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Abstract: The paper discusses optimal carbon taxation in an analytic quantitative

integrated assessment model (IAM). The model links IAM components and paramet-

ric assumptions directly to their policy impacts. The paper discusses the distinct

tax impact of carbon versus temperature dynamics and uses the see-through model

to illustrate various aspects of IAM calibrations including the differentiation between

consumption and investments goods. Novel to analytic IAMs are the explicit tempera-

ture dynamics, a general economy, energy sectors including capital, various degrees of

substitutability across energy sources, an approximation of capital persistence, and ob-

jective functions that include CES preferences and population weighting. ACE opens

the door to tractable forward-looking stochastic modeling and dynamic strategic inter-

actions in complex IAMs, explored in accompanying work.
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1 Introduction

Integrated assessment models (IAMs) of climate change analyze the long-term interac-

tions of economic production, greenhouse gas (GHG) emissions, and global warming.

The present paper develops an analytically tractable integrated assessment model com-

posed of the typical components making up the quantitative numeric models used in

policy advising. The Analytic Climate Economy (ACE) combines a general production

system with state of the art climate dynamics. In a see-through framework, the model

delivers new insights into the roles of climate dynamics, production characteristics,

objective functions, and calibration approaches for optimal climate policy.

The Analytic Climate Economy (ACE) is a close relative to Nordhaus’ (1994, 2013

with Sztorc, 2017) widely used Nobel-awarded DICE model. Despite being more gen-

eral in most dimensions, it solves in closed form. ACE bridges the gap between the

numeric IAMs used in policy advising and a quickly growing literature of analytic

and semi-analytic approaches sparked by Golosov et al.’s (2014) seminal contribution.

ACE puts forth a framework that is transparent, open to analytic introspection, and

seriously quantitative at the same time. The present paper focuses on the optimal car-

bon tax. The Economist (2017) declared the immediately linked social cost of carbon

(SCC) to be “the most important number in climate economics”. The analysis focuses

as much on understanding the structural drivers of this number as on their quantitative

implications. A set of accompanying papers build on ACE discussing carbon dioxide

(CO2) emissions (Traeger 2021a), climate change uncertainties (Traeger 2021b) and

analyzing strategic interactions between regions (Meier & Traeger 2021).

An important step in closing the gap between analytic and quantitative policy

models is that ACE explicitly introduces temperature dynamics and the non-linear

greenhouse effect relating global warming to the emissions that drive our economy.

Modeling temperature is at the core of analyzing climate change and damages. I show

that temperature and the previously (analytically) modeled carbon dynamics have en-

tirely different impacts on the optimal carbon tax. The high persistence of carbon

(mass conservation) increases the optimal tax four to thirty-fold, depending on the

calibration of time preference. By contrast, the delay in the temperature dynamics

(ocean cooling) cuts the carbon tax by approximately 40% to 20%. Moreover, the

distinction between between temperature and carbon turns out crucial for incorporat-

ing uncertainty, modeling geoengineering, and understanding strategic interactions as

shown in the accompanying work.
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ACE substantially generalizes the structure of the economy and the energy sectors

w.r.t. to earlier analytic models as well as the DICE model. Energy production relies

on clean and fossil-fuel-based sectors that employ labor, capital, and potentially scarce

resources. Technological progress is exogenous.1 I show that the only restriction on

production required for the present results are that overall production in the economy

is homogenous in capital (of arbitrary degree keeping the problem concave). IAMs

usually rely on complex and at times crude calibrations of the energy sectors or, as

in the case of DICE, reduced form guesstimates governing an exogenous evolution

of carbon intensity and abatement costs. ACE fleshes out those assumptions that

matter most for the optimal carbon tax. Moreover, it shows that the oft-criticized

absence of empirically important capital in the energy production sectors in Golosov

et al.’s (2014) model and the subsequent literature is not as crucial as often assumed.

ACE also eases the analytic literature’s full depreciation assumption. Extensions of

the base model discuss the role of DICE’s population weighting for the carbon tax,

introduce heterogenous consumption levels (only to show how they do not matter),

distinguish between consumption and investment goods (discussing the importance

for model calibration), and introduce CES-preferences over a variety of consumption

goods.

Literature. Analytic approaches to the integrated assessment of climate change

date back to at least Heal’s (1984) insightful non-quantitative contribution. Several

papers have used the linear quadratic model for a quantitative analytic discussion of

climate policy (Hoel & Karp 2002, Newell & Pizer 2003, Karp & Zhang 2006, Karp

& Zhang 2012). A disadvantage of these linear quadratic approaches is their highly

stylized representation of the economy and the climate system. In particular, these

models have no production or energy sector.

Golosov et al. (2014) broke new ground by amending the log-utility and full-

depreciation version of Brock & Mirman’s (1972) stochastic growth model with an

energy sector and an impulse response of production to emissions. A decadal time step

is not uncommon in IAMs, rendering the full-depreciation assumption more reasonable

than in other macroeconomic contexts. The present paper weakens the full-depreciation

assumption to improve the descriptive power of the analytic approach. Golosov et al.’s

(2014) impulse response to emissions assumes that economic production (and implic-

itly temperature) responds immediately to atmospheric CO2. However, the oceans keep

1Accompanying work in progress extends the ACE model to encompass endogenous technological
progress. This work also relaxes the full depreciation assumption even further.
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cooling us for decades. Gerlagh & Liski (2018b) extend the model by introducing the

empirically important delay between emission accumulation and damages, and analyze

the implications of non-constant rates of time preference.2 The present paper follows

the numeric IAMs used in policy advising and explicitly introduces the non-linearity

in the relation between atmospheric CO2 and temperatures caused by the greenhouse

effect that drives climatic change (Nordhaus 2008, Hope 2006, Bosetti et al. 2006, An-

thoff & Tol 2014). ACE incorporates alternatively DICE’s original carbon cycle or

an impulse response model used in the IPCC (2013), recently promoted by Van der

Ploeg et al. (2020). It also develops a novel model of ocean-atmosphere temperature

dynamics that permits an analytic solution, while closely matching the dynamics of

numeric climate change models.

Golosov et al.’s (2014) framework has sparked a growing literature on Analytic

Integrated Assessment Models (AIAMs), including applications to a multi-regional

setting (Hassler & Krusell 2012, Hassler et al. 2018, Hambel et al. 2021), non-constant

discounting (Gerlagh & Liski 2018b, Iverson & Karp 2020), intergenerational games

(Karp 2017), and regime shifts (Gerlagh & Liski 2018a). As pointed out by Karp

(2017), these frameworks solves analytically because they can be transformed to a

system that is linear in the states’ equations of motion, a fact I use for a simpler pre-

sentation and solution of the more general ACE model. Importantly, the present ACE

model is not linear in temperature, which has crucial implications for the accompa-

nying applications to uncertainty and strategic interactions. The present ACE model

assumes logarithmic utility to capture intertemporal substitution. The accompany-

ing extension to uncertainty employs an arbitrary degree of relative Arrow-Pratt risk

aversion, disentangling it from the unit elasticity of intertemporal substition (using

Epstein-Zin-Weil preferences).

Anderson et al. (2014), Brock & Xepapadeas (2017), Dietz & Venmans (2018), and

van der Ploeg (2018) spearhead the use of a simple and yet powerful climate model in

economic integrated assessment. This so-called transient climate response to cumula-

tive carbon emissions (TCRE) model builds on the convenient observation that several

2Matthews et al. (2009) and subsequent work including the IPCC (2013) suggest that explicit mod-
els of carbon and temperature dynamics can be approximated by a direct response of temperatures
to cumulative historic emissions. It is a frequent misunderstanding that these findings render model-
ing CO2 concentrations sufficient and ocean cooling negligible (see final paragraph of introduction).
The models merely suggest that the impulse response to emissions (along particular steady emission
scenarios) are fairly flat, rather than peaked, as assumed in Gerlagh & Liski’s (2018b) DICE-based
calibration of damage delay.
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dynamic effects in temperature and carbon dynamics “offset” each other, at least along

somewhat stable emission scenarios. The clever model constitutes another great start-

ing point for analytic climate modeling. Yet, it has led to a misunderstanding that

temperature delay (as well as non-linearities) are absent or irrelevant. By explicitly

pinning down the effect of carbon and temperature dynamics on the SCC, ACE hope-

fully resolves related misunderstandings. I refer to Bosetti (2021) and Metcalf & Stock

(2017) for overviews of numeric IAMs of climate change;3 The most prominent IAMs

for SCC calculations have been the DICE, PAGE (Hope 2006), and FUND (Anthoff

& Tol 2014) models, partly because the Interagency Working Group on Social Cost of

Carbon (2013) chose these three models to establish an official SCC for the US, likely

accompanied by WITCH (Emmerling et al. 2016) and REMIND (Luderer et al. 2021)

for scenario, energy sector, and emission analysis. I refer to the accompanying paper

Traeger (2021b) for a review of the fast growing literature on uncertainty in climate

change.

2 The Model

ACE’s structure follows (and generalizes) that of most IAMs, see Figure 1. Labor,

capital, technology, and energy produce output that is either consumed or invested.

“Dirty” energy sectors consume fossil fuels and cause emissions, which accumulate

in the atmosphere, cause radiative forcing (greenhouse effect), and increase global

temperature(s), thus reducing output. This section introduces the basic model of the

economy and the climate system.

2.1 ACE’s Economy

Production and energy sectors. Final gross output Yt is a function of vectors of

exogenous technologies At, the optimally allocated labor and capital distributions Nt

and Kt, and a flow of potentially scarce resource inputs Et

Yt = F (At,Nt,Kt,Et) with (1)

F (At,Nt, γKt,Et) = γκF (At,Nt,Kt,Et) ∀γ ∈ IR+.

3The Integrated Assessment Modeling Consortium’s website at https://www.iamconsortium.org/
offers a rich set of resources with a focus on the more complex IAMs and scenario analysis. See
Pindyck (2013) for a particularly critical analysis of IAMs and the suggestion to shift attention from
formal models to experts.
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Figure 1: The structure of ACE and most IAMs. Solid boxes characterize the model’s state
variables, dashed boxes are flows, and dashed arrows mark choice variables.

The production function is homogenous of degree κ in capital and has to be suf-

ficiently well-behaved to deliver well-defined solutions to the optimization problem,

which will generally imply κ ≤ 1. The general functional form covers explicit pro-

duction structures with intermediates and a variety of clean and dirty energy sectors

relying on different, possibly time-changing degrees of substitutability. It generalizes

special cases in the earlier literature and, in contrast to earlier analytic models, allows

the energy sectors to utilize capital. The input vectors are of dimension Ij ∈ N with

j ∈ {A,N,K,E}. Aggregate capital Kt is optimally distributed across sectors such

that
∑IK

i=1Ki,t = Kt and similarly
∑IN

i=1Ni,t = 1. I denote by Ki,t =
Ki,t
Kt

the share of

capital in sector i. Section 5.2 discusses a concrete example of the present production

structure.

Emissions and resources. The first Id resources E1, ..., EId are fossil fuels and

emit CO2; I collect them in the subvector Ed
t (“dirty”). I measure these fossil fuels in

terms of their carbon content and total emissions from production amount to
∑Id

i=1 Ei,t.

In addition, land conversion, forestry, and agriculture emit smaller quantities of CO2.

Following the DICE model, I treat these additional anthropogenic emissions as exoge-

nous and denote them by Eexo
t .

Renewable energy production relies on the inputs indexed by Id+1 to IE such as

water, wind, or sunlight, which I assume to be abundant. By contrast, fossil fuel use

reduces the resource stock in the ground Rt ∈ IRId

+ :

Rt+1 = Rt −Ed
t , (3)
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with initial stock levels R0 ∈ IRId

+ given. Possible extraction costs are part of the

general production function. I take the following assumption to avoid boundary value

complications. If a resource is scarce along the optimal path, its use is stretched over

the infinite time horizon.4

Damages. The next section explains how the carbon emissions increase the global

atmospheric temperature T1,t measured as the increase over the preindustrial tempera-

ture level. This temperature increase causes damages, which destroy a fraction Dt(T1,t)

of output. Damages at the preindustrial temperature level are Dt(0) = 0 and Propo-

sition 1 characterizes the class of damage functions Dt(T1,t) that permit an analytic

solution of the model.

Capital accumulation. The base model assumes that the part of production left

after climate damages and consumption is invested

It = Yt[1−Dt(T1,t)]︸ ︷︷ ︸
≡Y nett

−Ct. (4)

Section 5.2’s extensions also allow for a dedicated investment composite. A limitation of

integrated assessment models building on Golosov et al. (2014) has been the assumption

of full depreciation. These models assume that next period’s capital is current period’s

investment, i.e., Kt+1 = It. IAMs often run in time steps of several years and Golosov

et al. (2014) use full capital depreciation in combination with a 10 years time step.

Yet, some applications can require shorter times steps and even over 10 years full

depreciation underestimates capital accumulation. I suggest a simple extension that

does not fully fix, but at least ameliorate the issues resulting from a full-depreciation

assumption. Instead of equating next period’s capital stock with current investment, I

assume

Kt+1 = It

[
1 + gk,t
δk + gk,t

]
, (5)

where δk is the capital depreciation factor, and gk,t is an exogenous approximation of the

growth rate of capital. A full depreciation assumption (i) misses the remaining capital

from previous periods and (ii) misses that current investments lead to more capital

availability in the future. Equation (5) is a “quick fix” addressing both of these issues.

A depreciation factor below unity implies a multiplier of current investments larger

4A sufficient but not necessary condition is that the scarce resources are essential in production,
i.e., that production is not possible without the input of the scarce resource.
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than unity. The additional factor increases both, next period’s capital availability and

the current investment’s payoff in terms of future capital. Of course, the timing is a

bit off, compressing the fixes to issues (i) and (ii) into the same period rather than

spreading them properly over time. Appendix A.1 shows that equation (5) coincides

with the standard equation of motion for capital accumulation

Kt+1 = Yt[1−Dt(T1,t)]− Ct + (1− δk)Kt

if the exogenous capital growth approximation is correct, gk,t = Kt+1

Kt
− 1, or if δk = 1

(full depreciation). To the best of my knowledge, turning the full depreciation model

into an approximate model of capital persistence is novel, also to the broader literature.

It adjusts ACE’s capital dynamics and capital-output ratio to macroeconomic observa-

tion and makes the decision maker aware of additional future return to capital invest-

ments.5 Typical applications, including those of ACE, calibrate the underlying Ramsey

growth model to observed data, which directly determine capital growth along the bal-

anced growth path. Thus, the correction factor’s reliance on the exogenous growth

rate is probably a rather mild limitation. Relying on the Penn World Tables (Feenstra

et al. 2015), the correction factor for global capital growth is
[

1+gk,2009−19

δk+gk,2009−19

]
≈ 1.8 adopt-

ing Golosov et al.’s (2014) 10 year time step. For the five year time step adopted in

DICE, the correction factor would be 3.1. For, e.g., the U.S. alone the correction factor

would be slightly higher (1.9 and 3.6, respectively, see Appendix A.1 for details).

2.2 ACE’s Climate System

This section introduces the deterministic baseline specification of ACE’s climate sys-

tem.

Carbon cycle. Carbon released into the atmosphere does not decay, it only cycles

through different carbon reservoirs. Let M1,t denote the atmospheric carbon con-

tent and let M2,t, ...,Mm,t, m ∈ N, denote the carbon content of a finite number of

non-atmospheric carbon reservoirs. DICE uses two carbon reservoirs besides the at-

mosphere: M2,t captures the combined carbon content of the upper ocean and the

5The limited depreciation factor has no impact on the optimal carbon policy, given current world
output. Yet, it is relevant only for the evolution of the model over time. The relevant implication
of the capital accumulation in equation (5) is that the investment rate is independent of the system
states. Consequently, climate policy will not operate through the consumption rate. Appendix A.1
shows that the consumption rate is roughly independent of the climate states, also in an annual time-
step version of the widespread numeric IAM DICE (using non-logarithmic utility and the standard
capital equation of motion), in particular, under optimal climate policy.
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biosphere (mostly plants and soil) and M3,t captures the carbon content of the deep

ocean. The vector Mt comprises the carbon content of the different reservoirs, and the

matrix Φ captures the transfer coefficients. Then

Mt+1 = ΦMt + e1(
∑Id

i=1Ei,t + Eexo
t ) (6)

captures the carbon dynamics. The first unit vector e1 channels new emissions from

fossil fuel burning
∑Id

i=1 Ei,t and from land use change, forestry, and agriculture Eexo
t

into the atmosphere M1,t+1. The fact that carbon does not decay, but only moves

across reservoirs implies that the columns of the transition matrix Φ sum to unity

(mass conservation of carbon).

Greenhouse effect. An increase in atmospheric carbon causes a change in our

planet’s energy balance, which leads to heating.6 This heating is known as anthro-

pogenic radiative forcing and is concave in atmospheric CO2:

Ft = η
log M1,t+Gt

Mpre

log 2
. (7)

The exogenous process Gt captures the contribution from other non-CO2 GHGs (mea-

sured in CO2 equivalents). Anthropogenic radiative forcing was absent in preindustrial

times, when Gt = 0 and M1,t was equal to the preindustrial atmospheric CO2 concen-

tration Mpre. The parameter η captures the strength of the greenhouse effect; every

time CO2 concentrations double, the forcing increases by η. Whereas radiative forcing

is immediate, the planet’s temperature responds with major delay ; warming our planet

with its oceans is like warming a big pot of soup on a small flame. After decades to

centuries, the new equilibrium7 temperature of the (lower) atmosphere caused by a

new level of radiative forcing F new will be T new1,eq = s
η
F new = s

log 2
log M1,eq+Geq

Mpre
. The

parameter s is the climate sensitivity, measuring the medium- to long-term temper-

ature response to a doubling of preindustrial CO2 concentrations. Its best estimate

is currently around 3◦C, but the true temperature response to a doubling of CO2 is

uncertain.8

6In equilibrium, our planet radiates the same amount of energy out into space that it receives from
the sun. Atmospheric carbon M1,t and other GHGs “trap” some of this outgoing (infrared) radiation,
which leads to a warming commonly referred to as the greenhouse effect.

7The conventional climate equilibrium incorporates feedback processes that take several centuries,
but excludes feedback processes that operate at even longer time scales, e.g., the full response of the
ice sheets.

8Such uncertainty was first introduced into integrated assessment models by Kelly & Kolstad (1999)
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Temperature Dynamics. The next period’s atmospheric temperature depends

on current atmospheric temperature, current temperature in the upper ocean, and

on radiative forcing (heating). I denote the temperatures of a finite number of ocean

layers by Ti,t, i ∈ {2, ..., l}, l ∈ N. I abbreviate the atmospheric equilibrium temperature

resulting from the radiative forcing level Ft by T0,t = s
η
Ft. Each layer slowly adjusts

its own temperature to the temperatures of the surrounding layers. Numeric IAMs

usually approximate this temperature adjustment as a linear process, which would

prevent an analytic solution of the model. Yet, heat exchange is governed by many

nonlinear processes (radiative, convective, evaporative) in addition to linear diffusion.

I model the next period’s temperature in layer i ∈ {1, ..., l} as a generalized (rather

than arithmetic) mean of its current temperature Ti,t and the current temperatures in

the adjacent layers Ti−1,t and Ti+1,t
9

Ti,t+1 = Mσ
i (Ti,t, Ti−1,t, Ti+1,t) for i ∈ {1, ..., l}, (8)

where T0,t = s
η
Ft. The weight matrix σ characterizes the (generalized) heat flow

between adjacent layers, and σforc = 1−σ1,1−σ1,2 characterizes the heat influx response

to radiative forcing. Proposition 1 in the next section characterizes the class of means

(weighting functions f) that permit an analytic solution.

3 Objective, Solution, and Calibration

The present section follows the common approach of the IAM literature of setting up,

solving, and calibrating the model in social planner form. Section 5 discusses extensions

and alternatives. I characterize the class of damage functions and ocean-atmosphere

temperature dynamics that permit an analytic solution (Proposition 1). To make this

solution relevant, these functions must permit a reasonable calibration, which I discuss

subsequently to the proposition.

and has since been discussed in a variety of papers (Jensen & Traeger 2013, van den Bremer & van der
Ploeg 2018, Hambel et al. 2018). The accompanying Traeger (2021b) integrates this uncertainty into
ACE.

9A generalized mean is an arithmetic mean enriched by a nonlinear weighting function f . It takes
the form Mi(Ti−1,t , Ti,t , Ti+1,t) = f−1[σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)] with weight
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3.1 Objective

The social planner’s time horizon is infinite and he or she discounts future welfare

with a utility discount factor β < 1. Population growth is exogenous and welfare is

logarithmic in aggregate consumption Ct

max
∞∑
t=0

βt logCt . (9)

Given logarithmic utility, this assumption is equivalent to maximizing average per

capita consumption (see Section 5 for details and extensions). The implied unit elas-

ticity of intertemporal substitution (EIS) is both the mode and the median of Drupp

et al.’s (2018) expert survey composed of 200 experts on social discounting. The ma-

jority of the macroeconomic literature suggests that this unit EIS is a bit too high

(Havránek 2015). The long-run risk literature, which I rely on when extending ACE to

uncertainty (Traeger 2021b), argues strongly for an even higher EIS (Vissing-Jørgensen

& Attanasio 2003, Bansal & Yaron 2004, Chen et al. 2013, Nakamura et al. 2013, Bansal

et al. 2014, Kung & Schmid 2015, Collin-Dufresne et al. 2016, Engel 2016, Bansal

et al. 2016, Nakamura et al. 2017, Jagannathan & Liu 2019).10 This extension to un-

certainty decouples the EIS from risk aversion and solves the stochastic ACE for a

general coefficient of constant relative risk aversion. Section 5.2 extends the model to

a variety of consumption goods and CES preferences, which can also explain observed

deviations from a unit EIS. Having argued that a unit EIS is a reasonable choice, the

obvious attraction is that the resulting model permits not only a quantification but

also analytic insights.

3.2 General Solution

Equations (1-9) characterize the base ACE model. The policy maker optimizes energy

and labor inputs, as well as consumption and investments to maximize discounted

σi,i = 1−σi,i−1−σi,i+1 > 0. The weight σi,j characterizes the (generalized) heat-flow coefficient from
layer j to layer i. Heat flow between any two non-adjacent layers is zero. Note that the weight σi,i
captures the warming persistence (or inertia) in ocean layer i. The weight σforc ≡ σ1,0 = 1−σ1,1−σ1,2
determines the heat influx caused by radiative forcing. I define σl,l+1 = 0: the lowest ocean layer
exchanges heat with only the next upper layer. For notational convenience, equation (8) writes a mean
of three temperature values also for the deepest layer (i = l), with a zero weight on the arbitrary
entry Tl+1. I collect all weights in the l× l matrix σ, which characterizes the heat exchange between
the atmosphere and the different ocean layers.

10See Traeger (2019) for a suggested explanation of the opposing findings between the macroeco-
nomic and the long-run risk literature.
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logarithmic welfare over the infinite time horizon. Appendix A.2 transforms the ACE,

making the equations of motion linear in the (transformed) states and finding separable

controls. Such models are solved by an affine value function. The transformations also

flesh out which changes would maintain (or eliminate) analytic tractability.

Proposition 1 An affine value function of the form

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ>MMt +ϕ>τ τt +ϕ>R,tRt + ϕt

solves the deterministic ACE if and only if 11 kt = logKt, τt is a vector composed of

the generalized temperatures τi,t = exp(ξ1Ti,t), i ∈ {1, ..., L}, the damage function takes

the form

D(T1,t) = 1− exp(−ξ0 exp[ξ1T1,t] + ξ0) (10)

with ξ0 ∈ IR and the mean in the equation of motion (8) for temperature layer i ∈
{1, ..., l} takes the form

Mσ
i (Ti,t, Ti−1,t, Ti+1,t) =

1

ξ1

log
(
(1−σi,i−1−σi,i+1) exp[ξ1Ti,t]

+σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]
)

(11)

with parameter ξ1 = log 2
s
≈ 1

4
. The solutions for the shadow values are summarized in

the proof.

Appendix B provides the proof and subsequent sections discuss the result in detail.

The coefficients ϕ in the value function are the shadow values of the respective state

variables. The symbol > denotes transposition of the shadow value vectors. For ex-

ample, ϕM,1 is the shadow value of atmospheric carbon and will play a crucial role in

determining the optimal carbon tax. The coefficient vector on the resource stock, ϕ>R,t,

must be time-dependent: the shadow values of scarce exhaustible resources increase

over time, following the endogenously derived Hotelling rule (see equation B.8 in the

Appendix). The process ϕt captures the value contribution of the exogenous processes,

including technological progress.

11Affine transformations of the (transformed) state variables are also permitted, which essentially
correspond to a change in the measurement scale.
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3.3 General Discussion and Calibration

The damage function is of a double-exponential form with a free parameter ξ0,

which scales the severity of damages at a given temperature level. This free parameter

ξ0 is the semi-elasticity of output with respect to a change of transformed atmospheric

temperature τ1,t = exp(ξ1T1,t), i.e., with respect to the exponential of the change of

temperature. ACE’s base calibration matches DICE (Nordhaus 2008, Nordhaus &

Sztorc 2013, Nordhaus 2017). Figure 2 plots the damage functions of the last three

DICE versions (shades of green) together with ACE’s base calibration (dashed green).

The base calibration is an exact match of the two calibration points 0 and 2.5◦C of

the 2007 model, which had a slightly higher damage coefficient than the later two

generations (to which ACE is closer for higher temperature levels).12 The calibration

delivers the damage semi-elasticity ξ0 = 0.022. Figure 2 also depicts dotted lines

presenting a ±50% deviation of this value, which mostly bounds the different DICE

damage curves. ACE’s base calibration adopts this green dashed damage function,

sticking closely to the wide-spread and Nobel-awarded DICE model.

Figure 2 also graphs Howard & Sterner’s (2017) preferred damage function result-

ing from their meta-analysis of earlier studies including DICE. This damage function

suggests a good 10% loss of world output at a 3◦C warming, which is about 4 times

the DICE damage. Such a 10% loss surrounding a 3◦C warming is also supported by

Pindyck’s (2020) recent survey among economists and climate scientists, which finds a

similar ‘most likely’ GDP loss for the year 2066 following business as usual.13 Howard

& Sterner (2017) do not extrapolate their damage function beyond 6◦C and I follow

DICE’s method of replacing quadratic damages of aT 2 by 1
1+aT 2 to limit damages to

100% of production. While damages can exceed world output in principle, without

such curtailing they would also quickly exceed the world capital stock. It is a judg-

12Figure 2 plots the damage curves specified in the manuals and papers, which is of the form
D(T ) = 1 − 1

1+aT 2 (Nordhaus 2008, Nordhaus & Sztorc 2013, Nordhaus 2017). While consistent
with the EXCEL and GAMS codes of the earlier versions of DICE, the GAMS code of the 2013
model and the DICE2016R-091916ap model seem to adopt D(T ) = aT 2 instead. I decided to adopt
the normalized version stated in the texts and papers that avoid damages exceeding world output.
While of minor relevance for DICE’s damage calibration, it will be more crucial for the high damage
calibration discussed below. DICE’s damage coefficient is a = 0.0028 for 2007, a = 0.00267 for 2013,
and a = 00236 for 2016.

13Pindyck asks about the year 2066 (50 years after his survey), assuming business as usual. As seen
in Figure 3 for the RCP 8.5 scenario, BAU by 2066 corresponds approximately to a 3◦C warming,
even if “business as usual” leaves room for interpretation. The average response was a most likely loss
of 10.8%, where the economists averaged a guesstimate of 8.6%. Pindyck contacted 6833 economists
and climate scientists who published on related topics and the results reflect about 600 answers.

12
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Figure 2: ACE’s damage calibration (dashed) to DICE 2013 and to a substantially higher
damage function based on Howard & Sterner (2017) and Pindyck (2020) (HSP). HSP-norm
extrapolates Howard & Sterner’s (2017) damage function using DICE’s approach to limit
damages to 100% of production, whereas HSP-nn extrapolates without renormalization and
damages exceed production at a 9.5C warming. The left graph covers the temperature range
of the IPCC scenarios in Figure 3 whereas the right graph zooms in on lower degrees of
warming.

ment call and we hopefully never obtain the data for this business as usual range. The

red solid curve HSP-norm reflects the result, and the light grey HSP-nn curve reflects

the damage curve without re-normalization. The black dashed line calibrates ACE to

the original damages at 3◦C, yielding ξ0 = 0.011, and the red dashed line calibrates

ACE to the re-normalized damages at 3◦C, yielding ξ0 = 0.10, a difference of 10% in

the damage coefficient.

For all calibrations, ACE’s damage function delivers somewhat higher damages for a

reasonably low temperature change, then slightly lower damage for the medium range,

and eventually again higher damages at the high end of business as usual. It is initially

less convex than the (normalized) quadratic function, and then more convex.

Temperature dynamics. The generalized mean Mσ
i uses the nonlinear weighting

function exp[ξ1 · ]. The calibration of temperature dynamics (equation 11) uses the

representative concentration pathways (RCP) of the latest assessment report by the

Intergovernmental Panel on Climate Change (IPCC 2013). I use the MAGICC6.0

model by Meinshausen et al. (2011) to simulate the RCP scenarios over a time horizon

of 400 years. MAGICC6.0 emulates the results of the large atmosphere-ocean general

circulation models (AOGCMs) and is employed in the IPCC’s assessment report. DICE

was calibrated to a (single) scenario using an earlier version of MAGICC. My calibration

of ACE uses two ocean layers (upper and deep), compared to MAGICC’s 50 layers and

DICE’s single ocean layer.
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Figure 3: ACE’s temperature response compared to MAGICC6.0 using the color-coded
radiative forcing scenarios of the latest IPCC assessment report. RCP 3 is the strongest
stabilization scenario, and RCP 8.5 is a business-as-usual scenario. The MAGICC model
(solid lines) emulates the large AOGCMs and is used in the IPCC’s assessment reports.
ACE (dashed lines) matches MAGICC’s temperature response very well for the “moderate”
warming scenarios and reasonably well for RCP 8.5. By courtesy of Calel & Stainforth (2017)
the figure also presents the corresponding temperature response of DICE 2013, PAGE 09,
and FUND 3.9, the numeric IAMs used for the interagency report determining the official
SCC in the US. ACE competes very well in all scenarios.

Figure 3 shows the calibration results. In addition to the original RCP scenarios, I

include two scenarios available in MAGICC6.0 that initially follow a higher radiative

forcing scenario and then switch over to a lower scenario (RCP 4.5 to 3 and RCP

6 to 4.5). These scenarios would be particularly hard to fit in a model tracing only

atmospheric temperature. The ability to fit temperature dynamics across a peak is

important for optimal policy analysis. ACE’s temperature model does an excellent job

in reproducing MAGICC’s temperature response for the scenarios up to a radiative

forcing of 6W/m2 as in the RCP 6 scenario. It performs slightly worse for the high

“business as usual” scenario RCP 8.5, but still well compared to other IAMs.14 Trans-

formed to the vector of generalized temperatures τt, the temperatures’ equations of

motion (11) take the linear vector form

τt+1 = στt + σforc
M1,t +Gt

Mpre

e1 .

14The fact that all IAMs slightly overestimate the temperature for high carbon concentrations results
from the recent findings that climate sensitivity is most likely not constant, but slowly declining in the
atmospheric carbon dioxide concentration. An extension of ACE can incorporate a declining climate
sensitivity without losing analytic tractability. For ease of exposition, I decided for the simpler climate
system.
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Further characterization and calibration. The optimal consumption rate is

x∗ = 1− βκ. Society consumes less the higher the discounted shadow value of capital

(x∗t = 1
1+βϕκ

with ϕk = κ
1−βκ ), resulting in a consumption rate that decreases in

the capital share of output κ. The other controls depend on the precise form of the

production and energy sectors, but they are not needed to determine the optimal

carbon tax (see Appendix B.1 for further details).

I calibrate the remaining parts of ACE as follows (base calibration). A capital share

of κ = 0.3 and the International Monetary Fund’s (IMF 2020) investment rate forecast

of 1−x∗ = 26% pin down an annual rate of pure time preference of ρ = 1.4%. Present

world output Y is 10 times (time step) the IMF’s global economic output forecast of

Y annual
2020 = 130 trillion USD (purchasing power parity). The base calibration uses the

carbon cycle of DICE 2013.

4 Policy Results

The SCC is the money-measured present value welfare loss from adding a ton of CO2

to the atmosphere. The Pigovian carbon tax is the SCC along the optimal trajectory

of the economy. In the present model, the SCC is independent of the future path of

the economy. Therefore, this unique SCC is the optimal carbon tax.15

4.1 Base Scenario, Analytics, Decomposition

Appendix B solves for the shadow values and derives the optimal CO2 tax. It is

proportional to output Yt and increases over time at the rate of economic growth as

in Golosov et al. (2014). In contrast to earlier models, ACE avoids summing over

future periods, emission impulse responses, or reservoirs, yielding a simpler and yet

richer description of the dynamic characteristics driving the optimal carbon tax. It

is the first formula pinpointing the tax contribution from carbon versus temperature

dynamics.

Proposition 2 (1) Under the assumptions of section 2, the SCC in (USD-2020-)

15The present paper calculations the Pigovian tax in the first-best setting, see e.g. Barrage (2019)
for an analysis of how the typical distortions in raising tax revenue modify the Pigovian tax on carbon.

15



money-measured consumption equivalents is

SCCt =
βY net

t

Mpre

ξ0︸︷︷︸
2.1%︸ ︷︷ ︸

11.5 USD
tCO2

[
(1− βσ)−1

]
1,1︸ ︷︷ ︸

1.1

σforc︸︷︷︸
0.54

[
(1− βΦ)−1

]
1,1︸ ︷︷ ︸

4.3

= 30
USD

tCO2

(12)

where [·]1,1 denotes the first element of the inverted matrix in square brackets, and the

numbers rely on the calibration discussed in section 3.

(2) A carbon cycle (equation 6) satisfying mass conservation of carbon implies a factor

(1−β)−1 in the SCC (equation 12), which is approximately proportional to the inverse

of the rate of pure time preference 1
ρ
.

The ratio of world output to preindustrial carbon concentrations Mpre sets the units

of the carbon tax. The discount factor β reflects a one-period delay between tem-

perature increase and production impact. The damage parameter ξ0 represents the

semi-elasticity of net output with respect to a transformed temperature increase, i.e.,

to an increase of τ1 = exp(ξ1T1). In the absence of climate dynamics, these terms would

imply a carbon tax of 11.50USD
tCO2

, or 10 cents per gallon at the pump (2 e-cents per

liter). The interesting thrust making the carbon tax more serious stems from climate

dynamics.

Contribution of carbon dynamics: a major multiplier. Analytic models of

climate change previously captured carbon dynamics in a decay or impulse response

formulation, whereas numeric IAMs incorporate a carbon cycle that models the physical

carbon flows and respects that carbon does not decay. ACE integrates a carbon cycle,

and a Neumann series expansion of βΦ interprets the implications for the carbon tax

(1− βΦ)−1 =
∑∞

i=0 β
iΦi . (13)

The element [Φi]1,1 of the transition matrix characterizes how much of the carbon in-

jected into the atmosphere in the present remains in or returns to the atmosphere in pe-

riod i, after cycling through the different carbon reservoirs. E.g., [Φ2]1,1 =
∑

j Φ1,jΦj,1

characterizes the fraction of carbon leaving the atmosphere for layers j ∈ {1, ...,m}
in the first time step and arriving back to the atmosphere in the second time step.

Thus, the term [(1− βΦ)−1]1,1characterizes in closed form the discounted sum of CO2

persisting in and returning to the atmosphere in all future periods. The discount factor

accounts for the delay between the act of emitting CO2 and the resulting temperature

forcing over the course of time. Quantitatively, the persistence of carbon increases the
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earlier value by a factor of 4.3 and the resulting carbon tax would be almost 50USD
tCO2

or

over 40 cents per gallon – ignoring temperature dynamics.

Intuitively, the carbon multiplier [(1− βΦ)−1]1,1 is a form of Keynesian multi-

plier. Our emissions diffuse into different “channels”, but some of these feed back

again into the atmosphere, thereby amplifying the emissions’ effectiveness. Similarly,

[(1− βΦ)−1]1,2 characterizes the long-term forcing contribution from CO2 that is cur-

rently in the shallow ocean. The difference between these multipliers can inform back-

of-the-envelope calculations for the value of different geoengeneering “solutions” to

climate change that channel our CO2 emissions into the ocean or other non-permanent

reservoirs. E.g., channeling emissions into the shallow ocean would relieve the SCC by
[(1I−βΦ)−1]

1,1
−[(1I−βΦ)−1]

1,2

[(1I−βΦ)−1]1,1
≈ 67% or 20USD

tCO2
in absolute terms (ignoring damages from

ocean acidification). This difference in the long-term impact of carbon in the atmo-

sphere versus the ocean and biosphere also play an important role in evaluating the

impact of uncertainty governing carbon dynamics (Traeger 2021b).

Contribution of temperature dynamics: a net reduction. The terms

[(1− βσ)−1]1,1 σ
forc capture the atmosphere-ocean temperature dynamics resulting

from both delay and persistence. That is, it takes time to warm the atmosphere

and oceans, but once they are warm, they conserve some of this warming. Analogously

to the case of carbon, the expression [(1− βσ)−1]1,1 characterizes the generalized heat

flow that enters, remains, and returns to our atmosphere. Thus, the simple closed-form

expression for the carbon tax in equation (12) captures an infinite double sum: an ad-

ditional ton of carbon emissions today causes radiative forcing in all future periods,

and the resulting radiative forcing in any given period increases the temperature in all

subsequent periods. The parameter σforc captures the atmospheric adjustment rate

to radiative forcing absent ocean cooling. Ocean-atmosphere temperature dynamics

reduces the carbon tax by approximately 40%, resulting in the optimal carbon tax of

30USD
tCO2

or 27 cents per gallon (6 e-cents per liter). This carbon tax is somewhat higher

than Nordhaus’s (2014) optimal carbon tax of 21USD
tCO2

for DICE 2013, which has a more

sluggish temperature response and uses a much lower estimate of world output.16

16Golosov et al. (2014) and Gerlagh & Liski (2018b) use an emission response model similar to the
common carbon cycle models that I adopt here. Their models do not explicitly incorporate radiative
forcing, temperature dynamics, and damages as a function of temperature. However, Gerlagh &
Liski (2018b) introduce a delay between peak emissions and peak damages, motivated by the missing
temperature component. This delay multiplier contributes a factor of .45 in their closest scenario
(“Nordhaus”), which cuts the tax a little more than ACE’s factor of 1.4 · 0.42 ≈ .6, derived from an
explicit model of temperature dynamics calibrated to MAGICC6.0.
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A conceptual implication for policy making. The SCC in equation (12) is

independent of the atmospheric carbon concentration and of the prevailing temperature

level. A corresponding independence of past emissions already prevails in Golosov et al.

(2014), and contradicts the common perception that slacking on climate policy today

will require more mitigation in the future. This result might sound like good news,

but what the model really states is as follows. If we delay policy today, we will not

compensate in our mitigation effort tomorrow, but will live with the consequences

forever. Yet, the result does contain some good news for policy makers and modelers.

Setting the optimal carbon tax requires minimal assumptions about future emission

trajectories and mitigation technologies. The policy-maker sets an optimal price of

carbon, and the economy determines the resulting optimal emission trajectory. The

common intuition that the SCC ought to increase in the CO2 concentration and the

prevailing temperature level results from the convexity of damages in temperature. Yet,

what common intuition overlooks is that CO2 traps (absorbs) energy only in a certain

range of wavelengths that is increasingly saturated. As a result, warming is logarithmic

in the prevailing atmospheric CO2 concentration (equation 7), and the marginal ton’s

warming impact is proportional to the inverse of the prevailing concentration.

4.2 Discounting and Time Preference

It is well known that the consumption discount rate plays a crucial role in valuing long-

run impacts (Nordhaus 2007, Weitzman 2007). Finding (2) in Proposition 2 is different.

It states that the interaction of pure time preference and carbon cycle dynamics is the

main sensitivity when it comes to discounting. The proposition ties this sensitivity

directly to the fact that carbon does not decay, but only cycles through the different

reservoirs; a fraction of our current emissions remains in or returns to the atmosphere in

the long run. In DICE 2013’s carbon cycle, about 6% stay in the atmosphere forever.17

The growth contribution to discounting is less relevant because the damages from

climate change grow approximately proportionally to consumption, which offsets the

growth-induced reduction in future marginal value. The contribution of temperature

dynamics is less sensitive to time preference because heat is not conserved.18 The

17The maximal eigenvalue of the carbon cycle’s transition matrix Φ is unity and the corresponding
eigenvector governs the long-run distribution (as the transitions corresponding to all other eigenvectors
are damped). The first entry of the corresponding eigenvector is 0.06.

18Heat is constantly exchanged with outer space. Golosov et al.’s (2014) SCC formula already shows
a related sensitivity to pure time preference, arising from modeling emissions as a convex combination
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extreme sensitivity weakens as we depart from log utility as van den Bijgaart et al.

(2016) and Rezai & van der Ploeg (2016) elaborate with approximate formulas and

numeric simulations. As we start reducing the elasticity of intertemporal substitution,

we clean up more of our historic sins along the optimal trajectory, and worry a little

less about their long-run consequences.

The high sensitivity to pure time preference, coupled with a low sensitivity to the

consumption discount rate, has an interesting policy implication. The US Circular

A-4 by the Office of Management and Budget prescribes a consumption discount rate

of 3%.19 It does not give any direct guidance regarding its composition, leaving a degree

of freedom to the modelers of the Interagency Working Group on the US’ federal SCC

that I show to have a huge impact on the SCC’s magnitude. For this purpose, first,

note that the SCC formula holds independently of the economy’s growth rate. Second,

section 5.2 develops a more sophisticated investment model showing that ACE can

easily match observed consumption-investment rates with any of the present choices of

time preference.

The base calibration in Section 3.3 implies a rate of pure time preference of ρ =

1.4%. Instead, Drupp et al.’s (2018) recent expert survey suggests ρ = 0.5% as the

median response, changing the SCC and its components to

SCCt =
βY net

t

Mpre

ξ0︸︷︷︸
2.1%︸ ︷︷ ︸

��11.5 12.5 USD
tCO2

[
(1− βσ)−1

]
1,1︸ ︷︷ ︸

��1.1 1.3

σforc︸︷︷︸
0.54

[
(1− βΦ)−1

]
1,1︸ ︷︷ ︸

��4.3 8.4

=��HH30 72
USD

tCO2

.

The formula emphasizes that, under certainty, the main determinant of the optimal

carbon tax is the interaction of time preference and carbon dynamics, doubling its

contribution to a factor of 8. Overall, the SCC increases almost 2.5 times to 72USD
tCO2

or

63 cents per gallon at the pump (≈ 14 e-cents per liter).

of decaying and non-decaying carbon. In their published revision, Gerlagh & Liski (2018b) explain how
the non-decaying carbon box results from a carbon cycle. Finding (2), which was first published in
the working paper version of the present paper (Traeger 2015), is related in spirit, but directly factors
out the sensitivity factor (1− β)−1 resulting from mass conservation in the carbon cycle formulation.

19More precisely, cost-benefit analysis is undertaken with both a 3% and a 7% discount rate where
the 3% reflects consumption discounting, and the 7% pre-tax capital interest. In addition, a third
rate between 1-3% can be suggested if future generations are affected. The 3% rate was employed as
the base rate under the Obama administration and is likely to return with the Biden administration.
For the 3% rate, the Interagency Report on the SCC found a 2020 SCC estimate of 26 2007-USD

tCO2
using

a cross section of models. They also report SCCs of 7 and 42 2007-USD
tCO2

for consumption discount rates
of 5 and 2.5%, respectively.
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More sophisticated calibrations of time preference than in the present paper, using

the long-run-risk model of asset pricing, deliver even lower rates while matching risk-

free rate and risk premia substantially better, e.g., Bansal et al. (2012) calibrate a

rate of ρ = 0.11%.20 The Stern (2007) Review argues for the rate of ρ = 0.1% for

normative reasons. Similarly, low rates of pure time preference can arise if observed

market equilibria are interpreted as reflecting individual life-cycle choices in the absence

of bequest motives (Schneider et al. 2013) and when distinguishing consumption choice

from political long-term decision making and voting (Hepburn 2006). A rate of pure

time preference of ρ = 0.1% changes the SCC and its components as follows

SCCt =
βY net

t

Mpre

ξ0︸︷︷︸
2.1%︸ ︷︷ ︸

��11.5 13 USD
tCO2

[
(1− βσ)−1

]
1,1︸ ︷︷ ︸

��1.1 1.5

σforc︸︷︷︸
0.54

[
(1− βΦ)−1

]
1,1︸ ︷︷ ︸

��4.3 26

=��HH30 276
USD

tCO2

.

This ninefold increase of the SCC is, once more, mostly driven by the interaction of time

preference with the carbon cycle. Temperature dynamics now only reduces the SCC

by 20% as also the (moderate) temperature persistence obtains more weight relative

to the short-term warming delay. The present evaluations use equation (12) without

further recalibration. As a result, these evaluations would correspond to investment

rates of 28.5% and 30% rather than the observation-based 26% used in the original

model calibration. From a normative point of view, such a difference is warranted (but

would suggest that policy should also increase other investments). In response to the

Stern (2007) Review, which applies log-utility in combination with ρ = 0.1%, Nord-

haus (2007,2014) rejects the resulting high values of the SCC based on this descriptive

inconsistency. Yet, the long-run risk model calibrates such a low time preference and

explains observed investments and risk premia far better than any IAM. It would ex-

plain the high investment rates noted above as a result of the missing investment risks

in these IAMs. More generally, Section 5.2 distinguishes consumption and investment

sectors, casting into doubt the somewhat simplistic calibration of pure time preferences

common to many IAMs. The resulting modification easily reconciles low rates of pure

time preference with observed investment rates, also under certainty. The approach

results in a slight modification of equation (12), which further increases the SCC to

the values shown in Table 1, 75USD
tCO2

and 290USD
tCO2

, respectively.

20Traeger (2012a) shows how uncertainty-based discounting by an agent whose risk aversion does not
coincide with her consumption-smoothing preference (falsely) manifests itself as pure time preference
in the standard economic model.
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4.3 DICE’s Carbon Cycle versus Impulse Response

DICE’s climate dynamics has recently been criticized for scientific inaccuracy (Mattauch

et al. 2020, Van der Ploeg et al. 2020). ACE’s base scenario already avoids the main

target of the criticism, DICE’s overly sluggish temperature response. But also the car-

bon cycle responds a little more sluggishly when compared to scientific models (Van

der Ploeg et al. 2020). Joos et al. (2013) provides a simple emulation of scientific

carbon cycle models. Instead of tracking carbon through different (at times complex)

reservoirs, the authors calibrate the atmospheric impulse response for a variety of car-

bon cycle models, including the best fit to a state of the art ensemble (CMIP 5). The

approach distributes a ton of carbon emitted into 4 different “boxes”. These boxes

no longer correspond to physical reservoirs; instead these boxes are characterized by

unique atmospheric life-times. The amount of atmospheric carbon in period t resulting

from a unit of today’s (t=0) emissions is

∆M1,t = a0 +
3∑
i=1

ai exp

(
− t

τi

)
,

where a = (a0, a1, a2, a3)> characterizes the fraction of carbon going into a particular

box. The fraction a0 stays in the atmosphere forever and the fractions ai of today’s

emission unit has an e-folding time τi.
21 The IPCC (2013) uses this quantitative model

to calculate global warming potentials.

This box model is formally equivalent to the usual carbon cycle model with the

following modifications. First, carbon is released not only into the atmosphere, but into

all boxes. In addition, some of the carbon simply vanishes immediately (
∑3

i=0 a0 < 1).

Formally, the weight vector a replaces the unit vector e1 channeling emissions (only)

into the atmosphere in equation (6). As a result, the SCC will become the ai-weighted

sum of the different boxes’ shadow values. Second, all boxes correspond to atmospheric

carbon and, thus, contribute to radiative forcing changing equation (7) to

Ft = η
log

∑3
i=0Mi,t+Gt
Mpre

log 2
. (14)

Third, the transition matrix is diagonal as carbon no longer moves across boxes.

21The e-folding time represents the time at which only a fraction corresponding to one over the
Euler’s number remains in the atmosphere. The corresponding e-folding times (half-lifes) are τ1 =
394.4 (273), τ2 = 36.54 (25), and τ3 = 4.304 (3) years. Note the notational difference between
e-folding time τ (only used in the present subsection) and generalized temperature τ .
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As a result, the inversion of the matrix in the SCC formula becomes trivial and

[(1− βΦ)−1]i,i = 1
1−γiβ , where the coefficients γi = exp

(
− step

τi

)
are the (diagonal)

entries of the transition matrix; the first diagonal entry corresponds to τ0 = ∞ and

γ0 = 1, and step = 10 represents the time step. I emphasize that all boxes reflect at-

mospheric carbon and no longer have a direct physical counterpart; they approximate

the different response times of various carbon sinks.

The resulting SCC formula becomes (see Appendix B.3)

SCCt =
βY net

t

Mpre

[
(1− βσ)−1

]
1,1
σforc

(
a0

1− β
+

3∑
i=1

ai
1− γiβ

)
(15)

The only change w.r.t. the SCC formula in equation (12) is the last term, replacing

[(1− βΦ)−1]1,1 . Interestingly, the base scenario’s SCC remains the same 30USD
tCO2

as in

the base scenario using DICE 2013’s carbon cycle. The carbon cycle multiplier changes

from 4.31 to 4.29, and using 4 digit precision one would see a drop of the SCC by 14

cent. The exact match in the base scenario is somewhat of a coincidence. Joos et al.’s

(2013) calibration suggests that a0 = 21% of today’s carbon emissions remain in the

atmosphere forever, contrasting sharply with DICE 2013’s 6%. As a result, the two

models should exhibit different sensitivities to time preference. For a rate of pure time

preference of 0.5%, the box-model’s carbon multiplier increases from 8.3 to 8.9 causing

a 4 USD increase of the optimal carbon tax to 77USD
tCO2

. For a rate of 0.1%, the carbon

multiplier increases from 26 to 30 causing a 26 USD increase of the optimal carbon tax

to 312USD
tCO2

. In contrast, high rates of pure time preference reduce the impulse-response-

based SCC relative to the DICE 2013 carbon cycle, see e.g. scenarios 8 versus 9 in

Table 1, a reduction of 6% for a rate of pure time preference of 4.3%. As is nicely

observed in Van der Ploeg et al.’s (2020) simulations, DICE’s “carbon-sluggishness”

reduces the short-term impact, increases the medium-run impact, and underestimates

the long-run impact. Low rates of pure time preference place more weight on the

long-run implications and DICE slightly underestimates the SCC relative to Joos et al.

(2013). High rates of time preference place more weight on the medium-term impacts

and DICE yields a slightly higher SCC.22

The advantage of following standard IAMs in using an actual carbon cycle model

is that equations (12) and (13) have a direct interpretation in terms of physical carbon

22I have used the DICE 2013 carbon cycle because it best matches the scientific carbon cycle models.
DICE 2016 was re-calibrated to better match the long-run dynamics, but it comes at the expense of
substantially overestimating the medium-run response that receives most of the weight in IAMs.
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flows. The model also delivers the social cost of carbon in other sinks, like the biosphere

or the oceans. These numbers can be of interest for geoengineering measures and for

explicitly modeling damages such as ocean acidification (as in, e.g., the FUND model),

but DICE’s carbon cycle might be a bit simple to overly emphasize those values. The

advantage of the impulse response model is that it permits pinpointing the individual

SCC contributions of its different boxes, corresponding to the differential “life-times”

of atmospheric carbon. In the base scenario, the 21% of an emitted ton of CO2 that

stay up in the atmosphere forever contribute close to 40% of the SCC, in the ρ = 0.5%

scenario they contribute 50%, and in the ρ = 0.1% scenario they contribute over 70%

of the total SCC. Golosov et al. (2014) adopt a formally equivalent impulse response

model to describe carbon dynamics. Given their model omits temperature dynamics,

it would be closest to ACE’s scenario of “no temperature delay”.

4.4 Damage Levels and Capital Productivity

Apart from temperature dynamics and updates in world output, ACE’s base calibration

leans heavily on choices resembling the DICE model. The present section discusses

variations of the DICE based damage calibration and capital share. Regarding the

first, DICE’s damage function has repeatedly been criticized for being on the low side

(yet other wide-spread IAMs like FUND suggest lower damages). Section 3.3 already

introduces an alternative and much higher damage calibration based on the meta-

analysis by Howard & Sterner (2017) and the survey by Pindyck (2020). It (i) remains

a challenge to estimate climate impacts from weather volatility, the small intertemporal

changes we have observed so far, and cross-country differences; (ii) many in the field

are looking forward to the results of the Climate Impact Lab and other initiatives

generating more detailed global impact estimates. First results for the global cost

of increased mortality (Carleton et al. 2019) suggest that such projects likely result

in values closer to the second, higher damage calibration. And (iii), while current

work attempts to incorporate adaptation by current means, it will be even harder to

incorporate actual future adaptation based on future technologies. That said, I simply

present and compare results for the DICE calibrated damage function (base) as well as

the calibration based on Howard & Sterner (2017) and Pindyck (2020) labeled HSP.

The accompanying paper Traeger (2021b) explicitly introduces damage and damage-

adaptation uncertainty.

HSP damages increase the damage semi-elasticity to an exponential temperature
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increase from ξ0 = 0.022 to ξ0 = 0.10. Formula (12) shows that such a 4.4 times

increase of the damage semi-elasticity translates straight into a 4.4 times increase of

the SCC (across all scenarios). Table 1 states the results. E.g., the SCC of the base

calibration (ρ = 1.4%) increases to 134USD
tCO2

. The SCC increases to 331USD
tCO2

for expert

discounting (ρ = 0.5%), and to a painstaking 1280USD
tCO2

for the low discounting scenario

(ρ = 0.1%) – or even to 1450USD
tCO2

in combination with the impulse response model by

Joos et al. (2013). The alternative calibration of damages to Howard & Sterner (2017),

labeled HSP∗ in Figure 2, increases all of these values by approximately 10%.

ACE’s base calibration uses the common capital share of κ = 0.3, which is also part

of the DICE model. However, more recent estimates suggest estimates of κ closer to

0.4 (Inklaar & Timmer 2013, Neiman 2014, Jones 2016). The parameter κ does not

explicitly show in the SCC formula (12). Yet, it determines the base model’s investment

rate and implicitly shows up at various points. First, I used it to calibrate the rate

of pure time preference by matching the model’s investment rate 1 − x∗ = βκ = 26%

to observation. Here, using κ = 0.4 substantially increases of the rate of pure time

preferences from 1.4% to 4.3%. As a result, the optimal carbon tax in the (otherwise)

base scenario drops to 11USD
tCO2

; the main reduction stems from the carbon multiplier’s

decrease from 4.3 to 2.2. Second, the shadow value of atmospheric carbon in utils is

proportional to 1
1−κβ and, third, its conversion to USD makes the SCC proportional

to consumption, which is world output times the consumption rate x∗ = 1− κβ. As a

result, the two latter appearances of κ cancel in the SCC formula (12). Thus, overall

κ = 0.4 implies a 65% reduction of the SCC to 11USD
tCO2

in the base model, using the

“base calibration method”.

The reasoning of the previous paragraph takes for granted that the world’s invest-

ment rate is determined by κβ. This simple formula is a result of assuming perfect

substitutability between consumption and investment goods (and simplified capital

dynamics). Section 5.2 introduces a variety of goods and distinguishes between con-

sumption and investment goods. As a result, the consumption and investment rates

are no longer governed by this simplistic formula and can change over time and space

for a variety of reasons (as observed in the data). The resulting model has the de-

grees of freedom to separately calibrate capital productivity κ, time preference β, and

the consumption rate x. Then, increasing κ no longer implies a reduction of time

preference. Moreover, increasing κ increases the SCC because the higher productivity

increases the cost of climate damages and the resulting foregone investments. Instead
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of a reduction, the more sophisticated model yields a slight increase of the optimal

carbon tax, yielding 34USD
tCO2

in response to an increase in capital share. Table 1 shows

how the increase in capital affects the SCC in the scenarios using lower discount rates

(scenarios 20 & 32) and higher damages (scenarios 10, 25, & 35).

5 Extensions

The first part of this section introduces population weighting within and across genera-

tions. The second part presents an example of the production economy and introduces

heterogenous consumption and investment goods.

5.1 Population Weighting and Heterogenous Consumption Lev-

els

So far, I assumed that a social planner or representative agent maximizes the log-

welfare of consumption. In contrast, the DICE model uses population-weighted utility

from average consumption, introducing differential weighting of generational consump-

tion over time. In addition, climate change economics is increasingly concerned with

distributional differences within a generation. The present section extends the baseline

model to analyze the implications of (i) differing welfare (or Negishi) weights across sub-

groups of the population at a given point in time and (ii) time varying welfare weights

across time as implied by DICE’s population weighting. The analysis is restricted to

exogenously evolving population weights.

I split the population into P ∈ N groups with idiosyncratic group sizes pi,t, i ∈ P
and corresponding average consumption levels ci,t. The social planner places weight αi

on each of these groups and the objective becomes

max
(ci,t)i∈P ;t∈N0

∞∑
t=0

βt
(∑

i∈P

αi,t log ci,t

)
subject to

∑
i∈P

pi,tci,t = Ct. (16)

The group-specific weights αi,t can but do not have to depend on (or coincide with) the

group sizes pi,t. Both αi,t and pi,t evolve exogenously. In a descriptive world, the weights

αi,t are interpreted as Negishi-weights. A low observed equilibrium consumption of sub-

group i translates into a low Negishi-weight αi,t in the social planner representation.23

23Negishi-weights are straight-forward in the static context. Their calculation and interpretation
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r.p.t.p. Scenario Parameter Carb w/o TD SCC cent per Euro-cent
changes Mult USD in USD Gallon per liter

1.4%
1 base 4.3 50 30 27 6
2 Joos carbon (carb) Φ 4.3 50 30 27 6
3 HSP-damages (HSP) ξ0 4.3 219 134 118 27

x 4.3% 4 productivity simple κ, β 2.2 19 11 9 2
5 productivity 5.2 κ 4.3 56 34 30 7
6 Population growth (pg) g 63 39 34 8

x 2.3% 7 Pop growth recalib (pg-re) g, β 40 24 21 5
x 4.3% 8 HSP & prod simple ξ0, κ, β 2.2 85 48 42 10
x 4.3% 9 carb & HSP & prod simple Φ, ξ0, κ, β 2.1 78 45 39 9

10 HSP & prod 5.2 ξ0, κ 4.3 248 152 335 78
x 4.3% 11 prod simple & pg κ, β, g 23 13 11 3
x 5.2% 12 prod simple & pg-re κ, β, g 18 10 9 2

13 prod 5.2 & pg κ, g 72 44 39 9

x 4.3% 14 HSP & prod simple & pg ξ0, κ, β, g 102 57 50 12
x 5.2% 15 HSP & prod simple & pg-re ξ0, κ, β, g 81 45 39 9

16 HSP & prod 5.2 & pg ξ0, κ, g 319 197 173 40

0.5%
17 expert discounting 8.4 109 75 66 15
18 Joos carbon (carb) Φ 8.9 115 79 70 16
19 HSP-damages (HSP) ξ0 8.4 480 331 291 68
20 productivity 5.2 (p ) κ 8.4 125 86 76 18
21 Population growth (pg) g 146 100 88 21
22 carb & HSP Φ, ξ0 8.9 509 351 308 72
23 carb & p 5.2 Φ, κ 8.9 133 92 80 19
24 carb & pg Φ, g 156 107 94 22
25 carb & HSP & p5.2 Φ, ξ0, κ 8.9 587 405 356 83
26 carb & HSP & pg Φ, ξ0, g 688 473 416 97
27 carb & p 5.2 & pg Φ, κ, g 180 124 109 25
28 carb & HSP & p 5.2 & pg Φ, ξ0, κ, g 795 547 480 112

0.1%
29 low discounting 26 361 290 255 59

30 Joos carbon (carb) Φ 30 409 328 288 67

31 HSP-damages (HSP) ξ0 26 1600 1280 1130 262
32 productivity 5.2 (p5.2) κ 26 421 338 296 69
33 Population growth (pg) g 500 400 351 82

34 carb & HSP Φ, ξ0 30 1810 1450 1270 296
35 carb & prod 5.2 Φ, κ 30 476 382 325 78
36 carb & pg Φ, g 567 454 398 93
37 carb & HSP & p 5.2 Φ, ξ0, κ 30 2100 1690 1480 345
38 carb & HSP & pg Φ, ξ0, g 2510 2000 1760 410
39 carb & p 5.2 & pg Φ, ξ0, g 660 528 464 108
40 carb & HSP & p 5.2 & pg Φ, ξ0, κ, g 2920 2330 2050 477

Table 1: Quantitative results. “r.p.t.p.”=rate of pure time preference. “Carb Mult”=
Carbon-based multiplier in SCC (non-stationary for population growth). “w/o TD”=
without temperature delay (cutting temperature related terms in SCC). “Joos carbon” uses the
impulse response calibration of Joos et al. (2013) and “HSP-damages” uses Section 3.3’s calibration
of damages to Howard & Sterner (2017) and Pindyck (2020). For population growth see Section 5.1.
The “productivity simple” and “population growth recalibrated” (pg-re) scenarios (”x” in the first
column) recalibrate time preference. In contrast, “production 5.2” uses the extended model of Sec-
tion 5.2 abandoning perfect substitutability between consumption and investment goods and not
requiring recalibration.



DICE equates population size with the labor force, Ni,t =
∑

i∈P pi,t, and uses popula-

tion weighted average utility delivering the objective max(ct)t∈N0

∑∞
t=0 β

tNt log Ct
Nt

. The

model extension has two alternative interpretations. Either, a social planner treats

different groups of the population differently for normative reasons that lie outside of

this model. Or, adopting a descriptive perspective, a set of exogenous Negishi weights

capture that consumption is distributed heterogenously in the population.

First, I focus on distributional differences within a generation. For this purpose,

I assume that I can normalize the welfare weights to unity, i.e.,
∑

i∈P αi,t = 1. The

weights and consumption distribution in the population can change over time, but each

period obtains the same total weight. Second, I will relax this assumption and assume

that the total weight grows at a constant rate, e.g., along with population size. Third, I

treat the case of general non-stationary population growth leaving details to Appendix

C.

Proposition 3 Let the welfare objective in equation (16) replace ACE’s original ob-

jective in equation (9).

i) Let
∑

i∈P αi,t = 1 for all t. The optimal carbon tax of Proposition 2 discussed in

Section 4 remains unchanged.

ii) Let αt ≡
∑

i∈P αi,t grow at a constant rate with growth factor g = αt+1

αt
for all t.

The optimal carbon tax of Proposition 2 changes to the form

SCCdet
t =

βgY net
t

Mpre

[
(1− βgσ)−1

]
1,1
σforc

[
(1− βgΦ)−1

]
1,1
.

iii) For non-constant growth of αt the shadow value of atmospheric carbon and the SCC

have to be calculated recursively using equations (C.5-C.7) stated in Appendix C.

The first part of the proposition finds that exogenous differences in the consumption

distribution have no impact on the SCC (or the optimal carbon tax). This finding

fleshes out that it is not merely the existence of inequality that alters the optimal SCC.

Instead, distribution becomes relevant because of endogenous interactions of inequality

and taxation or climate change and inequality. This result, of course, hinges as well

on using log-utility in line with the median expert of Drupp et al.’s (2018) survey.

Under log-utility, income and substitution effects cancel. Differences in consumption

will matter if income and substitution effects start to differ across agents as a result of

differences in income.

is more intricate in the dynamic context, an issue I am side-stepping given my assumption of an
exogenous evolution of these weights.
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The second part of Proposition 3 shows that a change of the total weight over time,

i.e., a change of the intergenerational weight affects the SCC. The intuition is straight-

forward. An increasing weight on future generations favors future generations the

same way as an increase in the discount factor (reduction of the utility discount rate).

Relating to DICE, population-weighting matters. The result is independent of whether

the social planner uses absolute consumption, average consumption, or some other

within-generation distribution and weighting. Placing more weight on more populous

future generations reduces the effective discount rate and, thereby, increases the SCC.

Increasing the welfare weight on more populous generations might be reasonable from

a normative perspective (assuming exogenous population dynamics). DICE is usually

interpreted as a descriptive model. As such, a tentative explanation of the weight could

be that the current generation will be more altruistic towards future generations when

they have more offsprings.24 For a quantitative evaluation of population weighting, I

use the United Nation’s population growth scenario (see Appendix C) with a stable

population after 2100. Here, DICE’s population weighting increases the SCC from 30

to 39USD
tCO2

. If we stick to the original calibration approach, however, we would have to

recalibrate the time preference to match the observed investment rate. Then, the rate

of pure time preference increases from 1.4% to 2.3% and the SCC falls to a mere 24USD
tCO2

.

If we consider the population weighting a normative argument, or if we follow Section

5.2’s more sophisticated investment model that frees time preference and investment

rate from their simplistic link, then we might not want to recalibrate time preference.

Using accordingly the expert’s median of ρ = 0.5% or the low discount rate of ρ = 0.1%,

UN population growth increases the SCC by 25 and 110 USD, respectively (see Table

1).

Finally, I note that the SCC uses the shadow value of aggregate consumption to

translate the shadow value of CO2 into consumption equivalents (and USD). The SCC

is an exchange ratio between consumption and CO2. This exchange ratio differs across

the different subgroups. From the perspective of the poor, the value of CO2 reduc-

tions is not worth as many USD.25 Yet, CO2 is a global public bad and heterogenous

24Where causality goes from more offsprings to more altruistic. See Schneider et al. (2013) for
a discussion of the difficulties with a purely descriptive interpretation of intertemporal weighting
in integrated assessment models using infinitely lived agents as opposed to explicitly overlapping
generations, given limited observed altruism.

25The SCC is the social price of carbon. As such, it aggregates the global welfare loss of all
individuals. Yet, the same aggregate welfare damage in utils translates into different consumption
equivalents depending on the consumption levels of different subgroups.
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pricing would always be inefficient. By using exogenous welfare (or Negishi) weights,

the present model assumes a redistribution that leaves the consumption ratios across

different subgroups of the economy untouched. Thus, it assumes that distributional

implications of a carbon tax can be mitigated by other channels. Models doing away

with the strict assumptions of the present section are a center piece of current research.

The present section itself is helpful to (i) flesh out those aspects of a heterogenous pop-

ulation that leave the SCC untouched and (ii) explain the role and implications of

population weighting in the DICE model.

5.2 CES-Preferences for Consumption, Investment Goods, &

Production Example

This section introduces a variety of final goods. The representative agent will be

equipped with CES preferences over final consumption goods. Given the multiplicity

of goods, I also have to specify investment explicitly. I retain equation (5), but it now

takes a composite of investment goods. The consumption-investment rate will no longer

be time-constant and it no longer has a simple closed-form solution. In particular, it

is no longer pinned down merely by capital productivity κ and discount rate β.

Let the sets Ic ∈ {1, ..., Īc} and II = {II , ..., I} denote the sets of final consumption

goods and investment components, respectively, where Īc, II , I ∈ N. These sets can

coincide, overlap, or be disjoint. The representative agent consumes the share xl,t of

good cl,t. For goods that are only used in consumption, l ∈ Ic\II , it is xl,t = 1. For

goods that are used in both the consumption and the investment process, l ∈ Ic ∩ II ,
the consumption share xl,t is endogenously chosen and the remaining share 1 − xl,t

enters investment. For goods that are only used in the production-investment process,

l ∈ II\Ic, it is xl,t = 0.

As in the base model, a representative consumer maximizes the discounted sum

of the log of a consumption aggregate Ct (objective 9). But now, the consumption

aggregate is a CES-aggregator over a variety of different final goods

Ct =
(∑
l∈IC

al,t(xl,tcl,t)
st
) 1
st (17)

with good-specific weights al,t and substitutability index st ≤ 1 for all t and l ∈ IC .
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The final goods follow a production process of the form

cl,t = Al,tK
α
l,tN

1−α−ν
l,t dνl,t [1−Dt(T1,t)] for l = 1, ..., I (18)

with good-specific technology, capital, and labor as well as an energy intermediate

dl,t. I introduce the energy intermediate to represent the different substitutabilities

across energy sources in different sectors, in particular, in transport versus common

production processes. As compared to, e.g., Golosov et al. (2014) such a model reflects

that oil and renewable energy are, at least currently, less substitutable in the transport

sector than are coal and renewables in the production sector. In each sector, the energy

intermediate

dl,t =
(∑
i∈Θl

e
s̃l,t
i,t

) 1
s̃l,t (19)

is a CES-combination of different energy sources, where Θl ⊂ {1, ..., IE} is the (index

set of the) subset of primary energy sources used for producing good l. E.g., for

l = transport, the substitutability s̃transport,t between oil-based-energy (i = oil) and

renewable energy (i = renewable) is currently limited, but it can increase over time

(s̃transport,t is period-specific). To convert a fossil fuel or renewable resource into energy

we need capital and labor and I assume

ei,t = gi,t(AI+i,t, KI+i,t, NI+i,t, Ei,t)

satisfying gi,t(AI+i,t, γKI+i,t, NI+i,t, Ei,t) = γα̃gi,t(AI+i,t, KI+i,t, NI+i,t, Ei,t),

for all i ∈ {1, ..., IE}. Some fossil fuels Ei,t will be subject to the intertemporal scarcity

constraint (2). I use a general function g to include Cobb-Douglas as well as formula-

tions with a “bliss point”, i.e., a finite emission level beyond which more coal or more

oil no longer increase production – a feature satisfied in DICE. I refer to an accom-

panying paper for a more detailed discussion of these features and their implications

for emissions (Traeger 2021a). Here, I analyze the implications on the optimal carbon

tax. Finally, the investment composite

It =
(∑
l∈II

bl,tc
ζt
l,t

) 1
ζt (20)

with investment weights bl,t and substitutability index ζt ≤ 1 for all t and l ∈ II

replaces equation (4) of the base model. This economy features IA = IK = IN = I+IE

different sectors.
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Proposition 4 The preference and production extensions of this section replace equa-

tions (1) and (4) of the base ACE by equations (17-20). The SCC, expressed in terms

of aggregate consumption equivalents, becomes

SCCt =
Ct

1− βκ
β

Mpre

ξ0

[
(1− βσ)−1

]
1,1
σforc

[
(1− βΦ)−1

]
1,1

(21)

where κ ≡ α + α̃ν.

Assuming coinciding parameter values, the value of the SCC in equation (21) coincides

with that of Proposition 2. Also equation (12) of the base model implicitly contains the

expression Ct
1−βκ . However, the base model assumes a single consumption-investment

good. This assumption results in the simple and constant consumption rate 1 − βκ,

implying that Ct
1−βκ =

(1−βκ)Y nett

1−βκ = Y net
t . In general, changes in production processes

and consumption preferences shift the fraction of production that is being consumed.

The present model accommodates such shifts. As a result, the SCC is no longer

proportional to world output, but it remains proportional to world consumption. In

general, the factor Ct
1−βκ can be smaller or larger than world output.

The important implications of Proposition 4 govern calibration. In contrast to

simplistic one-commodity models, the present specification no longer ties the con-

sumption rate straight to pure time preference and capital productivity κ. Figure 5 in

Appendix C illustrates how a degree of freedom that is alternatively generated by pref-

erences, calibration of the different technology levels, or composition of the investment

good changes the consumption rate much more than the changes of the rate of pure

time preference ρ or capital productivity κ in the scenarios discussed in the present

model. Thus, the present section shows that there is no contradiction between any of

the discussed scenarios and observed macroeconomic consumption rates, even under

certainty. In particular, the result backs up the ceteris paribus variations of the rate

of pure time preference and capital productivity κ in Table 1.

6 Conclusions

ACE is a full-blown IAM with analytic solution fleshing out the qualitative and quanti-

tative policy contributions of different IAM components. The present paper discusses

the implications of temperature versus carbon dynamics, damage estimates, capital

productivity, population weighting, consumption versus investment composites, and of
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calibration approaches for the optimal carbon tax or SCC. Table 1 summarizes the

quantitative results for a variety of calibrations that are reasonably founded in the

literature.

Using a single model, a simple “base calibration” using IMF consumption and

output data can generate optimal carbon tax recommendations spanning almost all

carbon prices currently observed from the low 10USD
tCO2

in some cap and trade markets

to the high 200USD
tCO2

energy taxes imposed on selective sectors in some European coun-

tries. The low tax values rely crucially on calibrating a high pure time preference

by matching observed consumption rates under population-weighting (as in DICE)

or an increased capital productivity (suggested in recent studies). A more sophisti-

cated specification of the economy distinguishes between consumption and investment

goods. As a result, commonly invoked simple relationships between pure time prefer-

ence and macroeconomic consumption no longer hold; observed investment rates can

be explained for almost arbitrary rates of time preference based on differences between

consumption and investment goods, preferences, and/or production technologies. Re-

calibrating time preference based on an expert median results in a tax range of 75

to 550USD
tCO2

. Taking out DICE’s population weighting, which I consider slightly less

convincing than the other model components, the high value falls to 400USD
tCO2

. Finally,

the paper presents the results under a 0.1% rate of pure time preference. The Stern

(2007) Review suggests this value on normative grounds and studies of long-run risk

match asset prices well using similarly low time preference, as do studies reinterpreting

observed equilibria as those of finitely lived agents without a bequest motive. In this

scenario, the SCC ranges from 300 to 2300USD
tCO2

, or cutting out population weighting

to 1700USD
tCO2

.

A simple and yet under-appreciated message of the analytic insights and Table 1 is

that pure time preference remains one of – or possibly the – most crucial determinant

governing how much society should do about climate change. If we calibrate the rate of

pure time preference to a high 4.2% and trust in DICE damages we can continue with

a carbon price of 10USD
tCO2

. If we combine this calibration with high damages estimates

instead, we would ramp things up to a price closer to 50USD
tCO2

as currently attempted

in some countries. If we believe in the cited expert median, or in normative arguments

that the future should not be discounted merely for its futurity, then we should ramp

up climate action by an additional order of magnitude. Despite the highly relevant

progress in modeling climate change and estimating damages and substitutabilities,
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we cannot avoid a more basic truth. If we intrinsically care for the future, we should

undergo much more serious efforts to limit climate change. If we don’t, “we’re good”

with current attempts. A common argument that low rates of pure time preference

would be inconsistent with current investment patterns no longer holds under ACE’s

disentanglement between consumption and investment goods, as well as for a variety

of other reasons cited.

ACE is the first IAM pinning down and quantifying the different multipliers result-

ing from the different aspects of climate dynamics. Whereas the carbon cycle multiplier

of the SCC substantially increases the SCC, temperature dynamics reduces the SCC

because of the warming delay. The crucial sensitivity of the SCC to time preference is

rooted in its interaction with the carbon cycle. Carbon does not simply decay but only

moves across different reservoirs. As a result of this persistence, the carbon multiplier

ranges between 2 and 30 depending on the calibration of time preference. Population-

weighting further increases this sensitivity. ACE explains how changes in capital pro-

ductivity affect the SCC in a variety of ways, but most importantly through model

calibration. DICE 2013’s much critiqued carbon cycle only implies minor differences

for the SCC when compared to a prominent science calibration. While DICE’s carbon

cycle is too sluggish, the inaccuracies mostly balance for the overall SCC, slightly un-

derestimating the SCC for low rates of time preference and overestimating it for high

rates.

In most aspects, ACE is far more general than any pre-existing IAM. Its main

limiting assumption is a unit elasticity of intertemporal substitution. I emphasize that

the unit elasticity only reflects deterministic trade-offs; I show in accompanying work

that ACE solves for arbitrary coefficients of (disentangled) relative Arrow-Pratt risk

aversion under uncertainty. The present extension to CES preferences slightly weakens

the assumption of a unit elasticity. A unit elasticity of intertemporal substitution

coincides with the median and the mode of Drupp et al.’s (2018) expert survey and

was used in the ? Review of Climate Change. The macroeconomic literature tends to

find lower elasticities, whereas the long-run risk literature suggests higher elasticities. If

sticking to a single value, the unit elasticity is likely a reasonable candidate. It implies

that income and substitution effects cancel. As a result, I show that also exogenously

changing distributional inequalities do not affect the optimal tax. Addressing the

interplay of income and substitution effects under deviations from log-utility or as a

result of endogenous distributional dynamics linked to climate change and taxation is
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an interesting and important research agenda not addressed in the present paper.

The present paper develops the basic ACE model. An accompanying paper uses

ACE to “break the curse of dimensionality” by analytically solving a complex stochastic

IAM with multiple uncertainties, Epstein-Zin-Weil preferences, and an exact analytic

solution to the infinite horizon stochastic fix-point problem. Another application of

ACE solves dynamic strategic interactions in a full-blown regional IAM. These appli-

cations break new ground by overcoming serious numerical challenges. More generally,

ACE provides analytic insights combined with their quantitative implications that con-

structively accompany the numeric literature on IAMs designed for policy advising.
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Appendix

A Capital Depreciation & Model Transformation

A.1 Capital Depreciation

This section derives the capital equation of motion (5), quantifies the correction factor,

and discusses the model’s implication that the consumption rate (but not level) is

unaffected by climate states. The usual capital accumulation equation, enriched by

climate damages, is

Kt+1 = Yt[1−Dt(T1,t)]− Ct + (1− δk)Kt .

Defining the consumption rate xt = Ct
Yt[1−Dt(T1,t)] and recognizing that Yt[1−Dt(T1,t)]−

Ct = Kt+1 − (1− δk)Kt implies26

Kt+1 = Yt[1−Dt(T1,t)](1− xt)

[
1 +

1− δk
Kt+1

Kt
− (1− δk)

]
.

Defining the capital growth rate gk,t = Kt+1

Kt
− 1, I obtain the equation of motion for

capital (5) stated in the main text.

I evaluate the correction factor based on the Penn World Tables (Feenstra et al.

2015). For 2019, currently the latest year of the Penn Word Tables 10.0, the global

depreciation parameter is δannualk = 0.0439, so δk ≈ 0.44. Averaging capital growth

over the past 10 years (using 2017USD values) delivers gannualk = 0.02949 or gk ≈ 0.29.

The resulting correction factor is
[

1+gk,t
δk+gk,t

]
≈ 1.8. (for a 5 year time step the correction

factor would be 3.1, and for an annual time step 14). For the US, δannualk = 0.046 and

gannualk = 0.013, resulting in a decadal correction factor of 1.9 (or a correction factor of

3.6 for a five year time step).

Treating the growth and depreciation correction in squared brackets as exogenous

remains an approximation. The extension shows that the model is robust against the

immediate criticism of not being able to represent the correct capital evolution and

capital output ratio, and against the agent’s neglecting of capital value beyond imme-

diate next period usage. Yet, the crucial implications of the assumptions underlying

equation (5) is that the investment rate is independent of the climate states. It is the

26The step uses Kt+1 = Yt[1 − Dt(T1,t)] − Yt[1 − Dt(T1,t)]xt + (Yt[1−Dt(T1,t)]− Ct) ×
(1−δk)Kt

Yt[1−Dt(T1,t)]−Ct
.
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price to pay for an analytic solution. The remainder of this section shows that this

price seems small.

Figure 4 tests ACE’s result (and implicit assumption) that the optimal consump-

tion rate is independent of the climate states. The figure depicts the optimal con-

sumption rate generated by a recursive DICE implementation with an annual time

step and, thus, an annual capital decay structure of the usual form (Traeger 2012b).27

It also abandons the assumption of logarithmic utility, further stacking the cards

against ACE’s assumptions. The first two graphs in the figure depict the control

rules for DICE-2013’s η = 1.45 (inverse of the intertemporal elasticity of substitu-

tion). These two graphs state the optimal consumption rate for the years 2025 and

2205. The third graph in the figure depicts the optimal consumption rate for the

lower value η = 0.66 calibrated by the long-run risk literature (Vissing-Jørgensen &

Attanasio 2003, Bansal & Yaron 2004, Bansal et al. 2010, Chen et al. 2013, Bansal

et al. 2012, Bansal et al. 2014, Collin-Dufresne et al. 2016, Nakamura et al. 2017)

The qualitative behavior is the same for all graphs in Figure 4. Overall, the figure

shows that the optimal consumption rate is largely independent of the climate states

(if the vertical axis started at zero the variation of the control rule would be invisible).

At current temperature levels, the optimal consumption rate does not depend on the

CO2 concentrations. This result is in accordance with the theoretical result under

ACE’s assumption set. However, the optimal consumption rate increases slightly for

higher temperatures. It increases by less than a percentage point from no warming

to a 3C warming at low CO2 concentrations. The increase is lower at higher CO2

concentrations.

The graphs confirm that also in DICE, and in a model with regular annual capital

decay structure and not exactly log-utility, the investment rate is not used as a primary

measure of climate change policy. The rate does not respond to the CO2 concentra-

tion, which is a measure of expected warming. Only once the temperature dependent

damages set in, the consumption rate slightly increases and the investment rate goes

down. Instead of reflecting climate policy, this (minor) climate dependence of the con-

sumption rate reflects a response to the damages incurred: these damages reduce the

cake to be split into investment and consumption, then, a slightly higher fraction goes

27The recursive implementation based on the Bellman equation solves for the optimal control rule as
a function of the states derlivering the full control surface depicted here. This recursive implementation
has a slightly simplified climate change model compared to the original DICE model, but matches the
Maggic6.0 model, used also as the DICE benchmark, similarly well.
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Figure 4: The graphs analyze the climate (in-)dependence of the optimal consumption rate x∗

in the wide-spread DICE model, relying on the control rules of the recursive implementation
by Traeger (2012b). The first two graphs assume the DICE-2013 value η = 1.45, the third
graph follows the long-run risk literature with η = 2

3 . The blue dot in each graph indicates
the expected optimal control and prevailing temperature-CO2 combination along the optimal
policy path in the given year.

to consumption. This response is lower when CO2 concentrations are high: then the

social planner expects high temperatures and damages also in the future and is more

43



hesitant to reduce investment.

A.2 Transformation to linearity in states

For notational convenience, I introduce the normalized vector Kt ≡ Kt

Kt
characterizing

the distribution of capital over sectors whose components satisfy
∑IK

i=1Ki,t = 1. To

obtain the equivalent linear-in-state-system, I replace aggregate capital Kt =
∑IK

i=1Ki,t

by logarithmic capital kt ≡ logKt. I replace temperature levels in the atmosphere and

the different ocean layers by the transformed exponential temperature states τi,t ≡
exp(ξiTi,t), i ∈ {1, ..., L}. I collect these transformed temperature states in the vector

τt ∈ IRL. Finally, I use the consumption rate xt = Ct
Yt[1−Dt(T1,t)] , rather than absolute

consumption, as the consumption-investment control. Only the rate will be separable

from the system’s states. Homogeneity of the production function implies that

Yt = F (At,Nt,Kt,Et) = Kκ
t F (At,Nt,Kt,Et).

Then, welfare as a function of the consumption rate is

u(xt) ≡ logCt = log xt + log Yt + log[1−Dt(T1,t)]

= log xt + κ logKt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0.

The Bellman equation in terms of the transformed state variables is

V (kt, τt,Mt,Rt, t) = max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et)

−ξ0τ1,t + ξ0 + βV (kt+1, τt+1,Mt+1,Rt+1, t+1) , (A.1)

and is subject to the following linear equations of motion and constraints. The equa-

tions of motion for the effective capital stock and the carbon cycle are

kt+1 = κkt + logF (At,Nt,Kt,Et)− ξ0τ1,t + ξ0 + log(1−xt)

+ log[1 + gk,t]− log[δk + gk,t] (A.2)

Mt+1 = ΦMt +
(∑Id

i=1 Ei,t + Eexo
t

)
e1 . (A.3)
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Using equation (11), I transform the temperature’s equation of motion (8) for layer

layer i ∈ {1, ..., l} to

Ti,t+1 =
1

ξ1

log
(
(1−σi,i−1−σi,i+1) exp[ξ1Ti,t]

+σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]
)
.

Using the definitions σii = 1−σi,i−1−σi,i+1 and τi,t = exp(ξ1Ti,t) I find

exp(ξ1Ti,t+1) = σi,i−1 exp[ξ1Ti,t] + σi,i−1 exp[ξ1Ti−1,t] + σi,i+1 exp[ξ1Ti+1,t]

⇒ τi,t+1 = σi,iτi,t + σi,i−1τi−1,t + σi,i+1τi+1,t, i ∈ {2, ..., l},

still using σl,l+1 = 0 for notational convenience (see footnote 9). Noting that

exp[ξ1T0,t] = exp
[
ξ1
s

η
Ft

]
= exp

[
ξ1

s

log 2
log

M1,t +Gt

Mpre

]
=
M1,t +Gt

Mpre

,

the equation for atmospheric temperature (i = 1) becomes

τ1,t+1 = σ1,1τ1,t + σ1,0
M1,t +Gt

Mpre

+ σ1,2τ2,t .

Note that the linearity in M1,t requires ξ1 = log 2
s

as stated in the proposition. Then,

using the definition σforc = σ1,0, the individual equations of motion for generalized

temperature can be collected into the vector equation

τt+1 = στt + σforc
M1,t +Gt

Mpre

e1 . (A.4)

Finally, the equation of motion for the resource stock is

Rt+1 = Rt −Ed
t . (A.5)

The underlying constraints within periods are∑I
i=0 Ni,t = 1, Ni,t ≥ 0,

∑IK
i=1Ki,t = 1, Ki,t ≥ 0, Rt ≥ 0,

and the initial states are given. The present paper assumes that the optimal labor and

capital allocation across sectors has an interior solution and that the scarce resources

are stretched over the infinite time horizon along the optimal path, avoiding boundary

value complications.
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A.3 Illustrating a Two Layer Carbon Cycle

In the simple and insightful case of two carbon reservoirs the carbon cycle’s transition

matrix is Φ =
(

1−δAtm→Ocean δOcean→Atm
δAtm→Ocean 1−δOcean→Atm

)
, where e.g. δAtm→Ocean characterizes the frac-

tion of carbon in the atmosphere transitioning into the ocean in a given time step. The

conservation of carbon implies that both columns add to unity: carbon that does not

leave a layer (δ·→·) stays (1− δ·→·). The shadow value becomes

ϕM,1 = βϕτ,1σ
forcMpre

−1(1− β)−1

[
1 + β

δAtm→Ocean

1− β(1− δOcean→Atm)

]−1

.

The shadow value becomes less negative if more carbon flows from the atmosphere

into the ocean (higher δAtm→Ocean). It becomes more negative for a higher persistence

of carbon in the ocean (higher 1− δOcean→Atm). These impacts on the SCC are straight

forward: the carbon in the ocean is the “good carbon” that does not contribute to the

greenhouse effect. In round brackets, the root (1−β)−1 noted in Proposition 2.2 makes

the expression so sensitive to a low rate of pure time preference.

A common approximation of atmospheric carbon dynamics is the equation of motion

of the early DICE 1994 model. Here, carbon in excess of preindustrial levels decays as

in M1,t+1 = Mpre + (1− δdecay)(M1,t −Mpre). The shadow value formula becomes

ϕM,1 = βϕτ,1σ
forcM−1

pre

(
1− β(1− δdecay)

)−1
,

which misses the long-run carbon impact and the SCC’s sensitivity to pure time pref-

erence.

A.4 Illustrating a Two Layer Atmosphere-Ocean Tempera-

ture System

The two layer example of atmosphere-ocean temperature dynamics has the transition

matrix σ =
(

1−σup1 −σdown1 σdown1

σup2 1−σup2

)
. The corresponding term of the SCC (equation 12)

takes the form

[
(1− βσ)−1

]
11

=

(
1− β (1− σdown1 − σup1 )︸ ︷︷ ︸

persistence in atmosphere

− β2σdown1 σup1

1− β (1− σup2 )︸ ︷︷ ︸
pers. in ocean

)−1

.

Persistence of the warming in the atmosphere or in the oceans increases the shadow

cost. Persistence of warming in the oceans increases the SCC proportional to the
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terms σdown1 routing the warming into the oceans and σup1 routing the warming back

from the oceans into the atmosphere. The discount factor β accompanies each of

these transition coefficients as each of them causes a one period delay. Taking the

limit of β → 1 confirms that (an analogue to) Proposition 2(2) does not hold for the

temperature system

lim
β→1

ϕτ,1 = −ξ0(1 + ϕk)
[
(1− σ)−1

]
11

= −ξ0(1 + ϕk)

σup1

6=∞. (A.6)

As the discount rate approaches zero, the transient temperature dynamics characterized

by σdown1 and σup2 becomes irrelevant for evaluation, and only the weight σup1 reducing

the warming persistence below unity contributes.28

Extending on the “missing time preference sensitivity” in the general case, note

that temperature is an intensive variable: it does not scale proportional to mass or

volume (as is the case for the extensive variable carbon). The columns of the matrix

σ do not sum to unity. As a consequence of the mean structure in equation (8),

however, the rows in the ocean layers’ transition matrix sum to unity. The first row

determining next period’s atmospheric temperature sums to a value smaller than unity:

it “misses” the weight that the mean places on radiative forcing. The “missing weight”

is a consequence of the permanent energy exchange with outer space. Radiative forcing

characterizes a flow equilibrium of incoming and outgoing radiation.

B Proofs and Calculation for “Base ACE” (Sec-

tions 3 & 4)

B.1 Proof of Proposition 1

1) Sufficiency: I show that the affine value function

V (kt, τt,Mt,Rt, t) = ϕkkt +ϕ>MMt +ϕ>τ τt +ϕ>R,tRt + ϕt (B.1)

28I note that the carbon cycle lacks the reduction in persistence deriving from the forcing weight σup1 .
With this observation, equation (A.6) gives another illustration of the impact of mass conservation
in the case of carbon: “σup1 → 0 ⇒ ϕτ,1 →∞”. Note that in the SCC formula σup1 cancels, as it
simultaneously increases the impact of a carbon change on temperature. This exact cancellation (in
the limit β → 1) is a consequence of the weights σup1 on forcing and 1−σup1 on atmospheric temperature
summing to unity. The result that a warming pulse has a transitional impact and an emission pulse
has a permanent impact on the system is independent of the fact that these weights sum to unity.
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solves the linear-in-state system corresponding to the equations of sections 2.1 and

2.2 with the function form assumptions presented in Proposition 1. Appendix A.2

transformed these assumptions into the linear-in-state-system summarized by equations

(A.1-A.5), which I take as point of departure. Note that the coefficient on the resource

stock has to be time-dependent: the shadow value of the exhaustible resource increases

(endogenously) over time following the Hotelling rule.

The controls in the equations of motion (A.2)-(A.5) are additively separated from

the states. Therefore, maximizing the right hand side of the resulting Bellman equation

delivers optimal control rules that are independent of the state variables. These controls

are functions of the shadow values, but independent of the states. Solving the Bellman

equation then amounts to a set of coefficient matching conditions determining the

shadow values.

In detail, inserting the value function’s trial solution (equation B.1) and the next

period states (equations A.2-A.5) into the (deterministic) Bellmann equation (A.1)

delivers

ϕkkt+ϕ
>
MMt +ϕ>τ τt +ϕ>R,tRt + ϕt = max

xt,Nt,Kt,Et

log xt + βϕk log(1−xt) (B.2)

+ (1 +βϕk)κkt + (1 +βϕk) logF (At,Nt,Kt,Et)

− (1 +βϕk)ξ0τ1,t + (1 +βϕk)ξ0 +λNt
(

1−
∑IN

i=1 Ni,t

)
+ βϕk(log[1 + gk,t]− log[δk + gk,t]) + λKt

(
1−

∑IK
i=1Ki,t

)
+ βϕ>R,t+1

(
Rt −Ed

t

)
+ βϕt+1

+βϕ>M

(
ΦMt +

(∑Id

i=1Ei,t + Eexo
t

)
e1

)
+βϕ>τ

(
στt + σforc

M1,t +Gt

Mpre

e1

)
Maximizing the right hand side of the Bellman equation over the consumption rate

yields

1

x
− βϕk

1

1− x
= 0 ⇒ x∗ =

1

1 +βϕk
. (B.3)

The optimal labor, capital, and resource inputs depend on the precise assumptions

governing production and energy sector, i.e., the specification of F (At,Nt,Kt,Et).

For a well-defined energy system, I obtain unique solutions for these optimal inputs

as functions of the technology levels, shadow values, and current states. In detail, the
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first order conditions for the capital shares deliver

(1 +βϕk)

∂F (At,Nt,Kt,Et)
∂Ki,t

F (At,Nt,Kt,Et)
= λKt

⇔ Ki,t =
1

λKt
(1 +βϕk)σY,Ki(At,Nt,Kt,Et)

⇒ λKt =

IK∑
i=1

(1 +βϕk)σY,Ki(At,Nt,Kt,Et)

⇒ Ki,t =
σY,Ki(At,Nt,Kt,Et)∑IK
i=1 σY,Ki(At,Nt,Kt,Et)

,

which is an explicit equation only in the case of constant elasticities

σY,Ki(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)
∂Ki,t

Ki,t
F (At,Nt,Kt,Et)

, and an implicit equation that has

to be solved together with the other first order conditions otherwise. Analogously, the

first order conditions for the labor input deliver

(1 +βϕk)

∂F (At,Nt,Kt,Et)
∂Ni,t

F (At,Nt,Kt,Et)
= λNt

⇒ Ni,t =
σY,Ni(At,Nt,Kt,Et)∑IN
i=1 σY,Ni(At,Nt,Kt,Et)

,

with elasticities σY,Ni(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)
∂Ni,t

Ni,t
F (At,Nt,Kt,Et)

. The first order

conditions for a scarce (fossil) resource input are

(1 +βϕk)

∂F (At,Nt,Kt,Et)
∂Ei,t

F (At,Nt,Kt,Et)
= β(ϕR,i,t+1 − ϕM,1)

⇔ Ei,t =
(1 +βϕk)σY,Ei(At,Nt,Kt,Et)

β(ϕR,i,t+1 − ϕM,1)

with elasticities σY,Ei(At,Nt,Kt,Et) ≡ ∂F (At,Nt,Kt,Et)
∂Ei,t

Ei,t
F (At,Nt,Kt,Et)

. The first order

conditions for a non-scarce resource input are analogous but without the shadow cost

term βϕR,i,t+1.

Solving the (potentially simultaneous) system of first order conditions I obtain the

optimal controls N ∗t (At , ϕk,ϕM ,ϕR,t+1), K∗t (At , ϕk,ϕM ,ϕR,t+1), and

E∗t (At , ϕk,ϕM ,ϕR,t+1). I will suppress the detailed dependencies below for notational

convenience. Knowing these solutions is crucial for determining the precise output

path and energy transition under a given policy regime. However, the SCC and, thus,
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the carbon tax depend only on the structure and optimization of the controls but not

on their quantification.

Inserting the (general) control rules into the maximized Bellman equation and col-

lecting terms that depend on state variables on the left hand side delivers

(
ϕ>M − βϕ>MΦ− βϕτ,1

σforc

Mpre

e>1
)
Mt +

(
ϕ>τ − βϕ>τ σ + (1 +βϕk)ξ0e

>
1

)
τt(

ϕk − (1 +βϕk)κ
)
kt +

(
ϕ>R,t − βϕ>R,t+1

)
Rt

+ϕt = βϕt+1 (B.4)

+ log x∗t (ϕk ) + βϕk log(1−x∗t (ϕk )) + (Nt + βϕk)ξ0

+ (1 +βϕk)κkt + (1 +βϕk) logF (At,N
∗
t ,K∗t ,E∗t )

+ βϕk(log[1 + gk,t]− log[δk + gk,t])− βϕ>R,t+1E
d
t

∗

+βϕM,1

(∑Id

i=1 E
∗
i,t + Eexo

t

)
+ βϕτ,1

σforc

MpreGt.

The equality holds for all levels of the state variables if and only if the coefficients in

front of the state variables vanish, and the evolution of ϕt satisfies the state independent

part of the equation. Setting the states’ coefficients to zero yields

ϕk − (1 +βϕk)κ = 0 ⇒ ϕk =
κ

1− βκ
(B.5)

ϕ>M − βϕ>MΦ− βϕτ,1
σforc

Mpre

e>1 = 0 ⇒ ϕ>M =
βϕτ,1σ

forc

Mpre

e>1 (1− βΦ)−1 (B.6)

ϕ>τ + (1 +βϕk)ξ0e
>
1 −βϕ>τ σ = 0 ⇒ ϕτ =−ξ0(1 +βϕk)e

>
1 (1− βσ)−1 (B.7)

ϕ>R,t − βϕ>R,t+1 = 0 ⇒ ϕR,t = β−tϕR,0 . (B.8)

The initial values ϕ>R,0 of the scarce resources depend on the precise evolution of the

economy and, thus, depends on assumptions about production and the energy sec-

tor. Using the shadow value of log capital in equation (B.3) results in the optimal

consumption rate x∗ = 1− βκ. Then equation equation (B.4) turns into the condition

ϕt − βϕt+1 = B(·) + βϕM,1

(∑Id

i=1 E
∗
i,t + Eexo

t

)
+ βϕτ,1

σforc

MpreGt. (B.9)

This condition will be satisfied by picking the sequence ϕ0, ϕ1, ϕ2, .... Equation (B.9)

does not pin down the initial value ϕ0. The additional condition limt→∞ β
tV (·) = 0⇒

limt→∞ β
tϕt = 0 pins down this initial value ϕ0 ensuring that the value function is

normalized just as the infinite sum of optimized utility (Stokey & Lucas 1989, chapter
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4.1). Yet, optimal policy does not dependent on the sequence ϕ0, ϕ1, ϕ2, ϕ3, ... .

2) Necessity: The affine value function solves the system if and only if it is linear-

in-state. I have to show that no other transformation of capital or temperature, no

other damage function, and no other non-linear mean can achieve the linear-in-state

transformation of the equations in sections 2.1 and 2.2. I take as common knowledge

that only the log-transformation of capital will solve the system with an affine value

function.

To obtain a linear-in-state structure, generalized atmospheric temperature has to

be linear in atmospheric carbon. By assumption, temperature evolves as a generalized

mean:

Mi(Ti−1,t , Ti,t , Ti+1,t) = f−1[σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)]

and atmospheric equilibrium temperature for a given forcing is

T0,t =
s

η
Ft =

s

log 2
log

M1,t +Gt

Mpre

,

which is logarithmic in the atmospheric carbon stock. The equation of motion of

atmospheric temperature T1,t is therefore

T1,t+1 = M1(T0,t , T1,t , T2,t) = f−1[σ1,0f(T0,t) + σ1,1f(T1,t) + σ1,2f(T2,t)]

⇔ f(T1,t+1) = σ1,0f

(
s

log 2
log

M1,t +Gt

Mpre

)
+ σ1,1f(T1,t) + σ1,2f(T2,t). (B.10)

First, equation (B.10) implies that f(T1,t) and f(T2,t) have to be linear to permit a

linear-in-state interaction between generalized atmospheric and upper ocean temper-

ature (atmospheric temperature appears on both left and right side of the equality).

Second, equation (B.10) implies that f
(

s
log 2

log M1,t+Gt
Mpre

)
has to be linear in M1,t to

permit a linear-in-state interaction between generalized atmospheric temperature and

atmospheric carbon. Thus, f(z) = exp
(

log 2
s
z
)

up to positive affine transformation.

Yet, positive affine transformations of f leave the generalized mean unchanged as they

simply cancel with the inverse (Hardy et al. 1964). Note that this step fixes both the

functional form of f and the parameter ξ1 = log 2
s
.29 Consequently, the generalized

29The earlier working paper version uses a slightly generalized version of the generalized mean
M1(·) permitting additional degrees of freedom (Traeger 2015). However, additional quality of the fit
achieved with these additional weight did not warrant the complications in the presentation.
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temperature state delivering a linear-in-state dynamics and a linear contribution to the

value function has to be τi,t = exp(ξ1Ti,t) for i ∈ {1, 2}. It follows inductively from

f(Ti,t+1) = σi,i−1f(Ti−1,t) + σi,if(Ti,t) + σi,i+1f(Ti+1,t)

for i = 2, ..., l − 1 that τi,t = exp(ξ1Ti,t) has to hold for all i ∈ {1, ..., l}, up to affine

transformations with a joint multiplicative constant.

Finally, I show that damages have to be of the form stated in equation (10). Taking

the logarithm of the capital’s equation of motion (5) delivers

logKt+1 = log Yt + log[1−Dt(T1,t)] + log(1− xt) + log

[
1 + gk,t
δk + gk,t

]
,

where log Yt is linear in the state kt = logKt. To render the system linear in the states,

at any time t, there have to exist two constants c1, c2 ∈ IR such that

log[1−Dt(T1,t)] = c1τ1,t + c2 = c1 exp(ξ1T1,t) + c2

⇒ Dt(T1,t) = 1− exp(c1 exp(ξ1T1,t) + c2).

Moreover, c1 = −c2 ≡ ξ0 ∈ IR follows from the requirement that damages are zero at

T1,t = 0.

B.2 Proof of Proposition 2

Proof of Part (1): The SCC is the negative of the shadow value of atmospheric carbon

expressed in money-measured consumption units. Inserting equation (B.5) for the

shadow value of log-capital and (B.7) for the shadow value of atmospheric temperature

(first entry of the vector) into equation (B.6) characterizing the shadow value of carbon

in the different reservoirs delivers

ϕ>M = −ξ0

(
1 +β

κ

1− βκ

)[
(1− βσ)−1

]
1,1

βσforc

Mpre

e>1 (1− βΦ)−1 .

The expression characterizes the social cost in terms of welfare units. This marginal

welfare cost translates into a consumption change as follows:

dut = 1
Ct
dCt = 1

x∗Y nett
dCt ⇒ dCt = (1−βκ)Y net

t dut. Thus, observing that
(
1+β κ

1−βκ

)
=

1
1−βκ , the SCC in consumption units is

SCC = −(1− βκ)Y net
t

ϕM,1

Nt

= Y net
t ξ0

[
(1− βσ)−1

]
1,1

βσforc

Mpre

[
(1− βΦ)−1

]
1,1
.
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Proof of Part (2): Mass conservation of carbon implies that the columns of Φ add

to unity. In consequence, the vector with unit entry in all dimensions is a left and,

thus, right eigenvector. The corresponding eigenvalue is one and the determinant of

1− βΦ has the root 1− β. It follows from Cramer’s rule (or as an application of the

Cayley-Hamilton theorem) that the entries of the matrix (1− βΦ)−1 are proportional

to (1− β)−1.

B.3 The impulse response model

The impulse response model in section 4.3 changes equation (7) to equation (14) as

discussed in the main text. As a result equation (B.6) turns into

ϕ>M =
βϕτ,1σ

forc

Mpre

e>(1− βΦ)−1

where e> = (1, 1, 1, 1)> replaces the first unit vector e>1 . The matrix 1 − βΦ is

diagonal with entries 1 − βγi, i ∈ {0, 1, 2, 3} rendering the inversion trivial. The

shadow cost in utils of a unit of emissions is the ai−weighted combination of the

shadow cost’s of the different boxes, i.e., −ϕ>Ma. The conversion of this shadow cost

into consumption equivalents works as above in part (1) of the proof of Proposition 2,

delivering equation (15).

C Proofs and Calculations for Extended ACE (Sec-

tion 5)

C.1 General Remarks on Population Change

Population change is a special case of Proposition 3 that I prove below. The Proposi-

tion states the analytic closed-form result obtained under the assumption of a constant

population growth rate. The quantitative results in Table 1 rely on non-constant popu-

lation growth. They use the UN population growth scenario delivering decadal growth

factors 1.0967, 1.0761, 1.0583, 1.0428, 1.0303, 1.0205, 1.0127, 1.0061. I assume pop-

ulation to be stationary after 2100, which is in line with the corresponding UN data

that almost converges by its end year 2100. I first calculate the shadow value of atmo-

spheric carbon using the constant population growth solution (with zero growth) for
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2100 (see proposition). Then, I recursively calculate the present shadow value using

the equations (C.5-C.7) derived below towards the end of the proof.

No temperature lag under population change. The scenarios omitting temper-

ature lag under a non-stationary population change adjust equations (C.6) and (C.7)

as follows. The absence of temperature dynamics or delay eliminates the term con-

taining the generalized heat transition matrix σ in equation (C.6). As a result the

temperature’s shadow value is directly determined by the damage coefficient and the

shadow value of log-capital. It also eliminates the parameter σforc from equation (C.7).

Again, the quantitative solution for the UN growth scenario first calculates the sta-

tionary shadow values post 2100 (merely omitting σforc and e>1 (1 − βσ)−1) and then

recursively calculates the present shadow values using equation (C.5) and the modified

versions of equations (C.6) and (C.7) discussed above.

C.2 Proof of Proposition 3.

The welfare objective (16) replaces the term logCt on the r.h.s. of the (untransformed)

Bellman equation by the term∑
i∈P αi,t log ci,t + λp,t

(
Ct −

∑
i∈P pi,tci,t

)
, (C.1)

using the Lagrange multiplier λp,t. ACE now maximizes over all ci,t, i ∈ P , as well

as aggregate consumption Ct. Group i’s consumption levels ci,t only appears in the

Bellman equation in the terms stated in equation (C.1). Thus, the first order condition

for group i’s consumption is

αi,t
ci,t

= λp,tpi,t ⇒ ci,t =
αi,t
pi,t

λ−1
p,t .

Thus, the consumption constraint yields

Ct =
∑
i∈P

pi,tci,t =
∑
i∈P

pi,t
αi,t
pi,t

λ−1
p,t = λ−1

p,t

∑
i∈P

αi,t = λ−1
p,tαt ⇒ λp,t = C−1

t αt.

The FOC for aggregate consumption replaces the earlier marginal utility C−1
t with the

shadow value of the consumption constraint λp,t = C−1
t αt. Thus, in part i), where

αt = 1 for all t, the Bellman equation remains unaltered and so does the solution for

the SCC.

For part ii), the FOC for aggregate consumption picks up another constant and

I have to recalculate the FOC for the aggregate consumption rate. After optimizing
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the individual consumption levels ci,t, the equations above imply that period t’s wefare

contribution is∑
i∈P

αi,t log ci,t =
∑
i∈P

αi,t log

(
αi,t
pi,t

λ−1
p,t

)
=
∑
i∈P

αi,t log

(
αi,t
αtpi,t

Ct

)

= αt logCt +
∑
i∈P

αi,t

[
log

αi,t
αt
− log pi,t

]
︸ ︷︷ ︸

≡ᾱt

,

where ᾱt is an exogenous additive constant. The crucial change to the Bellman equation

derives from the constant αt multiplying aggregate consumption. After expressing the

objective in terms of the aggregate consumption rate, Bellman equation (A.1) turns

into

V (kt, τt,Mt,Rt, t) = max
xt,Nt,Kt,Et

αt(log xt + κkt + logF (At,Nt,Kt,Et))

+αt(−ξ0τ1,t + ξ0) +ᾱt +βV (kt+1, τt+1,Mt+1,Rt+1, t+1) . (C.2)

From here, there are two ways forward. One can use the original trial solution for the

value function permitting the shadow values to change over time. More elegantly, at

least for the case of a constant growth rate, take the trial solution

V (kt, τt,Mt,Rt, t) = αtϕkkt + αtϕ
>
MMt + αtϕ

>
τ τt + αtϕ

>
R,tRt + ϕt. (C.3)

Plugging this trial-solution into (C.2) and dividing by αt delivers

ϕkkt +ϕ>MMt +ϕ>τ τt +ϕ>R,tRt + ϕt

= max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et) +−ξ0τ1,t + ξ0 +
ᾱt
αt

+β
αt+1

αt

(
ϕkkt+1 +ϕ>MMt+1 +ϕ>τ τt+1 +ϕ>R,t+1Rt+1 + ϕt+1

)
. (C.4)

Denoting the, by assumption, constant growth factor of the intergenerational weight

αt by g = αt+1

αt
, equation (C.4) corresponds to the original dynamic programming

problem with discount factor βg replacing the original discount factor β. The constant
ᾱt
αt

affects the absolute welfare level in utils, however, it has no impact on the shadow

values (see derivation of the original shadow values). Thus, we obtain the same shadow

value formula for ϕM,1 in utils as before. Yet, our new value function (C.3) multiplies

this ϕM,1 with the intergenerational weight αt. At the same time, we have derived the
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shadow value of aggregate consumption as λp,t = C−1
t αt, and the conversion factor from

utils to consumption changes to dCt = Ctα
−1
t dWt. The novel α−1

t in the conversion

factor cancels the multiplier αt in front of the shadow value ϕM,1 and, therefore, the

only change in the SCC formula remains β → βg.

In the general case with non-constant populations growth, the shadow values in

equation (C.4) have to pick up time indices

ϕk,tkt +ϕ>M,tMt +ϕ>τ,tτt +ϕ>R,tRt + ϕt

= max
xt,Nt,Kt,Et

log xt + κkt + logF (At,Nt,Kt,Et) +−ξ0τ1,t + ξ0 +
ᾱt
αt

+β
αt+1

αt

(
ϕk,t+1kt+1 +ϕ>M,tMt+1 +ϕ>τ,t+1τt+1 +ϕ>R,t+1Rt+1 + ϕt+1

)
.

Letting gt = αt+1

αt
, and plugging in the expressions for the next period states as in

equation (B.2) delivers the first order condition for the consumption rate

1

xt
= βϕk,t+1

gt
1− xt

⇒ x∗t =
1

1 + βgtϕk,t+1

.

Also the other controls remain independent of the states. Next, I have to insert the

controls into the maximized Bellman equation and collect terms that depend on the

state variables on the left as in equation (B.4). All that changes w.r.t. the earlier

derivation is that we distinguish present from next period shadow values, which are

multiplied by the growth factor gt(
ϕ>M,t − βgtϕ>M,t+1Φ− βgtϕτ,1,t+1

σforc

Mpre

e>1
)
Mt

+
(
ϕ>τ,t − βgtϕ>τ,t+1σ + (1 + βgtϕk,t+1)ξ0e

>
1

)
τt

+
(
ϕk,t − (1 + βgtϕk,t+1κ

)
kt +

(
ϕ>R,t − βgtϕ>R,t+1

))
Rt + ϕt = ...

The resulting recursion equations for the shadow values that eliminate the state coef-
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ficients are

ϕk,t − (1 + βgtϕk,t+1)κ = 0 ⇒ ϕk,t = κ+ βgtκϕk,t+1 (C.5)

ϕ>τ,t + (1 + βgtϕk,t+1)ξ0e
>
1 −βgtϕ>τ,t+1σ = 0

⇒ ϕ>τ,t = βgtϕ
>
τ,t+1σ − (1 + βgtϕk,t+1)ξ0e

>
1 (C.6)

ϕ>M,t − βgtϕ>M,t+1Φ− βgtϕτ,1,t+1
σforc

Mpre

e>1 = 0

⇒ ϕ>M,t =
βgtϕτ,1,t+1σ

forc

Mpre

e>1 + βgtϕ
>
M,t+1Φ. (C.7)

Once populations stabilizes we are in a stationary state where our original solution

holds. From that stationary state, equations (C.5-C.7) deliver the recursion to calculate

the present shadow values, first solving (C.5), then (C.6), and then (C.7).

As earlier, the SCC converts the shadow value of atmospheric carbon back into

consumption units using the relation derived above, dCt = Ctα
−1
t dWt. The shadow

value of atmospheric carbon is now αtϕM,1,t because of the differing trial solution. Thus,

once again the αt cancels and the conversion of the shadow value into consumption

units works equivalently to the cases without population weighting.

C.3 Proof of Proposition 4.

First, observe that the production processes of the final goods cl,t are all homogenous

of degree κ ≡ α + α̃ν in capital. As a result, both Ct and It are also homogenous of

degree κ in capital. Moreover, I can pull the production damage factor [1 −Dt(T1,t)]

from equation (18) through the CES aggregators in equations (17) and (20). Thus,

Ct =

(∑
l∈Ic

al,t

(
xl,tAl,tK

α
l,tN

1−α−ν
l,t

((∑
i∈Θl

(gi,t(Ai,t, Ki,t, Ni,t, Ei,t))
s̃l,t
) 1
s̃l,t

)ν)st) 1
st

×[1−Dt(T1,t)]

=

(∑
l∈Ic

al,t

(
xl,tAl,tKαl,tN1−α−ν

l,t

((∑
i∈Θl

(gi,t(Ai,t,Ki,t, Ni,t, Ei,t))
s̃l,t
) 1
s̃l,t

)ν)st) 1
st

︸ ︷︷ ︸
≡ΩC,t(At,Nt,Kt,Et)

×[1−Dt(T1,t)]K
α+α̃ν
t = ΩC,t(xt,At,Nt,Kt,Et)[1−Dt(T1,t)]K

α+α̃ν
t
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and analogously It = ΩI,t(xt,At,Nt,Kt,Et)[1−Dt(T1,t)]K
α+α̃ν
t . I find

logCt = log (ΩC,t(xt,At,Nt,Kt,Et)) + log[1−Dt(T1,t)] + (α + α̃ν) logKt

= log (ΩC,t(xt,At,Nt,Kt,Et))− ξ0τ1,t + ξ0 + κkt,

replacing the terms log xt + logF (At,Nt,Kt,Et) in equation (A.1) by the term

log (ΩC,t(xt,At,Nt,Kt,Et)). Similarly, the equation of motion for log-capital (A.2)

changes into

kt+1 = κkt + log (ΩI,t(xt,At,Nt,Kt,Et))− ξ0τ1,t + ξ0 + log[1 + gk,t]

− log[δk + gk,t]

replacing the terms log(1 − xt) + logF (At,Nt,Kt,Et) in equation (A.1) by the term

log (ΩI,t(xt,At,Nt,Kt,Et)). The maximization on the r.h.s. Bellman equation (A.1)

now entails the labor, energy, and capital distribution within and across consumption

and investment production processes. Instead of optimizing w.r.t. a single consumption

rate, the maximization is now over all the consumption rates xl,t of those goods that

can be used in consumption and in investment, i.e., where l ∈ IC ∩ II . Let x̂t denote

the vector of endogenously chosen consumption rates, i.e., the vector containing all xl,t

with l ∈ IC ∩ II . The r.h.s. of the Bellman equation (B.2) on page 48 now reads

max
x̂t,Nt,Kt,Et

log (ΩC,t(xt,At,Nt,Kt,Et)) + βϕk log (ΩI,t(xt,At,Nt,Kt,Et))

+λNt
(
αt−

∑IN
i=1Ni,t

)
+ λKt

(
1−

∑IK
i=1Ki,t

)
− βϕ>R,t+1E

d
t

+βϕM,1

(∑Id

i=1Ei,t + Eexo
t

)
+ ...

where I omit terms that are independent of the controls.

As in the original problem, the solutions to the maximization problems of the

r.h.s. Bellman equation are independent of the states because the equation additively

separates the terms containing the controls from the terms containing the states. As a

result, the FOCs and their solutions change, but the shadow values remain the same

as in the original problem (equations B.5-B.8). The change to the SCC formula results

from dealing with a consumption variety in the consumption-investment trade-off and

the conversion of the shadow price of atmospheric carbon into consumption equivalents.

Expressing the shadow price of atmospheric carbon in equivalents of the consump-

tion aggregate Ct, I still have the conversion factor dut = 1
Ct
dCt ⇒ dCt = Ctdut.
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However, there no longer exists a simple constant aggregate consumption rate – for-

merly x∗ = (1− βκ) – such that Ct = x∗Y net
t = (1− βκ)Y net

t would hold, the factor of

which had canceled the shadow value’s term 1 + βϕk = 1 + β κ
1−βκ = 1

1−βκ in the base

model. Thus, instead of Y net
t I have the term Ct

1−βκ . I note that the consumption rate

of the model is

xt ≡
ΩC,t(xt,At,Nt,Kt,Et)

ΩC,t(xt,At,Nt,Kt,Et) + ΩI,t(xt,At,Nt,Kt,Et)
,

which can be calibrated in many different ways, generally differs from (1 − βκ), and

generally changes over time.

C.4 Illustration of the degree of freedom in calibrating the

consumption rate.

A simple example illustrates that distinguishing between consumption and investment

goods frees the consumption rate from a simplistic relationship between time preference

and capital productivity. This finding does not rely on the complexity of the climate

economy model, but merely on the distinction between a consumption aggregate

Ct =
(
a1,t

(
A1,tKα1,t

)st
+ a2,t

(
A2,tKα2,t

)st) 1
st

and an investment aggregate

It =
(
a3,t

(
A3,tKα3,t

)ζt
+ a4,t

(
A4,tKα4,t

)ζt) 1
ζt .

Simplifying the example further to a single free parameter, I assume st = ζt = 1
2
,

a1,tA
st
1,t = a3,tA

st
3,t = 1

4
, a2,tA

st
2,t = 3

4
, and a4,tA

st
4,t = A ∈ [0.5, 1.5] so that

Ct =

(
1

4
K

α
2
1,t +

3

4
K

α
2
2,t

)2

and It =

(
1

4
K

α
2
3,t +AK

α
2
4,t

)2

.

Figure 5 depicts, as a function of A, the consumption rate resulting for different scenar-

ios with a rate of pure time preference ρ ∈ {0.1%, 1.4%} and κ ∈ {0.3, 0.4}. Minor ad-

justments of A, corresponding to relative adjustments of a1,t, ..., a4,t and/or A1,t, ...A4,t

easily match the observed consumption rate of 74% for all parameter variations.
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Figure 5: Illustration of optimal consumption rate as a function of A, which represents degrees
of freedom in preference specification or technology levels or composition of the investment
good.


