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as macro and financial uncertainty. Macro and financial uncertainty are allowed to
contemporaneously affect the macroeconomy and financial conditions, with changes in the
common component of the volatilities providing contemporaneous identifying information on
uncertainty. We also consider an extended version of the model that accommodates outliers in
volatility, to reduce the influence of extreme observations from the COVID period. Our estimates
yield very large increases in macroeconomic and financial uncertainty since the onset of the
COVID-19 period. These increases have contributed to the downturn in economic and financial
conditions, but the contributions of uncertainty are small compared to the overall movements in
many macroeconomic and financial indicators. That implies that the downturn is driven more by
other dimensions of the COVID crisis than shocks to aggregate uncertainty (as measured by our
method). 
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assess the consequences of the uncertainty for key economic variables. We use
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and financial uncertainty since the onset of the COVID-19 period. These in-
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but the contributions of uncertainty are small compared to the overall move-
ments in many macroeconomic and financial indicators. That implies that the
downturn is driven more by other dimensions of the COVID crisis than shocks
to aggregate uncertainty (as measured by our method).

Keywords: Bayesian VARs, stochastic volatility, pandemics

JEL classification codes: E32, E44, C11, C55

⇤
We gratefully acknowledge helpful comments from Giovanni Caggiano, Efrem Castelnuovo, Ana

Galvao, and Stephen Terry. The views expressed herein are solely those of the authors and do not

necessarily reflect the views of the Federal Reserve Bank of Cleveland, the Federal Reserve System,

the Eurosystem, or the Deutsche Bundesbank.



1 Introduction

The outbreak of COVID-19 prompted extraordinary volatility in economic and fi-

nancial variables, which suggests an increase in uncertainty about future conditions.

For example, sources such as the Federal Open Market Committee of the Federal

Reserve emphasized that uncertainty was perceived to have risen dramatically. For

example, the minutes of the Committee’s April 2020 meeting reported: “Partici-

pants commented that, in addition to weighing heavily on economic activity in the

near term, the economic e↵ects of the pandemic created an extraordinary amount of

uncertainty and considerable risks to economic activity in the medium term.” Mea-

sures of uncertainty available at high frequency — the VIX and policy uncertainty

as measured by Baker, Bloom, and Davis (2016) — skyrocketed in the spring before

easing up some.

Building on the immense research literature on uncertainty that emerged fol-

lowing the seminal work of Bloom (2009), Carriero, Clark, and Marcellino (2018)

— henceforth referred to as CCM — developed an econometric model and method

for jointly (1) constructing measures of macroeconomic and financial uncertainty

and (2) conducting inference on uncertainty’s impacts on the macroeconomy. The

CCM uncertainty measures reflect common factors driving time-varying volatilities

in macroeconomic and financial variables, respectively. The model is a large, het-

eroskedastic vector autoregression (VAR) in which the error volatilities evolve over

time according to a factor structure. The volatility of each variable in the system

is driven by a common component and an idiosyncratic component. Changes in the

common component of the volatilities of the VAR’s variables provide contempora-

neous identifying information on uncertainty. Macro and financial uncertainty are

allowed to contemporaneously a↵ect the macroeconomy and financial conditions.

In CCM, estimates with monthly US data for the period 1959-2014 provided sub-

stantial evidence of commonality in volatilities, with increases in macro uncertainty

associated with economic recessions. Their estimated impulse responses showed that

(1) macroeconomic uncertainty has large, significant e↵ects on real activity and a

limited impact on financial variables and (2) financial uncertainty shocks directly im-

pact financial variables and subsequently transmit to the macroeconomy. However,

their estimates of historical decompositions indicated that they are not a primary

driver of fluctuations in macroeconomic and financial variables. For example, over

the period of the Great Recession and subsequent recovery, shocks to uncertainty
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made small to modest contributions to the paths of economic and financial variables,

whereas shocks to the VAR’s variables played a much larger role.

This paper uses the basic framework of CCM to measure changes in macroe-

conomic and financial uncertainty in the US since the outbreak of the COVID-19

pandemic and to estimate uncertainty’s e↵ects. To do so, we need to address some

challenges that come with measuring uncertainty from macroeconomic and finan-

cial data in the COVID-19 period. The period yielded unprecedented movements in

many key variables. For example, payroll employment plummeted 14.8 percent from

March to April, a decline nearly 17 times as large as the previous largest monthly

decline, and employment rose 3.5 percent from May to June, an increase 3 times

larger than the previous record growth rate.1 These extremes might unduly influ-

ence conventional estimates of time series models. In response, Lenza and Primiceri

(2020) develop an approach to allow for temporary spikes in volatilities of innova-

tions in an otherwise conventional Bayesian VAR (BVAR). The volatility spikes lead

the BVAR to down-weight COVID observations in its parameter estimates.

In this paper, in light of possible questions around how much weight to allow

COVID observations to have, we consider not only the model of CCM but also

a version extended to allow for temporary volatility outliers. Stock and Watson

(2016) developed a latent state approach to accommodating outliers in unobserved

component models of inflation, and Carriero, et al. (2020) extended the approach to

BVARs and showed the e�cacy of the model in macroeconomic forecasting accuracy.

In this paper we add outlier states to the CCM model to assess uncertainty and its

e↵ects with a specification that has the potential to reduce the influence of extreme

observations from the COVID period.

With or without outlier treatment, the estimates we obtain yield very large in-

creases in macroeconomic and financial uncertainty over the course of the COVID-19

period. These increases have contributed to the downturn in economic and financial

conditions. Although these contributions are sizable by historical standards, they

are generally dwarfed by the immense and unprecedented magnitudes of changes

in some variables from March through June 2020. That is, with both models, the

contributions of uncertainty are small compared to the overall movements in many

macroeconomic and financial indicators. That implies that the downturn is driven

more by other dimensions of the COVID crisis than shocks to aggregate uncertainty

1
These calculations use log growth rates and data from the September 2020 vintage of FRED-

MD.
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(as measured by our method).2

Although our two models (with or without outlier treatment) yield very similar

results in a big-picture sense, their estimates di↵er along some clear dimensions.

Including the outlier treatment in the model mitigates the measured rise in macroe-

conomic and financial uncertainty and modestly reduces the estimated contributions

to recent fluctuations in economic and financial indicators. The rise in uncertainty

is still very large, with macroeconomic uncertainty reaching record highs and finan-

cial uncertainty rising very high, although not quite to the peaks seen in previous

recessions. Notably, including the outlier treatment in the model concentrates the

period of increases in uncertainty, so that the increases don’t start until about the

time that the pandemic actually broke out. Excluding the outlier treatment yields

larger increases in measured uncertainty, such that the measures far outstrip pre-

vious record highs. Although both sets of estimates are plausible, we are inclined

to favor the measures from the outliers-robust model for their more conservative

assessment of the extent of the increase in aggregate uncertainty over the COVID

period.

The paper is structured as follows. Sections 2, 3, and 4 present the models, data,

and results, respectively. Section 5 concludes.

2 Models

In the interest of brevity, we present the version of the uncertainty model that

includes the outlier volatility states. We denote this model as the BVAR-SVF-M-

O specification, short for BVAR with stochastic volatility factors in the mean and

outlier states added. The baseline CCM model — denoted BVAR-SVF-M — takes

the same form, with the outlier states omitted.

Let yt denote the n⇥1 vector of variables of interest, split into nm macroeconomic

and nf = n � nm financial variables. Let vt be the corresponding n ⇥ 1 vector

of reduced-form shocks to these variables, also split into two groups of nm and

nf components.

Following Stock and Watson (2016) and Carriero, et al. (2020), outliers are

accommodated as temporary spikes in the standard deviations of innovations to

the VAR. Outliers are treated as independent over time and across variables. The

2
Ludvigson, Ma, and Ng (2020) instead treat COVID as a disaster shock that causes both

economic activity to plummet and uncertainty to rise.
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outlier scale variable can take one of a grid of No = 20 values, ranging from 1 to 20.3

With probability 1� pj , there is no outlier for variable j in period t, and the outlier

scale variable oj,t takes a value of 1. With probability pj , an outlier occurs, and

each of the possible values of 2 through 20 has the same probability of pj/(No � 1).

That is, outliers occur along a uniform distribution of 2 to 20.

With the outlier extension of CCM’s model, the reduced-form shocks are:

vt = A
�1

Ot⇤
0.5
t ✏t, ✏t ⇠ i.i.d. N(0, I), (1)

where A is an n ⇥ n lower triangular matrix with ones on the main diagonal, ⇤t

is a diagonal matrix of volatilities, and Ot is a diagonal matrix of the i.i.d. outlier

scale states (corresponding to standard deviations). The logs of the variances on

the diagonal of ⇤t follow a linear factor model:

ln�jt =

(
�m,j lnmt + lnhj,t, j = 1, . . . , nm

�f,j ln ft + lnhj,t, j = nm + 1, . . . , n.
(2)

The variables hj,t — which do not enter the conditional mean of the VAR, speci-

fied below — capture idiosyncratic volatility components associated with the j-th

variable in the VAR, and are assumed to follow (in logs) an autoregressive process:

lnhj,t = �j,0 + �j,1 lnhj,t�1 + ej,t, j = 1, . . . , n, (3)

with ⌫t = (e1,t, ..., en,t)0 jointly distributed as i.i.d. N(0,�⌫) and independent among

themselves, so that �⌫ = diag(�1, ...,�n). These shocks are also independent from

the conditional errors ✏t.

With this setup, the reduced-form innovation variance matrix is ⌃t = A
�1

Ot⇤tO
0
tA

�10.

Accordingly, the Choleski residual of each macro variable j consists of a conditionally

Gaussian innovation ✏j,t that is scaled by

�̃
0.5
j,t = oj,t�

0.5
j,t = oj,t

q
m

�m,j
t hj,t.

The same applies for financial variables, just with the financial factor ft replacing the

macro factormt. As this indicates, the outlier state is idiosyncratic to each variable’s

3
Stock and Watson (2016) apply the outlier model to inflation data with an upper bound of

10 on the outlier states, which we have extended to 20 to better accommodate swings in other

variables.
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volatility. Uncertainty is instead defined as the common element in volatilities,

distinct from the idiosyncratic components that may have some persistence and the

i.i.d. outlier scale components. This outliers-augmented version of the model adds

to the baseline CCM specification an entirely transitory volatility component (the

outliers), on top of the idiosyncratic stochastic volatility process that may have some

persistence (and, indeed, is estimated to do so for most of the variables of the VAR).

The variable mt is our measure of (unobservable) aggregate macroeconomic un-

certainty, and the variable ft is our measure of (unobservable) aggregate financial

uncertainty. Together, the two measures of uncertainty (in logs) follow an aug-

mented VAR process:

"
lnmt

ln ft

#
= D(L)

"
lnmt�1

ln ft�1

#
+

"
�
0
m

�
0
f

#
yt�1 +

"
um,t

uf,t

#
, (4)

where D(L) is a lag-matrix polynomial of order d. The shocks to the uncertainty fac-

tors um,t and uf,t are independent from the shocks to the idiosyncratic volatilities ej,t and

the conditional errors ✏t, and they are jointly normal with mean 0 and variance

var(ut) = var((um,t, uf,t)0) = �u =

"
�n+1 0

0 �n+2

#
. The specification in (4) im-

plies that the uncertainty factors depend on their own past values as well as the

previous values of the variables in the model, and therefore they respond to busi-

ness cycle fluctuations. Importantly, financial uncertainty a↵ects macro uncertainty

and vice-versa.

For identification, we fix the factor innovation variances and impose (using an

accept/reject step in the Gibbs sampler) sign restrictions on the factor loadings so

that �m,1 > 0 and �f,nm+1 > 0.4 In addition, we deliberately include the block

restrictions of factor loadings in the volatilities specification of (2) in order to allow

the comovement between uncertainties captured in the VAR structure. Conceptu-

ally, these block restrictions are consistent with broad definitions of uncertainty:

4
We fix the factor innovation variances at �n+1 = 0.015 and �n+2 = 0.075, similar to the

original estimates of CCM. Note that, for identification, CCM instead fixed the factor loadings

�m,1 and �f,nm+1 at values of 1 and estimated the variance-covariance matrix of innovations to

the log uncertainty factors. Although the choice between the identification schemes didn’t make

a di↵erence in model estimates obtained with data samples ending before the COVID period, it

does matter with the extreme observations of the COVID period. For the current sample, using

the normalization approach of CCM yields implausibly extreme movements in uncertainty. Using

the approach we have adopted in this paper avoids such extremes while matching up well with the

estimates of CCM in the period through 2014.
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Macro uncertainty is the common factor in the error variances of macro variables,

and financial uncertainty is the common factor in the error variances of financial

variables. However, these uncertainties may move together due to correlated inno-

vations to the uncertainties, the VAR dynamics of uncertainty captured in D(L),

and responses to past fluctuations in macro and financial variables (yt�1).

The uncertainty variables mt and ft can also a↵ect the levels of the macro and fi-

nancial variables contained in yt, contemporaneously and with lags. In particular, yt

is assumed to follow:

yt = ⇧(L)yt�1 +⇧m(L) lnmt +⇧f (L) ln ft + vt, (5)

where k denotes the number of yt lags in the VAR, ⇧(L) = ⇧1�⇧2L� · · ·�⇧kL
k�1,

with ⇧i an n ⇥ n matrix, i = 1, ..., k, and ⇧m(L) and ⇧f (L) are n ⇥ 1 lag-matrix

polynomials of order km and kf . This model allows the business cycle to respond to

movements in uncertainty, both through the conditional variances (contemporane-

ously, via movements in vt) and through the conditional means (contemporaneously

and with lag, via the coe�cients collected in ⇧m(L) and ⇧f (L)).

Note that, as a general matter of identification, our modeling strategy separates

the total variance of the residual Avt = Ot⇤0.5
t ✏t into four orthogonal components:

a common component, an idiosyncratic component that may have some serial corre-

lation, an i.i.d. outlier scale component, and a component due to the conditionally

independent shock ✏t. When a large residual shock (represented by Ot⇤0.5
t ✏t) hits

the economy, we let the data distinguish whether this is a large shock in the condi-

tional error ✏t (so an outlier in a standard normal distribution, with a variance that

is not moving) or rather a relatively ordinary draw for the conditional shock ✏t that

is, however, scaled up by an increase in variance, which may be transitory or per-

sistent, as well as common or idiosyncratic, as captured by the various components

contained in Ot⇤0.5
t .

In implementation with monthly data, we set the VAR lag order at k = 6, the

lag order for the uncertainty factors in the VAR’s conditional mean (km and kf ) at

2, and the lag order of the bivariate VAR in the uncertainty factors (d) to 2.

We estimate the model using an MCMC sampler; see CCM for details. Here we

briefly explain the extension to the version of the model with outlier volatility states.

The algorithm includes all of the same steps given in CCM, with adjustments to

reflect the outlier states on top of the � and h terms. Including the outliers requires
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two additional steps. One of these draws the outlier states from their posterior given

the draw of the outlier probabilities; this step proceeds analogously to the sampling

of the mixture states needed with the Kim, Shephard, and Chib (1998) approach to

the idiosyncratic volatility states h. The other draws the outlier probability for each

variable from a (conditional posterior) beta distribution conditional on the draws of

the time series of outlier states. All results in the paper are based on 5,000 retained

draws, obtained by sampling a total of 30,000 draws, discarding the first 5,000, and

retaining every 5th draw of the post-burn sample.

In unreported results, we also considered an alternative approach to our outlier

specification: adding the fat-tails specification of Jacquier, Polson, and Rossi (2004)

to the BVAR-SVF-M model.5 In this alternative model, we replace the Gaussian

VAR residuals ✏t with t-distributed shocks. In this case, the reduced-form innovation

to the VAR continues to be expressed as vt = A
�1

Ot⇤0.5
t ✏t, with Ot being a diagonal

matrix of i.i.d. latent states. Compared to the BVAR-SVF-M-O specification, the

version with t-distributed errors di↵ers in that the diagonal elements of Ot, oj,t, have

inverse-gamma distributions.6 As noted in Carriero, et al. (2020), in both the SV-O

and SV-t cases, the density for the outlier state oj,t peaks at (SV-O) or near (SV-t)

1, with a fat right-hand tail. In the SVO case, there is equal probability on outlier

states between 2 and 20, whereas the SV-t case assigns most probability on values

close to 1, albeit with some minimal measure placed also on values far above 20.

Also, while the outlier states in the SVO case cannot take values below 1, the SV-t

case assigns considerable mass also to values below one. While we regard the SV-O

and SV-t approaches as comparable, the SV-O approach for which we present results

is more geared toward generating sizable outliers at a variable j-specific probability

of occurrence pj that is directly governed by an explicit prior. All that said, our

main conclusions below based on the SV-O approach also apply with estimates from

5
In unreported results, we have also considered a di↵erent, simple approach to treating the

COVID observations as unusual and reducing their influence: We augmented the VAR to include

dummy variables for each month of March through June 2020, with the dummy for month s having

a value of 1 in month s of 2020 and 0 in all other periods. These dummies, of course, capture the

variation of the COVID months and reduce their influence on the model estimates. This dummy-

variable approach had mixed e↵ects in our setting. With macro uncertainty, adding the dummies

to the SVF-M model (without the outlier treatment) yields an uncertainty estimate comparable to

what we get with the SVF-M-O model. But the same does not apply with financial uncertainty:

The model with dummies produces an increase in uncertainty in the COVID period almost as large

as the baseline SVF-M model without outlier treatment.
6
Specifically, let dj/oj,t ⇠ �2

dj
where dj are the degrees of freedom of the resulting t distribution

for oj,t · "j,t ⇠ tdj .
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the SV-t specification (using 5 degrees of freedom in the t distribution).

3 Data

Following CCM, our results are based on a VAR including 30 macroeconomic and

financial variables, which are listed in Table 1. Reflecting the available samples

of the raw data and observations taken by transformations and model lags, the

estimation sample is September 1960 to June 2020.7 Following common practice in

the factor model literature as well as studies such as Jurado, Ludvigson, and Ng

(2015), after transforming each series for stationarity as needed, we standardize the

data (demean and divide by the simple standard deviation) before estimating the

model.8

Our variable set includes 18 macroeconomic series, chosen for being major indi-

cators within broad categories (production, labor market, etc.). With one exception,

we take these series and some financial indicators from the FRED-MD monthly data

set detailed in McCracken and Ng (2016), which is similar to that underlying com-

mon factor model analyses, such as Stock and Watson (2006). The one exception is

the new orders index from the Institute of Supply Management, which FRED-MD

is no longer able to include; we instead obtained this series from Haver Analytics.

Our variable set also includes 12 financial series, consisting of the return on the

S&P 500, the spread between the Baa bond rate and the 10-year Treasury yield,

and a set of additional variables made available by Kenneth French on his web page.

Specifically, we use the French series on CRSP excess returns, four risk factors —

for SMB (Small Minus Big), HML (High minus Low), R15 R11 (small stock value

spread), and momentum— and sector-level returns for a breakdown of five industries

(consumer, manufacturing, high technology, health, other).

As discussed in CCM, this specification reflects some choice as to what con-

stitutes a macroeconomic variable rather than a financial variable. Reflecting the

typical factor model analysis, the McCracken-Ng data set includes a number of

indicators — of stock prices, interest rates, and exchange rates — that may be con-

sidered financial indicators. In our model specification, the variables in question are

7
We took the data from the September release of FRED-MD. Although this vintage has data

through June for most series, two of the series in our model only have observations through June

(under FRED-MD’s usual timing).
8
To reduce the potential impact of COVID extremes, in the standardization, we computed the

means and standard deviations with data through 2019 and omitted 2020 observations.
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the federal funds rate, the credit spread, and the S&P 500 index. It seems most

appropriate to treat the funds rate, as the instrument of monetary policy, as a macro

variable. For the other two variables, the distinction between macro and finance is

admittedly less clear. Whereas Jurado, Ludvigson, and Ng (2015) treat these indi-

cators as macro variables that bear on macroeconomic uncertainty and not directly

on financial uncertainty, it seems more natural to consider these indicators as finan-

cial variables, in keeping with such precedents as Koop and Korobilis (2014) on the

measurement of financial conditions. Accordingly, we include the credit spread and

the S&P 500 index in the set of financial variables.

4 Results

This section first provides our estimates of outlier states, time-varying volatilities,

and macroeconomic and financial uncertainty. It then presents impulse responses

and historical decompositions.

4.1 Volatility and uncertainty estimates

Before taking up the main results of interest, it may be useful to consider the esti-

mation of outlier states in the BVAR-SVF-M-O model. For most financial variables,

the posterior mean probabilities of an outlier each month are low, at about 0.5 per-

cent. Mean outlier probabilities are higher for most — although not all — macro

variables. For example, the probability estimates are 1.4 percent for employment

and 3.9 percent for real personal income.

Figure 1 provides posterior mean estimates of the outlier states oj,t for variable

j, covering a subset of variables in the interest of readability. For some variables,

reflecting the estimated low probabilities of an outlier, the mean state estimate is flat

at 1 for most or much of the sample. At the other extreme, the estimates identify

a number of outliers for personal income. More immediate to the matter of the

COVID period, a number of variables experience outliers in the period of the COVID

disruption to economic activity. For example, the posterior mean of the outlier state

(recall that this scales up standard deviations) for consumer spending is 11 in March

and 10 in April; the corresponding estimate for employment is 16 in April and 8 in

June. As we discuss below, these outlier state movements contribute significantly to

the variability of the a↵ected variables of the model. Although a number of variables

are found to experience outliers in recent months, it is not a majority of the series;

9



for example, only 8 of the 18 macroeconomic variables in the model have a posterior

mean of oj,t of 2 or more in the months of March or April. Accordingly, we proceed

with treating the outliers as being independent across variables rather than common

to most or all, in keeping with treating common, persistent changes in forecast error

variances as changes in aggregate uncertainty.9

Turning to overall volatility changes, based on the version of the model includ-

ing the outlier states, Figure 2 shows the magnitudes of changes in volatilities in

recent months, broken into contributions from the uncertainty factors, the out-

lier states, and the idiosyncratic volatility components.10 Whereas it would be

di�cult to compute contributions to changes in the diagonal elements of ⌃t, the

variance-covariance matrix of reduced-form innovations in the VAR, it is possible to

directly compute percent changes in �̃
0.5
j,t =

q
m

�j,m
t o2j,thj,t for macro variables and

�̃
0.5
j,t =

q
f
�j,f
t o2j,thj,t for financial variables. For each month t from January 2019

through June 2020, we compute 0.5 ln(�̃j,t/�̃j,0), where �̃j,0 refers to the volatility of

December 2018, and the contributions to this percent change in the standard devia-

tion from the uncertainty factors, the outlier states, and the idiosyncratic volatility

components. The charts report posterior means of the contributions, as stacked

bars.

Perhaps the most immediate result in these estimates is the giant increases in the

volatilities of many variables. For example, the log change in 0.5�̃ for employment

is nearly 5, meaning that volatility (as measured by the standard deviation) has

risen by nearly 500 percent. Increases in most of the financial volatilities were more

tempered although still dramatic, for example with the return volatilities rising

about 100 percent.

In the variance decomposition from the BVAR-SVF-M-O model, the relative im-

portance of uncertainty, outliers, and idiosyncratic volatilities varies across variables.

The uncertainty factors drive considerable increases in volatility for all variables. For

financial variables, uncertainty factors are the dominant driver. For macro variables,

uncertainty factors are important to most increases, but are sometimes dominated

9
If we followed conventions in the factor model literature (e.g., McCracken and Ng (2016)) and

simply defined an outlier as an observation with distance from the median more than 5 or 10 times

the width of the interquartile range, it would also be the case that only a few macro variables show

an outlier in recent months.
10
In the interest of brevity, we omit corresponding results from the BVAR-SVF-M model without

outliers. In these estimates, it is also the case that idiosyncratic contributions are relatively small,

and the uncertainty factors almost entirely drive the estimated increases in volatilities.
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by outlier state contributions. As examples, with unemployment and industrial

production, the estimates show outliers driving the volatility increases of April (and

March for industrial production) and the uncertainty factors driving the increase of

May. For some other variables, such as employment, increases in the idiosyncratic

volatility components also contribute. But in general, the contributions of the id-

iosyncratic volatility components are smaller than those of the uncertainty factors

and outlier states (and in some cases they lower, rather than raise, volatility).

By comparison, over the period January 2007-December 2009 spanning the Great

Recession, Figure 3 shows that the overall rise in volatility was smaller for many

variables — although still sizable — with a somewhat di↵erent composition than

that observed for the COVID period. One pattern shared by the Great Recession

period is that a sizable increase in aggregate uncertainty helped drive volatility

higher. But outliers are estimated to have played a smaller role in 2007-2009 than

in 2019-2020, a↵ecting volatilities of only a few variables in the former period but

several in the latter. The overall di↵erences in the magnitudes of the volatility

changes and the role of outliers point to the COVID period being unique. Another

notable di↵erence across the periods is that the idiosyncratic components of the

volatility model played a larger role in the earlier recession than in the current one,

in several cases (e.g., employment and hours) declining and pulling volatility down

but in other cases (e.g., manufacturing and trade sales) rising and boosting volatility.

Turning from variance contributions to the estimates of uncertainty, the top

two panels of Figure 4 report the macroeconomic and financial uncertainty esti-

mates, measured as the posterior medians of m0.5
t and f

0.5
t , respectively. The top

panel compares estimates of macroeconomic uncertainty from the BVAR-SVF-M

and BVAR-SVF-M-O models, and the second panel makes the same comparison

for financial uncertainty. The baseline estimates of the CCM model show dramatic

increases in uncertainty, with macroeconomic uncertainty rising from a historical

average level of about 1 to a peak of 7.6 in April and edging down to 6.2 in May and

4.9 in June, and with financial uncertainty soaring from an average level of about 1

to a peak of 23.3 in March, before edging down in April and easing some to a level

of about 8 in May and June. Although not evident from the long history shown

in the chart, the smoothed time series estimates show macroeconomic uncertainty

rising significantly starting in the fourth quarter of 2019 and financial uncertainty

picking up starting in the third quarter of last year, well in advance of the COVID

outbreak.
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Estimates of uncertainty from the version of the model with outlier states also

show significant increases this year, although less dramatic than those of the CCM

baseline and confined to be closer in time to the period of the actual COVID out-

break in the US. More specifically, with the augmented model, the estimate of

macroeconomic uncertainty edges up from a historical average level of about 1 in

January to 1.2 in February before rising at a faster pace starting in March, peaking

at 5.7 in May and moderating to 3.1 in June. The estimate of financial uncertainty

picks up significantly over the same months, peaking at 4.1 in March and moderat-

ing gradually to 2.8 in June. As a more general matter, looking at the pre-COVID

period from 1960 through 2019, adding the outlier states to the CCM has little

e↵ect on the time series of macroeconomic uncertainty. The outlier feature has

modestly more e↵ect on the historical estimates of financial uncertainty, dampening

a little the estimated rise in financial uncertainty around recessions. As to why the

treatment of outliers matters a little more for financial uncertainty than for macro

uncertainty when outliers are somewhat more evident for macro variables than fi-

nancial (see Figure 1), the pattern appears to reflect a combination of factors. In

general, the uncertainty estimates are informed by not only conditional variances

but also conditional means, and the uncertainty estimates are correlated, so that

controlling for outliers that are more prominent in macro variables could a↵ect the

estimate of financial uncertainty through conditional mean e↵ects or correlations

across uncertainty measures. Moreover, if we modify the model to exclude S&P

500 stock returns and the credit spread, the two financial variables displaying some

historical outliers in our reported estimates, then when we compare estimates of

the models with and without the outlier states modeled, the estimates of financial

uncertainty show less impact of modeling the outliers.

For a given model, there is considerable uncertainty around the estimate of

uncertainty in the COVID period. For example, Figure 5 provides the BVAR-

SVF-M-O posterior median estimates of macroeconomic (m0.5
t ) uncertainty along

with 70 percent credible sets, for the periods 1960-2019 (top) and January-June

2020 (bottom). Historically, from the start of the sample through December 2019,

the width of the credible set averaged 0.2 (compared to an average level of the

uncertainty index of 1), with the range commonly rising with spikes in uncertainty,

commonly around recessions. Over this period, the width of the credible set peaked

at 0.85 in October 2008. As evidenced in the lower panel of Figure 5, the width of the

70 percent credible set has been much greater over the COVID period, peaking at 4.7
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in May 2020 (the BVAR-SVF-M yields a much wider credible set around its posterior

median estimate of macroeconomic uncertainty). Of course, with additional data as

time moves forward and two-sided smoothing, the precision of uncertainty estimates

for the first half of 2020 may improve substantially, but by how much remains to be

seen.

For comparison to other measures of uncertainty, the bottom panel of Figure 4

provides the VIX measure of uncertainty (through June 2020) and current estimates

of macroeconomic and financial uncertainty based on the Jurado, Ludvigson, and

Ng (2015) model (through June 2020, posted by Professor Ludvigson). The JLN

estimates show a significant rise, with macroeconomic uncertainty increasing 39

percent from December 2019 to a peak in March 2020 and financial uncertainty

increasing 32 percent over the same period. These increases are of course much

more modest than those evident from our models. However, that is in keeping with

historical patterns, in which our uncertainty estimates rise more than those of JLN

around recessions (of course, this need not mean that our uncertainty measures

yield larger impacts on the economy, since the greater sensitivity of the uncertainty

measure to the cycle will get reflected in smaller response coe�cients). The greater

variability of our measures could stem from the various di↵erences in our modeling

approach as compared to JLN, including the fact that, in our one-step approach to

estimating uncertainty and its e↵ects on the economy, uncertainty responds directly

to fluctuations in the economy, through the inclusion of yt�1 in the time series

process of the factors.11 The VIX measure of uncertainty displays a sharper rise,

with the VIX more than tripling from January to March before drifting down over

the following few months. As of July, this measure remains at an elevated level

but not outside of the norms of previous recessions. Caggiano, Castelnuovo, and

Kima (2020) use estimates of a small VAR through April 2019 and scale up the size

of a shock to the VIX to gauge (via impulse responses) the e↵ects of the rise in

uncertainty on world output during the pandemic, concluding that the e↵ects are

sizable. Altig, et al. (2020) review and compare movements of a range of measures

of uncertainty before and during the pandemic.

11
In contrast, the JLN measures of uncertainty are obtained as simple averages of conventional

stochastic volatility estimates obtained from simple autoregressive models (augmented to include

factor indexes of the economy) of each series, without direct feedback of economic conditions to

volatility.
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4.2 Impulse responses

To provide a basic assessment of the e↵ects of macroeconomic and financial un-

certainty, for both the baseline CCM model and our outliers-robust extension, we

compute impulse response functions for each of the 5000 retained draws of the VAR’s

parameters and latent states and report the posterior medians and 70 percent cred-

ible sets of these functions. To save space, for a given shock of the size of one

standard deviation, we report response estimates for both models, using (i) black

lines and gray shaded regions for posterior medians and 70 percent credible sets

from the BVAR-SVF-M-O specification and (ii) red and blue lines for posterior me-

dians and 70 percent credible sets from the BVAR-SVF-M specification. For similar

reasons, the charts below provide results for a subset of selected variables. Note

that, although the models are estimated with standardized data, for comparability

to previous studies the impulse responses are scaled and transformed back to the

units typical in the literature.12

In broad terms, the impulse response estimates from the two models reported in

Figures 6 (macroeconomic uncertainty) and 7 (financial uncertainty) are comparable

and qualitatively the same as those discussed in detail in CCM.13 As shown in the

penultimate panel of Figure 6, the shock to log macro uncertainty produces a rise

in uncertainty that gradually dies out. Economic activity and the labor market

decline in response, with indicators such as consumer spending, housing starts and

permits, manufacturing and trade sales, the ISM index of new orders, employment,

and hours worked falling. Despite the significant decline of economic activity in

response to the macro uncertainty shock, there doesn’t appear to be evidence of

a broad decline in prices. The PPI for finished goods declines steadily, but the

response is estimated imprecisely. Consumer prices as captured by the PCE price

index instead rise but also fail to display a significant change. Overall, as noted in

12
We do so by using the model estimates to: (1) obtain impulse responses in standardized,

sometimes (i.e., for some variables) di↵erenced data; (2) multiply the impulse responses for each

variable by the standard deviations used in standardizing the data before model estimation; and (3)

accumulate the impulse responses of step (2) as appropriate to get back impulse responses in levels

or log levels. Accordingly, the units of the reported impulse responses are percentage point changes

(based on 100 times the log levels for variables in logs or rates for variables not in log terms).
13
One di↵erence in these results as compared to those in CCM is that, in these estimates, a shock

to macro uncertainty does not yield a significant rise in financial uncertainty, whereas a shock to

financial uncertainty produces a significant rise in macro uncertainty; the pattern was reversed in

the CCM estimates. This appears to reflect the information in the data since the end of the CCM

sample in mid-2014. In general, macro and financial uncertainty are significantly correlated, and

causal responses of one to the other can be di�cult to disentangle.
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CCM, this picture of price responses is in line with New Keynesian models, which

predict a small e↵ect of uncertainty on inflation due to sticky prices (and possibly

wages). In the face of this sizable deterioration in the real economy and in the

absence of much movement in prices, the federal funds rate gradually falls.14 The

responses of financial indicators to the shock to macro uncertainty are — collectively

speaking — muted and imprecisely estimated. One exception is the spread between

the Baa and 10-year Treasury yields, which displays a modest, but persistent and

significant, rise, with a hump-shaped pattern. Aggregate stock prices and returns,

as captured by the S&P 500 price index and the CRSP excess returns, decline but

fail to display significant changes.

Similarly, the estimates of responses to a financial uncertainty shock in Figure 7

are broadly similar across models and similar to the estimates of CCM. As reported

in the last panel, the shock to log financial uncertainty produces a rise in uncertainty

that gradually dies out. The financial uncertainty shock a↵ects economic activity

much as does a shock to macroeconomic uncertainty. In particular, the financial

uncertainty shock depresses economic activity and leads to reductions in the federal

funds rate and a rise (and eventual decline) in the credit spread. The most notable

di↵erence with respect to results for a macro uncertainty shock is that a financial

uncertainty shock leads to a sizable fallo↵ in aggregate stock prices and returns. The

response of the S&P500 price level is negative and significant. The CRSP excess

returns display a negative jump and then gradually recover. However, the responses

of the risk factors included in the model are insignificant.

Focusing on a comparison of the BVAR-SVF-M and BVAR-SVF-M-O estimates,

the most noticeable di↵erence is that, particularly in the case of a macro uncertainty

shock, credible sets are typically wider for the BVAR-SVF-M estimates than for the

BVAR-SVF-M-O estimates (although not shown, the BVAR-SVF-M sets are also

typically wider than the original impulse response estimates of CCM). For example,

in the case of the employment response to a macro uncertainty shock, at the 24-

month horizon, the 70 percent credible set has a width of 0.36 percentage point

with the BVAR-SVF-M model and 0.24 percentage point with the BVAR-SVF-M-

O model. These wider bands for economic variables reflect a wider band around

the response of macro uncertainty to its shock in the BVAR-SVF-M estimates as

compared to the outliers-robust estimates. In any event, posterior medians are

14
Estimates of uncertainty and impulse responses obtained with the shadow rate of Wu and Xia

(2016) replacing the funds rate are very similar.
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similar across the models, although estimated magnitudes of responses to the macro

shock seem to be a little smaller with the BVAR-SVF-M-O model than with the

BVAR-SVF-M model (which looks to be due to the fact that the uncertainty shock

dissipates a little faster with the former than with the latter).

4.3 Historical decompositions

To assess the specific role of fluctuations in uncertainty shocks in the economy and

financial markets in the period of the COVID-19 pandemic, we estimate historical

decompositions. In a standard linear model, a historical decomposition of the total

s-steps-ahead prediction error variance of yt+s can be easily obtained by construct-

ing a baseline path (forecast) without shocks, and then constructing the contribution

of shocks. With linearity, the sums of the shock contributions and the baseline path

equal the data. In our case, the usual decomposition cannot be directly applied

because of interactions between ⇤t+s and ✏t+s: Shocks to log uncertainty a↵ect the

forecast errors through ⇤t+s✏t+s, and, over time, shocks ✏t+s a↵ect ⇤t+s through

the response of uncertainty to lagged y. CCM used a decomposition of the total

contribution of the shocks into three parts: (i) the direct contributions of the un-

certainty shocks ut+s to the evolution of y; (ii) the direct contributions of the VAR

“structural” shocks ✏t+s to the path of y taking account of movements in ⌃t+s that

arise as uncertainty responds to y but abstracting from movements in ⌃t+s due to

uncertainty shocks; and (iii) the interaction between shocks to uncertainty and the

structural shocks ✏t+s.

To be more specific, consider a simple one-factor model with lag orders of 1,

abstracting from outlier states:

(
yt = ⇧yt�1 + �1mt + �2mt�1 + vt

mt = �yt�1 + �mt�1 + ut
, (6)

where vt and ut are independent, with variances ⌃t and �u, respectively. So we

can replace vt above with ⌃0.5
t ✏t, where ⌃0.5

t is a shortcut notation for the Cholesky

decomposition of ⌃t and ✏t is N(0, In). The one-step-ahead forecast errors are

yt+1 �Etyt+1 = ⌃0.5
t+1✏t+1 + �1ut+1. Now let ⌃̂t+s|t denote the future error variance

matrix that would prevail in the absence of future shocks to uncertainty. This would

be constructed from forecasts of future uncertainty accounting for movements in y

driven by ✏ shocks and the path of idiosyncratic volatility terms (incorporating
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shocks to these terms). The following decomposition can be obtained by adding

and subtracting ⌃̂t+1|t terms in the forecast error:

yt+1 � Etyt+1 = �1ut+1 + ⌃̂0.5
t+1|t✏t+1 + (⌃0.5

t+1 � ⌃̂0.5
t+1|t)✏t+1. (7)

In this decomposition, the first term gives the direct contribution of the uncertainty

shock, the second term gives the direct contribution of the structural shocks to the

VAR, and the third term gives the interaction component. The third term can be

simply measured as a residual contribution, as the data less the direct contributions

from the uncertainty shock and the structural shocks to the VAR.

One complication with this approach is that, in the interaction components, there

is not a good way to separate the roles of aggregate uncertainty and idiosyncratic

volatility, because ⌃t is the product of such terms containing innovations to aggre-

gate uncertainty and innovations to idiosyncratic components. Since the terms are

multiplicative and not additive, there isn’t a clear way to isolate the role of aggregate

uncertainty from the role of idiosyncratic components. In light of these complica-

tions, and because the interaction e↵ects are empirically much less pronounced than

the direct e↵ects, CCM did not attempt to separate the roles of aggregate uncer-

tainty and idiosyncratic volatility in the interaction component. CCM’s reported

results focused on the more important contributions from the first two pieces of the

decomposition, shocks to uncertainty and VAR shocks.

In the recent extreme variation in the data, the interaction term of the simple

decomposition drives much of the variation in some variables. Such a pattern of

course means that the variation is di�cult to decompose in a meaningfully complete

way. However, in this paper, we are primarily interested in the magnitudes of

the contributions of uncertainty shocks. As a result, we simplify the historical

decomposition analysis and focus on just contributions from uncertainty shocks. In

the simple one-step-ahead example, the direct contribution from uncertainty shocks

is measured by just �1ut+1; this contribution and contributions at later periods are

easily computed.

Figures 8 and 9 provide the estimated contributions from uncertainty shocks

(stacked bars), along with the actual data (black lines), for January 2019 through

June 2020. The charts show the data series (demeaned for simplicity) and the direct

contributions of shocks to (separately) macroeconomic and financial uncertainty.

Note that these charts use two scales, with the left for the data and the right for
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the contributions of the uncertainty shocks. The reported estimates are posterior

medians of decompositions computed for each draw from the posterior. In light of

space constraints, the charts provide results for a subset of selected variables.

In the BVAR-SVF-M model’s historical decomposition for 2019-2020, uncer-

tainty shocks account for some of the sharp data changes that have occurred in

recent months. By historical standards, the contributions are sizable; in fact, for

many of the variables, the contributions of uncertainty shocks are larger in 2020

than during the Great Recession (using results for a 2003-2014 decomposition not

reported in the interest of brevity). But in the COVID period, the contributions

of uncertainty shocks are dwarfed by the dramatic size of the total changes. For

example, averaged in the months of March and April (the worst months of the pan-

demic), combined shocks to macroeconomic and financial uncertainty pulled down

employment and consumption by about 15 basis points and industrial production by

60 basis points. Annualized (multiplied by 12), these are large contributions. But

averaged over March and April, the actual growth rates of employment, consump-

tion, and industrial production (with historical mean growth rates removed) fell by

unprecedented magnitudes of 8, 10, and 9 percent, respectively. Consistent with

the impulse response estimates, shocks to macroeconomic uncertainty are more im-

portant to macro variables than are shocks to financial uncertainty, and the reverse

applies for financial variables.

Estimates of the historical decomposition from the BVAR-SVF-M-O model are

qualitatively very similar to those from the BVAR-SVF-M specification of CCM.

The main change is that, with outliers modeled, the estimated contributions of

uncertainty shocks are slightly or modestly reduced compared to the BVAR-SVF-

M estimates. For example, averaged in the months of March and April, combined

shocks to macroeconomic and financial uncertainty pulled down employment by

about 10 basis points, consumption by 15 basis points, and industrial production

by 50 basis points. In general, the smaller rise in uncertainty that occurs with the

outliers-robust version of the model would be expected to reduce contributions of

uncertainty to this year’s fluctuations in economic and financial indicators, and the

historical decomposition bears that out, with slight to modest e↵ects.

As sizable as our estimates of the contributions of uncertainty to the COVID

downturn are by historical standards, some research has obtained even larger esti-

mates. Pellegrino, Castelnuovo, and Caggiano (2020) and Pellegrino, Ravenna, and

Zullig (2020) obtain larger e↵ects of an uncertainty shock using a nonlinear VAR in
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which uncertainty shocks can have more adverse e↵ects during recessions than dur-

ing normal times. In addition, Barrero and Bloom (2020) suggest that uncertainty

will reduce US GDP growth in 2020 by 2 to 3 percent (on a four-quarter basis);

with data for the first half of the year in hand, private-sector forecasters surveyed

by the Wall Street Journal in mid-September put GDP growth for the year at about

-4 percent. These estimated e↵ects of uncertainty are based on the cross-country

methodology of Baker, Bloom, and Terry (2020), who relate GDP growth to uncer-

tainty as measured by stock market volatility and who address possible endogeneity

by instrumenting with episodes of natural disasters, terrorist attacks, and political

shocks. The di↵erence in magnitudes in their results as compared to ours likely is

at least in part due to methodology and probably less due to the measure of uncer-

tainty. We say this based on a simple comparison to BVAR estimates (methodology

like ours) that measure uncertainty with stock market volatility (underlying uncer-

tainty measure relied on by Barrero and Bloom). In unreported results, if we use

stock market volatility as the measure of uncertainty and add it to a conventional

BVAR with uncertainty ordered first, the peak e↵ect of the contributions to shocks

to uncertainty is about -2 percentage points for employment, consumption, and in-

dustrial production — sizable but still well short of the peak 15 percent decline seen

in the actual data. We conjecture that their cross-country instrumental variables

approach based on historical disasters boosts the estimated e↵ects.15 Ludvigson,

Ma, and Ng (2020) use structural VARs and historical data on natural disasters

to estimate COVID’s e↵ects on the economy and uncertainty. In their estimates,

treating COVID as a disaster-type shock (and calibrating its immense size) yields

declines in activity indicators like those observed in the data, as well as a rise in

economic and financial uncertainty due to the disaster shock.

In the broader context of uncertainty and its e↵ects, particularly in a period as

unusual as that of the pandemic, we should emphasize that our estimates obtained

by Bayesian methods are explicitly conditional on the model and the data avail-

able to date. Over time, as more data become available, the model’s estimates of

uncertainty and contributions to the economic fluctuations of the COVID period

could change. Moreover, there are some respects in which uncertainty could matter

in ways outside the scope of our aggregate model. In particular, uncertainty at

a micro level could have important e↵ects, particularly in the COVID downturn.

15
Consistent with this, Baker, Bloom, and Terry (2020) obtain smaller estimated e↵ects with a

di↵erent VAR-based identification applied to just US data.
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Some of the uncertainty literature (pre-COVID) has emphasized the important role

of volatility shifts at the micro level (see, e.g., Bloom, et al. (2018)). Such micro

changes need not be captured as aggregate uncertainty in models such as ours. The

subjective uncertainty indicators considered in Altig, et al. (2020) display a sizable

rise in firm-level uncertainty following the COVID outbreak. In addition, Knight-

ian uncertainty may have been particularly important in the months immediately

following the pandemic’s outbreak, as some kinds of economic activity shut down in

unprecedented ways.

5 Conclusions

In this paper we measure the e↵ects of the COVID-19 outbreak on macroeconomic

and financial uncertainty, and the consequences of uncertainty for key economic

variables.

We use a large, heteroskedastic vector autoregression (VAR) in which the er-

ror volatilities share two common factors, interpreted as macro and financial un-

certainty, in addition to idiosyncratic components. Macro and financial uncertainty

are allowed to contemporaneously a↵ect the macroeconomy and financial conditions,

with changes in the common component of the volatilities providing contemporane-

ous identifying information on uncertainty.

The estimates we obtain yield very large increases in macroeconomic and fi-

nancial uncertainty over the course of the COVID-19 period. These increases have

contributed to the downturn in economic and financial conditions, but the contribu-

tions of uncertainty are small compared to the overall movements in many macroe-

conomic and financial indicators. That implies that the downturn is driven more

by COVID-related supply and demand shocks that, at least with our methodology,

are not measured as shocks to aggregate uncertainty. We also consider an extended

version of the model, based on a latent state approach to accommodating outliers in

volatility, to reduce the influence of extreme observations from the COVID period.

Although our two models yield qualitatively very similar results, their estimates

di↵er along some clear dimensions. Including the outlier treatment in the model

mitigates the measured rise in macroeconomic and financial uncertainty and mod-

estly reduces the estimated contributions to recent fluctuations in economic and

financial indicators. Although both sets of estimates are plausible in our judgment,

we are inclined to favor the measures from the outliers-robust model for their more
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conservative assessment of the extent of the increase in aggregate uncertainty over

the COVID period.
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Table 1: Variables in the baseline model

Macroeconomic variables Financial variables
All employees: total nonfarm (� ln) S&P 500 (� ln)
Industrial production index (� ln) Spread, Baa-10y Treasury
Capacity utilization: manufacturing (�) Excess return
Help wanted to unemployed ratio (�) SMB FF factor
Unemployment rate (�) HML FF factor
Real personal income (� ln) Momentum factor
Weekly hours: goods-producing R15 R11
Housing starts (ln) Industry 1 return
Housing permits (ln) Industry 2 return
Real consumer spending (� ln) Industry 3 return
Real manuf. and trade sales (� ln) Industry 4 return
ISM: new orders index Industry 5 return
Orders for durable goods (� ln)
Avg. hourly earnings, goods-producing (�2 ln)
PPI, finished goods (�2 ln)
PPI, commodities (primary metals, �2 ln)
PCE price index (�2 ln)
Federal funds rate (�)

Note: For those variables transformed for use in the model, the table indicates the trans-
formation in parentheses following the variable description.
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Figure 1: Posterior means of outlier states, BVAR-SVF-M-O
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Figure 2: Posterior means of contributions to percent changes in volatilities, measured as � ln �̃
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i,t ,
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Figure 3: Posterior means of contributions to percent changes in volatilities in the Great Recession,

measured as � ln �̃
0.5
i,t , BVAR-SVF-M-O
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Figure 3: Continued, means of contributions to percent changes in volatilities in the Great Reces-

sion, measured as � ln �̃
0.5
i,t , BVAR-SVF-M-O
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Figure 4: The top two panels report posterior median estimates of the macroeconomic (m0.5
t ,

top) and financial uncertainty (f0.5
t , middle) factors from the BVAR-SVF-M and BVAR-SVF-M-O

models. The bottom panel provides the uncertainty estimates of Jurado, Ludvigson, and Ng (2015)
and the VIX measure of uncertainty. Shaded regions denote periods between NBER business cycle
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Macroeconomic uncertainty, BVAR-SVF-M-O spec., with credible set

median 15%-ile 85%-ile

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Macroeconomic uncertainty, BVAR-SVF-M-O spec., with credible set

median 15%-ile 85%-ile

January February March April May June
2020

0

1

2

3

4

5

6

7

8

9

Figure 5: The panels report BVAR-SVF-M-O posterior median estimates of macroeconomic (m0.5
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uncertainty along with 70 percent credible sets, for the periods 1960-2019 (top) and January-June
2020 (bottom). Shaded regions denote periods between NBER business cycle peaks and troughs.
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Figure 6: Impulse response estimates for shock to macroeconomic uncertainty. The black line and
gray shaded region provide posterior medians and 70 percent credible sets from the BVAR-SVF-
M-O specification. The red and blue lines provide posterior medians and 70 percent credible sets
from the BVAR-SVF-M specification.
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Figure 7: Impulse response estimates for shock to financial uncertainty. The black line and gray
shaded region provide posterior medians and 70 percent credible sets from the BVAR-SVF-M-O
specification. The red and blue lines provide posterior medians and 70 percent credible sets from
the BVAR-SVF-M specification.
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Figure 8: Historical decomposition (posterior medians) with contributions from just uncertainty
shocks, January 2019-May 2020, BVAR-SVF-M. Chart is two-scale, with scale for actual data on
the left side and scale for estimation contributions on the right.35
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Figure 9: Historical decomposition (posterior medians) with contributions from just uncertainty
shocks, January 2019-May 2020, BVAR-SVF-M-O. Chart is two-scale, with scale for actual data
on the left side and scale for estimation contributions on the right.36


