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Abstract

We establish conditions under which forecasting performance can be im-
proved by rotating between a set of underlying forecasts whose predictive accu-
racy is tracked using a set of time-varying monitoring instruments. We charac-
terize the properties that the monitoring instruments must possess to be useful
for identifying, at each point in time, the best forecast and show that these
reflect both the accuracy of the predictors used by the underlying forecasting
models and the strength of the monitoring instruments. Finite-sample bounds
on forecasting performance that account for estimation error are used to com-
pute the expected loss of the competing forecasts as well as for the dynamic
rotation strategy. Finally, using Monte Carlo simulations and empirical appli-
cations to forecasting inflation and stock returns, we demonstrate the potential
gains from using conditioning information to rotate between forecasts.
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1 Introduction

Decision makers frequently observe two or more forecasts of the same outcome. A
common strategy in this situation is to compare the predictive accuracy of the differ-
ent forecasts and choose that which minimizes expected loss. Indeed, a large academic
literature–including important contributions by Granger and Newbold (1977), Chong
and Hendry (1986), Diebold and Mariano (1995), West (1996), and Clark and Mc-
Cracken (2001)–has developed ways to formally compare the accuracy of different
forecasts. Such comparisons typically consider whether one forecast on average (un-
conditionally) is more accurate than other, competing, forecasts.

However, past forecasting performance is frequently found to be a poor predictor
of future performance (Aiolfi and Timmermann (2006)) and it is possible for forecasts
to be poor on average, yet still be relatively accurate in some states of the world. Pro-
vided that such periods can be identified ex-ante by means of a set of time-varying
monitoring instruments, a forecast that is poor on average could be the preferred
forecast at a given point in time, conditional on information contained in the moni-
toring instruments. This point is important given the widespread empirical evidence
of model instability in economics, (e.g., Rossi (2013) and Stock and Watson (1996))
which shows that it is rare to find a single forecasting approach that dominates other
forecasts uniformly through time.

This paper presents a theoretical framework for understanding the factors that
determine the feasibility of improving predictive accuracy by monitoring the perfor-
mance of individual forecasts and choosing, at each point in time and conditional on
information in a set of monitoring instruments, the forecast with the best expected
performance–a strategy we label dynamic rotation and which was first proposed by
Diebold and Mariano (1995) and Giacomini and White (2006). Our setup allows us
to rank expected forecasting performance, assuming that the underlying forecasts are
generated by a set of linear models whose parameters are updated through time. We
compare the predictive accuracy of models that use predictors with different strength
and provide conditions under which bounds can be established on differences in the
forecasts’ mean squared error (MSE) loss. Our approximate uniform bounds hold
in finite samples and account for estimation error both in the underlying forecasting
model and in the monitoring (rotation) regression. Our theoretical bounds are derived
under a set of restrictive assumptions, including the existence of a large number of
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moments for the underlying data. These assumptions may be valid for some empirical
applications but not for others, which should be borne in mind when interpreting the
practical implications of our results.

In practice, estimation error tends to be important for understanding the out-of-
sample forecasting performance of both individual models and of alternative strategies
such as forecast combination. Our analysis is the first to establish precise conditions
under which a conditional rotation strategy which uses additional information to
select among competing forecasts can dominate common alternatives, including in
the frequently encountered situation with highly correlated forecasts. Specifically,
we characterize the properties that monitoring instruments must possess in order to
contain valuable information about time variation in competing models’ forecasting
performance. In the case with non-nested forecasting models, a monitoring instrument
can be used to track time variation in the models’ relative squared error forecasting
performance if the instrument is sufficiently strongly correlated with the cross-product
of the forecast error and predictors included by one model but excluded by others.
The strength of both the predictor and the monitoring instrument turn out to matter
for our ability to rank different models’ conditional forecasting performance. In the
nested case, rotating between a “small” and a “big” model which contains an additional
predictor can lead to improvements provided that the additional predictor in the big
model contains “weak” information, i.e., its coefficient is at most local-to-zero.

Moreover, we show that using monitoring instruments to rotate between compet-
ing forecasts can be a better strategy than alternatives such as forecast combination
or adding the monitoring instruments directly to the underlying forecasting models.
It is possible for a monitoring instrument to be correlated with the difference in two
forecasts’ MSE loss while at the same time being uncorrelated with the individual
models’ forecast errors. In this case, the monitoring instrument may be useful for
selecting a forecast, even if it is not useful if added directly to the forecasting mod-
els. Further, adding a monitoring instrument to the underlying prediction models
introduces estimation error which can dominate the signal in the instrument.

We explore the empirical relevance of our theoretical analysis through Monte Carlo
simulations and in two empirical applications. The simulations demonstrate instances
with sizable gains from rotating between forecasts as well as instances with little or
no gains in predictive accuracy. Our empirical applications cover survey and central
bank forecasts of US inflation and model-based forecasts of US stock returns. For the
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inflation application, we find that monitoring instruments can be used to dynamically
rotate between survey and Federal Reserve forecasts to significantly reduce the mean
squared errors of the least accurate forecast while simultaneously either improving on
or preserving the predictive accuracy of the best forecast. For the stock return ap-
plication–a case with both weak predictors and monitoring instruments–the dynamic
rotation scheme performs a little worse than a prevailing mean (small) model but
better than a set of larger (univariate) forecasting models.

Our paper proceeds as follows. Section 2 introduces the forecasting environment.
Sections 3 (non-nested case) and 4 (nested case) contain our theoretical analysis which
establishes how competing forecasting models, as well as the dynamic rotation rule,
can be ranked. Section 5 uses Monte Carlo simulations to illustrate the theoretical
analysis, while Section 6 presents our empirical applications and Section 7 concludes.

2 Forecast Environment

We first introduce the forecast environment and describe a dynamic rotation strategy
that exploits the conditional information in the monitoring instruments to choose
between different forecasts.

2.1 Estimates of Relative Forecasting Performance

Pairwise comparisons are now routinely carried out in studies of forecasting perfor-
mance, see, e.g., Clark and McCracken (2013). Typically it is assumed that forecasts
are generated from a set of underlying linear models whose parameters are updated as
new information arrives. Moreover, it is common practice to use out-of-sample tests
to avoid using the same data sample to estimate model parameters and evaluate the
resulting forecasts and to mimic “real-time” forecasting, see Diebold and Rudebusch
(1991), Inoue and Kilian (2008), and Pesaran and Timmermann (2009).1

In common with previous studies, we focus on univariate forecasting problems
and squared error loss. Let ŷ1,t+1|t and ŷ2,t+1|t be a pair of one-step-ahead forecasts
of the outcome yt+1 generated using information known at time t. Following Diebold
and Mariano (1995), we evaluate the accuracy of the forecasts using a loss function

1As pointed out by Inoue and Kilian (2005) and Hansen and Timmermann (2015), splitting the
sample in this manner entails a loss in the power of tests of predictive accuracy. We do not address
this issue here as our objective is to evaluate the performance of procedures in common use.
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L(ŷt+1|t, yt+1), where ŷt+1|t 2 {ŷ1,t+1|t, ŷ2,t+1|t}. Under squared error loss

L(ŷt+1|t, yt+1) = (yt+1 � ŷt+1|t)
2. (2.1)

The loss differential, �Lt+1 ⌘ L(ŷ1,t+1|t, yt+1)� L(ŷ2,t+1|t, yt+1), is then given by

�Lt+1 = e21,t+1 � e22,t+1, (2.2)

where ej,t+1 = yt+1 � ŷj,t+1|t for j = 1, 2 are the individual forecast errors.
Even if one forecast is worse on average than another forecast, it might perform

better in certain states of the world. This suggests choosing the model with the best
conditionally expected performance given information available to the forecaster at
time t, Gt, see Giacomini and White (2006) (GW, henceforth). Choice of forecast
is thus naturally based on the sign of E[�Lt+1|Gt]. In practice, this conditional
expectation is unknown but, given a set of monitoring instruments Zt 2 RdZ in Gt,
we can approximate E [�Lt+1|Zt] through a linear regression:

�Lt+1 = (✓0, ✓1)

 
1

zMt

!
+ ut+1 ⌘ ✓0zt + ut+1, (2.3)

where zt = (1, zMt)0, E[ut+1 | zMt] = 0, and zMt 2 Zt. Instead of the linear regres-
sion in (2.3), one could alternatively adopt a probit or logit model. However, while
such a specification may be more appealing from an empirical standpoint, the inher-
ent nonlinearity makes it difficult to obtain analytical results under these alternative
specifications. In practice, it is oftentimes found that differences between linear prob-
ability models and probit or logit models tends to be quite small, especially when one
needs to make a binary decision.2

2.2 Dynamic Rotation

Using the monitoring regression, (2.3), we can compute the expected future loss
differential E (�Lt+1|Zt) by ✓0Zt and use this to choose the preferred forecast for
period t + 1. Following GW, we consider a conditional decision (dynamic rotation,

2Under a probit or logit model, the decision would be 1{f(⇡0zt) > c} for a probit or logit link
function f and a cutoff point c 2 (0, 1). This is equivalent to 1{⇡0zt > f�1(c)} and thus reduces to
a decision based on a linear index; the linear probability model avoids issues related to the choice
of c.
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DR) rule that chooses forecast 1 if E(�Lt+1 | Zt)  0, otherwise chooses forecast 2:

ŷDR,t+1|t = ŷ1,t+1|t1 {E[�Lt+1|zt]  0}+ ŷ2,t+1|t1 {E[�Lt+1|zt] > 0} , (2.4)

where 1 {E[�Lt+1|zt] > 0} is an indicator variable that equals one if the first fore-
casting model has the highest expected loss conditional on Zt = zt, otherwise is zero.

Compared to a strategy of always using forecasts from a particular model, we ex-
pect gains from the dynamic rotation in (2.4) provided that neither of the underlying
forecasting models is too dominant since E [�Lt+1|zt] is required to change sign for
different values of zt. However, this argument does not account for estimation error,
nor does it quantify the potential gains from monitoring forecasting performance and,
at each point in time, selecting the forecast with the lowest conditionally expected
loss. This is the topic of the next two sections.

Model instability is often considered to be a likely source of time-variation in the
relative accuracy of a pair of forecasts. For example, discrete breaks to the data
generating process can lead to breaks in the average loss differential of alternative
forecasting models (Pesaran and Timmermann (2007)). Our analysis focuses on a
different mechanism, however. We model time variation in the conditional mean of
loss differences given a set of instruments used to monitor forecasting performance.
These instruments can be used to track time variation in the relative forecasting
performance (loss differentials) across models even in the absence of model instabil-
ity. Equivalently, even if the sequence of realized losses is a stationary process with
no breaks, it can still be predictable; we exploit such predictable patterns in loss
differentials and construct a monitoring procedure.

Forecast combination offers a popular alternative to the rotation scheme in (2.4).
As we will show in our analysis, forecast combination has some important limitations,
however. First, the two forecasts under consideration are often highly correlated.
In practice, high correlations often give rise to large and volatile estimates of the
combination weights and poor out-of-sample forecasting performance. Second, fore-
cast combinations are typically based on unconditional moments such as the MSE.
Conversely, our goal is to incorporate additional information that can be useful in
determining the performance of different forecasts. Alternative forecast combination
schemes might be possible by explicitly modeling variation in the conditional MSE
and the conditional covariance between forecast errors, but it is far from obvious that
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such an approach leads to a simple and practical methodology.

3 Comparing Forecasts from Non-nested Models

This section studies pair-wise comparisons of forecasts generated by a set of non-
nested models, both of which may only partially capture the information in the data
generating process for the outcome, yt+1. We establish approximate finite sample
bounds on the relative performance of the forecasting models in the presence of es-
timation error. Further, we also characterize conditions under which the dynamic
rotation strategy can be expected to produce better forecasts than either model. To
simplify the analysis, we use a stylized setting with only two predictors and a one-
period forecast horizon, but note that our analysis can be generalized to a setting
with multiple predictors and longer horizons. Consistent with the common finding in
empirical analysis that forecasts tend to be strongly correlated, our analysis assumes
that the predictive signal is quite weak so that the two forecasts have a correlation
tending to one with the same asymptotic MSE. For example, forecasts of individual
survey participants tend to be strongly correlated, helping to explain why it is difficult
to outperform a simple equal-weighted combination, see, e.g., Chapter 14 in Elliott
and Timmermann (2016).

3.1 Pairwise Comparisons

Consider the data generating process (DGP)

yt+1 = �1x1,t + �2x2,t + "t+1, (3.1)

where x1t and x2t are a set of predictor variables known at time t. To capture the
non-nested case, we assume that model 1 takes the form yt+1 = �1x1,t + "1t+1, while
model 2 takes the form yt+1 = �2x2,t + "2t+1. For simplicity, we assume that x1t and
x2t are univariate processes. We do not rule out that �1 or �2 equal zero.

Suppose we observe a sample of T data points {(xj,t, yt)}Tt=1, j = 1, 2. We assume
that the parameters of the forecasting models (�̂j,n,t) are estimated using a window
of the most recent n observations
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�̂j,n,t =

 
t�1X

s=t�n

x2
j,s

!�1 
t�1X

s=t�n

xj,sy,s+1

!
, j = 1, 2. (3.2)

The resulting forecasts are generated as ŷj,t+1|t = �̂j,n,txj,t for j = 1, 2. Under this
setup, the sample size, T , is split into a window of length n used to estimate �̂j,n,t, the
parameters of the jth forecasting model, and a test sample containing the remaining
p = T � n observations. Both n and p can be functions of T and may or may not
tend to infinity but, for simplicity, we write n and p instead of nT and pT .

Using (3.1), the squared error loss differential �Lt+1 becomes

�Lt+1 = (yt+1 � ŷ1,t+1|t)
2 � (yt+1 � ŷ2,t+1|t)

2

= 2"t+1 (�2x2,t � �1x1,t � �1,n,tx1,t + �2,n,tx2,t) (3.3)

+ (�2x2,t � �1x1,t � �1,n,tx1,t + �2,n,tx2,t) (�1x1,t + �2x2,t � �1,n,tx1,t � �2,n,tx2,t) ,

where �j,n,t = �̂j,n,t � �j denotes the estimation error for model j.
For a fixed t, one can use a CLT to show that �j,n,t = OP (n�1/2) and thus �Lt+1 =

�2
2x

2
2,t��2

1x
2
1,t+2(�2x2,t��1x1,t)"t+1+OP (n�1/2). The potential lack of uniformity in

the OP (n�1/2) terms presents challenges, however. To overcome these difficulties, we
next derive bounds that are valid (approximately) uniformly across t, hold in finite
samples, and thus do not require an asymptotic framework.

Remark 1. We now explain the purpose of the non-asymptotic analysis. When sev-
eral quantities (e.g., n, m and T ) tend to infinity, the asymptotic analysis becomes
complicated. One has to clarify whether limits are taken sequentially or jointly; if the
limit is taken jointly, one often has to make assumptions on the relative rate of the
quantities that tend to infinity and the asymptotic results can be sensitive to these
assumptions. To provide a more transparent way of deriving asymptotic results, a
recent literature in statistics and econometrics adopts non-asymptotic analysis with
the aim of deriving bounds that hold in any sample sizes. This ensures that the
asymptotic implications will be immediate and transparent.3

3A well-known example is the analysis of Lasso in which the model dimensionality and the sample
size both tend to infinity. Without a non-asymptotic analysis, one could question whether the rate
at which the model dimensionality grows impacts the theoretical analysis. In contrast, asymptotic
implications are immediately clear from non-asymptotic bounds since taking the (joint) limit is the
last step and usually a one-line argument; see , e.g., Candes and Tao (2007); Bickel et al. (2009);
Koltchinskii et al. (2011); Belloni et al. (2014)).
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3.2 Determinants of Average Forecasting Performance

To ensure that our analysis of forecasting performance allows for a broad set of time-
series dependencies, we adopt the beta mixing condition in Chen et al. (2016), adapted
to an array setting similarly to Andrews (1988):

Definition 1. The array {WT,t}1t=�1 is said to be beta-mixing with coefficient Bmix(·)
if

Bmix(t) = sup
�1<i<1, T�1

E
 

sup
A2FT

i+t,1

��P
�
A|FT

�1,i

�
� P(A)

��
!
,

where FT

�1,i
= �(· · · ,WT,i�1,WT,i) and FT

i+t,1 = �(WT,i+t,WT,i+t+1, · · · ).

The array structure in this definition is general enough to allow for many types of
nonstationary data and provides a convenient way of analyzing DGPs indexed by the
sample size. The beta-mixing condition can be satisfied by many time series models,
including ARMA, GARCH and general hidden Markov models and is commonly used
in the literature, see, e.g., Tong (1990); Fan and Yao (2003); Carrasco and Chen
(2002); Meyn and Tweedie (2012); Douc et al. (2011). While it is ultimately difficult
to verify empirically whether the beta mixing property holds for a given data set, to
the extent that it embodies a limited memory feature it is plausible that the property
holds for many economic applications spanning long sample periods.

Our analysis makes use of the following list of assumptions:

Assumption 1. The following hold for j 2 {1, 2}:

(i) There exist constants r > 8 and D > 0 such that E|xj,t|r and E|"t+1|r are
bounded above by D. Moreover, Exj,t = Ex1,tx2,t = Exj,t"t+1 = 0.

(ii) {xj,t, "t+1}1t=�1 is a beta mixing array with coefficient Bmix(·) such that 8t > 0,
Bmix(t)  b exp(�tc), for constants b, c > 0. Moreover, for some constants
Q1, Q2 > 0, E(k�1/2

P
t�1
s=t�k

x1,s(x2,s�2 + "s+1))2, E(k�1/2
P

t�1
s=t�k

x2,s(x1,s�1 +

"s+1))2, Ex2
1,t and Ex2

2,t lie in [Q1, Q2] for all k, t.

(iii) There exist constants ↵x,j 2 [0,1], c�,j > 0 such that �j = c�,jn�↵x,j , where

(a) ↵x,2 < ↵x,1,

(b) ↵x,2 < 1/2.
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(iv) n/T >  for some constant  > 0.

Some of these assumptions are quite restrictive. For example, the assumption in
part (i) that the x-variables have zero mean is restrictive in the non-nested case. In the
nested case we can include an intercept and so the zero mean condition is without loss
of generality provided E[xt] does not depend on t. This holds because transforming
the X matrix to XA for any invertible matrix A (where A demeans x if E[xt] does
not depend on t) will not change the predictions, even out-of-sample. Relaxing the
second part of Assumption 1(i) by allowing the x-variables to be correlated would
make it less clear what it means that one signal (x2) is stronger than the other (x1)
since even the weaker x-variable could be significant through its correlation with the
stronger one. The analysis might then depend on whether the two x-variables are
strongly or weakly correlated.4

The mixing condition in Assumption 1(ii) ensures weak dependence in the data.
Importantly, we do not impose stationarity and allow for heteroskedasticity. Assump-
tion 1(iii) characterizes the strength of the predictors through the order of magnitude
of their coefficients in the forecasting model, �j = c�,jn�↵x,j . Here, �j is close to zero
which is consistent with a setting in which the forecast errors are highly correlated
with one another. The smaller the value ↵x,j, the stronger the predictor, with ↵x,j = 0

representing the conventional case with a strong predictor whose presence can be de-
tected with certainty as the sample size increases, while ↵x,j = 1/2 represents the
local-to-zero case with a weaker predictor whose importance is much harder to de-
tect. Without loss of generality, we assume that the predictor in the second model
is stronger than the predictor in the first model (↵x,2 < ↵x,1). Further, we assume
that the dominant predictor is stronger than local-to-zero (↵x,2 < 1/2). Studying se-
quences of parameter values whose magnitude declines as the sample size grows bigger
ensures that parameter uncertainty is preserved asymptotically. In contrast, with a
fixed alternative (↵x,2 = 0), uncertainty about the parameter estimates disappears
asymptotically. Note that we do not consider the knife edge case of ↵x,1 = ↵x,2 and

4The forecasting models considered in our analysis do not include a core set of common predictors
which is often relevant in empirical applications. However, one can consider extending the analysis
in the following way. Suppose there is a common predictor, x0, that is orthogonal to both x1 and
x2. Then one can first project out x0 and treat the residual as y and apply the current framework.
Conversely, if x0 is not orthogonal to x1 and x2, one can rotate the x-variables: project x1 and x2

onto x0 and treat the residuals as the new x1 and x2; since the new x1 and x2 are now orthogonal to
x0, we can again project y onto x0 and take the residual as y and proceed within the current setup.
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c�,1 6= c�,2. Estimation error has a significant impact on the forecasting performance
of our dynamic rotation scheme in this case which leads to a much more complicated
technical analysis. Finally, note that we do not require exponential-type tails, which
are routinely imposed in papers that handle uniformly valid bounds; see e.g., Fan
et al. (2011) and Bonhomme and Manresa (2015).

Our results use an estimation window that contains the most recent n observations,
and we assume that n/T (where T is the total sample size) is bounded above zero.
Hence, while our results hold for particular values of n, m, and T , in an asymptotic
setting Assumption 1(iv) requires that the length of the estimation window grows in
line with (or faster than) T . Our estimation scheme is therefore, in an asymptotic
setting, equivalent to the rolling estimator used in McCracken (2000) while it differs
from the expanding estimation scheme adopted in studies such as McCracken (2000)
and Inoue and Kilian (2005) which uses all available data.

The following result provides finite-sample properties of the (approximate) ex-
pected squared error performance of the two prediction models:

Proposition 1. Consider the data generating process yt+1 = �1x1,t + �2x2,t + "t+1.
Moreover, assume that the parameters of the forecasting models, �̂j,n,t, are estimated
using n observations. Then, under squared error loss and Assumption 1,

(1) there exist constants G1, G2 > 0 and an array of random variables {�Lt+1,⇤}T�1
t=n

such that for T � G1,

P
 

T�1\

t=n

{�Lt+1,⇤ = �Lt+1}
!

� 1�G2T
max{1�r/8, 1+(↵x,2�1/2)(2+r/4)}.

(2) there exist constants G3, G4 > 0 such that, for n  t  T � 1,

G3T
�2↵x,2  E�Lt+1,⇤  G4T

�2↵x,2 .

Part 1 of Proposition 1 is a coupling result that allows us to study the be-
havior of �Lt+1. Since �Lt+1 might not have bounded moments for finite n,
we consider {�Lt+1,⇤}, which coincides with {�Lt+1} with high probability. If
Tmax{1�r/8, 1+(↵x,2�1/2)(2+r/4)} vanishes, i.e., r > max{8, 16↵x,2/(1�2↵x,2)}, tests com-
puted based on {�Lt+1}n+m+p�1

t=n+m have the same asymptotic properties as those com-
puted using {�Lt+1,⇤}n+m+p�1

t=n+m .
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If the data have more than max{8, 16↵x,2/(1 � 2↵x,2)} moments, the bounds in
Proposition 1 are sharp in the sense that they establish the equivalence of �Lt+1

and a random variable whose expectation exists. Conversely, if the data have fewer
moments, such bounds do not hold, and results are much harder to obtain.

Proposition 1 is stated in a technical way for the following reason. The ideal
result would be to directly state G3T�2↵x,2  E�Lt+1  G4T�2↵x,2 without reference
to �Lt+1,⇤. Unfortunately, E�Lt+1 might not exist due to the effect of estimation
error. For example, the estimate �̂j,t contains

�P
t�1
s=t�n

x2
j,s

��1, which might not be
integrable;

P
t�1
s=t�n

x2
j,s

can be arbitrarily close to zero with a small probability such
that the expectation of

�P
t�1
s=t�n

x2
j,s

��1 is infinity. Therefore, in order to make the
argument mathematically correct, we compute E�Lt+1,⇤, rather than E�Lt+1, where
�Lt+1,⇤ is almost always equal to �Lt+1.

Proposition 1 establishes bounds on the amount by which Model 2 is expected to
dominate Model 1 provided that Assumption 1 holds so that the predictor of Model
2 is stronger than local to zero (↵x,2 < 1/2) and more powerful than the predictor of
Model 1 (↵x,2 < ↵x,1). The expected MSE difference depends on the strength of the
predictive signals, as a stronger predictor (a smaller ↵x,2) is associated with a larger
expected gain from using forecasts from model 2 rather than forecasts from model 1.

Before turning to the performance of the dynamic rotation strategy, we show that,
in the present setting, a simple forecast combination strategy ȳC

t+1|t = �ŷ1,t+1|t + (1�
�)ŷ2,t+1|t is dominated in MSE terms by forecasts from the second model.

Proposition 2. Consider the setting in Proposition 1. Let �LC

t+1 = (yt+1� ȳC
t+1|t)

2�
(yt+1 � ŷ2,t+1|t)2, where ȳC

t+1|t = �ŷ1,t+1|t + (1� �)ŷ2,t+1|t for � 2 (0, 1). Then

(1) there exist constants G1, G2 > 0 and an array of random variables {�LC

t+1,⇤}T�1
t=n

such that for T � G1,

P
 

T�1\

t=n

�
�LC

t+1,⇤ = �LC

t+1

 
!

� 1�G2T
max{1�r/8, 1+(↵x,2�1/2)(2+r/4)}.

(2) there exist constants G3, G4 > 0 such that, for n  t  T � 1,

G3T
�2↵x,2  E�LC

t+1,⇤  G4T
�2↵x,2 .

Proposition 2 shows that a combination of the two forecasts can be expected to
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produce higher expected squared errors than model 2. It follows that, to the extent
that dynamic rotation is capable of performing better than model 2, it is also expected
to produce more accurate forecasts than the combination.

3.3 Expected Gains from Dynamic Rotation

We next analyze the expected gains from dynamic rotation between forecasts. We as-
sume that the parameters of the forecast monitoring regression in (2.3) are estimated
using a monitoring window based on the most recent m observations

✓̂m,t =

 
m�1

t�1X

s=t�m

zsz
0
s

!�1 
m�1

t�1X

s=t�m

zs�Ls+1

!
, (3.4)

where zs = (1, zMs)0. The dynamic rotation rule chooses model 2 if and only if
z0
t
✓̂m,t > 0. Using (2.4), the dynamic rotation forecasts {ŷDR,t+1}T�1

t=n+m take the form

ŷDR,t+1|t = ŷ1,t+1|t1{z0t✓̂m,t  0}+ ŷ2,t+1|t1{z0t✓̂m,t > 0}. (3.5)

Under dynamic rotation, the sample size, T = n+m+ p, is split into estimation
windows of length n (used to estimate �̂j,n,t) and m (used for ✓̂m,t), respectively, and
a test sample with the remaining p observations.

To establish results on the expected gains from monitoring forecasting performance
and using the dynamic rotation rule (3.5), we need to make assumptions about the
correlation between the monitoring instrument, zMt, and the xi,t"t+1 terms in the
forecast errors. We collect these in Assumption 2:

Assumption 2. The following hold for j 2 {1, 2}:

(i) {xj,t, zMt, "t+1}1t=�1 is a beta-mixing array with coefficient Bmix(·) such that
8t > 0, Bmix(t)  b exp(�tc), for constants b, c > 0.

(ii) There exist constants ↵z,1,↵z,2 2 [0,1], c⇢,1, c⇢,2 > 0 such that
corr(xj,t"t+1, zMt) = c⇢,jm�↵z,j , where

(a) 2r↵z,2/(r � 2) < ↵x,2,

(b) ↵x,2 + ↵z,2 < ↵x,1 + ↵z,1.

13



(iii) For some constants 1,2 > 0, 1Ex2,t"t+1zMt  Ex2,t"t+11{zMt > 0} 
2Ex2,t"t+1zMt.

(iv) On some fixed neighborhood of zero, the p.d.f. of zMt is uniformly bounded.

(v) EzMt = 0. Moreover, E|zMt|r  D for some D > 0.

(vi) T/m is bounded.

The mixing condition in Assumption 2(i) ensures weak dependence in the predic-
tors, monitoring instrument, and outcomes and naturally extends Assumption 1(i).
Assumption 2(ii) ensures that the monitoring instrument, zMt, is not too weak for
the second model (part a) and that the “combined“ strength of the predictor and
monitoring instrument (↵x,2+↵z,2) is stronger for model 2 than for model 1 (part b).
Assumption 2(iii) links the selection rule and the correlation between x2,t"t+1 and zMt.
The condition says that the correlation between x2,t"t+1 and zMt is of the same order
of magnitude as the correlation between x2,t"t+1 and 1{zMt > 0}. This means that
the dependence between x2,t"t+1 and zMt can be measured in approximately equiv-
alent ways, either by the correlation between x2,t"t+1 and zMt or by the correlation
between x2,t"t+1 and 1{zMt > 0}. Assumptions 2(iv)-(v) impose mild assumptions on
the distribution and moments of zMt. By a fixed neighborhood in part (iv), we mean
that this does not depend on n, m, and T , so that asymptotically this neighborhood
does not collapse to a point or something with measure zero. Finally, we assume in
part (vi) that, in an asymptotic setting, the length of the monitoring window, m,
grows in proportion with the sample size, T .

In practice, one might wish to test the validity of these conditions and only apply
the proposed rotation method when the conditions can be shown to hold. Construct-
ing such tests is not an easy task, however, and fortunately may not be necessary
in practice. Suppose we simply always apply dynamic rotation without testing if
the conditions hold. If the conditions are valid, conditional rotation has guaranteed
theoretical benefits as we show below. Conversely, if the conditions do not hold, then
either the two forecasts are not very different or the instrument zMt is not sufficiently
informative to differentiate between the two forecasts. In the latter case the dynamic
rotation is not expected to vastly underperform the benchmark of simply using one
of the forecasts.

14



Turning to the existence of instruments that are useful for monitoring, it is entirely
possible that some variables possess predictive power themselves while also, at the
same time, serving as valuable monitoring instruments. As an example, suppose
that yt+1 = z0

t
� + exp(z0

t
�)"t+1, where "t+1 is independent of zt with E"t+1 = 0 and

E"2
t+1 = 1. Clearly, the instrument zt can be used for forecasting. However, because

the squared-error loss for the forecast z0
t
� is (yt+1 � z0

t
�)2 = exp(2z0

t
�)"2

t+1, zt is also
useful in monitoring the performance of the forecast. This example illustrates that
being a valid monitoring instrument does not preclude a variable from possessing
predictive power over outcomes, thus widening the set of candidate variables that can
be used as instruments.

We next characterize the expected gain from monitoring forecasting performance
and using the dynamic rotation rule (3.5) rather than either models 1 or 2:

Proposition 3. Consider the data generating process yt+1 = �1x1,t + �2x2,t + "t+1.
Moreover, assume that the parameters of the forecasting models, �̂j,n,t, (j = 1, 2) and
of the monitoring rule, ✓̂m,t, are estimated using n and m observations, respectively.
Then, assuming squared error loss, under Assumptions 1 and 2, the following hold:

(1) There exist constants G1, G2, G3 > 0 and an array {St+1}T�1
t=n+m such that for

T � G1 and n+m  t  T � 1

P
 

T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o!
� 1�G2T

max{1�r/8, 1+(↵x,2�1/2)(2+r/4)}

and
ESt+1 � G3T

�(↵x,2+↵z,2).

(2) There exist constants G4, G5, G6 > 0 and an array {S̃t+1}T�1
t=n+m such that for

T � G4 and n+m  t  T � 1

P
 

T�1\

t=n+m

n
S̃t+1 = ��Lt+11{z0t✓̂m,t < 0}

o!
� 1�G5T

max{1�r/8, 1+(↵x,2�1/2)(2+r/4)}

and
ES̃t+1 � G6T

�(↵x,2+↵z,2).

To interpret part 1 of Proposition 3, notice that (yt+1 � ŷ1,t+1|t)2 � (yt+1 �
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ŷDR,t+1|t)2 = �Lt+11{z0t✓̂m,t > 0} so St+1 captures the expected squared
error loss of model 1 relative to the dynamic rotation rule, provided that
Tmax{1�r/8, 1+(↵x,2�1/2)(2+r/4)} is small. When this holds, tests computed based on
{�Lt+11{z0t✓̂m,t > 0}} have the same asymptotic properties as those computed using
St+1.

Part 1 of Proposition 3 shows that the expected benefit from dynamic rotation
rather than using the first model is bounded below by a positive sequence of order
T�(↵x,2+↵z,2). Hence, the more accurate the predictor variable of model 2 (smaller ↵x,2)

and the better the monitoring instrument (smaller ↵z,2), the bigger the expected gain
from dynamic rotation relative to model 1.

Part 2 of Proposition 3 computes the expected gain from dynamic rotation versus
always using model 2. To see this, notice that (yt+1 � ŷ2,t+1|t)2 � (yt+1 � ŷDR,t+1|t)2 =

��Lt+11{z0t✓̂m,t < 0}, so S̃t+1 captures the squared error loss of model 2 relative to
the rotation rule with a high probability if G5Tmax{1�r/8, 1+(↵x,2�1/2)(2+r/4)} is small.
Hence, to a good approximation, the expected loss of dynamic rotation relative to
the second model is also bounded below by a positive sequence of order T�(↵x,2+↵z,2).

An important condition for dynamic rotation (3.5) to work is that E[xjt"t+1zMt] 6=
0, so the monitoring instrument, zMt, is capable of picking up predictable forecast er-
rors. This condition can hold even if E["t+1zMt] = 0. Hence, the instrument need
not have any predictive power if added to the forecasting model on its own. Moni-
toring instruments can therefore be useful for tracking the (relative) performance of
a particular forecast even though they need not have predictive power over the out-
come when added as predictors. Of course, adding the cross-product term xjtzMt as
a predictor to the original forecasting model might produce better results. However,
this strategy is often not a feasible option since xjt might not be observed, as in the
case of survey data or any third-party forecasts that are not generated by the forecast
user. Moreover, this strategy tends to increase the effect of estimation error which
can lead to reduced accuracy of the forecasts, as we show in the empirical analysis.

A cost to implementing the rotation scheme is the requirement of an estimation
window with m observations to estimate the parameters ✓̂m,t of the rotation rule.5

5This is not an issue if the forecasts are given, as in the case of survey data. However, if the
forecasts are model-generated and require estimation of parameters, the requirement of a monitoring
window of length m can effectively reduce the number of observations available for estimation of
�̂j,t. Of course, this does not matter if m+ n is smaller than the number of data points available at
the desired starting point of the test sample.

16



In practice, of course, the monitoring procedure is not the only option and when the
number of data points available is too small to reasonably implement the monitoring
procedure, one can alternatively stick with one model or use forecast combination.
Once the number of data points becomes large enough, one can then start the moni-
toring procedure.

3.4 Weak Predictor with a Strong Monitoring Instrument

Proposition 3 establishes results for dynamic rotation under conditions that the (joint)
signal in the predictor and monitoring instrument is more powerful for model 2 than
for model 1 through the assumptions ↵x,2 < ↵x,1 and ↵x,2 +↵z,2 < ↵x,1 +↵z,1. In this
case, the dominant term in the monitoring rule is the correlation between zMt and
2�2"t+1x2,t.

However, suppose that model 2 uses the strongest predictor (↵x,2 < ↵x,1) but that
the monitoring instrument is stronger for model 1 and that ↵x,2+↵z,2 > ↵x,1+↵z,1. In
this case, the dominant term in the monitoring rule becomes the correlation between
zMt and 2�1"t+1x1,t. We next show that it is possible to generate gains from dynamic
rotation also in this case. We capture the case with a weak predictor and a strong
monitoring instrument through the following assumption:

Assumption 3. Let Assumption 2 (i), (iii)-(vi) hold for some r � 10, but replace
Assumption 2(ii) with the assumption that there exist constants ↵z,1,↵z,2 2 [0,1],
c⇢,1, c⇢,2 > 0 such that corr(xj,t"t+1, zMt) = c⇢,jm�↵z,j and

1. ↵z,1 < ↵x,1,

2. ↵x,1 + ↵z,1 < min{1/2, (3r � 2)↵x,2/(2r � 2)}, and

3. ↵x,2 + ↵z,2 > ↵x,1 + ↵z,1.

Note the parameter restrictions for this case. We require that the monitoring
instrument be more strongly correlated with the cross-product x1,t"t+1 than the cor-
relation between the “weak” predictor and the outcome (↵z,1 < ↵x,1), at least for large
T . We also require that ↵x,1 + ↵z,1 < 1/2, although this bound could be tighter, de-
pending on the values of r and ↵x,2. The last part of Assumption 3 captures that the
combined strength of the predictor and monitoring instrument for model 1 exceeds
that for model 2. Assumption 3 slightly tightens the restrictions on r by requiring
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r � 10 instead of r > 8. We view Assumption 3 as a further restriction on ↵x,j and
↵z,j.

Proposition 4. Suppose that Assumptions 1 and 3 are satisfied. Then, the following
hold:

(1) There exist constants G1, G2, G3 > 0 and an array {St+1}T�1
t=n+m such that for

T � G1 and n+m  t  T � 1

P
 

T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o!
� 1�G2T

max{1�r/8, 1+(↵x,2�1/2)(2+r/4)}

and
ESt+1 � G3T

�↵x,1�↵z,1 .

(2) There exist constants G4, G5, G6 > 0 and an array {S̃t+1}T�1
t=n+m such that for

T � G4 and n+m  t  T � 1

P
 

T�1\

t=n+m

n
S̃t+1 = ��Lt+11{z0t✓̂m,t < 0}

o!
� 1�G5T

max{1�r/8, 1+(↵x,2�1/2)(2+r/4)}

and
ES̃t+1 � G6T

�(↵x,1+↵z,1).

Proposition 4 shows that the expected gain from dynamic rotation, relative to
either always using the forecasts from model 1 or always using the forecasts from
model 2, is bounded from below by terms that are of order T�(↵x,1+↵z,1), which, by
assumption, is bigger than T�1/2. Together with the result in Proposition 3, this shows
that there can be expected gains from dynamic rotation in cases with (i) a strong
predictor and a strong monitoring instrument (Proposition 3) or (ii) a weak predictor
but a monitoring instrument that is strongly correlated with the cross-product of the
weak predictor and the residual from the forecasting model (Proposition 4).

4 Nested Models

Comparisons of forecasts from nested models arise in a number of applications in
economics and finance and this case can be addressed by modifying the analysis in
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Section 3. Suppose the DGP includes an intercept and a time-varying regressor:

yt+1 = µ+ �xt + "t+1, (4.1)

Moreover, suppose that model 2 (the “big” model) coincides with the DGP in (4.1),
while model 1 is a (nested) small model that only includes an intercept:

yt+1 = µ+ "t+1. (4.2)

Both models are estimated using OLS so that, for n  t  T ,

µ̃n,t = n�1
tX

s=t�n+1

ys,

 
µ̂n,t

�̂n,t

!
=

"
n�1

t�1X

s=t�n

 
1

xs

!⇣
1 xs

⌘#�1 "
n�1

t�1X

s=t�n

 
1

xs

!
ys+1

#
, (4.3)

and ŷ1,t+1|t = µ̃n,t, while ŷ2,t+1|t = µ̂n,t + �̂n,txt.
Using these notations, the difference in squared error loss is

�Lt+1 = (yt+1 � µ̃n,t)
2 � (yt+1 � µ̂n,t � �̂n,txt)

2

= (��small,n,t + �xt + "t+1)
2 � (��big,n,t + "t+1)

2

= �2x2
t
+ 2�xt"t+1 + �2

small,n,t
� �2

big,n,t
+ 2�big,n,t"t+1 � 2�small,n,t(�xt + "t+1),

(4.4)

where �small,n,t = µ̃n,t � µ and �big,n,t = µ̂n,t � µ+ (�̂n,t � �)xt.
Using the earlier notations, we can capture this case by setting ↵x,1 = ↵z,1 = 1,

so that �1 = �1,n,t = 0. This allows us to simplify the notations by setting �2 = � =

cn�↵x and corr(xt"t+1, zMt) = c⇢n�↵z , where c, c⇢ > 0 and ↵x,↵z � 0 are constants.
Moreover, �2,n,t = �n,t, where �n,t = (

P
t�1
s=t�n

x2
s
)�1(

P
t�1
s=t�n

xs"s+1).
Note a subtle difference between the nested and non-nested case: In the nested

case, we impose on the small model that the parameter of the additional predictor that
is only included in the big model takes a value of zero so that fewer parameters are
estimated by the small model. Conversely, in the non-nested case, no such constraint
is imposed and so we do not have a “big” and a “small” model.
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4.1 Performance of Big and Small Forecasting Models

We summarize our assumptions for the case with nested models in Assumption 4:

Assumption 4. Assume that the following hold
(i) The r-th moments of xt, zMt and "t+1 are uniformly bounded for some constant
r > 8.
(ii) {xt, zMt, "t}1t=�1 is a beta-mixing array with coefficient Bmix(·) such that 8t > 0,
Bmix(t)  b exp(�tc), for constants b, c > 0.
(iii) E("t+1 | {(xs, "s)}ts=�1) = 0 and Ext = EzMt = 0.
(iv) � = cn�↵x for some constants ↵x 2 [0,1), c > 0.
(iv) M1  Ex2

t
 M2 for some constants M1,M2 > 0.

(v) T/n and T/m are bounded.

Using this assumption, we can characterize the expected squared error loss per-
formance of the small versus the big models for the nested case:

Proposition 5. Consider the data generating process yt+1 = µ + xt� + "t+1 and
suppose that Assumption 4 holds.

(1) Suppose that ↵x < 1/2. Then there exist constants C1, · · · , C4 > 0 and an array
{�Lt+1,⇤}T�1

t=n such that for T � C1

P
 

T�1\

t=n+m

{�Lt+1 = �Lt+1,⇤}
!

� 1� C2T
max{1�r/8, 1+(↵x�1/2)(2+r/4)}

and
C3T

�2↵x  E�Lt+1,⇤  C4T
�2↵x 8n  t  T � 1.

(2) Suppose that ↵x > 1/2. Then there exist constants C5, · · · , C8 > 0 and an array
of random variables {�Lt+1,⇤}T�1

t=n such that for T � C5

P
 

T�1\

t=n+m

{�Lt+1 = �Lt+1,⇤}
!

� 1� C6T
max{1�r/8, 1+(↵x�1/2)(2+r/4)}

and
�C7T

�1  E�Lt+1,⇤  �C8T
�1 8n  t  T � 1.
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Part 1 of Proposition 5 shows that the expected squared error loss of the big
model is smaller than that of the small model provided that the strength of the
extra predictor included in the big model is sufficiently large to overcome the effect
of estimation error (↵x < 1/2). Moreover, the amount by which the big model
is expected to outperform the small model gets bigger, the stronger the predictive
signal, i.e., the smaller is ↵x. Conversely, part 2 of Proposition 5 says that if the
predictive signal underlying the big model is too weak (↵x > 1/2), the estimation
error of the big model dominates the signal, leading us to expect that the big model
will underperform the small model, although the expected underperformance is only
of order O(T�1).

4.2 Expected Gains from Dynamic Rotation

We next characterize the expected gains from dynamic rotation for the nested case.
For this analysis we make use of the following assumption:

Assumption 5. The following hold

(i) There exist constants ↵z 2 [0,1], c⇢ > 0 such that corr(xt"t+1, zMt) = c⇢m�↵z ,
where 2r↵z/(r � 2) < ↵x.

(ii) For some constants 1,2 > 0, 1Ext"t+1zMt  Ext"t+11{zMt > 0} 
2Ext"t+1zMt.

(iii) On some fixed neighborhood of zero, the p.d.f. of zMt is uniformly bounded.

Using Assumption 5, we have the following result for dynamic rotation:

Proposition 6. Consider the data generating process yt+1 = µ+xt�+ "t+1. Suppose
Assumptions 4 and 5 hold. Then

(1) there exist constants M1,M2,M3 > 0 and an array {St+1}T�1
t=n+m such that for

T � M1 and 8n+m  t  T � 1,

P
 

n+m+p�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o!
� 1�M2T

max{1�r/8, 1+(↵x�1/2)(2+r/4)}

and
ESt+1 � M3T

�(↵x+↵z).
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(2) there exist constants M4,M5,M6 > 0 and an array{S̃t+1}T�1
t=n+m such that for

T � M4 and 8n+m  t  T � 1,

P
 

n+m+p�1\

t=n+m

n
S̃t+1 = ��Lt+11{z0t✓̂m,t < 0}

o!
� 1�M5T

max{1�r/8, 1+(↵x�1/2)(2+r/4)}

and
ES̃t+1 � M6T

�(↵x+↵z).

Part 1 of Proposition 6 shows that dynamic rotation is expected to perform better
than the small model by an amount bounded by a factor of order T�(↵x+↵z). A similar
result holds for the amount by which dynamic rotation is expected to outperform the
big model (Part 2).

5 Simulation Results

This section presents results from a set of Monte Carlo simulations which quantify the
gains from dynamic rotation. For the nested case we show the joint effects of varying
the strength of the predictor and the monitoring instrument on the predictive perfor-
mance of (i) a small forecasting model; (ii) a big forecasting model; and (iii) dynamic
rotation. We also consider alternative forecasting methods based on augmenting the
forecasting model with the monitoring instrument, a pre-test for determining whether
to include a predictor, and an equal-weighted forecast combination.

For each point in time t � m+n+1, define the estimator for a model that includes
xit as a predictor

�̂i,n,t =

"
t�1X

s=t�n

xisxis

#�1 "
t�1X

s=t�n

xisys+1

#
,

with resulting forecast ŷi,t+1|t = �̂i,n,txt. The squared error loss differential of models
1 versus 2 is given by

�Lt+1 = (yt+1 � �̂1,n,tx1t)
2 � (yt+1 � �̂2,n,tx2t)

2. (5.1)

To evaluate the dynamic rotation rule, for t � m + n + 1, define the estimates from
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regressing �Lt+1 on (1, zMt) :

(✓̂0,t, ✓̂1,t)
0 =

"
t�1X

s=t�m

(1, z1s)(1, z1s)
0

#�1 "
t�1X

s=t�m

(1, z1s)
0�Ls+1

#

and the associated conditional forecast of the loss differential

d�Lt+1|t = ✓̂0,t + ✓̂01,tzt. (5.2)

Forecasts from dynamic rotation take the form

ŷDR,t+1|t = 1{d�Lt+1|t  0}�̂1,n,tx1t + 1{d�Lt+1|t > 0}�̂2,n,tx2t.

For each simulated sample we compute the mean squared errors of the two fore-
casts and for dynamic rotation as MSEj = p�1

P
T�1
t=m+n+1(yt+1 � xjt�̂j,n,t)2, and

MSEDR = p�1
P

T�1
t=m+n+1(yt+1 � ŷDR,t+1|t)2, where T = n+m+ p. We report results

in the form of MSE ratios.
In principle, our bounds on out-of-sample MSE values can be explored to conduct

hypothesis testing using either the finite-sample framework of Giacomini and White
(2006) or the asymptotic approach of West (1996) and Clark and McCracken (2001).
However, the MSE values map directly to our bounds whereas hypothesis tests and
formal inference results depend on choices of test statistics, bandwidths used to com-
pute standard errors, and the power of the tests. Our analysis has little to say about
these issues so we choose to report the simulation results in the form of ratios of MSE
values.

5.1 Nested case

In the nested case, data are generated from a simple linear regression model

yt+1 = �xt + "t+1, (5.3)

where xt ⇠ i.i.d.U(�1, 1). The residual "t+1 is generated as follows. Let st+1 2 {0, 1}
be a binary random variable such that P(st+1 = 1 | xt > 0) = µ+ � and P(st+1 = 1 |
xt  0) = µ � �, where µ = 1/2. The two forecasting models are given by (4.1) and
(4.2) with µ set to zero. Hence, the small model predicts zero while the big model
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coincides with the data generating process in (5.3) and so includes the regressor xt.

Define
"t+1 = st+1Q1,t + (1� st+1)Q2,t, (5.4)

where Q1,t and Q2,t are N(0, 1) random variables that are mutually independent and
independent of st+1 and xt. To control the correlation between the residual in (5.3)
and the monitoring instrument, zMt, we generate the latter as

zMt = Q1,t �Q2,t. (5.5)

It is now easy to see that Ext"t+1 = EzMt"t+1 = E"t+1 = EzMt = Ext = 0 and

Corr(xt"t+1, zMt) =

r
3

2
�.

Our simulations set � = 3n�↵x and we choose � such that Corr(xt"t+1, zMt) =

0.6n�↵z . We report the outcome of 5,000 simulations based on a sample size
(n,m, p) = (100, 100, 200), so that T = 400. For each simulation we compute MSE
values for alternative forecasting schemes and report ratios of MSE values, averaged
across simulations. MSE ratios equal to one suggest that two forecasting methods are
equally accurate on average while ratios below (above) unity indicate that the model
in the numerator (denominator) produces lower MSE values.

Table 1 presents results from our simulations. First consider the performance
of the big versus the small forecasting model (top row) in Panel A. When ↵x = 0,
the big model produces MSE-values that, on average, are about one-quarter the size
of those produced by the small model. This is a very large difference in predictive
accuracy and happens because the predictor is very strong in this case. However, as
↵x increases, the bigger model’s performance rapidly declines and the big and small
models are broadly equally accurate for ↵x = 0.5. For larger values of ↵x, the small
model is marginally more accurate than the big model, consistent with Proposition
5.

Turning to the comparison of the dynamic rotation and the small forecasting
model (Panel B), the dynamic rotation rule strongly dominates the small model if
the predictor is reasonably strong, i.e., ↵x  0.40. Moreover, having a strong mon-
itoring instrument can reduce the MSE ratio by about 10% when the predictor is
moderately strong (↵x = 0.25 or ↵x = 0.40). Conversely, the benefits from rotating
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forecasts based on a strong instrument are smaller when the predictor is very strong
or very weak. When the predictor is very strong (↵x = 0), the benefits from rotating
between the large and small models are very small since the large model almost al-
ways dominates. In fact, the better average performance of the big model relative to
the small model is mostly picked up by the intercept ✓0 in the monitoring regression
and so holds independently of the value of ✓1. Conversely, if the predictor is weak
(↵x = 1), there is very little signal in the forecasts from the big model which reduces
the value from having an instrument even when this is highly accurate.

The MSE values of the dynamic rotation scheme are closer to those of the big
forecasting model (Panel C) than those from the small forecasting model (Panel B).
Relative to the big model, dynamic rotation produces the best performance when the
predictor falls in the range ↵x 2 [0.1, 0.5] and the instrument is strong, i.e., ↵z = 0

or ↵z = 0.1. For these scenarios, the predictor is quite accurate and the instrument
is sufficiently strong to identify periods where it is beneficial to switch to the small
forecasting model. Conversely, if the monitoring instrument is weak and the predictor
is quite strong, rotating between the small and big models leads to a loss of 1-2%
in MSE performance relative to the big model. In this setting, the big model is far
more accurate than the small model, so sticking to the forecasts from the big model
becomes very difficult to beat. Even in this case, the loss in predictive accuracy
from using the dynamic rotation strategy is very modest, however, compared to the
benefits obtainable in the case with a strong monitoring instrument.

Table 2 reports the performance of dynamic rotation measured relative to four
widely used forecasting methods. Panel A shows that dynamic rotation dominates
an equal-weighted average of the two forecasting models–often by a sizable margin–if
either (i) the big model is very good (i.e., ↵x is small), regardless of the accuracy of
the monitoring instrument; or (ii) if the monitoring instrument is very accurate (small
↵z), regardless of the strength of the predictor. Dynamic rotation and equal-weighted
forecast combination are equally accurate if both the monitoring instrument and the
predictor are quite poor, i.e., if ↵x and ↵z both exceed 0.5.

Panel B compares the performance of dynamic rotation to that of a pre-test ap-
proach that includes x in the forecasting model only if its slope coefficient is statis-
tically significant using a t-test. Dynamic rotation performs better than pre-testing
provided that the monitoring instrument is fairly accurate (small ↵z), particularly if
the predictor is moderately accurate. Moreover, when dynamic rotation loses out to
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pre-testing, i.e., when ↵x is small and ↵z is large, it does so only by 1-2% in MSE
terms.

Panel C shows that dynamic rotation generally produces more accurate forecasts
than those from an augmented model that includes both xt and the monitoring instru-
ment, zMt, as predictors and that the gains from rotation tend to be particularly large
when the monitoring instrument is accurate (↵z is low) and the predictor variable is
moderately strong.

Finally, Panel D considers a forecast combination scheme which lets the combina-
tion weights be proportional to the inverse MSE estimates and computes the forecast
as ŷ1,t+1|twt + ŷ2,t+1|t(1� wt), where

wt =
\MSE1,t

\MSE1,t + \MSE2,t

,

with \MSE1,t = m�1
P

t

s=t�m+1(ys � ŷ1,s|s�1)2 and \MSE2,t = m�1
P

t

s=t�m+1(ys �
ŷ2,s|s�1)2. The simulation results lead to similar conclusions as those obtained for
the equal-weighted combination scheme in Panel A, although differences in relative
MSE-performance are smaller for the combination scheme in Panel D. This happens
because the weighted forecast combination assigns lower weight to the small model
than the equal-weighted combination in scenarios where this model performs partic-
ularly poorly.

5.2 Non-nested case

For the non-nested case, let {(x1,t, z1t,1, s1,t, "1,t+1)}Tt=1 and {(x2,t, z1t,2, s2,t, "2,t+1)}Tt=1

be independent copies of the process {(xt, z1t, st, "t+1)}Tt=1 in (5.3) - (5.5) such that
in generating {(xj,t, z1t,j, sj,t, "j,t+1)}Tt=1, we use �j =

p
2/3⇥ 0.6n�↵z,j for j 2 {1, 2}.

Then we set zMt = (z1t,1 + z1t,2)/2, "t+1 = ("1,t+1 + "2,t+1)/2 and �j = 3n�↵x,j in

yt+1 = �1x1,t + �2x2,t + "t+1. (5.6)

Table 3 shows the outcome of three comparisons of predictive accuracy for model
1 versus model 2 (first four columns), model 2 against dynamic rotation (columns
5-8), and model 1 versus dynamic rotation (columns 9-12). We let ↵x,1 and ↵x,2

take values of {0, 0.25, 0.5, 1}. The four panels in the table correspond to different
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combinations of the accuracy of the monitoring instrument for models 1 and 2, with
{↵z,1,↵z,2} = {0, 0} (panel A), {↵z,1,↵z,2} = {0, 1} (panel B), {↵z,1,↵z,2} = {0.5, 0.5}
(panel C), and {↵z,1,↵z,2} = {1, 1} (panel D).

As expected, the first model produces more accurate forecasts than the second
model (high MSE ratios exceeding one) provided that ↵x,2 > ↵x,1 with the ratio
growing in ↵x,2 � ↵x,1. Conversely, model 2 is more accurate than model 1 (small
MSE ratios below one) when ↵x,1 > ↵x,2 so that the second predictor is stronger than
the first one, and the two models are equally accurate (MSE ratios equal to one) on
the diagonal where ↵x,1 = ↵x,2.

The dynamic rotation rule performs as well as the underlying forecasting models
when these are equally accurate, i.e., on the diagonals of the middle and right-most
sub panels in Panel A. When one predictor is a little stronger than the other, dynamic
rotation typically performs notably better than the forecasting model that uses the
weakest predictor while performing on a par with the model based on the stronger
predictor.

Panel B investigates the case with asymmetric power of the monitoring instru-
ments by letting the first instrument be strong (↵z1 = 0) while the second instrument
is weak (↵z2 = 1). For the case where both predictors are equally strong (↵x1 = ↵x2),
the MSE value of the dynamic rotation scheme is now always lower than that of the
underlying models –in contrast to our other simulations which generate MSE ratios of
unity when the forecasting models are equally accurate. To explain this finding note
that, ignoring estimation error, the main term in equation (3.3) is 2"t+1(�2x2t��1x1t).
In our data generating process, zMt = (z1t + z2t)/2 and �1 = �2, so when ↵x1 = ↵x2

and ↵z1 = ↵z2 , the correlation between zMt and 2"t+1(�2x2t � �1x1t) equals zero.
If instead, ↵x1 = ↵x2 but ↵z1 = 0 and ↵z2 = 1, the correlation between zMt and
2"t+1(�2x2t��1x1t) is no longer equal to zero and the rotation scheme will do better.

While panels A and B assume that at least one monitoring instrument is highly
accurate, Panels C and D instead let both instruments be relatively poor. Although
the absence of accurate monitoring instruments means that the probability that dy-
namic rotation outperforms both of the underlying forecasting models deteriorates,
overall our results are quite robust with respect to the strength of the monitoring in-
struments. When one of the predictors is powerful (↵x1 = 0 or ↵x2 = 0), the strength
of the monitoring instruments does not matter much to the MSE ratios because one
forecasting model is dominant and so the best forecast gets picked up by the intercept
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(✓0) in the monitoring equation. The strength of the monitoring instruments matters
more in cases with weak predictors (↵x values of 0.5 or 1) where it is not obvious
which forecasting model is best, leaving greater room for improvement relative to the
individual models.

Reducing the length of the monitoring window (m) is likely to lead to a deteriora-
tion in the performance of the dynamic rotation rule relative to that of the individual
forecasting models while increasing this window should improve its (relative) perfor-
mance. This is indeed what we find in a set of Monte Carlo simulations which are
reported in Tables A1-A6 in the online supplement. Relative to the baseline case with
m = 100, setting m = 50 generates worse performance, while setting m = 200 leads
to better performance for the dynamic rotation scheme, ceteris paribus. However,
changes in the (relative) performance of the dynamic rotation rule due to these shifts
in m are relatively modest.

5.3 Inclusion of interaction term xtzMt in the forecasting model

Our dynamic rotation rule exploits predictability arising from the non-zero expected
value of xtzMt"t+1. In cases with generated forecasts both xt and zMt are observed
and so it is an option to consider an augmented forecasting model that includes this
interaction term:

yt+1 = �xxt + �zzMt + �xzxtzMt + "t+1. (5.7)

Table 4 reports average MSE ratios of forecasts from the dynamic rotation scheme
compared to forecasts from the augmented model in (5.7) that includes the interac-
tion term. For the data generating process in (5.3) and (5.4) (Panel A), when the
monitoring instrument is very strong (↵z = 0 or 0.1), the augmented forecasting
model tends to do better, producing average MSE values that are 5-10 percent lower
than those from the dynamic rotation scheme. For instruments of medium strength
(↵z = 0.25, 0.5) the predictive accuracy of the dynamic rotation and augmented model
is very similar, and for weak instruments (↵z � 0.75) the dynamic rotation scheme
performs a little better than the augmented model in (5.7).

We also consider a second data generating process which is similar to the first one,
except that we now generate innovations as

"t+1 = st+1Q1,t + (1� st+1)Q2,t + 2(Q2
1,t +Q2

2,t � 2)Xt, (5.8)
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rather than "t+1 = st+1Q1,t + (1� st+1)Q2,t.

Panel B in Table 4 shows results for (5.8). For this data generating process,
the dynamic rotation scheme performs better than the augmented model for a wider
range of parameter values ↵x,↵z and does so by a larger margin compared to the first
one. To see why, note that for the forecasting model augmented with the interaction
term xtzMt to work, zMt needs to be correlated with xt"t+1. In (5.8), this correlation
is not zero and so the augmented forecasting model does not fully incorporate the
information from zMt.

Overall, these simulations demonstrate that there are settings in which the dy-
namic rotation scheme can generate sizable improvements in predictive accuracy but
also that there are many parameter configurations for which such improvements are
either very small or non-existent.

6 Empirical Applications

We finally illustrate our analysis through two empirical applications to inflation fore-
casts and predictability of stock market returns.

6.1 Inflation Forecasts

We first compare the accuracy of the Federal Reserve’s quarterly Greenbook forecasts
of the GDP price deflator to the mean forecast of the same variable from the Survey of
Professional Forecasters (SPF)–a case of non-nested forecasts–over the sample period
1968Q4-2014Q4. We consider forecast horizons of one through four quarters and use
two different ways to measure the actual outcome, namely the value of the GDP
deflator series available at the end of December 2020 (final, revised in Panel A) or
the value that becomes available two quarters after the predicted quarter (vintage,
in Panel C). Data on the forecasts are obtained from the Federal Reserve Bank of
Philadelphia, while data on the final GDP deflator series are taken from the St Louis
Federal Reserve Bank’s Fred data base.

The first column in Table 5 reports MSE ratios for the Greenbook forecasts relative
to the SPF forecasts with ratios below unity suggesting that the Greenbook forecasts
were more accurate. Using the final, revised data to measure outcomes (Panel A), the
Greenbook forecasts were 5% more accurate than the SPF forecasts at the shortest
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and longest (h = 1, 4) horizons and 10-20% more accurate at the two intermediate
horizons. This difference grows larger when the vintage data is used to measure
outcomes (Panel B); Greenbook forecasts are now between 25% (h = 1) and 20%
(h = 2, 4) more accurate than the mean SPF forecasts.

Our dynamic rotation rule uses a 10-year rolling estimation window for the mon-
itoring regression (m = 40) and is implemented for a variety of instruments.6 First,
we use the lagged loss differential measured over the most recent four quarters,
�L̄t�3:t = (1/4)

P4
⌧=1�Lt+1�⌧ . The rationale for this choice is that lags of �Lt

will be correlated with �Lt+1 provided that the regressors used by the underly-
ing forecasts are persistent and do not completely overlap. Second, we use the
squared difference in forecasts, again averaged over the most recent four quarters,
�ŷ2

t�3:t = (1/4)
P3

⌧=0(ŷ
2
1t+1�⌧ |t�⌧

� ŷ22t+1�⌧ |t�⌧
). Using zt = (ŷ21,t+1|t, ŷ

2
2,t+1|t)

0 as an
instrument makes sense because, from (3.3), E(�Lt+1 | zt) = ŷ22,t+1|t � ŷ21,t+1|t, pro-
vided that E("t+1 | x1,t, x2,t) = 0. Hence, we can regress �Lt+1 on ŷ21,t+1|t � ŷ22,t+1|t to
compute E(�Lt+1 | zt). As a third instrument we use the unemployment gap (UG)
from Stock and Watson (2010). While the first two instruments are readily available
in real time, the third instrument might involve a short delay.

Using the final, revised data to measure outcomes and the unemployment gap
as the monitoring instrument, the dynamic rotation scheme reduces the MSE of the
Greenbook and SPF forecasts by 10-15% at the one-quarter horizon and by 10-30%
at the longer horizons. Using instead the vintage data to measure outcomes, the
MSE values for the dynamic rotation scheme and the Greenbook forecasts are close
to unity across most horizons, while dynamic rotation reduces the MSE values of the
SPF forecasts by 17-23% across the four horizons.

Comparing results across the three sets of monitoring instruments, the best results
for the dynamic rotation scheme are obtained using the four-quarter moving average
of the lagged loss differential, �L̄t�3:t, followed by the unemployment gap and the
squared difference in forecasts, �ŷ2

t�3:t. The dynamic rotation rule that uses the
lagged loss differential reduces the MSE of the Greenbook forecasts by 7 percent at the
two longest horizons (h = 3, 4) and outperforms the SPF forecasts by a considerable
margin across all horizons.

In this application, one forecast (Greenbook) is notably more accurate than the
other (SPF). Encouragingly, the dynamic rotation rule still manages to either out-

6Similar results are obtained if instead we use a 15-year estimation window (m = 60).
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perform or at least perform on a par with the best of the underlying forecasts, and it
performs substantially better than the least accurate forecast. This suggests that the
dynamic rotation scheme has an attractive risk profile, i.e., it does not underperform
any of the underlying forecasts by a sizable margin and it produces the most accurate
forecasts in many cases.

6.2 Forecasts of Stock Returns

Our second application covers the nested case and considers predictability of quarterly
returns on the S&P500 stock index, measured net of a short T-bill rate. Following
Welch and Goyal (2008), we use a constant mean as our small model:

yt+1 = µ+ "t+1, (6.1)

while, again consistent with Welch and Goyal (2008), the big model is a univariate
regression model with a single predictor variable:

yt+1 = µ+ �xt + "Bt+1. (6.2)

Our data cover the sample 1927-2019. We use a 20-year rolling window to es-
timate the parameters of the underlying forecasting models (n = 80) and also use
20 years of out-of-sample forecasts to run the monitoring regressions (m = 80) and
compute the expected loss differential in (2.3). Our analysis of the small and big
models’ out-of-sample forecasting performance thus runs from 1967 through 2019,
a total of 212 quarterly observations. We implement the dynamic rotation rule us-
ing the same set of monitoring instruments as in our inflation application, namely
the lagged loss differential measured over the most recent four quarters, �L̄t�3:t, the
four-quarter moving average of squared differences in forecasts, �ŷ2

t�3:t|t�4:t�1, and
the unemployment gap.

Table 6 reports the forecasting performance for 17 different predictor variables
taken from the Goyal-Welch data set. Due to the very low signal-to-noise ratio of
the return prediction models (large ↵x), the MSE value of the big forecasting model
is higher than that of the simple prevailing mean model (constant only) for 16 of 17
predictors. This is consistent with the results in Welch and Goyal (2008).

Using the unemployment gap as our instrument, the dynamic rotation scheme
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does a little better, reducing the MSE value of the prevailing mean model for three
predictors, while improving on the big model for 10 of 17 predictors. Moreover, when
the MSE value of the dynamic rotation scheme exceeds that of the big model, it
only does so by a small margin that does not exceed one percent. Conversely, we
see improvements of up to 23 percent (for the stock variance (svar) predictor) for the
dynamic rotation scheme relative to the big model.

Similar results are obtained for the other instruments with a few notable excep-
tions. For example, the dynamic rotation scheme performs somewhat worse relative
to the small model for the svar predictor when using �L̄t�3:t or �ŷ2

t�3:t|t�4:t�1 rather
than the unemployment gap as instruments. This happens because the svar pre-
dictor is affected by large outliers which also introduce outliers in the two loss and
forecast-based instruments.

Univariate return prediction models are clearly a case with weak predictors and
weak instruments (large ↵x and ↵z). Hence, our finding that the dynamic rotation
scheme performs a little better than the large model but is worse than the small
forecasting model is consistent with the Monte Carlo simulations in Table 1.

The final column in Table 6 reports results when the forecasts from the large model
are replaced with an equal-weighted (EW) average of the 17 underlying univariate
forecasts. The MSE ratio of this EW average relative to the prevailing mean is now
much lower (0.977), so using an EW average improves forecasting performance by a
substantial amount. Similarly, the dynamic rotation scheme substantially reduces the
MSE value of the prevailing mean model and its performance is on a par with the
EW forecast.

The final row in each panel in Table 6 compares the augmented model that in-
cludes xt,zMt,and xtzMt as predictors with the dynamic rotation scheme. Across all
17 predictors, the dynamic rotation scheme produces lower MSE values than this aug-
mented model. This shows that in applications such as this one with weak predictors
and weak instruments (large ↵x and ↵z), augmenting the forecasting model with the
interaction term can produce less accurate forecasts. This finding is consistent with
the Monte Carlo simulation results in Table 4.
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7 Conclusion

We derive finite-sample bounds on differences in the expected mean squared error
performance of competing forecasting models conditional on a set of monitoring in-
struments. Our analysis covers both the case with nested and non-nested forecasting
models and accounts for parameter estimation error. We show that the possibility
of establishing gains from monitoring the performance of competing forecasts and
selecting, at each point in time, the forecast with the smallest expected loss requires
conditions on the accuracy of both the predictors used by the underlying forecasting
models as well as the strength of the monitoring instruments. For this dynamic ro-
tation to work, at least one of the models must use predictors that are not too weak.
Moreover, none of the underlying forecasting models can be too dominant as, other-
wise, there is little space for improvements by alternating between the two forecasting
models.

Monte Carlo simulations and two empirical applications to forecasts of inflation
and stock returns illustrate that there are conditions under which the dynamic ro-
tation scheme works well and produces sizable gains in predictive accuracy, but also
that there are cases in which such gains are negligible or reversed. Even when it does
not produce the most accurate forecasts, the dynamic rotation scheme typically per-
forms better than the worst of the underlying forecasts and only underperforms the
best forecast by a relatively modest margin. This limits the downside from applying
dynamic rotation and makes it an attractive option relative to always sticking with
a single model whose performance may deteriorate over time.
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Table 1: Predictive performance of nested models and dynamic rotation
A: Big vs. small model (MSEbig/MSEsmall)

↵z\↵x 0 0.1 0.25 0.4 0.5 0.75 1
0.253 0.460 0.777 0.939 0.981 1.007 1.010

B: DR vs. small model (MSEDR/MSEsmall)
0.0 0.242 0.408 0.671 0.849 0.912 0.973 0.981
0.1 0.258 0.456 0.741 0.893 0.943 0.985 0.991
0.25 0.258 0.468 0.781 0.932 0.971 0.997 1.000
0.5 0.257 0.466 0.788 0.948 0.986 1.003 1.004
0.75 0.256 0.466 0.789 0.951 0.988 1.004 1.005
1.0 0.256 0.465 0.789 0.951 0.987 1.004 1.005

C: DR vs. big model (MSEDR/MSEbig)
0.0 0.955 0.883 0.865 0.903 0.930 0.966 0.972
0.1 1.021 0.990 0.953 0.952 0.961 0.978 0.981
0.25 1.022 1.017 1.004 0.994 0.991 0.990 0.990
0.5 1.018 1.013 1.015 1.011 1.005 0.996 0.995
0.75 1.017 1.013 1.015 1.013 1.007 0.997 0.995
1.0 1.017 1.013 1.015 1.013 1.007 0.997 0.995

This table reports the relative predictive accuracy in the form of mean squared error (MSE)
ratios associated with forecasts generated using big or small forecasting models or a dynamic
rotation (DR) scheme. All results are based on 5,000 Monte Carlo simulations and use a
sample size of (n,m, p) = (100, 100, 200).
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Table 2: Predictive performance of dynamic rotation versus forecast combinations,
pretesting and a model augmented with the monitoring instrument

A: DR vs. equal-weighted combination (MSEDR/MSEEW )
↵z\↵x 0 0.1 0.25 0.4 0.5 0.75 1
0.0 0.551 0.687 0.811 0.893 0.930 0.973 0.979
0.1 0.589 0.768 0.893 0.941 0.962 0.985 0.989
0.25 0.589 0.789 0.941 0.982 0.991 0.997 0.997
0.5 0.586 0.786 0.951 0.999 1.006 1.003 1.002
0.75 0.585 0.786 0.952 1.002 1.007 1.004 1.003
1.0 0.585 0.785 0.951 1.001 1.007 1.004 1.003

B: DR vs. pre-test forecast (MSEDR/MSEpretest)
0.0 0.955 0.883 0.865 0.893 0.918 0.970 0.978
0.1 1.021 0.990 0.953 0.942 0.950 0.982 0.988
0.25 1.022 1.017 1.004 0.982 0.979 0.994 0.997
0.5 1.018 1.013 1.015 1.000 0.993 1.000 1.001
0.75 1.017 1.013 1.015 1.001 0.995 1.001 1.002
1.0 1.017 1.013 1.015 1.001 0.995 1.001 1.002

C: DR vs. augmented forecast (MSEDR/MSEaugmented)
0.0 0.936 0.866 0.848 0.885 0.912 0.948 0.953
0.1 1.002 0.971 0.934 0.934 0.943 0.959 0.962
0.25 1.002 0.997 0.984 0.974 0.972 0.971 0.970
0.5 0.998 0.993 0.995 0.991 0.986 0.977 0.976
0.75 0.997 0.993 0.995 0.993 0.987 0.978 0.976
1.0 0.997 0.993 0.996 0.994 0.987 0.978 0.976

D: DR vs. weighted forecast comb (MSEDR/MSEweight�comb)
0.0 0.851 0.793 0.823 0.894 0.930 0.973 0.979
0.1 0.910 0.887 0.907 0.942 0.962 0.985 0.989
0.25 0.911 0.911 0.956 0.983 0.991 0.997 0.997
0.5 0.906 0.908 0.966 1.000 1.006 1.003 1.002
0.75 0.906 0.908 0.967 1.003 1.007 1.004 1.003
1.0 0.906 0.908 0.966 1.002 1.007 1.004 1.003

This table compares the MSE performance of the dynamic rotation (DR) scheme to that of an equal-
weighted (EW) forecast combination (Panel A), a pre-test approach that includes a predictor in the
forecasting model if its regression coefficient is statistically significant (Panel B), forecasts from an
augmented forecasting model that includes both the predictor, xt, and the monitoring instrument,
zMt, (Panel C) and forecasts from a combination scheme with weights proportional to the inverse
of the MSE of the individual forecasts (Panel D).
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Table 3: Pairwise comparisons of predictive performance for the non-nested case
MSEj2/MSEj1

(j1, j2) = (1, 2) (j1, j2) = (2, DR) (j1, j2) = (1, DR)

A: (↵z,1,↵z,2) = (0, 0)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.999 4.371 6.611 6.992 1.000 0.229 0.152 0.144 0.999 1.003 1.004 1.005
0.25 0.228 1.003 1.512 1.597 1.020 0.998 0.665 0.621 0.233 1.001 1.005 0.992
0.5 0.151 0.663 1.000 1.059 1.033 1.008 0.995 0.926 0.156 0.668 0.995 0.980
1.0 0.143 0.626 0.944 1.000 1.035 0.995 0.980 0.988 0.148 0.623 0.925 0.988

B: (↵z,1,↵z,2) = (0, 1)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.999 4.367 6.597 6.988 0.947 0.229 0.152 0.143 0.946 1.002 1.001 1.001
0.25 0.228 0.998 1.510 1.597 1.024 0.913 0.670 0.631 0.234 0.911 1.011 1.008
0.5 0.151 0.662 1.001 1.059 1.034 0.989 0.958 0.951 0.156 0.654 0.959 1.007
1.0 0.143 0.625 0.944 1.000 1.036 0.993 0.974 0.992 0.148 0.621 0.920 0.992

C:(↵z,1,↵z,2) = (0.5, 0.5)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.000 4.374 6.602 6.990 1.000 0.229 0.152 0.143 1.000 1.001 1.001 1.001
0.25 0.229 1.002 1.512 1.600 1.018 1.000 0.669 0.630 0.233 1.002 1.011 1.007
0.5 0.152 0.663 1.001 1.059 1.029 1.014 1.000 0.955 0.156 0.672 1.001 1.011
1.0 0.143 0.626 0.944 1.000 1.031 1.011 1.012 1.002 0.148 0.633 0.955 1.002

D: (↵z,1,↵z,2) = (1, 1)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.002 4.382 6.607 7.002 0.999 0.229 0.151 0.143 1.001 1.001 1.001 1.001
0.25 0.229 0.999 1.511 1.599 1.017 0.999 0.670 0.631 0.233 0.998 1.012 1.008
0.5 0.151 0.662 1.000 1.059 1.028 1.014 1.000 0.955 0.156 0.671 1.000 1.012
1.0 0.143 0.626 0.944 1.000 1.031 1.011 1.013 1.002 0.148 0.632 0.956 1.003

This table reports the ratio of MSE values for method j2 versus method j1. Data are
generated according to the non-nested model

yt+1 = �1x1,t + �2x2,t + "t+1,

where x1t and x2t are predictor variables that are known at time t. Model 1 takes the form
yt+1 = �1x1,t + "1t+1, while model 2 takes the form yt+1 = �2x2,t + "2t+1. The strength of
the predictors in models 1 and 2 is parameterized as �j = c�,jn�↵x,j , while the accuracy
of the monitoring instrument is captured as corr(xj,t"t+1, z1t) = c⇢,jm�↵z,j . All results are
based on 5,000 MC simulations and use a sample size of (n,m, p) = (100, 100, 200).
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Table 4: Predictive performance of dynamic rotation versus a model augmented with
the monitoring instrument and interaction terms

A: DGP I (MSEDR/MSEaug)
↵z\↵x 0 0.1 0.25 0.4 0.5 0.75 1
0.0 1.102 1.058 1.078 1.114 1.110 1.095 1.094
0.1 1.076 1.051 1.028 1.031 1.038 1.045 1.046
0.25 1.023 1.015 1.004 0.998 0.997 0.996 0.998
0.5 0.999 0.993 0.990 0.986 0.983 0.978 0.977
0.75 0.995 0.989 0.988 0.986 0.982 0.976 0.975
1.0 0.995 0.990 0.988 0.986 0.983 0.976 0.975

B: DGP II (MSEDR/MSEaug)
0.0 0.999 0.956 0.912 0.901 0.899 0.904 0.904
0.1 1.007 0.975 0.936 0.921 0.921 0.921 0.921
0.25 1.010 0.987 0.951 0.934 0.932 0.931 0.931
0.5 1.010 0.990 0.954 0.937 0.935 0.934 0.935
0.75 1.010 0.990 0.955 0.936 0.935 0.935 0.935
1.0 1.010 0.989 0.955 0.938 0.935 0.935 0.936

This table reports mean squared error ratios for a dynamic rotation (DR) scheme that rotates
between forecasts generated by a small and a big forecasting model versus forecasts from an
augmented model that includes xt, zMt and xtzMt as regressors. All simulations use a nested
model setup with yt+1 = �xt + "t+1, where under DGP I, "t+1 = st+1Q1,t + (1� st+1)Q2,t,
while under DGP II, "t+1 = st+1Q1,t+(1�st+1)Q2,t+2(Q2

1,t+Q2
2,t�2)Xt. Q1,t and Q2,t are

N(0, 1) random variables that are mutually independent and independent of st+1 and xt. All
results are based on 5,000 MC simulations and use a sample size of (n,m, p) = (100, 100, 200).
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Table 5: Forecasting performance: Greenbook, Survey of Professional Forecasters,
and Dynamic Rotation Scheme

A: Final, revised data
h\Zt Uncond UGt �Lt�3:t �ŷ2

t�3:t
MSEGB
MSESPF

MSEDR
MSEGB

MSEDR
MSESPF

MSEDR
MSEGB

MSEDR
MSESPF

MSEDR
MSEGB

MSEDR
MSESPF

1 0.948 0.884 0.838 0.874 0.829 0.910 0.863
2 0.797 0.856 0.682 0.800 0.638 0.861 0.686
3 0.890 0.901 0.801 0.826 0.735 0.930 0.827
4 0.944 0.870 0.822 0.815 0.769 0.932 0.880

B: Vintage data
1 0.740 1.086 0.804 1.043 0.772 1.018 0.753
2 0.799 1.010 0.807 1.008 0.805 1.000 0.799
3 0.771 0.994 0.767 0.935 0.721 0.969 0.747
4 0.812 1.019 0.827 0.933 0.758 1.012 0.821

This table reports MSE ratios for the quarterly GDP deflator using Greenbook (GB) fore-
casts, forecasts from the Survey of Professional Forecasters (SPF), or forecasts from a dy-
namic rotation (DR) scheme. The dynamic rotation scheme is based on a 10-year estimation
window (m = 40) and uses the monitoring instruments Zt listed above the rows. The forecast
horizon runs from h = 1 through h = 4 quarters. The sample period is 1968Q4-2014Q4.
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Table 6: Predictive performance of nested models and dynamic rotation
Zt = UGt

d/p d/y e/p d/e b/m tbl dfy lty cay ntis infl ltr tms svar csp ik dfr avg
MSEbig

MSEsmall
1.004 1.003 1.065 1.043 1.055 1.014 1.064 1.022 1.030 1.018 1.019 1.015 1.011 1.281 0.990 1.015 1.039 0.977

MSEDR
MSEsmall

0.999 1.007 1.035 1.042 1.013 1.021 1.067 0.990 1.035 1.021 0.989 1.029 1.009 0.988 1.000 1.008 1.008 0.976
MSEDR
MSEbig

0.995 1.004 0.972 0.999 0.961 1.007 1.004 0.969 1.006 1.003 0.971 1.014 0.998 0.771 1.010 0.993 0.970 0.999
MSEDR
MSEaug

0.943 0.980 0.938 0.907 0.946 0.901 0.655 0.842 0.858 0.885 0.954 0.919 0.961 0.406 0.920 1.049 0.784 0.759
Zt = �Lt�3:t

MSEbig

MSEsmall
1.004 1.003 1.064 1.043 1.053 1.019 1.064 1.025 1.031 1.018 1.020 1.013 1.010 1.278 0.990 1.004 1.040 0.977

MSEDR
MSEsmall

0.997 1.033 1.057 0.990 1.019 1.068 1.065 1.052 1.026 1.006 1.004 1.014 1.031 1.283 1.000 0.999 1.021 0.983
MSEDR
MSEbig

0.993 1.030 0.993 0.950 0.968 1.048 1.001 1.026 0.995 0.988 0.984 1.001 1.020 1.003 1.010 0.995 0.982 1.006
MSEDR
MSEaug

0.875 0.933 0.473 0.541 0.761 0.945 0.566 0.830 0.933 0.897 0.788 0.942 0.934 0.154 0.976 0.987 0.856 0.824
Zt = �ŷ2

t�3:t
MSEbig

MSEsmall
1.004 1.003 1.064 1.043 1.053 1.019 1.064 1.025 1.031 1.018 1.020 1.013 1.010 1.278 0.990 1.004 1.040 0.977

MSEDR
MSEsmall

1.019 1.043 0.981 1.009 1.030 1.039 1.005 1.021 1.014 1.015 1.020 1.008 1.015 1.287 0.999 1.016 1.009 0.978
MSEDR
MSEbig

1.015 1.040 0.922 0.968 0.978 1.020 0.945 0.996 0.983 0.996 1.000 0.995 1.005 1.007 1.009 1.012 0.970 1.001
MSEDR
MSEaug

0.846 0.885 0.479 0.835 0.872 0.936 0.022 0.910 0.925 0.885 0.842 0.966 0.854 0.060 0.900 0.934 0.771 0.748

This table reports ratios of mean squared errors (MSEs) for forecasts of quarterly stock market returns based on a
small prediction model that only includes an intercept, a big model that includes an intercept plus one of the predictors
listed in each column, and a dynamic rotation (DR) scheme that uses the instrument listed above each panel. Data on
quarterly stock returns along with the 17 predictor variables are obtained from Welch and Goyal (2008) which provides
details on the construction of the individual predictors. The variables are: dividend-price ratio (d/p), dividend yield
(d/y), earnings-price ratio (e/p), dividend payout ratio (d/e), book-to-market ratio (b/m), T-bill rate (tbl), default
yield (dfy), long term yield (lty), consumption, wealth, income ratio (cay), net equity expansion (ntis), inflation (infl),
long-term rate of return (ltr), term spread (tms), stock variance (svar), cross-sectional premium (csp), investment to
capital ratio (ik) and default return spread (dfr). The final column (avg) uses an equal-weighted average of the 17
univariate forecasts as the forecast from the large model. Zt refers to the monitoring instrument used by the dynamic
rotation rule. All forecasts are generated out-of-sample for the period 1967-2019.
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This appendix contains proofs of theoretical results in the paper as well as addi-
tional tables of Monte Carlo simulations discussed in the paper.

Appendix A Technical results used in the proofs

This appendix provides proofs of the theoretical results in the paper. The appendix
is structured as follows. Appendix A provides technical tools used in the proofs while
the theoretical results in the main text are proved in Appendix B.

First, some comments on notation. Throughout the appendix, the constants do
not depend on T , n or t. For a vector x = (x1, · · · , xp)0 2 Rp, kxkr = (

P
p

i=1 |xi|r)1/r.
For a random variable or vector X, let kXkLr(P) = (EkXkr

r
)1/r. For two sequences

aT , bT > 0, we say that aT ⇣ bT if aT = O(bT ) and bT = O(aT ). For any real number
x � 0, we define bxc to be the largest integer no larger than x.

Lemma 1. Let F and G be �-algebras with strong mixing coefficient ↵. Let X 2
F and Y 2 G be random variables with EX = 0. Suppose that kXkLp(P)  C1,
kY kLq(P)  C2 for some constants C1, C2 > 0 and p, q 2 (1,1] satisfying 1/p+1/q <

1. Then E |E(X|G)Y |  8↵1�1/p�1/qC1C2.

Proof. Let Z = E(X | G). Define h to be the sign of Y Z, i.e., h = 1{Y Z >

0}� 1{Y Z < 0}. Therefore, Z, h 2 G. We notice that

E|ZY | (i)
= E(ZY h) = E [E(X | G)Y h]

(ii)
= E(XY h)

(iii)

 8↵1�1/p�1/qkXkLp(P)khY kLq(P),

1



where (i) holds by |ZY | = ZY h, (ii) follows by Y, h 2 G and the law of iterated
expectations and (iii) holds by EX = 0 and Davydov’s Theorem (Theorem 3.7 of
Bradley (2007)). By the above display and P(|h|  1) = 1, the desired result follows.

Lemma 2. Let X and Y satisfy that E|X|c1 ,E|Y |c2  D. Then E|XY |v  D, where
v = c1c2/(c1 + c2).

Proof. Let p = c1/v and q = c2/v. Then p�1+q�1 = 1. The result follows by Holder’s
inequality:

E|XY |v  (E|X|vp)1/p (E|Y |vq)1/q = (E|X|c1)1/p (E|Y |c2)1/q  D.

Lemma 3. Let {Xi}ni=1 be independent random variables. Suppose that EXi = 0 and
max1in E|Xi|p < K for some constants p > 2 and K < 1. Then 8a, t > 0,

P
 �����

nX

i=1

Xi1{|Xi|  a}

����� �
p
nt+ na1�pK

!
 2 exp


� t2

2 (a2�pK + atn�1/2 + n�1
P

n

i=1 EX2
i
)

�
.

Proof. Let X̃i = Xi1{|Xi|  a}, Zi = X̃i � EX̃i and B2
n
=
P

n

i=1 EZ2
i
. Thus, EZi = 0

and P(Zi  2a) = 1. It follows by Theorem 2.17 of Peña et al. (2008) that 8z > 0

P
 

nX

i=1

Zi � z

!
 exp

✓
� z2

2(B2
n
+ 2az)

◆
.

Applying the same result to {�Zi}ni=1, we obtain

P
 
�

nX

i=1

Zi � z

!
 exp

✓
� z2

2(B2
n
+ 2az)

◆
.

The above two inequalities imply that

P
 �����

nX

i=1

Zi

����� � z

!
 2 exp

✓
� z2

2(B2
n
+ 2az)

◆
. (A.1)

We now bound EX̃i. Notice that
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|EX̃i| = |E(Xi �Xi1{|Xi| > a})| (i)
= |EXi1{|Xi| > a}|  E|Xi|1{|Xi| > a}

 E
����
|Xi|p�1

ap�1
(|Xi|1{|Xi| > a})

����  E|Xi|pa1�p,

where (i) holds by EXi = 0. Therefore,
�����

nX

i=1

EX̃i

����� 
nX

i=1

|EX̃i|  nKa1�p. (A.2)

Moreover, 8t > 0,
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◆
, (A.3)

where (i) follows by (A.2) and (ii) follows by (A.1) with z =
p
nt.

It remains to bound B2
n
. Notice that

B2
n
�

nX
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EX2
i
=

nX
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h
EX̃2

i
� EX2

i
� (EX̃i)

2
i

=
nX

i=1

h
EX2

i
1{|Xi| > a}� (EX̃i)

2
i


nX

i=1

EX2
i
1{|Xi| > a}


nX

i=1

E

|Xi|p�2

ap�2

�
X2

i
1{|Xi| > a}

��


nX

i=1

E|Xi|pa2�p  na2�pK.

The desired result follows from the above inequality and equation (A.3).

Lemma 4. Let {Yt}Tt=1 be random variables with beta-mixing coefficient satisfying
�(i)  ⌧1 exp(�⌧2i⌧3) for some constants ⌧1, ⌧2, ⌧3 > 0. Suppose that EYt = 0 and
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max1tT E|Yt|p  D for some constants p > 2 and D > 0. Then for any p0 2 (2, p),
there exist constants K1, ..., K5 > 0 such that 8w � 1,

P
 �����

s+nX

t=s+1

Yt

����� �
p
nK1w

!
 2 exp

�
�K2w

2
�
+K3n
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1sT�n
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����� �
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n log TK5

!
 2K3Tn

1�p0/2 log�K4 n.

Proof. Fix 1  s  T � n. Let m1 > m2 and k = bn/mc, where m = m1 +m2. For
1  j  k, define Hj,1 = {(j � 1)m + i : 1  i  m1} and Hj,2 = {(j � 1)m + i :
m1 + 1  i  m}. Also define H⇤ = {km + 1, ..., n}. Let Wj,1 = m�1/2

1

P
t2Hj,1

Yt,
Wj,2 = m�1/2

2

P
t2Hj,2

Yt and W⇤ =
P

t2H⇤
Yt.

Step 1: bound
P

k

j=1 Wj,1.
We apply Lemma 3 together with a Berbee-type coupling result. By Lemma 7.1

of Chen et al. (2016), there exist independent random variables {Zj}kj=1 (possibly on
an extended probability space) such that Zj and Wj,1 have the same distribution and

P
 

k[
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{Zj 6= Wj,1}
!

 k�(m2)  k⌧1 exp (�⌧2m
⌧3
2 ) . (A.4)

Lemma 7.2 of Chen et al. (2016) also implies that there exist constants
M0,M1,M2 > 0 such that

E|Wj,1|p0  M1M
p0
2 and E|Wj,1|2  M0. (A.5)

Let Qm1,k,p0 := max1jk E|Wj,1|p0 . Let aT ! 1 be a sequence to be chosen later.
Applying Lemma 3, we obtain that 8t > 0,
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Hence, by (A.5), we have
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The above display and (A.4) imply that
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By (A.5), we have
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T

M1M
p0
2 .

By the above two displays,

P
 �����

kX

j=1

Wj,1

����� �
p
kt+ ka1�p0

T
M1M

p0
2

!

 2 exp

"
� t2

2
�
a2�p0
T

M1M
p0
2 + aT tk�1/2 +M0

�
#
+ k⌧1 exp (�⌧2m

⌧3
2 ) + ka�p0

T
M1M

p0
2 .

(A.7)

Step 2: bound
P

k

j=1 Wj,2 and W⇤

Similar to Step 1, we can show that for any t > 0,

P
 �����

kX

j=1

Wj,2

����� �
p
kt+ ka1�p0

T
M1M

p0
2

!

5



 2 exp

"
� t2

2
�
a2�p0
T

M1M
p0
2 + aT tk�1/2 +M0

�
#
+ k⌧1 exp (�⌧2m

⌧3
1 ) + ka�p0

T
M1M

p0
2 .

(A.8)

Notice that there are fewer than m elements in H⇤. Hence, 8t > 0,

P (|W⇤| � t)  E|W⇤|p0
tp1

(i)

 M1M
p0
2 (

p
m/t)p0 , (A.9)

where (i) follows by Lemma 7.2 of Chen et al. (2016) (with the same constants M1

and M2 as in (A.5)).
Step 3: derive the final result.
Now we choose m2 = 1 +

j
[(p0/⌧2) log n]

4+1/⌧3
k
, m1 = m2

2, m = m1 + m2, k =

bn/mc and aT =
p
k. Let

gn =k⌧1 exp (�⌧2m
⌧3
2 ) + ka�p0

T
M1M

p0
2

+ 2 exp

2

4� n/(m2k)

2
⇣
a2�p0
T

M1M
p0
2 + aT

p
n/(m2k)k�1/2 +M0

⌘

3

5

+ k⌧1 exp (�⌧2m
⌧3
1 ) + ka�p0

T
M1M

p0
2 +M1M

p0
2 (m/n)p0/2,

For large n and z � 1, we have that

P
 �����

s+nX

t=s+1

Yt

����� � 5
p
nz

!

=P
 �����

p
m1

kX

j=1

Wj,1 +
p
m2

kX

j=1

Wj,2 +W⇤

����� � 5
p
nz

!

P
 �����

p
m1

kX

j=1

Wj,1

����� � 2
p
nz

!
+ P

 �����
p
m2

kX

j=1

Wj,2

����� � 2
p
n

!
+ P

�
|W⇤| �

p
n
�

(i)

P
 �����

kX

j=1

Wj,1

����� �
p
kz + ka1�p0

T
M1M

p0
2

!

+ P
 �����

kX

j=1

Wj,2

����� �
p
k
p

n/(m2k) + ka1�p0
T

M1M
p0
2

!
+ P

�
|W⇤| �

p
n
�

6



(ii)

2 exp

"
� z2

2
�
a2�p0
T

M1M
p0
2 + aT zk�1/2 +M0

�
#

| {z }
 n(z)

+ gn,

where (i) holds by z � 1 �
p
ka1�p0

T
M1M

p0
2 and n/m1 � k and (ii) follows by

(A.7), (A.8) and (A.9). By straight-forward computations, we have that  n(z) 
2 exp(�M3z2) and gn  n1�p0/2 log�M4 n, where M3 and M4 are positive constants.
This proves the first claim. The second claim follows by the union bound.

To study properties of estimation errors of the form (
P

n

s=1 Xs"s+1)/(
P

n

s=1 X
2
s
),

we consider the following condition.

Condition 1. Let {Xs, es+1}ns=1 be random variables with beta-mixing coefficient
satisfying Bmix(i)  ⌧1 exp(�⌧2i⌧3) for some constants ⌧1, ⌧2, ⌧3 > 0. Suppose that
EXses+1 = 0, max1sn E|Xs|p  D and max1sn E|es+1|p  D for some constants
p > 4 and D > 0. Moreover, D0  E(n�1/2

P
n

s=1 Xses+1)2  D1 and D2  EX2
s
 D3

for some constants D0, .., D3 > 0.

Lemma 5. Let Condition 1 hold. Define

� =

P
n

s=1 Xses+1P
n

s=1 X
2
s

.

Then for any p0 2 (2, p/2), there exist �̃ 2 � ({Xs, es+1}ns=1) and constants C1, ..., C5 >

0 such that P(�̃ 6= �)  C1n1�p0/2 log�C2 n, |E�̃|  n�1
p
log nC3 and n�1C4  E�̃2 

n�1C5. Moreover, |E�̃2 � E(
P

n

s=1 Xses+1)2/E(
P

n

s=1 X
2
s
)2|  C6

p
n�3 log n for some

constant C6 > 0.

Proof. Let Zn,1 = n�1
P

n

s=1 Xses+1 and Zn,2 = n�1
P

n

s=1 X
2
s
. Hence, � = Zn,1/Zn,2.

The proof proceeds in two steps.
Step 1: bound E|Zn,1|.
By Davydov’s inequality (Corollary 16.2.4 of Athreya and Lahiri (2006)) and the

uniform boundedness of E|Xses+1|2+c for some c > 0, we have that for |s1 � s2| > 1,
|EXs1Xs2es1+1es2+1|  M1[�(|s1 � s2 � 1|)]M2 for some constants M1,M2 > 0. The
exponential-decay of the beta-mixing coefficient implies that for |s1 � s2| > 1,

|EXs1Xs2es1+1es2+1|  M3 exp
�
�M4|s1 � s2 � 1|M5

�
, (A.10)
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where M3,M4,M5 > 0 are constants. Let S = {(s1, s2) : 1  s1, s2  n, |s1�s2| > 1}.
Let M6 > 0 be a constant such that |EXs1Xs2es1+1es2+1|  M6; such a constant exists
since E|Xses+1|2  (E|Xs|4E|es+1|4)1/2 is uniformly bounded. Notice that

E|Zn,1|2 =n�2
nX

s1=1

nX

s2=1

EXs1Xs2es1+1es2+1

=n�2
nX

s=1

EX2
s
e2
s+1 + n�2

n�1X

s=1

EXsXs+1es+1es+2

+ n�2
n�1X

s=2

EXsXs�1es+1es + n�2
X

(s1,s2)2S

EXs1Xs2es1+1es2+1

n�1M6 + 2n�2(n� 1)M6 + n�2
X

(s1,s2)2S

EXs1Xs2es1+1es2+1

(i)

n�1M6 + 2n�2(n� 1)M6 + n�2
X

(s1,s2)2S

M3 exp
�
�M4|s1 � s2 � 1|M5

�

n�1M6 + 2n�2(n� 1)M6 + n�2
nX

s1=1

1X

s2=1

M3 exp
�
�M4|s1 � s2 � 1|M5

�

(ii)

n�1M6 + 2n�2(n� 1)M6 + n�2nM7 (A.11)

for some constant M7 > 0, where (i) follows by (A.10) and (ii) follows by the fact
that

P1
s2=1 M3 exp(�M4|s1 � s2 � 1|M5) is uniformly bounded for any 1  s1  n.

Hence, there exists a constant M8 > 0 such that

E|Zn,1| 
q

E|Zn,1|2  M8n
�1/2. (A.12)

Step 2: derive the desired result.
Notice that X2

s
� EX2

s
has uniformly bounded 0.5p-th moments. By Lemma 4

(applied with Ys = X2
s
� EX2

s
), we have that

P
⇣
|Zn,2 � EZn,2| � K1

p
n�1 log n

⌘
 K2n

1�p0/2 log�K3 n,

8



where K1, K2, K3 > 0 are constants. Let �̄ = Zn,1/EZn,2 and �̃ = Zn,1/Z̃n,2 with

Z̃n,2 =

8
>>><

>>>:

EZn,2 +K1

p
n�1 log n if Zn,2 � EZn,2 +K1

p
n�1 log n

EZn,2 �K1

p
n�1 log n if Zn,2  EZn,2 �K1

p
n�1 log n

Zn,2 otherwise

.

Clearly, �̃ 2 � ({Xs, es+1}ns=1). Moreover,

P
⇣
� 6= �̃

⌘
= P

⇣
Zn,2 6= Z̃n,2

⌘
 K2n

1�p0/2 log�K3 n. (A.13)

Notice that

E|�̃ � �̄| = E
�����
Zn,1

Z̃n,2

� Zn,1

EZn,2

����� = E
�����
Zn,1(Z̃n,2 � EZn,2)

Z̃n,2EZn,2

�����
(i)

 K1

p
n�1 log n

(EZn,2)
⇣
EZn,2 +K1

p
n�1 log n

⌘E |Zn,1|

(ii)

 K4n
�1
p

log n for some constant K4 > 0,

where (i) holds by |Z̃n,2 � EZn,2|  K1

p
n�1 log n (by the definition of Z̃n,2) and

(ii) follows by (A.12) and EZn,2 � D2. Since EXses+1 = 0, we have EZn,1 = 0 and
E�̄ = 0. Hence, the above display implies that

|E�̃|  |E�̄|+ E|�̃ � �̄|  K4n
�1
p
log n. (A.14)

Lastly, notice that

���E(�̃2 � �̄2)
��� = E

"
Z2

n,1|Z̃n,2 � EZn,2| · |Z̃n,2 + EZn,2|
Z̃2

n,2 (EZn,2)
2

#

(i)



8
><

>:
K1

p
n�1 log n(2EZn,2 +K1

p
n�1 log n)

(EZn,2)
2
⇣
EZn,2 �K1

p
n�1 log n

⌘2

9
>=

>;
EZ2

n,1

(ii)

 K5

p
n�3 log n (A.15)

for some constant K5 > 0, where (i) follows by |Z̃n,2 � EZn,2|  K1

p
n�1 log n (by

the definition of Z̃n,2) and (ii) follows by (A.11) and EZn,2 � D2. Since E�̄2 =

9



EZ2
n,1/(EZn,2)2, D2  EZn,2  D3 and n�1D0  EZ2

n,1  n�1D1, it follows, by
(A.15), that there exist constants K6, K7 > 0 such that for large n,

n�1K6  E�̄2 �
���E(�̃2 � �̄2)

���  E�̃2  E�̄2 +
���E(�̃2 � �̄2)

���  n�1K7.

The desired result follows by (A.13), (A.14) and the above display.

Lemma 6. Let Condition 1 hold. Define

� =

P
n

s=1 Xses+1P
n

s=1 X
2
s

and �̄ =

P
n�an

s=1 Xses+1P
n�an

s=1 X2
s

,

where an  cn for some constant c 2 (0, 1). Then for any p0 2 (2, p/2), there exists
a constant M > 0 such that 8x > 0,

P
�
|�̄ � �| � x

�
 M max

⇢
n1�p0/2 log�K3 n, (nx/

p
an)

�p0 ,
⇣
a�1
n
n3/2x/

p
log n

⌘�p/2
�
.

Proof. After straightforward computations, we have that

� � �̄ =

P
n

s=n�an+1 Xses+1P
n

s=1 X
2
s| {z }

J1

�
�P

n�an

s=1 Xses+1

� �P
n

s=n�an+1 X
2
s

�

(
P

n

s=1 X
2
s
)
�P

n�an

s=1 X2
s

�
| {z }

J2

. (A.16)

Notice that by Lemma 2, both X2
s
� EX2

s
and Xses+1 has uniformly bounded

0.5p-th moments. Applying Lemma 4 (with Ys = X2
s
� EX2

s
and Ys = Xses+1) and

using (1� c)n  n� an  n, we have that for some constants K1, K2, K3 > 0,
8
>>>>>><

>>>>>>:

P
�
|
P

n

s=1(X
2
s
� EX2

s
)| � K1

p
n log n

�
 K2n1�p0/2 log�K3 n

P
���Pn�an

s=1 (X2
s
� EX2

s
)
�� � K1

p
n log n

�
 K2n1�p0/2 log�K3 n

P
���Pn�an

s=1 (X2
s
� EX2

s
)
�� � K1

p
n log n

�
 K2n1�p0/2 log�K3 n

P
���Pn�an

s=1 Xses+1

�� � K1

p
n log n

�
 K2n1�p0/2 log�K3 n.

By Condition 1, EX2
s

� D2. Since K1

p
n�1 log n < D2/2 for large n, we

have max
�
P (
P

n

s=1 X
2
s
 nD2/2) ,P

�P
n�an

s=1 X2
s
 nD2/2

� 
 K4n1�p0/2 log�K3 n for

10



some constant K4 � K2. Notice that

P (J1 � x/2)  P
 

nX

s=1

X2
s
 nD2/2

!
+ P

 �����

nX

s=n�an+1

Xses+1

����� � D2nx/4

!

 P
 

nX

s=1

X2
s
 nD2/2

!
+ (D2nx/4)

�p0 E
�����

nX

s=n�an+1

Xses+1

�����

p0

(i)

 P
 

nX

s=1

X2
s
 nD2/2

!
+ (D2nx/4)

�p0 K5a
p0/2
n

for a constant K5 > 0

 K4n
1�p0/2 log�K3 n+K5 (D2nx/4)

�p0 ap0/2
n

,

where (i) holds by Lemma 7.2 of Chen et al. (2016). Also notice that

P (J2 � x/2)

 P
 

n�anX

s=1

X2
s
 nD2/2

!
+ P

 
nX

s=1

X2
s
 nD2/2

!

+ P
 �����

n�anX

s=1

Xses+1

����� � K1

p
n log n

!
+ P

 �����

nX

s=n�an+1

X2
s

����� �
D2

2n
2x

8K1

p
n log n

!

 3K4n
1�p0/2 log�K3 n+ P

 �����

nX

s=n�an+1

X2
s

����� �
D2

2n
2x

8K1

p
n log n

!

 3K4n
1�p0/2 log�K3 n+

✓
D2

2n
2x

8K1

p
n log n

◆�p/2

E
�����

nX

s=n�an+1

X2
s

�����

p/2

(i)

 3K4n
1�p0/2 log�K3 n+

✓
D2

2n
2x

8K1

p
n log n

◆�p/2

(anD)p/2,

where (i) follows by E|
P

n

s=n�an+1 X
2
s
|p/2 = k

P
n

s=n�an+1 X
2
s
kp/2
Lp/2(P) 

(
P

n

s=n�an+1 kX2
s
k
Lp/2(P))

p/2  (anD)p/2. The desired result follows by combin-
ing (A.16) with the above two displays.

Appendix B Proofs of main results

For notational simplicity, we omit the n subscript. For example, we write �j,t rather
than �j,n,t for j 2 {1, 2}.
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B.1 Proof of Proposition 1

Our proof of Proposition 1 relies on two lemmas, Lemma 7 and 8. We first state and
prove these lemmas before proving the proposition.

Lemma 7. Let Assumption 1 hold. For any constants K > 0, h 2 (0, 1) and p1 2
(2, r/2), we can enlarge the probability space and construct random variables �1,t,⇤,
�2,t,⇤, �̄1,t and �̄2,t such that for j 2 {1, 2},

8
>>>>>>>>><

>>>>>>>>>:

P (�j,t,⇤ 6= �j,t)  C1T�min{p1/2�1, (1�h)p1}

P
�
|�j,t,⇤ � �̄j,t|  KT�h

�
= 1

�̄1,t and �̄2,t are independent of {x1,s, x2,s, "s+1}s�t�1

|E�̄j,t|  T�1
p
log TC2 and T�1C3  E�̄2

j,t
 T�1C4

��E�̄2
j,t

� E[
P

t�1
s=t�n

x1,t("t+1 + �2x2,t)]2/E(
P

t�1
s=t�n

x2
1,t)

2
��  C5

p
n�3 log n,

where C1, ..., C5 > 0 are constants depending only on the constants in Assumption 1.

Proof. We construct �j,t,⇤ for j = 1; the case for j = 2 is analogous. Notice that

�1,t =

P
t�1
s=t�n

x1,t("t+1 + �2x2,t)P
t�1
s=t�n

x2
1,t

.

Recall the constants in Assumption 1. Let an = min{a 2 N | a � (r/2 �
1)1/c log1/c n}.

By Theorem 16.2.1 of Athreya and Lahiri (2006), we can extend the probability
space with random variables {ẋ1,s, ẋ2,s, "̇s+1}t�an�1

s=t�n such that
8
>>><

>>>:

{ẋ1,s, ẋ2,s, "̇s+1}t�an�1
s=t�n has the same distribution as {x1,s, x2,s, "s+1}t�an�1

s=t�n

{ẋ1,s, ẋ2,s, "̇s+1}t�an�1
s=t�n is independent of {x1,s, x2,s, "s+1}s�t�1

P
�
{ẋ1,s, ẋ2,s, "̇s+1}t�an�1

s=t�n 6= {x1,s, x2,s, "s+1}t�an�1
s=t�n

�
= �(an)  b exp(�ac

n
).

(B.1)
Let Fn be the �-algebra generated by {ẋ1,s, ẋ2,s, "̇s+1}t�an�1

s=t�n . Hence, �̇1,t 2 Fn and

P
⇣
�̇1,t 6= �̈1,t

⌘
 b exp(�ac

n
), (B.2)
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where

�̇1,t =

P
t�an�1
s=t�n

ẋ1,t("̇t+1 + �2ẋ2,t)P
t�an�1
s=t�n

ẋ2
1,t

and �̈1,t =

P
t�an�1
s=t�n

x1,t("t+1 + �2x2,t)P
t�an�1
s=t�n

x2
1,t

.

Now we apply Lemma 5 (with Xs = ẋ1,s and es+1 = �2ẋ2,s+ "̇s+1) and obtain that
there exist �̄1,t 2 Fn satisfying

8
>>><

>>>:

P
⇣
�̇1,t 6= �̄1,t

⌘
 M0n1�p1/2 log�M1 n

|E�̄1,t|  n�1
p
log nM2

n�1M3  E�̄21,t  n�1M4

(B.3)

where M0, ...,M4 > 0 are constants. Lemma 5 also implies that |E�̄21,t �
E[
P

t�an�1
s=t�n

ẋ1,t("̇t+1 + �2ẋ2,t)]2/E(
P

t�an�1
s=t�n

ẋ2
1,t)

2|  G
p

(n� an)�3 log(n� an) for
some constant G > 0. Notice that an ⇣ log1/c n. In computing this expecta-
tion, we can replace {ẋ1,s, ẋ2,s, "̇s+1}t�an�1

s=t�n with {x1,s, x2,s, "s+1}t�an�1
s=t�n since they have

the same distribution. It is not hard to verify that |E�̄21,t � E[
P

t�1
s=t�n

x1,t("t+1 +

�2x2,t)]2/E(
P

t�1
s=t�n

x2
1,t)

2|  G
p

n�3 log n for some constant G0 > 0.
Since �̄1,t 2 Fn, (B.1) implies that

�̄1,t is independent of {x1,s, x2,s, "s+1}s�t�1. (B.4)

By Lemma 6 (applied with Xs = x1,s and es+1 = �2x2,s + "s+1), we have that for
x = Kn�h,

P
⇣
|�̈1,t � �1,t| � x

⌘

 M5 max

⇢
n1�p1/2 log�K3 n, (nx/

p
an)

�p1 ,
⇣
a�1
n
n3/2x/

p
log n

⌘�r/2
�
, (B.5)

where M5 > 0 is a constant. Define

�1,t,⇤ =

8
>>><

>>>:

�̄1,t + x if �1,t � �̄1,t + x

�̄1,t � x if �1,t  �̄1,t � x

�1,t otherwise

.
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Hence,
|�1,t,⇤ � �̄1,t|  x. (B.6)

Notice that, for some constant M6 > 0, we have

P (�1,t,⇤ 6= �1,t)

 P
⇣
|�1,t � �̈1,t| � x

⌘
+ P

⇣
�̈1,t 6= �̇1,t

⌘
+ P

⇣
�̇1,t 6= �̄1,t

⌘

(i)

 M6 max

⇢
n1�p1/2 log�K3 n, (nx/

p
an)

�p1 ,
⇣
a�1
n
n3/2x/

p
log n

⌘�r/2

, exp(�ac
n
)

�

(ii)

 M6 max
n
n1�p1/2, (nx)�p1 ,

�
n3/2x

��r/2
o

(iii)

 M6 max
�
n1�p1/2, (nx)�p1

 
 M7n

�min{p1/2�1, (1�h)p1} for some constant M7 > 0,

where (i) holds by (B.2), (B.3) and (B.5), (ii) follows by the fact that exp(�ac
n
) 

n1�r/2 < n1�p1/2 and (iii) follows by (n3/2x)�r/2 < (n3/2x)�p1 < (nx)�p1 (due to
p1 < r/2).

Since n ⇣ T , the desired result follows by the above display, (B.6), (B.4) and
(B.3).

Lemma 8. Let Assumption 1 hold. Then 8p1 2 (2, r/2) and 8h 2 (2↵x,2, 1), there
exist constants G1, ..., G4 > 0 and an array of random variables {�Lt+1,⇤}T�n

t=n such
that for T � G1,

P
 

T�1\

t=n

{�Lt+1,⇤ = �Lt+1}
!

� 1�G2T
1�min{p1/2�1, (1�h)p1}

and
G3T

�2↵x,2  E�Lt+1,⇤  G4T
�2↵x,2 .

Proof. Let �j,t = �̂j,t � �j,t. Recall from (3.3) that

�Lt+1 = 2"t+1 (�2x2,t � �1x1,t � �1,tx1,t + �2,tx2,t)

+ (�2x2,t � �1x1,t � �1,tx1,t + �2,tx2,t) (�1x1,t + �2x2,t � �1,tx1,t � �2,tx2,t) . (B.7)
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Let �j,t,⇤ and �̄j,t be defined as in the statement of Lemma 7 (with K = 1):
8
>>>>>><

>>>>>>:

P (�j,t,⇤ 6= �j,t)  C1T�min{p1/2�1, (1�h)p1}

P
�
|�j,t,⇤ � �̄j,t|  T�h

�
= 1

�̄1,t and �̄2,t are independent of {x1,s, x2,s, "s+1}s�t�1

|E�̄j,t|  T�1
p
log TC2 and T�1C3  E�̄2

j,t
 T�1C4,

(B.8)

where C1, C2, C3, C4 > 0 are constants. Define

�Lt+1,⇤ = 2"t+1 (�2x2,t � �1x1,t � �1,t,⇤x1,t + �2,t,⇤x2,t)

+ (�2x2,t � �1x1,t � �1,t,⇤x1,t + �2,t,⇤x2,t) (�1x1,t + �2x2,t � �1,t,⇤x1,t � �2,t,⇤x2,t) . (B.9)

The first statement in (B.8) implies that

P
 

T�1\

t=n

{�Lt+1,⇤ = �Lt+1}
!

� 1�
T�1X

t=n

P (�1,t 6= �1,t,⇤ or �2,t 6= �2,t,⇤)

� 1� 2C1(T � n)T�min{p1/2�1, (1�h)p1}. (B.10)

Since T � n < T , the first claim follows.
Now we compute E�Lt+1,⇤. Notice that there exist a constant K1 > 0 such that

for j1, j2 2 {1, 2},

|E�j1,t,⇤xj1,t"t+1|  |E�̄j1,txj1,t"t+1|+ E|(�j1,t,⇤ � �̄j1,t)xj1,t"t+1|
(i)
= E|(�j1,t,⇤ � �̄j1,t)xj1,t"t+1|

(ii)

 T�hE|xj1,t"t+1|  K1T
�h, (B.11)

where (i) follows by the fact that �̄j1,t is independent of xj1,t"t+1 and Exj1,t"t+1 = 0 and
(ii) follows by second statement in (B.8). Similarly, we have that for some constants
K2, K3, K4 > 0,

|E�j1,t,⇤xj1,txj2,t|  |E�̄j1,txj1,txj2,t|+ E|(�j1,t,⇤ � �̄j1,t)xj1,txj2,t|
(i)
= |E�̄j1,t| · |Exj1,txj2,t|+ E|(�j1,t,⇤ � �̄j1,t)xj1,txj2,t|
(ii)

 T�1
p

log TC2K2 + T�hK3

(iii)

 T�hK4, (B.12)
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where (i) follows by the independence between �̄j1,t and {xj1 , xj2}, (ii) follows by the
second and third statements in (B.8) and (iii) follows by h < 1. Moreover, we have
that for constants K5 � E|xj1,txj2,t| and K6 large enough,

|E�j1,t,⇤�j2,t,⇤xj1,txj2,t|

 |E�̄j1,t�̄j2,txj1,txj2,t|+ E|(�j1,t,⇤ � �̄j1,t)�j2,t,⇤xj1,txj2,t|+ E|(�j2,t,⇤ � �̄j2,t)�̄j1,txj1,txj2,t|
(i)

 |E�̄j1,t�̄j2,t| · E|xj1,txj2,t |+ T�hE|�j2,t,⇤xj1,txj2,t|+ T�hE|�j1,t,⇤xj1,txj2,t|
(ii)

 |E�̄j1,t�̄j2,t| · E|xj1,txj2,t |+ T�hE
⇥
(|�̄j2,t|+ T�h)|xj1,txj2,t|

⇤

+ T�hE
⇥
(|�̄j1,t|+ T�h)|xj1,txj2,t|

⇤

(iii)

 |E�̄j1,t�̄j2,t| · E|xj1,txj2,t |+ T�hE(|�̄j2,t|+ T�h) · E|xj1,txj2,t|

+ T�hE(|�̄j1,t|+ T�h) · E|xj1,txj2,t|
(iv)

 T�1C4K5 + 2T�h(T�1/2C1/2
4 + T�h)K5

 K6 max
�
T�h�1/2, T�2h

 
, (B.13)

where (i), (ii) and (iii) follow by computations based on the independence between
{�̄j1,t, �̄j2,t} and {xj1,t, xj2,t} and |�j,t,⇤ � �̄j,t|  T�h, while (iv) follows by (B.8), i.e.,
|E�̄j1,t�̄j2,t|  [(E�̄2

j1,t
)(E�̄2

j2,t
)]1/2  T�1C4 and E|�̄j,t|  (E�̄2

j,t
)1/2  T�1/2C1/2

4 .
By straight-forward computations based on the previous three displays and (B.9),

we have that for some constant K7 > 0,

E
���Lt+1,⇤ �

⇥
2"t+1 (�2x2,t � �1x1,t) + �2

2x
2
2,t � �2

1,tx
2
1,t

⇤��  K7T
�h. (B.14)

Since E"t+1�jxj,t = 0, we have that for some constant K8 > 0,

��E�Lt+1,⇤ �
�
�2
1Ex2

1,t � �2
2Ex2

2,t

���  K8T
�h.

Since ↵x,2 < ↵x,1 (by Assumption 1), �2
2Ex2

2,t � �2
1,tEx2

1,t � K9T�2↵x,2 for some
constant K9 > 0. Since h > 2↵x,2, we have that for large T ,

K10T
�2↵x,2  E�Lt+1,⇤  K11T

�2↵x,2 ,

where K10, K11 > 0 are constants. This proves the second claim.
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Proof of Proposition 1. Let p1 = 2 + r/4 and h = ↵x,2 + 1/2. Since r > 8 and
↵x,2 2 [0, 1/2), we have that p1 2 (2, r/2) and h 2 (2↵x,2, 1). Applying Lemma 8,
we obtain that there exist constants G1, ..., G4 > 0 and an array of random variables
{�Lt+1,⇤}T�n

t=n such that for T � G1,

P
 

T�1\

t=n

{�Lt+1,⇤ = �Lt+1}
!

� 1�G2T
1�min{p1/2�1, (1�h)p1}

and
G3T

�2↵x,2  E�Lt+1,⇤  G4T
�2↵x,2 .

Notice that

1�min{p1/2� 1, (1� h)p1} = max {2� p1/2, 1 + (h� 1)p1}

= max {2� p1/2, 1 + (↵x,2 � 1/2)p1}

= max {1� r/8, 1 + (↵x,2 � 1/2)(2 + r/4)}

The proof is complete.

B.2 Proof of Proposition 2

Proof of Proposition 2. We recall all the notations in the proof of Lemma 8. By
straight-forward algebra, it is not hard to see that

�LC

t+1 = �2�Lt+1 + 2�(1� �)(yt+1 � ŷ2,t+1|t)(ŷ2,t+1|t � ŷ1,t+1|t)

= �2�Lt+1 + 2�(1� �)("t+1 + �1x1,t � �2,tx2,t) ((�2 + �2,t)x2,t � (�1 + �1,t)x1,t) .

Recall �Lt+1,⇤ as defined in (B.9). We also define

Qt = ("t+1 + �1x1,t � �2,t,⇤x2,t) ((�2 + �2,t,⇤)x2,t � (�1 + �1,t,⇤)x1,t) .

As argued in (B.10),

P
 

T�1\

t=n

�
�LC

t+1 = �2�Lt+1,⇤ + 2�(1� �)Qt

 
!

� 1�
T�1X

t=n

P (�1,t 6= �1,t,⇤ or �2,t 6= �2,t,⇤)

� 1� 2C1(T � n)T�min{p1/2�1, (1�h)p1}. (B.15)
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Notice that

EQt = E("t+1 + �1x1,t � �2,t,⇤x2,t) ((�2 + �2,t,⇤)x2,t � (�1 + �1,t,⇤)x1,t)

= E"t+1 ((�2 + �2,t,⇤)x2,t � (�1 + �1,t,⇤)x1,t)

+ E�1x1,t ((�2 + �2,t,⇤)x2,t � (�1 + �1,t,⇤)x1,t)

� E�2,t,⇤x2,t ((�2 + �2,t,⇤)x2,t � (�1 + �1,t,⇤)x1,t)

(i)
= E�2,t,⇤x2,t"t+1 � E�1,t,⇤x1,t"t+1 + �1Ex1,tx2,t�2,t,⇤ � �1Ex2

1,t�1,t,⇤ + �2
1Ex2

1,t

� �2E�2,t,⇤x2
2,t � E�22,t,⇤x2

2,t + �1E�2,t,⇤x1,tx2,t + E�1,t,⇤�2,t,⇤x1,tx2,t,

where (i) follows by the assumption of Ex1,tx2,t = Ex1,t"t+1 = Ex2,t"t+1 = 0. By
(B.11), we have

max {|E�2,t,⇤x2,t"t+1|, |E�1,t,⇤x1,t"t+1|}  K1T
�h.

By (B.12), we have that for j 2 {1, 2},

max
�
|E�j,t,⇤x1,tx2,t|, |E�j,t,⇤x2

j,t
|
 
 T�hK4,

By (B.13),

max
�
|E�1,t,⇤�2,t,⇤x1,tx2,t|, |E�22,t,⇤x2

2,t|
 
 K6 max

�
T�h�1/2, T�2h

 
.

It follows that

|EQt|  2K1T
�h + 2|�1|K4T

�h + �2
1Ex2

1,t + |�2|K4T
�h

+ 2K6 max
�
T�h�1/2, T�2h

 
+ |�1|K4T

�h.

Recall that h > 2↵x,1. By the assumption of ↵x,1 > ↵x,2 and �j = c�,jn�↵x,j , it fol-
lows that |EQt| = o(n�2↵x,1). By Proposition 1, G3T�2↵x,2  E�Lt+1,⇤  G4T�2↵x,2 .
Since ↵x,1 > ↵x,2, we have that |EQt| = o(E�Lt+1,⇤). Hence, there exist constants
D1, D2 > 0 such that

D1T
�2↵x,2  E

�
�2�Lt+1,⇤ + 2�(1� �)Qt

�
 D2T

�2↵x,2 .

Now we recall (B.15). The desired result follows by taking �LC

t+1,⇤ = �2�Lt+1,⇤+
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2�(1� �)Qt.

B.3 Proof of Proposition 3

Our proof of Proposition 3 relies on two lemmas, Lemma 9 and 10. We first state
and prove these lemmas before proving Proposition 3.

Lemma 9. Suppose that Assumptions 1 and 2 hold. Let �Lt+1,⇤ be defined as in (B.9)
in the proof of Lemma 8. Let ✓̃t = (✓̃1,t, ✓̃2,t)0 = (

P
t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs�Lt+1,⇤),
where zs = (1, zMs)0. Fix p 2 (2, r/3). Then there exist constants G0, G1, G2, G3 > 0

such that for T � G0,

P
 �����

✓̃1,t

✓̃2,t

����� � G1T
↵z,2�↵x,2

!
 G2T

1�p/2 log�G3

and
P
⇣
✓̃2,t  0

⌘
 G2T

1�p/2 log�G3 .

Proof. Let  t+1 = m↵x,2�Lt+1,⇤, ⇡t = (
P

t�1
s=t�m

Ezsz0s)�1(
P

t�1
s=t�m

Ezs s+1), ⇡̂t =

(
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs s+1) and {⇠s+1}t�1
s=t�m with ⇠s+1 =  s+1 � z0

s
⇡t. Clearly,

⇡̂t = m↵x,2 ✓̃t. Let �t = ⇡̂t � ⇡t. The proof proceeds in two steps. We first bound �t

and then show the desired results.
Step 1: bound �t

By simple computation, we have

�t =

"
m�1

t�1X

s=t�m

zsz
0
s

#�1

| {z }
Jt

·m�1
t�1X

s=t�m

zs⇠s+1

| {z }
Bt

·

Since entries of zsz0s � Ezsz0s has uniformly bounded 0.5r-th moments, it follows,
by Lemma 4, that for some constants K1, K2, K3 > 0,

P
 �����m

�1
t�1X

s=t�m

(zsz
0
s
� Ezsz0s)

�����
1

� K1

p
m�1 logm

!
 K2m

1�p/2 log�K3 m.

Since m�1
P

t�1
s=t�m

Ezsz0s = diag(1,m�1
P

t�1
s=t�m

Ez2
Ms

) and Ez2
Ms

is bounded away
from zero and infinity, the eigenvalues of m�1

P
t�1
s=t�m

Ezsz0s lie in [K4, K5] for some
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constants K4, K5 > 0. By the above display, the eigenvalues of m�1
P

t�1
s=t�m

zsz0s lie
in [K4/2, 2K5] for large n with probability at least 1�K2m1�p/2 log�K3 m. Hence, for
some constants K6, K7 > 0, we have that for n � K6,

P (kJtk1 � K7)  K2m
1�p/2 log�K3 m.

Recall the definition of �Lt+1,⇤ (in (B.9) in the proof of Lemma 8). We ap-
ply Lemma 2. By straight-forward computations, we have that  t+1 has uniformly
bounded 0.5r-th moments. Hence, ⇠s+1 =  s+1� z0

s
⇡s has uniformly bounded 0.5r-th

moments. Again by Lemma 2, entries of zs⇠s+1 has uniformly bounded r

3 -th moments.
Notice that p 2 (2, r/3). It follows by Lemma 4 (applied to each entry of zs⇠s+1) that
for some constants K8, K9, K10 > 0, we have

P
⇣
kBtk1 � K8

p
m�1 logm

⌘
 K9m

1�p/2 log�K10 m.

It follows by the above two displays that for large m,

P
⇣
k�tk1 � 2K7K8

p
m�1 logm

⌘
 P

⇣
2kJtk1kBtk1 � 2K7K8

p
m�1 logm

⌘

 P (kJtk1 � K7) + P
⇣
kBtk1 � K8

p
m�1 logm

⌘

 K2m
1�p/2 log�K3 m+K9m

1�p/2 log�K10 m.

Since T ⇣ m, there are constants K11, ..., K14 > 0 such that for T � K11,

P
⇣
k�tk1 � K12

p
T�1 log T

⌘
 K13T

1�p/2 log�K14 . (B.16)

Step 2: show the desired results.
Partition ⇡t = (⇡1,t, ⇡2,t)0. By E = 0, it fol-

lows that ⇡1,t = m�1
P

t�1
s=t�m

Em↵x,2�Ls+1,⇤ and ⇡2,t =

(
P

t�1
s=t�m

Em↵x,2�Ls+1,⇤)/(m�1
P

t�1
s=t�m

Ez2
Ms

). By Lemma 8, there are constants
K15, K16 > 0 such that

K15T
�↵x,2  ⇡1,t  K16T

�↵x,2 . (B.17)
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By computations similar to (B.14) in the proof of Lemma 8, one can show that

E
��zMt�Lt+1,⇤ � zMt

⇥
2"t+1 (�2x2,t � �1x1,t) + �2

2x
2
2,t � �2

1,tx
2
1,t

⇤��  K17T
�1/2

p
log T ,

where K17 > 0 is a constant. By Assumption 1,

E
�
zMt

⇥
2"t+1 (�2x2,t � �1x1,t) + �2

2x
2
2,t � �2

1,tx
2
1,t

⇤ 
� K18T

�↵x,2�↵z,2 .

It follows that for large T , EzMt�Lt+1,⇤ � K18T�↵x,2�↵z,2/2. Hence, for some
constant K19 > 0,

⇡2,t � K19T
�↵z,2 . (B.18)

Let x = 2K16T�↵x,2 and M = 2x/(K19T�↵z,2). Then

P (|⇡̂1,t| � M |⇡̂2,t|)

 P (|⇡̂1,t| � x) + P (|⇡̂2,t|  x/M)

 P (|⇡̂1,t � ⇡1,t| � x� |⇡1|) + P (|⇡̂2,t � ⇡2,t| � |⇡2,t|� x/M)

(i)

 P
�
|⇡̂1,t � ⇡1,t| � x�K16T

�↵x,2
�
+ P

�
|⇡̂2,t � ⇡2,t| � K19T

�↵z,2 � x/M
�

 P
�
k�tk1 � x�K16T

�↵x,2
�
+ P

�
k�tk1 � K19T

�↵z,2 � x/M
�

= P
�
k�tk1 � K16T

�↵x,2
�
+ P

�
k�tk1 � K19T

�↵z,2/2
�

(ii)

 2K13T
1�p/2 log�K14 ,

where (i) holds by (B.17) and (B.18) and (ii) follows by (B.16) together with
T�↵x,2 �

p
T�1 log T and T�↵z,2 �

p
T�1 log T . The first claim follows by

|⇡̂1,t/⇡̂2,t| = |✓̃1,t/✓̃2,t| and M = 2x/(K19T�↵z,2) = (4K16/K19)T ↵z,2�↵x,2 .
To see the second claim, notice that

P
⇣
✓̃2,t  0

⌘
(i)
= P (⇡̂2,t  0) = P (�2,t  �⇡2,t)

(ii)

 P
�
�2,t  �K19T

�↵z,2
�

 P
�
k�tk1 � K19T

�↵z,2
�

(iii)

 K13T
1�p/2 log�K14 ,

where (i) holds by ✓̃t = m�↵x,2 ⇡̂t, (ii) follows by (B.18) and (iii) holds by (B.16) and
T�↵z,2 �

p
T�1 log T .
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Lemma 10. Let Assumptions 1 and 2 hold. Fix any p1 2 (2, r/2) and h 2 (2↵x,2, 1).
Then there exist constants G0, G1, ..., G5 > 0 and an array {St+1}T�1

t=n+m such that
8T � G0,

P
 

T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o!
� 1�G2T

1�min{p1/2�1, (1�h)p1}

and
ESt+1 � K5T

�↵x,2�↵z,2 .

Proof. Let ✓̃t = (
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs�Lt+1,⇤), where �Lt+1,⇤ is defined as in
(B.9) in the proof of Lemma 8. Define St+1 = �Lt+1,⇤1{z0t✓̃t > 0}. Notice that

T�1\

t=n

{�Lt+1,⇤ = �Lt+1} ✓
T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o
.

Hence, the first claim follows by Lemma 8.
It remains to bound ESt+1. To this end, let q = r/2 and ⌫ = r/(r � 2). Hence,

q, ⌫ > 1 and q�1 + ⌫�1 = 1. Notice that

E
⇣
|�Lt+1,⇤|

���1{z0t✓̃t > 0}� 1{zMt > 0}
���
⌘

= E
✓
|�Lt+1,⇤| ·

����1{zMt > �✓̃1,t/✓̃2,t and ✓̃2,t > 0}

+ 1{zMt < �✓̃1,t/✓̃2,t and ✓̃2,t  0}� 1{zMt > 0}
����

◆

 E
⇣
|�Lt+1,⇤|

h
1
n
0 < zMt  �✓̃1,t/✓̃2,t

o
+ 1

n
✓̃2,t  0

oi⌘

(i)

 k�Lt+1,⇤kLq(P)

���1
n
0 < zMt  �✓̃1,t/✓̃2,t

o
+ 1

n
✓̃2,t  0

o���
L⌫(P)

 k�Lt+1,⇤kLq(P)

���1
n
0 < zMt  �✓̃1,t/✓̃2,t

o���
L⌫(P)

+
���1

n
✓̃2,t  0

o���
L⌫(P)

�

= k�Lt+1,⇤kLq(P)

✓h
P
⇣
0 < zMt  �✓̃1,t/✓̃2,t

⌘i1/⌫
+
h
P
⇣
✓̃2,t  0

⌘i1/⌫◆
(B.19)

where (i) follows by Holder’s inequality. By Assumption 2, the p.d.f of zMt in a fixed
neighborhood of zero is bounded above by some constant K0 > 0. Recall constants
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G1, ..., G4 > 0 in the statement of Lemma 9. Hence,

P
⇣
0 < zMt  �✓̃1,t/✓̃2,t

⌘
 P

⇣
0 < zMt 

���✓̃1,t/✓̃2,t
���
⌘

 P
�
0 < zMt  G1T

↵z,2�↵x,2
�
+ P

⇣���✓̃1,t/✓̃2,t
��� � G1T

↵z,2�↵x,2

⌘

(i)

 K0G1T
↵z,2�↵x,2 +G2T

1�p/2 log�G3 , (B.20)

where (i) follows by the bounded p.d.f of zMt near zero and T ↵z,2�↵x,2 = o(1), as well
as by Lemma 9.

Since r > 8, it is not hard to show that r/3 > 2 + r/(2r � 4) = 2 + ⌫/2. By
Assumptions 1 and 2, 2⌫↵z,2 < ↵x,2 < 1/2. Since r > 8, we have that r/3 > 8/3 >

2 + 1/2 > 2 + 2⌫↵z,2. Fix p 2 (2 + 2⌫↵z,2, r/3). Now (B.19), (B.20) and Lemma 9
imply that for some constants K1, K2 > 0

E
⇣
|�Lt+1,⇤|

���1{z0t✓̃t > 0}� 1{zMt > 0}
���
⌘

 K1k�Lt+1,⇤kLq(P)

h
T (↵z,2�↵x,2)/⌫ +

�
T 1�p/2 log�K2

�1/⌫i
. (B.21)

By (B.9), we have that

E�Lt+1,⇤1{zMt > 0} � 2E ["t+1 (�2x2,t � �1x1,t)1{zMt > 0}]� At, (B.22)

where

At = 2E |"t+1 (�2,t,⇤x2,t � �1,t,⇤x1,t)|

+ E |(�2x2,t � �1x1,t � �1,t,⇤x1,t + �2,t,⇤x2,t) (�1x1,t + �2x2,t � �1,t,⇤x1,t � �2,t,⇤x2,t)| .

After computations similar to (B.14) in the proof of Lemma 8, we can use the rate
conditions in Assumption 1 and show that for some constant K3 > 0,

At  K3T
�2↵x,2 . (B.23)

(B.22) and (B.23) imply that for some constants K4, K5, K6 > 0, we have that for
T � K4,

E�Lt+1,⇤1{zMt > 0} � 2E ["t+1 (�2x2,t � �1x1,t)1{zMt > 0}]�K3T
�1/2 �K4T

�2↵x,2
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(i)

� K5T
�↵x,2�↵z,2 �K3T

�2↵x,2 ,

where (i) holds by Assumption 1. By the above display and (B.21), we have that for
large T ,

ESt+1 � K5T
�↵x,2�↵z,2 �K3T

�2↵x,2

�K1k�Lt+1,⇤kLq(P)

h
T (↵z,2�↵x,2)/⌫ +

�
T 1�p/2 log�K2

�1/⌫i
.

Recall that in Step 1 of the proof of Lemma 9, we have that m↵x,2�Lt+1,⇤ has uni-
formly bounded 0.5r-th moments. Since q = 0.5r, we have that km↵x,2�Lt+1,⇤kLq(P)

is bounded above by a constant. Hence, for some constant K7 > 0,

ESt+1 � K5T
�↵x,2�↵z,2 �K3T

�2↵x,2

�K1K7T
�↵x,2

h
T (↵z,2�↵x,2)/⌫ +

�
T 1�p/2 log�K2

�1/⌫i
. (B.24)

Since p > 2 + 2⌫↵z,2 and ⌫ = r/(r � 2), it is not hard to show that �↵x,2 +

(1 � p/2)/⌫ < �↵x,2 � ↵z,2. By Assumption 1, it is straight-forward to verify that
�2↵x,2 < �↵x,2 � ↵z,2 and �↵x,2 + (↵z,2 � ↵x,2)/⌫ < �↵x,2 � ↵z,2. The desired result
follows by (B.24).

Proof of Proposition 3. We choose p1 and h as in the proof of Proposition 1. Then
Part (1) follows by Lemma 10 and the computations in the proof of Proposition 1.
Part (2) follows by Part (1) and Proposition 1.

B.4 Proof of Proposition 4

Our proof of Proposition 4 relies on two lemmas, Lemma 11 and 12. We first state
and prove these lemmas before proving Proposition 4.

Lemma 11. Suppose that the assumptions of Proposition 4 hold. Let �Lt+1,⇤

be defined as in (B.9) in the proof of Lemma 8. Let ✓̃t = (✓̃1,t, ✓̃2,t)0 =

(
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs�Lt+1,⇤), where zs = (1, )0. Fix p 2 (2, r/3). Then there
exist some constants G0, G1, G2, G3 > 0 such that for T � G0,

P
 �����

✓̃1,t

✓̃2,t

����� � G1T
↵x,1+↵z,1�2↵x,2

!
 G2T

1�p/2 log�G3
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and
P
⇣
✓̃2,t  0

⌘
 G2T

1�p/2 log�G3 .

Proof. Let  t+1 = m↵x,2�Lt+1,⇤, ⇡t = (
P

t�1
s=t�m

Ezsz0s)�1(
P

t�1
s=t�m

Ezs s+1), ⇡̂t =

(
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs s+1) and {⇠s+1}t�1
s=t�m with ⇠s+1 =  s+1 � z0

s
⇡t. Clearly,

⇡̂t = m↵x,2 ✓̃t. Let �t = ⇡̂t � ⇡t. The proof proceeds in two steps. We first bound �t

and then show the desired results.
Step 1: bound �t

By simple computation, we have

�t =

"
m�1

t�1X

s=t�m

zsz
0
s

#�1

| {z }
Jt

·m�1
t�1X

s=t�m

zs⇠s+1

| {z }
Bt

·

Notice that p 2 (2, r/3). Since entries of zsz0s � Ezsz0s has uniformly bounded
0.5r-th moments, it follows, by Lemma 4, that for some constants K1, K2, K3 > 0,

P
 �����m

�1
t�1X

s=t�m

(zsz
0
s
� Ezsz0s)

�����
1

� K1

p
m�1 logm

!
 K2m

1�p/2 log�K3 m.

Since m�1
P

t�1
s=t�m

Ezsz0s = diag(1,m�1
P

t�1
s=t�m

Ez2
Ms

) and Ez2
Ms

is bounded away
from zero and infinity, the eigenvalues of m�1

P
t�1
s=t�m

Ezsz0s lie in [K4, K5] for some
constants K4, K5 > 0. By the above display, the eigenvalues of m�1

P
t�1
s=t�m

zsz0s lie
in [K4/2, 2K5] for large n with probability at least 1�K2m1�p/2 log�K3 m. Hence, for
some constants K6, K7 > 0, we have that for n � K6,

P (kJtk1 � K7)  K2m
1�p/2 log�K3 m.

Recall the definition of �Lt+1,⇤ (in (B.9) in the proof of Lemma 8). We ap-
ply Lemma 2. By straight-forward computations, we have that  t+1 has uniformly
bounded 0.5r-th moments. Hence, ⇠s+1 =  s+1� z0

s
⇡s has uniformly bounded 0.5r-th

moments. Again by Lemma 2, entries of zs⇠s+1 has uniformly bounded r

3 -th moments.
Notice that p 2 (2, r/3). It follows by 4 (applied to each entry of zs⇠s+1) that for
some constants K8, K9, K10 > 0, we have

P
⇣
kBtk1 � K8

p
m�1 logm

⌘
 K9m

1�p/2 log�K10 m.
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It follows by the above two displays that for large m,

P
⇣
k�tk1 � 2K7K8

p
m�1 logm

⌘
 P

⇣
2kJtk1kBtk1 � 2K7K8

p
m�1 logm

⌘

 P (kJtk1 � K7) + P
⇣
kBtk1 � K8

p
m�1 logm

⌘

 K2m
1�p/2 log�K3 m+K9m

1�p/2 log�K10 m.

Since T ⇣ m, there are constants K11, ..., K14 > 0 such that for T � K11,

P
⇣
k�tk1 � K12

p
T�1 log T

⌘
 K13T

1�p/2 log�K14 . (B.25)

Step 2: show the desired results.
Partition ⇡t = (⇡1,t, ⇡2,t)0. By E = 0, it fol-

lows that ⇡1,t = m�1
P

t�1
s=t�m

Em↵x,2�Ls+1,⇤ and ⇡2,t =

(
P

t�1
s=t�m

Em↵x,2�Ls+1,⇤)/(m�1
P

t�1
s=t�m

Ez2
Ms

). By Lemma 8, there are constants
K15, K16 > 0 such that

K15T
�↵x,2  ⇡1,t  K16T

�↵x,2 . (B.26)

By computations similar to (B.14) in the proof of Lemma 8, one can show that

E
��zMt�Lt+1,⇤ � zMt

⇥
2"t+1 (�2x2,t � �1x1,t) + �2

2x
2
2,t � �2

1,tx
2
1,t

⇤��  K17T
�1/2

p
log T ,

where K17 > 0 is a constant. By the assumptions of Proposition 4,

E
�
zMt

⇥
2"t+1 (�2x2,t � �1x1,t) + �2

2x
2
2,t � �2

1,tx
2
1,t

⇤ 
� K18T

�↵x,1�↵z,1 .

It follows that for large T , EzMt�Lt+1,⇤ � K18T�↵x,1�↵z,1/2. Hence, for some
constant K19 > 0,

⇡2,t � K19T
↵x,2�↵x,1�↵z,1 . (B.27)

Let x = 2K16T�↵x,2 and M = 2x/(K19T ↵x,2�↵x,1�↵z,1). Then

P (|⇡̂1,t| � M |⇡̂2,t|)

 P (|⇡̂1,t| � x) + P (|⇡̂2,t|  x/M)

 P (|⇡̂1,t � ⇡1,t| � x� |⇡1|) + P (|⇡̂2,t � ⇡2,t| � |⇡2,t|� x/M)
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(i)

 P
�
|⇡̂1,t � ⇡1,t| � x�K16T

�↵x,2
�
+ P

�
|⇡̂2,t � ⇡2,t| � K19T

↵x,2�↵x,1�↵z,1 � x/M
�

 P
�
k�tk1 � x�K16T

�↵x,2
�
+ P

�
k�tk1 � K19T

↵x,2�↵x,1�↵z,1 � x/M
�

= P
�
k�tk1 � K16T

�↵x,2
�
+ P

�
k�tk1 � K19T

↵x,2�↵x,1�↵z,1/2
�

(ii)

 2K13T
1�p/2 log�K14 ,

where (i) holds by (B.26) and (B.27) and (ii) follows by (B.25) together with T�↵x,2 �p
T�1 log T and T ↵x,2�↵x,1�↵z,1 �

p
T�1 log T . The first claim follows by |⇡̂1,t/⇡̂2,t| =

|✓̃1,t/✓̃2,t| and M = 2x/(K19T ↵x,2�↵x,1�↵z,1) = (4K16/K19)T ↵x,1+↵z,1�2↵x,2 .
To see the second claim, notice that

P
⇣
✓̃2,t  0

⌘
(i)
= P (⇡̂2,t  0) = P (�2,t  �⇡2,t)

(ii)

 P
�
�2,t  �K19T

↵x,2�↵x,1�↵z,1
�

 P
�
k�tk1 � K19T

↵x,2�↵x,1�↵z,1
�

(iii)

 K13T
1�p/2 log�K14 ,

where (i) holds by ✓̃t = m�↵x,2 ⇡̂t, (ii) follows by (B.27) and (iii) holds by (B.25) and
T ↵x,2�↵x,1�↵z,1 �

p
T�1 log T .

Lemma 12. Let the assumptions of Proposition 4 hold. Then 8p1 2 (2, r/3), there
exist constants G0, G1, ..., G5 > 0 and an array {St+1}T�1

t=n+m such that 8T � G0,

P
 

T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o!
� 1�G1T

2�p1/2 log�G2 T

and
ESt+1 � K5T

�↵x,1�↵z,1 .

Proof. Let ✓̃t = (
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs�Lt+1,⇤), where �Lt+1,⇤ is defined as in
(B.9) in the proof of Lemma 8. Define St+1 = �Lt+1,⇤1{z0t✓̃t > 0}. Notice that

T�1\

t=n

{�Lt+1,⇤ = �Lt+1} ✓
T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o
.

Hence, the first claim follows by Lemma 8.
It remains to bound ESt+1. To this end, let q = r/2 and ⌫ = r/(r � 2). Hence,
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q, ⌫ > 1 and q�1 + ⌫�1 = 1. Notice that

E
⇣
|�Lt+1,⇤|

���1{z0t✓̃t > 0}� 1{zMt > 0}
���
⌘

= E
✓
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+ 1{zMt < �✓̃1,t/✓̃2,t and ✓̃2,t  0}� 1{zMt > 0}
����

◆
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⇣
|�Lt+1,⇤|

h
1
n
0 < zMt  �✓̃1,t/✓̃2,t

o
+ 1

n
✓̃2,t  0

oi⌘

(i)

 k�Lt+1,⇤kLq(P)

���1
n
0 < zMt  �✓̃1,t/✓̃2,t

o
+ 1

n
✓̃2,t  0

o���
L⌫(P)
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n
0 < zMt  �✓̃1,t/✓̃2,t

o���
L⌫(P)

+
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n
✓̃2,t  0

o���
L⌫(P)

�

= k�Lt+1,⇤kLq(P)

✓h
P
⇣
0 < zMt  �✓̃1,t/✓̃2,t

⌘i1/⌫
+
h
P
⇣
✓̃2,t  0

⌘i1/⌫◆
(B.28)

where (i) follows by Holder’s inequality. By the assumptions of Proposition 4, the
p.d.f of zMt in a fixed neighborhood of zero is bounded above by some constant
K0 > 0. Recall constants G1, ..., G4 > 0 in the statement of Lemma 11. Hence,

P
⇣
0 < zMt  �✓̃1,t/✓̃2,t

⌘

 P
⇣
0 < zMt 

���✓̃1,t/✓̃2,t
���
⌘

 P
�
0 < zMt  G1T

↵x,1+↵z,1�2↵x,2
�
+ P

⇣���✓̃1,t/✓̃2,t
��� � G1T

↵x,1+↵z,1�2↵x,2

⌘

(i)

 K0G1T
↵x,1+↵z,1�2↵x,2 +G2T

1�p/2 log�G3 , (B.29)

where (i) follows by the bounded p.d.f of zMt near zero and T ↵x,1+↵z,1�2↵x,2 = o(1), as
well as by Lemma 9.

It is not hard to show that r/3 > 2 + r/(r � 2) = 2 + ⌫ for r � 10. Fix
p 2 (2 + ⌫, r/3). Now (B.28), (B.29) and Lemma 11 imply that for some constants
K1, K2 > 0

E
⇣
|�Lt+1,⇤|

���1{z0t✓̃t > 0}� 1{zMt > 0}
���
⌘

 K1k�Lt+1,⇤kLq(P)

h
T (↵x,1+↵z,1�2↵x,2)/⌫ +

�
T 1�p/2 log�K2

�1/⌫i
. (B.30)
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By (B.9), we have that

E�Lt+1,⇤1{zMt > 0} � 2E ["t+1 (�2x2,t � �1x1,t)1{zMt > 0}]� At, (B.31)

where

At = 2E |"t+1 (�2,t,⇤x2,t � �1,t,⇤x1,t)|

+ E |(�2x2,t � �1x1,t � �1,t,⇤x1,t + �2,t,⇤x2,t) (�1x1,t + �2x2,t � �1,t,⇤x1,t � �2,t,⇤x2,t)| .

After computations similar to (B.14) in the proof of Lemma 8, we can use the
rate conditions in the assumptions of Proposition 4 and show that for some constant
K3 > 0,

At  K3T
�2↵x,2 . (B.32)

(B.31) and (B.32) imply that for some constants K4, K5, K6 > 0, we have that for
T � K4,

E�Lt+1,⇤1{zMt > 0} � 2E ["t+1 (�2x2,t � �1x1,t)1{zMt > 0}]�K3T
�1/2 �K4T

�2↵x,2

(i)

� K5T
�↵x,1�↵z,1 �K3T

�2↵x,2 ,

where (i) holds by the assumptions of Proposition 4. By the above display and (B.30),
we have that for large T ,

ESt+1 � K5T
�↵x,1�↵z,1 �K3T

�2↵x,2

�K1k�Lt+1,⇤kLq(P)

h
T (↵x,1+↵z,1�2↵x,2)/⌫ +

�
T 1�p/2 log�K2

�1/⌫i
.

Recall that in Step 1 of the proof of Lemma 9, we have that m↵x,2�Lt+1,⇤ has uni-
formly bounded 0.5r-th moments. Since q = 0.5r, we have that km↵x,2�Lt+1,⇤kLq(P)

is bounded above by some constant K7 > 0. Hence,

ESt+1 � K5T
�↵x,1�↵z,1 �K3T

�2↵x,2

�K1K7T
�↵x,2

h
T (↵x,1+↵z,1�2↵x,2)/⌫ +

�
T 1�p/2 log�K2

�1/⌫i
. (B.33)

Since p > ⌫ + 2 and ⌫ = r/(r � 2), it is not hard to show that �↵x,2 + (1 �
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p/2)/⌫ < (1� p/2)/⌫ < �1/2 < �↵x,1 � ↵z,1. By the assumptions of Proposition 4,
�2↵x,2 < �↵x,1�↵z,1 and �↵x,2+(↵x,1+↵z,1� 2↵x,2)/⌫ < �↵x,1�↵z,1. The desired
result follows by (B.33).

Proof of Proposition 4. Part (1) follows by Lemma 12 and the arguments in the
proof of Proposition 1. Part (2) follows by Part (1) and Proposition 1.

B.5 Proof of Proposition 5

Our proof of Proposition 5 relies on three lemmas, lemmas 13-15. We first state and
prove these lemmas before proving Proposition 5. For notational simplicity, we write
(µ̂t, �̂t, µ̃t) instead of (µ̂n,t, �̂n,t, µ̃n,t).

Lemma 13. Let Assumption 4 hold. Define �t,big = (µ̂t � µ, �̂t � �)0 and �t,small =

µ̃t � µ. For any constants h 2 (0, 1) and p1 2 (2, r/2), we can enlarge the probability
space and construct random variables �t,small,⇤, �t,big,⇤, �̄t,small and �̄t,big such that

8
>>>>>>>>><

>>>>>>>>>:

P (�t,small,⇤ 6= �t,small)  C1T�min{p1/2�1, (1�h)p1}

P
�
|�t,small,⇤ � �̄t,small|  T�h

�
= 1

�̄t,small is independent of {xs, "s+1}s�t�1

|E�̄t,small|  T�1
p
log TC2 and T�1C3  E�̄2

t,small
 T�1C4

��E�̄2
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� n�2E(
P

t�1
s=t�n

xs� + "s+1)2
��  C5

p
T�3 log T

and
8
>>>>>>>>><

>>>>>>>>>:

P (�t,big,⇤ 6= �t,big)  C1T�min{p1/2�1, (1�h)p1}

P
�
k�t,big,⇤ � �̄t,bigk1  T�h

�
= 1

�̄t,big is independent of {xs, "s+1}s�t�1

kE�̄t,bigk1  T�1
p
log TC2 and T�1C3  Ek�̄t,bigk21  T�1C4

��E�̄t,big�̄0
t,big

� ⌃�1
X,t

E(n�2
P

t�1
s=t�n

x̄sx̄0
s
"2
s+1)⌃

�1
X,t

��
1  C5

p
T�3 log T ,

where x̄t = (1, xt)0, ⌃X,t = n�1
P

t�1
s=t�n

x̄sx̄0
s

and C1, ..., C4 > 0 are constants depend-
ing only on the constants in Assumption 4.

Proof. The result follows by essentially the same argument as in the proof of Lemma
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7. For results on �t,big, adjustments to allow multivariate x̄s are needed but the
arguments are essentially identical.

Lemma 14. Let Assumption 4 hold. Let ↵x < 1/2. Then 8p1 2 (2, r/2) and
8h 2 (0, 1), there exist constants G1, ..., G4 > 0 and an array of random variables
{�Lt+1,⇤}T�n

t=n such that for T � G1,

P
 

T�1\

t=n

{�Lt+1,⇤ = �Lt+1}
!

� 1�G2T
1�min{p1/2�1, (1�h)p1}

and
G3T

�2↵x  E�Lt+1,⇤  G4T
�2↵x .

Proof. Recall from (4.4) that

�Lt+1 = �2x2
t
+ 2�xt"t+1 + �2

t,small
� �2

t,big
+ 2�t,big"t+1 � 2�t,small(�xt + "t+1). (B.34)

Recall �t,small = µ̃t � µ. Let �t,big = (µ̂t � µ, �̂t � �)0. Let �t,small,⇤, �t,big,⇤, �̄t,small

and �̄t,big be defined as in Lemma 13. We define �t,big,⇤ = �0
t,big,⇤x̄t with x̄t = (1, xt)0

and

�Lt+1,⇤ = �2x2
t
+ 2�xt"t+1 + �2

t,small,⇤ � �2
t,big,⇤ + 2�t,big,⇤"t+1 � 2�t,small,⇤(�xt + "t+1).

(B.35)
The first claim follows by Lemma 13.
By computations similar to (B.14) using Lemma 13, we have that

E|�Lt+1,⇤ � �2x2
t
|  KT�h1

for some constants K > 0 and h1 2 (2↵x, 1). The second claim follows.

Lemma 15. Let Assumption 4 hold. Let ↵x > 1/2. Then 8p1 2 (2, r/2) and
8h 2 (0, 1), there exist constants G1, ..., G4 > 0 and an array of random variables
{�Lt+1,⇤}T�n

t=n such that for T � G1,

P
 

T�1\

t=n

{�Lt+1,⇤ = �Lt+1}
!

� 1�G2T
1�min{p1/2�1, (1�h)p1}
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and
G3T

�1  E�Lt+1,⇤  G4T
�1.

Proof. Consider �Lt+1,⇤ defined in (B.35). Recall �t,small,⇤, �t,big,⇤, �̄t,small and �̄t,big

be defined as in Lemma 13. Define

�Lt+1 = �2x2
t
+ 2�xt"t+1 + �̄2

t,small
� �̄2

t,big
+ 2�̄t,big"t+1 � 2�̄t,small(�xt + "t+1).

By computations similar to (B.14) using Lemma 13, we have that

E|�Lt+1,⇤ ��Lt+1|  KT�1/2�↵x (B.36)

for some constant K > 0. Let x̄t = (1, xt)0. Now we compute

E�Lt+1 = �2Ex2
t
+ E�̄2

t,small
� E

�
x̄0
t
�̄t,big

�2
+ 2E�̄0

t,big
x̄t"t+1 � 2E�̄t,small(�xt + "t+1)

(i)
= �2Ex2

t
+ E�̄2

t,small
� E

�
x̄0
t
�̄t,big�̄

0
t,big

x̄t

�
,

where (i) follows by the fact that �̄t,big and �̄t,small are independent of x̄t and "t+1.
By Lemma 13,

�����

h
E�̄2

t,small
� E

�
x̄0
t
�̄t,big

�2i�
"
n�2E(

t�1X

s=t�n

xs� + "s+1)
2 � E(x̄0

t
⌃�1

X,t
⌦t⌃

�1
X,t

x̄t)

#�����

 K1

p
T�3 log T

for some constant K1 > 0, where ⌃X,t = n�1
P

t�1
s=t�n

Ex̄sx̄0
s

and ⌦t =

E(n�2
P

t�1
s=t�n

x̄sx̄0
s
"2
s+1). Notice that ⌃X,t = diag(1, �2

x,t
) with �2

x,t
= n�1

P
t�1
s=t�n

Ex2
s
.

Hence,

E(x̄0
t
⌃�1

X,t
⌦t⌃

�1
X,t

x̄t)

= n�2
t�1X

s=t�n

E"2
s+1 + n�2

t�1X

s=t�n

��4
x,t
E(x2

t
x2
s
"2
s+1) + 2n�2

t�1X

s=t�n

��2
x,t
Extxs"

2
s+1.

It follows that

n�2E
 

t�1X

s=t�n

xs� + "s+1

!2

� E(x̄0
t
⌃�1

X,t
⌦t⌃

�1
X,t

x̄t)
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= n�1�2�2
x,t

� n�2
t�1X

s=t�n

��4
x,t
E(x2

t
x2
s
"2
s+1)� 2n�2

t�1X

s=t�n

��2
x,t
Extxs"

2
s+1.

By computations based on the exponential decay of beta-mixing coefficients simi-
lar to (A.10) and (A.11), it is not hard to show that

P
t�1
s=t�n

��2
x,tExtxs"2s+1 is uniformly

bounded by a constant K2 > 0. Hence,
�����E�Lt+1 � �2Ex2

t
� n�1�2�2

x,t
+ n�2

t�1X

s=t�n

��4
x,t
E(x2

t
x2
s
"2
s+1)

�����  2n�2K2+K1

p
T�3 log T .

Since ��4
x,tE(x2

t
x2
s
"2
s+1) and �2

x,t
are bounded away from zero and infinity, � ⇣ T�↵x

with ↵x > 1/2, it follows that �E�Lt+1 ⇣ T�1. The desired result follows by (B.36)
and ↵x > 1/2.

Proof of Proposition 5. Part (1) follows by Lemma 14 and the arguments in the
proof of Proposition 1. Part (2) follows by Lemma 15 and the arguments in the proof
of Proposition 1.

B.6 Proof of Proposition 6

Our proof of Proposition 6 relies on two lemmas, Lemmas 16 and 17. We first state
and prove these lemmas before proving Proposition 6.

Lemma 16. Suppose that the assumptions of Proposition 6 hold. Let �Lt+1,⇤

be defined as in (B.9) in the proof of Lemma 8. Let ✓̃t = (✓̃1,t, ✓̃2,t)0 =

(
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs�Lt+1,⇤), where zs = (1, zMs)0. Fix p 2 (2, r/3). Then
there exist some constants G0, G1, G2, G3 > 0 such that for T � G0,

P
 �����

✓̃1,t

✓̃2,t

����� � G1T
↵z�↵x

!
 G2T

1�p/2 log�G3

and
P
⇣
✓̃2,t  0

⌘
 G2T

1�p/2 log�G3 .

Proof. The proof is similar to the proof of Lemma 11. Let  t+1 = m↵x�Lt+1,⇤,
⇡t = (

P
t�1
s=t�m

Ezsz0s)�1(
P

t�1
s=t�m

Ezs s+1), ⇡̂t = (
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs s+1)

and {⇠s+1}t�1
s=t�m with ⇠s+1 =  s+1 � z0

s
⇡t. Clearly, ⇡̂t = m↵x ✓̃t. Let �t = ⇡̂t � ⇡t. By
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the same argument as Step 1 in the proof of Lemma 11, we can show that there exist
constants M1,M2,M3 > 0 such that

P
⇣
k�tk1 � M1

p
T�1 log T

⌘
 M2T

1�p/2 log�M3 . (B.37)

Now we characterize ⇡t. By Lemma 8, there are constants M4,M5 > 0 such that

M4T
�↵x  ⇡1,t  M5T

�↵x . (B.38)

By computations similar to (B.14) in the proof of Lemma 8, one can show that

E
��zMt�Lt+1,⇤ � zMt(2�xt"t+1 + �2x2

t
)
��  M6T

�1/2
p
log T ,

where M6 > 0 is a constant. By the assumptions of Proposition 6, there exists a
constant M7 > 0 with

E
⇥
zMt

�
2�xt"t+1 + �2x2

t

�⇤
� M7T

�↵x�↵z .

Hence, for some constant M8 > 0 we have

⇡2,t � M8T
�↵z . (B.39)

Let x = 2M5T�↵x and G = 2x/(M8T�↵z). Then

P (|⇡̂1,t| � G|⇡̂2,t|)

 P (|⇡̂1,t| � x) + P (|⇡̂2,t|  x/G)

 P (|⇡̂1,t � ⇡1,t| � x� |⇡1|) + P (|⇡̂2,t � ⇡2,t| � |⇡2,t|� x/G)

(i)

 P
�
|⇡̂1,t � ⇡1,t| � x�M5T

�↵x
�
+ P

�
|⇡̂2,t � ⇡2,t| � M8T

�↵z � x/G
�

 P
�
k�tk1 � x�M5T

�↵x
�
+ P

�
k�tk1 � M8T

�↵z � x/G
�

= P
�
k�tk1 � M5T

�↵x,2
�
+ P

�
k�tk1 � M8T

�↵z/2
�

(ii)

 2M2T
1�p/2 log�M3 ,

where (i) holds by (B.38) and (B.39) and (ii) follows by (B.37) together with T�↵x �p
T�1 log T and T�↵z �

p
T�1 log T . The first claim follows by |⇡̂1,t/⇡̂2,t| = |✓̃1,t/✓̃2,t|
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and G = 2x/(M8T�↵z) = (4M5/M8)T ↵z�↵x .
To see the second claim, notice that

P
⇣
✓̃2,t  0

⌘
(i)
= P (⇡̂2,t  0) = P (�2,t  �⇡2,t)

(ii)

 P
�
�2,t  �M8T

�↵z
�
 P

�
k�tk1 � M8T

�↵z
�

(iii)

 M2T
1�p/2 log�M3 ,

where (i) holds by ✓̃t = m�↵x ⇡̂t, (ii) follows by (B.27) and (iii) holds by (B.37) and
T�↵z �

p
T�1 log T .

Lemma 17. Let the assumptions of Proposition 6 hold. Then 8p1 2 (2, r/3), there
exist constants G0, G1, ..., G5 > 0 and an array {St+1}T�1

t=n+m such that 8T � G0,

P
 

T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o!
� 1�G1T

2�p1/2 log�G2 T

and
ESt+1 � K5T

�↵x�↵z .

Proof. The proof is similar to the proof of Lemma 12. Let ✓̃t =

(
P

t�1
s=t�m

zsz0s)
�1(

P
t�1
s=t�m

zs�Lt+1,⇤), where �Lt+1,⇤ is defined as in (B.35). Define
St+1 = �Lt+1,⇤1{z0t✓̃t > 0}. Notice that

T�1\

t=n

{�Lt+1,⇤ = �Lt+1} ✓
T�1\

t=n+m

n
St+1 = �Lt+11{z0t✓̂m,t > 0}

o
.

Hence, the first claim follows by Lemma 14.
To show the second claim, let q = (r + 2)/4 and ⌫ = (r + 2)/(r � 2). Hence,

q�1 + ⌫�1 = 1. Notice that by the same argument as (B.28) in the proof of Lemma
12, we have that

E
⇣
|�Lt+1,⇤|

���1{z0t✓̃t > 0}� 1{zMt > 0}
���
⌘

 k�Lt+1,⇤kLq(P)

✓h
P
⇣
0 < zMt  �✓̃1,t/✓̃2,t

⌘i1/⌫
+
h
P
⇣
✓̃2,t  0

⌘i1/⌫◆
.
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Similar to the argument in (B.29), we have

P
⇣
0 < zMt  �✓̃1,t/✓̃2,t

⌘
 P

⇣
0 < zMt 

���✓̃1,t/✓̃2,t
���
⌘

 P
�
0 < zMt  G1T

↵z�↵x
�
+ P

⇣���✓̃1,t/✓̃2,t
��� � G1T

↵z�↵x

⌘

(i)

 K1G1T
↵z�↵x +G2T

1�p/2 log�G3

for some constant K1 > 0, where (i) holds by the bounded p.d.f of zMt around zero
and Lemma 16. The above two displays and Lemma 16 imply that for some constant
K2 > 0,

E
⇣
|�Lt+1,⇤|

���1{z0t✓̃t > 0}� 1{zMt > 0}
���
⌘

 K2k�Lt+1,⇤kLq(P)
�
T (↵z�↵x)/⌫ + (T 1�p/2 log�G3)1/⌫

�
.

By (B.9), we have that

E�Lt+1,⇤1{zMt > 0} � 2E [�xt"t+11{zMt > 0}]� At,

where

At = E
���2x2

t
+ �2

t,small,⇤ � �2
t,big,⇤ + 2�t,big"t+1 � 2�t,small,⇤(�xt + "t+1)

�� .

After computations similar to (B.14) in the proof of Lemma 8, we can use the
rate conditions in the assumptions of Proposition 6 and show that for some constant
K3 > 0,

At  K3(T
�2↵x + T�1/2). (B.40)

(B.40) implies that for some constants K4, K5 > 0, we have that for T � K4,

E�Lt+1,⇤1{zMt > 0} � 2E [�xt"t+11{zMt > 0}]�K3(T
�2↵x + T�1/2)

(i)

� K5T
�↵x�↵z �K3(T

�2↵x + T�1/2),

where (i) holds by the assumptions of Proposition 6. By the above display and (B.30),
we have that for T � K4,
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ESt+1 � K5T
�↵x�↵z �K3(T

�2↵x + T�1/2)

�K2k�Lt+1,⇤kLq(P)
�
T (↵z�↵x)/⌫ + (T 1�p/2 log�G3)1/⌫

�
.

Recall that in Step 1 of the proof of Lemma 9, we have that T ↵x�Lt+1,⇤ has
uniformly bounded 0.5r-th moments. Since q = (r + 2)/4 < 0.5r, we have that
kT ↵x�Lt+1,⇤kLq(P) is bounded above by some constant K6 > 0. Hence,

ESt+1 � K5T
�↵x�↵z �K3(T

�2↵x + T�1/2)

�K2K6T
�↵x

�
T (↵z�↵x)/⌫ + (T 1�p/2 log�G3)1/⌫

�
.

It is not hard to show that �↵x � ↵z > �2↵x, �↵x � ↵z > �1/2, �↵x � ↵z >

�↵x+(↵z�↵x)/⌫ and �↵x�↵z > �↵x+(1�p/2)/⌫. The desired result follows.

Proof of Proposition 6. Part (1) follows by Lemma 17 and the arguments in the
proof of Proposition 1. Part (2) follows by Part (1) and Proposition 5.
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Appendix C Appendix Tables

Table A.1: Predictive performance of nested models and dynamic rotation (m = 50)
A: Big vs. small model (MSEbig/MSEsmall)

↵z\↵x 0 0.1 0.25 0.4 0.5 0.75 1
0.253 0.460 0.777 0.939 0.981 1.007 1.010
B: Dynamic rotation vs. small model (MSEDR/MSEsmall)

0.0 0.243 0.409 0.674 0.849 0.912 0.967 0.974
0.1 0.260 0.458 0.746 0.899 0.946 0.983 0.988
0.25 0.261 0.473 0.788 0.939 0.975 0.997 1.000
0.5 0.260 0.474 0.800 0.954 0.987 1.004 1.005
0.75 0.260 0.474 0.803 0.956 0.988 1.004 1.005
1.0 0.259 0.475 0.802 0.956 0.989 1.004 1.005

C: Dynamic rotation vs. big model (MSEDR/MSEbig)
0.0 0.964 0.890 0.868 0.904 0.930 0.961 0.965
0.1 1.030 0.998 0.960 0.957 0.965 0.977 0.979
0.25 1.033 1.028 1.014 1.000 0.995 0.991 0.990
0.5 1.030 1.031 1.030 1.016 1.007 0.996 0.995
0.75 1.029 1.030 1.032 1.018 1.008 0.997 0.996
1.0 1.028 1.030 1.032 1.018 1.008 0.997 0.996

This table reports result from 5,000 Monte Carlo simulations using a sample size of
(n,m, p) = (100, 50, 200).
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Table A.2: Predictive performance of dynamic rotation versus model combination,
pretesting and a model augmented with the monitoring instrument (m = 50)

A: Dynamic rotation vs. equal-weighted forecast combination (MSEDR/MSEEW )
↵z\↵x 0 0.1 0.25 0.4 0.5 0.75 1
0.0 0.555 0.690 0.814 0.894 0.930 0.967 0.972
0.1 0.594 0.774 0.900 0.946 0.965 0.983 0.986
0.25 0.596 0.798 0.950 0.989 0.994 0.997 0.997
0.5 0.593 0.800 0.965 1.005 1.007 1.003 1.003
0.75 0.594 0.799 0.968 1.007 1.008 1.004 1.003
1.0 0.592 0.800 0.967 1.007 1.008 1.004 1.003

B: Dynamic rotation vs. pre-test forecast (MSEDR/MSEpretest)
0.0 0.964 0.890 0.868 0.894 0.919 0.964 0.971
0.1 1.030 0.998 0.960 0.946 0.953 0.980 0.985
0.25 1.033 1.028 1.014 0.988 0.982 0.994 0.997
0.5 1.030 1.031 1.030 1.004 0.994 1.000 1.002
0.75 1.029 1.030 1.032 1.006 0.996 1.001 1.002
1.0 1.028 1.030 1.032 1.007 0.996 1.001 1.002

C: Dynamic rotation vs. augmented (xt + zMt) forecast (MSEDR/MSEaug)
0.0 0.946 0.873 0.851 0.887 0.912 0.942 0.946
0.1 1.010 0.979 0.941 0.939 0.946 0.958 0.959
0.25 1.013 1.008 0.994 0.980 0.975 0.971 0.971
0.5 1.010 1.010 1.010 0.996 0.987 0.977 0.976
0.75 1.009 1.010 1.012 0.998 0.988 0.978 0.977
1.0 1.009 1.010 1.012 0.999 0.989 0.978 0.977

D: Dynamic rotation vs. weighted combination (MSEDR/MSEweight�comb)
0.0 0.857 0.797 0.826 0.895 0.930 0.967 0.972
0.1 0.916 0.893 0.914 0.947 0.965 0.983 0.986
0.25 0.919 0.921 0.965 0.990 0.995 0.997 0.997
0.5 0.915 0.923 0.980 1.006 1.007 1.003 1.003
0.75 0.915 0.922 0.982 1.008 1.008 1.004 1.003
1.0 0.914 0.923 0.982 1.008 1.008 1.004 1.003

In each panel, we compare the MSE performance of the switching approach to that of an equal-
weighted combination (Panel A), an approach that includes a predictor in the forecasting model if
its regression coefficient is statistically significant (pretest, in Panel B), forecasts from an augmented
model that includes both the predictor, xt, and the monitoring instrument, zMt, in the forecasting
model (Panel C), and forecasts from a combination scheme with weights that are proportional to
the inverse of the MSE of the individual forecasts (Panel D).
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Table A.3: Pairwise comparisons of predictive performance for the non-nested case
(m = 50)

MSEj2/MSEj1

(j1, j2) = (1, 2) (j1, j2) = (2, DR) (j1, j2) = (1, DR)

A: (↵z,1,↵z,2) = (0, 0)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.001 4.377 6.609 7.008 0.998 0.231 0.153 0.145 0.999 1.010 1.013 1.016
0.25 0.229 1.000 1.511 1.597 1.027 0.997 0.672 0.625 0.235 0.998 1.015 0.998
0.5 0.152 0.662 0.999 1.059 1.041 1.017 0.992 0.929 0.158 0.674 0.991 0.984
1.0 0.143 0.626 0.943 1.000 1.045 1.001 0.984 0.984 0.150 0.626 0.928 0.984

B: (↵z,1,↵z,2) = (0, 1)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.000 4.367 6.604 7.017 0.960 0.231 0.152 0.144 0.960 1.009 1.007 1.007
0.25 0.229 1.003 1.511 1.595 1.032 0.927 0.680 0.642 0.236 0.930 1.027 1.025
0.5 0.151 0.662 1.001 1.060 1.043 0.997 0.965 0.954 0.158 0.660 0.966 1.011
1.0 0.143 0.626 0.944 1.000 1.047 0.999 0.980 0.992 0.150 0.626 0.925 0.992

C:(↵z,1,↵z,2) = (0.5, 0.5)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.001 4.372 6.607 6.996 0.998 0.231 0.152 0.144 0.999 1.008 1.007 1.007
0.25 0.229 1.000 1.513 1.598 1.025 1.000 0.681 0.641 0.235 0.999 1.030 1.024
0.5 0.152 0.662 1.000 1.059 1.036 1.033 1.000 0.960 0.157 0.684 1.000 1.017
1.0 0.143 0.626 0.944 1.000 1.036 1.027 1.017 1.002 0.148 0.642 0.960 1.002

D: (↵z,1,↵z,2) = (1, 1)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.999 4.376 6.603 6.994 0.999 0.230 0.153 0.144 0.999 1.008 1.007 1.007
0.25 0.228 0.998 1.509 1.600 1.026 1.001 0.684 0.640 0.234 0.999 1.031 1.024
0.5 0.152 0.663 0.999 1.060 1.034 1.034 1.001 0.960 0.157 0.685 0.999 1.017
1.0 0.143 0.625 0.944 1.000 1.038 1.027 1.018 1.002 0.148 0.642 0.961 1.002

This table reports MSE of methods j1 and j2. Data are generated according to the non-
nested model

yt+1 = �1x1,t + �2x2,t + "t+1,

where x1t and x2t are a set of predictor variables that are known at time t. Model 1 takes
the form yt+1 = �1x1,t + "1t+1, while model 2 takes the form yt+1 = �2x2,t + "2t+1. The
strength of the predictors in models 1 and 2 is parameterized as �j = c�,jn�↵x,j , while the
accuracy of the monitoring instrument is captured as corr(xj,t"t+1, z1t) = c⇢,jm�↵z,j . All
results are based on 5,000 MC simulations and use a sample size of (n,m, p) = (100, 50, 200).
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Table A.4: Predictive performance of nested models and dynamic rotation (m = 200)
A: Big model vs. small model (MSEbig/MSEsmall)

↵z\↵x 0 0.1 0.25 0.4 0.5 0.75 1
0.253 0.461 0.777 0.939 0.981 1.007 1.010
B: Dynamic rotation vs. small model (MSEDR/MSEsmall)

0.0 0.240 0.405 0.670 0.846 0.912 0.978 0.989
0.1 0.258 0.454 0.736 0.892 0.941 0.987 0.994
0.25 0.257 0.465 0.777 0.929 0.969 0.997 1.000
0.5 0.257 0.464 0.783 0.945 0.985 1.002 1.003
0.75 0.257 0.464 0.782 0.947 0.987 1.003 1.004
1.0 0.256 0.464 0.783 0.948 0.987 1.003 1.004

C: Dynamic rotation vs. big model (MSEDR/MSEbig)
0.0 0.952 0.880 0.863 0.901 0.929 0.971 0.979
0.1 1.016 0.985 0.947 0.949 0.960 0.981 0.985
0.25 1.017 1.011 1.000 0.990 0.988 0.990 0.991
0.5 1.015 1.008 1.007 1.006 1.004 0.996 0.994
0.75 1.015 1.007 1.007 1.008 1.006 0.996 0.994
1.0 1.015 1.007 1.007 1.009 1.006 0.997 0.994

This table reports results from 5,000 Monte Carlo simulations using a sample size of
(n,m, p) = (100, 200, 200).
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Table A.5: Predictive performance of dynamic rotation versus model combination,
pretesting and a model augmented with the monitoring instrument (m = 200)

A: Dynamic rotation vs. equal-weighted combination (MSEDR/MSEEW )
↵z\↵x 0 0.1 0.25 0.4 0.5 0.75 1
0.0 0.548 0.683 0.809 0.891 0.930 0.978 0.987
0.1 0.587 0.765 0.888 0.939 0.960 0.987 0.992
0.25 0.587 0.785 0.937 0.978 0.988 0.997 0.998
0.5 0.585 0.783 0.944 0.995 1.004 1.002 1.001
0.75 0.586 0.782 0.944 0.997 1.006 1.003 1.002
1.0 0.585 0.782 0.944 0.998 1.006 1.003 1.001

B: Dynamic rotation vs. pre-test forecast (MSEDR/MSEpretest)
0.0 0.952 0.880 0.863 0.891 0.918 0.975 0.986
0.1 1.016 0.985 0.947 0.938 0.948 0.984 0.991
0.25 1.017 1.011 1.000 0.978 0.976 0.994 0.997
0.5 1.015 1.008 1.007 0.995 0.992 0.999 1.000
0.75 1.015 1.007 1.007 0.997 0.994 1.000 1.001
1.0 1.015 1.007 1.007 0.997 0.994 1.000 1.001

C: Dynamic rotation vs. augmented (xt + zMt) forecast (MSEDR/MSEaug)
0.0 0.934 0.863 0.846 0.884 0.911 0.952 0.961
0.1 0.996 0.966 0.929 0.931 0.941 0.962 0.966
0.25 0.998 0.992 0.981 0.970 0.969 0.971 0.971
0.5 0.996 0.988 0.987 0.987 0.985 0.976 0.974
0.75 0.996 0.988 0.987 0.988 0.987 0.977 0.975
1.0 0.995 0.988 0.987 0.989 0.986 0.977 0.975

D: Dynamic rotation vs. weighted combination (MSEDR/MSEweight�comb)
0.0 0.850 0.790 0.821 0.892 0.930 0.978 0.987
0.1 0.907 0.885 0.902 0.939 0.960 0.987 0.992
0.25 0.908 0.908 0.952 0.979 0.988 0.997 0.998
0.5 0.907 0.905 0.959 0.996 1.004 1.002 1.001
0.75 0.907 0.904 0.959 0.998 1.006 1.003 1.002
1.0 0.906 0.905 0.959 0.999 1.006 1.003 1.001

In each panel, we compare the MSE performance of the dynamic rotation approach to that of an
equal-weighted combination (Panel A), an approach that includes a predictor in the forecasting
model if its regression coefficient is statistically significant (pretest, in Panel B), forecasts from an
augmented model that includes both the predictor, xt, and the monitoring instrument, zMt, in the
forecasting model (Panel C), and forecasts from a combination scheme with weights proportional to
the inverse of the MSE of the individual forecasts (Panel D).
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Table A.6: Pairwise comparisons of predictive performance for the non-nested case
(m = 200)

MSEj2/MSEj1

(j1, j2) = (1, 2) (j1, j2) = (2, DR) (j1, j2) = (1, DR)

A: (↵z,1,↵z,2) = (0, 0)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.000 4.375 6.596 6.994 1.000 0.229 0.152 0.143 1.000 1.001 1.001 1.002
0.25 0.228 1.000 1.510 1.601 1.017 0.998 0.663 0.617 0.232 0.998 1.001 0.988
0.5 0.152 0.662 1.000 1.059 1.030 1.003 0.997 0.923 0.156 0.664 0.997 0.977
1.0 0.143 0.626 0.943 1.000 1.031 0.991 0.977 0.993 0.147 0.620 0.922 0.993

B: (↵z,1,↵z,2) = (0, 1)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.002 4.369 6.623 7.001 0.933 0.229 0.151 0.143 0.935 1.000 1.000 1.000
0.25 0.228 1.001 1.510 1.598 1.019 0.899 0.665 0.627 0.233 0.900 1.005 1.002
0.5 0.151 0.663 1.001 1.060 1.030 0.984 0.952 0.948 0.156 0.653 0.953 1.005
1.0 0.143 0.625 0.944 1.000 1.032 0.988 0.971 0.995 0.147 0.617 0.917 0.995

C:(↵z,1,↵z,2) = (0.5, 0.5)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 0.997 4.380 6.620 7.019 1.002 0.228 0.151 0.143 0.999 1.000 1.000 1.000
0.25 0.228 0.999 1.511 1.602 1.017 0.999 0.664 0.626 0.232 0.999 1.003 1.002
0.5 0.152 0.664 1.001 1.060 1.029 1.006 1.000 0.950 0.156 0.668 1.000 1.007
1.0 0.143 0.624 0.943 1.000 1.030 1.005 1.008 1.002 0.147 0.627 0.950 1.002

D: (↵z,1,↵z,2) = (1, 1)
↵x,1\↵x,2 0 0.25 0.5 1 0 0.25 0.5 1 0 0.25 0.5 1
0.0 1.001 4.366 6.617 7.010 0.999 0.229 0.151 0.143 1.000 1.000 1.000 1.000
0.25 0.229 1.000 1.510 1.600 1.017 1.001 0.664 0.626 0.233 1.001 1.003 1.002
0.5 0.151 0.664 1.000 1.059 1.028 1.006 1.001 0.951 0.156 0.667 1.000 1.007
1.0 0.143 0.625 0.944 1.000 1.030 1.005 1.007 1.002 0.147 0.628 0.951 1.002

This table reports MSE of methods j1 and j2. Data are generated according to the non-
nested model

yt+1 = �1x1,t + �2x2,t + "t+1,

where x1t and x2t are a set of predictor variables that are known at time t. Model 1 takes the
form yt+1 = �1x1,t+"1t+1, while model 2 takes the form yt+1 = �2x2,t+"2t+1. The strength
of the predictors in models 1 and 2 is parameterized as �j = c�,jn�↵x,j , while the accuracy
of the monitoring instrument is captured as corr(xj,t"t+1, z1t) = c⇢,jm�↵z,j . All results are
based on 5,000 MC simulations and use a sample size of (n,m, p) = (100, 200, 200).
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