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accurate probabilistic predictions of US economic activity and a meaningful narrative by means of
scenario analysis.
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1 Introduction

Vector autoregressions (VAR) gained prominence with Sims (1980) and have been a standard

tool in macroeconometrics since at least the mid-1990s, due to their ability to capture com-

plex dynamic interrelationships among macroeconomic variables in a relatively parsimonious

econometric framework. This paper shows that VARs are also a powerful tool to monitor

macroeconomic conditions in real time, or nowcasting, while at the same time retaining their

proficiency in the tasks that they have been routinely used for, such as structural analysis,

forecasting and scenario analysis.

Parsing hundreds of economic time series in order to monitor and dissect business cycle dynamics

has been one of the central issues in macroeconometrics since at least Burns and Mitchell (1946).

This was a very early development of the “Big Data” phenomenon, though, nowadays, the term

tends to be used also in other related contexts, for example to describe the massive, often

unstructured, datasets collected via the Internet. It is therefore no coincidence that one of the

first appearances of the term Big Data in an academic context was during the World Congress of

the Econometric Society. In 2000, with a discussion titled “‘Big Data’ Dynamic Factor Models

for Macroeconomic Measurement and Forecasting”, Frank Diebold ushered the term Big Data

into macroeconometrics and further stoked interest in methods apt to deal with growing amounts

of data.1

Nowcasting – defined as the prediction of the present, the very near future, and the very

recent past2 – mimics, in an internally consistent and automated framework, the way in which

markets process data releases in real-time. It involves continuous and immediate updates of the

predictions for a comprehensive measure of economic activity (usually, GDP, which is measured

quarterly and released with a substantial lag) each time new data are released and typically

exploits a large set of data with different release dates and reference period. Consequently, this

process implies dealing with missing data, jagged edges, mixed frequencies and various other

irregularities, and is very much related to the three Vs of “Volume, Velocity and Variety,” the

defining properties of Big Data. In terms of Volume, not only did macroeconomic datasets

grow exponentially; macroeconometricians have also developed, since early on, methods to deal

with complex environments in which the number of parameters is large relative to the number

of observations.3 Velocity is key in monitoring the real-time data flow, as the nowcasts are

updated continuously as soon as the data are released. Finally, the data used for nowcasting

refer to different sectors of the economy, are measured at different frequency, in different units,

1See Diebold (2003).
2For a survey, see Banbura, Giannone, and Reichlin (2011); Banbura, Giannone, Modugno, and Reichlin

(2013).
3We use the term “Big Data” in the sense of high-dimensional data, meaning that the number of parameters

to be estimated is large relative to the number of observations. As summarized by Diebold (2012) and Bok,
Caratelli, Giannone, Sbordone, and Tambalotti (2018), it was in this context that the term Big Data started
to be used in the academic circles. Statisticians also refer to these Big Data problems as “large p, small n”,
as introduced by West (2002) to describe inference in factor models with many variables (p) and relatively few
observations (n). The notation used in the rest of the paper, borrowed from the practice of macroeconometrics,
replaces “large p, small n” with large n, small T .
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and vary substantially in terms of their sources and precision (e.g., hard data versus soft data

based on qualitative information such as survey and polls). These features relate to the notion

of Variety in Big Data.

The challenges just highlighted have been traditionally addressed by means of Dynamic Factor

Models (DFMs), as these models can handle Big Data and can be naturally cast in a state-space

form. This means that inference can be easily done using Kalman filtering techniques, which

provide a convenient framework for handling the irregularities of the data in real time, i.e.,

mixed frequencies and non synchronicity of the data releases. Indeed, factor models have been,

so far, the tool of choice for nowcasting starting from the contribution of Giannone, Reichlin, and

Small (2008) and Aruoba et al. (2009), and are nowadays used extensively by policy institutions

and market participants (for a recent survey see Stock and Watson, 2017; Luciani, 2017; Bok,

Caratelli, Giannone, Sbordone, and Tambalotti, 2018).

The goal of this paper is to show that Bayesian VARs, originally proposed by Litterman (1979)

and Doan, Litterman, and Sims (1984) and first used in high-dimensional environments by

Banbura, Giannone, and Reichlin (2010), can also be used to successfully handle Big Data

for real-time nowcasting and, conveniently, also for real-time policy analysis within the same

framework. Indeed, VARs too can be cast in state-space form and, hence, real-time data, with

all their complexities – missing data, mixed frequency and other data irregularities – can be

incorporated easily in a VAR and analyzed efficiently using the Kalman filter, as shown in

Bańbura, Giannone, and Lenza (2015). The challenge is to make inference on the model’s

parameters in the presence of such data irregularities. We investigate three strategies.

A first avenue entails casting the VAR model in state-space form and modelling the low-

frequency processes as latent, i.e., as if they existed at a higher frequency than the one at

which they can be observed. We label this method “L-BVAR,” where L stands for “latent.”

The estimates of the latent processes and the uncertainty around them are obtained by means

of Kalman filtering techniques.

An alternative approach to nowcasting with VARs is to estimate the model at the lowest com-

mon data frequency, treating higher-frequency data as multiple lower-frequency variables. For

example, a monthly variable would be treated as three separate quarterly variables, one for

each month of the quarter. We refer to this approach as blocking or stacking, hereafter “B-

BVAR”. Kalman filtering techniques can then be used to handle jagged edges resulting from

asynchronous data release. This approach implies, quite conveniently, that the mixed-frequency

VAR model can be estimated and analyzed as a standard VAR without latent states, therefore

cutting, to some extent, the computational burden compared to the L-BVAR. Moreover, the

B-BVAR in principle allows for a more flexible relationship between quarterly and monthly

variables.

The third approach finds a suitable high-frequency representation of the traditional models

routinely used for policy purposes, which are typically estimated on balanced quarterly datasets.
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The method involves estimating the model at low frequency (quarterly) and then mapping it

into a corresponding model at higher frequency (monthly). With the latter, it is then immediate

to use Kalman filtering techniques to handle mixed frequencies and asynchronous data release,

which imply periodically missing observations and jagged edges, respectively. The main appeal

of this method is that it efficiently exploits the real-time data flow using the existing quarterly

VAR models that most policy institutions have been developing and maintaining over the last

decades.

We evaluate the three approaches in a real-time setting, based on US data that would have been

available to an econometrician in each week from the beginning of 2005 until the end of 2019.

The dataset comprises eighteen variables: some key macro variables used in most structural

macroeconomic models (such as GDP, consumption, investment, labour market variables and

factor prices) and other macro and financial variables (e.g., industrial production, housing

starts, loans and uncertainty indices) that are monitored closely by professional and institutional

forecasters and are important for their information content and the timeliness of their release.

We assess the three approaches primarily on their ability to produce accurate real-time nowcasts

for US GDP. The results indicate that these tools are valid nowcasting devices: all three variants

capture the information contained in the data in real time and their accuracy improves as more

information becomes available over the quarter. All three BVAR approaches produce forecasts

that are highly correlated with, and as accurate as, the publicly available Federal Reserve Bank

of New York Staff nowcasts, which is based on a DFM. We find differences in performance across

the three methods only in the first few weeks of the quarter, when no information on the current

quarter is available. After that, all the mixed-frequency models are comparable and outperform

a standard quarterly VAR. This result suggests that all methods are effective at distilling in

real time the information contained in the continuous flow of macroeconomic releases. The

implementation differences between approaches have, in practice, negligible effects on their

relative nowcasting accuracy. The fact that the results are not specific to the method used

indicates that the predictions reflect genuine data features.

The real-time nowcasting accuracy of the models should already attest their usefulness for policy

analysis. However, we propose three additional policy exercises to gain further insight into the

ability of such models to capture the complex dynamic interactions among macroeconomic

variables. First, we focus on the period just before and entering the current Covid-19 crisis,

and we report a real-time nowcast for the first quarter of 2020, and a joint forecast of GDP

growth and PCE inflation for 2020, based on the information available until the end of 2020Q1.

Second, we report a counterfactual exercise aimed at tracking the 2008Q4 Fed Funds “shadow

rate”, using data which became progressively available in real time in that year. Finally, we

show that our mixed-frequency models can also be used to track the transmission mechanism

of shocks hitting the US economy, exemplified by generalized impulse response functions in

response to an exogenous shift in GDP. The similarity in the transmission of shocks estimated

with our three methods, which differ in the degree of temporal aggregation imposed on the data,
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suggests that the bias arising from the fact that economic agents might not be taking decisions

at the same frequency at which the data is sampled (e.g. Sims (1971), Hansen, Sargent et al.

(1981), Christiano and Eichenbaum (1986)) is negligible, in practice. Hence, the importance of

using mixed-frequency data resides mainly in their timeliness.

The remainder of the paper is organised as follows. Section 2 describes and compares the three

mixed-frequency BVAR approaches, Section 3 discusses the dataset and nowcasting results, and

Section 4 presents the three policy applications. Finally, Section 5 concludes.

2 Methodology

As discussed, factor models have been, so far, the tool of choice for nowcasting. These models

were introduced in macroeconomics by Geweke (1977), Sargent and Sims (1977) and Engle

and Watson (1981), and then extended to high-dimensional time series by Stock and Watson

(1999), Forni, Hallin, Lippi, and Reichlin (2000), and Doz, Giannone, and Reichlin (2012).4

DFMs exploit the pervasiveness of business cycle fluctuations to provide a representation of

macroeconomic dynamics that is, at the same time, accurate and parsimonious. The aim of

this paper is to show that large Bayesian VARs are a very successful alternative to DFMs.

VAR models are standard components of the macroeconomist’s toolkit since the pioneering

work of Sims in the early 80s and have been extensively used for forecasting and policy analysis

(for a systematic review, see Stock and Watson, 2001; Karlsson, 2013; Kilian and Lütkepohl,

2018), but their use for real-time monitoring of economic conditions has not yet been explored.

The use of BVARs for nowcasting is new because it was recognized only recently that Bayesian

shrinkage is a powerful alternative for controlling the high estimation uncertainty due to the

proliferation of parameters in a high-dimensional setting (De Mol et al., 2008). BVARs offer

several advantages compared to DFMs. First, factor models generally assume away the dynamic

heterogeneity present in the data, i.e., they posit that shocks affect all variables in a factor model

at the same time, without leads or lags.5 BVARs have a more general and flexible structure,

and capture more accurately the salient features of the data.6 Second, factor models generally

require the data to be made stationary,7 while VARs can be easily estimated also on non-

stationary data (Sims et al., 1990). Third, in factor models there are many modelling choices to

be made, notably the number of lags, the number of factors and the block structure. Usually, the

uncertainty coming from these choices is not taken into account. By adopting the hierarchical

4For recent surveys, see Stock and Watson (2016); Doz and Fuleky (2019).
5Notable exceptions are the works of D’Agostino, Giannone, Lenza, and Modugno (2016) and Antolin-Diaz,

Drechsel, and Petrella (2017), which allow for some degree of dynamic heterogeneity.
6Formally, large BVARs encompass DFMs, in the sense that if the data being analyzed actually have a factor

structure, then the Bayesian VAR captures it, as shown in De Mol et al. (2008); Banbura et al. (2010), and
the bias introduced by the imposition of priors disappears asymptotically as the number of variables increases.
Recent applications of large BVARs include Altavilla et al. (2016); Ellahie and Ricco (2017); Giannone et al.
(2019b); Angelini et al. (2019); Domit et al. (2019); Del Negro et al. (2020); Miranda-Agrippino and Rey (2020).
For a survey of the literature see Koop (2017); Miranda-Agrippino and Ricco (2018).

7See Barigozzi et al. (2016) for recent advances in the estimation of non-stationary dynamic factor models
for large datasets.
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approach of Giannone, Lenza, and Primiceri (2015), we produce probabilistic forecasts that

reflect all sources of uncertainty, including that coming from the setting of hyperparameters

underlying the prior distributions.

In the remainder of this section, we describe a baseline quarterly model, and then discuss

three approaches to deal with the real-time data flow. We conclude the section by showing

analytically, for a VAR(1), how the three methodologies are related.

2.1 The baseline model

Consider the vector autoregression of order p:

xtq = A0 +A1xtq−1 + · · ·+Apxtq−p + εtq , (1)

where xtq is an n× 1 vector of endogenous variables, εtq is a Normally-distributed multivariate

white noise process with covariance matrix Σε, and Ai for i = 1, . . . , p are matrices of suitable

dimension containing the model’s parameters. When all variables in the vector xtq are available,

the model can be readily estimated with standard Bayesian methods, reviewed for example in

Karlsson (2013), which combine the likelihood with some informative priors.

We estimate the baseline quarterly model with 5 lags (p = 5), using the Normal-Inverse Wishart

prior, which belongs to the class of natural conjugate priors. For Σε, the covariance matrix of

the residuals, we use an inverse Wishart with scale parameter given by a diagonal matrix Ψ

and d = n + 2 degrees of freedom, which is the minimum number of degrees of freedom that

guarantees the existence of the prior mean of Σε (equal to Ψ
(d−n−1) = Ψ). We take Ψ to be a

diagonal matrix with an n × 1 vector ψ on the main diagonal, which we treat as a vector of

hyperparameters.

For the constantA0 term, we use a flat prior, while for the autoregressive coefficients (A1, . . . , Ap),

we combine the Minnesota prior, originally proposed by Litterman (1979), with the sum-of-

coefficients prior proposed by Doan, Litterman, and Sims (1984), which is intended to limit

the explanatory power of the VAR’s deterministic component. As regards the Minnesota prior,

conditional on the covariance matrix of the residuals, the prior distribution of the autoregressive

coefficients is Normal with the following means and variances:

E(A1) = diag (d) , E(A2) = ... = E(Ap) = 0n, (2)

Cov[(As)ij , (Ar)hm|Σε] = λ2 Σε,ih

s2Ψii
if m = j and r = s, zero otherwise. (3)

where d is a vector whose elements are either ones, to center the prior on a random walk,

or zeros, to center the prior on a white noise. The former is appropriate for variables that

are likely to be persistent or show trends, the latter for time series that are more likely to be
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mean-reverting. The key hyperparameter is λ, which controls the scale of all prior variances and

covariances, and effectively determines the overall tightness of the prior. For λ = 0 the posterior

equals the prior and the data do not influence the estimates. If λ → ∞, on the other hand,

posterior expectations coincide with the Ordinary Least Squares (OLS) estimates. The factor
Σε,ii

Ψjj
accounts for the different scale and variability of the data while 1

s2
is the rate at which

the prior variance decreases with increasing lag length8. The “sum-of coefficients” prior instead

postulates that the sum of the coefficients associated with the own lags of each variable in the

VAR equals one, while the sum of the coefficients associated with the lags of the other variables

equals zero. This prior is imposed by means of “dummy observations” and the intensity by

which it is enforced is described by the parameter µ.

Summing up, the setting of these priors depends on the hyperparameters λ, ψ and µ, which

reflect the informativeness of the prior distribution for the model’s coefficients. As in Giannone,

Lenza, and Primiceri (2015), we treat these hyperparameters as random variables, and we

draw them from their posterior distributions. For the hyperparameters, we choose the same

rather diffuse priors described in Giannone, Lenza, and Primiceri (2015). The only remaining

parameter to set is the number of lags p. Since longer lags are shrunk more, inference tends to

be robust to the specific value of p, provided that it is large enough. We set the number of lags

p equal to 5 quarters.9

In the next three subsections we discuss alternative approaches to adapt the BVAR to handle

mixed frequencies and jagged edges, which is necessary to incorporate macroeconomic informa-

tion as soon as it gets released.

2.2 L-BVAR: Low frequency variables as latent processes

The first approach for dealing with mixed-frequency treats the quarterly variables as monthly

variables, with missing observations in the first two months of the quarter. The VAR model is

thus defined at monthly frequency, and Kalman filtering techniques are employed to estimate

the latent monthly processes. Zadrozny (1990), Mittnik and Zadrozny (2004), Giannone, Reich-

lin, and Simonelli (2009), Mariano and Murasawa (2010), Kuzin, Marcellino, and Schumacher

(2011), Foroni, Guérin, and Marcellino (2015) have exploited this approach in a frequentist

setting, while Eraker, Chiu, Foerster, Kim, and Seoane (2014), Schorfheide and Song (2015),

Brave, Butters, and Justiniano (2019) and Cimadomo and D’Agostino (2016) have explored a

similar approach using Bayesian methods.

We assume that the (log-)levels of our n variables (collected in the n-dimensional vector xtm) are

described by a monthly vector autoregressive process, but otherwise similar the one in equation

(1), with p = 17 lags.10 The time subscript tm indicates that the model is specified at monthly

8As it is standard in the BVAR literature, we set the parameter governing this decay, s, to 2.
9Results with p = 10 are qualitatively similar. We decided to use p = 5 in the baseline specification to ensure

that the monthly models that are consistent with it, and the L-BVAR in particular, are not too computationally
burdensome.

1017 monthly lags ensure consistency with the information sets of the B-BVAR and C-BVAR models, which
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frequency.11

We adopt a Normal-Inverse Wishart prior with the same parametrisation as the baseline case,

which combines the Minnesota prior with the sum-of-coefficients prior. The prior for Σε is an

Inverse Wishart with scale Ψ and d = n+2 degrees of freedom and, conditional on Σε, the prior

distribution of the autoregressive coefficients is Normal with means and variances reported in

equations (2) and (3). The priors depend on the hyperparameters λ, ψ and µ, whose posterior

distributions are obtained as part of our estimation algorithm.12

Tackling the issue of missing data due to irregular data releases and mixed frequencies is straight-

forward using Markov Chain Monte Carlo methods. We interpolate quarterly data using splines

to obtain a preliminary complete monthly dataset, which we use to specify the initial conditions.

The latter are assumed to be Normally-distributed with mean equal to the first p months in the

complete dataset, and with variance equal to zero or equal to the prior variance Ψii depending

on whether the data is observed or estimated. Starting with the parameters set at their prior

mean, we iterate the following steps: Using the simulation smoother of Durbin and Koopman

(2001), we draw the complete monthly dataset (i.e., including draws of the latent missing val-

ues) conditional on the model parameters Am’s and Σm; then, using the posterior sampler of

Giannone, Lenza, and Primiceri (2015), we draw the hyperparameters λ, µ and ψ conditional

on the complete monthly dataset, and finally, we draw the model parameters conditional on the

hyperparameters and the complete monthly dataset. This process naturally also yields draws

of the nowcast/forecast conditional on the dataset used for estimation.

2.3 B-BVAR: Blocking or Stacking

The idea behind blocking is to align all frequencies to the lowest sampling frequency by treat-

ing the higher frequency (monthly) variables as multiple lower frequency (quarterly) variables.

Similar methods have been developed for periodic systems in the control engineering literature

(see Bittanti, 1986; Bittanti and Colaneri, 2009; Chen, Anderson, Deistler, and Filler, 2011;

Zamani, Chen, Anderson, Deistler, and Filler, 2011), and have been recently applied in macroe-

conometrics by Carriero, Clark, and Marcellino (2015), McCracken, Owyang, and Sekhposyan

(forthcoming), Ghysels (2016).

are estimated with 5 quarterly lags. For example, with data available until the end of March, i.e. the first
quarter of the current year, the B-BVAR and C-BVAR include lagged monthly information up until October of
the year before the last (the former because of its block structure, the latter because monthly variables enter as
three-month moving averages). To ensure that this is also the case with the L-BVAR, we need 17 monthly lags.

11We treat quarterly data as monthly data available only in the last month of the quarter. Hence, the
latent variable we estimate inherits the features of the quarterly variable (e.g. in the case of GDP it is still
defined approximately as the sum of three consecutive monthly levels). Our modelling choice implies that, in
practice, we might have a richer autoregressive structure in the latent variable process. An alternative path is
to also approximately model the quarterly variables as the sum, within the quarter, of a latent monthly series.
Enforcing these restrictions is important in factor models where the lag structure is typically less general than in
our BVARs. Indeed, when we specify the restrictions in our state space, we do no find improvements given the
very general lag structure of the model.

12By contrast, Schorfheide and Song (2015) and Brave et al. (2019), who deal with mixed frequency following
a similar approach, resort to empirical Bayes methods to select the prior hyperparameters.
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We specify the VAR at quarterly frequency and define the monthly variables as three separate

series, one for each month of the quarter. For example, let xtm with tm = 1, 2, 3... be a vector of

monthly variables. We derive from it three quarterly variables by treating data from the first,

second and third months of the quarter, respectively, as three individual series:

xqtq ≡
[
x′tm−2 x′tm−1 x′tm

]′ ≡ [x′tq−2/3 x′tq−1/3 x′tq

]′
where tq = tm/3 for tm = 3, 6, 9.... These three (quarterly) series can now simply be stacked with

other quarterly variables ytq in a vector xtq =
[
y′tq xqtq

′
]′

. xtq is a vector of length n = q + 3m,

where q is the number of quarterly variables and m is the number of monthly variables in our

system. In our empirical application, we simply model this vector as a VAR(p), just like (1),

and set the number of quarterly lags to p = 5.

The system can then be readily estimated with Bayesian methods. The use of Bayesian shrinkage

allows us to handle large systems like the one implied by the blocking approach. In contrast,

classical inference, as in Ghysels (2016), is not appropriate in this context due to the high

number of free parameters. We adopt the same prior that we use for the quarterly model,

namely a Normal-Inverse-Wishart prior for the coefficients of the VAR centred around a random

walk/white noise model, combined with a “sum-of-coefficients” prior. As for the L-BVAR, we

conduct posterior inference on the hyperparameters describing the informativeness of the priors,

following Giannone, Lenza, and Primiceri (2015).13

Given the model parameters, the nowcasts can be viewed as forecasts conditional on different

information sets. We compute these using the Kalman filtering techniques described in Bańbura,

Giannone, and Lenza (2015).14

2.4 C-BVAR: Cube root

This section, with further details provided in Appendix A, reflects and expands the results pre-

viously derived for DSGE models by Giannone, Monti, and Reichlin (2016). For this approach,

we assume, as in the L-BVAR case, that all variables exist at higher frequency, but some are

only sampled at quarterly frequency, so for these variables we only have observations in March,

June, September and December. We transform all variables to correspond to a quarterly quan-

tity when observed at end of the quarter, following Giannone, Reichlin, and Small (2008). Let

us again denote by xtm = (x1,tm , ..., xn,tm)′ the vector of (possibly latent) monthly counterparts

13These priors do not explicitly take into account that, in thr B-BVAR, some variables reflect the observations
for three consecutive months of the same monthly time series. We maintain the same priors used in other models
to preserve comparability in our empirical application. We leave the exploration of other more sophisticated
priors for future research. These alternative priors could either explicitly acknowledge the restrictions across
equations implied by the B-BVAR (highlighted in 2), breaking the conjugacy of the setup, or take the form of
weaker shrinkage for specific linear combinations of the variables, in line with the long run priors of Giannone
et al. (2019a).

14The Kalman filter handles the jagged edges in a reduced-form VAR. A special case is the model by Mc-
Cracken, Owyang, and Sekhposyan (forthcoming), which requires a recursive identification structure with the
variables ordered according to the time in which the data are released by the statistical office.
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to the variables that enter the quarterly model.

Consistent with our definition of the monthly variables, the vector Xtm =
(
x′tm , . . . , x

′
tm−3p+3

)′
corresponds to its quarterly model-based concept Xtq when observed in the last month of each

quarter, where tq = tm/3 for tm = 3, 6, 9, . . .

Consider the quarterly V AR(p) model of equation (1), rewritten in companion form:

Xtq = ΦXtq−1 + νtq , (4)

with νtq =
(
ε′tq ,01×n(p−1)

)′
, which can also be rewritten in terms of monthly quantities as

Xtm = ΦXtm−3 + νtm (5)

when tm corresponds to the last month of a quarter. We assume that the monthly counterpart

of model (4) can be written as15

Xtm = ΦmXtm−1 + νm,tm , (6)

with νm,tm =
(
ε′m,tm ,01×n(p−1)

)′
, νm ∼ N (0,Ωm). We also assume that Φm is full, real and

stable. Iteration of (6) implies that

Xtm = Φ3
m Xtm−3 + νm,tm + Φmνm,tm−1 + Φ2

mνm,tm−2, (7)

which together with our previous assumptions entails the following relationships between the

quarterly model (5) and the monthly model (6):

Φm = Φ
1
3 (8)

νtm = νm,tm + Φmνm,tm−1 + Φ2
mνm,tm−2. (9)

From (8) it is clear that an essential part of finding a suitable mapping between the two models

is finding a cube root of Φ, which raises the issue of multiple solutions. We follow the procedure

proposed in Giannone, Monti, and Reichlin (2016) to select among multiple cube roots of Φ.16

On the other hand, equation (9) implies that the monthly covariance matrix Σεm , and therefore

15If the variables considered are stocks, the formulation (6) implies no approximation, because selecting a
higher frequency just means sampling at a different frequency. If instead the variables considered are flows,
then our definition of the monthly variables as an average over the quarter implies that we are introducing a
non-invertible moving average in the growth rates. Therefore modeling this monthly concept as autoregressive
introduces some mis-specification.

16We can also evaluate the likelihood of all solutions using the Kalman filter and pick the one with the highest
likelihood (Anderson et al. (2016b) show g-identifiability when (enough) high frequency data is available), though
this is more computationally intensive. In the cases where we have tried it, the solution corresponds to the one
with the roots with the smallest argument, as in Giannone, Monti, and Reichlin (2016).
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Ωm, can be recovered from

vec (Σεm) = (In2 +A⊗A)−1 vec (Σν) , (10)

with A =
[
Φ2
m11 − Φm11 (J ′J)−1 J ′Φm·1

]
, J = [In . . . In]′ and Φm·1 =

[
Φ′m21 . . .Φ

′
mp1

]′
.

In summary, the first step to obtain the C-BVAR is to estimate a quarterly V AR (p) model,

like the one in Section 2.1. Given estimates of the parameters of the quarterly model (4), Φ and

Ω, we define a monthly model (6) with parameters Φm and Ωm, which can be recovered from

equations (8) and (10). Finally, as for the B-BVAR, we compute the distributions of forecasts

conditional on the real-time data flow, exploiting the Kalman filtering methods.

2.5 Mapping across methodologies

We now show analytically, in the context of a VAR(1), how the different methods presented

above relate to each other, and the restrictions on economic dynamics they imply, extending

the analysis in Anderson et al. (2016a) to the case of monthly and quarterly variables.

Consider a VAR(1) for vector xt = [xft
′
xst
′]′. where xft is an nf × 1 vector of high-frequency

(or fast) variables and xst is an ns× 1 vector of low-frequency (or slow) variables. For simplicity

we assume that nf = ns = 1. The high-frequency variables are available at each point in time,

while the slow variables are available only at t, t− 3, t− 6, .... All variables are stocks:[
xft
xst

]
=

[
aff afs

asf ass

]
︸ ︷︷ ︸

A

[
xft−1

xst−1

]
+ νt (11)

where νt = [νft
′
νst
′]′ is iid with mean zero and variance Σ =

[
σff σfs

σsf σss

]
.

In order to write the system in terms of observed variables only, we define xft−1 and xft−2, say

the monthly variables in April and May, as a function of [xft−3 x
s
t−3]′, the monthly and quarterly

variables in March, when both variables are observable.

xft−2 = affx
f
t−3 + afsx

s
t−3 + νft−2

xft−1 = aff (affx
f
t−3 + afsx

s
t−3 + νft−2) + afs(asfx

f
t−3 + assx

s
t−3 + νst−2) + νft−1
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Stacking these expressions with (11), we obtain:
xft
xst

xft−1

xft−2

 =


A3 02,2

a2
ff + afsasf affafs + afsass 01,2

aff afs 01,2



xft−3

xst−3

xft−4

xft−5

+


A2νt−2 +Aνt−1 + νt

affν
f
t−2 + afsν

s
t−2 + νft−1

νft−2


︸ ︷︷ ︸

ν̃t

(12)

where

Σν̃ =

 σff σfs 01,2

σsf σss 01,2

02,1 02,1 02,2

+


A

1 0

0 0


[
σff σfs

σsf σss

][
A′

1 0

0 0

]
+

+


A2

aff afs

1 0


[
σff σfs

σsf σss

][
A2′ aff 1

afs 0

]

We can relate models (11) and (12) to the three methodologies described in the previous sub-

sections:

• L-BVAR. This approach simply corresponds to (11), treating slow variables as latent

processes. For estimation, we rely on standard filtering and smoothing techniques.

• B-BVAR. System (12) has the form of a blocked VAR, but with some additional restric-

tions on the covariance matrix of the residuals and on the autoregressive matrix. Note

that we do not impose such restrictions, and instead conduct inference on an unrestricted

VAR. In this sense, our B-BVAR therefore encompasses the L-VAR.

• C-BVAR. The cube root C-BVAR simply corresponds to the top two rows of system (12).

We estimate A3 and the corresponding covariance matrix at quarterly frequency, and then

take advantage of the relationships implied by the top rows of (12) to obtain A and the

covariance matrix in monthly space.

Comparing the three methods, it is clear that the B-BVAR imposes the least restrictions on the

dynamics of the monthly model. This flexibility may be useful since the finite autoregression is

to be seen as an approximation of the underlying data generating process. Moreover, in general,

the mapping described above is less clear-cut, for example if there is a mix of variables with a

stock or flow nature, or if the data are better approximated by a model with more lags. The

cost of such flexibility is the larger number of free parameters, which is handled by means of

Bayesian shrinkage. The C-BVAR is instead very parsimonious, but implies many restrictions

on the monthly model. Unlike the C-BVAR, which backs out the parameters governing the evo-
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lution of the quarterly variables at monthly frequency analytically, the L-BVAR estimates them

iteratively with the latent variables, and is somewhere in between the two previous approaches

in terms of how much structure is imposed on the monthly model.

3 Nowcasting

The mixed-frequency BVARs discussed in Section 2 can be used to nowcast the economy, taking

advantage of the real-time information flow, while still accounting for all the sources of uncer-

tainty inherent in producing a forecast. We compare the different mixed-frequency methods

outlined in Section 2 by assessing their performance in a fully real-time nowcasting exercise.

We compare the models’ point nowcasts of US real GDP growth with the New York Fed Staff

Nowcasts (see Bok et al., 2018), a näıve quarterly AR(2) model and the quarterly BVAR model

presented in Section 2.1. We also assess the properties of the mixed-frequency BVARs’ nowcast

densities.

3.1 Data

The models are estimated on key macro variables (real GDP, real consumption, real investment

and a measure of real disposable income), labour market indicators (a measure of real wage

inflation based on compensation per hour, employment, the unemployment rate and average

weekly hours), financial market variables (the Federal Fund rate, the spread between the an-

nualized Moody’s Seasoned Baa corporate bond yield and the 10-Year Treasury note yield at

constant maturity), real indicators (such as industrial production and house starts), price data

(CPI and PCE price indices, as well as the GDP deflator), a credit variable (business loans), a

measure of uncertainty (Baker, Bloom, and Davis (2016)’s economic policy uncertainty index)

and the manufacturing Purchasing Managers’ Index (PMI). GDP, investment, the GDP deflator

and compensation per hour are available at quarterly frequency only, while the other variables

are available at monthly frequency, or higher (in which case, we take their monthly averages).

We reconstruct real-time weekly vintages of data that replicate the exact data availability as

of each Friday between the beginning of 2005 and the end of 2019, the same convention used

for the weekly updates of the New York Fed Staff Nowcasts. In each vintage, all variables are

available from October 1986.

The variables enter the different models in log-levels, except the PMI and those already defined

in terms of (annualized) rates, such as the unemployment rate, which enter in levels.1718

To obtain real quantities, investment and compensation per employee are deflated with the GDP

17As discussed in Section 2.4, for the C-BVAR monthly variables are transformed so as to correspond to a
quarterly quantity when observed in the final month of each quarter before taking logs (see Giannone et al., 2008)
With our data, that means taking 3-months moving averages of all monthly variables.

18As articulated clearly by Giannone et al. (2019a), low frequency trends in the data combined with small
samples can lead to very poor forecasts at long horizon. This problem can be corrected by using appropriate
priors for the long run or by using alternative data transformations. Since the focus of the paper is on short and
medium horizons, we leave this issue for future analysis.
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Table 1: Data and timing of releases
Variable Frequency Publication timing Delay (days) Transformation Prior FRED id
Economic Policy Uncertainty Index m 1st bus. day of the month 3 level wn USEPUINDXM
Purchasing Managers’ Index m 1st bus. day of the month 3 level wn NAPMa

Employment m 1st Friday of the month 7 log-level rw PAYEMS
Unemployment rate m 1st Friday of the month 7 level rw UNRATE
Avg. weekly hours m 1st Friday of the month 7 log-level rw AWHNONAG
Industrial production m middle of the month 17 log-level rw INDPRO
CPI inflation m middle of the month 18 log-level rw CPIAUSL
Loans m 3rd week of the month 26 log-level rw BUSLOANS
Housing starts m 3rd week of the month 27 log-level rw HOUST
Real GDP q last week of the month 28 log-level rw GDPC1
Business investment q last week of the month 28 log-level rw FPI
GDP deflator q last week of the month 28 log-level rw GDPDEF
Compensation per hour q last week of the month 28 log-level rw COMPNFB
Private consumption m last week of the month 30 log-level rw PCE
PCE price index m last week of the month 30 log-level rw PCEPI
Real Disp.Personal Income m last week of the month 30 log-level rw DSPIC96
Fed funds rate m last week of the month 0 level rw FEDFUNDS
Credit spread m last week of the month 0 level rw BAA10YM

aNow on Haver Analytics

Note: Data series are ordered based on the release timing within the calendar month. The (indicative) delay of
each release in the fourth column is relative to the end of the reference period and based on the 2017 calendar.

deflator, while consumption is deflated with its own price index. For the sake of parameterizing

the Minnesota prior, the uncertainty indicator and the PMI are assumed to be stationary and

hence the coefficient on their first lag is centered around zero rather than unity. Table 1 reports

all variables used, their frequency and publication lag, whether they enter the model in levels or

log-levels and whether their Minnesota prior is assumed to be centered around a random walk

or a white noise, as well as their FRED id.

3.2 Nowcasting performance

We start by comparing the point nowcasting performance of the BVARs, the New York Fed

Staff Nowcasts and the two quarterly benchmarks over a sample period that ranges from the

beginning of 2005 to the end of 2019. Figure 1a reports, for every week in the quarter,19 the

root mean square errors (RMSEs) for the point nowcasts of real GDP produced by the New

York Fed Staff (NY Fed DFM), a BVAR only using quarterly versions of our data (Q-BVAR),20

a simple AR(2) for real GDP (AR-2), and the three approaches for mixed-frequency BVARs

described in Section 2, which are labelled B-BVAR, C-BVAR and L-BVAR, respectively. For

the DFM, we take the historical nowcasts available on the NY Fed website, while for all other

models, we take as point forecasts the medians of the respective predictive densities at the

nowcast horizon.21

The performance of the three mixed-frequency models differs until week 6, when the first in-

formation on the current quarter becomes available. After that, the performance of all three

19Week 1 indicates the first week of a quarter, i.e., the one that contains the first Friday of that quarter;
week 14 is the 14th week since the beginning of a quarter, and corresponds to Week 1 of the following quarter,
i.e., contains its first Friday. So for example, the data vintage as of 7 January 2005 corresponds to week 1 of
the 2005Q1 nowcast, while 1 April 2005 corresponds to both week 14 of the 2005Q1 nowcast and week 1 of the
2005Q2 nowcast.

20The Q-BVAR corresponds to the first step needed to obtain the C-BVAR, see Section 2.4.
21Appendix B reports the mode of the posterior distribution of some selected prior hyperparameters, over

time.
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Figure 1: Nowcasting performance per week of the quarter

2 4 6 8 10 12 14

Week

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3
R

M
S

E

NY-Fed DFM
B-BVAR
C-BVAR
L-BVAR
Q-BVAR
AR(2)

(a) Root mean squared error

2 4 6 8 10 12 14

Week

-2.3

-2.25

-2.2

-2.15

-2.1

-2.05

-2

-1.95

-1.9

-1.85

A
V

LS

B-BVAR
C-BVAR
L-BVAR
Q-BVAR
AR(2)

(b) Average logarithmic score

Note: The left panel compares the accuracy of point forecasts across models – measured by their Root Mean
Squared Errors – while the right panel compares the accuracy of density forecasts – measured by their Average
Logarithmic Scores – as more information becomes available in each week of the quarter. The forecast evaluation
sample is 2005-2019.

models is comparable and shows monotonic improvements in accuracy as the information flows

through the quarter, when the models are able to exploit the more stable contemporaneous cor-

relations across variables, rather than the lead/lag correlations that longer-term forecasts rely

on. The B-BVAR presents a somewhat more marked kink in week 5, due to a loss of accuracy

in two specific episodes, namely 2009Q1 and 2009Q2.

The informational advantage that comes from being able to process higher-frequency informa-

tion is evident when comparing the behaviour of the three mixed frequency BVARs to the

quarterly benchmarks: while at the beginning of the quarter the performance of the Q-BVAR

is comparable to or better than those of other models, by the middle of the second month, the

quarterly model is clearly lagging behind, catching up to a certain extent only in week 14, when,

at the close of the quarter, financial variables and the PMI and uncertainty indices for the full

quarter become available.

In order to assess the ability of the models to characterize the uncertainty surrounding GDP

nowcasts,22 we compute average log predictive scores for the nowcast densities at the end of

each week of the quarter (Figure 1b). The average log predictive score is a common scoring rule,

used to evaluate the quality of probabilistic forecasts given a set of outcomes, and is defined as:

Sh(M) =
1

Nh

T−h∑
t=R

ln p (yt+h|y1:t,M) , (13)

where h is the forecast horizon, R is the beginning of the forecast evaluation period, T is the lat-

est period for which data are available, Nh is the number of forecast origins, and p (yt+h|y1:t,M)

is the predictive density from model M estimated at time t and evaluated at the actual data

22Historical density nowcasts for the NY Fed’s DFM are not publicly available, so the model is omitted from
this comparison.
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outturn.

The improvements of log scores with the arrival of new information throughout the quarter

mostly mirror the corresponding reductions in the RMSEs. As for point forecasts, the density

forecasts of the mixed-frequency BVARs perform similarly, while those of the Q-BVAR are only

‘competitive’ at the beginning and then again at the close of the quarter.

4 Policy Analysis

In this section, we present three policy exercises. First, we report a GDP nowcast, as well

as a joint forecast of the annual growth rate of real GDP and of annual PCE inflation, based

on data up to 2020Q1, i.e., the start of the Covid-19 pandemic crisis. Second, we show that

mixed-frequency BVAR models can be used for structural analysis, just like their quarterly

counterparts and, as an example, we present the generalized impulse response functions to

a GDP shock. Besides describing the dynamics of the US economy, by comparing impulse

responses across our BVAR approaches, we can also draw useful insights on the reasons why

considering mixed-frequency data is important: whether it’s mainly for their timeliness, or

because they also provide information useful for identifying the dynamic relationships among

variables. Finally, we show a counterfactual exercise aimed at forecasting the 2008Q4 Fed Funds

“shadow rate” in real time, a common practice in central banks, used to define “benchmark”

paths for their policy rates.

4.1 The current conjuncture: the Covid-19 crisis

The Covid-19 pandemic has triggered a dramatic contraction in economic activity worldwide,

and has also strongly impacted the US economy. It seems therefore natural to apply the methods

discussed in this paper to a situation in which the data flow received by the forecasters shows

a progressive deterioration of the economic environment, which was indeed the case at the

beginning of the 2020 pandemic crisis.

The top panel of Figure 2 reports the distributions of the nowcasts of real GDP in Q1 2020

produced by the blocked BVAR model (B-BVAR) at the end of weeks 1 through 18 of 2020, with

the other models’ point nowcasts shown as lines, while the bottom panel relates the changes

in the point B-BVAR nowcasts to various categories of data releases. As it is apparent, all

nowcasts dropped considerably once March data started to become available in early April,

and continued to deteriorate with the weekly data flow; the uncertainty around the B-BVAR

nowcast also increased. Nevertheless, the preliminary GDP release on 29 April still surprised

to the downside, although it fell within the range of plausible outcomes.

VARs also allow us to analyse the joint densities of two or more variables and how they evolve

as more information becomes available over time. Figure 3 plots the joint distribution of the

B-BVAR forecasts of annual real GDP growth and PCE inflation at different dates in the first

quarter of 2020, together with their marginals. This figure describes how information about the
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Figure 2: Nowcast for real GDP growth in Q1 2020
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Note: The top panel shows the probability distribution of B-BVAR nowcasts in each week from the beginning of
2020 until the preliminary relase of Q1 GDP on 29 April, the median nowcasts from the C-BVAR and L-BVAR,
as well as the NY Fed’s DFM nowcast. The fan chart bands cover 99% of the support around the median: the
darkest shade of blue corresponds to the median, while lighter shades represent percentiles increasingly removed
from it. The bottom panel imputes weekly changes in the B-BVAR’s (point) nowcast to existing data revisions
and new data releases, grouped by type of variable.

economic fallout from the Covid-19 crisis is reflected in the forecasts for these two variables,

both in terms of location and dispersion. Indeed, our latest forecast (as of 22 May 2020) is much

more pessimistic than those made in January and even early April, and points to a median real

GDP contraction of about 5.3% this year, while the bulk of the predictive distribution of PCE

inflation is in negative territory. The uncertainty surrounding the May forecast is also much

larger compared to the two earlier forecasts.23

4.2 Impulse response functions

Mixed-frequency BVARs can also be used to identify shocks and investigate their transmission

mechanism, thus retaining one of the most appealing features of VAR models, with the added

benefit that the analysis can potentially be also carried out at monthly frequency.

Rather than engaging in a full-fledged structural identification exercise, which would rely on

potentially debatable identification assumptions, for illustrative purposes, we present a general-

23An additional avenue to improve in- and out-of-sample density forecasts is to account for stochastic volatility,
which can be easily introduced in large VARs, as shown by Carriero, Clark, and Marcellino (2016). Pettenuzzo,
Timmermann, and Valkanov (2016) and Carriero, Clark, and Massimiliano (2020) are example of models with
stochastic volatility that exploit mixed-frequency data for nowcasting.
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Figure 3: Evolution of the joint distribution of the forecasts for GDP growth and PCE inflation
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Note: The scatter plot shows draws from the B-BVAR’s joint predictive densities for annual GDP growth and
PCE inflation in 2020 in three different weekly vintages. The two plots along the axes show kernel-smoothed
estimates of the marginal predictive densities for the two variables in the same three vintages. Annual growth
rates are computed from the underlying projections in log levels for the corresponding variables.

ized impulse response function to a one standard deviation GDP shock (Figure 4). Generalized

impulse response functions to GDP capture the responses of the variables in the model to a

linear combination of the structural shocks that have been the main historical drivers of inno-

vations in GDP fluctuations (see, e.g., Pesaran and Shin, 1998; Bańbura, Giannone, and Lenza,

2015) and are helpful tools to characterize the dynamics of the US economy over a “typical”

business cycle.24 Other setups, both in terms of more elaborate identification schemes and of

shocks occurring in different months of the quarter, can be easily accommodated within all

three models. As an example, we report in Appendix C the impulse response functions to an

uncertainty shock identified as in Bloom (2009).

Figure 4 reports the 68% credible intervals for the quarterly Q-BVAR model and shows the

median responses for the three mixed-frequency approaches.25 All models produce broadly sim-

ilar IRFs. Consistent with the established VAR literature, a shock to GDP triggers a positive

reaction of consumption, investment, and compensation per hour, while the unemployment rate

decreases for about 12 quarters after the shock. The shock is inflationary, as shown by the

positive reactions of the GDP deflator, CPI and PCE price indices, suggesting that demand

shocks are important drivers of GDP in the US, and this is accompanied by a tightening of

24In practice, the generalized impulse responses to GDP are equivalent to a perturbation of the forecast error
of GDP in a recursively-identified VAR, with GDP ordered first, and yield results that are very similar to the
responses to a typical business cycle shock, defined as the linear combination of structural shocks that have have
been the main historical drivers of innovations of GDP variation at business cycle frequencies (see Giannone,
Lenza, and Reichlin, 2019b; Angeletos, Collard, and Dellas, 2020). The similarity between the two approaches
was recently documented also by Del Negro, Lenza, Primiceri, and Tambalotti (2020).

25The responses have been scaled to match the Q-BVAR’s impact real GDP response.
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Figure 4: Generalised impulse response function to a GDP impulse
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Note: Generalised impulse response function (GIRF) to a one standard deviation shock to GDP, shown at
quarterly frequency. The green areas represent the 68% credible intervals for a one standard deviation impulse
to the Q-BVAR model; the red, blue and black lines show the median GIRFs for the C-BVAR, B-BVAR and
L-BVAR models, respectively, scaled to deliver the same impact GDP response as the Q-BVAR model. The
dynamics are in line with standard results from quarterly VARs for the US economy (see for example Del Negro
et al., 2020).
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the Federal Funds rate for about three years, which reflects the systematic component of US

monetary policy. As for other variables, there is a short-lived positive spike in the PMI in-

dex, business loans increase rather persistently after the shock, while the BAA spread and the

uncertainty index drop, but only for a few quarters.

Besides describing the dynamics of the US economy, this exercise also allows us to draw some

insights on the relevance of mixed-frequency data. In VAR models, the individual estimated

parameters, especially in high-dimensional models such as those we consider in this paper, can-

not be easily used to assess the similarity across models. However, our generalized impulse

responses convolve the estimated VAR parameters and thus greatly facilitate such comparisons

across models. Figure 4 shows that most impulse responses are very similar across the three

mixed-frequency methodologies, including those of the C-BVAR, which is estimated exclusively

on quarterly variables and, moreover, that they are also similar to those of a quarterly model.

This suggests that the potential bias implied by temporal aggregation on the analysis of eco-

nomic dynamics (e.g. Sims (1971), Hansen, Sargent et al. (1981), Christiano and Eichenbaum

(1986)) is negligible, and mixed-frequency data do not help to uncover dynamic relations among

variables that would be otherwise obscured by temporal aggregation. Hence, mixed-frequency

data are mainly important for their timeliness.26

4.3 The real-time evolution of the 2008Q4 Fed Funds shadow rate

Central banks routinely use counterfactual interest rate paths as benchmarks to gauge whether

their policy rates, and the closely related short-term money market rates, are at reasonable

levels given prevailing and expected economic conditions.27 In this vein, we use our mixed

frequency VAR framework to estimate the level of the Fed Funds rate compatible with US

economic conditions. We focus on the level of the Fed Funds rate, a measure of the Fed’s

monetary policy stance, in the fourth quarter of 2008 because that was the first quarter in

which the actual Fed Funds rate hit the zero lower bound due to the intensification of the 2007-

2009 global financial crisis. Specifically, was ask the question at which point, in the course of

2008, a VAR analysis would have revealed that the Fed Funds rate was going to head decisively

toward or even below zero. The assessment is carried out for each weekly data vintage of 2008

included in our real-time database.

Traditionally, the analysis of benchmark counterfactual rates has been based on the Taylor rule

framework (see Taylor, 1993), which relates the level of the short-term interest rate to inflation

and a measure of real economic activity (for recent examples, see Bernanke, 2015; Nechio, 2011;

Hartmann and Smets, 2018). At the same time, in their monetary policy briefings, central

26This result is corroborated also by re-running the nowcasting evaluation exercise of the previous Section, but
only feeding the mixed-frequency models information that could also be incorporated in a quarterly model, i.e.
only full quarterly data. When doing so, the mixed-frequency models’ improvement in forecasting performance
from weeks 5-6 onward all but disappears, and all three models perform very similarly to the Q-BVAR.

27Since the zero lower bound has been reached in many countries, these exercises have taken a different twist,
whereby a very negative counterfactual policy rate is taken as an indication that additional accommodation by
means of non-conventional policy tools may be warranted (for example Giannone et al., 2019c).
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Figure 5: Counterfactual Fed Funds Rate for 2008Q4
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Note: Horizontal axis: data vintages used to compute the forecast of the 2008Q4 Fed Funds rate. Vertical
axis: value of the (counterfactual) Fed Funds rate in percentage points. The fan chart bands cover 99% of the
support around the median: the darkest shade of blue corresponds to the median, while lighter shades represent
percentiles increasingly removed from it. The black dashed line is the median of the Q-BVAR counterfactual Fed
Funds rate estimated on the same vintages.

banks rely on many different sources of information, so that their assessment of economic

conditions can be well-characterised as a Big Data problem (see, for example, Giannone et al.,

2005; Bernanke et al., 2005). Our VAR models are well equipped to capture this idea, given

that they include a relatively large amount of information. Moreover, their ability to deal with

mixed-frequency data and, hence, to account in a more timely fashion for incoming information

potentially relevant for the setting of the Fed Funds rate, allows the assessment of the benchmark

policy rate to be based on the latest news on US economic conditions.

The counterfactual path of the short-term interest rate estimates we derive for 2008Q4 is one

that would be compatible with the developments in the US economy and the historical monetary

policy rule implicit in our VAR estimates, which may be thought as a generalization of the

Taylor rule. To derive this path, we assume that the data on the Fed Funds rate for 2008Q4

were missing even when, over the course of the fourth quarter of 2008, such data started to

become available (at monthly frequency). Figure 5 reports the level of the counterfactual Fed

Funds rate for 2008Q4, conditional on the information available at the time of the analysis (over

the 52 weeks in 2008, with dates reported on the horizontal axis). The results are presented in

the form of a fanchart, where areas closer to the median are indicated by a darker colour. For

the sake of brevity, the results refer to the B-BVAR, but the L-BVAR and C-BVAR results are

very similar. As a term of comparison, we also report the median estimates of the counterfactual

Fed Funds rate from the Q-BVAR.

The mixed-frequency VAR would have led to a more timely assessment of the deterioration of

economic conditions in the US economy and, consequently, suggested that the level of the Fed

Funds rate would head toward very low levels ahead of the quarterly VAR.
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5 Conclusions

This paper has shown that BVARs can be successfully used to handle Big Data – i.e., a large

set of macroeconomic time series with different frequencies, staggered release dates, and various

other irregularities – for the purpose of real-time nowcasting.

BVARs are more tractable and have several other advantages compared to competing nowcast-

ing methods, most notably Dynamic Factor Models. For example, they have a more general

structure and do not assume that shocks affect all variables in the model at the same time, face

the econometrician with less stark modelling choices (e.g., related to the number of lags, the

block-structure, etc.), or do not require the data to be made stationary.

We present three strategies for dealing with mixed-frequency data in the context of VARs: first,

a model – labelled “latent BVAR” – which assumes that all variables are high-frequency time

series, but that some of them are observed only at low frequency. Second, a methodology known

as “blocking,” which treats higher-frequency data as multiple lower-frequency variables. Third,

we use the estimates of a standard low-frequency VAR to update a higher-frequency model, and

refer to this latter approach as “cube-root BVAR.”

Based on a sample of real-time data from the beginning of 2005 to the end of 2019, we show

that these models would have nowcasted U.S. GDP growth as well as established benchmarks

such as the New York Fed’s Dynamic Factor Model, displaying a clear improvement in forecast

accuracy as the quarter progresses and more information becomes available. We also find that

all the models produce similar predictions and impulse response functions, which indicates that

they all capture genuine data features.

We also discuss the advantages and drawbacks of each of these approaches. Comparing the

impulse response functions from these three models, which are very similar, we also infer that

the importance of incorporating mixed-frequency data derives mainly from their timeliness.

Indeed, models which do not rely on mixed-frequency data capture similar economic dynamics

as the mixed-frequency approaches, implying that the potential bias due to temporal aggregation

is negligible in practice. Finally, we show that mixed-frequency BVARs are also powerful tools

for policy analysis, and can be used to evaluate the dynamic impact of shocks and to construct

counterfactual scenarios, which increases their appeal as operational tools in central banks and

international organisations.
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A C-BVAR: Detailed derivation

Start from the quarterly V AR(p) model of equation (1), rewritten in companion form:

Xtq = ΦXtq−1 + νtq , (A.1)

with Xtq = (x′tq , ..., x
′
tq−p+1)′, νtq =

(
εt
′
q,01×n(p−1)

)′
, ν ∼ N (0,Ω) and

Φ =


A1 A2 · · · Ap

In 0n · · · 0n

0n
. . . · · · 0n

0n · · · In 0n

 Ω =


Σε 0n · · · 0n

0n · · · . . . 0n

0n 0n · · · 0n

 .

Model (A.1) can also be rewritten in terms of monthly quantities as

Xtm = Φ Xtm−3 + νtm (A.2)

when tm corresponds to the last month of a quarter. Assume that the monthly counterpart of

model (A.1) can be written in state-space form as

Xtm = ΦmXtm−1 + νm,tm , (A.3)

with νm,tm =
(
ε′m,tm ,01×n(p−1)

)′
, νm ∼ N (0,Ωm) and

Φm =


Φm11 Φm12 . . . Φm1p

Φm21
. . .

...

Φmp1 Φmpp

 Ωm =


Σεm 0n · · · 0n

0n · · · . . . 0n

0n 0n · · · 0n

 .

Also assume that the elements of Φm are real and stable.

The first n rows of system (A.3) correspond to a restricted monthly V AR of the following form:

xtm = Φm11xtm−1 + Φm12xtm−4 + · · ·+ Φm1pxtm−3p+2 + εm,tm , (A.4)

The restriction is that current (monthly) values only depend on one month within each lagged

quarter. The remaining rows impose restrictions on how the (possibly latent) lagged monthly

states are updated each month with the arrival of new information. They imply that the lagged

states on the left-hand side also depend on future states on the right-hand side. Intuitively, this

happens because our assumptions require the states of the monthly model to match those of

the quarterly one at the end of each quarter, and thus all latent states within a quarter need to

be updated with the arrival of new information.
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Iteration of (A.3) implies that

Xtm = Φ3
m Xtm−3 + νm,tm + Φmνm,tm−1 + Φ2

mνm,tm−2, (A.5)

which together with our previous assumptions entails the following relationships between the

quarterly model (A.2) and the monthly model (A.3):

Φm = Φ
1
3 (A.6)

νtm = νm,tm + Φmνm,tm−1 + Φ2
mνm,tm−2. (A.7)

Equation (A.6) implies that an essential part of finding a suitable mapping is computing the

cube root of Φ, which raises the issue of multiple solutions. If the autoregressive matrix of the

transition equation is diagonalizable,28 i.e if there exist a diagonal matrix D and an invertible

matrix V such that Φ = V DV −1, then the cube root of Φ can be obtained as Φ = V D
1
3V −1,

where D
1
3 is a diagonal matrix containing the cube roots of the elements of D. The real elements

of D, which are associated with real-valued eigenvectors, have a unique real cube root, which

is the only one that gives rise to real values when combined with its associated eigenvector.

Complex conjugate eigenvalues instead have three complex cube roots. When combined with

their associated eigenvector, these still return a real-valued vector. Thus, if k is the number of

complex conjugate couples of eigenvalues in D, then there will be 3k real-valued cube roots for

Φ. We follow the procedure proposed in Giannone, Monti, and Reichlin (2016) to select among

these alternative cube roots of Φ: in the case of real eigenvalues, simply select their real cube

root; in the case of complex conjugate couples, choose the cube root which is characterized by

the least oscillatory behaviour, i.e., the cube root with the smallest argument. An alternative is

to evaluate the likelihood of solutions using the Kalman filter and pick the one with the highest

likelihood29, though this is more computationally intensive. In the cases where we have tried

it, it corresponds to the one with the roots with the smallest argument, as in Giannone, Monti,

and Reichlin (2016).

On the other hand, equation (A.7) imposes a series of restrictions on the behaviour of the

monthly residuals νm,tm . To see that, it’s useful to write it out explicitly:

εtm = εm,tm + Φm11εm,tm−1 + Φ2
m11εm,tm−2

0 = Φm21εm,tm−1 + Φ2
m21εm,tm−2

0 = Φm31εm,tm−1 + Φ2
m31εm,tm−2

...

0 = Φmp1εm,tm−1 + Φ2
mp1εm,tm−2

The last n(p−1) rows constitute an over-determined system of linear equations that, if Φm·1 6= 0,

28For the non-diagonalizable case, see the discussion in Giannone, Monti, and Reichlin (2016)
29Anderson et al. (2016b) show g-identifiability when (enough) high frequency data is available.
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can be approximately solved for εm,tm−1 as follows:

εm,tm−1 = −
(
J ′J
)−1

J ′Φm·1εm,tm−2 (A.8)

with J = [In . . . In]′ and Φm·1 =
[
Φ′m21 . . .Φ

′
mp1

]′
.

Substituting εm,tm−1, as solved in (A.8), into the first n rows of (A.7) allows to recover the

monthly covariance matrix Σεm , and therefore also Ωm, from

vec (Σεm) =

I +

[
Φ2
m11 − Φm11 (J ′J)−1 J ′Φm·1

]
⊗[

Φ2
m11 − Φm11 (J ′J)−1 J ′Φm·1

] 
−1

vec (Σε) . (A.9)

The solution of (A.9) can become computationally costly as the number of variables increases,

as it involves the inversion of an n2×n2 matrix. However, it can be greatly simplified by noting

that the inverse is of the form

(I +A⊗A)−1

with A =
[
Φ2
m11 − Φm11 (J ′J)−1 J ′Φm·1

]
. As long as A is diagonalizable, that is, as long as

there is a diagonal matrix Λ and an invertible matrix P such that A = PΛP−1 , the inverse can

be computed as30

(I +A⊗A)−1 = (P ⊗ P ) (I + Λ⊗ Λ)−1 (P−1 ⊗ P−1
)

(A.10)

which is much more appealing, since (I + Λ⊗ Λ) is diagonal and thus its inverse is trivial to

compute directly, and some of the multiplications in (A.10) can be carried out without explicitly

computing the Kronecker product (see Fernandes et al., 1998).

A.1 AR (2) example

The simplest model our C-BVAR framework applies to is a quarterly AR(2) model31, which

can be written in companion form as:[
yt

yt−3

]
= Φ

[
yt−3

yt−6

]
+

[
εtq

0

]
(A.11)

30The result follows from the properties of the Kronecker product. If A is diagonalizable, then

A⊗A =
(
PΛP−1)⊗ (

PΛP−1) = (P ⊗ P ) (Λ ⊗ Λ)
(
P−1 ⊗ P−1) .

Furthermore, because (P ⊗ P )−1 = P−1 ⊗ P−1, it follows that

I +A⊗A = (P ⊗ P ) (I + Λ ⊗ Λ)
(
P−1 ⊗ P−1)

and also that
(I +A⊗A)−1 = (P ⊗ P ) (I + Λ ⊗ Λ)−1 (P−1 ⊗ P−1) .

31For models with only one quarterly lag, the results in Giannone et al. (2016) apply directly.
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Φ =

[
φ1 φ2

1 0

]
εtq ∼ N (0, σε)

Define the cube-root matrix Φm:

Φm ≡

[
φm11 φm12

φm21 φm22

]
= Φ

1
3 (A.12)

For future reference:

vec
(
Φ2
m

)
=


φ2
m11 + φm12φm21

φm21 (φm11 + φm22)

φm12 (φm11 + φm22)

φm12φm21 + φ2
m22



vec
(
Φ3
m

)
=


φm11

(
φ2
m11 + φm12φm21

)
+ φm12φm21 (φm11 + φm22)

φm21

(
φ2
m11 + φm12φm21

)
+ φm21φm22 (φm11 + φm22)

φm11φm12 (φm11 + φm22) + φm12

(
φm12φm21 + φ2

m22

)
φm12φm21 (φm11 + φm22) + φm22

(
φm12φm21 + φ2

m22

)

 =


φ1

1

φ2

0

 = vec (Φ)

Using Φmwe can posit the following model:[
xt

xt−3

]
=

[
φm11 φm12

φm21 φm22

][
xt−1

xt−4

]
+

[
εm,tm

0

]
(A.13)

This is a model where xt behaves like a monthly VAR with some restrictions – namely that it

only depends on one month within each lagged quarter – and xt−3 gets updated at each iteration

in a way consistent with satisfying the cube root relationship. Iterating backwards we get[
xt

xt−3

]
= Φ3

m

[
xt−3

xt−6

]
+

[
εm,tm

0

]
+ Φm

[
εm,tm−1

0

]
+ Φ2

m

[
εm,tm−2

0

]
(A.14)

Writing out the first row:

xt =
[(
φ2
m11 + φm12φm21

)
φm11 + (φm11φm12 + φm12φm22)φm21

]
xt−3 +

+
[(
φ2
m11 + φm12φm21

)
φm12 + (φm11φm12 + φm12φm22)φm22

]
xt−6 +

+εm,tm + φm11εm,tm−1 +
(
φ2
m11 + φm12φm21

)
εm,tm−2

= φ1xt−3 + φ2xt−6 + εm,tm + φm11εm,tm−1 +
(
φ2
m11 + φm12φm21

)
εm,tm−2

The quarterly residual εtq is thus a moving average of the monthly residuals within the quarter.
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Writing out the second row:

xt−3 =
[
φ2
m11φm21 + φm11φm21φm22 + φm12φ

2
m21 + φm21φ

2
m22

]
xt−3 +

+
[
φm11φm12φm21 + φm12φm21φm22 + φm12φm21φm22 + φ3

m22

]
xt−6 +

+ (φm11φm21 + φm21φm22) εm,tm−2 + φm21εm,tm−1

= xt−3 + (φm11φm21 + φm21φm22) εm,tm−2 + φm21εm,tm−1

This expression entails a restriction on the monthly shocks (for φm21 6= 0):

εm,tm−1 = − (φm11 + φm22) εm,tm−2

Substituting into the expression for xt:

xt = φ1xt−3 + φ2xt−6 + [φm12φm21 − φm11φm22] εm,tm−2 + εm,tm

this implies the restriction that

εtq = εm,tm + [φm12φm21 − φm11φm22] εm,tm−2

and that we can solve for var (εm,tm) from

var (εm,tm) =
[
1 + (φm12φm21 − φm11φm22)2

]−1
var

(
εtq
)

(A.15)

B Hyperparameter estimates

Table B.1: Selected hyperparameter estimates across vintages

2005-2009 2010-2014 2016-2019 Whole sample

λ
B-BVAR 0.96 0.61 0.68 0.75
C-BVAR 0.68 0.68 0.63 0.66
L-BVAR 0.63 0.58 0.56 0.59

µ
B-BVAR 0.92 1.33 0.66 0.97
C-BVAR 0.65 1.35 1.40 1.13
L-BVAR 0.80 1.92 2.43 1.72

Note: The table shows averages across vintages of the posterior modes of the hyperparameters λ and µ, governing
the tightness of the Minnesota and sum-of-coefficients priors, respectively.
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C Impulse response functions to an uncertainty shock
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Note: Impulse response function (IRF) to a one standard deviation shock to uncertainty (in the first month of
the quarter for the mixed-frequency models), identified as in Bloom (2009), shown at quarterly frequency. The
green areas represent the 68% credible intervals for a one standard deviation impulse to the Q-BVAR model; the
red, blue and black lines show the median IRFs for the C-BVAR, B-BVAR and L-BVAR models, respectively,
scaled to deliver the same impact uncertainty index response as the Q-BVAR model.
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