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1 Introduction

Forty countries have implemented either a tax or a cap and trade system to

regulate greenhouse gas emissions and mitigate climate change. The European

Emissions Trading System (ETS) has an annual market value of about 60

billion USD. Following the Paris Climate Agreement, another 88 countries

are currently considering introducing either a tax or a cap and trade system.

These instruments are also used to regulate other pollutants, and there are

many subnational initiatives. The high cost of reducing greenhouse gas (GHG)

emissions, and the potentially enormous costs of failing to deal with the climate

problem, make it important to use efficient policies. The problem is too big,

and the remedy too expensive, to waste effort. Asymmetry of information

between firms and the regulator is central to the policy design problem. We

introduce a “smart cap” that efficiently aggregates information and responds

to technological innovations or other macroeconomic shocks, thereby reducing

the cost of climate change mitigation.

Cap and trade is currently the most widely used market-based policy

to control GHG emissions. California’s ETS, with a market value of 6 bil-

lion USD, is the largest in the U.S., and China is currently introducing the

largest overall. Due largely to technological and macroeconomic shocks, these

policies have resulted in low carbon prices and modest emission reductions

in the European ETS, the Regional Greenhouse Gas Initiative (RGGI), and

California’s carbon market. As a result, these policies miss low-cost emissions

reduction opportunities and undermine the public’s confidence in market-based

regulation. A smart cap endogenously contracts the emission cap.

Our main innovation shows how a policy that endogenously adjusts the

emission cap in response to the certificate price overcomes current policies’ lim-

itations. Under this smart cap, the regulator auctions or gives away certificates

at the beginning of each compliance period, and simultaneously announces a

“redemption function” that depends on the equilibrium certificate price. The

redemption function determines the number of allowable units of emissions per

certificate. The equilibrium certificate price, and thus the equilibrium aggre-

gate emissions level, responds to technological innovations or macroeconomic
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shocks. In contrast, under a standard cap, certificates are issued in fixed units

of emissions and aggregate emissions do not respond to prices and shocks.

We incorporate a tractable model of innovation and diffusion into a dy-

namic analytic model of emissions and climate response. The social cost of

carbon (SCC) equals the present discounted costs from releasing a ton of car-

bon dioxide (CO2) today. The SCC is the stock-pollution analogue of marginal

damages in a static model. It is generally accepted that damages are only mod-

erately convex in the pollution stock, so the slope of the SCC is small.

The resulting model gives rise to a conceptual insight that is relevant well

beyond the smart cap. It is widely believed that, because the slope of the

SCC is small, the optimal carbon price response to emission fluctuations is

also small. We show instead that the optimal price response is generally much

steeper than the SCC. In extreme cases, the sign of the optimal price response

can even reverse the sign of the slope of the SCC. In knife-edge situations, the

standard cap and trade system can be first best. A technological innovation

that reduces current abatement costs also reduces future costs, thereby reduc-

ing future emissions, future damages and today’s SCC. The resulting positive

correlation between marginal abatement costs and the SCC causes the opti-

mal equilibrium price to respond much more strongly to emission shocks than

the SCC suggests. The slope of the price response function is even steeper if

an innovation in abatement technology is adopted over the course of several

compliance periods. Then, a change in abatement cost during the current

compliance period implies an even higher (persistent) long-term impact on fu-

ture emissions and the SCC. Thus, efficient mitigation policies are sensitive to

the speed of technology diffusion. A regression of emissions on green patents

suggests moderately slow diffusion that turns out highly policy-relevant for

efficient mitigation policies.

The smart cap’s trading system uses the market to resolve the informa-

tion aggregation problem discussed in Kwerel (1977), Dasgupta, Hammond

& Maskin (1980), and Boleslavsky & Kelly (2014). The tax analogue of our

smart cap is a nonlinear emission-dependent tax that we refer to as a “smart

tax”. In principle, this smart tax can also solve the problem caused by asym-

metric information between firms and the regulator. However, the smart tax
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requires an agency to keep track of and publicize cumulative emissions levels

in real time, enabling firms to base their emissions decision on the equilibrium

unit tax. In contrast, with the smart cap, the market aggregates and reveals

information via the certificate price.

The smart cap is a smooth first-best improvement over hybrid trading

systems that add a price floor and ceiling to a standard cap and trade sys-

tem (Roberts & Spence 1976, Weitzman 1978, Pizer 2002, Hepburn 2006, Fell

& Morgenstern 2010, Grüll & Taschini 2011, Fell, Burtraw, Morgenstern &

Palmer 2012). In the hybrid system, partly implemented in California, the

policy maker commits to buying and selling certificates to keep the abate-

ment cost within a pre-defined price window, making it effectively a tax when

the price reaches these boundaries. The smart cap smoothly responds to price

changes, eliminating the need for a regulator to buy or sell permits to maintain

the price floor or ceiling.

Many papers discuss emissions regulation with asymmetric information for

flow pollutants, i.e., pollutants that do not cause damages beyond the period

in which they are emitted.1 Requate & Unold (2001) explain how the issuance

of options on emission certificates implements a step function approximation

to the marginal damage curve, resulting in the static smart tax. Newell, Pizer

& Zhang (2005) show how a committed agency can manage allowances to use

a standard cap for direct price control. Taking this idea a step further, Kol-

lenberg & Taschini (2016) show that an appropriate management of banking

reserves can transform a standard cap with banking and borrowing into a hy-

brid mechanism that continuously interpolates between a standard cap and a

standard tax. Pizer & Prest (2020) note that with banking and borrowing, ad-

justment of the intertemporal exchange rates enables the regulator to achieve

the first best, provided that all uncertainty is resolved in the last period.2

1Gerlagh & Heijmans (2020) discuss a mechanism that achieves almost the first best for
a particular type of stock pollutant – one in which stock-related damages arise only in the
final period. However, for most pollutants, including climate change, damages in a period
depend on the stock in that period. This mechanism therefore has limited applicability.

2The intertemporal exchange rate is the number of permits in period t that can be
exchanged for one permit in period t+1. Pizer and Prest also consider a climate application.
Their assumption that marginal flow damages (and, thus, the SCC) are independent of the
stock of atmospheric carbon assumes away the interaction between stock pollutants and
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It is widely understood that policies should be conditioned on available in-

formation (Ellerman & Wing 2003, Jotzo & Pezzey 2007, Newell & Pizer 2008,

Doda 2016). For example, Burtraw, Holt, Palmer & Shobe (2020) note that a

policy that conditions the current quota allocation on previous prices increases

welfare relative to a standard cap or tax. The failure of such conditioning is

less harmful in a smart cap because of its automatic adjustment to the price

of certificates. We still recommend explicit conditioning on observables in or-

der to permit tailoring the smart cap to those cost shocks that are less well

observed.

The closest real-world implementation of a self-adjusting cap is the recently

enacted market stability reserve in the EU ETS, which addresses the prevailing

oversupply of allowances and cancels banked permits in a rather complicated

fashion. We refer to Perino (2018), Perino & Willner (2016), Kollenberg &

Taschini (2016), Fell (2016), and Silbye & Birch-Sørensen (2019) for detailed

discussion and critical assessments. Perino, Ritz & van Benthem (2020) and

Jarke & Perino (2017) show how interacting climate policies sometimes rein-

force and other times offset each other.

Our focus is on achieving efficient regulation of a stock pollutant when

there is asymmetric information and shocks are persistent. As an important

byproduct, we obtain a simple and intuitive criterion for ranking the standard

tax and quota, two second-best policies that do not overcome the problem of

asymmetric information. Weitzman (1974) provided the criterion for ranking

these two policies for flow pollutants; a number of papers have extended his

results to stock pollutants.3 We provide a much simpler and more intuitive

criterion, showing that (for a stock pollutant) the choice between a standard

tax and cap depends on the relative slopes of marginal abatement costs and

technology shocks that turns a plausibly small but non-zero marginal damage slope crucial
for climate policy.

3These papers include Hoel & Karp (2001), Newell & Pizer (2003), and Karp & Zhang
(2005). Fischer & Springborn (2011), and Heutel (2012) use stochastic general equilibrium
frameworks to compare tax versus quantity regulation, emphasizing the effect of business
cycles. Our companion paper Karp & Traeger (2018) discusses further implications for taxes
versus quantities when these are the only feasible policy options. It also relates our findings
to Weitzman’s (1974) and Stavins’s (1996) (static) insights on the role of correlated shocks.
Stavins (2020) reviews tax and quantity regulation in theory and practice.
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the smart tax – not the SCC. Thus, we obtain an exact and very simple analog

between the tax-quota ranking criteria for a flow versus a stock pollutant.

2 Smart Tax and Smart Cap

Regulators usually set policy without knowing firms’ abatement cost. This

asymmetry of information arises both because firms have genuinely private

information and because they make emissions decisions more frequently than

regulators revise policy. In the latter case, firms condition their decisions on

information that is publicly available, but unknown when the regulator sets

the policy. For example, the 2008 recession reduced firms’ incentives to emit,

contributing to the low permit prices in the European carbon trading system.

We emphasize the asymmetry arising from private information; the second

source of asymmetry can be eliminated by announcing future state-contingent

policies that depend on future public information.

The smart cap uses the market to aggregate information and to implement

the first-best emission allocation. We use the one-period (or flow pollution)

model to review a smart tax and introduce the smart cap. Here (by assump-

tion), uncertainty affects abatement costs, but not social damages. We then

modify the one-period model to provide intuition for the dynamic setting.

Next, we consider the stability of competitive equilibria, and we examine the

effect of market power.

2.1 A Static Model

A representative firm’s marginal benefit MB(E |θ) from emissions E (equal to

its marginal abatement cost)4 depends on the random variable θ. The marginal

social damage of emissions is MD (E ). We assume that MD (E ) and MB(E |θ)

are positive, continuously differentiable, and that benefits of emissions are

concave: MBE(E|θ) < 0. We define θ so that a larger realization increases the

marginal benefit of emissions, thereby raising abatement costs; for example, a

4Abatement A is the difference between business as usual emissions E
BAU and actual

emissions E . Abatement costs are C(A|θ) = C(EBAU −E |θ) = B(EBAU |θ) − B(E|θ).
Deriving this equation w.r.t. emissions implies MC(A|θ) = MB(E |θ).
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large θ represents lower than expected green technological progress, or higher

than expected economic growth and demand for fossil fuels.

A regulator distributes Q tradable emission certificates, and announces

a “redemption function”, q (p), where p is the endogenous market price of a

certificate. One certificate allows the firm to emit q(p) units, so the cost to

the firm of one unit of emissions is pE = p

q(p)
. The endogenous “smart cap” is

Qq (p), equal to the number of units of emissions. Firms choose their level of

emissions, E , and they trade emission certificates at price p.

The optimal emission price equals the marginal damage of emissions:

pE = MD (E ) .

A smart tax (a function of E), equal to the right side of this equation, im-

plements the first best level of emissions. Using the market clearing condition

for emission certificates, E = Qq (p), we obtain an implicit formula for the

optimal redemption function q(p)

p

q (p)
= MD (Q · q (p)) . (1)

Totally differentiating this equation gives the slope of the redemption function

q′ (p) =
1

MD
′(E )E +MD(E )

where E = Qq. (2)

If marginal damages are flat (MD
′(E ) ≈ 0), the redemption function q(p)

is approximately linear in the certificate price, and the optimal smart tax is

approximately constant.5 In this situation, a hybrid cap with a price ceiling

and floor might be difficult to implement because the regulator would have to

buy or sell many certificates to defend the floor or ceiling. The smart cap, in

contrast, responds smoothly to shocks.

The redemption function’s slope varies inversely with marginal damages.

With low marginal damages, a higher certificate price generates a large increase

in allowable emissions. With high marginal damages, the same price increase

5More generally, the redemption function q(p) is linear in the certificate price if and only
if the damage function satisfies a0+aE+c lnE, implying marginal damages MD(E) = a+ c

E
.

Damages are increasing and concave for c > 0. Damages are convex but start out falling
and only increase for E > c

a
for c > 0.
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Emissions

MD

p*(E)

MB’

MB’’

Price

Figure 1: Static setting. The optimal carbon tax (smart tax, red) equals the
marginal damage (MD) curve. The three downward sloping lines represent different
realizations of the technology shock, each of which results in a different marginal
benefit (MB) curve. The green arrow identifies the optimal allocation under the high
marginal benefits. Under a smart tax (or a smart cap), this optimal allocation is
also the market equilibrium where firms equate the marginal benefits from emissions
with their private cost of emitting another unit.

leads to a smaller increase in emissions. With strictly convex damages, higher

emissions are increasingly costly to society. The term MD
′(E) decreases the

redemption function’s slope, leading to a smaller expansion of a smart cap

following an increase in the certificate price.

In the classic prices versus quantities setting (Weitzman 1974) marginal

damages are linear in emissions MD(E ) = a + bE . The red line in Figure 1

illustrates the smart tax, coinciding with the MD-curve. Equation (1) becomes

a quadratic equation with positive (because q ≥ 0) root and results in the

smart cap

q(p) =
1

2Qb

(

−a+
√

a2 + 4Qbp
)

,

with slope

q′(p) =
1

a+ 2bE
where E = Qq(p).

The slope of the marginal damage function, MD
′(E) = b, is a measure of

the damage convexity. Following the discussion above (or using L’Hospital’s

Rule) we find a linear redemption function q(p) → p

a
as b → 0. The smart cap

becomes inversely proportional to the (then constant) marginal damages a.
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Another interesting case arises as we rotate the marginal damage curve coun-

terclockwise around some point (E∗, p∗), increasing b and making offsetting

changes in a. As b → ∞ the smart cap approaches the constant cap E∗.

We obtain the (optimal) equilibrium emission from the representative firm’s

optimality conditions. This firm sets its marginal benefit from emissions equal

to the emission price MB(E, θ) = pE ⇔ MB(Qq(p), θ) = p

q(p)
. If marginal

benefit is linear, MB(E |θ) = θ − f E , the firm’s optimality condition is 6

θ − f E =
p

q (p)
⇒ E = q(p)Q =

θ − a

b+ f
.

The redemption function q(p) depends only on the certificate price; but the

equilibrium price, and thus the equilibrium value of the redemption function,

depends on the realization of the technology shock. The equilibrium cap is

directly proportional to the net benefit θ−a of the first unit of emissions, and

inversely proportional to the sum of the slopes of marginal costs and damages.

The representative firm formulation, where marginal benefits of emissions

depend on the aggregate technology shock, conceals an important advantage

of a smart cap over a smart tax. Individual firms have little knowledge of the

mitigation technologies in other sectors, and thus are unable to predict aggre-

gate emission levels. They therefore cannot predict the equilibrium value of

the end-of-period smart tax. In contrast, the cap and trade market aggregates

information governing technology and expected emission levels across firms.

This market helps firms to form the correct price expectations, enabling them

to take optimal emissions decisions.

We continue to use the representative firm model for exposition. How-

ever, because of the importance of firm heterogeneity in motivating the smart

cap, we briefly consider the model with a continuum of firms, with mass nor-

malized to unity. Firm i’s technology realization in state of the world s is

θs(i), with marginal benefits from emissions MBi(E i |θs(i)). Facing the emis-

sion price pE (the same for every firm), the firm’s optimal emission level is

E i(θs(i); p
E) = MB−1

i (pE|θs(i)). The aggregate emissions level is E (θs; p
E) =

∫

i
E i(θs(i); p

E)di =
∫

i
MB−1

i (pE|θs(i))di. Then, we can define the represen-

6The firm’s first order condition implies fQq2 − θq + p = 0. The smart cap satisfies
bQq2 + aq − p = 0. For p > 0, these two equations imply qQ = (θ − a)/(f + b).
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tative firm’s (aggregate) marginal benefit curve MB(pE|θs(i)) by solving (for

pE) the implicit equation E (θs; p
E) = Ē for all relevant emission Ē and shock

θs levels. The solution is usually at least locally well-defined, and in our lead-

ing example of linear-quadratic benefits it implies globally the linear-quadratic

representative firm model.7

2.2 Dynamic Insights

Climate change is a dynamic problem. As emissions accumulate in the atmo-

sphere, marginal damages likely increase. Here, optimal policy depends on the

shadow cost of the pollution stock, called the social cost of carbon (SCC) in

the climate setting.

With persistent technology shocks, today’s innovation affects future abate-

ment costs, altering future emissions levels. Consequently, today’s technol-

ogy shock affects the future marginal damages arising from today’s emissions.

Thus, the SCC depends on both today’s realization of the technology shock

and on current emissions, E. We write the SCC as SCC(E|θ), a function of

emissions, conditional on the shock realization. As with marginal damages,

we assume that SCC(E|θ) is continuously differentiable in both arguments.

Here, to explain the basic insight as simply as possible, we take the function

SCC(E|θ) as exogenous; Section 3 derives this function from primitives.

We denote the smart tax as SCC
*(E), and obtain its formula using the

optimality condition

MB(E|θ) = SCC (E|θ) ∀θ.

We denote the optimal emissions level as a function of the shock by E∗(θ),

and its inverse by E∗−1(E). The smart tax is a function of emissions but not

the shock

SCC
*(E) ≡ SCC (E|E∗−1(E)) ∀E ∈ {E|∃θ s.th. E = E∗(θ)}.

7Here, E (θs; p
E) =

∫

i

θs(i)−pE

fi
di =

∫

i

θs(i)
fi

di − pE
∫

i
1
fi
di. Defining f ≡

(

∫

i
1
fi
di
)

−1

and

θs ≡ f
∫

i

θs(i)
fi

di we obtain E (θs; p
E) = θs−pE

f
and MB(E |θs) = θs − f E .

9
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By construction, a market equilibrium that satisfies MB(E|θ) = SCC
*(E)

delivers the first best emissions level at the optimal carbon price.

Proposition 1 compares the slope of the smart tax and the slope of the SCC

for an arbitrary realization of the shock. Both of these slopes are evaluated at

E∗(θ). The cases correspond to the relative responsiveness of marginal benefits

versus marginal damages (SCC) to a realization of the shock. We introduce

the notation MB θ for ∂MB(E |θ)
∂θ

, E given, and similarly SCC θ for ∂SCC(E |θ)
∂θ

.

Proposition 1 The slope of the smart tax satisfies

SCC
*
E =

MB θ

MB θ − SCC θ

SCCE +
− SCC θ

MB θ − SCC θ

MBE, (3)

where all functions are evaluated for the same shock realizations θ and emission

levels E∗(θ). Assuming MBE < 0 and SCCE,MBθ > 0 we find

(i) 0 < SCC θ < MB θ ⇒ SCC
*
E > SCCE

(ii) SCC θ = MB θ ⇒ SCC
*
E = +∞

(iii) MB θ < SCC θ ⇒ SCC
*
E < 0 (< SCCE)

(iv) SCC θ = 0 ⇒ SCC
*
E = SCCE (as in the static setting)

(v) SCC θ < 0 ⇒ SCC
*
E < SCCE ( SCC *

E can be negative).

Figure 2 illustrates the proposition. The solid curves labeled MB and MD

show the marginal benefits and the social cost from emitting, given the ex-

pected technology level θ. If the realization of θ equals its expected value, the

intersection of these curves identifies the optimal emission level. The dashed

curves correspond to a lower realization of θ, implying cheaper than expected

abatement, e.g., due to an unexpected innovation in green technology. The

figure assumes that the shock also reduces future abatement costs, thereby re-

ducing future emissions. Under the assumption of convex damages, the lower

future emissions reduce the future marginal damages associated with today’s

emissions. Thus, the technology shock causes the SCC to shift down to the

dashed curve.

In Figure 2, the optimal allocation for the low realization of θ lies to the

lower left of the expected allocation. This graphical feature corresponds to

10
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Emissions

MD = Social Cost of Carbon

Price

•

•

Figure 2: Dynamic setting. The optimal carbon tax (smart tax, red) as a function
of the emissions level. The MD curve depicts the marginal damages from emissions,
here the social cost of carbon. Black solid lines depict the expected MD and MB
curves. Dashed lines depict the case of a better than expected technological innova-
tion. As in the static setting, the innovation shifts down the marginal benefits from
emissions curve (abatement cost). In contrast to the static setting, the technological
innovation now also shifts down the MD curve: better technology in the future re-
duces future emissions and, thereby, reduces the marginal damage caused by today’s
emissions. The smart tax no longer coincides with (any of) the MD curve.

case (i) of Proposition 1, where the marginal benefits respond more strongly

to the technology shock than do (expected future) marginal damages. As a

consequence, the slope of the smart tax is positive and larger than the slope

of marginal damages (SCC).

Figure 3 represents cases (ii) and (iii) of Proposition 1. If the technologi-

cal innovation shifts the MD curve and the MB curve by the same amount

(MB θ = SCC θ), then the smart tax is vertical (left graph). In this case, cap

and trade is optimal regardless of the relative slopes of the MB and the MD

curves. If the technological innovation shifts the MD curve even more that

it shifts the MB curve (MB θ < SCC θ), then the slope of the smart tax is

negative. In this case, it is optimal to emit more under a lower tax despite the

better abatement technology, because the climate change problem has become

substantially less bad.

The fourth case in Proposition 1 is analogous to the static case. Here, the

SCC curve does not respond to the technological innovation, and it directly

gives the smart tax. The fifth case describes the scenario where a shock in-

11



Smart Cap Karp & Traeger

Emissions

MD = SCC

Price

MB

Emissions

MD = SCC

Price

MB

Figure 3: Dynamic setting, analogous to Figure 2. The optimal carbon tax (smart
tax, red) as a function of the emissions level. If the MD curves shifts down as much
as the MB curve, the smart tax is vertical and a standard cap and trade system is
first best (left). If the MD curves shifts more that the MB curve, the smart tax falls
with emissions (right). Here, a low emission price signals sufficiently large falls in
future abatement costs that it is optimal to increase current emissions.

creases abatement costs but reduces marginal damages. Here the slope of the

smart tax is smaller than the slope of the MD curve (and possibly negative).

Our quantitative analysis in the next sections identifies case (i) of Propo-

sition 1 and Figure 2 as the most likely (or at least “base”) scenario in the

case of climate change. Here, the SCC ’s response to the technology shock is

smaller than that of the MB curve and the slope of the smart tax is positive,

finite, and steeper than that of the SCC curve.

We replace MD with SCC
* in equation (2) to relate the slopes of the smart

cap and the smart tax.

q′(p) =
1

SCC *
E E + SCC *

⇔ SCC∗
E =

pE

E

(

1

εq,p
− 1

)

(4)

The right side uses the definition of the redemption function’s elasticity w.r.t.

the certificate price, εq,p(p) = dq

dp

p

q
. For cases (i) and (iv) of Proposition 1,

the left side of equivalence (4) implies that the smart cap expands with the

certificate price. Case (ii) implies a standard cap, one that does not respond

to the price. Case (iii) implies a negatively sloped smart tax, and case (v) im-

plies a potentially negatively sloped smart tax. The left side of equivalence (4)

shows that a downward sloping smart tax is consistent with a smart cap that

increases in the certificate price, provided that the optimal carbon price is

sufficiently high. The right side of the equivalence (4) rephrases these cases

12
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using the redemption function’s elasticity w.r.t. certificate price. A positively

sloped inelastic redemption function, εq,p(p) ∈ (0, 1), corresponds to a posi-

tively sloped smart tax. Both a positively sloped elastic redemption function

and a negatively sloped redemption function correspond to a negatively sloped

smart tax.

2.3 Stability and Market Power

This section discusses stability of the competitive equilibrium and market

power. Here we assume existence of the smart tax and cap, a subject taken up

in section 3. We also assume that the smart cap is defined (only) on the do-

main of prices for which there exists some technology realization such that the

smart cap induces a socially optimal allocation; and we assume MB θ 6= SCC θ.

We exclude the case of a vertical smart cap in order to obtain a continuously

differentiable redemption function.

Under the Walrasian auctioneer, a market equilibrium (p∗, E∗) is locally

stable if excess demand is strictly positive below p∗ and strictly negative above

p∗ in some neighborhood of the equilibrium. It is globally stable if this condi-

tion on excess demands holds for arbitrary deviations of the price.

Proposition 2 (i) A smart tax decentralizes the socially optimal emissions

level as a locally stable competitive equilibrium if and only if

(a) SCC∗
E

(

E
(

pE
))

≥ 0, or

(b) SCC∗
E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ),

evaluated at the equilibrium.8 It is globally stable if everywhere one of condi-

tions (a) or (b) is met.

(ii) A smart cap decentralizes the socially optimal emisisons level as a

locally stable competitive equilibrium if and only if

MBE E
∗ +MB

SCC *
E E

∗+ SCC *
< 1. (5)

8We are ignoring the case where SCC∗

E

(

E
(

pE
))

= MBE(E
(

pE
)

; θ) at the equilibrium

point but SCC∗

E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ) holds everywhere in the neighborhood. This
case is also stable by our definition.
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at the equilibrium emission level E ∗. If MB(E, θ) is strictly monotonic in the

technology level θ (for any given emission level E), then, a smart cap satisfying

condition (5) at every social optimum is globally stable if ǫq,p(p) 6= 1 for all p.

Under a positively sloped smart tax, both equilibria are stable. If the smart

tax is negatively sloped, it is stable if and only if it is steeper (more negative)

than the marginal benefit curve. For our dynamic linear quadratic model in

section 3 these conditions are always met. In case (b), the smart cap is stable

if and only if it has a negative slope.

We now consider market power. If the smart cap/tax applies to a single

sector, firms might be able to exercise market power. We consider the extreme

case of a monopsony facing a smart cap as the simplest illustration of the

implications of market power.9

For the next proposition, we define ǫE,pE = dE
dpE

pE

E
, the elasticity of emis-

sions in tons of carbon w.r.t. the emissions price; this elasticity is distinct from

the elasticity of the redemption function ǫq,p defined earlier.

Proposition 3 (i) Consider a monopsonist that faces a smart cap q(p). If this

monopsony problem is concave with an interior solution, the monopsonist’s

marginal benefits from emissions satisfy

MB(E) =
pE

ǫq,p
= pE

1 + ǫE,pE

ǫE,pE
. (6)

(ii) Facing the smart cap designed to support the optimal (interior) outcome

under competition, a monopsonist increases profits by emitting (weakly) less

than the optimal (competitive) amount if SCC∗
E ≥ 0, and by emitting more

than the optimal amount if SCC∗
E < 0.

(iii) The policy maker can induce the monopsony to emit at the optimal

level using a smart cap qm(p) that solves the following ODE

qm′(p) =
1

SCC *(Qqm (p))
> 0, (7)

9We do not consider a monopsony who faces a smart tax because this case is standard:
the smart tax is the inverse supply of emissions.
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provided that this ODE has a solution that generates a strictly concave opti-

mization problem. The monopsony’s second order condition is locally satisfied

in any equilibrium if and only if MBE(E
∗(θ); θ) < SCC∗

E(E
∗(θ)) for all θ.

Equation (6) is a familiar result. It states that a monopsony chooses the

optimal level of an input, here emissions, by setting the marginal benefit of

the input equal to the marginal outlay. If the smart cap was designed for a

competitive market, the monopsony emits less than the competitive level if

and only if the slope of the smart tax is positive. In this case, the slope of the

smart cap is also positive (equation 4).

We can compare the optimal redemption functions under monopsony and

competition by comparing the ODEs that the two function satisfy, equations

(4) and (7). We illustrate this procedure using the case SCC∗
E ≥ 0. Here,

the redemption function designed to counter market power is steeper than

the redemption function under competition. For a given change in the price

of certificates, the smart cap expands and contracts more strongly to offset

market power. Why? Here the monopsony exercises market power by reducing

emissions in order to lower the certificate price. The regulator discourages this

behavior by making it more expensive, in terms of reduced emissions, for the

monopsony to achieve a given reduction in the certificate price.

For example, suppose that the range of optimal emissions is [EL, EH ],

with corresponding domain of the competitive certificate price [pL, pH ]. If

we choose the boundary condition for the monopsony redemption function to

satisfy q−1(E
L

Q
) ≤ pL, then the redemption function under monopsony lies

below and is flatter, in the (E, p) plane, than the redemption function under

competition. For every realization of the shock, the monopsony emits at the

optimal level but pays a lower price.

3 The Dynamic Model

This section uses a dynamic version of Weitzman’s (1974) familiar static linear-

quadratic model. The full-information SCC increases with emissions, but the

smart tax might either increase or decrease in emissions. The smart tax im-

plements the full-information (first best) level of emissions as a unique stable
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competitive equilibrium. The stability condition under the smart cap is more

delicate. The smart tax provides an extremely simple way of expressing the

welfare ranking of the standard tax and quota, one that exactly parallels Weitz-

man’s ranking for the static model. We also examine certificate trading across

periods and quantify the smart cap and smart tax.

3.1 Model and Analytic Results

We measure the pollution stock St at the beginning of period t by its deviation

from the zero-cost level (e.g., the pre-industrial level of GHG). The stock of

pollution at the end of the period is

St+1 = δSt + Et,

where the parameter δ, 0 < δ ≤ 1, measures the pollutant’s persistence.

At the beginning of period t, the policy maker and all firms know the value

of the random variable θt−1. Firms, but not the policy maker, then observe the

innovation εt ∼ iid (0, σ2). We move straight to the model of the representative

firm because the market for certificates aggregates the individual shocks as

described at the end of section 2.1. Thus, we have the equation of motion

θt = ρθt−1 + εt,

with shock (or technology) persistence 0 < ρ ≤ 1.10 The realization of εt

alters the marginal benefit of emissions, via a change in technology affect-

ing emissions intensity, or a change in economic activity affecting emissions

demand.

Only a fraction, 0 < α ≤ 1, of this innovation is embodied in the current

period, so firms in period t operate with technology level

θ̂t = ρθt−1 + αεt.

We can interpret α as a share of firms adopting the new technology in the

current period, as in the literature on technology diffusion (Rogers 1995).

More generally, a higher α represents a quicker response of firms to the shock.

10For ρ = 0 the social cost of carbon is independent of θt−1, and the separation implies
similar results as in the static model. We ignore the empirically less relevant case ρ < 0.
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The benefits from emissions (or abatement costs) depend linearly on the

technology level,

B
(

Et, θ̂t, t
)

=
(

ht + θ̂t

)

Et −
f

2
E2

t ,

so the marginal benefits of emissions are ∂B
∂E

= ht + θ̂t − fEt, with f > 0.

Hereafter, we assume that the marginal benefits at zero emissions, ht + θ̂t,

and the full-information (first best) level of emissions are both positive with

probability one. Flow damages are quadratic in the pollution stock

D (St) =
b

2
S2
t ,

with b > 0. The policy maker with discount factor 0 < β < 1 maximizes

Et

∞
∑

s=t

βs−t

((

hs + θ̂s −
1

2
fEs

)

Es −
1

2
bS2

s

)

.

The policy maker is aware that future optimal emission policies depend on the

future realizations of the state variables.

To derive the smart tax and cap, we first solve the full information opti-

mum, where the social cost of carbon, SCC, is a linear function of the stock

of carbon and the technology level (see equation 21 in Appendix C). An addi-

tional unit of emissions produces an additional unit of the next-period stock,

so the derivative of the SCC w.r.t. current emissions is the same as the deriva-

tive w.r.t. next-period stock. This derivative is positive because damages are

convex. The full information SCC depends on the innovation εt. The smart

tax, SCC∗, in contrast, is independent of this innovation.

Proposition 4 (i) The smart tax is

SCC∗
t = A0St + A1θt−1 + γEt + at. (8)

(ii) The smart tax’s emissions’ slope, γ, can take either sign. There exists

α∗ ∈ (0, β) such that for α > α∗

γ =
∂SCC∗

t

∂Et

>
∂SCCt

∂Et

> 0, (9)
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and for α < α∗

γ =
∂SCC∗

t

∂Et

< 0 and
∂SCCt

∂Et

> 0. (10)

For α = α∗, the slope of the smart tax is infinite, and a conventional cap

and trade achieves the first best emission allocation. As α passes through α∗

(from below), the slope of the smart tax switches from −∞ to +∞, and for

α > α∗ the slope of the smart tax decreases continuously in α.

(iii) The smart tax supports the optimal level of emissions as a globally

stable competitive equilibrium for all α ∈ (0, 1], i.e., for both positive and

negative γ.

Proposition 4 shows that our dynamic model can produce cases i − iii of

Proposition 1.11 For α ≈ 1, a positive shock ε causes a larger increase in the

marginal benefit of emissions than in the social cost of carbon (MBε > SCCε)

and the smart tax is steeper than the SCC (case i in Proposition 1). In

this case, a positive shock increases the optimal emissions level. For α small, a

shock has little effect on the present period’s marginal benefit of emissions, but

a non-negligible effect on the SCC. In this case, the smart tax has a negative

slope (case iii in Proposition 1). Here, a positive shock lowers the optimal level

of emisisons. Finally, if α = α∗, the shock equally affects marginal benefits and

damages from emissions, and a conventional cap and trade-system achieves the

first best emission allocation (case ii in Proposition 1).

The proposition also shows that a negatively sloped smart tax requires

α < 1; here the technological innovation is observed but not fully implemented

in the current period. Only then does the market price carry sufficient infor-

mation to affect future marginal damages from emissions more than present

marginal benefits. Regardless of the value of α, the smart tax implements the

social optimum as a stable competitive equilibrium.

We now consider the smart cap. To simplify notation, we define Ât ≡

A0St + A1θt−1 + at, thereby collecting all of the time-dependent variables in

the formula for the smart tax, apart from the current emissions level, Et. With

11The proof gives the formula for α∗ and for the functions A0, A1, γ and at; at depends
on time because of the trend ht.The functions A0 and A1, like γ, switch signs at α∗.
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this definition, the smart tax is SCC∗
t = Ât + γEt. We follow the same logic

as in Section 2.1. The firm’s price of a unit of emissions is pEt = pt
qt(pt)

. We

construct the smart cap so that it implements the optimal level of emissions,

i.e., we set pt
qt(pt)

= Ât+γEt. The subscript on qt serves as a reminder that the

redemption function depends on time via the function Ât. We have

Proposition 5 If γ ≥ 0, the redemption function

q+t (pt) =
1

2γQ

(

−Ât +

√

Ât

2
+ 4γQpt

)

implements the first-best emission level as a stable competitive equilibrium.

This redemption function increases in the price of certificates.

If γ < 0 the redemption function

q−t =
1

−2γQ

(

Ât +

√

Â2
t + 4γQp

)

implements the first-best emissions level as a stable competitive equilibrium on

the domain pt ∈ [0, Ât
2

−4γQ
], with the range of emissions Et ∈ [ Ât

−2γ
, Ât

−γ
]. Here,

the redemption function decreases in the certificate price.

Consistent with Proposition 2 for the general case, the smart cap is stable and

increases with the certificate price when the smart tax increases. Proposition 5

gives the precise form of the optimal smart cap. For γ < 0, where the smart tax

decreases, the set of emissions levels supported by the smart cap equals the set

where SCC∗ > 0. This is the range satisfying the local stability inequality (5).

The market response to either the smart tax or the smart cap enables the

regulator to recover one piece of hidden information. Optimal policy depends

on the persistence of this shock, measured by ρ, and the speed at which firms

respond to the shock, measured by α. We can interpret the shock as being

related either to technology or to the business cycle. A technology shock tends

to be genuinely asymmetric information. Firms’ response to the policy reveals

the hidden technology shock. The macro shock is unknown when the regulator

announces the smart tax or smart cap, but observed by both firms and the reg-

ulator during the compliance period. Therefore, the policy can be conditioned

on the macro shock. If the macro shock is iid, we do not need to modify the
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model presented above. More plausibly, if expectations of the macro shock

depend on information such as current and lagged macro conditions, those

variables become part of the information set. The full information SCC and

both the smart tax and the smart cap then depend on those variables, but the

structure of the policy does not change.

A famous result, due to Weitzman (1974), states that in the linear-quadratic

model with additive shocks and a flow pollutant, the standard tax welfare-

dominates the standard quota if and only if the slope of marginal damages is

less than the slope of marginal abatement costs (equal to the slope of marginal

benefit of emissions). The literature reviewed in Footnote 3 studies the more

complicated welfare comparison between the standard tax and quota for a

stock pollutant. The smart tax provides a novel and intuitive link between the

models with flow and stock pollutants. Section 2.1 notes that the marginal

damage function coincides with the smart tax for a flow pollutant. Thus, for

a flow pollutant we can restate Weitzman’s result as “For a flow pollutant,

taxes welfare-dominate quotas if and only if the slope of the smart tax is less

than the slope of marginal abatement costs". The same comparison holds with

stock pollutants:

Proposition 6 With stock pollutants, (standard) taxes welfare-dominate (stan-

dard) quotas if and only if the slope of the smart tax, γ, is less than the slope

of the marginal abatement cost, f .

3.2 Inter-period trading and optimality

At least eight cap and trade programs, including California’s Low Emission

Vehicle Program, the EPA’s SO2 and NOX programs, and the EU’s Emissions

Trading Scheme, allow intertemporal banking of permits (Holland & Moore

2013). Intertermporal trading can smooth carbon price fluctuations triggered

by technology or growth shocks, potentially increasing welfare. A smart cap

does not require intertemporal trading, because emissions respond to shocks

optimally by construction. Intertemporal trading may nevertheless be relevant

if the commitment phase is long or if the institutional framework does not

permit conditioning the smart cap on macroeconomic indices.
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We assume that the regulator allows interperiod trading within a commit-

ment phase lasting T periods. For example, each period might last for one

year and a commitment phase may be a decade (T = 10). Firms can trade

certificates across the T periods; the certificate cap, Q, applies to the entire

commitment phase. Later commitment phases might have a different num-

ber of periods, but we assume that: policy is set optimally in the future; the

horizon is infinite; and the certificates of the current phase cannot be used

in later phases. In the model above firms do not have to make intertemporal

decisions. Keeping with this setting, we assume the existence of a risk neutral

arbitrageur whose actions make firms indifferent about the timing of emissions

and certificate purchases.

To avoid the need for double-subscripts, we consider the case of the first

T -period commitment phase, with the initial period set at t = 1. The smart

cap’s redemption function in period t, qt(pt), determines the exchange ratio qt

between certificates and carbon dioxide emitted in period t. For Et emissions

in period t, the representative firm has to deliver Et

qt
certificates at the end of

the commitment phase. Market clearing requires
∑T

t=1
Et

qt
= Q, where Q is

the total number of certificates for this commitment phase. Focusing on the

fundamental issues of inter-period trading, we assume that innovations are

immediately adopted: α = 1 ⇒ θ̂t = θt.

Proposition 7 There exists a sequence of redemption functions q
p1,...,pt−1

t (pt),

t ∈ {1, ..., T}, and an allocation of certificates Q(p1, ..., pT−1) supporting the

optimal emissions trajectory as a decentralized intertemporal equilibrium.

The aggregate number of certificates for this commitment phase depends on

the sequence of certificate prices within that phase. If the aggregate number

Q was fixed, the certificates remaining at the beginning of period T would be

stochastic. However, a given redemption function qT achieves the first best

allocation only for a specific number of certificates. Therefore, the aggregate

number of certificates has to depend on the earlier prices in order to guaran-

tee that the number of certificates remaining in period T , together with the

redemption function in that period, support the optimal emissions level.

Under banking and borrowing – in both a standard and a smart cap –

21



Smart Cap Karp & Traeger

intertemporal arbitrage implies that the price of certificates has to rise at the

rate of interest. An emissions price growing at the rate of interest is generally

not optimal, which is an issue for standard emission trading schemes. Proposi-

tion 7’s period-dependence of the redemption function, i.e., the exchange ratio

between emissions and certificates, decouples the price increase of emissions

from the intertemporal arbitrage condition to achieve first best.12

Proposition 7 conditions the redemption functions on the certificate price

in earlier periods. Such conditioning allows the mechanism to incorporate the

carbon stock fluctuations resulting from the sequence of technology shocks over

the course of a commitment phase. Over a fairly short commitment phase, e.g.

a decade, the stock of carbon is likely to vary much less than the technology

variable. Then, it seems reasonable to neglect a conditioning of the redemption

functions on the earlier period’s price realizations.

3.3 Quantification

We use our results to study global climate change. As the introduction notes,

many countries are either planning to use or currently using taxes or cap and

trade systems to reduce their CO2 emissions. We quantify the smart tax and

cap for the case of global cooperation.

Output, Abatement, and Emissions. Global world output in 2020

is 130 trillion USD using purchasing power parity weights (IMF 2020). We

use Nordhaus & Sztorc’s (2013) DICE model to estimate the 2020 marginal

abatement cost slope as f = 2.5 ∗ 10−9 USD

tCO2
2 . Much of our analysis depends

only on the slopes of the marginal abatement cost and marginal damage curves.

The absolute levels of the social cost of carbon also depends on h = 101USD
tCO2

,

the intercept of marginal abatement costs. We assume that this intercept falls

exogenously by 1% per year.13 This calibration implies a business as usual

12In a standard cap and trade system with deterministic technological change (Kling &
Rubin 1997) or uncertainty about abatement costs (Yates & Cronshaw 2001) it is not optimal
that the emissions prices grows at the consumption discount factor. The stock pollutant
creates additional reasons for the optimal expected marginal abatement cost to vary over
time. In these circumstances, the literature suggests using certificate discount factors. Our
redemption function qt(pt) already decouples certificate prices from absolute emissions and
incorporates such discount factors.

13These values derive from the optimized DICE 2013 run for the year 2020. We set the
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emission level of EBAU = 40GtCO2 , implying that we abate a few percent of

BAU emissions in 2020.

Technology diffusion. We obtain an estimate (or guesstimate) of the

technology diffusion parameter α by regressing US CO2 emissions in 1995-

2010 against (stocks and flows of) green patents on. We assume a 5 year

commitment periods and ρ = 1, i.e., no decay of innovations (patents). We

restrict attention to “major” green patents, those registered in all three ma-

jor patent offices, United States, Europe, and Japan. We summarize details

in Appendix A.14 Our preferred estimate lies slightly above α ≈ 1/4; about

one quarter of the long-run impact of the innovation shocks occur within the

current commitment phase. Other relevant innovations, which are not be-

ing patented, might be adopted faster leading to a somewhat higher overall

adoption share α. We present results for α ∈ {0.25, 0.5, 1}.

Climate. We use the model of transient climate response to cumulative

emissions (TCRE) to calibrate climate dynamics. Recent climate modeling

shows that average global atmospheric temperature can be well-approximated

as a linear function of cumulative historic emissions. The consensus report

IPCC (2013) states that the proportionality factor between cumulative emis-

sions and temperature, TCRE, is likely in the range between 0.8◦C and 2.5◦C

for each 1000 GtC (1012 tons of carbon). We use the mid-value TCRE,

1.65 ∗ 10−15 ◦C
GtC

.15 Our state variable, St, is cumulative historic emissions,

which are proportional to temperature; the persistence factor is δ = 1.

We briefly comment on the intuition of the TCRE model. In the actual

climate system, most carbon dioxide emissions are eventually removed from the

expected value of the technology shock in the present period to zero, thereby making the
calibration results independent of α and ρ.

14Our preferred estimate is α = 0.28. Extending the time series of our estimation further
back to 1990 renders the time series nonstationary and delivers the slightly higher estimate
α = 0.34. Going back to 1985, the coefficients lose significance and the coefficent on new
patents has the wrong sign. Controlling for oil prices and allowing for a break in the
quadratic trend does not regain significance, but reasonable coeffient estimates that imply
α = 0.27. Controlling for oil prices and introducing a flexible break point in the trend does
not affect the estimates of the shorter time series.

15The TCRE is usually expressed w.r.t. tons of carbon (C), which is how we cite it here.
However, our other values follow the convention expressing the SCC in USD per ton of
carbon dioxide (CO2).
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atmosphere, but each emission unit has a cumulative impact on temperature

over time through its greenhouse effect. Scientific models of climate change

find that the removal of carbon from the atmosphere and the delayed warming

response to an increase in carbon concentrations approximately cancel each

other, making cumulative historic emissions a good proxy for temperature.

Damages. DICE assumes no damages at the pre-industrial temperature

level and global damages of approximately 1% of world output at a 2◦C warm-

ing (Nordhaus & Sztorc 2013). Our baseline calibration of the damage function

uses this assumptions, producing bbase = 1.3 ∗ 10−13 USD
tCO2

2

. We also introduce

a “concerned ” scenario that assumes today’s damage from global warming is

zero, but a 3◦C warming causes a loss of 5% of world output. This scenario

implies a more convex damage function with bconcerned = 6.6 ∗ 10−13 USD

tCO2
2 . We

can also interpret this scenario as reflecting concern about tipping points.

Expected optimal SCC. We test our calibration by calculating the im-

plied optimal carbon tax under the expected technology realization. At the

optimal emission allocation, the smart tax equals the SCC by construction. For

an annual rate of pure time preference (rptp) of 1.5% (β = 0.985) we obtain an

optimal carbon tax of 26USD
tCO2

. This tax is a little higher than in DICE, which

has recently been discovered to exaggerate the temperature delay in warming

(a feature we avoid by using the TCRE model). Reducing the rptp to 0.5%

(β = 0.995), the median response of Drupp, Freeman, Groom & Nesje’s (2018)

expert survey, approximately doubles this tax (55USD
tCO2

). These values suggest

that the model calibration is reasonable. The corresponding optimal emission

levels are Eopt = 29GtCO2 for β = 0.985, and Eopt = 18GtCO2 for β = 0.995.

Under the 1.5% rptp, the concerned scenario using the more convex damage

function increases the tax only mildly to 30USD
tCO2

.16

Results Base Calibration. Figure 4 presents the smart tax and cap

assuming a five-year commitment period and immediate adoption of the new

innovation (α = 1). The left panel graphs the smart tax as well as the SCC

and the marginal benefits from emissions under the expected technology re-

16The concerned scenario reduces current damages but increases the damages resulting
from a higher level of global warming. The optimal expected carbon tax assumes optimal
future mitigation policy and, thus, temperature is unlikely to reach high levels.
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Figure 4: Calibrated Smart Tax and Cap. Left: SCC and marginal benefits of
emissions (MB) under the expected technology realization as well as smart tax (in-
dependent of technology realization). Right: Smart Cap, which is the redemption
function times expected emissions.

alization. By construction, all the lines intersect at the expected price and

emission levels. For other realizations of technology, the equilibrium moves

along the smart tax. We observe that (i) the smart tax is substantially steeper

than the SCC curve and (ii) the (absolute of the) MB-curve’s slope is greater

than the slope of the smart tax. By Proposition 6, taxes are preferred over

quantities in this baseline scenario with α = 1.

The smart cap shown on the right of Figure 4 eliminates the welfare loss

of a tax. To make it easy to compare the smart tax and the smart cap, we

depict the overall (global) cap in GtCO2. We set the number of certificates,

Q, equal to the optimal emission level under the expected technology real-

ization. With this choice, the certificate price under the expected technology

realization coincides with the smart tax of 26USD
tCO2

. Greener than expected

technological progress, causing a downward shift in the demand for emissions

(the MB curve), leads to a lower certificate price and a contraction of the

smart cap. Similarly, less green technological progress increases the certificate

price and expands the smart cap. The redemption function’s graph is identical

to that of the smart cap once we change the scale on the vertical axis from

aggregate emissions to the emission level per certificate.

Figure 5 varies the speed of firms’ technology adoption, with the solid

graphs replicating those of Figure 4, where α = 1. The dashed graph uses our
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Figure 5: Variations of speed of technology adoption. Immediate full adoption
(α = 1), half of firms adopt during a 5-year commitment period (α = .5), one quarter
of firms adopts during a 5-year committeemen period (α = .25). Left: Smart tax.
Depicted SCC assumes expected technology realization. Right: Smart Cap.

preferred estimate α ≈ 0.25, where only one quarter of firms adopt the new

technology innovations within the 5-year commitment period. The reduced

speed of adoption substantially increases the slope of the smart tax and flattens

the slope of the smart cap, which graphs emissions over price rather than price

over emissions. We note that the slope of the dashed smart tax exceeds that

of the MB-curve (depicted in Figure 4); thus, by Proposition 6 quantities

dominate taxes for α = 0.25. The dash-dotted line of α = 0.5, assuming

that half of the firms adopt the new innovation during the 5-year commitment

period. This value represents that less fundamental non-patented innovations

might also be adopted more quickly, increasing α. For α = 0.5, the smart

tax and the MB-curve have almost the same slope; here, the welfare difference

between a tax and a standard cap is close to zero.

Concerned Scenario. Figure 6 presents the results for the concerned

scenario, where damages are more convex (initially lower and then higher).

The smart tax and the SCC under the expected technology realization are

higher than in the baseline. They increase substantially faster for lower than

expected technological progress, because the resulting higher future emissions

increase damages more strongly with more convex damages. Similarly, higher

than expected green progress reduces the equilibrium prices more strongly;

here, a reduction in the future CO2 stock implies a stronger reduction of fu-
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Figure 6: Concerned scenario. Smart tax (left) and smart cap (right) assuming a
higher damage convexity. The different curves correspond to immediate full adoption
(α = 1), half of firms adopting (α = .5), and one quarter of firms adopting during a
5-year commitment period (α = .25).

ture damages than in the baseline. The smart cap, a function of the certifi-

cate price, shows the same qualitative features as a function of the certificate

price. Reducing the speed of technology adoption, α, rotates the smart tax

graph counter-clockwise (making it steeper) and the smart cap graph clock-

wise (making it less steep). For α / 0.4, the smart tax and cap have negative

slopes (see as well right graph in Figure 7).

In particular, our estimate α ≈ 0.25 implies a decreasing smart tax and

cap. Here, a higher than expected green technological progress not only lowers

the cost of abatement, but also reduces long-term damages sufficiently that it

is optimal to respond with both a price reduction and an emissions increase

(moving down on the smart tax graph and up on the smart cap graph). The

planner knows that most of the improved technology will be adopted in the

next period, lowering future emissions and the marginal damage associated

with current emissions. Similarly, less green progress increases the emissions

price and, given the damage convexity, urges us to cut more emissions.

Given the novelty of the finding, it merits discussing another variation of

the intuition. Lower than expected green progress is bad news for both firms

and the environment. In the baseline scenario (or, here, for α ≥ 0.4), the

optimal policy uses the environment to smooth shocks to the firms; if abate-

ment turns out to be very expensive, we allow firms to emit more. However, if
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Figure 7: Left: Smart tax under the baseline calibration but with a reduced rate
of pure time preference (0.5% instead of 1.5%). The share α of immediate adopters
varies in three discrete steps from one to one quarter. Right: Slope of the smart
tax. The share α of immediate technology adopters varies continuously along the
horizontal axis and the three curves correspond to the different scenarios.

damages are sufficiently convex and α is low, the future environmental damage

implied by the lack of green progress is too costly to tolerate such smoothing

at the expense of the environment. Instead of using costs to the environment

as a substitute for costs to the firms, the policy maker now treats them as

complements. Under bad news we increase the unit price and cut emissions.

Conversely, under good news, we lower the price and permit firms to emit

more.

Reduction of Time Preference. The left graph in Figure 7 reduces

the rate of pure time preference from an annual 1.5% to 0.5% in the base

scenario. The implications are qualitatively similar to those observed in the

previous variation with more convex damages. Here, the policy maker pays

more attention to future damages. As a result, the SCC under the expected

realization increases substantially and the smart tax rotates counter-clockwise

for any speed of technology adoption. An adoption share of α = 0.5 during

the 5-year commitment period makes the smart tax vertical and the smart cap

horizontal (not shown). Under these assumptions, the smart cap corresponds

with the classical cap and the ordinary cap and trade system reaches first best.

Slope over Adoption Share. The right panel of Figure 7 plots the

slopes of the smart tax over the “speed of adoption”, i.e., the share of firms
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that adopt α within the 5-year commitment period. Starting from the right,

we observe that the smart tax is most sensitive to emissions under the reduced

discount rate and more sensitive in the concerned scenario than in the baseline.

This difference in slope (sensitivity) increases as we reduce the share α. The

vertical lines identify the values of α at which the slope of the smart cap flips

sign: α ≈ 0.5 for the rate of pure time preference of 0.5% (green dashed), α

just below 0.4% for the concerned scenario (red dash-dotted), and in the base

scenario the adoption share within the commitment period would have to fall

all the way to α = 0.14 (half or our preferred estimate) to turn a standard cap

first best.

4 Practical Implementation of a Smart Cap

This section discusses the practical implementation of the smart cap and some

easily implemented compromises to improve efficiency in pre-existing cap and

trade systems. In the real world, (i) business cycles have a major impact on

emissions and certificate prices, (ii) information is revealed continuously over

the course of a commitment phase and certificates are traded continuously and

(iii) political institutions tend to favor simplicity and minimal change. While

the smart cap can help with point (i), we repeat that it is better to deal with

this issue by explicitly conditioning the (smart or standard) cap on GDP or

alternative business cycle indicators. Thus, this section is mostly concerned

with points (ii) and (iii). That said, much or this discussion also applies to

cost shocks generated by business cycles or other sources of price shocks.

Section 3.2 explains how a sequence of announced redemption functions

can achieve or improve efficiency when shocks and trading occur repeatedly

during a commitment period. For example, we can choose annual (or monthly)

compliance periods with annual (or monthly) redemption functions. Proposi-

tion 7 would motivate a dense sequence of redemption functions that respond

directly to preceding price realizations. As we noted, this conditioning enables

the smart cap to respond to the small fluctuations of the CO2 stock during

a commitment period, but these are unimportant during a five-year period.

Thus, we recommend an annual redemption function using a weighted aver-
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age of carbon prices over the course of the year. Certificates will be traded

throughout the year and beyond as certificate delivery is usually required only

a few months after the end of the period.17 The annual redemption functions

would be announced for a 5 year commitment period, changing primarily to

reflect expected technological progress and economic growth.

The smart cap’s certificates are not in units of CO2. Similar trading is

already common in fishery regulation. The smart cap’s certificates correspond

to individual fishing quotas, giving their owner claim to a share of the total

allowable catch (here: emission level). In regulating fisheries, the regulator

sets the total allowable catch period by period. In the smart cap, the total

emission level is determined endogenously to address the asymmetric informa-

tion problem. Both markets trade shares of a pie of varying size. The firm’s

burden in forming expectations about future emission prices is higher than

in the standard cap, but it is present in both. A specialized arbitrageur can

reduce this burden by selling claims in units of CO2 to the firms. We note

that expectation formation under the current market stability reserve in the

EU ETS is also very complicated; there, estimates over future carbon prices

diverge substantially (Perino 2018, Silbye & Birch-Sørensen 2019).18

If a market for flexible certificates is not politically acceptable, there are

more conservative approaches that can incorporate much of the smart cap’s

efficiency gain while keeping certificates labeled in units of CO2. In a first

simplified alternative, the regulator can make the current period’s cap a func-

tion of last period’s closing (or average) price. The redemption function would

expand or contract aggregate emissions with a short delay. Including bank-

ing and/or borrowing – perhaps with some discounting of previous period’s

certificates – could help to incorporate future adjustments into the present pe-

riod’s expectations and actions. In a second alternative, the regulator can use

17As in the standard cap, non-compliance is subject to monitoring and fines. Given
the slightly more sophisticated market clearing conditions, one could consider convex fines,
increasing non-linearly in the certificate gap. In case market clearing fails, one could permit
firms to submit next period certificates, which can be discounted resembling a fine.

18Most emissions trading systems with banking and borrowing, including the EU ETS,
are unclear about the terminal conditions that are important in determining the certificate
price. This ambiguity complicates firms’ long-term planning. Because the smart cap does
not require banking, it reduces this source of uncertainty.
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existing auction systems to implement a simple analogue of the smart cap’s

redemption function during each auction. Auctions in the EU ETS and other

cap and trade systems require firms to submit demand functions, permitting

the auctioneer to determine the equilibrium price and settle the certificate dis-

tribution. Such an auction can readily match demand with the redemption

function or smart tax rather than a fixed amount of certificates. Here, the

redemption function essentially becomes an offer curve. A third alternative,

using an even smaller change to existing markets, makes the number of certifi-

cates auctioned at a given date depend on the price of the previous auction(s).

Then, auctions would provide fixed quantities. However, expectations would

already respond immediately to the (slightly) lagged quantity response; e.g.,

auctions in the ETS usually take place every two weeks. We emphasize that

such offer curves or delayed response functions should rely on the smart tax

rather than the marginal damages or the SCC curve. The disadvantage of this

approach is that previously sold certificates do not respond to price signals,

requiring that new auctions respond more strongly and possibly limiting their

leverage. However, any of these approaches can provide substantial efficiency

improvements while keeping the system as close as possible to existing forms of

the standard cap. We also note that all of these suggestions are quantity-based

regulation, and thus can be implemented and changed by simple majority in

the EU ETS; in contrast, a carbon tax (price instrument) requires unanimous

approval.

Policy groups and lobbyists strongly influence policy. Environmental orga-

nizations and citizen groups that favor strong climate policy have little toler-

ance for the low, and much lower-than-expected, carbon prices that emerged

in many carbon trading systems during the past decade. Firms are afraid

that unforeseen shocks can cause certificate prices to increase steeply above

expected levels. Here, the smart cap provides a natural compromise – at

least under the assumption of an increasing redemption function. If abate-

ment turns out to be cheaper, the policy instrument automatically ramps up

reduction efforts and prevents the price from falling too much. If the certifi-

cate price threatens to “go through the roof” in a standard cap, the smart cap

would expand, lowering the pressure on firms. Hence, a smart cap is not only a
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more efficient policy instrument, but it also promises to ease political compro-

mises across different interest groups. Outside of the economic discipline, cap

and trade systems, including hybrid system, are criticized for eliminating the

moral incentive to reduce emissions: if an environmentally conscientious actor

felt compelled to reduce emissions for non-pecuniary reasons, cost-minimizing

actors would crowd out those reductions and eliminate the non-pecuniary in-

centive.19 In contrast, the smart cap rewards morally-motivated emissions

reductions by increasing the emissions price and reducing aggregate emissions.

5 Discussion

We introduce a new cap and trade system that efficiently controls stock pollu-

tion under asymmetric information about firms’ abatement technologies. The

prime application is the mitigation of climate change. To date, cap and trade-

systems are the main market-based approach for the regulation of greenhouse

gas emissions. Recent years have exposed major inefficiencies in standard cap

and trade systems’ response to cost shocks. The smart cap’s ability to endoge-

nously respond to shocks by optimally relaxing or tightening the cap reduces

the cost of greenhouse gas mitigation. The smart cap is also more efficient

than a standard tax, while building on existing institutions and maintaining

the political advantages of established cap and trade systems.

Climate change is a stock pollution problem. The literature has repeatedly

pointed out that the SCC as a function of emissions is relatively flat. In many

settings, the SCC curve is the stock analogue of the marginal damage curve for

a flow pollutant. Therefore, building on Weitzman’s (1974) reasoning for a flow

pollutant, a common conjecture is that optimal emission prices should respond

relatively little to shocks, whereas CO2 emissions should be very responsive.

If this conjecture were correct, the optimal smart cap would be very elastic.

It would be similar to a standard tax, which would unambiguously dominate

the standard cap and trade. We explain why this intuitive argument is wrong

19Jarke & Perino (2017) explain that under incomplete coverage of the cap, inter-sectoral
leakage can translate individual effort into an overall emission reduction. Yet, they also
show that it can lead to an overall emissions increase under different circumstances.
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for the case of climate change. The SCC’s slope w.r.t. emissions does not

represent the optimal equilibrium price change. A shock to the abatement

technology has a persistent impact on the emission flow, thereby changing the

future emission stock and future marginal damages. As a result, lower than

expected green technological progress implies not only higher current marginal

abatement costs for firms, but also a higher SCC. Permitting firms to increase

emissions under an unfavorable realization of the technology shock also comes

at an increased cost to the environment. As a result, optimal emissions (the

smart cap) should be less elastic than the slope of the SCC suggests.

We present a simple general model as well as a linear-quadratic quantita-

tive dynamic integrated assessment model of climate change. We show that

the share of firms adopting technological innovations within a given commit-

ment period crucially determines the optimal responsiveness of emissions to

changes in the market price of certificates. If a smaller share of firms adopts

new innovations immediately, then observed shocks in the certificate market

have stronger persistent implications for future adopted technology, emissions,

and for social costs. A smaller share of adoption within a commitment period

flattens the smart cap and steepens the optimal price response to emissions.

We call that price response to emissions the smart tax. It is the optimal non-

linear emissions tax, i.e. it is society’s inverse supply function for emissions.

We show that this smart tax, rather than the SCC, permits extending Weitz-

man’s (1974) intuitive reasoning from a flow pollutant to a stock pollutant.

A standard tax dominates a standard cap and trade if and only if marginal

abatement costs are steeper than the smart tax curve.

In most circumstances, including our baseline calibration, a policy maker

uses emission levels to smooth the cost shocks to firms, resulting in an up-

ward sloping relation between emission price and emission level, i.e., upward

sloping smart tax and cap. We characterize stability of equilibria and show

that, whenever the smart tax is upwards sloping, a monopsony would use the

market power to reduce emissions. However, the smart tax and cap might

slope downwards if, e.g., damages are more convex or we reduce the pure rate

of time preference from 1.5% to a recent (median) expert suggestion of 0.5%.

Then, an unfavorable technology realization increases the SCC sufficiently that
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emissions have to be reduced even under a higher marginal abatement cost;

the optimal price-emission relationship turns negative.

Current mitigation levels are rarely optimal. However, the smart cap en-

ables society to abate more at a lower cost. In addition, a smart cap allows the

regulator to balance carbon price and emission targets. Several sectors argue

that the risk of a high carbon price hurts their economic competitiveness. Con-

sumers and environmental interest groups fear that a low carbon price leaves

cheap abatement options on the table. The smart cap equips the regulator

with a compromise: if abatement turns out to be cheap, we abate more, but if

it turns out to be expensive, we abate less. Thus, we believe that the smart cap

is not only more efficient as a policy instrument, but also helpful in reaching a

compromise across different lobbies. The smart cap’s ability to endogenously

contract also addresses a criticism that non-economists frequently raise against

the classical cap. If an individual or a firm reduces their emissions out of a

moral obligation, these reduction would be perfectly crowded out by other

emission sources. With a positively sloped smart cap, those actions would still

be rewarded, even if not to the full extent.

The time horizon of setting and revising caps or taxes is historically long,

around 5-10 years. Often these adjustments track international negotiations,

which have proven even more inert. On these time horizons uncertainties about

green technological progress, economic growth, and global convergence become

even more important. To date, climate negotiations have focused entirely on

quantity targets. Our paper’s insights also emphasize the relevance of a “smart

cap” negotiation, i.e., policy makers should agree to do more if mitigation

turns out cheaper than expected, and less if it turns out more expensive. This

approach to negotiations is more efficient, and likely politically more palatable

at the same time.

A large literature discusses distributional impact and political economy as-

pects of pollution regulation. In many aspects, the smart cap is a combination

of a standard cap and trade system and a tax. As with a standard cap, many

of the arguments favoring the auctioning of certificates as compared to their

grandfathering also apply to the smart cap. We leave a detailed discussion of

these interesting and important aspects to future research.
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Appendix: For Online Publication

Note: Appendices B and C are for online publication. Appendix A could

alternatively be considered for the online Appendix or the in-print publica-

tion. Appendix D contains details for the reviewing process and could also be

omitted entirely in a publication.

A Calibration Details for Technology Adoption

Share α

Method and Estimation Equation. The present section derives a crude

estimate of our parameter α, the adoption share of an innovations during a

commitment period. As in section 3.3, we assume commitment periods of

5 years and that technology is fully persistent. We use green patents as a

proxy for our technology stock. New patents over the course of a commitment

period represent the innovations (expected trend plus shock). To identify α, we

regress business as usual emissions on patents in the period preceding serious

CO2 regulation. Business as usual emissions in our model are

Et =
1

f
(ht + θt−1 + αǫt) .

We assume that the adoption share αt applies equally to the deviation from the

trend as to the expected patent trend, i.e., ht = h̄t−1+α∆t and h̄t = h̄t−1+∆t.

Our identification assumes that the technology stock is linear in the amount

of green patents h̄t−1 + θt−1 = γ1 + γ2Pt−1 with γ1 ∈ R and γ2 ∈ R+. Then,

our estimation equation becomes

Et =
γ2
f

(Pt−1 + α(Pt − Pt−1)) + γ3 (11)
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with γ3 ∈ R. Translated into an empirical model controlling for a time trend

and GDP, and using an annual time step, the estimation takes the form

t
∑

τ=t−4

Emissionsτ = µ0 + µ1 Trendt + µ2

t
∑

τ=t−4

Gdpτ

+ µ3

t
∑

τ=t−4

New green patentsτ + µ4

t−5
∑

τ=0

New green patentsτ +
t
∑

τ=t−4

ζt.

If follows from equation (11) that we obtain the adoption share α as the ratio

of the regression coefficients on new patents and the stock of patents before

the beginning of the commitment period, µ4

µ3
=

γ2
f
α

γ2
f

= α. Our base scenario

controls only for GDP and uses a quadratic trend, our more sophisticated

estimation scenario also controls for oil prices and allows for a break-point

in the trend (more below). We assume that the estimation error ζT is i.i.d.

and ζt ∼ N(0, σ2). By construction, the observations have serially correlated

errors for the adjacent 5 years. Therefore, we use the Newey-West estimator

with five lags, which is robust to the serial correlation between errors up to

five periods.

Data. We use the PATSTAT database of the (European Patent Office

2020). We use green patents as identified by the classification code Y02E.20

As is common in the literature, we only consider major patents, i.e., patents

that are registered at all of the three major patent offices, the United States,

Europe, and Japan. We use the earliest filing date of the patent as the time

of innovation. We obtain data on emissions and other controls variables from

World Bank (2014, 2019) and British Petroleum (2020). Even if short, we

consider the period from 1995 to 2010 for our preferred estimates. After 2010,

implementations of the Kyoto protocol would interfere with our assumption

of business as usual emissions. Before 1995, detrending the variables becomes

difficult. In particular, the 1980s have seen a strong change in the growth of

green patents and starting before 1995 we are not able to render the time series

stationary. Table 1 gives an overview of the data for our preferred estimation

period, 1995 to 2010.

20We use a patent if the Y02E classification is part of their classification codes.
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Table 1: Descritive Statistics

Mean Std. Dev.

CO2 emissions1 (Yearly) 5452829 275448.5

Early period2 5329343 265499.1

Late period3 5622621 193621.5

Total green patents5 (Yearly) 5083.632 3329.472

Early period 2776.273 1115.06

Late period 8256.25 2619.059

Gross Domestic Product 4 (Yearly) 1.08× 1013 2.88× 1012

Early period 8.67× 1012 1.54× 1012

Late period 1.36× 1013 1.28× 1012

Oil Price6 (Yearly) 37.63731 25.74642

Early period 19.77602 4.594336

Late period 62.19659 21.99409

1 Measured in kilotons of carbon dioxide mass per year.
2The early period runs from 1995 to 2002.
3The late period runs from 2002 to 2010.
4Measured in US dollars (at current prices). For a given year.
5Green patents registered at all the leading patent offices (in the United States, Europe, and Japan) in a

year.
6 Measured in US dollars (at nominal prices). Average over a year.

Results. Table 2 presents the result of our base estimation, which only

controls for GDP and uses a quadratic time trend Trendt = β0t + β1t
2. We

find an estimate of α = 0.28 for our preferred estimation period. Going back

to 1990, our time series are no longer stationary but we still obtain significant

regression coefficients. The estimate increases to α = 0.34. Once we enter

the 1980s, one of our coefficients uses statistical significance and the sign is

off (market in red). Table 3 tries to get a handle on (some of the) issue

controlling for the somewhat volatile oil prices and allowing for a break-point

in the quadratic trend.21 The table leaves the estimate of α = 0.28 in our

21The regression includes a linear-quadratic spline with one break-point

β1 × T imet + β2 × T ime2t + β3 × T imet ×Dummyt + β4 × (T ime2)×Dummyt

where the dummy-variable specifies the breaking point, which we choose to minimize the
sum of squared residuals in the regression.
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preferred period unchanged. Starting in 1990, it slightly reduces the estimate

to α = 0.34. The coefficient on new patents in the time series starting in 1985

remains statistically insignificant, but it changes both sign and magnitude to

a more reasonable values, delivering α = 0.27. Based on these results, we take

α ≈ 0.25 as our low estimate of the share of adoption during a 5 year period,

and we also present the results for a somewhat larger α = 0.5. These values

bound our estimates. We pick a somewhat high upper value because non-

patented innovation might be implemented somewhat faster, increasing the

overall adoption share of green innovation relative to our green-patents-based

adoption share.

Table 2: Base Estimate of Adoption Share α

1995-2010 1990-2010 1985-2010
∑t−5

τ=0 New green patentsτ

Coefficient1 -175.02 -221.49 -195.93

Standard Error2 9.17 8.19 17.26

P − V alue 0.00*** 0.00*** 0.00***
∑t

τ=t−4New green patentsτ

Coefficient3 -48.35 -74.16 29.57

Standard Error2 19.14 21.26 31.04

P − V alue 0.03** 0.00*** 0.35

0.28 0.34 -0.15

Significance levels are * for 0.1, ** for 0.05 and *** for 0.01
1 Read the unit of measurement for the coefficient as "Kilotons of Carbon Dioxide Mass per New Green

Patent".
2 Read the unit of measurement for the standard error as "Kilotons of Carbon Dioxide Mass".
3 Read the unit of measurement for the coefficient as "Kilotons of Carbon Dioxide Mass per New Green

Patent in Stock of Green Patents".
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Table 3: Estimate of Adoption Share α Controlling Additionally for Oil Prices

and Allowing for a Break-Point in the Quadratic Trend

1995-2010 1990-2010 1985-2010
∑t−5

τ=0 New green patentsτ

Coefficient1 -175.74 -185.66 -89.46

Standard Error2 26.13 15.45 24.44

P − V alue 0.00*** 0.00*** 0.00***
∑t

τ=t−4New green patentsτ

Coefficient3 -48.48 -63.45 -26.20

Standard Error2 20.57 23.11 22.38

P − V alue 0.04*** 0.02** 0.06

α-coefficient 0.28 0.34 0.27

Significance levels are * for 0.1, ** for 0.05 and *** for 0.01
1 Read the unit of measurement for the coefficient as "Kilotons of Carbon Dioxide Mass per New Green

Patent".
2 Read the unit of measurement for the standard error as "Kilotons of Carbon Dioxide Mass".
3 Read the unit of measurement for the coefficient as "Kilotons of Carbon Dioxide Mass per New Green

Patent in Stock of Green Patents".
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B Proofs for Section 2

Proof of Proposition 1. For all shock levels θ the first best emission level

satisfies

SCC (E, θ) = MB(E, θ)

⇒ SCCE(E, θ)dE + SCC θ(E, θ)dθ = MBE(E, θ)dE +MB θ(E, θ)dθ (12)

⇒
dE

dθ
=

MBθ(E, θ)− SCC θ(E, θ)

SCCE(E, θ)−MBE(E, θ)

and therefore

SCC
*
E(E) = SCCE(E, θ) + SCC θ(E, θ)

dθ

dǫ

= SCCE(E, θ) + SCC θ(E, θ)
SCCE(E, θ)−MBE(E, θ)

MBθ(E, θ)− SCC θ(E, θ)
(13)

=
SCCE (MBθ − SCC θ) + SCC θ (SCCE −MBE)

MB θ − SCC θ

=
MB θ

MB θ − SCC θ

SCCE +
− SCC θ

MB θ − SCC θ

MBE . (14)

We assume SCCE > MBE < 0, and MB θ > 0. We characterize the five cases

of Proposition 1 one by one. i) If 0 < SCC θ < MB θ then both numerator

and denominator of the fraction in equation (13) are positive and the sec-

ond summand in the equation is adding a positive amount to SCCE so that

SCC
*
E > SCCE. ii) If SCC θ = MB θ then the right hand side of equation (13)

goes to infinity indicating SCC
*
E = +∞. More precisely, before dividing by

the term converging to zero, equation (12) cannot be satisfied for SCC θ = MB θ

in general, but only holds for a particular emission level, which is the opti-

mal cap. iii) If MB θ < SCC θ then the denominator of the two fractions in

equation (14) is negative. Thus, the sign of SCC *
E is negative if and only if

SCC θ MBE −MB θ SCCE < 0 ⇔ SCC θ

MBθ
> SCCE

MBE
, which is satisfied because by

assumption SCC θ

MBθ
> 1 > SCCE

MBE
. iv) If SCC θ = 0 then SCC

*
E = SCCE. v)

If SCC θ < 0 then equation (14) is a standard weighted mean between SCCE

and MB(E) and, hence, smaller than SCCE.

Proof of Proposition 2. Local stability is equivalent to a negative slope of
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excess demand evaluated at the equilibrium.

(i) The inverse supply of emissions is pE,supply = SCC∗ (E) and the inverse

demand is pE,demand = MB(E; θ). If SCC∗
E

(

E
(

pE
))

= 0, the slope of excess

demand equals the slope of the demand for emissions, which is negative by

concavity of marginal benefits. In the case where SCC∗
E

(

E
(

pE
))

is nonzero,

denoting X
(

pE; θ
)

) as excess demand, the slope of excess demand equals22

∂X
(

pE; θ
)

∂pE
=

SCC∗
E

(

E
(

pE
))

−MBE(E
(

pE
)

; θ)

MBE(E (pE) ; θ)SCC∗
E (E (pE))

. (15)

Local stability is equivalent to the right side of (15) being negative. By con-

cavity of benefits, MBE(E
(

pE
)

; θ) < 0 is negative.

Sufficiency of (a) and (b): If SCC∗
E

(

E
(

pE
))

> 0 the slope of excess de-

mand is negative and we conclude that local stability holds. As explained

above, local stability also holds in the case where SCC∗
E

(

E
(

pE
))

= 0, be-

cause there the inverse supply function is vertical. Thus, case (a) implies local

stability. If SCC∗
E

(

E
(

pE
))

< 0 the slope of excess demand is negative and,

thus, case (b) also implies local stability. If either (a) or (b) holds everywhere,

then excess demand is positive for prices below the equilibrium prices and

negative for higher prices, implying global stability and uniqueness.

Necessity of (a) and (b): Local stability implies a downward sloping excess

demand. This condition is met if SCC∗
E

(

E
(

pE
))

= 0, where the inverse

supply is vertical. For SCC∗
E

(

E
(

pE
))

6= 0, local stability implies that the

right side of equation (15) is negative, which is equivalent to

SCC∗
E

(

E
(

pE
))

> MBE(E
(

pE
)

; θ) and SCC∗
E

(

E
(

pE
))

> 0

or

SCC∗
E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ) and SCC∗
E

(

E
(

pE
))

< 0

⇔

SCC∗
E

(

E
(

pE
))

> 0 or SCC∗
E

(

E
(

pE
))

< MBE(E
(

pE
)

; θ),

which implies cases (a) or (b).

22The slope of demand is one over the slope of inverse demand and analogously for supply,

so that
∂X(pE ;θ)

∂pE = 1
MBE(E(pE);θ)

− 1
SCC∗

E
(E(pE))

.
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(ii) We first establish continuous differentiability of the smart cap’s re-

demption function q(p). By equation (3), continuous differentiability of MB

and SCC together with our assumption MB θ 6= SCC θ , implies continuous

differentiability of SCC *. Given continuous differentiability (and thus continu-

ity) of SCC *, equation (4) implies continuous differentiability of the redemption

function.

Under the smart cap, the supply of certificates is fixed at Q, and thus

independent of the certificate price. We first prove the statement regarding

local stability. Suppressing the argument θ, the competitive inverse demand

for certificates, Qc, satisfies p = MB (Qcq (p)) q (p), so the slope of industry

demand satisfies

dp = MBE (Qcq (p)) [q (p) dQc +Qcq′dp] q (p) +MB (Qcq (p)) q′ (p) dp

⇒ [1−MBE (Qcq (p))Qcq′q (p)−MB (Qcq (p)) q′ (p)] dp

= MBE (Qcq (p)) [q (p)]2 dQc

⇒
dQc

dp
=

1− [MBEQ
cq (p) +MB] q′ (p)

[q (p)]2 MBE

. (16)

The denominator of this expression is negative, so the slope of industry de-

mand, and thus the slope of excess demand, is negative if and only if the

numerator is positive. At the equilibrium price p = p∗, the equilibrium re-

quirement that supply equals demand implies Q = Qc. By construction, the

equilibrium price supports the optimal level of emissions, E∗, so in equilibrium

Qcq (p∗) = E∗. Using this equality in equation (16) yields

dQc

dp
< 0 ⇔ 1− [MBE E

∗ +MB] q′(p) > 0.

Using the left side of equation 4 we obtain the condition for local stability

1 >
MBEE

∗ +MB

SCC *
E E + SCC *

stated in the proposition as equation (5).

We proceed to show global stability of the smart cap under the assumption

that ǫq,p(p) 6= 1 for all p. This assumption implies that p

q(p)
is strictly monotonic
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as

d

dp

p

q(p)
=

q(p)− pq′(p)

q(p)2
=

q(p)
(

1− p

q
q′(p)

)

q(p)2
=

1− εq,p
q(p)

6= 0

and we established above continuous differentiabiliy of the smart cap (imply-

ing continuity also of εq,p). As a result, the relation between p and pE = p

q(p)
is

one to one. The assumption that condition (5) holds implies that the slope of

excess demand is negative in the neighborhood of any socially optimal equilib-

rium. Thus, it suffices to show that excess demand does not cross zero again

outside of a socially optimal equilibrium. By equation (16) continuous differ-

entiability of redemption function and marginal benefits implies continuity of

excess demand. Thus, it suffices to show that excess demand does not equal

zero outside of a socially optimal equilibrium ( because crossing implies an

intersection).

Assume that some certificate price p̄ implies a zero excess demand for some

technology realization θ̄. Market clearing implies that MB
(

Ē; θ̄
)

= p̄

q(p̄)
for

some emissions level Ē. We have assumed that the smart cap is defined (only)

on the domain of prices for which there exists a technology shock such that

the price induces a social optimum. We denote by θ∗ the technology level that

induces the social optimum for the certificate price p̄. Market clearing in the

social optimum under technology realization θ∗ implies that MB
(

E∗; θ∗
)

= p̄

q(p̄)

for some emissions level E∗. Moreover, because the relation between p and

pE = p

q(p)
is one to one and because of market clearing under both p̄ and θ̄ and

under p̄ and θ∗ we find that Ē = q(p̄)Qc = E∗. It follows that

MB
(

q(p̄)Qc; θ̄
)

= MB
(

Ē; θ̄
)

=
p̄

q(p̄)
= MB

(

E∗; θ∗
)

= MB
(

q(p̄)Qc; θ∗
)

.

Because MB
(

E; θ
)

is strictly monotonic in θ it follows from MB
(

q(p̄)Qc; θ̄
)

=

MB
(

q(p̄)Qc; θ∗
)

that θ̄ = θ∗. Therefore, the arbitrary market clearing equilib-

rium with zero excess demand we started with, characterized by p̄ and θ̄, is a

social optimum; the only zeros of excess demand are the socially optimal mar-

ket equilibria where excess demand slopes correctly by our assumption that

condition (5) holds.
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Proof of Proposition 3. We use a general redemption function, q (p).

To distinguish this function from the smart cap for the competitive industry,

we denote the latter as qc (p) in this appendix. Given that Qm = Q, the

monopsony chooses p:

max
p≥0

[B (Qq (p) ; θ)−Qp] .

The first order condition at an interior point is

MB (Qq (p) ; θ) q′ = 1 ⇒ MB (Qq (p) ; θ) =
1

q′
=

p

q

q′ p
q

=
pE

εq,p
, (17)

implying the first equality in equation (6). To establish the second equality,

we differentiate the definition pE = p

q
and simplify, to obtaindpE

dp
= q−pq′

q2
. The

equilibrium condition qQ = E implies

Qq′ =
dE

dpE
dpE

dp
⇒ q′

p

q
=

dE

dpE
dpE

dp
pE

1

Q
⇒

εq,p =
dE

dpE
pE

E

E

Q

dpE

dp
= εE,pE

(

q
q − pq′

q2

)

= εE,pE

(

1−
pq′

q

)

= εE,pE (1− εq,p) ⇒ εq,p =
εE,pE

(

1 + εE,pE

) .

(ii) Now we examine the case where q (p) = qc (p), the smart cap for the

competitive industry. Using equation (17), we find that the monopsony’s

marginal increase in profits resulting from a change in certificate price is

MB (Qqc (p) ; θ)
εqc,p
pE

Q−Q. Evaluating this derivative at the competitive equi-

librium (where MB = pE), the monopsony’s marginal benefits of a change in

the price equal (εqc,pc − 1)Q, where the superindex c denotes the price in the

competitive equilibrium. Thus, the monopsony benefits from raising the cer-

tificate price above the competitive level if and only if εqc,pc ≥ 1.

By definition of the elasticity, εqc,pc and q′(p) have the same sign. Therefore,

the monopsony wants to raise the certificate price above the competitive level

if and only if it wants to increase emissions above the competive (socially

optimal) level. The inequality εqc,pc ≥ 1 (using equation (4)) is equivalent to
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SCC∗
E ≤ 0. Given that this relations is “if and only if”, the monopsony benefits

from reducing emissions below the competitive level if and only SCC∗
E ≥ 0.23

These actions strictly increase or reduce emissions if the inequalities are strict

and the competitive equilibrium is interior.

(iii) Here we consider the case where the redemption function induces the

monopsony to emit at the socially optimal level. The monopsony’s first order

condition, equation (17), implies q′ = 1
MB(Qq(p);θ)

and the condition for social

optimality requires MB (E; θ) = SCC∗ (E). Thus, the optimizing monopolist

will emit at the socially optimal level if MB (Qq (p) ; θ) = 1
q′

= SCC∗ (E).

Consequently, a smart cap satisfying equation (7) induces the social optimum

if the monopsony’s first order conditions correctly characterize the optimum.

The monopsony’s second order condition is

MB (Qqm; θ)
d2qm (p)

dp2
+MBE (Qqm; θ)Q

(

dqm (p)

dp

)2

≤ 0 (18)

We now show that this equation is locally satisfied in the neighborhood of an

equilibrium if and only if MBE(E; θ) < SCC∗
E. Differentiating equation (7)

gives

d2qm (p)

dp2
= −

SCC∗
E ·Qdqm(p)

dp

(SCC∗)2
= −

SCC∗
E ·Q

(SCC∗)3

Substituting this expression into equation (18) gives

(

MBE −MB
SCC∗

E

SCC∗

)

Q

(SCC∗)2
= (MBE − SCC∗

E)
Q

(SCC∗)2
(19)

where the last equality uses MB (Qq (p) ; θ) = 1
q′
= SCC∗ (E). The right side

of equation (19) is negative if and only if MBE(E; θ) < SCC∗
E. There may

exist a family of solutions to equation (7) because the boundary condition is

unspecified.

23If εqc,pc < 0 then: the monopsony’s marginal benefit of a higher price is negative;
SCC∗

E < 0; and in addition q′ < 0. In this case, the monopsony wants to lower the price
below the competitive level as a means of increasing emissions. Here also we have SCC∗

E < 0
and the monopsony wants to increase emissions above the competitive level.
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C Proofs for Section 3

We first obtain the solution to the full-information problem where the regulator

observes εt and chooses emissions directly. This solution provides the full-

information SCCt (St−1, Et, θt−1, εt) and the full-information value function.

We use SCCt (·) to construct the smart tax, Proposition 4, which we then use

to construct the smart cap, Proposition 5.

We choose a unit of time to be one year, and we use the parameter φ to

denote the number of years in a compliance period. This formulation enables

us to change the length of a period without recalibrating the model. We

assume that (i) emissions are constant during a period (equal to φ years), (ii)

the change in the stock occurs at the end of the period, and (iii) the payoff flow

is not discounted within a period. Thus, for example, St+1 = δSt+Etφ, where

Et equals annual emissions during period t. The parameter δ depends on φ.

With the annual persistence level δ̂, we set δ = δ̂φ. We make an analogous

adjustment in the discount factor, β, and the serial correlation parameters,

ρ. The shock evolves according to θt = ρθt−1 + εt. We measure the pollution

stock in gigatons (Gt) of CO2 and payoffs in giga dollars (G$). The marginal

benefit of emissions (equal to the marginal abatment cost) is measured in
G$

GtCO2
= $

tCO2
.

The flow payoff during a period lasting φ years is

(

(ht + ρθt−1 + αεt) xt −
1

2
fx2

t −
1

2
bS

2

t

)

φ.

We use jt (St, θt−1, εt) to denote the value function, i.e. the value of the pro-

gram under full information and optimal emissions. The full-information op-

timization problem is

jt (St, θt−1, εt) =

max{xs}
∞

s=t
E{εj}

∞

j=t+1

∑∞
s=0 β

s
(

(ht + ρθt−1 + αεt) xt+s −
1
2
fx2

t −
1
2
bS

2

t+s

)

φ.

(20)

The value function, jt (St, θt−1, εt), depends on the current state variable,

(St, θt−1, εt), and on calendar time via the time dependence of ht. The value
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function is quadratic in the state variable. The social cost of carbon is defined

as the expectation, over the next period shock, of the present value of the cost

of beginning the next period with one additional unit of the pollution stock:

SCCt = β Eεt+1

∂jt(St+1,θt,,εt+1)
∂St+1

. We have

Lemma 1 The social cost of carbon and the optimal emissions rule are linear

functions of the information state, St, θt−1, and εt. The coefficients of these

linear functions are constant; the intercepts depend on the trajectory of the

exogenous demand shifter, {ht+s}
∞
s=0.

(i) The social cost of carbon is

SCCt = β (−v1,t+1 + λ (δSt + φEt) + µ (ρθt−1 + εt)) . (21)

Using the definition

̟ ≡ f

(

1− βδ2 − β
b

f
φ2

)

, (22)

the constant coefficients are

λ =
1

2βφ

(

−̟ +
√

̟2 + 4βφ2bf
)

> 0 (23)

and

µ = ρβδφ
λ

f (1− ρβδ) + βφλ
; 1 > µ > 0. (24)

The time-varying intercept, v1,t, is the solution to the difference equation

v1,t = β
δ (fν1,t+1 − λφht)

f + βλφ
⇒ v1,t = −

βδφλ

f + βφλ

∞
∑

j=0

(

βδf

f + βφλ

)j

ht+j. (25)

A sufficient condition for existence of v1,t is that the elements of the sequence

{ht+j}
∞
j=0 are finite. We assume that ht = ηth0 falls at a constant rate (η < 1).

Then

ν1,t = −
λβδhtφ

f (1− βηδ) + βφλ
< 0 (given h > 0). (26)

(ii) The full information optimal emissions rule is

Et = Z0t +Hεt + z1St + z2θt−1 (27)
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with
Z0t =

ht+βv1,t+1

(f+βφλ)
, H = α−βµ

f+βφλ

z1 =
−βλδ

f+βφλ
< 0 and z2 = ρ 1−βµ

f+βφλ
> 0

(28)

Comments on the Lemma. The slope, w.r.t. the pollution stock, of

the SCC is βλ; the coefficient βµ shifts the intercept of the SCC in response

to the technology level that the next period inherits, θt. The optimal level

of emissions is a decreasing function of the current stock of pollution and an

increasing function of the lagged technology level, θt−1. An increase in θt−1

increases the current marginal benefit of an additional unit of emissions; i.e.,

it increases the marginal cost of abatement, thereby increasing the demand for

emissions.

The optimal level of emissions might increase or decrease with the current

shock, εt. A positive technology shock (for example) raises both the current

demand for emissions and (with ρ > 0) future demand. For α close to 1 the

increase in current demand is large relative to the increase in future demand.

Here, H > 0: optimal emissions increase with the technology shock. In con-

trast, for small α, a positive shock raises the current demand for emissions

relatively little compared to the rise in future demand. The anticipation of

the higher future demand causes the regulator to reduce current emissions in

response to a positive shock: H < 0.

Note that µ does not depend on α. For the knife-edge case α − βφµ = 0,

the optimal level of emissions is independent of the current technology shock,

although it still depends on St and θt−1. For this knife-edge case, the feedback

quota under asymmetric information is first-best.

Sketch of Proof of Lemma 1. The proof is straightforward but tedious,

so we only sketch the steps here, relegating the details to Referees’ Appendix

D. We refer to the value function conditional on the current technology shock,

jt (St, θt−1, εt) as the ex post value function, and its expectation Jt (St, θt−1) ≡

Eεtjt (St, θt−1, εt) as the ex ante-value function. It is well known that for the

linear-quadratic control problem with additive errors, jt (St, θt−1, εt) is a linear-

quadratic function. Therefore, J (St, θt) is also linear-quadratic.
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The dynamic programming equation under full information is

jt (St, θt−1, εt) =

maxE[
(

(ht + ρθt−1 + αεt)E − 1
2
fE2 − 1

2
bS

2

t

)

φ

+β Eεt+1
jt+1 (St+1, θt, εt+1)] =

maxE[
(

(ht + ρθt−1 + αεt)E − 1
2
fE2 − 1

2
bS

2

t

)

φ

+βJt+1 (St+1, θt)].

(29)

We replace Jt+1 (St+1, θt) with a linear-quadratic trial solution in the last line of

equation 29 and perform the optimization, writing the full information decision

rule as a function of (St, θt−1, εt) and of the parameters of the trial solution.

The SCC is simply β ∂Jt+1(St+1,θt)
∂St+1

. This derivative depends on (St, θt−1, εt) and

on the emissions level, E.

Because Jt+1 (St+1, θt) is a quadratic function, ∂Jt+1(St+1,θt)
∂St+1

is a linear func-

tion of the state, (St+1, θt), as shown in equation 21, and the optimal decision

rule is a linear function of the state, as shown in equation 27. Performing the

optimization in equation 29 we obtain the optimal decision rule in terms of

the coefficients of the ex ante value function. We then substitute this decision

rule into the dynamic programming equation and take expectations, replacing

Eεt jt (St, θt−1, εt), with Jt (St, θt−1). We then equate coefficients of terms that

are independent of (St+1, θt), linear in (St+1, θt) and quadratic in (St+1, θt),

thereby obtaining the formulae for the coefficients (equations 22, 23, 24 and

25)

Proof of Proposition 4. Part i. For H 6= 0, we invert the full-information

emissions rule, equation 27, to write the shock as a function of the optimal

level of emissions

εt =
Et − (Z0t + z1St + z2θt−1)

H
. (30)

We want to obtain the formulae for the coefficients of the smart tax, a linear
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function of the observables at time t, St, θt−1, and Et:

A0St + A1θt−1 + γEt + αt.

If firms set their marginal benefit of emissions (per year) equal to this tax, the

equilibrium condition is

ht + ρθt−1 + αεt − fEt = A0St + A1θt−1 + γEt + αt. (31)

By construction, SCC∗ = SCC evaluated at the optimal level of emissions.

Using equation 30 to eliminate εt from the left side of equation 31, and col-

lecting terms, we write the left side of equation 31 as

−α
z1
H
St +

(

ρ− α
z2
H

)

θt−1 +
( α

H
− f

)

Et + ht − α
Z0t

H
(32)

Substituting the definitions of z1, z2, and Z0t in equation 28 into expression

32 and then equating coefficients with the right side of equation 31 produces

the formula for the coefficients of the smart tax:

A0 =
αβλδ

α−βµ
and A1 = −ρβµ 1−α

α−βµ

γ = β αλφ+µf

α−βµ
and at = −β µht+αν1,t+1

α−βµ

(33)

contained in Proposition 4.

For H = 0 the optimal emissions level is independent of the current shock,

εt. As α → βµ the smart tax becomes steeper. In the limit

Part ii. Using the inequalities in equations 23 and 24, the numerators of

A0 and γ are strictly positive, and for ρ > 0 the numerator of A1 is weakly

negative. Therefore the signs of these coefficients depend on the sign of the

denominator, α − βµ. By equation 24, µ is independent of α, so there exists

α∗ = βµ with (for ρ > 0) 0 < α∗ < β < 1. For α < α∗ A0 < 0, γ < 0 and

A1 > 0. These inequalities are reversed for α∗ < α. At α = βµ the smart tax

is a vertical line, i.e. a correspondence, not a function.

Part iii The argument for this claim parallels the proof of Proposition 2,
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so we do not repeat it.

Proof of Proposition 5. Using the definition of Ât we write the smart tax

as SCC∗
t = Ât + γEt. The firm’s price of a unit of emissions is pE = p

qt(p)
.

We define the smart cap using p

qt(p)
= Ât + γE. Inserting the market clearing

condition, E = Qqt (p), gives

p

qt (p)
= Ât + γQqt (p) . (34)

The assumption that the first best level of emissions is non-negative implies

qt (p) ≥ 0. Simplifying equation 34, gives the quadratic equation Âtqt (p) +

γQq2t (p)− p = 0. The two roots are

q+ =
1

2γQ

(

−Ât +

√

Â2
t + 4γQp

)

,

q− =
1

2γQ

(

−Ât −

√

Â2
t + 4γQp

)

.

For γ > 0 and p ≥ 0, the correct root is q+. We can exclude the other root

because q− ≤ 0; however, emissions are always positive. The slope of the

smart cap is
dq+

dp
=

1
√

Â2
t + 4γQp

> 0.

From equation 5 in Proposition 2, we know that the smart cap supports the

socially optimal level of emissions as a stable competitive equilibrium when

γ = SCC∗
E > 0. This smart cap is an increasing function of the certificate

price.

Proposition 4 shows that the smart tax is stable even for γ < 0. Therefore,

condition (b) in Part i of Proposition 2 holds when γ < 0. In this case, from

Part ii of Proposition 2, the smart cap supports the optimal outcome as a

stable competitive equilibrium if and only if the slope of the smart cap is

negative (i.e. where the denominator of equation equation 5 is negative).

Thus, for γ < 0 the smart cap equals the negative root, given by q−;

the derivative of this root w.r.t. the certificate price is negative. For γ < 0,

this root is defined only for p ≤ − Ât
2

4γQ
. At this supremum, the redemption
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function is q− = − Ât

(2γQ
, and emissions equal E = − Ât

2γ
. At the infimum price,

p = 0, the value of the negative root is q− = − Ât

γQ
; here, emissions equal

− Ât

γ
. In summary, q− is a decreasing function of p defined for p ∈ [0, Ât

2

−4γQ
].

Over this domain, the smart tax is positive and the marginal outlay curve

corresponding to that inverse supply function is negative. The corresponding

range of emissions is E ∈ (− Ât

2γ
,− Ât

γ
).

Proof of Proposition 6. Karp and Traeger (2019) show that taxes welfare-

dominate quotas if and only if λ
f
< 1

β
− 2µ

α
, i.e. if and only if

λ < f

(

1

β
−

2µ

α

)

=
f

αβ
(α− 2βµ) . (35)

The proof of Proposition 4 provides the formula for the slope of the smart tax,

γ = β αλ+µf

α−βµ
. From Lemma 1 we have λ > 0 and (for ρ > 0, as we assume)

µ > 0. Therefore, if α − βµ < 0 the slope of the smart tax is negative, and

thus less than f , which is positive. In this case, α− 2βµ < 0 so inequality 35

is never satisfied. Thus, for α− βµ < 0 the slope of the smart tax is less than

f and quotas dominate taxes.

For α− βµ > 0, where γ > 0, we have

γ < f ⇔ β αλ+µf

α−βµ
− f = α β

α−βµ
λ+

(

β µ

α−βµ
− 1
)

f < 0 ⇔

λ < α−βµ

αβ

(

1− β µ

α−βµ

)

f = f

αβ
(α− 2βµ) ,

reproducing inequality 35.

Proof of Proposition 7. Permitting trade of certificates across periods

introduces two changes to the original smart cap construction; (i) we have a

joint constraint on the certificate number and (ii) we have to respect the arbi-

trage opportunity for certificates. Our proof proceeds in 4 steps. In step 1 we

establish two observations repeatedly used in the proof. The first observation

shows that we can rescale the certificate price without changing the physi-

cal emission allocation. The second observation shows that there is a unique

relation between the technology realization and the certificate price. Step 2
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constructs redemption functions that satisfy a no-arbitrage condition for the

two-period case. Step 3 uses the two-period case as the basis for an inductive

proof extending the construction to an arbitrary number of periods. Steps

2 and 3 construct certificate allocations in each period that achieve optimal

emissions in all periods and states of the world. Step 4 defines the aggregate

certificate supply and shows that the constructed market allocations indeed

form an equilibrium.

Notation: We denote the periods of a given trading phase by t = 1, ..., T .

We let q∗t (·) and Q∗
t denote a period t redemption function and certificate

allocation that yield an optimal emission level in the standard smart cap,

where emission certificates are valid only in a given period.

Step 1: Two observations.

Observation 1 : We can rescale a (one-period) smart cap by λ > 0 as λ∗pt, λ∗qt

and Qt

λ
without changing the physical allocation and price of emissions. As

a result, by rescaling the number of certificates (and the redemption function

accordingly), we can set the certificate price to any desired level while main-

taining optimality. This observation will help us in satisfying the no-arbitrage

equation; for all periods t ∈ {1, ..., T − 1} and in every state of the world

(θt−1, St) no-arbitrage requires

pt(θt) = β Et[pt+1|θt] ∀θt, (36)

Expectations are taken w.r.t. θt+1 conditional on θt, i.e., they are expectations

w.r.t. ǫt+1. We note that the conditional next-period expectations also depend

on St+1, but given a particular mechanism, St+1 is a direct consequence of the

technology realization in θt that we already conditioned upon.

Observation 2 : Any redemption function achieving the first best allocation

has to imply that the certificate price pt responds in a strictly monotonic

manner to the realization of the technology level θt. From equations (21) and

(24), the full information SCC and thus the optimal emissions price, pEt , is

a strictly increasing function of the shock. Differentiating both sides of the
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definition pEt = pt
qt(pt)

yields

p′t(θt)
qt(pt(θt))− pt(θt)q

′
t(pt(θt))

qt(pT (θt))2
=

dpEt (θt)

dθt
6= 0. (37)

Given that emissions are strictly positive by assumption (qt > 0), a necessary

condition for satisfying inequality (37) is p′t(θt) 6= 0.

Step 2: Two-period construction & inductive basis.

We start with the first period redemption function q∗1(·). We assume that

the equilibrium allocation of certificates in the first period is Q∗
1, ensuring an

optimal emission allocation. Each realization of the technology shock implies

the optimal certificate price p1(θ1). By Observation 2, this relation is strictly

monotonic and, thus, invertible. We denote the inverse relationship by the

function f1 so that θ1 = f1(p1). The realization of θ1 also affects the emissions

in period 1 and, thus, S2. As a result, period 2 starts out with the state vari-

ables θ1 = f1(p1) and S2(θ1) = S2(f1(p1)). We denote the latter relationship

by S2 = g1(p1).

For each realization of θ1 we have to satisfy the no-arbitrage equation (36)

between periods 1 and 2. By Observation 1, we can rescale the period 2 certifi-

cate price p2 to any desired level by rescaling q∗2(·) and Q∗
2 accordingly. Thus,

for every θ1 = f1(p1) and S2 = g1(p1) we can define qp12 (·) and Q2(p1), such

that the equilibrium price expectation in period 2 satisfies the no-arbitrage

equation (36) between periods 1 and 2. Again, at this point we merely assume

that the equilibrium certificate allocation will indeed be Q2(p1) and return to

this assumption in step 4.

Summary and basis of the inductive proof. For t = 1 we have established (i)

the existence of redemption functions q
p1,...,pt−1

t = q1 and qp1,...,ptt+1 = qp12 satis-

fying the no-arbitrage condition (36) under the assumption that equilibrium

certificate allocations are Qt(p1, ..., pt−1) = Q∗
1 and Qt+1(p1, ..., pt) = Q2(p1),

and (ii) the existence of functions f
p1,...,pt−1

t (pt) and g
p1,...,pt−1

t (pt) such that

θt = f
p1,...,pt−1

t (pt) and St+1 = g
p1,...,pt−1

t (pt). These functions are conditioned

on the first period stock variables, which we suppress, as well as the certificate

price realizations of the preceding trading periods.

Step 3: Inductive step – extension to arbitrary number of periods.
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We now construct a period t+2 redemption function satisfying the no-arbitrage

condition (36) between periods t + 1 and t + 2 as well as functions f p1,...,pt
t+1

and gp1,...,ptt+1 expressing the states as a realization of past shocks. Given the

stock levels θt and St+1, we employ Observation 2 just as we did for the

first period to derive functions f ∗
t+1 and g∗t+1 such that θt+1 = f ∗

t+1(pt+1) and

St+2 = g∗t+1(pt+1). Incorporating stock dependence, we condition these func-

tions explicitly on the states θt and St+1 at the beginning of period t+1, which

we can express as functions of the historic price realizations by the induction

hypothesis. Thus, we obtain the desired functions f p1,...,pt
t+1 and gp1,...,ptt+1 needed

for our induction step.24

We (continue to) assume given certificate allocations in period t+2, proving

they are part of an intertemporal equilibrium in step 4. Given θt+1 and St+2

we can rescale the period t + 2 certificate price pt+2 to any desired level by

rescaling q∗t+2(·) and Q∗
t+2 accordingly (Observation 1). Using this observation,

we rescale (for each realization of pt+1 and corresponding realizations of θt+1 =

f p1,...,pt
t+1 (pt+1) and St+2 = gp1,...,ptt+1 (pt+1)) the certificate price pt+2 such that

pt+1(θt+1) = β Et+1[pt+2|θt+1], thereby satisfying the no-arbitrage equation (36)

between periods t+1 and t+2.25 Recognizing that the relation is conditional

on the states θt+1 and St+2, which we expressed as functions of the historic

price shocks, we write the resulting smart cap function as q
p1,...,pt+1

t+2 (pt+2) and

define the corresponding certificate levels for the period t + 2 allocation as

Qt+2(p1, ..., pt+1). Thereby we completed the inductive step. We are done in

period T − 1 as there is no further arbitrage opportunity in period T .

Step 4: Certificate allocation.

We now return to the point that we have only one certificate constraint for all

periods in the trading phase. We let the aggregate emission certificate level

24In detail, making the conditionality of the functions f∗

t+1 explicit we have θt+1 =
f∗

t+1(pt+1; θt, St+1) and define fp1,...,pt

t+1 (pt+1) = f∗

t+1(pt+1; f
p1,...,pt−1

t (pt), g
p1,...,pt−1

t (pt)) and
similarly for gp1,...,pt

t+1 .
25As remarked in Observation 1, conditioning on θt+1 simultaneously conditions on St+2.

As remarked in Observation 2, pt+1 and θt+1 are strictly monotonic transformations and we
can exchange pt+1 and θt+1 as the conditioning variables.
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supplied to the market be

Q(p1, ..., pT ) =
T
∑

t=1

Qt(p1, ..., pt−1) , (38)

which the decision maker announces at the beginning of the first period. By

construction, the certificate allocation using Qt(p1, ..., pt−1) certificates in pe-

riod t is feasible. Again by construction, such a certificate allocation assigning

the use of Qt(p1, ..., pt−1) certificates to period t implies optimal emission lev-

els in all periods and every state of the world. We are left to show that this

certificate allocation is also a market equilibrium.

By construction of the individual redemption functions, for any price se-

quence p1, ..., pT , firms request Qt(p1, ..., pt−1) certificates in period t at the

corresponding price pt in every state of the world (θt, St). By our rescaling of

the individual redemption functions, the no-arbitrage equation (36) is satisfied

in every period and state of world. By definition of the certificate supply (38)

the certificate market clears.
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D Detailed Steps Solving the Linear-Quadratic

Model

Details for Proof of Lemma 1. We define

Yt =

(

St

θt−1

)

, Q =

(

−b 0

0 0

)

, A =

(

δ 0

0 ρ

)

,

W =
(

0 ρ
)

, B =

(

φ

0

)

, D =

(

0

1

)

.

(39)

With these definitions, we write the equation of motion as

Yt+1 = AYt + BEt +Dεt

and the period payoff as

(

(ht + αεt)E −
1

2
fE2 +

1

2
Y ′
tQYt +WYtE

)

φ.

Our trial solution for the ex ante value functions is

Jt (St, θt−1) = V0t + V ′
1tYt +

1

2
Y ′
t V2Yt (40)

with the scalar V0t and

V1t =

(

v1t

v2t

)

and V2 = −

(

λ µ

µ τ

)

. (41)

With this notation, we rewrite the right side of the dynamic programming

equation 29 as

maxE[
(

(ht + αεt)E − 1
2
fE2 + 1

2
Y ′
tQYt +WYtE

)

φ+

β(V0,t+1 + V ′
1,t+1 (AYt + BE +Dεt)

+1
2
(AYt + BE +Dεt)

′ V2 (AYt + BE +Dεt))].

(42)
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The marginal benefit of an additional unit of emissions in each of the next φ

years is

(ht + αεt − fE +WYt)φ = (ht − fE + ρθt−1 + αεt)φ.

An additional unit of annual emissions increases the next-period stock by φ

units. The present discounted value of the future stream of marginal cost

arising from an additional unit of emissions in each of the next φ years is the

negative of

β
(

V ′
1,t+1B + B′V2 (AYt +Dεt) + B′V2BE

)

=

−βφ (−v1,t+1 + µ (ρθt−1 + εt) + λ (δSt + φE)) .

Therefore, the present discounted value of the future stream of marginal cost

arising from a single additional unit of emissions, the SCCt, is equals

SCCt = β (−v1,t+1 + µ (ρθt−1 + εt) + λ (δSt + φE)) ,

as in equation 21.

The first order condition equates the marginal benefit from one additional

unit of carbon to its marginal cost:

(ht − fE + ρθt−1 + αεt) = β (−v1,t+1 + µ (ρθt−1 + εt) + λ (δSt + φE))

Solving for E gives the optimal emissions rule

E = Z0t +Hεt + ZYt

with the definitions

Z0t =
ht+βv1,t+1

f+βλφ
, H = α−βµ

f+βλφ

Z =
(

z1 z2

)

=
(

−βλδ

f+βλφ
ρ 1−βµ

f+βλφ

)

,

(43)

as in equations 27 and 28. Below we confirm the second order condition for

63



Smart Cap Karp & Traeger

maximization, f + βλφ > 0.

Next we obtain the formulae for the coefficients of the linear-quadratic

function Vt (Yt). We first use the decision rule 27 to eliminate E from the right

side of the DPE, equation 29. The maximized DPE is

jt (St, θt−1, εt) =

[(ht + αεt) (Z0t +Hεt + ZYt)−
1
2
f (Z0t +Hεt + ZYt)

′ (Z0t +Hεt + ZYt)

+1
2
Y ′
tQYt +WYt (Z0t +Hεt + ZYt)]φ

+β[V0,t+1 + V ′
1,t+1 (AYt + B (Z0t +Hεt + ZYt) +Dεt)

+1
2
(AYt + B (Z0t +Hεt + ZYt) +Dεt)

′ V2 (AYt + B (Z0t +Hεt + ZYt) +Dεt)].

Now we take expectations w.r.t. εt of both sides of (the maximized) DPE,

using E ε = 0, E ε2 = σ2 and the definition Jt (St, θt−1) ≡ Eεt jt (St, θt−1, εt).

Collecting terms, the result is

V0t + V ′
1tYt +

1
2
Y ′
t V2Yt =

(

htZ0t −
1
2
fZ2

0t

)

φ+ β
(

V0t+1 + V ′
1,t+1BZ0t +

1
2
Z2

0tB
′V2B

)

+1
2

(

(2αH − fH2)φ+ β
(

(D + BH)′ V2 (D + BH)
))

σ2

+
(

(htZ − fZ0tZ + Z0tW )φ+ β
(

V ′
1t+1 (A+BZ) + Z0tB

′V2 (A+ BZ)
))

Yt+

1
2
Y ′
t

(

(Q− fZ ′Z +W ′Z + Z ′W )φ+ β (A+ BZ)′ V2 (A+ BZ)
)

Yt

(44)

To obtain the formulae for the parameters of V2 we equate coefficients of

the terms that are quadratic in Yt, resulting in

V2 =
(

(Q− fZ ′Z +W ′Z + Z ′W )φ+ β (A+ BZ)′ V2 (A+ BZ)
)

.

Using the definition of Z in equation 43 and of V2 in equation 41 and then
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carrying out the matrix multiplication produces

−

(

λ µ

µ τ

)

=

(

K1 K2

K2 K3

)

(45)

with the definitions

K1 = − 1
f+βλφ

(fβλδ2 + bβλφ2 + bfφ)

K2 = −βδ ρ

f+βλφ
(fµ+ λφ)

K3 = − ρ2

f+βλφ
(−φβ2µ2 + λτφβ2 + 2φβµ+ fτβ − φ) .

Comparing the 1,1 elements on both sides gives the relation

λ =
1

f + βλφ

(

fβλδ2 + bβλφ2 + bfφ
)

.

This equation has a positive and a negative root. Using the definition of

̟ in equation 22 gives the positive root in equation 23. For large St the

value function must be negative; therefore it must be the case that −λ < 0.

Therefore, f+βλφ > 0, establishing the second order condition for optimality.

Comparing the 1,2 elements on the left and right side of equation 45 implies

µ = βδ
ρ

f + βλφ
(fµ+ λφ) .

The solution to this equation produces equation 24. We now establish the

inequality 1 > µ > 0. Because ρβδ < 1 and λ > 0, both the numerator and

the denominator of µ are positive; thus, µ > 0. We also have

µ < 1 ⇔ ρβδφλ < f + βφλ− ρβδf ⇔ λβφ (ρδ − 1) < f (1− ρβδ) .

The last equality holds, because the left side is negative and the right side is

positive.

To obtain the formulae for the parameters of V1t we equate coefficients of
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Yt on the two sides of equation 44 to obtain

V ′
1t = (htZ − fZ0tZ + Z0tW )φ+ β

(

V ′
1t+1 (A+ BZ) + Z0tB

′V2 (A+ BZ)
)

.

We require only the first element of this vector. Equating the 1,1 elements on

both sides, we obtain the difference equation 25, repeated here

ν1t = β
δ (fν1,t+1 − λφht)

f + βλφ
.

By inspection βδf

f+βλφ
< 1. Therefore, a sufficient condition for the solution ν1t

to exist, i.e. for the infinite sum in equation 25 to be bounded, is that ht is

bounded for all t. Then we obtain

v1,t = β
δ (fν1,t+1 − λφht)

f + βλφ
⇒ v1,t = −

βδφλ

f + βφλ

∞
∑

j=0

(

βδf

f + βφλ

)j

ht+j. (46)

Our quantitative analysis assumes that ht+j = ηjht falls at a constant rate

(η < 1). Then

v1,t = −
βδφλ

f + βφλ
ht

∞
∑

j=0

(

η
βδf

f + βφλ

)j

= −
βδφλ

f + βφλ
ht

1

1− ηβδf

f+βφλ

= −
βδφλht

f + βφλ− ηβδf

= −
λβδhφ

f (1− βδη) + βφλ
< 0

given h > 0.
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