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Abstract
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the support of an optimal policy. 3. Derive a non-linear, second-order partial differential equation
whose solutions correspond to regular optimal policies. We illustrate the power of our approach by
providing explicit solutions to several non-linear, multidimensional Bayesian persuasion problems. 
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1 Introduction

We study the general problem of Bayesian persuasion (optimal information design) intro-

duced in the seminal work of Kamenica and Gentzkow (2011).1 We show that solutions

to optimal information design problem exhibit a remarkable mathematical structure when

the private information of the sender (the state) is a random vector in RL with a prior

distribution absolutely continuous with respect to the Lebesgue measure.

We start by solving a restricted problem in which the sender is constrained to a finite

set of signals. In this case, we show that the optimal signal is always given by a partition

of the state space. When the receivers’ actions are functions of the expected state, the

partition is given by convex polygons, being a natural analog of a monotone partition in

many dimensions.2

Our explicit characterization of optimal partitions allows us to take the continuous

limit and show that these partitions converge to a solution to the unconstrained problem.

We establish a surprising connection between optimal information design and the Monge-

Kantorovich theory of optimal transport whereby the sender effectively finds an optimal way

of ”transporting information” to the receiver, with an endogenous information transport cost.

In the case when public actions are a function of expectations about (multiple, arbitrary)

functions of the state (the moment persuasion, see Dworczak and Kolotilin (2019)), the

information transport cost coincides with the classical Bregman divergence function (see

Rockafellar (1970)), albeit the function involved is not convex, and hence the Bregman

1See also Aumann and Maschler (1995), Calzolari and Pavan (2006), Ostrovsky and Schwarz (2010)
and Rayo and Segal (2010) for important prior contributions to the literature on communication with
commitment. The term “information design” was introduced in Taneva (2015) and Bergemann and Morris
(2016). See Bergemann and Morris (2019) and Kamenica (2019) for excellent reviews.

2Kleinberg and Mullainathan (2019) argue that clustering (partitioning the state space into discrete cells)
is the most natural way to simplify information processing in complex environments. Our results provide a
theoretical foundation for such clustering. Note that, formally, in a Bayesian persuasion framework, economic
agents (signal receivers) would need to use (potentially complex) calculations underlying the Bayes rule to
compute the conditional probabilities. One important real-world problem arises when the receivers do not
know the ”true” probability distribution, in which case methods from robust optimization need to be used.
See Dworczak and Pavan (2020).
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divergence loses all of its classic properties. We derive explicit necessary and sufficient

conditions characterizing optimal policies that reduce to a system of non-linear partial

(integro-)differential equations under enough regularity. We illustrate the power of this

approach by providing explicit solutions to several non-linear, multidimensional information

design problems.

Unfortunately, in general, the smoothness of optimal policies cannot be guaranteed, and

understanding their structure is very difficult. We use the theory of Hausdorff dimension

in metric spaces and derive sharp upper bounds on the Hausdorff dimension of the support

of the optimal policy, linking it explicitly to the ”degree of convexity” of the underlying

problem.

Most existing papers on Bayesian persuasion with continuous signals consider the case

of a one-dimensional signal space. See, e.g., Gentzkow and Kamenica (2016), Kolotilin

(2018), Hopenhayn and Saeedi (2019), Dworczak and Martini (2019), Arieli et al. (2020)

and Kleiner et al. (2020). However, little is known about optimal information design in the

multidimensional case. The only results we are aware of are due to Dworczak and Martini

(2019). They show that, under some technical conditions, with a two-dimensional state, four

possible actions, and sender’s utility that only depends on the expected state, the optimal

information design is given by a partition into four convex polygons. See; also, Dworczak

and Kolotilin (2019) who derive criteria for the support of the optimal policy to lie on a

line. By contrast, we characterize the general solution to the problem of moment persuasion

in any dimension, opening up a road to numerous real-world applications (see, e.g., Das et

al. (2017)). Our characterization implies a certain type of monotonic association between

the actual state and the optimal signal. This result could be viewed as a multidimensional

extension of the results in Kolotilin and Wolitzky (2020).

Our paper is also related to the growing literature on martingale optimal transport in

mathematical finance, the classic Monge-Kantorovich optimal transport under the constraint
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that the target is a conditional expectation of the origin. See, Beiglböck et al. (2016) and

Ghoussoub et al. (2019).

Some of the results in our paper have been established in Rochet and Vila (1994) and

Kramkov and Xu (2019) for the special case of a two-dimensional first moment persuasion

with a quadratic cost function. Kramkov and Xu (2019) were the first to show a connection

between such problems and optimal transport. As Rochet and Vila (1994) show, such

problems are also related to a special class of signaling games.

A key technical contribution that makes our analysis possible is the solution to the finite

signal case. The fact that optimal design is always a partition satisfying certain remarkable

optimality conditions allows us to show that the full solution inherits the same properties.

Heuristically, partition structure implies that the problem has a sufficiently regular solution

(a map), and supports of maps are (in some sense) continuous in the limit. By contrast, with

randomization, the optimal policy is a measure, and supports of measures are not continuous

in the limit. In turn, quite remarkably, the proof of the partition result is based on the theory

of real analytic functions. To the best of our knowledge, such techniques have never been

used in optimal transport theory before.

Finally, we note that our solution to the problem with a finite signal space relates this

paper to the literature on optimal rating design (see, e.g., Hopenhayn and Saeedi (2019)).

Indeed, in practice, most ratings are discrete. For example, credit rating agencies use discrete

rating buckets (e.g., above BBB-); restaurant and hotel ratings take a finite number of values.

2 The Model

There are four time periods, t = 0−, 0, 0+, 1. The information designer (the sender)

believes that the state ω (the private information of the sender) is a random vector taking

values in Ω ⊂ RL, an open subset of RL, and distributed with a density µ0(ω) that is strictly

positive on Ω. There are N ≥ 1 agents (receivers) who share the same prior µ0(ω).
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Following Kamenica and Gentzkow (2011), we assume that the sender is able to commit

to an information design at time t = 0−, before the state ω is realized. The sender learns

the realization of the state ω at time t = 0, while the receivers only learn it at time t = 1.

The sender’s objective is then to decide how much, and what kind of, information about ω

to reveal to the receivers at time t = 0.

Definition 1 (Finite Information Design) An information design is a probability space

K (hereinafter signal space) and a probability measure P on K × Ω. An information design

is K-finite if the signal space K has exactly K elements: |K| = K. An information design

is finite if it is K-finite for some K ∈ N. In this case, without loss of generality we assume

that K = {1, · · · , K}.

Once the receivers observe a signal k ∈ {1, · · · , K}, they update their beliefs about

the probability distribution of ω using the Bayes rule. To do this, the receivers just need

to know πk(ω) – the probability of the state being ω given the observed signal k. As

such, a K-finite information design can be equivalently characterized by a set of measurable

functions πk(ω), k = {1, · · · , K} satisfying conditions πk(ω) ∈ [0, 1] and
∑

k πk(ω) = 1

with probability one.

Intuitively, an information design is a map from the space Ω of possible states to a

“dictionary” of K messages, whereby the sender commits to a precise rule of selecting a

signal from the dictionary for every realization of ω. In principle, it is possible that this rule

involves randomization, whereby, for a given ω, the sender randomly picks a signal from a

non-singleton subset of messages in the dictionary. An information design does not involve

randomization if and only if it is a partition of the state space Ω.

Definition 2 (Randomization) We say that information design involves randomization

if P(πk(ω) 6∈ {0, 1}) > 0 for some k. We say that information design is a partition if
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P(πk(ω) ∈ {0, 1}) = 1 for all k = 1, · · · , K. In this case,

∪Kk=1{ω : πk(ω) = 1} (1)

is a Lebesgue-almost sure partition of Ω in the sense that Ω \ ∪Kk=1{ω : πk(ω) = 1}

has Lebesgue measure zero, and the subsets of the partition (1) are Lebesgue-almost surely

disjoint.

We use π̄ = (πk(ω))Kk=1 ∈ [0, 1]K to denote the random K-dimensional vector repre-

senting the information design. As we show below, a key implication of this setting is that,

with a continuous state space and under appropriate regularity conditions, randomization is

never optimal, and hence optimal information design is always given by a partition. While

this result might seem intuitive, its proof is non-trivial and is based on novel techniques that,

to the best of our knowledge, have never been used in the literature before. It is this result

that is key our subsequent analysis of the unconstrained problem.

2.1 Receivers

At time t = 0, upon observing a signal k, each agent (receiver) n = 1, · · · , N selects an

action an ∈ Rm to maximize the expected utility function

E[Un(an, a−n, ω)|k] ,

where we use a−n = (ai)i 6=n ∈ R(N−1)m to denote the vector of actions of other agents.

We denote by a = (an)Nn=1 ∈ RM , M = Nm the vector of actions of all agents. A Nash

equilibrium action profile a(k) = (an(k))Nn=1 is a solution to the fixed point system

an(k) = arg max
an

E[Un(an, a−n(k), ω)|k] .
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We use C2(Ω) to denote the set of functions that are twice continuously differentiable in Ω.

We will also use Da and Daa to denote the gradient and the Hessian with respect to the

variable a. Let

Gn(a, ω) ≡ DanUn(an, a−n, ω) .

Assumption 1 There exists an integrable majorant Y (ω) ≥ 0 such that Y (ω) ≥ Un(an, a−n, ω)

for all a ∈ RM , ω ∈ Ω, n = 1, · · · , N. The function Un(an, a−n, ω) ∈ C2(Rm × RNm × Ω) is

strictly concave in an, and is such that lim‖an‖→∞ Un = −∞.3

Furthermore, the map G = (Gn)Nn=1 : RM ×Ω→ RM satisfies the following conditions:

• G is uniformly monotone in a for each ω so that ε‖z‖2 ≤ −z>DaG(a, ω)z ≤ ε−1‖z‖2

for some ε > 0 and all z ∈ RM ;4

• the unique solution a∗(ω) to G(a∗(ω), ω) = 0 is square integrable: E[‖a∗(ω)‖2] <∞.

Assumption 1 implies that the following is true:

Lemma 3 For any information design π, there exists a unique equilibrium a = a∗(π). It

is the unique solution to the fixed point system

E[G(a(k), ω)|k] = 0 ,

and ‖a(k)‖2 ≤ κE[‖a∗(ω)‖2|k] for some universal κ > 0. This equilibrium depends smoothly

on π.

3This is a form of Inada condition ensuring that the optimum is always in the interior. An integrable
majorant is needed to apply Fatou lemma and conclude that lim‖an‖→∞E[Un(an, a, ω)|k] = −∞ always.

4Strict monotonicity is important here. Without it, there could be multiple equilibria.
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2.2 Optimal Information Design

Without loss of generality, we may assume that at the optimum we always have a(k) 6= a(k̃)

for any k 6= k̃. That is, different signals always induce different actions. We assume that

the sender chooses the information design to maximize the expected public welfare function

W (a, ω) over all possible action profiles satisfying the participation (optimality) constraints

of the receivers:

π̄∗ = arg max
π̄

E[W (a∗(π̄), ω)] = arg max
π̄
{E[W (a, ω)] : a = maximizes agents′ utilities}

= max
π̄, a
{E[W (a(k), ω)] : E[G(a(k), ω)|k] = 0 ∀ k} .

(2)

By direct calculation, we can rewrite the expected social welfare function as

E[W (a∗(π̄), ω)] =
K∑
k=1

∫
Ω

W (a∗(k, π̄), ω) πk(ω)µ0(ω)dω . (3)

Example 4 (Moment Persuasion) The most important example throughout this paper

will be a setup where

Gn(a, ω) = gn(ω) − an

for some functions gn(ω), n = 1, · · · ,M. Dworczak and Kolotilin (2019) refer to this setup

as “moment persuasion.” It is known that any continuous function W (a, ω) can be uniformly

approximated by a separable function,

W (a, ω) ≈
κ∑
k=1

fk(a)ϕk(ω)

for some smooth functions ϕk, fk (e.g., polynomials). As a result, defining Gn+l = ϕl(ω)−
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an+l, l = 1, · · · , κ, and

W̃ (a) =
κ∑
k=1

fk(a)an+k ,

we get

E[W (a, ω)] ≈ E[W̃ (a)] .

More generally, if we approximate

G(a, ω) ≈
∑
i

ψi(a)φi(ω) ,

we get that E[G(a, ω)|k] = 0 is equivalent to the optimal action, a, being a function of

conditional expectations of φi. Thus, any optimal information design problem considered in

this paper can be approximated by a moment persuasion problem.

We also need a technical condition motivated by Example 4.

Assumption 2 There exists a function g : Ω→ R+ such that g(ω) ≥ ‖a∗(ω)‖2 and the set

{ω : g(ω) ≤ A} is compact for all A > 0, and a convex, increasing function f ≥ 1 such that

|W (a, ω)|+ ‖DaW (a, ω)‖ ≤ g(ω)f(‖a‖2) and

E[g2(ω)f(g(ω))] <∞.

To state the main result of this section —the optimality of partitions—we need also the

following definition.

Definition 5 We say that functions {f1(ω), · · · , fL1(ω)}, ω ∈ Ω, are linearly independent

modulo {g1(ω), · · · , gL2(ω)} if there exist no real vectors h ∈ RL1 , k ∈ RL2 with ‖h‖ 6= 0,
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such that

∑
i

hifi(ω) =
∑
j

kjgj(ω) for all ω ∈ ω .

In particular, if L1 = 1, then f1(ω) is linearly independent modulo {g1(ω), · · · , gL2(ω)} if

f1(ω) cannot be expressed as a linear combination of {g1(ω), · · · , gL2(ω)}.

We also need the following technical condition.

Definition 6 We say that W,G are in a generic position if for any fixed a, ã ∈ RN , a 6= ã,

the function W (a, ω)−W (ã, ω) is linearly independent modulo
{
{Gn(a, ω)}Nn=1, {Gn(ã, ω)}Nn=1

}
;

W,G are in generic position for generic functions W and G.5 We will also need a key

property of real analytic functions6 that we use in our analysis (see, e.g., Hugonnier, Malamud

and Trubowitz (2012)).

Proposition 7 If a real analytic function f(ω) is zero on a set of positive Lebesgue measure,

then f is identically zero. Hence, if real analytic functions {f1(ω), · · · , fL1(ω)} are linearly

dependent modulo {g1(ω), · · · , gL2(ω)} on some subset I ⊂ Ω of positive Lebesgue measure,

then this linear dependence also holds on the whole Ω except, possibly, a set of Lebesgue

measure zero.

Using Proposition 7, it is possible to prove the main result of this section:

Theorem 8 (Optimal finite information design) There always exists an optimal K-

finite information design π̄∗ which is a partition. Furthermore, if W, G are real analytic

in ω for each a and are in generic position, then any K-finite optimal information design is

a partition.

5The set of W,G that are not in generic position is nowhere dense in the space of continuous functions.
6A function is real analytic if it can be represented by a convergent power series in the neighborhood of

any point in its domain.
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While Theorem 8 may seem intuitive, its proof is non-trivial and is based on novel

techniques (see the appendix). First, we prove the second part. The existence of an optimum

π̄ follows by standard compactness arguments. Suppose now on the contrary that π̄ is not a

partition. Then, for some k, we have πk(ω) ∈ (0, 1) on some positive measure subset I ⊂ Ω.

At the global maximum, under arbitrary small perturbations, social welfare should decrease.

We show that this can only be true if conditions of Definition 6 are violated for ω ∈ I.

However, since I has a positive Lebesgue measure, Proposition 7 implies that it has to be

violated on the whole of Ω. Finally, the first part follows by a simple approximation argument

because any function can be approximated by an analytic function satisfying the generic

conditions of Definition 6. Note that the regularity of both W and the equilibrium (ensured

by Lemma 3) are crucial for the partition result. Without such regularity, classic examples

of Bayesian persuasion (see, e.g., Kamenica and Gentzkow (2011)) show that randomization

can be optimal.

2.3 The Structure of Optimal Partitions

The goal of this section is to provide a general characterization of the “optimal clusters” in

Theorem 8.

We use DaG(a, ω) ∈ RM×M to denote the Jacobian of the map G, and, similarly,

DaW (a, ω) ∈ R1×M the gradient of the welfare function W (a, ω) with respect to a. For

any vectors xk ∈ RM , k = 1, · · · , K and actions {a(k)}Kk=1, let us define the partition

Ω∗k({x`}K`=1, {a`}K`=1) =

{
ω ∈ Ω : W (a(k), ω)− x>kG(a(k), ω)

= max
1≤l≤K

(
W (a(l), ω) − x>l G(a(l), ω)

)} (4)

Equation (4) is basically the first-order condition for the optimization problem (2), whereby

xk are the Lagrange multipliers of agents’ participation constrains.

11



Theorem 9 Any optimal partition in Theorem 8 satisfies the following conditions:

• local optimality holds: Ωk = Ω∗k({x`}K`=1, {a`}K`=1) with x>k = D̄aW (k)(D̄aG(k))−1 ,

where we have defined for each k = 1, · · · , K

D̄aW (k) =

∫
Ωk

DaW (a(k), ω)µ0(ω)dω , D̄aG(k) =

∫
Ωk

DaG(a(k), ω)µ0(ω)dω

• the actions {a(k)}Kk=1 satisfy the fixed point system

∫
Ωk

G(a(k), ω)µ0(ω)dω = 0, k = 1, · · · , K . (5)

• the boundaries of Ωk are a subset of the variety7

∪k 6=l
{
ω ∈ Rm : W (a(k), ω)− x>kG(a(k), ω) = W (a(l), ω)− x>l G(a(l), ω)

}
. (6)

A key insight of Theorem 9 comes from the characterization of the different clusters of an

optimal partition. The sender has to solve the problem of maximizing social welfare (3) by

inducing the desired actions, (an), of economic agents for every realization of ω. Ideally, the

sender would like to induce a∗ = arg maxaW (a, ω) . However, the ability of the sender to

elicit the desired actions is limited by the participation constraints of the receivers – that is,

the map from the posterior beliefs induced by communication to the actions of the receivers.

Indeed, while the sender can induce any Bayes-rational beliefs (i.e., any posteriors consistent

with the Bayes rule; see Kamenica and Gentzkow (2011)), she has no direct control over

the actions of the receivers. The degree to which these constraints are binding is precisely

7This variety is real analytic when so are W and G. A real analytic variety in Rm is a subset of Rm

defined by a set of identities fi(ω) = 0, i = 1, · · · , I where all functions fi are real analytic. If at least one
of functions fi(ω) is non-zero, then a real analytic variety is always a union of smooth manifolds and hence
has a Lebesgue measure of zero. When W,G are real analytic and are in generic position, the variety{
ω ∈ Rm : W (a(k), ω) − x>k G(a(k), ω) = W (a(l), ω) − x>l G(a(l), ω)

}
has a Lebesgue measure of

zero for each k 6= l.
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captured by the Lagrange multipliers x(a), so that the sender is maximizing the Lagrangian

maxa(W (a, ω) − x(a)>G(a, ω)). Formula (4) shows that, inside the cluster number k, the

optimal action profile maximizes the respective Lagrangian. The boundaries of the clusters

are then determined by the indifference conditions (6), ensuring that at the boundary between

regions k and l the sender is indifferent between the respective action profiles ak and al.

Several papers study the one-dimensional case (i.e., when L = 1 so that ω ∈ R1)

and derive conditions under which the optimal signal structure is a monotone partition

into intervals. Such a monotonicity result is intuitive, as one would expect the optimal

information design to only pool nearby states. The most general results currently available

are due to Hopenhayn and Saeedi (2019) and Dworczak and Martini (2019),8 but they

cover the case when sender’s utility (social welfare function in our setting) only depends

on E[ω] ∈ R1.9 Under this assumption, Dworczak and Martini (2019) derive necessary and

sufficient conditions guaranteeing that the optimal signal structure is a monotone partition of

Ω into a union of disjoint intervals. Arieli et al. (2020) (see, also, Kleiner et al. (2020)) provide

a full solution to the information design problem when a(k) = E[ω|k] and, in particular,

show that the partition result does not hold in general when the signal space is continuous.

Theorem 9 proves that a K-finite optimal information design is in fact always a partition

when the state space is continuous and the signal space is discrete. However, no general

results about the monotonicity of this partition can be established without imposing more

structure on the problem.10

Consider the optimal information design of Theorem 9 and define the piece-wise constant

8See also Mensch (2018).
9This is equivalent to G(a, ω) = a− ω in our setting. In this case, formula (5) implies that the optimal

action is given by a(k) = E[ω|k].
10Of course, as Dworczak and Martini (2019) and Arieli et al. (2020) explain, even in the one-dimensional

case the monotonicity cannot be ensured without additional technical conditions. No such conditions are
known in the multi-dimensional case. Dworczak and Martini (2019) present an example with four possible
actions (K = 4) and a two-dimensional state space (L = 2) for which they are able to show that the optimal
information design is a partition into four convex polygons. See, also, Dworczak and Kolotilin (2019).
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function .

a(ω) =
∑
k

a(k)1ω∈Ωk

Since welfare can be written as

E[W (a(ω), ω)],

this function encodes all the properties of the optimal information design. It turns out that

in the case of moment persuasion (Example 4), optimality conditions of Theorem 9 can be

used to derive important, universal monotonicity properties of the optimal policy function

a(ω).

Proposition 10 Suppose that we are in a moment persuasion setup: G = g(ω) − a with

g(ω) : Ω→ RM and W (a, ω) = W (a). Suppose also that M ≤ L. Let X ⊂ Ω be an open set

suppose that g is injective on X and g(X) is convex. Then, the set g(Ωk ∩X) is convex for

each k. In particular, Ωk ∩X is connected. Furthermore, the map x → DaW (a(g−1(x))) is

monotone increasing on g(Ωk ∩X).11

Partitions into convex sets are the natural multi-dimensional analogs of one-dimensional

monotone partitions from Hopenhayn and Saeedi (2019) and Dworczak and Martini (2019).

Injectivity of the g map and convexity of its image are crucial for the connectedness of the Ωk

regions. Without injectivity, even bounding the number of connected components of Ωk is

non-trivial. These effects become particularly strong in the limit when K →∞, where lack

of injectivity in the map g may lead to a breakdown of even minimal regularity properties

of the optimal map.

11A map F is monotone increasing if (x1 − x2)>(F (x1)− F (x2)) ≥ 0 for all x1, x2.
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3 The Unconstrained Problem and the Cost of Infor-

mation Transport

The full, unconstrained optimal information design problem can be formulated as follows

(see, e.g., Kamenica and Gentzkow (2011), Dworczak and Kolotilin (2019)):

Definition 11 Let ∆(Ω) be the set of probability measures on Ω and define ∆(∆(Ω)) simi-

larly. Let also a(µ) be the unique solution to

∫
Ω

G(a, ω)dµ(ω) = 0

and let

W̄ (µ) =

∫
Ω

W (a(µ), ω)dµ(ω) .

The optimal Bayesian persuasion (optimal information design) problem is to maximize

∫
∆(Ω)

W̄ (µ)dτ(µ)

over all distributions of posterior beliefs τ ∈ ∆(∆(Ω)) satisfying

∫
∆(Ω)

µdτ(µ) = µ0 .

Such a τ is called an information design. We say that τ does not involve randomization

if there exists a map a : Ω → RM such that τ coincides with the set of distributions of ω

conditional on a. In this case, a(ω) will be referred to as an optimal policy.

We start with the following important technical lemma. The proof of this lemma is non-
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trivial due to additional complications created by the potential non-compactness of the set

Ω.

Lemma 12 When K →∞, maximal social welfare attained with K-finite optimal informa-

tion designs converges to the maximal welfare attained in the full, unconstrained problem of

Definition 11.

The next result is the key step in deriving properties of an optimal information design.

We will use Supp(a) to denote the support of any map a :

Supp(a) = {x ∈ RM : µ0({ω : ‖a(ω)− x‖ < ε}) > 0 ∀ ε > 0} .

Definition 13 Let a∗(ω) be the unique solution to G(a∗(ω), ω) = 0. For any map x : RM →

RM , we define

c(a, ω;x) ≡ W (a∗(ω), ω)−W (a, ω) + x(a)>G(a, ω) .

For any set Ξ ⊂ RM , we define

φΞ(ω;x) ≡ inf
a∈Ξ

c(a, ω;x) .

Everywhere in the sequel, we refer to c as the cost of information transport.

To gain some intuition behind the cost c, we note that W (a∗(ω), ω) is the welfare attained

by revealing that the true state is ω. Thus, W (a, ω)−W (a∗(ω), ω) is the welfare gain from

inducing a different (preferred) action a and x(a)>G(a, ω) is the corresponding shadow cost

of agents’ participation constraints. The total cost of information transport is the sum of

the true and the shadow costs of “transporting” information from a∗(ω) to a.

Since E[W (a∗(ω), ω)] is independent of the information design, maximizing expected

welfare E[W (a(ω), ω)] is equivalent to minimizing E[W (a∗(ω), ω)−W (a(ω), ω)]. From now
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on, we will be considering this equivalent formulation of the problem. Note that, for any

policy a satisfying E[G(a(ω), ω)|a(ω) = a] = 0 and any well-behaved x we always have

E[W (a∗(ω), ω)−W (a(ω), ω)] = E[c(a(ω), ω;x)] . (7)

Thus, the problem of maximizing E[W (a(ω), ω)] over all admissible policies a(ω) is equivalent

to the problem of minimizing the expected cost of information transport, E[c(a(ω), ω;x)] .

By passing to the limit in Theorem 9, it is possible to prove the following result.

Theorem 14 There exists a Borel-measurable optimal Bayesian persuasion solving the prob-

lem of Definition 11 that does not involve randomization. The corresponding optimal map

a(ω) satisfies E[G(a(ω), ω)|a(ω) = a] = 0 for all a ∈ RM . Furthermore, if we define

Ξ = Supp(a) and

x(a)> = E[DaW (a, ω)|a]E[DaG(a, ω)|a]−1 , (8)

then

• we have

c(a(ω), ω;x) ≤ 0 (9)

• we have

a(ω) = arg min
b∈Ξ

c(b, ω;x) (10)

and the function c(a(ω), ω;x) is Lipschitz continuous in ω.

• we have E[W (a∗(ω), ω)−W (a(ω), ω)] = E[φΞ(ω;x)]

Furthermore, any optimal information design satisfies (9) and (10).
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Theorem 14 characterizes some important properties that are necessary for an optimal

information design. It turns out that optimal policies possess certain remarkable properties

that can be established using results from optimal transport theory. We first recall the

classical optimal transport problem of Monge and Kantorovich (see, e.g., McCann and

Guillen (2011)).

Definition 15 Consider two probability measures, µ0(ω)dω on Ω and ν on Ξ. The optimal

map problem (the Monge problem) is to find a map X : Ω→ Ξ that minimizes

∫
c(X(ω), ω)µ0(ω)dω

under the constraint that the random variable χ = X(ω) is distributed according to ν. The

Kantorovich problem is to find a probability measure γ on Ξ× Ω that minimizes

∫
c(χ, ω)dγ(χ, ω)

over all γ whose marginals coincide with µ0(ω)dω and ν, respectively.

It is known that, under very general conditions, the Monge problem and its Kantorovich

relaxation have identical values, and an optimal map exists. It turns out that, remarkably,

any optimal policy solves the Monge problem.12

Theorem 16 Any optimal policy a(ω) solves the Monge problem with ν being the distribution

of the random vector a(ω).

The result of Theorem 16 puts us in a perfect position to apply all the powerful machinery

of optimal transport theory and derive properties of optimal policies.

12This result is a direct analog of Corollary 2.5 in Kramkov and Xu (2019) that was established there in
the special case of W (a) = a1a2, g(ω) =

(
ω1

ω2

)
and L = M = 2. Its proof is also completely analogous to that

in Kramkov and Xu (2019).
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Definition 17 We say that a map a : Ω → RM is c-cyclically monotone if and only if all

k ∈ N and ω1, · · · , ωk ∈ Ω satisfy

k∑
i=1

c(a(ωi), ωi;x) ≤
k∑
i=1

c(a(ωi), ωσ(i);x)

for any permutation σ of k letters.

We start with the following result which is a direct consequence of a theorem of Smith

and Knott (1992).

Corollary 18 Any optimal policy is c-cyclically monotone.13

Cyclical monotonicity plays an important role in the theory of optimal demand. See, for

example, Rochet (1987). In our setting, this result has a similar flavour: In order to induce

an optimal action, the sender optimally aligns actions a with the state ω to minimize the

cost of information transport, c.

We complete this section with a direct application of a theorem of Gangbo (1995) and

Levin (1999). Recall that a function u(ω) is called c-convex if and only if u = (uc̃)c where

uc̃(a) = sup
ω∈Ω

(−c(a, ω)− u(ω)), vc(ω) = sup
a∈RM

(−c(a, ω)− v(a))

The class of c-convex functions has a lot of nice properties (see, e.g., McCann and Guillen

(2011)). In particular, a c-convex function u is twice differentiable Lebesgue-almost every-

where and satisfies |Du(ω)| ≤ supa |Dωc(a, ω)| and D2
aau(ω) ≥ infa−Dωωc(, ω). The

following is true (see, e.g., McCann and Guillen (2011)).

Corollary 19 Suppose that c is jointly continous in (a, ω) and that the map a → Dωc(a, ω)

is injective for Lebesgue-almost every ω ∈ Ω. Let a = Y (ω, p) be the unique solution to

13This result is, in fact, a direct consequence of (10) because each ω is already coupled with the “best”
a(ω).
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Dωc(a, ω) = −p for any p. Then, there exists a locally Lipschitz c-convex function u : Ω→ R

such that a(ω) = Y (ω,Du(ω)).

Corollaries 18 and 19 provide strong necessary conditions for an optimal policy. Unfor-

tunately, in general we do not know if the conditions of Theorem 14 are also sufficient for

optimality. As we show in the next section, such sufficiency can be established in the setting

of moment persuasion which, as we explain above (see Example 4), can in fact be used to

approximate any optimal information design problem.

4 Moment Persuasion

In the case of moment persuasion, G(a, ω) = a− g(ω), a∗(ω) = g(ω), W (a, ω) = W (a) and

x(a)> = DaW (a). The key simplification comes from the fact that x(a) is independent of the

choice of information design. We will slightly abuse the notation and introduce a modified

definition of the function c. Namely, we define

c(a, b) = W (b) − W (a) + DaW (a) (a− b) (11)

As one can see from (11), the cost of information transport, c, coincides with the classic

Bregman divergence that plays an important role in convex analysis (see, e.g., Rockafellar

(1970)). A key innovation in this paper is the introduction of Bregman divergence with a

non-convex W. In this case, none of the classic results about Bregman divergence hold true,

and new techniques need to be developed.

Our key objective here is to understand the structure of the support set Ξ of an optimal

policy. Here, the nature of the map g : Ω→ RM will play an important role, as can already

be guessed from Proposition 10.

Definition 20 Let conv(X) be the closed convex hull of a set X ⊂ RM . A set Ξ ⊂ RM is
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X-maximal if infa∈Ξ c(a, b) ≤ 0 for all b ∈ X. A set Ξ is W -monotone if c(a1, a2) ≥ 0 for

all a1, a2 ∈ Ξ. A set Ξ is W -convex if W (ta1 + (1 − t)a2) ≤ tW (a1) + (1 − t)W (a2) for all

a1, a2 ∈ Ξ, t ∈ [0, 1]. We also define

φΞ(x) = inf
a∈Ξ

c(a, x) .

Note that we are again slightly abusing the notation so that the function φΞ from the previous

section corresponds to φΞ(g(ω)) in this section.

Lemma 21 Every W -convex set is W -monotone.

Indeed, the function q(t) = tW (a1) + (1− t)W (a2)−W (ta1 + (1− t)a2) satisfies q(t) ≥

q(0) = 0 and hence 0 ≤ q′(0) = c(a2, a1). For the readers’ convenience, we now state an

analog of Theorem 14 for the case of moment persuasion. Recall also that (by (7)) we are

solving the equivalent problem of minimizing E[c(a(ω), g(ω))].

Corollary 22 Suppose that W = W (a), G = a − g(ω) are such that |W (a)| + ‖DaW‖ ≤

f(‖a‖2) for some convex function f satisfying E[‖g(ω)‖2f(‖g(ω)‖2)] <∞. Then, there exists

an optimal policy a(ω) with Ξ = Supp(a) such that:

• a(ω) = E[g(ω)|a(ω)], a(ω) = arg minb∈Ξ c(b, g(ω)), the function c(a(ω), g(ω)) is

Lipschitz continuous in ω.

• if g is injective on a set X ⊂ Ω and g(X) is convex, then DaW (a(g−1(x))) is mono-

tone increasing on X, while c(a(g−1(x)), x) is convex on X and DaW (a(g−1(x))) is a

subgradient of c(a(g−1(x)), x).

Furthermore, and any optimal policy satisfies c(a(ω), g(ω)) ≤ 0 .

The main result of this section is the following theorem which provides explicit and

verifiable necessary and sufficient conditions for optimality of a given policy.
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Theorem 23 For any optimal policy a(ω), the set Ξ = Supp(a) is g(Ω)-maximal and

W -convex. Furthermore, any policy a(ω) satisfying a(ω) = E[g(ω)|a(ω)], and a(ω) =

arg minb∈Ξ c(b, g(ω)), and such that Ξ = Supp(a) is conv(g(Ω))-maximal14 is optimal.

Intuitively, it is optimal to reveal information along the “domains of convexity” of W .

Hence the W -convexity of the support Ξ of an optimal policy. W -convexity of Ξ also implies

W -monotonicity. It means that transporting information along Ξ is costly, as information

on Ξ is already in its optimal “location”. Similarly, maximality of Ξ means that any point

outside of Ξ can be transported to some location on Ξ at a negative cost, improving the

overall welfare. The arguments in the proof of Theorem 23 can also be used to shed some

light on the uniqueness of optimal policies.

Proposition 24 Let a(ω) be an optimal policy with support Ξ. Let also QΞ be the set {b ∈

RM : φΞ(b) = 0}. Then, if Ξ is X-maximal for some set X and Ξ ⊆ X, we have Ξ ⊆ QΞ.

Furthermore, if ã is another optimal policy with support Ξ̃, then Ξ̃ ⊆ QΞ.

If Ξ = QΞ and arg mina∈Ξ c(a, b) is a singleton for all b ∈ conv(g(Ω)), then the optimal

policy is unique.

We conjecture that the conditions in Proposition 24 hold generically and hence optimal

policy is unique for generic W. This is indeed the case in the explicitly solvable examples

discussed in Section 5.

We now discuss other, more subtle properties of optimal policies. We start with an

application of Corollary 19.

Corollary 25 Suppose that M ≤ L and Dωg has rank M for Lebesgue-almost every ω and

that a → DaW (a) is injective. Then, the map a → Dωc(a, g(ω)) is injective. Let Y (ω, p)

be the unique solution to Dωc(a, g(ω)) = −p. Then there exists a locally Lipschitz c-convex

14Surprisingly, its W -convexity (and, hence, W -monotonicity) then follows automatically.
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function u(ω) such that a(ω) = Y (ω,Du(ω)). In particular, a(ω) is differentiable Lebesque-

almost everywhere.

Our next objective to get an idea about the “amount” of information revealed by an

optimal policy. When W (a) is convex (so that DaaW (a) is positive semi-definite for any a),

then full revelation is an optimal policy, and it is the only optimal policy if W is strictly

convex. Thus, in this case, Ξ = g(Ω) may have dimension up to M . By contrast, if W is

strictly concave (so that DaaW (a) is negative semi-definite), then revealing no information

is optimal and Ξ = {E[g(ω)]} has a dimension of zero. But what happens when W is neither

concave nor convex? In this case, it is natural to expect that Ξ will be “smaller” than

RM and its “smallness” depends on a “degree of concavity” of W . One natural candidate

for such a degree is the number of negative eigenvalues of DaaW. And indeed, as Tamura

(2018) shows, when (1) W (a) = a>Ha + b>a for some matrix H ∈ RL×L and some vector

b ∈ RL; (2) g(ω) = ω and (3) µ0(ω) is a multi-variate Gaussian distribution, there exists

an optimal policy a(ω) with Ξ being a subspace of RM whose dimension equals the number

of nonnegative eigenvalues of H. A key simplifying property of the linear optimal policy in

Tamura (2018) is its regularity: A linear subspace is a smooth manifold and, hence, has a

natural notion of dimension. However, even in the simple setup of Tamura (2018), nothing

is known about the behaviour of other policies. Are there non-linear policies? If yes, how

much information to they reveal? Here, we establish a surprising result linking the number

of positive eigenvalues of the Hessian DaaW with the Hausdorff dimension of the support

Ξ of any optimal policy. Recall that the d-dimensional Hausdorff measure Hd of a subset

S ⊂ RM is defined as

Hd(S) = lim
r→0

inf{
∑
i

rdi : there is a cover of S by balls with radii 0 < ri < r} ,
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and the Hausdorff dimension dimH(S) is defined as

dimH(S) = inf{d ≥ 0 : Hd(S) = 0} .

It is known that Hausdorff dimension coincides with the “natural” definition of dimension

for sufficiently regular sets. E.g., dimH(S) = d for a smooth, d-dimensional manifold S.

However, in general, we do not have any strong regularity results for the behaviour of the

support Ξ of an optimal policy a(ω). Hence, proving that Ξ is a smooth manifold seems in

general out of reach and Ξ may potentially be highly irregular. For irregular sets, Hausdorff

dimension may behave in a very complex fashion and may even take fractional values for

fractals. The following is true.

Theorem 26 Let X be a Borel set, X ⊂ RM . Suppose that either DaaW is a constant

matrix or that DaaW (a) is continuous in a and is non-degenerate for all a ∈ X except for

a countable set of points.15 Let ν(a) be the number of nonnegative eigenvalues of DaaW (a).

Then, for any optimal policy a(ω), we have

dimH(Supp(a) ∩X) ≤ sup
a∈X

ν(a) .

5 Examples

In this section, we investigate several concrete examples illustrating applications of Theorem

23. All our examples will be based on the following technical result which is a direct

consequence of Theorem 23.

Proposition 27 Let F be a bijective, bi-Lipshitz map,16 F : X → Ω for some open set

X ⊂ RM . Let also M1 ≤ M and x = (x1, x2) with x1 ∈ X1, the projection of X onto RM1

15Alternatively, one can impose bounds on the Hausdorff dimension of the set {a : det(DaaW (a)) = 0}.
16A map F is bi-Lipschitz if both F and F−1 are Lipschitz continuous.
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and x2 ∈ X2, the projection of X onto RL−M1 . Define

f(x1) = f(x1;F ) ≡
∫
X2
| det(DxF (x1, x2))|µ0(F (x1, x2)) g(F (x1, x2))dx2∫

X2
| det(DxF (x1, x2))|µ0(F (x1, x2))dx2

.

Suppose that f is an injective map, f : X1 → RM and define

φ(b) = min
y1∈X1

{W (b)−W (f(y1)) +DaW (f(y1))>(f(y1)− b)} . (12)

Suppose also that the min in (12) for b = g(F (x1, x2)) is attained at y1 = x1 and that

φ(b) ≤ 0 ∀ b ∈ conv(g(Ω)). Then, a(ω) = f((F−1(ω))1) is an optimal policy. If x1 = arg min

in (12) with b = F (x1, x2) for all x1, x2 and φ(b) < 0 for all b ∈ conv(g(Ω)) \ Ξ with

Ξ = f(X1), then the optimal policy is unique.

If f is Lipshitz-continuous and the minimum in (12) is attained at an interior point, we

get a system of second order partial integro-differential equations for the F map:

Dx1f(x1)>DaaW (f(x1))(f(x1)− g(F (x1, x2))) = 0 .

We start with the simplest setting: A quadratic problem with W (a) = a>Ha. In this

case, Theorem 23 implies that, for any optimal policy, Ξ has to be monotonic, meaning that

(a1 − a2)>H(a1 − a2) ≥ 0 for all a1, a2 ∈ Ξ. The question we ask is: Under what conditions

is a(ω) = Aω with some matrix A of rank M1 ≤ M is optimal with g(ω) = ω. Clearly, it is

necessary that µ0 have linear conditional expectations,17 E[ω|Aω] = Aω. But then, since

E[Aω|Aω] = Aω, we must have A2 = A, so that A is necessarily a projection. Maximal

monotonicity implies that Q = A>HA is positive semi-definite, and18

φ(b) = min
ω

(b>Hb+ ω>A>H(Aω − 2b)) = b>HAQ−1A>A(AQ−1A>H − 2Id)b

17This is, e.g., the case for all elliptical distributions, but also for many other distributions. See Wei et al.
(1999).

18Here, Q−1 is the Moore-Penrose inverse.
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with the minimizer Q−1A>Hb. Thus, A satisfies the fixed point equation A = Q−1A>H

and hence A> = HAQ−1. Furthermore, maximality of Ξ implies that

H + HAQ−1A>A(AQ−1A>H − 2Id) = H − A>A

is negative semi-definite. As a result, (Id−A>)(H −A>A)(Id−A) = (Id−A>)H(Id−A)

is also negative semi-definite, implying that A and Id − A “perfectly split” positive and

negative eigenvalues of H. Here, it is instructive to make two observations: First, optimality

requires that a(ω) “lives” on positive eigenvalues of H. Second, maximality (the fact that

φ(b) ≤ 0 for all b) requires that A absorbs all positive eigenvalues, justifying the term

“maximal”. By direct calculation, we obtain the following extension of the result of Tamura

(2018) (uniqueness follows from Proposition 24).

Corollary 28 Suppose that W (a) = a>Ha. Suppose that ω has an elliptical distribution with

a density µ0(ω) = µ∗(ω
>Σ−1ω) for some µ∗. Let V = Σ1/2HΣ1/2. Define Q+ = [q1, · · · , qr]

as a k × r matrix consisting of the eigenvectors q1, · · · , qr associated with all the positive

eigenvalues of V . Then,

a(ω) = Σ1/2Q+(Q′+Q+)−1Q′+Σ−1/2ω

is an optimal policy. Furthermore, if det(H) 6= 0, then the optimal policy is unique. In

particular, there are no non-linear optimal policies.

Consider now a non-linear version of this problem. Suppose that W (a) = ϕ(‖a‖2)

for some smooth function ϕ. Let F correspond to multi-dimensional spherical coordinates:

ω = F (r, θ) = rx(θ) where θ are the angular coordinates on the unit sphere and r = ‖ω‖.
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Then, with x1 = θ, x2 = r we have

∫
X2
| det(DxF (x1, x2))|µ0(F (x1, x2)) g(F (x1, x2))dx2∫

X2
| det(DxF (x1, x2))|µ0(F (x1, x2)) dx2

=

∫∞
0
rL−1µ0(rx(θ))g(rx(θ))dr∫∞

0
rL−1µ0(rx(θ))dr

.

Suppose that g and µ0 are such that

∫∞
0
rL−1µ0(rx(θ))g(rx(θ))dr∫∞

0
rL−1µ0(rx(θ))dr

= αx(θ) .

For example, this is the case when g(ω) = ω ψ(‖ω‖) for some function ψ ≥ 0 and µ0(ω) =

µ∗(‖ω‖2) is spherically symmetric (a special case of an elliptical distribution). Thus, we

must have a(ω) = αω/‖ω‖. In this case, Ξ is the sphere ‖a‖ = α and we have

φ(b) = min
a∈Ξ

(ϕ(‖b‖2)−ϕ(α2)+2ϕ′(α2)a>(a−b)) = ϕ(‖b‖2)−ϕ(α2)+2ϕ′(α2)α(α−‖b‖) ,

and the minimizer is a = αb/‖b‖. Thus, we get the fixed point equation αω/‖ω‖ = a(ω) =

αg(ω)/‖g(ω)| = αω/‖ω‖. Maximality is achieved when φ(b) is always non-positive, for all

‖b‖ ≤ maxx≤R(xψ(x)). Thus, we arrive at the following result.

Corollary 29 Suppose that g(ω) = ω ψ(‖ω‖2) for some function ψ ≥ 0 and µ0(ω) =

µ∗(‖ω‖2) and W (a) = ϕ(‖a‖2) and let

α ≡
∫∞

0
rLµ∗(r

2)ψ(r2)dr∫∞
0
rL−1µ∗(r2)dr

.

If

max
‖b‖≤maxx≥0(xψ(x2))

(ϕ(‖b‖2)− ϕ(α2) + 2ϕ′(α2)α(α− ‖b‖)) ≤ 0 , (13)

then a(ω) = αω/‖ω‖ is an optimal policy and the optimal policy is unique if the maximum

in (13) is attained only when α = ‖b‖.
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Consider now a more complex example where RL = RL1 ⊕RL2 and W (a) = ϕ(‖a1‖2, a2)

where ϕ(y1, y2) is monotone increasing in y1 and satisfies ϕ(y1, 0) ≥ ϕ(y1, y2) for all y2. Let

Ξ ⊂
(RL1

0

)
be the sphere ‖ω1‖ = α whose Hausdorff dimension is L1 − 1 (see Theorem 26).

Then,

φ(b) = min
a∈Ξ

(ϕ(‖b1‖2, b2)− ϕ(α2, 0) + 2ϕy1(α2, 0)a>(a− b))

= ϕ(‖b1‖2, b2)− ϕ(α2, 0) + 2ϕy1(α2, 0)α(α− ‖b1‖) .

Furthermore, b1 ∈ (conv(g(Ω)))1 implies ‖b1‖ ≤ maxω∈Ω ‖ω1‖ψ(‖ω1‖2, ω2). Thus, we arrive

at the following result.

Corollary 30 Suppose that g(ω) = ω ψ(‖ω1‖2, ω2) for some function ψ ≥ 0 and µ0(ω) =

µ∗(‖ω1‖2, ω2) be such that ψ(‖ω1‖2, ω2)µ∗(‖ω1‖2, ω2) is even in each coordinate of ω2. Let

also W (a) = ϕ(‖a1‖2, a2) with ϕy1(α2, 0) > 0 and ϕ(y1, y2) ≤ ϕ(y1, 0) for all y1, y2. Define

α ≡
∫∞

0
rL1
∫
RL2

µ∗(r
2, ω2)ψ(r2, ω2)dω2dr∫∞

0
rL1−1

∫
RL2

µ∗(r2, ω2)dω2dr
.

If

max
‖b1‖≤maxω∈Ω ‖ω1‖ψ(‖ω1‖2,ω2)

(ϕ(‖b1‖2, 0)− ϕ(α2, 0) + 2ϕy1(α2, 0)α(α− ‖b1‖)) ≤ 0 , (14)

then a(ω) =
(
αω1/‖ω1‖

0

)
is an optimal policy. The optimal policy is unique if ϕ(y1, y2) <

ϕ(y1, 0) for all y2 6= 0 and the maximum in (14) is attained only when ‖b1‖ = α.19

It is straightforward to extend this analysis to the more general setup of Corollary 28

with W (a) = ϕ(a>Ha) with an increasing ϕ and µ0(ω) = µ∗(ω
>Σ−1ω), in which case Ξ will

be an ellipsoid whose Hausdorff dimension equals the number of positive eigenvalues of H

minus one (see Theorem 26). It is also interesting to link these results to those of Dworczak

19Uniqueness follows from Proposition 24.
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and Martini (2019). Condition (14) means that the graph of the function ϕ(x2) lies below

its tangent at x = α. When this condition is violated, one can consider the affine closure of

ϕ(x2) as in Dworczak and Martini (2019). In this case, the tangent will touch the graph of

ϕ(x2) in several points ri and the optimal policy will be to project ω1 onto one of the spheres

‖ω1‖ = ri. It is then possible to extend the beautiful results of Dworczak and Martini (2019)

to this nonlinear setting.

We complete this section with an example where ω takes values on a real analytic manifold

in RM . Namely, suppose that the sender observes the realization of ω = (ω1, · · · , ωM) of the

probabilities of some states of the world, with
∑M

i=1 ωi = 1. Note that in this case ω lives on

the unit simplex which is a real analytic manifold in RM , but all our results directly apply

in this setting as long as the prior is absolutely continuous with respect to the Lebesgue

measure restricted to the unit simplex. We assume that µ0(ω) is given by the Dirichlet

distribution on the unit simplex,

µ0(ω;α) =
1

B(α)

M∏
i=1

ωαi−1
i , B(α) =

∏M
i=1 Γ(αi)

Γ(
∑M

i=1 αi)
.

We will also be assuming a specific function form of the social welfare function that depends

only the total probabilities of certain groups of states as well as on the relative entropy of the

corresponding distributions. It is easy to micro-found such a welfare function in a setting

with limited attention. See, e.g., Gabaix (2019).

Corollary 31 Suppose that µ0 is the Dirichlet distribution on the unit simplex ∆M with

parameters α =
(
ᾱ1

ᾱ2

)
and ω =

(
ω̄1

ω̄2

)
with ᾱ1, ω̄1 ∈ RM1

+ , ᾱ2, ω̄2 ∈ RM2
+ . Let

g(ω) =

(
ψ1(1>ω̄1)ω̄1

ψ2(1>ω̄2)ω̄2

)
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for some functions ψi ≥ 0, i = 1, 2, and

W (a) =
2∑
i=1

(qiEi(āi) + ϕi(1
>āi))

where a =
(
ā1

ā2

)
∈ RM1⊕RM2 , with Ei(a) =

∑
j a(j) log(a(j)/yi(j)) being the negative or the

relative entropy, yi ∈ RMi
+ , i = 1, 2, are arbitrary vectors, qi > 0, and ϕi are arbitrary smooth

functions. Define

γi = Eµ0 [ψi(1
>ω̄i)1

>ω̄i], i = 1, 2,

and

a(ω) =

(
γ1 ω̄1/(1

>ω̄1)

γ2 ω̄2/(1>ω̄2)

)
.

Suppose that

max
0≤b̄i≤maxx∈[0,1] ψi(x)x

(
ϕi(b̄i)− ϕi(γi) + ϕ′i(γi)(γ − b̄i) − qi(b̄i log(γi/b̄i)− γi + b̄i)

)
≤ 0, i = 1, 2 .

(15)

Then, a(ω) is an optimal policy. If for each i = 1, 2 the maximum in (15) is attained only

when b̄i = γi, then the optimal policy is unique.

As in our discussion following Corollary 30, it is possible to show that when (15) is

violated, the optimal policy will be to project ω̄i onto one of the multiple `1-spheres defined

by
∑

j ā(j) = γ for several values of γ corresponding to points where the affine closure

touches the graph of the function in (15).
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6 Beyond Moment Persuasion

Theorem 26 implies that DaaW, the Hessian of W , is a key determinant of the structure of

optimal policies. Is there an analog of DaaW for the more general setting of Theorem 14?

What determines the natural convex and concave components of the problem? We do not

have a complete answer to these questions. However, as we show in this section, something

can be said in the case when the uncertainty is small.

The structure of the optimal partition (Theorem 9) can be complex and non-linear.20

One may ask whether it is possible to “linearize” these partitions, just as one can linearize

equilibria in complex, non-linear economic models, assuming the deviations from the steady

state are small. As we show below, this is indeed possible.

Everywhere in this section, we make the following assumption.

Assumption 3 There exists a small parameter ε such that the functions defining the equi-

librium conditions, G, and the welfare function, W, are given by G(a, εω) and W (a, εω).

Parameter ε has two interpretations. First, it could mean small deviations from a steady

state (as is common in the literature on log-linear approximations). Second, ε could be

interpreted as capturing the sensitivity of economic quantities to changes in ω. In the limit

when ε = 0, equilibrium does not depend on shocks to ω. We use a0 = a∗(0) to denote this

“steady state” equilibrium. By definition, it is given by the unique solution to the system

G(a0, 0) = 0, and the corresponding social welfare is W (a0, 0).

Assumption 4 (The information relevance matrix) We assume the matrix D(0) with

D(ω) ≡ Dωω(W (a∗(ω), ω)) − Wωω(a∗(ω), ω)

is non-degenerate. We refer to D as the information relevance matrix.

20In general, the boundaries of the sets Ωk might be represented by complicated hyper-surfaces, and some
of Ωk might even feature multiple disconnected components.
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We are now ready to state the main result of this section, showing how the optimal

linearized partition can be characterized explicitly in terms of the information relevance

matrix D.

Theorem 32 (Linearized partition) Under the hypothesis of Theorem 8 and Assump-

tions 3 and 4, let {Ωk(ε)}Kk=1 be the corresponding optimal partition. Then, for any sequence

εl → 0, l > 0, there exists a sub-sequence εlj , j > 0, such that the optimal partition

{Ωk(εlj)}Kk=1 converges to an almost sure partition {Ω̃∗k}Kk=1 satisfying

Ω̃∗k = {ω ∈ Ω : (M1(k)−M1(l))>D(0)ω > 0.5(M1(k)>D(0)M1(k)−M1(l)>D(0)M1(l)) ∀ l 6= k} ,

where we have defined M1(k) ≡ E[ω|Ω̃∗k] . In particular, for this limiting partition, each set

Ω̃∗k is convex. If the matrix D from Assumption 4 is negative semi-definite, then all sets Ω̃∗k

are empty except for one; that is, it is optimal to reveal no information.

Theorem 32 implies that the general problem of optimal information design converges

to a quadratic moment persuasion when ε is small. The matrix D(0) of Assumption 4

incorporates information both about the hessian of H and about other partial derivatives

of G. Moment persuasion setting corresponds to the case when DωaG = 0. One interesting

effect we observe is that, in general, non-zero partial derivatives DωaG may have a a major

impact on the structure of the D matrix. In particular, when ε is sufficiently small and K

is sufficiently large, we are in a position to apply Theorem 26 and Corollary 28, linking the

number of positive eigenvalues of D to the dimension of the support of optimal policies.
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Internet Appendix

A Finite Partitions: Proofs

Proof of Lemma 3. First, by uniform monotonicity, the map

a→ F (a) = a+ δE[G(a, ω)|k]

is a contraction for sufficiently small δ. Indeed, by monotonicity,

‖F (a1)− F (a2)‖2 ≤ ‖a1 − a2‖2 − 2εδ‖a1 − a2‖2 + δ2ε−2‖a1 − a2‖2 .

As a result, there exists a unique equilibrium by the Banach fixed point theorem. Then,

with a = a(k),

E[(a∗(ω)− a)>G(a, ω)|k] = E[(a∗(ω)− a)> (G(a, ω)−G(a∗(ω), ω))|k]

≥ εE[‖a∗(ω)− a‖2|k] ≥ ε(E[‖a∗(ω)‖2 + 2‖a‖‖a∗(ω)‖|k] + ‖a‖2) .

At the same time,

E[(a∗(ω)− a)>G(a, ω)|k] = E[a∗(ω)>G(a, ω)|k] ≤ ε−1E[‖a∗(ω)‖ ‖a− a∗(ω)‖|k]

= ε−1(E[‖a∗(ω)‖2|k] + ‖a‖E[‖a∗(ω)‖|k])

and the claim follows. Q.E.D.

Proof of Theorem 8. The fact that social welfare is bounded and depends smoothly on

the information design follows by the same arguments as in the proof of Lemma 12.

Existence of an optimal information design then follows trivially from compactness.

Indeed, since πk(ω) ∈ [0, 1], the are square integrable and, hence, compact in the weak
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topology of L2(µ0). The identity
∑

k πk = 1 is trivially preserved in the limit. Continuity of

social welfare in πk follows directly from the assumed integrability and regularity, hence the

existence of an optimal design.

The equilibrium conditions can be rewritten as

Eµs [G(a(s), ω)|s] = 0 .

Here,

µs(ω) =
π(s|ω)µ0(ω)∫
π(s|ω)µ0(ω)dω

and hence

Eµk [G(a(s), ω)] =

∫
π(k|ω)µ0(ω)G(a(k), ω)dω∫

π(k|ω)µ0(ω)dω
.

By assumption, equilibrium a depends continuously on {πk}. Since the map

({πk}, {ak}) →
{∫

πk(ω)µ0(ω)G(a(k, ε), ω)dω

}

is real analytic, and has a non-degenerate Jacobian with respect to a, the assumed continuity

of a and the implicit function theorem imply that a is in fact real analytic in {πk}. To compute

the Frechet differentials of a(s), we take a small perturbation η(ω) of πk(ω). By the regularity

assumption and the Implicit Function Theorem,

a(k, ε) = a(k) + εa(1)(k) + 0.5ε2a(2)(k) + o(ε2)
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for some a(1)(k), a(2)(k) . Let us rewrite

0 =

∫
(πk(ω) + εη(ω))µ0(ω)G(a(k, ε), ω)dω

=

∫
(πk(ω) + εη(ω))µ0(ω)G(a(k) + εa(1)(k) + 0.5ε2a(2)(k), ω)dω

≈

(∫
πk(ω)µ0(ω)

(
G(a(k), ω) +Ga(εa

(1)(k) + 0.5ε2a(2)(k))

+ 0.5Gaa(εa
(1)(k), εa(1)(k))

)
dω

+ ε

∫
η(ω)µ0(ω)

(
G(a(k)) +Gaεa

(1)(k)

)
dω

)

=

(
ε

(∫
πk(ω)µ0(ω)Gaa

(1)(k)dω +

∫
η(ω)µ0(ω)G(a(k))dω

)

+ 0.5ε2

(∫
πk(ω)µ0(ω)[Gaa

(2)(k) +Gaa(a(k), ω)(a(1)(k), a(1)(k))]dω

+ 2

∫
η(ω)µ0(ω)Ga(a(k), ω)a(1)(k)dω

))

As a result, we get

a(1)(k) = −Ḡa(k)−1

∫
η(ω)µ0(ω)G(a(k), ω)dω, Ḡa(k) =

∫
πk(ω)µ0(ω)Gadω ,

while

a(2)(k) = −Ḡa(k)−1

(∫
πk(ω)µ0(ω)Gaa(a(k), ω)(a(1)(k), a(1)(k))dω

+ 2

∫
η(ω)µ0(ω)Ga(a(k), ω)a(1)(k)dω

)
.
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Consider the social welfare function

W̄ (π) = E[W (a(s), ω)] =
∑
k

∫
Ω

W (a(k), ω)πk(ω)µ0(ω)dω .

Suppose that the optimal information structure is not a partition. Then, there exists a

subset I ⊂ Ω of positive µ0-measure and an index k such that πk(ω) ∈ (0, 1) for µ0-almost

all ω ∈ I. Since
∑

i πi(ω) = 1 and πi(ω) ∈ [0, 1], there must be an index k1 6= k and a subset

I1 ⊂ I such that πk1(ω) ∈ (0, 1) for µ0-almost all ω ∈ I1. Consider a small perturbation

{π̃(ε)}i of the information design, keeping πi, i 6= k, k1 fixed and changing πk(ω)→ πk(ω) +

εη(ω), πk1(ω)→ πk1(ω)− ε(ω) where η(ω) in an arbitrary bounded function with η(ω) = 0

for all ω 6∈ I1. Define ηk(ω) = η(ω), ηk1(ω) = −η(ω), and ηi(ω) = 0 for all i 6= k, k1. A

second-order Taylor expansion in ε gives

∑
i

∫
Ω

W (a(i, ε), ω)(πi(ω) + εηi(ω))µ0(ω)dω

≈
∫

Ω

(
W (a(i), ω) +Wa(a(i), ω)(εa(1)(i) + 0.5ε2a(2)(i))

+ 0.5Waa(a(i), ω)ε2(a(1)(i), a(1)(i))

)
(πi(ω) + εηi(ω))µ0(ω)dω

= W̄ (π) + ε
∑
i

(∫
Ω

(W (a(i), ω)ηi(ω) +Wa(a(i), ω)a(1)(i)πi(ω))µ0(ω)dω

)

+ 0.5ε2
∑
i

∫
Ω

(
Waa(a(i), ω)(a(1)(i), a(1)(i))πi(ω)

+Wa(a(i), ω)a(2)(i)πi(ω) +Wa(a(i), ω)a(1)(i)ηi(ω)
)
µ0(ω)dω

(16)

Since, by assumption, {πi} is an optimal information design, it has to be that the first order

term in (16) is zero, while the second-order term is always non-positive. We can rewrite the
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first order term as

∑
i

(∫
Ω

(W (a(i), ω)ηi(ω) +Wa(a(i), ω)a(1)(i)πi(ω))µ0(ω)dω

)

=
∑
i

∫
Ω

(
W (a(i), ω)

−
(∫

Wa(a(i), ω1)πi(ω1)µ0(ω1)dω1

)
Ḡa(i)

−1G(a(i), ω)

)
ηi(ω)µ0(ω)dω

and hence it is zero for all considered perturbations if and only if

W (a(k), ω) −
(∫

Wa(a(k), ω1)πk(ω1)µ0(ω1)dω1

)
Ḡa(k)−1G(a(k), ω)

= W (a(k1), ω) −
(∫

Wa(a(k1), ω)πk1(ω1)µ0(ω1)dω1

)
Ḡa(k1)−1G(a(k1), ω)

(17)

Lebesgue-almost surely for ω ∈ I1. By Proposition 7, (17) also holds for all ω ∈ Ω. Hence,

by Assumption 6, a(k) = a(k1), which contradicts our assumption that all a(k) are different.

Q.E.D.

Proof of Theorem 9. Suppose a partition ω = ∪kΩk is optimal. By regularity, equilib-

rium actions satisfy the first order conditions

∫
Ωk

G(a(k), ω)µ0(ω)dω = 0 .

Consider a small perturbation, whereby we move a small mass on a set I ⊂ Ωk to Ωl. Then,

the marginal change in an(k) can be determined from

0 =

∫
Ωk

G(a(k), ω)µ0(ω)dω −
∫

Ωk\I
G(a(k, I), ω)µ0(ω)dω

≈ −
∫

Ωk

DaG(a(k), ω)∆a(k) µ0(ω)dω +

∫
I
G(a(k), ω)µ0(ω)dω ,
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implying that the first order change in a is given by

∆a(k) ≈ (D̄aG(k))−1

∫
I
G(a(k), ω)µ0(ω)dω .

Thus, the change in welfare is21

∆W =

∫
Ωk

W (a(k), ω)µ0(ω)dω −
∫

Ωk\I
W (a(k, I), ω)µ0(ω)dω

+

∫
Ωl

W (a(l), ω)µ0(ω)dω −
∫

Ωl∪I
W (a(l, I), ω)µ0(ω)dω

≈ −
∫

Ωk

DaW (a(k), ω)∆a(k)µ0(ω)dω +

∫
I
W (a(k), ω)µ0(ω)dω

−
∫

Ωl

DaW (a(l), ω)∆a(l)µ0(ω)dω −
∫
I
W (a(l), ω)µ0(ω)dω

= −D̄aW (k)(D̄aG(k))−1

∫
I
G(a(k), ω)µ0(ω)dω +

∫
I
W (a(k), ω)µ0(ω)dω

+ D̄aW (l)(D̄aG(l))−1

∫
I
G(a(l), ω)µ0(ω)dω −

∫
I
W (a(l), ω)µ0(ω)dω .

This expression has to be non-negative for any I of positive Lebesgue measure. Thus,

− D̄aW (k)(D̄aG(k))−1G(a(k), ω) +W (a(k), ω)

+ D̄aW (l)(D̄aG(l))−1G(a(l), ω) − W (a(l), ω) ≥ 0

for Lebesgue almost any ω ∈ Ωk. Q.E.D.

Proof of Proposition 10. First, we note that y =
(
y1

y2

)
∈ ĝ(Ωk ∩X) where y1 ∈ RL if and

only if

W (a(k))− x>k (a(k)− y1) = max
1≤l≤K

(W (a(l)) − x>l (a(l)− y1))

and y1 ∈ ĝ(X). Both sets are convex and hence so is their intersection. To show monotonicity

21Note that DaW is a horizontal (row) vector.
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of DaW (a(ĝ−1(y))), pick a y, z such that y, y+z ∈ g(Ωk∩X). By convexity, y+tz ∈ ĝ(Ωk∩X)

for all t ∈ [0, 1]. Our goal is to show that

(DaW (a(g−1(y + z)))−DaW (a(g−1(y)))z ≥ 0 .

Since a is constant inside each Ωk, it suffices to show this inequality when y and y + z are

infinitesimally close to the boundary between two regions, Ωk1 and Ωk2 . Let y belong to that

boundary and y + εz ∈ Ωk2 . Then,

W (a(k2))−DaW (a(k2))(a(k2)− (y+ εz)) ≥ W (a(k1))−DaW (a(k1))(a(k1)− (y+ εz))

and

W (a(k2))−DaW (a(k2))(a(k2)− y) = W (a(k1))−DaW (a(k1))(a(k1)− y)

Subtracting, we get the required monotonicity. Q.E.D.

B Finite Partitions: The Small Uncertainty Limit

When the policy-maker sends signal k, the receivers learn that ω ∈ Ωk. As a result, the

receivers’ posterior estimate of the conditional mean of ω is then given by

M1(Ωk) ≡ E[ω|ω ∈ Ωk] =

∫
Ωk
ωµ0(ω)dω

Pk
∈ Rm ,

where

Pk = P(k) =

∫
Ωk

µ0(ω)dω .
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Define

G ≡ (DaG(a0, 0))−1DωG(a0, 0) ∈ RM×L .

The following lemma follows by direct calculation.

Lemma 33 For any sequence εν → 0, ν ∈ Z+, there exists a sub-sequence ενj , j > 0,

such that the optimal partitions {Ωk(ενj)}Kk=1 converge to a limiting partition {Ωk(0)}Kk=1 as

j →∞. In this limit,

ak(ενj) = a0
k − ενjGM1(Ωk(0)) + o(ενj) .

Lemma 33 provides an intuitive explanation for the role of the matrix G. Namely, in the

linear approximation, the receivers’ action is given by a linear transformation of E[ω|k], the

first moment of ω given the signal: ak ≈ a0
k − GE[ω|k]. Thus, the matrix −G captures

how strongly receivers’ actions respond to changes in beliefs.

Proof of Lemma 33. Trivially, the set of partitions is compact and hence we can find a

subsequence {Ωk(εj)} converging to some partition {Ωk(0)} in the sense that their indicator

functions converge in L2. We have

0 =

∫
Ωk(ε)

G(a(k, ε), εω)µ0(ω)dω =

∫
Ω̃k(ε)

G(a(k, ε), ω)µ0(ω)dω

Now,

0 =

∫
Ωk(ε)

G(a(k, ε), εω)µ0(ω)dω

= G(a(k, ε), 0)M(Ωk(ε)) + εDωG(a(k, ε), 0)M1(Ωk(ε)) + O(ε2) .

(18)

Let us show that a(k, ε) − a(k, 0) = O(ε). Suppose the contrary. Then there exists a
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sequence εm → 0 such that ‖a(k, ε)− a(k, 0)‖ε−1 →∞. We have

G(a(k, ε), 0) − G(a(k, 0), 0) =

∫ 1

0

DaG(a(k, 0) + t(a(k, ε)− a(k, 0)))(a(k, ε)− a(k, 0))dt

≥ c‖a(k, ε)− a(k, 0)‖
(19)

for some c > 0 due to the continuity and non-degeneracy of DaG(0) = DaG(a(k, 0)). Dividing

(18) by ε, we get a contradiction.

Define

a(1)(k) ≡ −DaG(0)−1DωG(a(k), 0)M1(Ωk(0)) = −GM1(Ωk(0)) .

Let us now show that a(k, ε) − a(k, 0) = εa(1)(k) + o(ε). Suppose the contrary. Then,

‖ε−1(a(k, ε)− a(k, 0))− a(1)(k)‖ > c for some c > 0 along a sequence of ε→ 0. By (19),

0 =

∫
Ωk(ε)

G(a(k, ε), εω)µ0(ω)dω

= G(a(k, ε), 0)M(Ωk(ε)) + εDωG(a(k, ε), 0)M1(Ωk(ε)) + O(ε2)

= εDaG(0)ε−1(a(k, ε)− a(k, 0))M(Ωk(ε)) + εDωG(a(k), 0)M1(Ωk(ε)) + O(ε2) ,

and we get a contradiction taking the limit as ε→ 0. Q.E.D.

Proof of Theorem 32. We have

Ωk(ε) = {ω ∈ Ω : −D̄aW (k, ε)(D̄aG(k, ε))−1G(a(k, ε), εω) +W (a(k, ε), εω)

> − D̄aW (l, ε)(D̄aG(l, ε))−1G(a(l, ε), εω) + W (a(l, ε), εω) ∀ l 6= k.}
(20)

The proof of the theorem is based on the following technical lemma.
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Lemma 34 We have

− D̄aW (k, ε)(D̄aG(k, ε))−1G(a(k, ε), εω) +W (a(k, ε), εω)

= W (0) − 0.5M1(k)>Dε2ω + 0.5ε2M1(k)>DM1(k) + εWω(0)ω

+ 0.5ε2ω>Wωω(0)ω −DaW (0)DaG(0)−1(DωG(0)ω + 0.5ω>Gωω(0)ω) + o(ε2) .

Proof. We have

D̄aW (k, ε) =

∫
Ωk(ε)

DaW (a(k, ε), εω)µ0(ω)dω

=

∫
Ωk(ε)

(DaW (0) + εω>DωW (0)> + εa(1)(k)>D2
aaW (0) + o(ε))µ0(ω)dω

= (DaW (0) + ε(a(1)(k))>D2
aaW (0) + εM1(Ωk(0))>(DωW (0))>)M(Ωk(ε)) + o(ε) ∈ R1×M .

At the same time, an analogous calculation implies that

D̄aG(k, ε) = (DaG(0) + ε(a(1)(k))>D2
aaG(0) + εDωG(0)M1(Ωk(0)))M(Ωk(ε)) + o(ε)

Here, DaG(0) = (∂Gi/∂aj) and

(DωG(0)M1(Ωk(0)))i,j =
∑
k

∂2Gi

∂aj∂ωk
M1,k ,

and, similarly,

((a(1)(k))>D2
aaG(0))i,j =

∑
l

(a(1)(k))l
∂2Gl

∂ai∂aj
∈ RM×M .

45



Thus,

M(Ωk(ε))D̄aG(k, ε)−1

= DaG(0)−1 −DaG(0)−1ε
(

(a(1)(k))>D2
aaG(0) + εDωG(0)M1(Ωk(0))

)
DaG(0)−1 + o(ε) ,

and therefore

D̄aW (k, ε)(D̄aG(k, ε))−1 = DaW (0)DaG(0)−1

+ ε(M>
1 DωW (0)>DaG(0)−1 + (a(1)(k))>D2

aaW (0)DaG(0)−1)

− εDaW (0)DaG(0)−1
(

(a(1)(k))>D2
aaG(0) + DωG(0)M1(Ωk(0))

)
DaG(0)−1 + o(ε)

= DaW (0)DaG(0)−1

+ ε(M>
1 DωW (0)>DaG(0)−1 −M>

1 G>D2
aaW (0)DaG(0)−1)

− εDaW (0)DaG(0)−1
(
−M>

1 G>D2
aaG(0) + DωG(0)M1

)
DaG(0)−1 + o(ε)

= DaW (0)DaG(0)−1 + εΓ + o(ε) ,

where

Γ = M>
1 DωW (0)>DaG(0)−1

−M>
1 G>D2

aaW (0)DaG(0)−1 −DaW (0)DaG(0)−1
(
−M>

1 G>D2
aaG(0) + DωG(0)M1

)
DaG(0)−1 .

Define

ã(1)(k, ε) ≡ ε−1(a(k, ε)− a(k, 0)) = a(1)(k) + o(1) .
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Let also

G(2)(k) ≡ 0.5ε2(a(1)(k)>D2
aaG(0)a(1)(k) + 2ω>DωG(0)a(1)(k) + ω>Gωω(0)ω) ,

so that

G(a(k, ε), εω) − (εDaG(0)ã(1)(k, ε) + εDωG(0)ω) = ε2G(2)(k) + o(ε2) ,

where we have used that G(0) = 0. While we cannot prove that ε(ã(1)(k)− a(1)(k)) = o(ε2),

we show that this term cancels out. We have

− D̄aW (k, ε)(D̄aG(k, ε))−1G(a(k, ε), εω) +W (a(k, ε), εω)

≈ −D̄aW (k, ε)(D̄aG(k, ε))−1
(
εDaG(0)ã(1)(k, ε) + εDωG(0)ω + ε2G(2)(k) + o(ε2)

)
+

(
W (0) + εDaW (0)ã(1)(k, ε) + εWω(0)ω

+ 0.5ε2
(

(a(1)(k))>D2
aaW (0)a(1)(k) + ω>Wω,ω(0)ω + 2(a(1)(k))>DωW (0)ω

)
+ o(ε2)

)
= −

(
DaW (0)DaG(0)−1 + εΓ + o(ε)

)
×
(
εDaG(0)ã(1)(k, ε) + εDωG(0)ω + ε2G(2)(k) + o(ε2)

)
+

(
W (0) + εDaW (0)ã(1)(k) + εWω(0)ω

+ 0.5ε2
(

(a(1)(k))>D2
aaW (0)a(1)(k) + ω>Wω,ω(0)ω + 2(a(1)(k))>DωW (0)ω

)
+ o(ε2)

)
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= W (0)

+ ε

(
−DaW (0)DaG(0)−1

(
DaG(0)ã(1)(k, ε) +DωG(0)ω

)
+DaW (0)ã(1)(k, ε) +Wω(0)ω

)

+ ε2

(
−DaW (0)DaG(0)−1G(2)(k)− Γ

(
DaG(0)a(1)(k) +DωG(0)ω

)
+ 0.5

(
(a(1)(k))>D2

aaW (0)a(1)(k) + ω>Wω,ω(0)ω + 2a(1)(k)>DωW (0)ω
))

+ o(ε2) .

Thus, the terms with ã(1)(k, ε) have cancelled out. We have

Γ
(
DaG(0)a(1)(k) +DωG(0)ω

)
=
(
M>

1 DωW (0)>DaG(0)−1

−M>
1 G>D2

aaW (0)DaG(0)−1 −DaW (0)DaG(0)−1
(
−M>

1 G>D2
aaG(0) + DωG(0)M1

)
DaG(0)−1

)
×DωG(0)(ω −M1)

=
(
M>

1 DωW (0)> −M>
1 G>D2

aaW (0)−DaW (0)DaG(0)−1
(
−M>

1 G>D2
aaG(0) + DωG(0)M1

))
× G(ω −M1) = M>

1 D1G(ω −M1) ,

where

D1 = DωW (0)>−DaW (0)DaG(0)−1DωG(0)−(G>D2
aaW (0)−G>DaW (0)DaG(0)−1D2

aaG(0)) ∈ RL×M

and where the three-dimensional tensor multiplication is understood as follows:

M>
1 DaW (0)DaG(0)−1DωG(0) =

∑
k

M1,kDaW (0)DaG(0)−1DaGωk
(0)

M>
1 G>DaW (0)DaG(0)−1DωG(0) =

∑
k

(GM1)kDaW (0)DaG(0)−1DaGak(0) .
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Rewriting, we get

W (0) + ε

(
−DaW (0)DaG(0)−1DωG(0)ω +Wω(0)ω

)

+ ε2

(
−DaW (0)DaG(0)−1ε2G(2)(k)−M>

1 D1G(ω −M1)

+ 0.5
(

(a(1)(k))>D2
aaW (0)a(1)(k) + ω>Wω,ω(0)ω + 2a(1)(k)>DωW (0)ω

))
+ o(ε2)

= W (0) + ε

(
−DaW (0)Gω +Wω(0)ω

)

+ ε2

(
−DaW (0)DaG(0)−1ε2G(2)(k)−M>

1 D1G(ω −M1)

+ 0.5
(
M>

1 G>D2
aaW (0)GM1 + ω>Wω,ω(0)ω − 2(GM1)>DωW (0)ω

))
+ o(ε2) .

Now,

ε2G(2)(k) = 0.5(M>
1 G>D2

aaG(0)GM1 − 2(GM1)>DωG(0)ω + ω>Gωω(0)ω) .

Thus, the desired expression is given by

W (0) + ε

(
−DaW (0)Gω +Wω(0)ω

)
+ ε2(0.5M>

1 AM1 +M>
1 Bω + ω>Cω)
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where we have defined

A ≡ −DaW (0)DaG(0)−1G>D2
aaG(0)G + 2D1G + G>D2

aaW (0)G

= −DaW (0)DaG(0)−1G>D2
aaG(0)G + 2

(
DωW (0)> −DaW (0)DaG(0)−1DωG(0)

− (G>D2
aaW (0)−DaW (0)DaG(0)−1G>D2

aaG(0))
)
G + G>D2

aaW (0)G

= G>DaW (0)DaG(0)−1D2
aaG(0)G − G>D2

aaW (0)G

+ 2(DωW (0)>G − G>DaW (0)DaG(0)−1DωG(0)) ∈ RL×L

B ≡ G>DaW (0)DaG(0)−1DωG(0)−D1G − G>DωW (0)

= G>DaW (0)DaG(0)−1DaG
>
ω (0)−

(
G>DωW (0)− G>DaW (0)DaG(0)−1DωG(0)

− (G>D2
aaW (0)G −DaW (0)DaG(0)−1G>D2

aaG(0))G
)
−DωW (0)>G

Here, the first term is given by

(DaW (0)DaG(0)−1DaG
>
ω (0))i,j =

∑
k

(DaW (0)DaG(0)−1)k
∂2Gk

∂ai∂ωj
,

and the claim follows by a direct (but tedious) calculation. Q.E.D.

The desired convergence is then a direct consequence of Lemma 34. Indeed, by com-

pactness, we can pick a converging sub-sequence and Lemma 34 implies that, in the limit, a

point ω satisfies inequalities (20) if and only if ω ∈ Ω̃∗k.

Q.E.D.

C The Unconstrained Problem

Proof of Lemma 12. The proof requires some additional arguments because Ω is not nec-

essarily compact. First, consider an increasing sequence of compact setsXn = {ω : g(ω) ≤ n}

such that Xn converge to Ω as n → ∞. For any measure µ, let µX be its restriction on X.
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Let an = a(µXn). The first observation is that Assumptions 2 and 1 imply that an → a

uniformly as n→∞. Indeed,

∫
Xn

G(an, ω)dµ(ω) =

∫
Ω

G(a, ω)dµ(ω) = 0

implies that

∫
Xn

(G(an, ω)−G(a, ω))dµ(ω) =

∫
Ω\Xn

G(a, ω)dµ(ω)

≤
∫

Ω\Xn

ε−1‖a− a∗(ω)‖dµ(ω) ≤ 2ε−1µ(Ω \Xn)1/2

(∫
Ω\Xn

‖a∗(ω)‖2dµ(ω)

)1/2

≤ ε−1(µ(Ω \Xn) +

∫
Ω\Xn

‖a∗(ω)‖2dµ(ω)) .

Multiplying by (a− an), we get

ε ‖a− an‖2(1− µ(Ω \Xn)) ≤ ‖a− an‖ε−1(µ(Ω \Xn) +

∫
Ω\Xn

‖a∗(ω)‖2dµ(ω))

Furthermore, by Lemma 3, ‖a − an‖ ≤ 2
(∫

Ω
g(ω)dµ(ω)

)1/2 ≤ 1 +
∫

Ω
g(ω)dµ(ω) and

therefore

‖a− an‖ ≤ C

(
µ(Ω \Xn)(1 +

∫
Ω

g(ω)dµ(ω)) +

∫
Ω\Xn

g(ω)dµ(ω)

)

for some constant C > 0. Now, pick a τ ∈ ∆(∆(Ω)). Since the function q(x) = 1x>n is

monotone increasing in x, we get

µ(Ω\Xn)

∫
Ω

g(ω)dµ(ω) =

∫
Ω

q(g(ω))dµ(ω)

∫
Ω

g(ω)dµ(ω) ≤
∫

Ω

q(g(ω))g(ω)dµ(ω) =

∫
Ω\Xn

g(ω)dµ(ω)
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and therefore

‖a− an‖ ≤ C

∫
Ω\Xn

(1 + 2g(ω))dµ(ω) .

Then, we have by the Jensen inequality that

|W̄ (µ)− W̄ (µXn)| ≤
∫

Ω\Xn

|W (a(µ), ω)|dµ(ω) +

∫
Xn

|W (a(µ), ω)−W (an(µ), ω)|dµ(ω)

≤
∫

Ω\Xn

(g(ω)f(

∫
Ω

g(ω)dµ(ω)))dµ(ω)

+

∫
Ω

‖a(µ)− an(µ)‖(g(ω)f(

∫
Ω

g(ω)dµ(ω)))dµ(ω)

≤
∫

Ω\Xn

g(ω)dµ(ω)

∫
Ω

f(g(ω))dµ(ω)

+ ‖a(µ)− an(µ)‖
∫

Ω

g(ω)dµ(ω)

∫
Ω

f(g(ω))dµ(ω) .

Since the function q(x) = x1x>n is monotone increasing in x and f is monotone increasing,

we get

∫
Ω

g(ω)dµ(ω)

∫
Ω

f(g(ω))dµ(ω) ≤
∫

Ω

g(ω)f(g(ω))dµ(ω)

and therefore, by the same monotonicity argument,

‖a(µ)− an(µ)‖
∫

Ω

g(ω)dµ(ω)

∫
Ω

f(g(ω))dµ(ω) ≤ C

∫
Ω\Xn

(1 + 2g(ω))dµ(ω)

∫
Ω

g(ω)f(g(ω))dµ(ω)

≤ C

∫
Ω\Xn

(1 + 2g(ω))g(ω)f(g(ω))dµ(ω) .
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Similarly,

∫
Ω\Xn

g(ω)dµ(ω)

∫
Ω

f(g(ω))dµ(ω) =

∫
Ω

q(g(ω))dµ(ω)

∫
Ω

f(g(ω))dµ(ω)

≤
∫

Ω

q(g(ω))f(g(ω))dµ(ω) =

∫
Ω\Xn

g(ω)f(g(ω))dµ(ω) .

Therefore, by the Fubini Theorem,

|
∫

∆(µ)

(W̄ (µ)− W̄ (µXn))dτ(µ)|

≤
∫

∆(Ω)

∫
Ω\Xn

g(ω)f(g(ω))dµ(ω)dτ(µ)

+

∫
∆(Ω)

C

∫
Ω\Xn

(1 + 2g(ω))g(ω)f(g(ω))dµ(ω)dτ(µ)

=

∫
Ω\Xn

(g(ω)f(g(ω)) + C(1 + 2g(ω))g(ω)f(g(ω)))dµ0(ω) .

Thus, Assumption 2 implies that we can restrict our attention to the case when Ω = Xn is

compact.

In this case, the Prokhorov Theorem implies that ∆(Ω) is compact in the weak* topology

and this topology is metrizable. Thus, for any ε > 0, we can decompose ∆(Ω) = Q1∪· · ·∪QK

where all Qk have diameters less than ε. We can now approximate τ by τ̃ =
∑

k νkδµk with

µk =
∫
Qk
µdτ(µ)/νk and νk =

∫
Qk
dτ(µ). Clearly,

∫
µdτ̃(µ) = µ0, and therefore it remains to

show that W̄ is continuous in the weak* topology.

To this end, suppose that µn → µ in the weak* topology. Let us first show an = a(µn)→

a(µ) = a. Suppose the contrary. Since Ω is compact and G is continuous and bounded,

Lemma 3 implies that an are uniformly bounded. Pick a subsequence such that ‖an−a‖ > ε

for some ε > 0 and subsequence an → b for some b 6= a. Since G(an, ω)→ G(b, ω) uniformly

on Ω, we get a contradiction because

∫
G(an, ω)dµn −

∫
G(b, ω)dµ =

∫
(G(an, ω)−G(b, ω))dµn +

∫
G(b, ω)d(µn − µ) .
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The second term converges to zero because of weak* convergence. The first term can be

bounded by

|
∫

(G(an, ω)−G(b, ω))dµn| ≤ C‖an − b‖

and hence also converges to zero. Thus,
∫
G(b, ω)dµ =

∫
G(a, ω)dµ = 0, implying that a = b

by the strict monotonicity of the map G. The same argument implies the required continuity

of W̄ (µ). Q.E.D.

Proof of Theorem 14. For each finite K, the optimal solution (aK(ω), xK(a(ω))) stay

uniformly bounded and hence there exists a subsequence converging in L2(Ω;µ0) and in

probability to a limit (a(ω), x(a(ω))). By continuity and Lemma 12, E[W (aK(ω), ω)] con-

verges to the maximum in the problem of Definition 11 and, hence, by the same continuity

argument, a(ω) is an optimal policy without randomization. Since (10) holds true for aK for

each finite K, convergence in probability implies that (8) also holds in the limit. Indeed,

c(aK(q), ω;xK) ≥ c(aK(ω), ω;xK)

holds for almost all ω and all q with probability one, and hence it also holds in the limit

with probability one (due to convergence in probability). Clearly, for each finite K the

function c(aK(ω), ω;xK) is smooth in each region Ωk and is continuous at the boundaries.

Since a, x stay bounded and W,G are smooth and G is compact, the functions are uniformly

Lipschitz continuous and the Arzela-Ascoli theorem implies that so is the limit (passing to

a subsequence if necessary). Finally, to prove that

E[G(a(ω), ω)|a(ω)] = 0
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it suffices to prove that

E[G(a(ω), ω)f(a(ω))] = 0

for a countable dense set of test functions, which follows by passing to a subsequence.

To verify all the required integrability to apply Lebesgue dominated convergence, As-

sumption 2 implies that we just need to check that E[DaG(a, ω)|a]−1 is uniformly bounded.

Since, by assumption, ‖DaG(a, ω)‖ is uniformly bounded, we just need to check that eigen-

values of E[DaG(a, ω)|a(ω)] are uniformly bounded away from zero.

Indeed, let ε = infa,ω,z,‖z‖=1−z>DaG(a, ω)z > 0. If λ is an eigenvalue of E[−DaG(a, ω)|a]

with a normed eigenvector z, then

λ = z>E[−DaG(a, ω)|a]z = E[−z>DaG(a, ω)z|a] ≥ ε .

To prove that (8) holds, we note that it suffices to show that

E[(x(a(ω))>E[DaG(a, ω)|a(ω)]− E[DaW (a, ω)|a(ω)])f(a(ω))] = 0

for a countable, dense set of smooth test functions f. The latter is equivalent to

E[(x(a(ω))>DaG(a(ω), ω)−DaW (a(ω), ω))f(a(ω))] = 0

and the claim follows by continuity by passing to a subsequence. Finally, the last identity

follows from (7). Finally, the fact that a is Borel-measurable follows from the known fact

that for any Lebesgue-measurable a(ω) there exists a Borel measurable modification of a

coinciding with a for Lebesgue-almost every ω. Q.E.D.

Proof of Corollary 22. Integrability condition (by the same argument as in the proof of
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Lemma 12) implies that all the convergence arguments are justified. The convexity claim is

then a direct consequence of Proposition 10.

Q.E.D.

Proposition 35 Let γ be the joint distribution of (a, ω) for an optimal information design.

Then,

∫
(x(a)>G(a, ω)−W (a, ω))dη +

∫
W (ã∗, ω)dη(R, ω) ≤ 0

for every measure η such that Supp(η) ⊂ Supp(γ) such that
∫
f(‖a‖2)g2(ω)dη(a, ω) < ∞.

In the case of moment persuasion,

∫
(DaW (a)(a− g(ω))−W (a))dη + W (

∫
g(ω)dη) ≤ 0 (21)

Proof of Proposition 35. We closely follow the arguments and notation in Kramkov and

Xu (2019). Let γ be the joint distribution of the random variables ω and a(ω). We first

establish (21) for a Borel probability measure η that has a bounded density with respect to

γ. Then, the general result follows by a simple modification of the argument in the proof of

Theorem A.1 in Kramkov and Xu (2019). Let

V (a, ω) =
dη

dγ
(a, ω) .

We choose a non-atom q ∈ R of µ(da) = γ(da,RL) and define the probability measure

ζ(da, dω) = δq(da)η(R, dω) ,

where δq is the Dirac measure concentrated at q. For sufficiently small ε > 0 the probability
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measure

γ̃ = γ + ε(ζ − η)

is well-defined and has the same ω-marginal µ0(ω) as γ. Let ã be the optimal action satisfying

γ̃(G(ã, ω)|ã) = 0 .

The optimality of γ implies that

∫
W (ã, ω)dγ̃ ≤

∫
W (a, ω)dγ . (22)

By direct calculation,

0 = γ̃(G(ã, ω)|a)

= 1a6=q

∫
G(ã, ω)d((γ|a)− ε(η|a))∫

d(γ − εη)
+ 1a=q

∫
G(ã, ω)dη(R, ω)

= 1a6=q

∫
G(ã, ω)d(γ|a)− ε

∫
G(ã, ω)d(η|a)

1− εU(a)
+ 1a=q

∫
G(ã, ω)dη(R, ω)

where U(a) = γ(V (a, ω)|a) . Now, we know that

∫
G(a, ω)d(γ|a) = 0,

and the assumed regularity of G together with the implicit function theorem imply that

ã(a) = a + εQ(a) + O(ε2)
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if a 6= q and

ã = ã∗ ,

where ã∗ is the unique solution to

∫
G(ã∗, ω)dη(R, ω) = 0

for a = q. Here,

0 = O(ε2) +

∫
G(a + εQ(a), ω)d(γ|a)− ε

∫
G(a, ω)V (a, ω)d(γ|a)

= O(ε2) + ε

∫
DaG(a, ω)d(γ|a)Q(a)− ε

∫
G(a, ω)V (a, ω)d(γ|a)

so that

Q(a) =

(∫
DaG(a, ω)d(γ|a)

)−1 ∫
G(a, ω)V (a, ω)d(γ|a) .

Thus,

∫
W (ã(a), ω)dγ̃ =

∫
W (ã(a), ω)(1− εV (a, ω))dγ + ε

∫
W (ã∗, ω)dη(R, ω)

= O(ε2) +

∫
W (a, ω)dγ + ε

(∫
(DaW (a, ω)Q(a)− V (a, ω))dγ +

∫
W (ã∗, ω)dη(R, ω)

)

In view of (22), the first-order term is non-positive:

∫
(DaW (a, ω)Q(a)−W (a, ω)V (a, ω))dγ +

∫
W (ã∗, ω)dη(R, ω) ≤ 0 .
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Substituting, we get

∫
(x(a)>

∫
G(a, ω)V (a, ω)d(γ|a) −W (a, ω)V (a, ω))dγ +

∫
W (ã∗, ω)dη(R, ω) ≤ 0 ,

which is equivalent to

∫
(x(a)>G(a, ω)−W (a, ω))dη +

∫
W (ã∗, ω)dη(R, ω) ≤ 0

In the case of a moment persuasion, we get

Q(a) = aU(a) − R(a) ,

where we have defined

U(a) = γ(V (a, ω)|a), R(a) = γ(g(ω)V (a, ω)|a) ,

and

ã∗ =

∫
g(ω)dη .

Thus, we get

0 ≥
∫

(DaW (a)Q(a)−W (a)V (a, ω))dγ + W (ã∗)

=

∫
(DaW (a)(aU(a) − R(a))−W (a)V (a, ω))dγ + W (ã∗)

=

∫
(DaW (a)(a− g(ω))−W (a))dη + W (

∫
g(ω)dη) .

Q.E.D.

Lemma 36 Let a∗(ω) be the unique solution to G(a∗(ω), ω) = 0. Then, at any optimal
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(a(ω), x(a(ω)) with x(a(ω)) = D̄aW (a(ω))D̄aG(a(ω))−1 we have

x(a(ω))>G(a(ω), ω) − W (a(ω), ω) + W (a∗(ω), ω) ≤ 0

Furthermore,

c(a(ω), ω;x) = min
a∈Ξ

c(a, ω;x)

almost surely.

Proof. The first claim follows by selecting η = δ(a(ω),ω). The second one follows by selecting

η = tδa11Ω1γ|a1 + (1 − κt)δa2γ|a2 for some open set Ω1 and κ = γ(Ω1|a1). In this case, we

get

t

∫
(x(a1)>G(a1, ω)−W (a1, ω))1Ω1dγ(ω|a1) + (1− κt)

∫
(x(a2)>G(a2, ω)−W (a1, ω))dγ(ω|a2)

+

∫
W (ã∗, ω)(t1Ω1dγ|a1 + (1− κt)dγ|a2) ≤ 0 .

(23)

where ã∗(t) is uniquely determined by

t

∫
G(ã∗(t), ω)1Ω1d(γ|a1) + (1− κt)

∫
G(ã∗(t), ω)d(γ|a2) = 0 .

Clearly, (23) is equivalent to

t

∫
(W (ã∗(t), ω)−W (a1, ω) + x(a1)>G(a1, ω))1Ω1d(γ|a1)

+ (1− κt)
∫

(W (ã∗(t), ω)−W (a2, ω) + x(a2)>G(a2, ω))d(γ|a2) ≤ 0 .
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Assuming that t is small, we get

ã∗(t) = a2 + tâ + o(t), â = −D̄aG(a2)−1

∫
G(a2, ω)1Ω1d(γ|a1)

and hence

0 ≥ t

∫
(W (ã∗(t), ω)−W (a1, ω) + x(a1)>G(a1, ω))1Ω1d(γ|a1)

+ (1− κt)
∫

(W (ã∗(t), ω)−W (a2, ω) + x(a2)>G(a2, ω))d(γ|a2)

= t

∫
(W (a2, ω)−W (a1, ω) + x(a1)>G(a1, ω))1Ω1d(γ|a1)

+ tD̄aW (a2)â + o(t)

= t

∫
(W (a2, ω)−W (a1, ω) + x(a1)>G(a1, ω))1Ω1d(γ|a1)

− tD̄aW (a2)D̄aG(a2)−1

∫
G(a2, ω)1Ω1d(γ|a1) + o(t)

= t

∫
(c(a1, ω;x)− c(a2, ω;x))1Ω1d(γ|a1) + o(t) .

Since Ω1 is arbitrary, we get that

c(a1, ω;x) ≤ c(a2, ω;x)

almost surely with respect to γ|a1. Q.E.D.

Corollary 37 In a moment persuasion setup, let a(ω) be an optimal information design.

Then, for any two points ω1, ω2, we have

W (tg(ω1) + (1− t)g(ω2)) + t(DaW (a(ω1))(a(ω1)− g(ω1))−W (a(ω1)))

+ (1− t)(DaW (a(ω2))(a(ω2)− g(ω2))−W (a(ω2))) ≤ 0 .
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In the case of ω1 = ω2, we just get

DaW (a(ω))(a(ω)− g(ω)) ≤ W (a(ω)) − W (g(ω)) . (24)

Furthermore,

W (ta1 + (1− t)a2) ≤ tW (a1) + (1− t)W (a2) , a1, a2 ∈ Supp(a) . (25)

In particular, Supp(a) is a W -convex set.

Proof of Corollary 37. The first claim follows from the choice η = tδ(a(ω1),ω1) + (1 −

t)δ(a(ω2),ω2) in Proposition 35. The second one follows from Lemma 36. Monotonicity of

the set follows by evaluating the inequality at t→ 0. Maximality follows from (24). Q.E.D.

Proof of Theorem 16. Let (a(ω), x(a)) be an optimal policy and let

φc(a) = inf
ω

(c(a, ω;x)− φΞ(ω;x))

Pick an a ∈ Ξ. Since a ∈ Ξ, there exists a ω̃ such that a = a(ω̃) and hence

φc(a) = inf
ω

(c(a, ω;x)− φΞ(ω;x)) ≤ c(a, ω̃;x)− φΞ(ω;x) = 0 .

Thus,

∫
φc(a(ω))µ0(ω)dω = 0 .

At the same time,

c(a, ω;x)− φΞ(ω;x) = c(a, ω;x) − inf
b∈Ξ

c(b, ω;x) ≥ 0 .
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Thus, φc(a) = 0 for all a ∈ Ξ. Now, by the definition of φc, we always have

φc(a) + φΞ(ω;x) ≤ c(a, ω)

for an optimal policy. Let γ be the measure on Ξ × Ω describing the joint distribution of

χ = a(ω) and ω. Then,

∫
c(a, ω)γ(a, ω) =

∫
c(a(ω), ω)µ0(ω)dω =

∫
φΞ(ω;x)µ0(ω)dω =

∫
φΞ(a)dν(a) ,

Pick any measure π from the Kantorovich problem. Then,

∫
c(a, ω)dγ(a, ω) =

∫
(φΞ(ω;x))dγ(a, ω)

=

∫
φΞ(ω;x)µ0(ω)dω +

∫
φc(a(ω))µ0(ω)dω

=

∫
(φΞ(ω;x) + φc(a(ω)))µ0(ω)dω

=

∫
(φΞ(ω;x) + φc(a))dπ(a, ω) ≤

∫
c(a, ω)dπ(a, ω)

Thus, γ minimizes the cost in the Kantorovich problem. Q.E.D.

Proof of Theorem 23. The first claim follows from Corollary 37 in the Appendix. The

proof of sufficiency closely follows ideas from Kramkov and Xu (2019).

Let a(ω) be a policy satisfying the conditions Theorem 23. Note that, in terms of the

function c, our objective is to show (see (7)) that

min
all feasible policies b(ω)

E[c(b(ω), g(ω))] = E[c(a(ω), g(ω))].

Next, we note that the assumed maximality implies that c(a(ω), g(ω)) = φΞ(g(ω)) ≤ 0

for all ω. Now, for any feasible policy b(ω), we have E[g(ω)|b(ω)] = b(ω) ∈ conv(g(Ω)) and
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therefore, for any fixed a ∈ RM , we have

E[c(a, g(ω)) − c(b(ω), g(ω))|b(ω)]

= E[W (g(ω)) − W (a) + DaW (a) (a− g(ω))

− (W (g(ω)) − W (b(ω)) + DaW (b(ω)) (b(ω)− g(ω)))]

= W (b(ω))−W (a) +DaW (a)(a− b(ω)) = c(a, b(ω)) .

Taking the infinum over a dense, countable set of a, we get

inf
a
E[c(a, g(ω)) − c(b(ω), g(ω))|b(ω)] = φΞ(b(ω)) ≤ 0

and therefore

E[c(a(ω), g(ω)) − c(b(ω), g(ω))|b(ω)] = E[inf
a∈Ξ

c(a, g(ω)) − c(b(ω), g(ω))|b(ω)]

≤ inf
a∈Ξ

E[c(a, g(ω)) − c(b(ω), g(ω))|b(ω)] = inf
a∈Ξ

c(a, b(ω)) ≤ 0 .

(26)

and therefore, integrating over b, we get

E[c(a(ω), g(ω))] ≤ E[c(b(ω), g(ω))] .

The proof is complete. Q.E.D.

Proof of Proposition 24. Since Ξ is W -monotone, we have c(a, b) ≥ 0 for all a, b ∈ Ξ

and hence φΞ(b) ≥ 0 for all b ∈ Ξ. Thus, if Ξ ⊂ X, we get φΞ(b) = 0 on Ξ. Let now a be

an optimal policy. First we note that (26) implies that φΞ(b(ω)) = 0 almost surely for any

optimal policy b(ω).

If Ξ = QΞ, we get that Ξ̃ ⊂ Ξ and hence φΞ(b) ≤ φΞ̃(b) for all b. Thus,

∫
c(b(ω), g(ω))µ0(ω)dω ≥

∫
φΞ̃(g(ω))µ0(ω)dω ≥

∫
φΞ(g(ω))µ0(ω)dω .
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Since both policies are optimal, we must have φΞ = φΞ̃, and the singleton assumption implies

that a(ω) = ã(ω). Q.E.D.

Proof of Theorem 26. Our proof is based on an application of the famous Frostman’s

lemma (see, e.g., Mattila (1999)).

Lemma 38 (Frostman’s lemma) We only consider the case of a non-degenerate DaaW.

The case of a degenerate, constant DaaW is proved analogously.

Define the s-capacity of a Borel set A as follows:

Cs(A) = sup

{(∫
A×A

dµ(x)dµ(y)

‖x− y‖s

)−1

: µ is a Borel measure and µ(A) = 1

}
.

(Here, we take inf ∅ =∞ and 1/∞ = 0.) Then,

dimH(A) = sup{s ≥ 0 : Cs(A) > 0} .

Now, by Corollary 37 (formula (25)), we have that the function q(t) = W (a1t+a2(1−t)), t ∈

(0, 1) is either identically constant or attains a global minimum at a point t∗ ∈ (0, 1). At this

point, we have

(a1 − a2)>DaaW (t∗a1 + (1− t∗)a2)(a1 − a2) ≥ 0.

Without loss of generality, we may assume that X is a sufficiently small ball in RM . Pick

any point a∗ ∈ X for which DaaW is non-degenerate and change the coordinates so that

DaaW (a∗) = diag(λ1, · · · , λM) is diagonal. Furthermore, rescaling the coordinates, we may

assume that all λi have absolute values equal to 1, so that λi = 1 for i ≤ ν(a∗) and λi = −1

for i > ν(a∗). Furthermore, making the ball X sufficiently small, we may assume that

‖DaaW (a)−DaaW (a∗)‖ ≤ ε for all a ∈ X. Let ai = (xi, yi) be the orthogonal decomposition
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into two components corresponding to positive and negative eigenvalues. Then,

0 ≤ (a1 − a2)>DaaW (t∗a1 + (1− t∗)a2)(a1 − a2)

≤ ε‖a1 − a2‖2 + ‖x1 − x2‖2 − ‖y1 − y2‖2 = (1 + ε)‖x1 − x2‖2 − (1− ε)‖y1 − y2‖2 ,

and therefore

‖a1 − a2‖2 = ‖x1 − x2‖2 + ‖y1 − y2‖2 ≤ c2‖x1 − x2‖2

with c2 = 1 + (1 + ε)/(1− ε).

∫
Ξ∩X×Ξ∩X

dµ(a1)dµ(a2)

‖a1 − a2‖s

≥ c−1

∫
Ξ∩X×Ξ∩X

dµ(a1)dµ(a2)

‖x1 − x2‖s
= c−1

∫
Ξ̃∩X×Ξ̃∩X

dµ̃(x1)dµ̃(x2)

‖x1 − x2‖s

where µ̃ is the x-marginal of the measure µ and Ξ̃ is the projection of Ξ onto Rν(a∗). Thus,

Cs(Ξ ∩X) ≤ cCs(Ξ̃ ∩X)

and therefore

dimH(Ξ ∩X) ≤ dim(Ξ̃ ∩X) .

Since Ξ̃ ⊂ Rν(a∗), the claim follows. Q.E.D.

Proof of Corollary 31. We will use an important property of the Dirichlet distribution:

Defining ω̄1 = (ω1, · · · , ωj) and ω̄2 = (ωj+1, · · · , ωM), we have that the random vectors

1T ω̄1, ω̄1/(1
T ω̄1) and ω̄2/(1− 1>ω̄1) are jointly independent. In this case, by direct calcula-

66



tion,

a(ω) = E[

(
ψ1ω̄1

ψ2ω̄2

)
|a(ω)] .

Then,

φΞ(b) = min
ω

(
W (b)−W (a(ω)) +DaW (a(ω))(a(ω)− b)

)

= min
ω

(
W (b)−

∑
i

(qiEi(ai(ω)) + ϕi(1
>ai(ω)))

+
∑
i

(qi(log(ai/yi) + 1) + ϕ′i(1
>ai))

>(ai(ω)− bi)

)

Since 1>ai(ω) = γi, the first order conditions take the form

q1a
−1
1 (a1 − b1) = λ1, q2a

−1
2 (a2 − b2) = λ2

where λi are Lagrange multipliers for the constraints 1>ai = γi . Thus, denoting b̄i = 1>bi,

we get ai = γibi/b̄i, and using the identity

E(
γbi
b̄

) =
γ

b̄
(E(b) + log(

γ

b̄
)b̄)

we get

φΞ(b) =
2∑
i=1

(
ϕi(b̄i)− ϕi(γi) + ϕ′i(γi)(γ − b̄i) − qi(b̄i log(γi/b̄i)− γi + b̄i)

)
Q.E.D.
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