	 in	 Part	A	 than	 it	 is	 in	 Part	 B,	

according	to	a	paired	sample	t-test	(11.9	vs.	8.3,	t(66)=4.44,	p<0.001).	Figure	6a	shows	that	the	

cumulative	distribution	of	the	number	of	left-biased	choices	per	individual	in	Part	A	stochastically	

dominates	the	one	in	Part	B.	The	number	of	right-biased	choices	is	higher	on	average	in	Part	B	

than	 it	 is	 in	Part	A	(6.31	vs.	4.54,	 t(66)=-2.57,	p=0.012).	Figure	6b	shows	that	 the	cumulative	

distribution	 of	 the	 number	 of	 right-biased	 choices	 per	 individual	 in	 Part	 B	 stochastically	

dominates	the	corresponding	one	in	Part	A.		

	

	
	

	
Figure	6a.	Cumulative	distribution	of	the	number	
of	left-biased	choices	per	participant	in	Part	A	vs.	
Part	B.		

Figure	6b.	Cumulative	distribution	of	the	number	
of	right-biased	choices	per	participant	in	Part	A	vs.	
Part	B.		

 



 
17 

	

Despite	the	substantial	differences	in	behavior	in	Parts	A	and	B,	the	individuals’	choices	

in	these	two	parts	are	correlated	according	to	the	number	of	left-biased	choices	(Pearson’s	r=0.56,	

p<0.001)	and	according	to	the	number	of	right-biased	choices	(Pearson’s	r=0.64,	p<0.001).	The	

combination	of	these	findings	suggests	that	there	exists	an	individual	tendency	either	to	choose	

left-biased	rules	or	to	choose	right-biased	rules.	The	favorability	of	the	baseline	lottery’s	odds	

reduces	the	common	tendency	toward	the	left-biased	rules.	

	

3.3	Analysis	of	the	three	types	of	problems	

Examining	each	of	the	36	problems	in	Parts	A	and	B	separately	suggests	that	left-biased	choices	

are	more	prevalent	than	right-biased	ones	in	all	but	two	of	them.	In	Part	A,	the	median	choice	was	

2	 in	all	18	of	 the	problems	and	the	 average	 choice	was	 in	 the	 range	2.06–2.87.	 In	Part	B,	 the	

median	choice	in	most	problems	was	3	(and	2	in	the	rest)	and	the	average	choice	was	in	the	range	

2.54–3.13.	The	range	of	the	average	choice	suggests	that	there	are	some	differences	between	the	

problems	in	the	extent	of	choosing	left-biased	rules.	We	now	examine	how	the	type	of	problem	

(i.e.,	whether	the	loss	or	gain	is	fixed)	affects	the	tendency	to	choose	left-biased	rules.	Table	2	

presents	two	indications	of	this	tendency	in	each	of	the	three	types	of	problems	in	Parts	A	and	B	

(1–6:	 fixed	 loss,	 7–12:	 fixed	 gain,	 and	 13–18:	 not	 fixed)	 and	 compares	 it	 to	 the	 tendency	 of	

choosing	right-biased	rules.	These	results	establish	that	left-biased	choices	are	more	common	in	

Part	A	than	in	Part	B,	regardless	of	the	type	of	problem.	Further,	we	find	that	the	tendency	toward	

left-biased	choices	in	problems	1–6	of	Part	A	is	greater	than	that	in	problems	7–12	of	Part	A	(the	

average	number	of	 left-biased	choices	 is	4.4	vs.	3.67,	 t(66)=2.78,	p=0.007),	while	the	opposite	

pattern	occurs	in	Part	B	(2.58	vs.	3.16,	t(66)=-1.95,	p=0.055).	

Considering	the	aggregate	data,	the	large	proportion	of	choices	of	left-biased	rules	in	all	

types	of	problems	is	inconsistent	with	the	theories	described	in	Section	2.2.	As	Table	2	suggests,	

and	as	Section	4	shows,	the	behavior	of	a	large	share	of	the	participants	is	inconsistent	with	these	

theories.	We	now	suggest	a	mechanism	that	may	explain	these	results,	and	in	Sections	4	and	5	we	

provide	some	supporting	evidence	for	it.	In	a	stopping	problem,	participants	essentially	choose	a	

potential	gain	and	a	potential	loss.	The	larger	the	gain	is,	the	less	likely	a	participant	is	to	finish	

the	game	at	a	gain,	and	the	larger	the	loss	is,	the	more	likely	she	is	to	finish	the	game	at	a	gain.	

Thus,	when	facing	a	stopping	problem,	individuals	trade	off	between	prizes	and	probabilities.	As	

this	qualitative	feature	is	intuitive	and	easy	to	grasp	(as	we	establish	in	the	discussion	of	Part	C),	

we	suggest	that	this	tradeoff	is	solved	in	a	qualitative	and	consistent	manner,	though	the	solution	

may	be	affected	by	several	factors	as	explained	below.	
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	 Part	A	 Part	B	

	 Fixed	loss	 Fixed	gain	 Not	fixed	 Fixed	loss	 Fixed	gain	 Not	fixed	

Range	of	proportion	of	

participants	choosing	left-

biased	rules	

66%–79%	 55%–64%	 55%–69%	 34%–51%	 48%–54%	 42%–49%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

left-biased	rules	

63%	 52%	 60%	 37%	 48%	 37%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

right-biased	rules	

12%	 24%	 19%	 36%	 28%	 27%	

Table	2.	The	tendency	toward	left-biased	rules	in	the	three	types	of	questions	in	Parts	A	and	B	of	T0.	The	
third	row	presents	the	proportion	of	participants	who	tended	to	choose	right-biased	rules.	
	

In	 Part	 A,	 left-biased	 rules	 are	 common	 in	 the	 fixed-loss	 problems.	 Intuitively,	 as	 the	

participants	cannot	control	the	severity	of	the	loss,	they	focus	on	the	likelihood	of	the	loss.	In	the	

fixed-gain	problems,	participants	can	also	control	the	size	of	the	potential	loss	and	trade	off	the	

probability	of	winning	with	a	smaller	potential	 loss;	thus,	a	smaller	proportion	of	participants	

choose	left-biased	rules.	Nonetheless,	the	majority	of	participants	choose	left-biased	rules	in	all	

types	of	problems	in	Part	A.	This	finding	suggests	that	when	the	odds	are	not	on	their	side,	many	

participants	focus	on	reducing	the	probability	of	the	potential	loss	rather	than	reducing	the	size	

of	that	loss.		

By	 contrast,	 in	Part	B,	where	 the	odds	 are	on	 the	 participants’	 side,	 it	 seems	 that	 the	

participants’	focus	shifts	toward	the	potential	gain.6	We	suggest	that	when	participants	face	the	

fixed-gain	problems,	they	focus	on	increasing	the	probability	of	winning	(as	they	cannot	control	

the	size	of	the	gain)	by	choosing	left-biased	rules.	In	the	fixed-loss	problems,	they	can	also	control	

the	size	of	the	potential	gain	and	hence	opt	for	right-biased	rules	more	often.	

In	 the	 next	 section,	 we	 dig	 deeper	 into	 the	 individual-level	 behavior,	 examine	 each	

participant’s	 consistency	 with	 prominent	 decision	 theories	 and	 with	 the	 above-suggested	

mechanism,	and	look	for	additional	insights	into	their	reasoning	by	analyzing	their	explanations.	

                                                
6	The	participants’	explanations	provide	some	indications	that,	in	Part	B,	they	shift	attention	and	focus	more	
on	the	potential	gains	rather	than	on	the	potential	losses.	For	example,	keywords	were	classified	into	the	
following	categories:	probability	of	winning,	probability	of	losing,	gain	size,	and	loss	size.	Accounting	for	
the	use	of	these	categories	in	participants’	explanations	suggests	that	the	ratio	of	the	probability	of	winning	
vs.	that	of	losing	increases	in	Part	B	(54:29	in	A	and	64:14	in	B)	as	does	the	size	of	the	gain	vs.	that	of	the	
loss	(66:65	in	A	and	54:39	in	B).	
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4.	Theory-Based	Type	Classification	
In	this	section,	we	examine	to	what	extent	the	participants’	choices	can	be	reconciled	with	the	

theories	 of	 decision-making	 under	 risk	 we	 considered	 in	 Section	 2.2:	 expected	 utility	 (EU),	

cumulative	prospect	theory	(CPT),	and	disappointment	aversion	(DA).		For	each	theory	and	each	

problem,	we	sort	the	five	rules	by	the	value	that	they	induce	according	to	the	theory	and	say	that	

a	participant’s	choice	is	consistent	with	the	theory	if	it	matches	one	of	the	top	two	rules	(for	some	

parameter).7	This	consistency	definition	reflects	the	idea	that	participants	who	are	guided	by	the	

theory	may,	at	times,	consider	additional	factors	that	are	not	captured	by	the	theory.	Another	way	

to	interpret	our	definition	is	to	say	that	we	allow	for	some	structured	noise	in	the	participants’	

behavior.	
To	account	for	the	possibility	that	individuals’	behavior	changes	systematically	when	the	

baseline	 lottery	becomes	more	 favorable,	we	 examine	 the	participants’	 consistency	with	 each	

theory	according	to	their	choices	in	Part	A	(18	choices),	their	choices	in	Part	B	(18	choices),	and	

their	choices	in	Parts	A	and	B	together	(36	choices).		Overall,	we	present	three	consistency	tests	

per	theory.	We	classify	a	participant	as	consistent	with	a	theory	in	Part	A	(respectively,	Part	B)	if	

her	choices	are	consistent	with	the	theory	in	at	least	13	out	of	18	problems.	When	considering	all	

36	of	the	problems	together,	we	define	a	participant	as	consistent	with	the	theory	if	her	choices	

are	consistent	with	 the	 theory	 in	at	 least	22	cases.	This	definition	 is	 in	 the	spirit	of	Ebert	and	

Wisen’s	(2011)	definition	of	skewness-seeking.	We	chose	these	numbers	so	that	the	probability	

of	being	defined	as	a	type	under	random	choice	is	less	than	1%.	

	

Expected	 utility.	We	 allowed	different	 agents	 to	hold	 different	 degrees	 of	 risk	 aversion	 and	

classified	a	participant	as	risk-averse	if	there	is	some	degree	of	risk	aversion	that	matches	the	

participants’	choices.	We	assumed	a	constant	relative	risk	aversion	representation	(𝑢(𝑥) = KLMN

'(O
	

for	𝜎 ≠ 1	and	𝑢(𝑥) = log	(𝑥)	for	𝜎 = 1)	and	classified	an	individual	as	risk-averse	if	her	choices	

were	consistent	with	the	predictions	under	this	functional	form	for	some	𝜎 ∈ [0,2].	We	obtained	

similar	 results	 for	 other	 functional	 forms	 (e.g.,	 constant	absolute	 risk	aversion)	 and	 for	other	

ranges	of	parameters.	According	to	this	criterion,	we	classified	15%	of	the	67	participants	as	risk-

averse	in	Part	A,	9%	of	the	participants	as	risk-averse	in	Part	B,	and	13%	of	them	as	risk-averse	

when	considering	the	36	choices	combined.	

                                                
7	If	 instead	we	were	to	define	a	participant’s	choice	as	consistent	with	the	theory	only	if	 it	matches	the	
highest-valued	rule,	 then	 the	absolute	performance	of	 the	various	 theories	would	change	substantially.	
Nonetheless,	the	relative	performance	of	these	theories	would	be	similar. 
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Cumulative	 prospect	 theory.	To	 classify	 the	 participants,	 we	 used	 a	 piecewise-linear	 value	

function	

𝑢(𝑥) = T−𝜆𝑥		𝑓𝑜𝑟		𝑥 < 0
𝑥						𝑓𝑜𝑟			𝑥 ≥ 0[	

and,	consistent	with	Kahneman	and	Tversky	(1992),	the	following	probability	weighting	function	

𝑤(𝑝) = /]

(/]^('(/)])
L
]
.	

A	 participant	was	 classified	 as	 consistent	with	 CPT	 if	 her	 choices	were	 consistent	with	 some	

parameters	0.3 < 𝛿 ≤ 1	and	1 ≤ λ ≤ 3.	This	wide	range	of	parameters	 includes	 the	estimated	

parameters	in	Kahneman	and	Tversky	(1992).	Modifying	this	range	or	allowing	for	diminishing	

sensitivity	to	gains	and	losses	did	not	change	our	results	substantially.		We	were	able	to	classify	

as	consistent	with	CPT	24%	of	the	67	participants	in	Part	A,	39%	of	the	participants	in	Part	B,	and	

42%	when	considering	all	36	of	the	problems.	

	

Disappointment	aversion.	According	to	this	theory,	an	outcome	creates	disappointment	if	it	is	

worse	 than	 the	certainty	equivalent	of	 the	 lottery	and	 it	creates	elation	 if	 it	 is	better	 than	 the	

certainty	equivalent.	Formally,	we	used	Gul’s	(1991)	representation	with	a	linear	utility	function.	

Thus,	a	stopping	rule	that	induces	𝑥' < 0	with	probability	𝑞'	and	𝑥b > 0	with	probability	1 − 𝑞'	

yields	the	function	

c1 + ('()L)d
'^)Ld

e 𝑞'𝑥' + c1 −
)Ld
'^)Ld

e (1 − 𝑞')𝑥b.	

To	 capture	 disappointment	 aversion,	 we	 set	 𝛽 ≥ 0	 (smaller	 values	 of	 𝛽	 do	 not	 capture	

disappointment	aversion).	We	classified	a	participant	as	disappointment-averse	 if	her	choices	

were	 consistent	 with	 some	 parameter	 2 ≥ 𝛽 ≥ 0.	 We	 were	 able	 to	 classify	 15%	 of	 the	 67	

participants	 as	 disappointment-averse	 in	 Part	 A,	 13%	 of	 the	 participants	 as	 disappointment-

averse	in	Part	B,	and	28%	of	them	as	disappointment-averse	when	considering	all	36	problems.	

Table	3	summarizes	the	above	findings.	The	findings	suggest	that	in	Part	A,	only	a	small	

share	 of	 the	 participants	 exhibit	 behavior	 that	 is	 consistent	with	 the	 prominent	 theories	 we	

considered,	 whereas	 in	 Part	 B,	 CPT	 is	 consistent	 with	 the	 behavior	 of	 a	 large	 share	 of	 the	

participants.	A	natural	question	that	arises	is,	what	can	explain	the	behavior	of	the	rest	of	the	

participants?	In	what	follows,	we	suggest	a	new	decision	rule	that	may	explain	their	behavior,	

analyze	it,	and	reconcile	it	with	the	participants’	explanations.	We	conclude	by	identifying,	for	

each	participant,	the	decision	rule(s)	most	suitable	to	describe	her	behavior.	
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N=67	 Part	A	 Part	B	 Overall	

EU	 15%	(10)	 9%	(6)	 13%	(9)	

CPT	 24%	(16)	 39%	(26)	 42%	(28)	

DA	 15%	(10)	 13%	(9)	 28%	(19)	

Table	3.	The	proportion	and	the	number	(in	parentheses)	of	participants	who	exhibit	behavior	consistent	
with	 each	 of	 the	 three	 prominent	 decision	 theories.	 The	 proportion	 is	 estimated	 for	 each	 part	 of	 the	
experiment	and	overall.		
	

4.1	A	qualitative	resolution	of	the	prize-probability	tradeoff	

In	Section	3,	we	noted	an	individual	tendency	to	either	consistently	choose	left-biased	rules	or	

consistently	choose	right-biased	rules.	Left-biased	rules	may	reflect	a	qualitative	resolution	of	the	

prize-probability	tradeoff	that	emphasizes	the	winning	probability.	Right-biased	rules	may	reflect	

a	resolution	that	focuses	on	the	potential	of	obtaining	a	high	prize.	We	now	perform	a	similar	

classification	exercise	to	the	one	above	to	test	the	extent	to	which	the	mechanism	we	suggested	

can	explain	the	data.	In	line	with	our	above	definition	of	consistency	with	a	theory,	we	say	that	a	

participant	is	an	L-type	in	Part	A	(respectively,	Part	B)	if	she	chooses	one	of	the	two	left-biased	

rules	in	at	least	13	out	of	18	problems,	and	say	that	she	is	an	R-type	if	she	chooses	one	of	the	two	

right-biased	rules	in	at	least	13	out	of	18	problems.	When	considering	all	36	problems,	we	say	

that	a	participant	is	an	L-type	(respectively,	R-type)	if	she	chooses	left-biased	(respectively,	right-

biased)	rules	in	at	least	22	out	of	36	problems.		Participants	who	could	not	be	classified	as	L	or	R	

were	classified	as	“other.”	

We	found	that	in	both	parts,	types	are	common	(63%–70%).	The	proportion	of	L-types	in	

Part	A	(57%)	 is	significantly	higher	 than	 the	respective	proportions	 in	Part	B	(39%),	and	 the	

proportion	of	R-types	in	Part	A	(13%)	is	significantly	lower	than	the	respective	proportions	in	

Part	B	(24%),	according	to	a	McNemar	test	(p=0.023	and	p=0.039,	respectively).	Nonetheless,	a	

participant’s	type	in	Part	A	is	correlated	with	her	type	in	Part	B	(Spearman’s	rho=0.5,	p<0.001).	

In	particular,	an	L-type	in	Part	A	is	unlikely	(only	13%)	to	be	classified	as	an	R-type	in	Part	B	and	

vice	versa	for	an	R-type	in	Part	A	(none	of	the	R-types	was	classified	as	an	L-type	in	Part	B;	some	

types	switched	to	“other”	in	Part	B).	Considering	all	36	of	the	choices,	48%	of	the	participants	are	

classified	 as	 L-types	 and	 18%	 of	 them	 as	 R-types.	 Thus,	 according	 to	 each	 of	 the	 three	

classification	exercises,	about	 two-thirds	of	 the	participants	are	classified	as	 types,	where	 the	

majority	of	them	are	L-types.	

How	far	from	random	choice	are	the	patterns	observed	in	the	data?	Figure	7	(respectively,	

Figure	8)	shows	the	experimental	distribution	of	the	number	of	left-biased	(respectively,	right-
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biased)	 choices	 in	 Parts	 A	 and	 B,	 next	 to	 the	 probability	 of	 observing	 each	 number	 given	 a	

binomial	process	with	0.2	probability	of	choosing	each	of	the	five	rules	in	each	problem.	Figure	9	

displays	these	distributions	for	Parts	A	and	B	together.	The	graphs	illustrate	the	polarization	of	

choices	in	the	experiment.	
	

	
Figure	7.	The	percentage	of	participants	with	each	number	of	left-biased	choices	in	Parts	A	and	B	and	the	
probability	of	observing	each	number	(per	participant)	given	a	binomial	process	with	0.4	probability	of	a	
left-biased	choice	in	each	problem.	
	

	
Figure	8.	The	percentage	of	participants	with	each	number	of	right-biased	choices	in	Parts	A	and	B	and	the	
probability	of	observing	each	number	(per	participant)	given	a	binomial	process	with	0.4	probability	of	a	
right-biased	choice	in	each	problem.		
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Figure	9.	The	percentage	of	participants	with	each	number	of	right-biased	and	left-biased	choices	in	Parts	
A	and	B	together	and	the	probability	of	observing	each	number	(per	participant)	given	a	binomial	process	
with	0.4	probability	of	a	right-	(left-)biased	choice	in	each	problem.		
	

Consistency	with	the	participants’	explanations	

At	the	end	of	each	part,	the	participants	were	asked	(i)	how	they	would	guide	someone	else	to	

play	on	their	behalf	and	(ii)	what	the	main	considerations	in	their	choices	were.	To	support	our	

interpretation	of	the	decision	procedure	of	L-	and	R-types,	two	research	assistants	examined	the	

explanations’	fit	with	our	classification	of	types	using	the	following	protocol.	First,	each	assistant	

examined	the	explanations	separately	and	classified	them	into	four	categories:	(1)	Literal	–	the	

explanation	included	a	description	of	choosing	consistently	right/left-biased	stopping	rules,	(2)	

Partial	–	the	explanation	included	a	description	of	a	general	rule	of	right/left-bias	but	mentioned	

exceptions	 in	 which	 the	 tradeoff	 is	 solved	 differently,	 (3)	 Inconsistent	 –	 the	 explanation	

contradicted	the	type	identification,	and	(4)	NA	–	the	text	did	not	provide	enough	information	to	

determine	whether	the	participant’s	type	identification	was	consistent	with	her	explanation	of	

her	reasoning.	Subsequently,	the	assistants	met	to	decide	on	cases	in	which	their	classifications	

disagreed	(their	independent	classifications	were	identical	for	almost	all	of	the	participants).			

The	assistants’	final	classification	suggests	that	only	a	very	small	number	of	participants	

whom	we	identified	as	types	described	a	decision	procedure	that	was	inconsistent	with	their	type	

classification.	In	fact,	the	vast	majority	included	a	literal	description	of	a	right	or	left	tendency.	In	

particular,	in	Part	A,	only	one	out	of	the	69	L-	and	R-types	(overall	in	the	two	treatments)	was	
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classified	as	inconsistent,	while	six	other	types	were	classified	as	NA.	Similarly,	in	Part	B,	two	out	

of	63	types	were	classified	as	inconsistent,	while	eight	other	types	were	classified	as	NA.				

The	following	are	examples	of	participants’	explanation	in	T0	in	all	four	categories:		

Participant	57,	Part	A	(L-type)	–	Literal:	I	chose,	each	time,	the	option	in	which	the	loss	was	higher	

than	the	gain	so	that	the	chances	of	reaching	a	gain	would	be	higher.	Nevertheless,	I	chose	the	option	

in	which	the	gap	between	the	loss	and	the	gain	was	relatively	small.	For	example,	a	gain	of	6	and	a	

loss	of	15.	

Participant	45,	Part	A	(L-type)	–	Partial:	The	probability	 that	 you	win	 increases	 if	 the	negative	

stopping	rule	[loss]	is	high	and	the	positive	stopping	rule	[gain]	is	low:	you	need	to	play	safe	but	not	

too	safe	…	because	there	are	cases	in	which	the	conditions	do	not	pay	off.	

Participant	89,	Part	A	(L-type)	–	Inconsistent:	I	tried	to	obtain	a	maximal	gain	given	that	a	loss	was	

most	likely,	even	if	it	meant	risking	in	a	loss.	

Participant	4,	Part	A	(L-type)	–	NA:	I	chose	according	to	the	probability	of	winning	relative	to	the	

probability	of	losing.	

Participant	54,	Part	B	 (L-type)	 –	Literal:	The	 instructions	 are	almost	 identical	 [to	Part	A].	 The	

probability	of	winning	is	a	bit	higher	than	in	the	previous	part	and	hence	I	took	a	chance	such	that	

the	stopping	rule’s	gain	and	loss	would	be	closer	[compared	to	Part	A]	but	the	loss	would	still	be	

further	away	from	0	compared	to	the	gain	in	order	to	increase	the	chance	of	winning.		

Participant	65,	Part	B	(R-type)	–	Literal:	The	instructions	are	similar	to	those	of	Part	A,	 just	the	

opposite	since	the	probability	of	winning	is	higher.	Thus,	I	looked	for	the	smallest	bias	toward	the	

“positive	[gain].”	

In	conclusion,	many	of	the	participants’	explanations	focused	on	a	qualitative	resolution	

of	the	tradeoff	between	the	probability	of	a	gain/loss	and	the	size	of	the	potential	gain/loss.	Most	

of	the	participants	who	were	classified	as	types	(either	L	or	R)	explicitly	explained	their	decision	

of	 consistently	 choosing	 what	 we	 refer	 to	 as	 left/right-biased	 stopping	 rules.	 They	 rarely	

mentioned	calculations	related	to	variance	or	expected	value/utility.			

	

4.2	Conservative	classification	

In	the	previous	section,	we	showed	that	a	qualitative	resolution	of	a	prize-probability	tradeoff	can	

account	for	the	behavior	of	a	large	number	of	our	participants.	A	natural	question	that	arises	is	

how	many	of	the	participants	that	we	classified	as	R-types	or	L-types	exhibit	behavior	that	is	also	

consistent	with	the	other	theories	we	examined.	For	such	individuals,	it	is	essential	to	understand	

whether,	based	solely	on	their	choices,	the	classification	as	an	L/R-type	is	more	suitable	than	the	

conventional	theories	we	examined.		Similar	questions	arise	for	participants	who	were	classified	
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as	consistent	with	one	or	more	of	the	other	theories	that	we	examined.	In	this	section,	we	answer	

these	questions.			

We	now	perform	a	more	conservative	classification	into	types	that	corresponds	to	each	of	

the	theories	that	we	examined	as	well	as	to	the	qualitative	mechanism	suggested	above.	For	each	

participant,	we	first	count	the	number	of	matches	to	each	theory	and	identify	those	that	she	is	

consistent	with,	as	defined	above.	Among	these	 theories:	 (1)	we	consider	 the	 theory	with	 the	

highest	number	of	matches,	and	denote	that	number	by	X,	and	(2)	we	say	that	the	participant	is	a	

type	according	to	any	theory	for	which	the	number	of	matches	is	at	least	X-2.	The	results	of	this	

exercise	 are	 summarized	 in	 Table	 4	 (the	 number	 of	 matches	 to	 each	 theory	 per	 participant	

appears	in	the	appendix).	

Table	4	confirms	that	in	the	conservative	classification,	a	large	number	of	participants	are	

classified	solely	as	L-types	in	Part	A.	Thus,	their	behavior	could	not	be	explained	by	the	other	

theories	 that	we	 examined.	 In	 Part	 B,	we	 find	 a	 smaller	 number	 of	 such	 participants.	 	When	

looking	at	the	36	choices	overall,	we	find	again	that	a	large	share	of	the	participants	are	classified	

as	L-types	and	cannot	be	explained	by	any	other	theory.	

	

N=67	 Part	A	 Part	B	 Overall	

CPT	 1%	(1)	 1%	(1)	 15%	(10)	

CPT	&	R	 10%	(7)	 24%	(16)	 12%	(8)	

CPT	&	(DA	/EU)	 12%	(8)	 12%	(8)	 7%	(5)	

L	 57%	(38)	 36%	(24)	 46%	(31)	

DA	/EU	 -	 1%	(1)	 -	

CPT	&	L	&	(DA	/EU)	 -	 1%	(1)	 1%	(1)	

No	Type	 19%	(13)	 24%	(16)	 18%	(12)	

Table	 4.	 The	 proportion	 and	 the	 number	 (in	 parentheses)	 of	 participants	 in	T0	 who	 exhibit	 behavior	
consistent	with	each	 of	 the	 decision	 theories	and	who	are	classified	as	L-	 or	R-types,	according	 to	 the	
conservative	classification.	The	proportion	is	estimated	for	each	part	of	the	experiment	and	overall.	
	

The	other	prominent	explanation	of	the	participants’	behavior	is	CPT,	which	accounts	for	

the	behavior	of	23%–38%	of	the	participants.	Importantly,	these	are	participants	who	are	not	

classified	as	L	(more	than	1/3	of	them	are	classified	as	conservative	R-types).	Thus,	CPT	and	the	

qualitative	 resolution	 of	 the	 prize-probability	 tradeoff	 in	 favor	 of	 probabilities	 together	 can	

explain	the	behavior	of	74%–82%	of	the	participants.	
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5.	The	Absence	of	the	Rules’	Probabilities	and	Its	Implications	
In	this	section,	we	examine	to	what	extent	the	choices	of	the	participants	in	the	main	treatment	

were	affected	by	not	knowing	the	rules’	induced	winning	probabilities.	Not	knowing	the	induced	

probabilities	 should	 have	 no	 effect	 if	 the	 participants	 can	 infer	 these	 probabilities	 from	 the	

likelihood	of	winning	a	single	baseline	lottery.	Thus,	the	first	step	of	the	analysis	must	examine	

the	participants’	ability	to	make	such	an	inference.	Part	C	of	the	experiment	explores	this	question	

and	 shows	 that	 the	 participants’	 inferences	 are	 very	 far	 from	 the	 true	 winning	 probabilities	

(consistent	with	Gneezy,	1996).	In	the	second	part	of	this	section,	we	present	the	results	of	our	

second	treatment,	in	which	the	induced	probabilities	were	explicitly	given	to	the	participants.	A	

comparison	of	the	two	treatments	sheds	light	on	the	effects	of	the	unknown	probabilities	on	the	

participants’	behavior.			

	 	

5.1	Can	the	participants	infer	the	rules’	induced	probabilities?	(Part	C)	

In	each	of	the	three	problems	in	Part	C,	we	presented	the	participants	with	a	stopping	rule.	The	

rules	 were	 (-25,+25),	 (-25,+50),	 and	 (-25,+100)	 in	 the	 first,	 second,	 and	 third	 problems,	

respectively.	The	participants	were	asked	to	assess	the	rules’	induced	winning	probabilities	given	

that	the	probability	of	winning	a	single	baseline	lottery	is	18/37,	as	in	Part	A.	The	correct	induced	

winning	probabilities	were	20.5%,	5%,	and	0.3%,	respectively.	

The	participants’	average	estimates	in	T0	were	39.6%,	24.3%,	and	17.4%.	The	expected	

errors	in	absolute	terms	were	23.2%,	20.6%,	and	17.4%.	Moreover,	only	26.8%	of	the	answers	

were	within	a	range	of	5%	from	the	correct	answer	(e.g.,	an	estimate	of	15.6%–25.6%	in	the	first	

problem	in	Part	C).8	While	most	of	the	participants	failed	to	estimate	the	winning	probabilities	

correctly,	 they	did	exhibit	a	qualitative	understanding	of	 the	prize-probability	tradeoff,	where	

86.8%	 of	 them	 provided	monotone	 estimates	 (an	 estimate	 is	monotone	 if	 the	 estimate	 for	 (-

25,+25)	is	weakly	greater	than	the	estimate	for	(-25,+50)	and	the	latter	is	weakly	greater	than	

the	estimate	for	(-25,+100)).	The	fact	that	the	vast	majority	of	the	participants	failed	to	estimate	

the	 induced	 winning	 probabilities	 provides	 additional	 motivation	 for	 our	 investigation	 of	 a	

treatment	in	which	the	participants	were	provided	with	the	rules’	induced	probabilities.	

                                                
8	In	Tp,	where	the	participants	observed	the	probabilities	of	the	stopping	rules	in	Parts	A	and	B,	the	average	
estimates	in	Part	C	were	37	%,	22.7%,	and	12.3%,	and	the	average	error	size	slightly	decreased	in	all	three	
questions,	though	the	reduction	in	error	size	was	marginally	significant	only	in	the	first	problem	(error	
difference=3.83,	t(112)=1.89,	p=0.062).	Only	29.8%	of	the	answers	in	Tp	were	within	a	range	of	5%	from	
the	correct	answer.	
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Our	 findings	 in	 Part	 C	 complement	 Gneezy’s	 (1996)	 findings,	which	 relate	 to	 positive	

expected	value	lotteries.	He	finds	that	individuals	use	the	stage-by-stage	probability	as	an	anchor	

and	 adjust	 insufficiently:	 estimations	 are	 biased	 toward	 the	 direction	 of	 the	 single	 lottery	

probability,	 resulting	 in	 an	 underestimation	 of	 the	 overall	 probability	 of	 winning.	 The	

combination	of	these	findings	and	our	results	can	have	significant	implications	for	situations	in	

which	 processes	 are	 perceived	 to	 be	 “almost	 fair.”	 It	 could	 lead	 to	 over-optimism	 and	 over-

participation	in	situations	where	the	baseline	drift	is	slightly	negative	(e.g.,	casino	gambling)	and	

over-pessimism	and	under-participation	in	situations	where	the	baseline	drift	is	slightly	positive	

(e.g.,	stock	market	trading).			

	

5.2	Known	vs.	missing	induced	probabilities	(Tp	vs.	T0)		
We	 shall	 start	with	 a	 brief	 description	 of	 the	 behavior	 in	Tp,	 in	which	 the	 participants	were	

provided	with	the	stopping	rules’	induced	probabilities	of	winning	and	losing.		Subsequently,	we	

shall	compare	between	the	two	treatments.		

At	the	aggregate	level,	the	behavior	patterns	that	are	exhibited	by	the	Tp	participants	are	

similar	to	the	ones	observed	in	T0.	First,	when	the	baseline	lottery	is	unfair,	there	is	a	tendency	to	

prefer	 left-biased	 stopping	 rules	 to	 right-biased	 ones.	 Second,	 this	 tendency	 is	weaker	 when	

p>0.5.	We	found	that	in	Part	A,	62%	of	the	846	choices	(47x18)	are	of	left-biased	rules	and	28%	

are	of	right-biased	ones,	whereas	in	Part	B,	49%	of	the	choices	are	of	left-biased	rules	and	37%	

are	of	right-biased	ones.	It	should	be	noted	that	the	number	of	left-biased	choices	in	Part	A	is	

greater	than	the	corresponding	number	in	Part	B	and	the	number	of	right-biased	choices	in	Part	

A	is	less	than	the	corresponding	number	in	Part	B	(see	Table	5).		

	

	 Part	A	 Part	B	

Rule	1	 44%	 32%	

Rule	2	 18%	 17%	

Rule	3	 11%	 15%	

Rule	4	 10%	 13%	

Rule	5	 18%	 24%	

Table	5.	The	proportions	of	choices	in	Tp	out	of	the	846	choices	(47*18)	that	were	made	in	each	part.	

	

At	the	individual	level,	the	mean	number	of	choices	of	left-biased	rules	in	Part	A	is	higher	

than	 that	 in	Part	B,	 according	 to	 a	paired	 sample	 t-test	 (11.09	vs.	 8.74,	 t(46)=2.96,	p=0.005).	



 
28 

Nonetheless,	 the	 participants’	 choices	 in	 Part	 A	 and	 Part	 B	 are	 correlated	 according	 to	 the	

“number	of	left-biased	choices”	measure	(Pearson’s	r=0.62,	p<0.001).			
Extreme	vs.	moderate	choices.	 In	contrast	 to	T0,	 the	differences	between	the	number	of	

choices	in	a	particular	direction	(i.e.,	choices	of	Rule	1	vs.	Rule	2	and	choices	of	Rule	5	vs.	Rule	4)	

are	significant.	In	particular,	participants	tended	to	choose	the	extreme	stopping	rules	more	often.	

Rule	1	was	chosen	more	than	Rule	2:		in	Part	A	the	difference	is	4.7,	t(46)=4.14,	p<0.001,	whereas	

in	Part	B	the	difference	is	2.7,	t(46)=2.97,	p=0.005.	Rule	5	was	chosen	more	than	Rule	4:	in	Part	A	

the	difference	is	1.49,	t(46)=-2.13,	p=0.039,	whereas	in	Part	B	the	difference	is	1.96,	t(46)=-2.99,	

p=0.005.	Thus,	the	uncertainty	over	the	induced	lotteries	in	T0	mitigated	the	individuals’	extreme	

choices.	

Table	6	presents	two	measures	of	the	participants’	tendency	to	choose	left-biased	rules	

in	each	of	the	three	types	of	problems	and	compares	it	to	the	tendency	to	choose	right-biased	

rules.	The	results	suggest	that	left-biased	choices	are	common	 in	Tp	as	well.	Furthermore,	we	

observed	a	“mirror”	pattern	similar	to	that	observed	in	T0:	 in	Part	A	the	tendency	toward	left-

biased	choices	in	fixed-loss	problems	is	greater	than	this	tendency	in	fixed-gain	problems	(the	

average	number	of	left-biased	choices	is	4.87	vs.	3.02,	t(46)=4.8,	p<0.001),	whereas	in	Part	B	the	

reverse	tendency	occurs	(1.96	vs.	3.94,	t(46)=-5.09,	p<0.001).	

	

	 Part	A	 Part	B	

	 Fixed	loss	 Fixed	gain	 Not	fixed	 Fixed	loss	 Fixed	gain	 Not	fixed	

Range	of	proportion	of	

participants	choosing	left-

biased	rules	

68%–87%	 43%–57%	 47%–55%	 23%–45%	 57%–75%	 40%–57%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

left-biased	rules	

77%	 40%	 45%	 23%	 64%	 38%	

Proportion	of	participants	

choosing	at	least	5	(out	of	6)	

right-biased	rules	

2%	 26%	 23%	 47%	 15%	 15%	

Table	6:	Two	measures	of	a	tendency	toward	left-biased	rules	in	the	three	types	of	questions	in	Parts	A	
and	B	of	Tp.	The	third	row	presents	the	proportion	of	participants	who	tended	to	choose	right-biased	rules.	
	

The	above	observations	suggest	that	the	patterns	of	behavior	in	Tp	are	similar	to	those	

found	in	T0.	A	comparison	of	the	two	treatments	indicates	that	in	both	parts,	our	measures	of	the	
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number	 of	 the	 individual’s	 left-biased	 or	 right-biased	 choices	 are	 not	 significantly	 different	

between	 the	 treatments.	 Furthermore,	 there	 are	 no	 significant	 differences	 between	 the	

treatments	 in	 the	 number	 of	 left-biased	 or	 right-biased	 choices	 in	 any	 of	 the	 six	 types	 of	

questions.9		

Table	7	presents	the	classification	into	conservative	types	in	Tp.	It	appears	that	the	main	

difference	between	the	two	treatments	is	that	in	Tp	a	somewhat	larger	share	of	the	participants	

can	be	classified	according	to	CPT,	while	a	smaller	share	of	the	participants	can	be	classified	as	R	

or	L	(though	the	differences	between	the	treatments	are	not	significant).	A	possible	interpretation	

is	that	when	the	participants’	decision	problems	are	more	“standard”	in	the	sense	that	they	know	

the	probabilities	of	gains	and	 losses,	 they	are	better	able	 to	recognize	situations	 in	which	 the	

tradeoff	between	prizes	and	probabilities	is	relatively	small	and	adjust	their	choices	accordingly.	

For	example,	 in	situations	where	a	minor	deduction	of	a	winning	probability	leads	to	a	major	

increase	 in	prizes,	 they	 tend	more	 to	opt	 for	 right-biased	rules.	 	 Thus,	 a	 larger	share	of	 them	

behave	in	a	manner	that	is	consistent	with	CPT.		

	

N=47	 Part	A	 Part	B	 Overall	

CPT	 11%	(5)	 2%	(1)	 9%	(4)	

CPT	&	R	 0%	(0)	 15%	(7)	 11%	(5)	

CPT	&	(DA	/EU)	 19%	(9)	 34%	(16)	 26%	(12)	

L	 45%	(21)	 23%	(11)	 36%	(17)	

DA	/EU	 2%	(1)	 2%	(1)	 0%	(0)	

CPT	&	L	&	(DA	/EU)	 0%	(0)	 4%	(2)	 6%	(3)	

No	Type	 23%	(11)	 19%	(9)	 13%	(6)	

Table	 7.	 The	 proportion	 and	 the	 number	 (in	 parentheses)	 of	 participants	 in	Tp	who	 exhibit	 behavior	
consistent	with	each	 of	 the	 decision	 theories	and	who	are	classified	as	L-	 or	R-types,	according	 to	 the	
conservative	classification.	The	proportion	is	estimated	for	each	part	of	the	experiment	and	overall.	
	

In	 conclusion,	 although	 the	 behavior	 in	Tp	 is	 not	 identical	 to	 that	 in	T0,	 the	 observed	

patterns	are	quite	similar.	Thus,	knowing	the	stopping	rules’	induced	probabilities	had	a	minor	

effect	on	the	participants’	behavior.	This	finding	suggests	that,	in	this	context,	individuals	use	a	

                                                
9	The	only	significant	difference	in	behavior	between	the	treatments	is	the	tendency	mentioned	above	of	
choosing	more	extreme	stopping	rules	(i.e.,	rules	1	and	5	are	more	common	than	2	and	4).		
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qualitative	decision	procedure	even	when	the	probabilities	are	known:	they	consistently	focus	

either	on	a	relatively	high	winning	probability	or	on	the	potential	of	obtaining	a	relatively	high	

prize.	

	

6.	Directional	Bias	in	a	Simple	Context	(Part	D)	
In	Part	D,	the	participants	faced	18	problems,	in	each	of	which	they	had	to	choose	between	a	pair	

of	binary	lotteries.	In	each	pair,	the	two	lotteries	had	an	expected	value	of	zero,	the	same	variance,	

and	the	same	kurtosis.	The	key	difference	between	each	pair	of	lotteries	was	that	one	lottery	was	

negatively	skewed	(left-biased)	and	the	other	was	positively	skewed	(right-biased).10	We	chose	

the	 prizes	 in	 the	 lotteries	 to	 reflect	 two	 stopping	 rules	 with	 a	 baseline	 lottery’s	 winning	

probability	of	0.5.	 	The	participants’	decisions	 in	 this	part	of	 the	experiment	are	simpler	 than	

those	 in	 Parts	 A	 and	 B	 in	 two	main	 dimensions:	 the	winning	probabilities	 are	 given	 and	 the	

lotteries	are	not	presented	as	stopping	rules.	Equating	 the	 lotteries’	 features	(except	 for	 their	

skewness)	 and	 simplifying	 the	 problem	 enables	 us	 to	 better	 understand	 the	 participants’	

preference	for	skewed	prospects	and	connect	it	to	their	choices	between	stopping	rules	in	T0.		

At	the	aggregate	level,	49%	of	the	choices	in	Part	D	are	of	negatively	skewed	lotteries.	In	

almost	all	18	of	the	problems,	the	distribution	of	choices	is	quite	balanced:	between	40%	and	60%	

of	the	choices	are	of	negatively	skewed	lotteries,	where	the	most	extreme	frequency	of	choices	of	

a	negatively	skewed	lottery	is	71%	(in	the	first	problem	in	Part	D).	At	the	individual	level,	the	

number	of	choices	of	negatively	skewed	lotteries	(which	range	from	0	to	18)	is,	on	average,	8.75,	

and	its	median	is	8.	Among	the	114	participants	in	the	two	treatments,	we	can	classify	31%	of	the	

participants	 as	L-types	and	38%	as	R-types	by	 the	definitions	 that	we	used	 in	Parts	A	and	B.	

Despite	the	slightly	different	choice	pattern,	 in	T0	 the	number	of	choices	of	negatively	skewed	

lotteries	in	Part	D	correlates	with	the	number	of	left-biased	choices	in	Parts	A	and	B	(Pearson’s	

r=0.23,	p=0.06	and	Pearson’s	r=0.32,	p=0.009,	respectively).	Similarly,	the	number	of	choices	of	

positively	skewed	lotteries	in	Part	D	correlates	with	the	number	of	right-biased	choices	in	Parts	

A	and	B	(Pearson’s	r=0.23,	p=0.06	and	Pearson’s	r=0.33,	p=0.007,	respectively).		In	Tp,	there	is	a	

higher	correlation	between	the	behavior	in	Part	D	and	that	in	Parts	A	and	B.		

                                                
10	Our	notion	of	biasedness	corresponds	to	the	skewness	of	the	stopping	rules’	induced	lotteries:	the	more	
right-biased	a	rule	is,	the	greater	the	skewness	of	its	induced	lottery	is.	It	should	be	noted	that	a	left-biased	
rule	can	induce	a	positively	skewed	lottery	when	p<0.5	and	a	right-biased	rule	can	induce	a	negatively	
skewed	lottery	when	p>0.5.	
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In	conclusion,	the	participants	did	not	exhibit	a	taste	for	negatively	skewed	lotteries	to	

the	extent	that	could	explain	the	strong	general	tendency	to	choose	left-biased	rules	in	Parts	A	

and	B.	Nonetheless,	 the	significant	correlation	suggests	that	a	pure	preference	 for	negative	or	

positive	 skewness	 is	 related	 to	 the	 tendency	 to	 choose	 left-	 or	 right-biased	 stopping	 rules.	 In	

general,	 the	participants’	choices	become	more	balanced	when	we	depart	 from	the	context	of	

stopping	 problems	 and	 ambiguous	 winning	 probabilities.	 One	 possible	 interpretation	 of	 this	

finding	 is	 that	 the	 context	 of	 a	 stopping	 rule	 and	 the	 unknown	 probabilities	 encourage	 the	

participants	to	overweight	the	winning	probabilities	in	instances	where	the	true	differences	in	

probabilities	 (between	 the	 five	 stopping	 rules)	 are	 rather	 small.	 This	 interpretation	 is	 also	

consistent	with	 the	 results	 of	 Part	 C,	 namely,	with	 a	 tendency	 to	 estimate	 the	 rules’	 induced	

lotteries	as	if	the	baseline	lottery’s	winning	probability	were	closer	to	0.5	than	it	really	is.			

	

Comment:	Relation	to	the	literature	on	skewness-seeking	and	prudence	

The	 literature	 on	 skewness-seeking	 and	 prudence	 documents	 a	 taste	 for	 positively	 skewed	

lotteries.	Typically,	the	proportion	of	positively	skewed	choices	ranges	between	60%–80%.	The	

results	in	Part	D	are	closer	to	the	results	in	that	strand	of	the	literature	than	the	results	in	Parts	A	

and	B.	Nonetheless,	 the	proportion	of	positively	skewed	choices	 is	still	 lower	 than	 it	 is	 in	 the	

literature.	 The	 lower	 proportion	 of	 positively	 skewed	 choices	 may	 result	 from	 the	 different	

lotteries	that	we	used	(i.e.,	the	two	lotteries	were	mirror	images	of	one	another,	which	possibly	

emphasized	the	direction	bias)	and	from	order	effects	(Part	D	was	played	after	Parts	A	and	B).	

	

7.	Conclusion	
We	examined	individuals’	preferences	over	stopping	rules	when	they	have	commitment	power.	

Our	main	finding	is	that	many	individuals	tend	to	trade	off	between	the	size	of	the	prize	and	the	

probability	of	winning	in	a	consistent	manner,	either	in	favor	of	right-biased	stopping	rules	or	in	

favor	of	left-biased	stopping	rules.	The	participants’	choice	patterns	depend	on	the	favorability	of	

the	 baseline	 lottery	 and	 the	 tendency	 to	 choose	 left-biased	 rules	 cannot	 be	 explained	 by	

prominent	theories	of	decision	under	risk.	The	tendency	to	choose	stopping	rules	that	induce	a	

relatively	 large	 winning	 probability	 at	 the	 cost	 of	 taking	 a	 large	 downside	 risk	 is	 somewhat	

counterintuitive	as	the	winning	probabilities	are	relatively	difficult	to	calculate,	which	could	have	

made	the	prizes	more	salient	than	the	probabilities.		

Our	 analysis	 suggests	 that	many	 individuals	 use	 qualitative	 decision	 procedures	even	

when	the	stopping	rules’	induced	probabilities	are	known.	These	individuals	consistently	focus	
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either	on	the	winning	probability	or	on	the	size	of	the	potential	gains	and	losses.	More	generally,	

our	results	provide	indications	of	qualitative	reasoning:	individuals	think	in	relative	terms	and	

are	not	responsive	 to	a	decision	problem’s	 fine	numerical	details.	An	 interesting	direction	 for	

future	research	would	be	to	examine	whether	this	type	of	reasoning	arises	in	stopping	problems	

in	other	contexts,	such	as	job	search	and	experimentation	in	R&D. 
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