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1 Introduction

Economists have been studying the nexus between labor demand, globalization and technology

adoption for decades. Theory and anecdote suggest that some combination of technology and glob-

alization has raised the relative demand for more skilled workers.1 However, causal identification

of these forces has proved challenging, as well as the channels through which they operate. While

there is a consensus that skill-biased technological change (SBTC) has raised the relative demand

for more skilled workers, direct micro evidence on the drivers of SBTC is remarkably sparse. One

reason for this absence of evidence is that technological change is devilishly difficult to measure. In

this paper we overcome these challenges.

We study how firm-level decisions on research and development (R&D), information and com-

munication technology (ICT) adoption, as well as exporting and importing decisions affect firm-level

productivity and its bias towards skilled workers. These shifts in productivity, in turn, affect firms’

optimal demand for labor. We find large effects of global participation, R&D and, in particular,

ICT on labor demand through their effects on SBTC.

We make several contributions. Our first is to develop new methodology to estimate a firm-

level nested constant elasticity of substitution (CES) production function, where we nest skilled

and unskilled labor in a labor composite. This allows us to compute both Hicks-neutral and skilled

labor augmenting productivity shifters. We demonstrate that nesting skilled and unskilled labor

has important implications for estimating the effects of participation in international trade and

technology adoption on productivity.2 Second, while most studies rely on small samples and/or

focus on manufacturing, we apply our methodology to to most sectors of the French private sector,

including both manufacturing and non-manufacturing industries.3 This is particularly important

for evaluating the effects of ICT, which is pervasive outside of manufacturing.

We then jointly estimate the separate causal effects of firm-level decisions on R&D and ICT

investments, as well as decisions on importing and exporting on both dimensions of productivity,

Hicks neutral and skill-augmenting. Ours is the first paper to do this. Finally, we evaluate the

quantitive implications of our estimates, both at the firm-level and for aggregate relative demand

for skilled labor. One important finding is that ICT has the largest effect on aggregate demand for

1Helpman (2018) and Acemoglu and Autor (2011) provide insightful reviews of the literature.
2This goes beyond Fox and Smeets (2011), who find that adjusting inputs for quality in several dimensions

lowers Hicks-neutral productivity dispersion. Our point here is that inference on the importance of forces that affect
productitivy is changed once we allow labor to be composed of two types. We elaborate on this in Section 6.5.

3We describe the sample in Section 5.
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skill, mostly through its effect on firm sizes, rather than through within-firm adjustment.4 Another

important finding is that increases in demand for skilled labor due to higher skill augmenting

productivity are not on average accompanied by lower demand for unskilled labor, due to the

cost-reducing effect of skill augmenting productivity.

Quantifying the importance of technology adoption and globalization for relative labor demand

at the micro level is hard for two reasons. First, while it is relatively easy to measure importing

and exporting at the level of the firm, it has proven very hard to measure technology adoption,

except in case studies and in particular industries.5 The focus on firms is important, because that

is where decisions about technological change, globalization and employment are made. Second,

it is difficult to identify causal effects since firms jointly choose whether to import, export and

adopt technology. In order to overcome these challeneges, we apply and extend new techniques

from the structural production function estimation literature in order to consistently estimate both

Hicks-neutral and skill-augmenting productivity shifters.

Given the absence of information about real output or real intermediate input use in our data,

we build on the methodology proposed by Grieco et al. (2016) [GLZ]. We extend GLZ’s approach

in several ways. First, we separate labor into three components: skilled and unskilled labor which

contribute to output in the standard way, and “techies”, who are assumed to affect production

only through their lagged impact on productivity. We discuss the sensitivity of the results to

this assumption in Section 6.5. Second, we allow the elasticity of substitution between skilled

and unskilled labor to differ from the elasticity among capital, materials, and composite labor by

estimating a nested-CES production function. Third, we allow these firm production functions

to include—in addition to a Hicks neutral term that is already present in GLZ—a skilled-labor

augmenting term.

Our estimator extends that of GLZ to the case of a nested CES production function, while ap-

plying insights from León-Ledesma et al. (2010) on using multiple equations to identify parameters

of the production function. The estimator exploits the first order conditions implied by profit max-

imization and monopolistic competition to recover unobserved quantities of intermediate inputs

and (augmented) skilled labor services, to identify the production function parameters, and to fully

recover both Hicks-neutral and skill augmenting productivity shifters.6 Like GLZ, our approach

4The greater importance of changes in firm composition versus within-firm adjustment is also found in De Loecker
and Eeckhout (2018) for increases in average markups, Autor et al. (2020) for the decline in the labor share, and
Harrigan et al. (2021) for job polarization.

5We discuss this literature in Section 2.
6Doraszelski and Jaumandreu (2013) and Doraszelski and Jaumandreu (2018) also use the first order conditions
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does not rely on proxy variable methods.7

We use a flexible specification of the firm’s productivity process which permits us to make

causal statements about the effects of firms’ investment in ICT and R&D and of importing and

exporting decisions on firm productivity. As in Doraszelski and Jaumandreu (2013), we assume

that productivity follows a controlled Markov process and is endogenously determined by lagged

productivity as well as other lagged firm-level decisions. Once this process is estimated, we use the

parameters of the production functions to quantify the impact of these factors on the demand for

skilled and unskilled labor. Our approach resembles that of Doraszelski and Jaumandreu (2018),

which is the first paper in the production function estimation literature to estimate both neutral

and non-neutral technology differences. Doraszelski and Jaumandreu (2018) include, in addition

to a Hicks neutral productivity shifter, a labor augmenting term. However, they do not distin-

guish between skilled and unskilled labor and they identify only one elasticity of substitution. In

addition, they rely on availbility of real input use and input prices at the firm level to identify the

production function, which are not available in our data. While they observe only 2,375 firms in

10 manufacturing industries, our sample includes roughly 193,000 firms in both manufacturing and

non-manufacturing.

We apply our methodology using matched employer-employee administrative data for most

of the French private sector from 2009 to 2013. The dataset has information on exporting and

importing by firm. In order to identify the effect of technology adoption and R&D on firm level

productivity, we use workers in technology-related occupations, who we call “techies”. These

workers are engineers and technicians with skills and experience in science, technology, engineering

and math (STEM). They are essential to productivity growth, by virtue of being the creators of

new products and processes, and as mediators of technology adoption at the firm level (Tambe and

Hitt (2012, 2014); Harrigan et al. (2021)).

The detailed description of occupations in the dataset allow us to identify the techies who are

central in creating, planning, installing, and maintaining ICT, as well as in training and assisting

other workers in the use of ICT. We are able to separately identify other techies who design and

lead R&D processes, and ensure the transfer of know-how to other workers in the firm. Using data

on R&D techies offers an alternative to R&D expenditure data at the firm level, for all firms in the

French private sector. As a result we are able to estimate the separate firm-level effects of R&D

to identify the production function.
7Olley and Pakes (1996), Levinsohn and Petrin (2003) and Ackerberg et al. (2015) all rely on proxy methods.

Gandhi et al. (2020) propose an alternative estimator that exploits firms’ optimality conditions.
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and ICT investment on productivity and its bias towards skilled workers.

Very few papers have investigated R&D and ICT investment jointly due to the lack of data

(Hall et al. (2013), Mohnen et al. (2018)). Hall et al. (2010) argue that R&D is related to product

and process innovation, whereas others argue that ICT investments foster organizational changes

within firms such as business processes and work practices (Bresnahan et al. (2002)) and span

of control (Bloom et al. (2014)), both of which may enhance productivity (Brynjolfsson and Hitt

(2000)). As we discuss in the literature review below, and as the results demonstrate, the distinction

between R&D and ICT proves to be important as both investments may have different influences

on productivity and relative labor demand.

For each industry, we find an elasticity between capital, materials and labor aggregate which

is greater than unity (1.5 on average). These results contrast with Doraszelski and Jaumandreu

(2018) and Raval (2019) who assume a CES functional form with Hicks-neutral productivity dif-

ferences across firms and labor augmenting technology. They do not distinguish skilled from un-

skilled labor, treating them as perfect substitutes. As the authors acknowledge, their findings of

labor-augmenting technological progress may be conflating skill-composition differences with labor

augmenting technological differences across firms. We find moreover an elasticity between skilled

and unskilled labor that is greater than the upper nest elasticity (2.8 on average). This finding

implies that skill augmenting technological progress necessarily raises the relative demand of skilled

workers and the firm’s skill intensity.

We find that both technology and trade have large effects on skill-augmenting productivity.

Our baseline estimates imply that compared to firms that don’t employ techies, firms with a lot

of techies (at the 75th percentile) have skill-augmenting productivity which is 15 percent higher.

Both ICT and R&D techies have a similarly large marginal effect on skill-augmenting productivity,

but because firms that employ R&D techies do so at greater intensity than firms that employ ICT

techies, R&D techies are more important in explaining cross-firm differences in skill-augmenting

productivity. In contrast, the effect of techies on Hicks neutral productivity is driven only by ICT

techies. Turning to the effects of trade, we find that the effect of exporting and importing is to raise

skill-augmenting productivity by 15 percent and 7 percent, respectively. We don’t find an effect of

trade on hicks neutral productivity shifters.

We use the estimates of the elasticities of substitution and demand to translate the estimated

effects on productivity into effects on firm-level labor demand. Compared to firms that don’t employ

techies, firms with a lot of techies have employment of skilled labor that is 28 percent higher, while
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employment of unskilled labor is no lower. The effects of trade are comparably large: exporting and

importing raise employment of skilled workers by 28 percent and 13 percent respectively while not

reducing unskilled employment. These results on the employment effects of techies and trade are

crucial to public policy debates. They show that unskilled workers are right to be wary of technology

and trade, which we find do indeed favor employment of skilled workers. However, on avereage,

this is only a relative effect: because of the powerful productivity effects of technology and trade,

skilled workers see labor demand rise when the firms where they work hire techies and/or engage

in international trade, but employment of unskilled workers barely drops. Nevertheless, there is

cross-industry heterogeneity in this respect, where SBTC has sometimes positive and sometimes

negative effects on demand for unskilled labor.

Aggregating all firm-level decisions and using our estimates we find that ICT techies have the

largest effect on aggregate relative demand for skill, mostly through their effect on firm sizes, not

through within-firm adjustment. The reason is that we estimate that only ICT affects directly

Hicks-neutral productivity. In addition, ICT techies are more prevalent in larger and skill intensive

firms, which amplifies their firm-level effect.

All the results we find in this paper are driven by firm-level decisions. Our methodology

consistently estimates the effects of firms’ choices to employ techies and trade, but does not model

these choices themselves. We also do not consider the effects of these firm-level decisions on industry

or economy-wide equilibrium employment and wages. These are limitations of the scope of our paper

but do not impinge on the internal consistency of our research strategy. Furthermore, any credible

analysis of the equilibrium effects of technology adoption and globalization on labor markets must

be built on an understanding of what goes on inside firms. This is where our contribution lies.

The rest of the paper is organized as follows. In Section 2, we discuss papers directly related

to our research questions and methodology. After a brief discussion of why not all firms employ

techies in Section 3, we develop our econometric methodology in Section 4 and describe our data

and construction of the estimation sample in Section 5. Estimation results and the quantitative

implications for skill bias and labor demand are reported in Section 6.

2 Related research

Skill-biased technological change (SBTC) and globalization have been of intense interest to economists

for decades, but there are remarkably few papers that look for SBTC at the firm or plant level,
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and none that simultaneously estimate, as we do, the effect of ICT, R&D and trade on SBTC. We

discuss these few papers here to put our contribution in context. We also review research on the

specific role of techies.

2.1 Firm-level biased technological change and globalization

In this subsection we discuss papers that study firm- or plant-level changes in the composition of

employment as a result of technological change.8 Several papers study a single industry or firm.

Bartel et al. (2007) look at the valve manufacturing industry between 1999 and 2003 to study

how adoption of ICT caused reorganization within firms. They show that ICT adoption increased

Hicks-neutral total factor productivity (TFP) (through faster setup times, greater customizability,

and better quality control) and also raised the skill-requirements for machine operators. Autor

et al. (2002) study how the introduction of digital check imaging affected reorganization and the

allocation of tasks across workers within one large bank. Acemoglu and Finkelstein (2008) find that

when a policy change in 1983 increased the relative price of labor for hospitals, hospitals increased

both their capital-labor ratio and their skill/unskill ratio among nurses—a result that is suggestive

of complementarity between capital and skilled labor. Our paper has a broader scope, as we study

all private sector firms in France.

Some of the most informative papers about firm-level SBTC are primarily descriptive. Dunne

et al. (2004) uses the Census’ Longitudinal Research Database and find that computer use within

plants is not associated with higher overall labor productivity but is associated with greater non-

production worker intensity, a common proxy for skilled workers. Helper and Kuan (2018) survey

the auto parts industry and find that most firms in this industry do not perform R&D, but innovate

nonetheless through the efforts of their engineers and technicians. They also find that the tasks done

by engineers overlap much more with skilled than with unskilled workers. Barth et al. (2017) study

plant-level data on US manufacturing firms, with a focus on the role of scientists and engineers.

In the private sector as a whole, they show that 80 percent of scientists and engineers worked

outside R&D occupations in 2013. They estimate a simple gross revenue production function at the

establishment level from 1992 to 2007 using fixed effects OLS, and find statistically significant effects

of the science and engineer share of employment on revenue, a result that suggests a positive effect of

scientists and engineers on TFP. Bresnahan et al. (2002) argue persuasively for a complementarity

8To keep this literature review manageable, we eschew discussion of the many important papers that analyze
SBTC and related issues using industry-level data.

6



between IT, decentralized firm organization, and skilled labor. They construct measures of “work

organization”, computer capital, and employee skill for a small number of very big publicly traded

firms in the mid-1990s, and find robust correlations that are consistent with their view. Building

on these insights, our paper moves beyond descriptive analysis to structural estimation, and offers

causal inference.

Two recent papers on firm level skill-biased technology both use data from Norway to estimate

causal effects. Akerman et al. (2015) exploit exogenous variation in the local availability of broad-

band internet in the 2000s, and find convincing intent-to-treat effects on both local skilled wages

and firms’ output elasticity for skilled workers. As they acknowledge, their evidence that firms who

adopt broadband internet increase their skill intensity is weaker. Bøler (2015) uses a 2002 tax break

for R&D expenditure to estimate the effects of R&D on firm-level skill intensity in manufacturing.

Her reduced form evidence is supportive of a very strong effect of R&D on skill intensity, while her

structural production function estimates find a smaller but still important effect. These Norwegian

papers are important antecedents to our paper, but the greater size and diversity of the French

economy, as well as our analysis of nonmanufacturing in addition to manufacturing firms, allows

us to estimate broader and more nuanced effects.9

Turning to the effects of globalization, Becker et al. (2013) use German micro data on em-

ployment and offshoring by multinational firms during 1998-2001. They find a positive association

between offshoring and plant-level skill intensity. For Indonesia, Kasahara et al. (2016) find that

plant-level use of imported materials raised the level of education within manufacturing plants be-

tween 1995 and 2007.10 Bustos (2011) finds that Argentinian firms raised their productivity and

skill intensity after a major trade reform in 1991. She also finds an association between spending

on ICT and skill upgrading. Our results are consistent with the papers by Kasahara et al. (2016)

and Bustos (2011), but we are not able to investigate the channel identified by Becker et al. (2013)

since we don’t have information on foreign affiliates of the French firms in our data.

Like us, Bender et al. (2018) use a framework that has both Hicks-neutral and management-

augmenting technological differences across firms. Applying the methodology of Abowd et al.

(1999), they construct individual-level measures of worker quality, which they match to firms. This

very creative paper is hampered by matching problems that lead to a sample size of just 361 German

9Bøler (2015) sets up a similar nested-CES production function to ours, but does not fully estimate it. Instead,
she only considers relative demand for skill, inferred from the lower nest.

10Amiti and Cameron (2012) also study firm-level data from Indonesia, but their primary focus is the skill premium
rather than skill intensity.
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firms across three years (2004, 2006, and 2009). As a consequence, their data analysis is mainly

descriptive, while our dataset of nearly 200,000 French firms allows us to do structural estimation.

Two recent papers estimate firm-level labor augmenting technology under the assumption that

firms produce using a CES production function of capital, labor, and materials. The production

function estimator of Doraszelski and Jaumandreu (2018) is related to our methodology, as we

discuss above, but relies on the availablility of real output and inputs and their prices—information

that is absent in our data. Raval (2019) uses an equation implied by static cost minimization to

estimate both the elasticity of substitution and the level of labor-augmenting technology differences

across U.S. manufacturing plants between 1987 and 2007.11 While these two papers are not about

SBTC, their findings of large labor augmenting technology differences across firms have a plausible

interpretation as differences in the skill mix across firms. By contrast, our structural model directly

estimates skilled labor augmenting technological differences across firms.

2.2 The role of techies

Though we are the first to analyze the impact of techies on SBTC, there is a small literature that

has looked at the impact of techies on output, the structure of employment, and productivity at

the firm level. The motivation for this literature is stated succinctly by Tambe and Hitt (2014):

“the technical know-how required to implement new IT innovations is primarily embodied within

the IT workforce”. Similarly, Deming and Noray (2018) show that, in their words, “STEM jobs

are the leading edge of technology diffusion in the labor market”.

Firm-level research on this proposition has been hampered by a lack of firm-occupation level

data in most administrative and survey datasets. An exception is Harrigan et al. (2021), which

uses detailed occupational data (including data on techies) for the entire French private sector

from 1994 to 2007. Harrigan et al. (2021) show that employment growth is higher in French firms

with more techies, and also that more techies leads to within-firm skill upgrading. Lichtenberg

(1995) and Brynjolfsson and Hitt (1996), working with a small number of U.S. firms in the late

1980s and a simple Cobb-Douglas production function estimating equation, find that IT labor has a

positive output elasticity. Tambe and Hitt (2012) use a newer data source and a more sophisticated

estimation technique, and again find a positive output elasticity of IT labor. Using a remarkable

dataset that tracks the movement of IT workers across firms, Tambe and Hitt (2014) find what they

11The industry-level estimates from an earlier version of Raval (2019) are used to compute the aggregate elasticity
of substitution in Oberfield and Raval (2020).
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interpret as evidence for knowledge spillovers across firms through the channel of techie mobility.

In the present paper, rather than treating IT labor as a simple input we estimate the effect of IT

labor on productivity. In addition, our methodology is not vulnerable to the endoegenity bias that

plagues OLS estimation of production functions (the so-called “transmission bias”) .

The idea that engineers and other technically-trained workers are important for productivity

growth has also found support in the economic history literature. Kelly et al. (2014) and Ben Zeev

et al. (2017) highlight the importance of the British apprentice system during the British Industrial

Revolution in supplying the basic skills needed for technology adoption (whether British technology

or other). Maloney and Valencia Caicedo (2017) construct a dataset of engineer intensity for the

Americas and for U.S. counties around 1880, and show that this intensity helps predicting income

today.12 Indeed, engineers are at the center of modern (endogenous) growth theory, e.g., Romer

(1990).

3 Why don’t all firms employ techies?

Many of the papers in section 2.1 find that employment of techies enhances productivity, which

raises a simple question: why don’t all firms employ them? As we will show in section 6.2, in

our sample of French firms techies are found to have strong positive effects on skill-augmenting

productivity, yet only few firms employ them. A similar finding is well-known to trade economists:

in some studies of developing countries, exporting is found to raise productivity, yet a minority

of firms export. Following Melitz (2003), the consensus explanation for this phenomenon is fixed

costs: firms choose to export only when the extra revenue from exporting exceeds the fixed costs

of exporting. Alternatively, the variable costs of exporting may make it unprofitable for high-cost

firms, as shown by Melitz and Ottaviano (2008). Here we sketch a simple model that makes a

similar point about techies, and that gives a rationale for a constant elasticity relationship between

techies and productivity. We do not estimate this model, rather we use it here to make a few simple

theoretical points.

For maximum simplicity, suppose there are only two periods and one type of productivity.

The firm takes demand, costs and initial period log productivity ωft−1 as given and has to choose

optimal techie employment Tft−1 to maximize profits. The relationship from techies to changes in

productivity is

12See also Murphy, Shleifer and Vishny (1991) for evidence on the relationship between engineers (versus lawyers)
and income.
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ωft = ωft−1 +Max

[
δ ln

(
Tft−1

γ1f

)
, 0

]
, δ ≥ 0 .

Although the elasticity of productivity with respect to techies is constant and equal to δ, the level

of techie employment required to attain a given growth in productivity ∆ωft will differ across firms

because of differences in γ1f . Fixed costs of employing positive techies are γ0f and the wage of

techies is r, so the cost of hiring techies is rTft−1 +γ0f . With heterogeneity in the costs γ0f and γ1f

not all firms will employ techies, and we derive the following very intuitive conclusions in Appendix

A.2.6. First, the optimal amount of techies is more likely to be positive when demand and/or initial

productivity are higher. Conversely, the optimal amount of techies is more likely to be zero when

fixed costs of techies are high and/or when the efficiency of techies are low. Second, the optimal

amount of techies may be zero even if the fixed cost of employing techies is zero. Finally, when the

optimal amount of techies is positive, it is increasing in initial productivity and the efficiency of

techies. A further implication of this framework is that since firms that export will have a higher

demand level, they will also be more likely to employ techies.

The evidence in Table 1 is consistent with these simple predictions. The table reports regressions

of firm-level outcomes on an indicator for positive techie employment. All regressions include

firm×industry fixed effects, so the reported results are identified by variation across firms within

industry-years. Just 11 percent of firm-year observations have positive techies, as shown by the

relative sample sizes in the two columns. The results show that techies are associated with greater

revenue and a greater propensity to import and export and, in a preview of our structural analysis

below, are also associated with a higher share of managers in the firm’s wage bill.

4 Econometric methodology

Most firm- or plant-level datasets (including ours) include information on revenue and the value of

expenditures on materials but not data on the corresponding output and materials prices. Grieco

et al. (2016) [GLZ] show how to estimate the parameters of a CES production function even in

the absence of real output or input data, by exploiting the firm’s first-order conditions for profit

maximization.13

Many papers follow some variant of the Olley and Pakes (1996), Levinsohn and Petrin (2003) and

13De Loecker and Goldberg (2014) give a clear exposition of the estimation and interpretation problems that arise
when real input and output quantities are unavailable.
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Ackerberg et al. (2015) [OP/LP/ACF] proxy variable methodology to first estimate productivity

and then study its determinants, often in the context of estimating the effects of exporting or

importing on productivity.14 De Loecker (2013) points out the limitations of this approach. In

particular, he shows that if productivity is an endogenous function of exporting then a measure

of exporting must be included in the moment conditions to get a consistent estimator for the

production function.

As discussed above, Doraszelski and Jaumandreu (2013) take a different approach to estimating

endogenous productivity, combining the firm’s optimal demand with a controlled Markov specifica-

tion for productivity, while Doraszelski and Jaumandreu (2018) apply this approach to estimating

Hicks-neutral and separate labor-augmenting productivity shifters. We cannot apply their method-

ology because it relies on availbility of real input use and input prices at the firm level to identify

the production function, which are not available in our data. Doraszelski and Jaumandreu (2018)

estimate a 3-factor CES production function with Hicks-neutral ωH and labor-augmenting ωN

technology differences across firms. Labor and materials are static inputs, which implies that the

optimal labor to materials ratio depends on ωN but not on ωH . This insight motivates a two stage

procedure. In the first stage they recover ω̂N and the estimated elasticity of substitution σ̂ through

estimation of a relative factor demand equation implied by the CES functional form. They then use

ω̂N and σ̂ as data in a second stage which allows them to recover ω̂H .15 In contrast, our approach

identifies all parameters of the production function and productivity shifters in one step, as we

describe below.

Our approach extends Grieco et al. (2016) [GLZ] in three ways. First, we separate labor into

three components: skilled and unskilled labor S and L, which contribute to output in the standard

way, and workers T in technical occupations (“techies”), who are assumed to affect production only

through their lagged impact on productivity. Second, we allow firm production functions within

an industry to differ in two dimensions: in addition to a Hicks neutral term ΩH , already present in

GLZ, we consider a skilled-labor augmenting term ΩS . Third, we allow the elasticity of substitution

between S and L to differ from the elasticity among capital, materials, and composite labor.

14For example, Pavcnik (2002) and Amiti and Konings (2007).
15In their application to Spanish manufacturing data in 1990–2006, Doraszelski and Jaumandreu (2018) find great

heterogeneity in the level and growth of labor-augmenting productivity differences, with weighted average annual ωN
growth of 1.5 percent per year.
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4.1 Estimating the production function and productivity

We begin with a constant returns to scale nested CES production function, where physical output

of firm f in year t Yft is produced using composite labor Nft, capital Kft, and materials Mft.

The labor composite Nft is a CES function of skilled labor Sft and unskilled labor Lft, both

measured as hours worked. These functions are assumed to be the same for all firms in an industry

up to the two productivity levels ΩHft and ΩSft. For reasons discussed by GLZ, it is important

for identification to normalize each data series by its geometric mean. We do this, so in what

follows all variables should be understood as values relative to their geometric means, such that

L = S = K = M = Y = 1, where an overbar denotes the geometric mean of the respective

variable.16

The normalized production function is

Yft = ΩHft

[
αNN

γ
ft + αKK

γ
ft + αMM

γ
ft

] 1
γ
, γ =

σ − 1

σ
≤ 1 (1)

Nft =
[
αLL

ρ
ft + αS (ΩSftSft)

ρ
] 1
ρ
, ρ =

ϕ− 1

ϕ
≤ 1 . (2)

Higher skill-augmenting technology ΩSft increases the effective supply of skilled labor services

holding hours worked constant. Similarly, better Hicks-neutral technology ΩHft increases physical

output holding all physical inputs and skill-augmenting technology constant. Input and output

prices may differ across firms, but our data only reports revenue Rft and the value of materials

purchases EMft , along with wages and physical L, S and K. The labor and materials inputs are

assumed to be chosen after ΩHft and ΩSft are observed. To go from revenue to output requires an

assumption on demand, and we follow GLZ in assuming that firms produce differentiated products

and face a common industry-level constant elasticity of demand η < −1. The inverse demand

function facing the firm is

Pft = AtY
1
η

ft , (3)

where At is an exogenous industry-level demand shifter.

A revenue shock uft is realized after all input choices have been made and both productivity

16To understand the importance of normalizing the CES production function, see León-Ledesma et al. (2010) and
the discussion and references on page 668 of Grieco et al. (2016). Below we illustrate one important outcome of
normalization: it helps identify the distribution parameters of the production function.
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levels have been realized.

4.1.1 The estimating framework

Since L, S and M are static inputs, their first order conditions for expected profit maximization

will always hold with equality.17 As shown in Appendix A.2, these conditions imply

Mft =

(
αN
αM

EMft

ENft

)1/γ

Nft (4)

ΩSft =

(
Sft
Lft

) 1
ϕ−1

(
αSWLft

αLWSft

) ϕ
1−ϕ

, (5)

where EXft = PXftXft is expenditures on production factor X and PX is the price (or wage, W ) of

X. The derivation of (4) and (5) requires that σ 6= 1 and ϕ 6= 1, which rules out the Cobb-Douglas

case that is assumed in most of the productivity estimation literature.18 A few more steps yield an

estimating equation,

lnRft = ln

[
η

1 + η

]
+ ln

[
EMft + ENft (1 + τ)

(
Kft

Lft

)γ (λft
αL

) γ
ρ

]
+ uft , (6)

where ENft = ELft +ESft is the wage bill, λft = (ELft/E
N
ft) is unskilled labor’s share of the wage bill,

and τ = αK/αN .19

Equation (6) has just four parameters (η, γ, ρ and τ) and no endogenous or unobservable vari-

ables. The key to the derivation is that there are three flexible (“static”) inputs (S, L and M ),

which gives us two ratios of static first order conditions, (4) and (5). These two equations allow

us to eliminate the two unobservables, Mft and ΩSft, and (A.23) in the Appendix allows us to

eliminate ΩHft. Because we have eliminated the unobserved productivity terms from our estimat-

ing equation, we do not need to use proxy variable methodology. Our timing assumptions are key:

firms choose static inputs after observing both productivity shocks but before observing the revenue

shock.

The five distribution parameters αS , αL, αN , αK and αM are identified by τ = αK/αN and the

following equations,

αN + αK + αM = 1 (7)

17That is, before the revenue shock uft is realized.
18This includes OP/LP/ACF. In our results below in Table 5, the point estimates for σ and ϕ exceed one for every

industry, and in Table 6 we can always reject the null hypotheses σ = 1 and ϕ = 1.
19See Appendix A.2.1 for the derivation of (6).
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αME
N

= αNE
M

(8)

αL = E
L
/E

N
, αS = E

S
/E

N
. (9)

Equations (7) is implied by constant returns to scale. Equation (8) follows from taking the geometric

mean of (4), and using the normalization conditions. Equations (9) follow from taking the geometric

mean of (5), using the normalization conditions (which imply ΩS = 1), and constant returns.

Equations (9) show that αL and αS are identified directly from geometric means of the data, and

do not require estimation.

Equation (6) can be estimated consistently by nonlinear least squares. Following León-Ledesma

et al. (2010), in order to increase efficiency we make use of the implication of (5) that the skill ratio

can be written as

ln

(
S

L

)
ft

= β0 − ϕ ln

(
WS

WL

)
ft

+ vft , (10)

where vft = (ϕ−1) ln ΩSft. Equation (10) is an estimating equation, but since the unobservable vft

contains ΩSft it is likely that Cov[ln(WS/WL)ft, vft] 6= 0 . Therefore using (10) in our estimation

framework requires an instrument for ln(WS/WL)ft. To form such an instrument, we exploit

the rich occupational detail in our data on employment. As discussed in Section 5.1 below, we

measure S and L as aggregates of employment in many detailed occupational categories. Denote

the industry average wage in detailed occupation o as W o, and the share of occupation o in firm f ’s

employment of labor aggregate j ∈ {S,L} as λjof . By definition, these shares sum to one within S

and L,
∑

o λSof,t =
∑

o λLof,t = 1 ∀f, t. Our instrument lnZft is then defined as

lnZft =
∑
o

λSof,t−1 lnW ot−1 −
∑
o

λLof,t−1 lnW ot−1 . (11)

Equation (11) has a form similar to a Bartik or shift-share instrument. Goldsmith-Pinkham et al.

(2020) show that a sufficient condition for exogeneity of instruments like (11) is that the shares

λjof,t−1 are exogenous to the shock vft in equation (10).20 Exogeneity of shares follows in our

case from our assumption that ΩSft affects the productivity of aggregate S, but not the individual

occupations that make up S. An implication is that ΩSft will affect S/L but not the composition

of S or L. Because there is substantial heterogeneity across firms in the detailed occupational

20Adao et al. (2019) propose methods for inference in single-equation linear shift-share designs, but their methods
are not applicable to our GMM estimator developed below.
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makeup of S and L, there is ample cross-section variation in lnZft to identify the parameter on

ln(WS/WL)ft in equation (10).

To estimate the parameters of interest we form a GMM estimator as follows. Write (6) as

lnRft = f(η, γ, ρ, τ ; EMft , E
N
ft,Kft, Lft, λft) +uft. We compute the derivatives of f with respect to

(η, γ, ρ and τ) and set the product of these derivatives with the error uft to zero, which gives four

moment conditions. Then, using the instrument defined by 11, equation (10) gives us two addition

moment conditions that identify ρ and the constant in (10). We thus have six moment conditions

to identify five parameters (recall that ϕ = (1/(1− ρ)).

Our GMM estimator weights each firm-year observation by total firm employment. This is

appropriate given that we want to estimate population average partial effects, where the population

of interest is industry employment (see Solon et al. (2015) for a discussion of this rationale for

weighting). In the absence of employment weights, firms with few workers would have the same

influence on the estimates as firms with very many workers, which we wish to avoid.

4.1.2 Recovering productivity

We recover estimated skill augmenting productivity using (5). We show in Appendix A.2.1 that

estimated Hicks neutral productivity is

ωHft =
η

1 + η
log

{
1

At

η

1 + η

(
ENft
αNN

γ
ft

)
×
[
αN

(
ENft + EMft

ENft

)
Nγ
ft + αKK

γ
ft

]−δ}
(12)

where δ = [η (1− γ) + 1]/γη. Fully recovering Hicks neutral productivity would also require an

estimate of the unobservable aggregate At. This doesn’t matter for the cross sectional distribution

at a point in time, but it does imply that our Hicks neutral productivity estimates are comparable

over time only in relative terms. That is, we can compare two firms’ productivities in a given

year, and we can say how this comparison changes over time, but we cannot compare Hicks-neutral

productivity shifters for a given firm over time.

Formally, the Hicks neutral parameter ΩHft is physical TFP. This follows from deflating revenue

by price using equation (3). In practice, it is not plausible that the simple demand system given by

(3) solves all the problems related to unobservable prices and quality that are required to distinguish

revenue TFP from physical TFP, as Foster et al. (2008) are able to do. Our interpretation of ΩHft

is revenue TFP, where some but not all of the variation in revenue has been controlled for by the
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demand system.

4.1.3 Skill-augmenting productivity and skill bias

Hicks-neutral technology differences ΩHft have no implications for relative skill demand because

they do not affect the relative marginal products of different inputs. Re-arranging equation (5)

shows that the effect of skill augmenting technology differences ΩSft on relative skill demand

depends crucially on the elasticity of substitution ϕ,

Sft
Lft

= Ωϕ−1
Sft

(
αSWLft

αLWSft

)ϕ
(13)

If ϕ > 1, a higher level of ΩSft raises relative skill demand, which is to say that skill-augmenting

technology differences are skill-biased. In our empirical results below we estimate ϕ̂ > 1 for all

industries.21 When ϕ > 1, the identification of ΩSft is transparent from equation (5): it is a

residual that rationalizes greater skill intensity, conditional on parameters and factor prices.

Estimating equations similar to (13) in log-linear form and identifying the elasticity of substi-

tution have a long history in the macro-labor literature on SBTC; see Acemoglu and Autor (2011)

for discussion and references. More recently, Raval (2019) and Doraszelski and Jaumandreu (2018)

estimate the elasticity of substitution between capital and labor and labor-augmenting technology

shifters using similar equations. In our methodology this source of variation is only part of what

identifies ϕ in the data, through equation (10); as (6) illustrates, variation in levels also plays an

important role.

4.2 Employment effects of productivity

There are two effects of productivity improvements on factor demand, holding product demand

curves and factor prices constant. First, greater productivity lowers costs which increases final

demand and thus the demand for inputs. Second, greater productivity means fewer inputs are

required per unit output, which reduces the demand for inputs. The net effect on factor demand

depends on the balance between these two effects. When technological change is pervasive, there

will be general equilibrium effects on both factor prices and market demand which are beyond the

scope of this paper. But holding factor prices and market demand constant, we show in Appendix

21See Table 5.
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A.2.4 that the effects of productivity differences across firms on employment are

L̂ = (−η − 1) Ω̂H + (−η − σ) θSΩ̂S + (σ − ϕ) θSN Ω̂S (14)

Ŝ = (−η − 1) Ω̂H + (−η − σ) θSΩ̂S + (σ − ϕ) θSN Ω̂S + (ϕ− 1) Ω̂S (15)

where θSN is the share of S in the unit cost of the labor composite N and θS is the share of S in

total unit cost.22 We show in Appendix A.2.4 that our normalization implies that θSN = αS and

θS = αSαN at the geometric mean of the data. Each equation combines a labor saving effect and

a cost reducing demand (or substitution) effect of technological progress:

� For both S and L, the effect of Hicks-neutral technological progress Ω̂H > 0 is to reduce the

employment that is required to produce a unit of ouput, and thus decrease employment with

an elasticity of −1. But at the same time costs decrease with an elasticity of −1 and thus

increase demand with elasticity −η > 0, so the net effect on employment of Hicks-neutral

technological progress is (−η − 1) Ω̂H .

� The coefficient (−η − σ) θS that appears in both equations represents the effect of skill-

augmenting technological progress Ω̂S > 0 through the labor composite N. This reduces

the employment of both S and L that is required to produce a unit of output with an elas-

ticity of −σθS . At the same time, production costs decrease with an elasticity of −θS and

this increases overall demand with elasticity −ηθS . Thus, labor demand increases with an

elasticity (−η − σ) θS through this channel.

� The coefficient (σ − ϕ) θSN that appears in both equations represents the effect of skill-

augmenting technological progress Ω̂S > 0 through its effect on substitution towards the

labor composite N. Skill-augmenting technological progress reduces the employment that is

required to produce a unit of N with an elasticity of −ϕθSN . At the same time, the cost

of a unit of N decreases with an elasticity of −θSN and this induces substitution towards N

within overal inputs with elasticity σθSN . Thus, labor demand increases with an elasticity

(σ − ϕ) θSN . This coefficient is negative if ϕ, the elasticity of substitution between L and S

within N , exceeds σ, the elasticity of substitution between N and the other factors (this is

what we find empirically below, see Table 5).

� The term (ϕ− 1) Ω̂S represents the familiar balance between the efficiency effect which re-

22Recall that we define the elasticity of demand η to be less than −1, so −η > 1.
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duces employment with an elasticity of −1 and the substitution between the other factors

and S which increases employment of S with an elasticity ϕ.

Subtracting the first equation from the second shows that the elasticity of skill intensity with respect

to skill-augmenting technological progress is ϕ−1. When this elasticity is positive, skill-augmenting

technological progress is said to be skill-biased. We apply equations (14) and (15) in our empirical

analysis below.

4.3 Endogenous productivity

In the OP/LP/ACF methodology, productivity is treated as completely exogenous. But one reason

to do firm-level productivity estimation (and one of our main research questions) is to be able to

study what causes the estimated productivity differences. In the trade literature, this has been

done repeatedly in the context of explaining the fact that exporters have higher productivity: is

this fact due to selection à la Melitz (2003), or is there an additional causal “learning-by-exporting”

effect?

In developing our estimator in Section 4.1.1, did not make any assumptions about stochastic

processes that characterize the evolution of productivity shifters ωHft and ωSft. Therefore, we

are free to study the determinants of productivity in a flexible way, using firm-level explanatory

variables. Following Doraszelski and Jaumandreu (2013), we now assume that productivity is given

by a “controlled Markov” process, where productivity depends on three factors: lagged productivity,

a k × 1 vector of lagged characteristics of the firm zft−1, and a shock which is orthogonal to all

other shocks and lagged variables in the model.

The lagged firm characteristics zft−1 include choice variables of the firm such as exporting,

importing and employment of techies as well as predetermined firm characteristics such as age and

size which are known to help predict productivity. To allow ωHft and ωSft to influence each other

we specify the following two equations,

ωHft = µHt + βHHωHft−1 + βHSωSft−1 + βHZzft−1 + ξHft (16)

ωSft = µSt + βSHωHft−1 + βSSωSft−1 + βSZzft−1 + ξSft (17)

The shocks ξHft and ξSft are assumed to be serially uncorrelated. The industry×time fixed effects

µHt and µSt control for among other things the demand shifter At. These equations can be con-
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sistently estimated by OLS. De Loecker (2013) and Doraszelski and Jaumandreu (2013) estimate

more general non- or semi-parametric versions of (16) and (17). A virtue of our parametric specifi-

cation is that it is straightforward to calculate the steady-state cross-sectional effects of persistent

differences in firm characteristics,

 ωHf

ωSf

 = (I −B)−1 βZzf , B =

 βHH βHS

βSH βSS

 , βZ =

 βHZ

βSZ

 . (18)

4.3.1 Interpretation and identification

It is important to be clear about what is meant by a “controlled Markov process”. The key is that

the Markov assumption breaks realized productivity into expected and unexpected components.

Thus, statistical exogeneity of lagged productivity and firm characteristics in (16) and (17) is

assured, but can we interpret the estimated effects of (say) techies as causal in the cross section?

For example, if the estimated effect of techies in (16) is positive, can we say “techies cause higher

Hicks-neutral productivity”? If the answer is yes, that raises the question, what determines the

choice of techies and trade status, and why don’t all firms make the same choices? In the trade

context, underlying differences in firm-specific trade costs have been used to explain why not all

firms trade, and similar reasoning can be applied in the case of techies: some products/processes

are simply harder to improve using ICT, and/or firms have unobservable heterogeneity in their

aptitude for applying IT and thus employing techies. In Section 3 above, we presented a simple

model of optimal techie choice to clarify the insight that equations (16) and (17) can consistently

estimate the effect of techies on productivity even in the absence of a structural model of techie

choice.

De Loecker (2013) has a persuasive discussion of how to interpret the learning-by-exporting

effect in his version of the controlled Markov process (page 8). He emphasizes two things. First,

it is lagged exporting that enters the Markov process, which is to say that productivity (more

precisely, the shock to productivity ξHft) is realized after the exporting decision is made. Second,

the persistence of the exporting decision is controlled for by having lagged realized productivity in

the equation for current productivity. These arguments extend directly to our setting.

The way that Doraszelski and Jaumandreu (2013) discuss their estimated effects of R&D on

productivity is to remain silent on the issue of how R&D decisions are decided. That is, they

answer the question: given that a firm has decided to do R&D, what is the estimated effect on
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productivity? We will take the same approach, and will interpret our estimates as answering the

question: given that a firm has decided to trade and/or employ techies, what is the estimated effect

on productivity?

As in De Loecker (2013) and Doraszelski and Jaumandreu (2013), identification of the effects of

firm choices on productivity is based on cross-sectional differences in productivity growth between

firms that do or do not make a given choice. For example, consider two firms with the same lagged

productivity and all other explanatory variables except that one firm chooses to employ techies

and the other does not. If the firm with techies has higher productivity in the next period, the

estimator attributes that to the firm’s employment of techies.

In our application we measure techies by the share of techies in the firms’ wage bill, which has

the virtue of capturing both the extensive and intensive margin of techie employment. Imported

inputs are already included in a firm’s purchases of materials Mft. To allow for a productivity

effect of importing while avoiding double counting of imported inputs, we measure importing by

an indicator variable. As discussed in Grieco et al. (2017), the importing indicator can be thought

of as measuring the firm’s access to a broader and/or cheaper range of inputs than are available

domestically. For symmetry with how we treat imports, we also measure a firm’s exporting activity

by an indicator variable.

4.3.2 Do techies belong in the production function?

A central element of our methodology is that we assume that techies affect output only through

their effect on future productivity, and not through any contemporaneous contribution to factor

services that affect current output. This assumption is analogous to the standard assumption that

investment in t-1 has no effect on output in t-1, but raises output in t through its contribution to

capital in time t. Similarly, Beaudry et al. (2016) use a model with cognitive labor in t affecting

output only through its effect on organizational capital in t+1.

Our reasons for specifying the role of techies in this way are both theoretical and empirical.

Theoretically, if techie employment in t affects output in t as part of labor input in t as well as

productivity in t+1, then the static first order conditions for optimal employment would not hold

and the derivation of our estimating equation (6) does not go through. For this reason we drop from

our analysis the Computer and electronics industry, where ICT techies almost surely contribute

to output directly. Empirically, if techies enter the production function (1) as a separate factor,

an implication is that employment of techies would be strictly positive for all firms in all periods,
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which is emphatically not the case in our data, where only 11 percent of firms employ techies.

While our assumption that techies affect output only through their effect on future productivity

is well-grounded, it is important to consider how our measurement of productivity could go awry

if techies do in fact increase current output directly, which we will call the “orthodox case”. If

the orthodox case is the right specification, then leaving techies out of the first stage production

function (1) will understate labor inputs in the first stage.

In Appendix A.2.3 we show that the greater is the underestimate of true inputs the greater will

be the overestimate of Hicks-neutral productivity. Less obviously, we also show that when ϕ > 1,

firms with high techie shares will have measured ωS which is biased down by more than for firms

with low techie shares. The reason is that with ϕ > 1 greater ωS leads to greater employment

of skilled workers S, which implies that higher S indicates higher true ωS . Incorrectly removing

techies from S will thus lead to an underestimate of ωS , and the underestimate will be larger the

greater is the share of techies in S.

The key implication is that if the orthodox model is correct, our estimated effect of techies on

ωH in equation (16) may be biased up, and our estimated effect of techies on ωS in equation (17)

may be biased down. However, these biases are largely mitigated due to two related reasons. First,

any biases in the estimated levels of productivity appear on both sides of equations (16) and (17).

Second, although mis-specification leads to a mechanical intra-temporal correlation between techies

and ωS and between techies and ωH , since we estimate the effect of techies on future productivity

controlling for current productivity, i.e. an inter-temporal relationship, this direct effect washes

out.

A further implication of the orthodox model is that if we do include techies as part of labor

input in the first-stage estimating equation (6), they should have no explanatory power in the

second stage regressions (16) and (17). In section 6.5 below, we test this possibility by estimating

the first stage with techies as part of labor inputs, and then testing the null that techies have no

effect in the second stage. The null is rejected at the 0.01 percent significance level.

4.4 Estimation details

We estimate equations (6) and (10) jointly by GMM, separately for 14 industries, which include

both manufacturing and non-manufacturing sectors, and we weigh observations by employment
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(Section 4.1.1 above discusses estimator in greater depth).23 We report robust standard errors

clustered by firm. Each industry sample is an unbalanced panel, which raises the issue of selection

bias due to endogenous exit. As pointed out by Ackerberg et al. (2007), endogenous exit will not

bias production function estimation as long as the firm exits in the period after the exit decision

was made. This (often implicit) assumption is now standard in the literature, and we make it here.

The estimated elasticities of substitution is given by the formulas σ̂ = (1− γ̂)−1 and ϕ̂ = (1− ρ̂)−1

and standard errors take this into account. Our estimation sample is summarized in Table 4.

Industry-level production function estimation generates estimated Hicks neutral and skill aug-

menting productivity for each firm-year, computed using equations (5) and (12). After dropping the

highest and lowest percentile of estimated productivity to trim outliers, we estimate the controlled

Markov processes given by equations (16) and (17). In these regressions, we measure techies by the

lagged share of techies in the firm’s wage bill, and import and export participation are measured

by indicator variables. We also include lagged firm size (measured by lagged revenue) and firm age

as additional controls. Estimation is by weighted least squares with industry × year fixed effects

and we compute bootstrap standard errors clustered by firm to take into account that the second

stage uses estimated productivities as regressors.24

5 Data

We construct a detailed panel data on firms in the French private sector between 2009 and 2013.

The panel is the result of merging three confidential, administrative firm-level datasets. Martching

firms across these datasets is straightforward because firms are identified by the same identification

number (SIREN), which can be followed across years in each of the three datasets. We highlight

key features of the data here, and relegate other details to Appendix A.1.

5.1 The composition of labor within firms

Our first source of information is taken from the annual declaration of social data (DADS) dataset.

The DADS is a requirement for all businesses with employees. Employers provide information

23Two sectors (coke and refined petroleum, and pharmaceutical products) are dropped because they have tiny
shares of total hours worked and very few firms, and two sectors (transport equipment and publishing/broadcasting)
are dropped because estimation of equation (6) failed to converge. We also drop the financial intermediation sector.

24Our bootstrap re-samples firms rather than individual firm-year observations, so the resulting bootstrap covari-
ance matrices are effectively clustered by firms. All bootstrap results are computed using 800 replications. For more
details on how we compute standard errors, see Appendix A.2.2.
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on employees in each of their establishments, which are identified by their SIRET.25 The first

nine digits of each SIRET is the firm-level identification number, SIREN, which makes it easy to

aggregate across establishments for each firm. For each worker, the DADS reports gross and net

wages, hours paid, tenure, gender, age and occupation. It also reports the sector of activity of the

firm. There is no information about workers’ education.

We use the French occupational classification PCS-ESE to allocate all workers to one of three

broad categories (Appendix Table A1 lists the two-digit PCS codes). Detailed 4-digit occupational

codes (there are almost 500 in total) are reported in the DADS beginning in 2009, which determines

the first year of our sample.

Table 2 lists the 4-digit occupations that we classify as techies, based on the occupational

descriptions. Techie occupations are a subset of the two digit occupations “technical managers and

engineers” (38) and “technicians” (47), and are closely related to the installation, management,

maintenance, and support of ICT, as well as product and process design and longer-term R&D

activities. In our empirical anaylysis, we will look separately at the effect of techies whose job

descriptions mention ICT and those who work in R&D occupations. Table 3 reports the shares of

ICT and R&D workers within the overall techie wage bill. R&D workers are a somewhat larger

share of the techie wage bill than the share of ICT workers, and the R&D share increases slightly

from 2009 to 2013. Table 3 also reports wide dispersion in these shares across industries.

The techie wage bill share as a measure of firm-level technological sophistication can be com-

pared to R&D expenditures, a common metric for technology adoption in the literature. Firm-level

R&D is a useful measure, but it excludes much of the ongoing expenditure and managerial atten-

tion that firms devote to technology adoption and ICT use.26 In fact, reported R&D is not even

a necessary condition for technology adoption and innovation, and firms employ many scientists

and engineers in non-R&D occupations.27 Conversely, R&D is likely to be impossible without the

employment of techies, who are needed to install, maintain and manage the ICT used in R&D

departments. Thus, the techie share is a more precise measure of firm-level effort devoted to tech-

25The declaration file serves both fiscal and social administrative purposes. All employers and their employees
are covered by the DADS declaration with the exception of self-employed and government bodies, domestic services
(section 97-98 of NAF rev. 2) and employees in businesses outside French territory (section 99 of NAF rev. 2). The
data do not include worker identifiers, so we cannot track workers over time, but this does not concern us given our
focus on firm-level rather than individual outcomes.

26Firm-level R&D expenditures also include expenditures on R&D capital goods, which are a component of the
firm’s investment. Thus using R&D expenditures in the context of production function estimation raises the potential
for double-counting of inputs.

27As noted above, Barth et al. (2017) find that 80 percent of U.S. private sector scientists and engineers worked
outside R&D occupations in 2013.
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nology adoption than R&D expenditures. The wage bill of techies is a big chunk of overall ICT

spending: Saunders and Brynjolfsson (2016) found that for a sample of US firms, more than half

of all spending on IT was on techies.28 Similarly, Schweitzer (2019) finds that in 2014, labor costs

account for 60 percent of aggregate R&D spending in France.29

One potential threat to our approach that treats firm-level techies as an indicator of firm-level

technological sophistication is that firms can purchase ICT and R&D consulting services. By hiring

a consultant, firms can obtain and service ICT without increasing its permanent staff of techies.

However, less than 4% of techie hours are in the IT and R&D consulting sectors, which implies that

over 96% of the hourly services supplied by techies are obtained in-house rather than purchased

from consultants.30

In order to construct the broad managerial occupation category S we aggregate the number of

hours worked by firm owners (proprietors, CEOs or directors of firms), workers in top management

positions, and professionals and engineers whose tasks are not related to either ICT or R&D. These

are non-technical management and professional occupations that are dominated by workers with

a university education. We allocate to the broad non-managerial occupation category category L

clerical employees, blue-collar workers, services workers, and technicians who do not work in ICT

or R&D related occupations. Though our mnemonic for these workers is “unskilled”, the category

L includes a wide variety of occupations. Overall, relatively few of the jobs in this category require

a university degree, with the exception of the fairly large category of “middle managers”, most of

whom probably have university degrees.

A key feature of our methodology is that firms are assumed to be able to choose their labor inputs

to satisfy the static first order conditions for profit maximization after observing productivity.31

Most French workers are on permanent labor contracts which make them expensive to lay off, which

at first glance makes it implausible that firms can choose employment to satisfy their static first

order conditions. However, many French workers are on temporary labor contracts which make

adjustment of labor input at the margin cheap and easy.32 This is all that is required for our

28Saunders and Brynjolfsson (2016) find that for a sample of 127 large publicly traded US firms from 2003 to 2006,
half of all spending on IT is for “Internal IT Services (e.g., custom software, design, maintenance, administration)”.
Including training services brings the share to 0.54.

29The remiainder 40 percent are split into 6 percent capital expenditures and 34 percent “other current expenses”.
30We refer to the IT and R&D consulting sectors as industry codes 62 (Computer Programming, consultancy and

related activities), 631 (Data Processing, Hosting and related activities ; web portals), and 72 (Scientific R&D) in
the NAF classification.

31See equations (A.23) and (A.24) in the appendix.
32In our sample, the share of hours worked on temporary contracts is 3 percent for S, 11 percent for L, and 4

percent for techies.
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estimating equation (6) to be appropriate for French firms.

5.2 Other firm level data

The DADS has information on the two-digit sector of activity of the firm. The estimation sample

includes firms in 14 industries, which include both manufacturing and non-manufacturing sectors.33

Firm balance sheet information comes from the FARE dataset for the years 2009-2013.34 The

source of the information is firms’ tax declarations. We use information on total revenues, material

expenditures and the necessary series that we need to construct the capital stock at the level of

the firm. Appendix A.1 describes the source data and explains how we construct firm-level capital

stocks using this dataset.

Data on bilateral exports and imports of firms located in France are provided by French Cus-

toms. For each observation, we know the importing or exporting firm, trading partner country, the

product traded, and the value of trade. We use the firm-level SIREN identifier to match the trade

data to our two other data sources. This match is not perfect: we fail to match about 11 percent

of imports and exports to firms. The reason for the imperfect match is that there are SIRENs in

the trade data for which there is no corresponding SIREN in our other data sources. This is likely

to lead to a particular type of measurement error: for some firms, we will observe zero trade even

when true trade is positive. This is not a big concern for us, because most of the missing values

are in the oil refining industry, which we drop from our sample.

In some of our specifications, we classify trade by country and/or product category. Countries

are classified as High Income based on the 2011 World Bank classification.35 In order to identify

intermediate inputs, we use the Broad Economic Categories (BEC rev. 4) classification from

the United Nations that classifies HS6 products into final, intermediate and capital goods. See

Appendix A.1 for details.

33Two sectors (coke and refined petroleum, and pharmaceutical products) are dropped because they have tiny
shares of total hours worked, and three sectors (transport equipment, transportation and storage and publish-
ing/broadcasting) are dropped because estimation of equation (6) failed to converge. We also drop the computers
and electronic sector because of its intensity in techie workers.

34Fichier Approché des Résultats Ésane (FARE)
35https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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6 Estimation results

We start by reporting the results of production function estimation and the implied elasticities

of employment with respect to skill augmenting productivity. We then turn to our estimates of

endogenous productivity (equations 16 and 17). Using our regression results, we derive implications

for labor demand. Finally, we estimate the aggregate effect of techies and trade on relative demand

for skill.

6.1 Production function estimates

Table 5 reports industry-by-industry estimates of the production function and demand parameters.

The derivation of equation (6) requires σ 6= 1 and ϕ 6= 1. All of our estimates of σ and ϕ are greater

than one, and in all industries we can reject the nulls that σ = 1 and ϕ = 1 at conventional levels

of statistical significance (see Table 6). The employment-weighted averages are roughly 1.5 for σ

and 2.8 for ϕ. Economic logic requires that the estimated elasticity of demand η satisfies −η̂ > 1,

which holds and is statistically significant for all industries. The estimated η’s are plausible in

magnitude, with an employment-weighted average value of -6.5. For example, we find particularly

large elasticities in Wholesale and Retail, which makes sense based on the nature of these industries.

For each industry, we find that −η̂ > σ̂ and ϕ̂ > σ̂ > 1, and in all but one industry we can

reject the null that ϕ = σ (see column (3) of Table 6). From equations (14)-(15), this implies that

skill-augmenting technological progress is skill-biased and thus necessarily raises the firm’s skill

intensity. In Table 7 we show that the elasticity of unskilled employment is on average slightly

negative, although this conceals substantial heterogeneity, with substantial positive effects in many

sectors and large negative effects for two industries, Wholesale and Retail, that together comprise

more than a third of hours worked in our sample. By contrast, the elasticity of skilled employment

is greater than or equal to one in every industry, with an employment-weighted average of 1.7. We

return to these results when we calculate the employment effects of techies and trade in Table 12

below.

Our estimation procedure imposes that the distribution parameters αN , αM and αK are strictly

positive and sum to one, which helps explain the generally small standard errors on these parame-

ters. The final row of the table reports the weighted average of the parameters, and the results are

reasonable, given average shares in factor payments: αM is the largest, followed by αN , while αK

is the smallest. Note that αL and αS are directly given by their corresponding average wage bill
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shares in (9), so they have no standard errors.

Our finding of σ > 1 contrasts with σ < 1 found by Doraszelski and Jaumandreu (2018) for

Spanish manufacturing firms and Raval (2019) for U.S. manufacturing plants. Like us, these two

papers assume a CES functional form with Hicks-neutral productivity differences across firms, where

capital and materials are two of the inputs. The key difference from our paper is that Doraszelski

and Jaumandreu (2018) and Raval (2019) combine all workers into a single labor aggregate and

allow for labor-augmenting technological differences, while we divide labor into two categories and

allow for skill-augmenting technological differences. Both Doraszelski and Jaumandreu (2018) and

Raval (2019) acknowledge that their findings of labor-augmenting technological progress may be

conflating skill-composition differences with labor augmenting technological differences across firms.

Our finding of ϕ > 1 is consistent with the findings of Bøler (2015), who estimates a model much

like ours on Norwegian manufacturing firms. Our result is also consistent with most of the industry-

and macro-level labor literature on substitution between skilled and unskilled labor (see the results

and discussion in Acemoglu and Autor (2011)).

6.2 Endogenous productivity

We begin by discussing the impact effects of techies and trade on productivity before reporting

the steady state effects. In the first row of Table 8 we find that the overall level of techies has

a statistically significant effect on skill augmenting productivity ωS , but no significant effect on

Hicks-neutral productivity ωH .36 The second and third rows of the table report estimates when

techies are broken down by their detailed job descriptions. ICT techies have a large and statistically

significant effect on ωH , while R&D techies have a tiny and imprecisely estimated effect. Both ICT

and R&D techies have large, precisely estimated and almost equal effects on ωS .

Turning to the effects of trade participation on productivity, we find that the effect of exporting

on ωH is very small and imprecisely estimated. This does not imply that exporting firms are not

more productive and/or skill intensive, as has been shown in countless studies. Rather, our esti-

mates show that conditional on lagged productivity, exporting does not cause higher productivity.

Thus our results for France contrast with the results of De Loecker (2013), who finds that export-

ing leads to productivity increases for Slovenian firms during the 1990s. Slovenia in the 1990s was

an emerging transition economy while France is a mature developed country, so our results are

36Similarly, Doraszelski and Jaumandreu (2018) find that firm level R&D expenditure has a larger effect on labor-
augmenting than Hicks-neutral technological progress.
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consistent with the consensus in the literature that learning-by-exporting is found only in (some)

developing countries. By contrast, exporting does have a positive and statistically significant effect

on ωS .

We find no statistically significant effects of importing on ωH , but we do find positive effects

on ωS , though the effect is less than half as big as the effect of exporting. Our finding that both

importing and exporting raise ωS , combined with our estimates of ϕ̂ > 1, implies that global

engagement causes French firms to increase their skill intensity.

Table 9 reports additional results about the effect of importing on productivity, and allows

us to see whether the country of import sourcing and/or whether importing inputs affects our

conclusions. In columns 1 and 4, we add an indicator variable for imports of intermediate goods, so

that the effect of importing intermediates is the sum of the effect of importing in general and the

incremental effect of importing inputs. Introducing this channel shows that the importing effect on

ωS is no different when we break out intermediate inputs. Columns (2) and (5) of Table 9 consider

an alternative split, with separate indicators for importing from high income countries and all other

countries, and we find that the effect of importing on ωS is about twice as high when imports come

from low and medium income countries.37

Finally, in columns (3) and (6) we report the interactions of the indicator variables for income

class and intermediate imports. Consistent with what we found in column (4), whether imports

of inputs come from high or medium/low income countries makes no difference. The effect of

importing inputs from both high income and other countries is the sum of the two coefficients, and

these linear combinations are reported in the bottom panel of the Table. Our baseline estimate of

0.0143 in column 4 of Table 9 means that the impact effect of offshoring is to raise ωS by 1.4 percent

compared to firms who source only from France. In column (3), the coefficient on importing from

other country has a positive sign on on ωH but a low degree of significance. However, the effects

of importing from both high income and other countries which is reported in the bottom panel of

the table is not significant.

The final rows of Table 8 report the effects of other controls. Productivity is very persistent,

with a coefficient on lagged productivity of about 0.8 for both ωH and ωS . By contrast, lagged ωH

has a very small and imprecisely estimated effect on ωS , and vice versa. Firm size has no discernible

effect on ωH but a positive effect on ωS , suggesting that bigger firms become more skill intenisve

relative to smaller firms. Firm age has negative effects on both ωH and ωS , suggesting that older

37Countries are defined as high income on the basis of the 2002 World Bank classification.
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firms have slower productivity growth.38

Because of the persistence of productivity, the techie and trade effects reported in Table 8

understate the long-run impact of these variables on cross-sectional productivity differences. Table

10 reports the associated steady-state effects, using equation (18). In addition to reporting the

long-run effects and their standard errors, Table 10 also reports scaled long-run techie effects in

italics. These are computed by multiplying the long-run coefficients times the 75th percentile of

the corresponding variable, as reported in Table 11. The number 0.148 in the third row of column

3 of Table 10 means that compared to firms with no techies, in the long run firms with a lot of

techies have ωS which is 15 percent higher. This is a big effect in economic terms. It is also large

relative to the variation in ωS , as 0.148 is equal to 17 percent of the 75th − 25th percentile range

of ωS , which is 0.86 (second row, last column of Table 11). In column 4 of Table 10 we find that

the scaled long-run effect is about twice as big for R&D techies as for ICT techies, a difference due

to the fact that the 75th percentile of R&D techies is about 2.5 times as large as for ICT techies.

In other words, both ICT and R&D techies have a large long-run effect on ωS , but the greater

expenditure on R&D techies means that they have a larger economic effect on ωS across firms.

ICT techies also have a large long-run effect on ωH , as seen in column (2) of Table 10. The

steady state effect of 0.175 is comparable in size to the effect of techies on ωS , and is about 12

percent of the interquartile range of ωH .

The long-run effects of importing and exporting on ωS are also substantial, both in economic

terms and relative to the variation in productivity. Since the trade variables are indicators, they

are simple to interpret: the number 0.147 in the “Exporting” row of column (3) and (4) of Table

10 means that compared to firms that don’t export, exporting causes ωS to be 15 percent higher in

the long run. Importing causes an effect which is about half as big, with firms that import having

7 percent higher steady state ωS . Thus, the causal effects of exporting are about the same as the

causal effects of employing techies.

6.3 The skill bias of techies and trade

Since the estimated effects of techies on ωH are statistically insignificant in Tables 8 through 10,

here we focus on quantifying the employment effects of techies and trade through their effects on

ωS . Applying equations (14)-(15), our quantification uses the industry-level estimates of η and σ

38As a robustness check, in unreported results we re-estimated equations (16) and (17) with two lags of all variables.
The sum of the coefficients is not appreciably different than the corresponding baseline coefficients with only one lag.
This implies that the long-run effects with one or two lags are essentially the same.
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from Table 5 together with the long-run effects reported in Table 10. To arrive at an economy-wide

number, we compute the elasticities defined in equations (14)-(15) for each industry. We then

construct an employment-weighted average of the industry elasticities, which we report in the first

line of Table 12. In Panel A of Table 12 we multiply the elasticities by the estimated effects of

techies and trade from Table 10. Finally, to give a sense of the magnitude of the techie effects,

in Panel B we multiply the Panel A estimates by the 75th percentile of the employment-weighted

distribution of techies. Thus, the numbers in Panel B of Table 12 answer the question: how does

employment differ between a firm with no techies and a firm with a lot of techies?

The first line of Table 12 shows that skill augmenting productivity raises S and S/L, and has

a tiny negative effect on L. The elasticities are big: a one percent increase in ΩS raises skilled

employment by 1.7 percent, reduces unskilled employment by less than a tenth of a percent, and

increases skill intensity by 1.8 percent. Techies are an important driver of these effects: as shown

in the first row of Panel B, high techie firms have employment of S that is 0.25 log points (28

percent) higher than firms with no techies, employment of L that is 0.01 log points lower, and a

skill intensity that is 0.26 log points (30 percentage points) higher. This effect is driven more by

R&D techies than by ICT techies.

The last two lines of Panel A show that exporting and importing are also strongly pro-employment

and skill biased: firms that export have employment of S that is 0.26 log points (28 percent) higher

than firms that do not, and firms that import have employment of S that is 0.12 log points (13

percent) higher than firms that do not. Putting these two effects together, global engagement

causes firms to increase S by a substantial 0.37 log points (45 percent).

Table 12 is one of the bottom lines of our paper. For the first time in the literature, we have

jointly estimated the firm-level labor demand effects of ICT, R&D, importing and exporting in a

unified framework, which allows us to compare their importance. Table 12 shows that techies and

trading raise both skill intensity and employment, and the effects are big. These are firm-level

effects, calculated holding market demand and factor prices fixed. In a general equilibrium full

employment model, the partial equilibrium effects found here would have clear implications for

relative wages: techies and trading raise the skill premium.

6.4 Aggregating the effects of techies and trade

In this section we ask: how much of the change in the aggregate skill intensity in our sample period

can be explained by firms’ choices on techies and trade? To do this we proceed in three steps.
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First, we construct predicted changes in productivity shifters across firms. Starting from esti-

mated Hicks-neutral and skill augmenting productivity levels (in logs) in 2009, we predict produc-

tivity levels in 2013 using actual techie, exporting and importing decisions from 2009 through 2012

by iterating forward using the estimated parameters of equations (16) and (17). The log differences

between the predicted productivity in 2013 and the actual values in 2009 are due to techies and

trade choices made by firms between 2009 and 2012. In the second step we use the predicted

changes in productivity from the first step to calculate the predicted change in employment of S

and L for each firm between 2009 and 2013 using equations (14)-(15). Finally, we sum over all firms

to get predicted aggregate skill intensity. These calculations take into account both within-firm

adjustment and as changes in firm sizes, but exclude firm entry and exit (85% of employment is

accounted by “continuous” firms, who exist throughout our sample). Details of how we perform

these calculations are given in Appendix A.2.5.

We measure aggregate skill intensity by 100 × S/L. This measure increases in our sample of

continuous firms by 2.7 percentage points (pp), from 16.7 percent in 2009 to 19.4 percent in 2013

(the numbers for the entire French private sector are very similar). Our first computation uses only

the statistically significant direct effects of techies and trade on ωS from column 3 of Table 8. Using

these estimates, we calculate that techie employment decisions in 2009–2013 imply an increase in

relative demand for skill of 0.40pp. The same exercise using exporting and importing decisions

amounts to 0.50pp and 0.23pp increase in aggregate relative demand for skill, respectively. Adding

these three effects together gives an increase of 1.13pp, almost half the total increase in the data.

When we evaluate firm-level ICT techie employment decisions in 2009–2013, we use the esti-

mates from columns 2 and 4 of Table 8. We find a much larger implied increase in relative demand

for skill amounting to 3.5pp, which is more than the actual increase of 2.7pp. This is driven by the

large direct effect of ICT techies on ωH . In fact, 87% of the 3.5pp implied increase in aggregate

relative demand for skill is driven by changes in firm sizes, holding constant firm-level skill inten-

sities. Skill-intensive firms are those who are also more likely to employ techies, who cause greater

employment growth. The greater importance of changes in firm composition versus within-firm

adjustment is also found in De Loecker and Eeckhout (2018) for increases in average markups, and

Autor et al. (2020) for the decline in the labor share, and Harrigan et al. (2021) for job polarization.

The calculations in this section do not take account of equilibrium conditions in the markets for

goods or labor. As such, they should be interpreted as rough estimates of the relative demand effects

of techies and trade on labor demand, and in particular their relative importance. Computation
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of the general equilibrium effects on employment and wages is beyond the scope of this paper, but

any general equilibrium model should be consistent with the aggregate relative demand effects that

we compute here.

6.5 Robustness

There are three novel elements of the empirical approach we have implemented in the previous

sections. The first is our specification of the nested CES production function in equations (1) and

(2), which allows for both Hicks-neutral and skill-augmenting technology differences across firms

as well as two elasticities of substitution. The second is the way we treat techies, assuming that

they affect output only through their lagged effect on productivity. Finally, our controlled Markov

specification allows productivity to be an endogenous outcome of firm decisions. In this section,

we consider the sensitivity of our conclusions to each of these elements.

6.5.1 Hicks-neutral productivity only

A key message of our paper is that technological differences across firms have a skill-augmenting

component ωSft as well as a Hicks-neutral component ωHft. If our model is correct, then computing

ωHft while ignoring variation in ωSft will bias the estimates of ωHft: firms that are highly productive

bcause of high ωSft will incorrectly be measured as having high ωHft. Additionally, if techies and

trade affect productivity through their effect on ωSft, then ignoring that channel will lead to an

over-estimate of the effect of techies on ωHft.

To investigate this bias, we estimate a simplified production function which aggregates all non-

techie labor and compute the implied ωHft, preccisely as in GLZ. We then estimate the controlled

Markov equation (16) for ωHft excluding ωSft−1.

Results are reported in Table A2, where we find that techies, R&D techies, and imports have

a large and precisely estimated effect on ωHft. This contrasts with our baseline results in Table 8,

where the effect of techies and imports on firm productivity comes mainly through their effect on

ωSft rather than through an effect on ωHft. We conclude from comparing Tables 8 and A2 that an

accurate accounting of technology differences across firms requires estimating ωSft as well as ωHft.

6.5.2 Including techies in the production function

In Section 4.3.2 above (with details in Appendix A.2.3) we discuss the biases in productivity

estimation that would result from assuming (as we do) that techie labor services in t have no
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effect on output in t when in fact they do. Here we consider an alternative specification where

we include techies in the definition of employment when estimating the production function, and

then compute implied Hicks-neutral ωHft and skill-augmenting ωSft productivity. Since techies are

part of production in this specification, they should not affect productivity when we re-estimate

the controlled Markov specification for productivity as given by equations (16) and (17). Table

A3 reports the results of this exercise. The estimated effects of techies on both ωHft and ωSft are

somewhat smaller than in our baseline estimates in Table 8, but the null hypothesis that the effects

are zero can be rejected. We thus conclude that the data reject the model that techies affect output

only through a contemporaneous effect on output. This does not establish that techies have no

contemporaneous effect on output, but, as discussed in Section 4.3.2, a model where techies belong

in the production function and, with a lag, also in the productivity process is not identified.

6.5.3 Relative labor demand

In Section 6.2 we found large effects of techies and trade on skill-augmenting technology ωSft. What

this means is that, conditional on wages, techies and trade raise firm-level employment of more-

skilled relative to less-skilled workers. This interpretation follows from the relative skill demand

equation (13) when ϕ > 1 (which is what we find for all industries in Table 5).

We can estimate the relationship between relative skill demand and techies and trade more

directly. Re-writing equation (13) gives

(ϕ− 1)ωSft = ln

(
S

L

)
ft

+ ϕ ln

(
WL

WS

)
ft

+ constant (19)

Substituting equation (19) into equation (17) and moving the relative wage term to the righthand

side of the equation gives

ln

(
S

L

)
ft

= −ϕ ln

(
WS

WL

)
ft

+ βSHωHft−1 + βSSωSft−1 + βSZzft−1 + constant+ ξSft (20)

Equation (20) does not impose all of the structure of our model, but is nonetheless intuitive: it

states that relative skill demand depends on relative wages, lagged productivity, and the lagged

determinants of current skill-augmenting productivity.

We estimate equation (20) by two-stage least squares, using lnZft defined in equation (11) as an

instrument for ln (WS/WL)ft. We report the results in Table A4. As in our baseline specifications
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for skill-augmenting productivity (columns 3 and 4 in Table 8 and columns 4, 5 and 6 in Table 9),

we find large and statistically significant positive effects of techies, importing and exporting. The

most interesting result from Table A4 is the estimate of 3.1 for the elasticity of substitution between

skilled and less-skilled labor, only slightly larger than the 2.8 average of industry-specific estimates

reported in Table 5. While these parameter estimates cannot be directly compared to the more

model-based estimates discussed in Section 6, it is reassuring that the implications are broadly

consistent: the elasticity of substitution between more-skilled and less-skilled labor is substantially

greater than 1, and techies and trade raise the relative demand for skill.

7 Conclusion

We show how firm-level decisions on R&D, ICT and trade affect firm-level productivity and its bias

towards skilled workers. We do this by estimating firm-level nested CES production functions, which

allows us to infer both Hicks-neutral and skill-augmenting technology differences. We use matched

employer-employee data in manufacturing and non-manufacturing industries in France, from 2009

to 2013. The data has information on exporting, importing and technology adoption at the firm

level, as well as detailed information on each worker’s occupation. Our measure of technology

adoption is firm-level employment of workers in technology and research related occupations, who

we call “techies”.

We find that techies, exporting and importing raise skill-biased productivity. In contrast, only

ICT techies raise Hicks-neutral productivity. We show that both trade and employment of techies

lead to greater employment of skilled workers without reducing employment of less skilled workers.

The result for unskilled workers is surprising but easy to explain: the direct substitution effect away

from unskilled labor is offset by the powerful employment-enhancing effect of greater productivity.

When aggregating our firm-level estimates, we find that ICT has the largest effect on aggregate

demand for skill, mostly through its effect on firm sizes, not through within-firm adjustment. These

conclusions are based on firm-level effects, calculated holding product demand and economy-wide

aggregates constant. Analyzing market and general equilibrium effects that are consistent with our

firm-level findings is an important task for future research.

We develop a new methodology that allows us to identify the causal effects on productivity and

employment of firms’ decisions on trade and employment of techies through their effects on both

Hicks-neutral and skill-augmenting technology differences. This identification is well-founded even
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though we remain silent on what drives firm decisions on techies and trade. Understanding why

some, but not all, firms employ techies and engage in international trade is an important question

that is beyond the scope of this paper.
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Table 1: Covariates of techies
I (techies > 0)

Log revenue 0.120
(0.001)

Exporter dummy 0.272
(0.005)

Importer dummy 0.275
(0.004)

Manager wage bill share 0.142
(0.011)

Obs. 568,650

Notes to Table 1: Each entry is the weighted least squares coefficient in a regression of the row
variable on an indicator equal to 1 if the firm employs any techies. All regressions include industry
× year fixed effects. Regressions weighted by firm employment. Standard errors clustered by firm
in parentheses. All estimated coefficients are statistically significant at the 0.01 level.

Table 2: Techie occupations
Technical managers & engineers (Ingénieurs et cadres techniques d’entreprise)
383a R&D Engineers and R&D managers, electricity and electronics
384a R&D Mechanical engineers and R&D managers
385a R&D Materials and chemical engineers and R&D managers
386a R&D Engineers and R&D managers, intermediate goods
388a ICT Information technology R&D engineers and managers
388b ICT Information technology support engineers and managers
388c ICT Information technology project managers
388e ICT Telecommunications engineers and specialists

Technicians (Techniciens)
473b R&D R&D technicians, electrical and electronic equipment
474b R&D R&D technicians, mechanical and metalworking equipment
475a R&D R&D technicians, processing industries
478a ICT R&D technicians, information technology
478b ICT Computer production and operation technicians
478c ICT Computer installation and maintenance technicians
478d ICT Telecommunications and computer network technicians

Notes to Table 2: First column is the occupational code of the PCS classification, and the third
column is our translation of the official descriptions. The second column is our categorization based
on the descriptions.
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Table 3: Wage bill shares within Techies (%)
Whole economy

ICT R&D
2010 38 62
2013 39 61

Variation across industries in 2009
std. dev. 31.0 31.0
Min 17.4 4.2
Max 95.8 82.6

Notes to Table 3: Wage bill shares within techies in the estimation sample. Wage bill shares sum
to 100 across the two categories ICT and R&D.

Table 4: Estimation sample, 2010-2013
Industry Obs. Obs. Firms Firms Revenue Hours

(%) (%) (%) (%)
Food, beverage, tobacco 18,224 3.2 6,072 3.1 8.8 6.8
Textiles, wearing apparel 6,771 1.2 2,201 1.1 1.3 1.9
Wood, paper products 13,810 2.4 4,491 2.3 2.5 3.6
Chemical products 4,075 0.7 1,202 0.6 5.0 3.2
Rubber and plastic 11,257 2.0 3,469 1.8 4.3 5.0
Basic metal and fabricated metal 23,908 4.2 7,457 3.9 4.7 7.2
Electrical equipment 3,242 0.6 1,001 0.5 1.9 2.2
Machinery and equipment 8,111 1.4 2,447 1.3 3.1 3.9
Other manufacturing 19.210 3.4 6,275 3.3 2.6 4.5
Construction 108,919 19.2 38,389 19.9 9.0 14.1
Wholesale 122,317 21.5 40,032 20.7 37.6 21.8
Retail 145,271 25.5 48,680 25.2 14.0 12.6
Accommodation and food services 64,172 11.3 24,212 12.5 2.2 6.4
Administrative and support activities 19,363 3.4 7,033 3.6 3.1 6.8
Total 568,650 100 192,961 100 100 100

Notes to Table 4: We lose 9.8% of total revenue and 9.2% of total hours due to dropping the sectors
of coke and refined petroleum, pharmaceutical products, computer electornic, transport equipment,
publishing and broadcasting and transportation and storage.
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Table 6: Test statistics for production function estimates
(1) (2) (3) (4)

Industry H0 : σ = 1 H0 : ϕ = 1 ϕ− σ J(1)

Food, beverage, tobacco 9.0 9.1 0.901 9.9
4.4

Textiles, apparel 3.1 5.0 0.503 2.8
2.2

Wood, paper products 2.0 3.8 0.497 0.5
3.2

Chemical products 5.0 3.2 0.604 6.1
2.2

Rubber & plastic 5.5 5.4 0.426 3.7
2.2

Basic & fabricated metal 8.4 7.9 0.230 19.9
4.1

Electrical equipment 3.8 2.8 0.873 2.6
2.3

Machinery & equipment 3.2 7.3 1.322 7.3
6.9

Other manufacturing 5.4 8.9 1.352 3.5
8.0

Construction 16.7 25.6 0.928 64.6
14.8

Wholesale 13.9 29.1 2.307 3.7
24.4

Retail 12.8 39.5 1.934 33.4
30.4

Accommodation and food 12.0 15.2 0.026 37.0
0.3

Admin & support 17.3 17.2 2.067 43.1
10.7

Notes to Table 6: Columns (1) and (2) report t-statistics for the null hypotheses that the elasticities
of substitution σ and ϕ in the production function are equal to one. Column (3) reports the point
estimate of ϕ−σ from Table 5 and, in italics, the t-statistic for H0 : ϕ−σ = 0. Column (4) reports
Hansen’s χ2 J statistic test of overidentification.
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Table 7: Employment elasticities of skill-augmenting productivity
S L S/L

Food, beverage, tobacco 1.80 0.02 1.78
0.16 0.04 0.20

Textiles, apparel 1.04 0.05 0.99
0.15 0.05 0.20

Wood, paper products 0.73 0.14 0.59
0.12 0.04 0.16

Chemical products 1.07 0.12 0.95
0.22 0.09 0.30

Rubber & plastic 1.17 0.07 1.10
0.17 0.04 0.20

Basic & fabricated metal 0.69 0.20 0.49
0.05 0.02 0.06

Electrical equipment 1.18 0.07 1.11
0.29 0.11 0.39

Machinery & equipment 1.38 -0.01 1.40
0.14 0.07 0.19

Other manufacturing 1.53 0.01 1.52
0.13 0.06 0.17

Construction 1.36 -0.07 1.43
0.04 0.01 0.06

Wholesale 2.39 -0.29 2.68
0.06 0.04 0.09

Retail 2.04 -0.27 2.32
0.04 0.02 0.06

Accommodation and food 1.18 0.20 0.98
0.05 0.02 0.06

Admin & support 3.07 0.01 3.06
0.15 0.07 0.18

Weighted average 1.71 -0.07 1.78

Notes to Table 7: Elasticities computed using equations (14)-(15) and estimates from Table 5.
Standard errors in italics. Weighted average elasticities computed using industry hours shares from
Table 4.
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Table 8: Techie and trade effects on productivity
(1) (2) (3) (4)
Hicks neutral ωHft Skill augmenting ωSft

Techies 0.4533 0.3501***
(0.397) (0.043)

Techies : ICT 0.9137** 0.3519***
(0.4558) (0.051)

Techies : R&D 0.0465 0.3485***
(0.6165) (0.061)

Exporting -0.0130 -0.0124 0.0305*** 0.0305***
(0.027) (0.0269) (0.0032) (0.0032)

Importing 0.0236 0.0237 0.0139*** 0.0139***
(0.035) (0.0349) (0.0032) (0.0032)

lagged ωHft 0.8108*** 0.8107*** 0.0049* 0.0049*

(0.025) (0.0250) (0.0026) (0.0026)
lagged ωSft 0.0486 0.0479 0.7939*** 0.7939***

(0.034) (0.0337) (0.0054) (0.0054)
firm size 0.0005 0.0005 0.0004*** 0.0004***

(0.0004) (0.0004) (0.0001) (0.0001)
firm age -0.0383** -0.0382** -0.0064*** -0.0064***

(0.0166) (0.0165) (0.0013) (0.0013)

Notes to Table 8: Weighted least squares estimation of equations (16) and (17), pooled across indus-
tries, with industry × year fixed effects. Observations weighted by firm employment. Bootstrapped
standard errors clustered by firm in parentheses. Sample: 568,650 observations on 192,961 firms
during 2009-2013. Asterisks indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table 9: Techie and trade effects on productivity, importing detail
(1) (2) (3) (4) (5) (6)

Hicks neutral ωHft Skill augmenting ωSft
Techies 0.4544 0.4515 0.4596 0.3499*** 0.3399*** 0.3396***

(0.398) (0.399) (0.399) (0.043) (0.043) (0.043)
Exporting -0.0123 -0.0092 -0.0083 0.0303*** 0.0265*** 0.0265***

(0.026) (0.024) (0.023) (0.0032) (0.0032) (0.0032)
Importing 0.0370** 0.0112**

(0.017) (0.0048)
Importing inputs -0.0158 0.0031

(0.036) (0.0047)
Importing high income 0.0085 0.0232 0.0087*** 0.0096*

(0.031) (0.020) (0.0032) (0.0049)
Importing other income 0.0080 0.0319* 0.0178*** 0.0169***

(0.029) (0.019) (0.0036) (0.0051)
Imp. inputs high income -0.0180 -0.0010

(0.029) (0.0049)
Imp. inputs other income -0.0318 0.0014

(0.033) (0.0059)
Linear combinations of estimates

Importing + imp. inputs 0.0212 0.0143***
(0.040) (0.0033)

High inc., imp. + imp. inputs 0.00526 0.0086**
(0.035) (0.0034)

Other inc., imp. + imp. inputs 0.0001 0.0183***
(0.036) (0.0042)

Other controls Yes Yes Yes Yes Yes Yes

Notes to Table 9: Weighted least squares estimation of equations (16) and (17), pooled across
industries, with industry × year fixed effects. Estimates of other controls (lagged productivity,
firm size and age) omitted. Effects reported in bottom panel are linear combinations of WLS
estimates. Observations weighted by firm employment. Bootstrapped standard errors clustered by
firm in parentheses. Sample: 568,650 observations on 192,961 firms during 2009-2013. Asterisks
indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table 10: Long run techie and trade effects on productivity
(1) (2) (3) (4)

Hicks neutral ωHft Skill augmenting ωSft
Techies 2.851 1.767***

(2.30) (0.201)
0 .239 0 .148

Techies : ICT 5.291** 1.834***
(2.65) (0.235)
0 .175 0 .061

Techies : R&D 0.678 1.707***
(3.09) (0.294)
0 .054 0 .137

Exporting -0.0308 -0.0282 0.147*** 0.147***
(0.138) (0.137) (0.015) (0.015)

Importing 0.143 0.143 0.0707*** 0.0707***
(0.192) (0.192) (0.015) (0.015)

Notes to Table 10: Effects are long-run steady state effects on productivity given by equation
(18), based on results in Table 8. Bootstrapped standard errors clustered by firm in parentheses.
Scaled techie coefficients, defined as the estimate times the 75th percentile of the techie distribution
reported in Table 11, are reported in italics. Sample: 568,650 observations on 192,961 firms during
2010-2013. Asterisks indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table 11: Summary statistics for second stage regressions
Mean Std Dev p25 p50 p75 p75-p25

Hicks neutral productivity ωH 0 1.95 -0.72 0.08 .79 1.514
Skill augmenting productivity ωS 0 0.83 -0.42 .01 0.43 0.86
Techie share of wage bill 0.063 0.069 0.019 0.041 0.084 0.065
Techies: ICT 0.031 0.052 0.094 0.018 0.033 0.024
Techies: R&D 0.058 0.060 0.016 0.039 0.080 0.062
Exporting 0.44 0.50 0 0 1 1
Importing 0.48 0.50 0 0 1 1

Notes to Table 11: Summary statistics for variables used to estimate equations (16) and (17),
weighted by firm employment. Statistics for the three Techie variables are for firms with positive
employment of each techie variable separately. p25 is the value of the variable at the 25th percentile
of it’s distribution, etc. Sample: 568,650 observations on 192,961 firms during 2010-2013.

Table 12: Employment effects of skill augmenting technology differences
S L S/L

Elasticities 1.71 -0.07 1.78

A. Elasticities × second stage estimates

Techies 3.02 -0.12 3.14
Techies : ICT 3.13 -0.12 3.26
Techies : R&D 2.92 -0.12 3.03
Exporting 0.25 -0.01 0.26
Importing 0.12 0.00 0.13

B. Elasticities × second stage estimates × p75

Techies 0.25 -0.01 0.26
Techies : ICT 0.10 0.00 0.11
Techies : R&D 0.23 -0.01 0.24

Notes to Table 12: This table reports estimated steady-state effects of skill augmenting productivity
differences on employment of managers S, other workers L, and their ratio. The first row reports
employment-weighted averages of industry level elasticities, computed using equations (14)-(15) and
the estimates from Table 5. Panel A multiplies the elasticities by the corresponding estimates from
columns (3) and (4) of Table 10. Panel B multiplies the panel A numbers by the 75th percentile of
the distribution of techies, from Table 11.
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A Appendix

A.1 data definitions and construction

Here we discuss in detail the three administrative datasets used in our paper, as well as details on

supplementary publicly available data.

A key feature of the French statistical system is that establishments are identified by a unique

number, the SIRET, which is used by all data sources. The first 9 digits of an establishment’s

SIRET comprise the SIREN of the firm to which the establishment belongs. This makes it easy to

aggregate from establishments to firms.

A.1.1 Workers: DADS Poste

Our source for information on workers is the DADS Poste, which is based on mandatory annual

reports filed by all firms with employees, so our data includes all private sector French workers

except the self-employed.39 The DADS Poste is an INSEE database compiled from the mandatory

firm-level DADS ("Déclaration Annuelle de Données Sociales") reports. Our unit of analysis is

annual hours paid in a firm, by occupation. The data is reported at the level of establishments,

which are identified by their SIRET. The first nine digits of each SIRET is the firm-level SIREN,

which makes it easy to aggregate across establishments for each firm. For each worker, the DADS

Poste reports gross and net wages, hours paid, occupation, tenure, gender and age. There is no

information about workers’ education or overall labor market experience. The data do not include

worker identifiers, so we can not track workers over time, but this is of no concern to us given our

focus on firm-level rather than individual outcomes.40

A.1.2 Balance sheet data: FARE

Firm-level balance sheet information is reported in an INSEE dataset called FARE.41 The balance

sheet variables used in our empirical analysis include revenue, expenditure on materials, and the

book value of capital. We do not use balance sheet data on employment or the wage bill, because

39All employers and their employees are covered by the DADS declaration with the exception of self-employed
and government bodies, domestic services (section 97-98 of NAF rev. 2) and employees in businesses outside French
territory (section 99 of NAF rev. 2). However, local authorities and public-employed hospital staff are included since
1992. Public institutions of industrial and commercial nature are also included.

40A related dataset, made famous by Abowd et al. (1999), is the DADS Panel. This sample from of the DADS
data does include worker identifiers.

41FICUS (Fichier complet unifié de SUSE) reports balance sheet data through 2007, while FARE (Fichier approché
des résultats Ésane) starts in 2008. The underlying data sources are identical.
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the DADS Poste data is more detailed, but the FARE wage bill and employment data are extremely

highly correlated with the corresponding DADS Poste data.

To construct capital stocks, we begin with the book value of capital recorded in FARE. We

follow the methodology proposed by Bonleu et al. (2013) and Cette et al. (2015). Since the stocks

are recorded at historical cost, i.e. at their value at the time of entry into the firm i’s balance sheet,

an adjustment, has to be made to move from stocks valued at historic cost (KBV
i,s,t) to stocks valued

at current prices (Ki,s,t). We deflate KBV by a price by assuming that the sectoral price of capital

is equal to the sectoral price of investment T years before the date when the first book value was

available, where T is the corrected average age of capital, hence pKs,t+1 = pIs,t−T . The average age of

capital is computed using the share of depreciated capital, DKBV
i,s,t in the capital stock at historical

cost.

T =
DKBV

i,s,t

KBV
i,s,t

× Ã

where

Ã = mediani∈S

(
KBV
i,s,t

∆DKBV
i,s,t

)

with S the set of firms in a sector. We use the median value Ã to reduce the volatility in the data,

as investments within firms are discrete events.

A.1.3 Trade data: Douanes

Our source for firm-level trade data is the French Customs (Douanes). For each trade observation,

we know the importing or exporting firm, trading partner country, the product traded, and the

value of trade. We use the firm-level SIREN identifier to match the trade data to our two other

data sources. This match is not perfect: we fail to match about 11 percent of imports and exports

to firms. The reason for the imperfect match is that there are SIRENs in the trade data for which

there is no corresponding SIREN in our other data sources. This is likely to lead to a particular

type of measurement error: for some firms, we will observe zero trade even when true trade is

positive.

In some of our specifications we classify trade by exporter per capita income and/or whether

they are imports of intermediate goods. Countries are classified as High Income based on the 2011

World Bank classification42. We use the Broad Economic Categories (BEC rev. 4) classification

42https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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from the United Nations that classifies HS6 products into final, intermediate and capital goods.

A.2 Methodology

This section gives details on our two-step estimation procedure and related calculations.

A.2.1 Estimating equation

Using equations (1) and (3), revenue is given by

Rft = euftPftYft = euftAtΩ
η+1
η

Hft

[
αNN

γ
ft + αKK

γ
ft + αMM

γ
ft

] η+1
ηγ

, (A.21)

Equation (A.21) contains three unobservable shocks (uft, ωHft and ωSft) and one unobservable

variable Mft. Nft can be constructed from observables and parameters. Before the revenue shock

is realized, firms choose inputs optimally to maximize ex ante profit. Using (2) to substitute for

Nft in (A.21) yields the following first-order conditions for this problem,

αNN
γ−1
ft Xft = PNft (A.22)

αLL
ρ−1
ft

[
αLL

ρ
ft + αSΩρ

Sft (Sft)
ρ
] 1−ρ

ρ
αNN

γ−1
ft Xft = WLft (A.23)

αSΩρ
Sft (Sft)

ρ−1
[
αLL

ρ
ft + αSΩρ

Sft (Sft)
ρ
] 1−ρ

ρ
αNN

γ−1
ft Xft = WSft (A.24)

αMM
γ−1
ft Xft = PMft (A.25)

where Xft = η+1
η AtΩ

η+1
η

Hft

[
αNN

γ
ft + αKK

γ
ft + αMM

γ
ft

]δ
, δ = η(1−γ)+1

γη . Dividing (A.22) by (A.25)

and solving for Mft gives equation (4), and dividing (A.23) by (A.24) and solving for ΩSft gives

(5). Using (5) in (2) gives

Nft = Lft

(
αL
λft

) 1
ρ

(A.26)

where λft =
ELft

ELft+E
S
ft

=
ELft
ENft

is the share of unskilled labor in the wage bill.
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If Nft were data, using (4) to eliminate Mft and (A.23) to eliminate ΩHft from (A.21) would

yield the following estimating equation from GLZ (their equation 8, see their Appendix A.1 for

derivation),

lnRft = ln
η

η + 1
+ ln

[
EMft + ENft

(
1 +

αK
αN

)(
Kft

Nft

)γ]
+ uft (A.27)

Nft depends on parameters and is thus not data, so we substitute (A.26) into (A.27) which yields

our estimating equation (6).

To solve for Hicks-neutral productivity ωHft, substitute (4) and (5) into (A.22), multiply both

sides by Nft, and take logs to obtain equation (12). An alternative expression for ωHft is obtained

using (A.23) rather than (A.22),

ωHft =
η

η + 1

[
ln

[(
η

1 + η

)(
Atα

γ
ρ

LαN

)−1
]

+
γ

ρ
lnELft − γ lnLft +

ρ− γ
ρ

lnENft

]

+
η (γ − 1)− 1

(1 + η) γ
ln

α γ
ρ

LαN

(
ENft + EMft

ENft

)
Lγft

(
ENft

ELft

) γ
ρ

+ αKK
γ
ft

 (A.28)

A.2.2 Calculation of standard errors

For the first stage GMM estimates reported in Tables 5 through 7, standard errors are clustered

by firm. For the second stage estimates reported in Tables 8 through 10 and A3 through A4,

covariance matrices are computed by bootstrapping, with firms drawn without replacement, which

is equivalent to clustering by firm. In all bootstraps we use 800 replications (decreasing the number

of replications to 400 had virtually no effect on inference).

As explained in Section 4.1.1, the derivation of our production function estimator requires that

that σ 6= 1 and ϕ 6= 1. Our point estimates satisfy these restrictions (see Table 6), but in a small

number of our bootstrap draws the value of σ is so close to one, which is equivalent to γ close to

zero, that some of the values of ω̂Hft take on very extreme values (to see how this happens, note

that equation (12) which defines ωHft includes a term with an exponent δ which goes to infinity as

γ goes to zero). To prevent our covariance estimates from being distorted by this small number of

bootstrap draws, we drop all bootstraop draws b where |γ̂b| < 0.01.
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A.2.3 Effect of techies on output

A central element of our methodology is that we assume that techies affect output only through

their effect on future productivity, and not through any contemporaneous contribution to factor

services that affect current output. This assumption is analogous to the standard assumption that

investment in t-1 has no effect on output in t-1, but raises output in t through its contribution to

Kt. While our assumption that techies affect output only through their effect on future productivity

is well-grounded, it is important to consider how our measurement of productivity could go awry

if techies do in fact increase current output directly, a case that we will call the “orthodox case”.

In general this is an intractable problem to analyze, so here we make two empirically relevant

simplifications. First, we suppose that ϕ = σ (which is not far from what we find in Table 5).

Second, we suppose that in the orthodox case techies are a component of skilled labor S, so that

techies T and managers B (for “bosses”) together make up skilled labor S, and that the ratio of

techies to managers, δft = Tft/Bft, varies across firms and time. In levels, this amounts to

Sft = Bft + Tft = (1 + δft)Bft

Using the approximation log (1 + δft) ' δft and the notation that lower case letters are the log of

upper case variables gives sft = δft + bft. Similarly, define τft as the ratio of the techie to manager

wage bill in S,

ESft = EBft + ETft = (1 + τft)E
B
ft

When ϕ = σ, the expression for Hicks-neutral productivity given by equation (A.28) simplifies

to

ωHft =
η

η + 1

[
ln

(
η

1 + η

ELft
AtαLαNL

γ
ft

)]
+ β ln

[
αLαN

(
ELft + ESft + EMft

ELft

)
Lγft + αKK

γ
ft

]

where β = η(γ−1)−1
(1+η)γ is negative as long as |η| > σ, a condition which holds in our estimates

(see Table 5). Under the assumption that our model is correct, we can write true Hicks-neutral

productivity as
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ω1
Hft = θft + β ln

{
αLαN

(
ELft + EBft + EMft

ELft

)
Lγft + αKK

γ
ft

}

where θft = η
η+1

[
ln

(
η

1+η
ELft

AtαLαNL
γ
ft

)]
. Under the assumption that the orthodox model is correct,

the term EBft in this expression is multiplied by (1 + τft), giving

ω2
Hft = θft + β ln

{
αLαN

(
ELft + (1 + τft)E

B
ft + EMft

ELft

)
Lγft + αKK

γ
ft

}

If the orthodox model is correct, but we incorrectly estimate Hicks-neutral productivity using ω1
Hft,

then the error is

ω1
Hft − ω2

Hft = β ln

{
αLαN

(
ELft + EBft + EMft

ELft

)
Lγft + αKK

γ
ft

}

− β ln

{
αLαN

(
ELft + (1 + τft)E

B
ft + EMft

ELft

)
Lγft + αKK

γ
ft

}

This expression is strictly positive and increasing in the techie share τft. The intuition is simple:

the larger is τft, the greater is the underestimate of true inputs under the wrong model and thus

the greater the overestimate of Hicks-neutral productivity.

Under the assumption that our model is correct, from (A.23) and (A.24) we can write true

skill-augmenting productivity as

ω1
Sft = lft − bft +

1

ρ
log

(
αLE

B
ft

αBELft

)

Under the assumption that the orthodox model is correct, and using log (1 + τft) ' τft, we can

write true skill-augmenting productivity as

ω2
Sft = lft − bft − δft +

τft
ρ

+
1

ρ
log

(
αLE

B
ft

αSELft

)
If the orthodox model is correct, but we incorrectly estimate skill-augmenting productivity using

ω1
Sft, then the error is

ω1
Sft − ω2

Sft = δft −
τft
ρ

+
1

ρ
log

(
αS
αB

)
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The third term in this expression is a constant, while the first is positive. In our application we

always estimate 1 > ρ > 0, so the second term is negative. If techies are paid on average the same

as managers, then δft = τft and we have

ω1
Sft − ω2

Sft = δft

(
ρ− 1

ρ

)
+

1

ρ
log

(
αS
αB

)
Since

(
ρ−1
ρ

)
< 0, we conclude that the error is negatively correlated with the techie share in the

cross section: firms with high techie shares δft will have measured ωSft which is biased down by

more than for firms with low techie shares. The intuition is as follows. When 1 > ρ > 0, greater

ωSft leads to greater employment of skilled workers S, which implies that higher S indicates higher

true ωSft. Incorrectly removing techies from S will thus lead to an underestimate of ωSft, and the

underestimate will be larger the greater is the share of techies in S.

A.2.4 Output and employment elasticities

The unit cost function corresponding to the nested CES production function given by equations

(1) and (2) is

C =
1

ΩH

ασN
[
αϕLw

1−ϕ
L + αϕS

(
wS
ΩS

)1−ϕ
] 1−σ

1−ϕ

+ ασKr
1−σ
K + ασMp

1−σ
M


1

1−σ

(A.29)

=
1

ΩH

[
ασNw

1−σ
N + ασKr

1−σ
K + ασMp

1−σ
M

] 1
1−σ

=
1

ΩH
X

1
1−σ

where wN =

[
αϕLw

1−ϕ
L + αϕS

(
wS
ΩS

)1−ϕ
] 1

1−ϕ
and X =

[
ασNw

1−σ
N + ασKr

1−σ
K + ασMp

1−σ
M

]
. The unit

factor demands can be obtained using Shepard’s lemma,

L1 =
∂C

∂wN
× ∂wN
∂wL

=
ασNα

ϕ
Lw
−ϕ
L wϕ−σN

ΩH
X

σ
1−σ (A.30)

S1 =
∂C

∂wN
× ∂wN
∂wS

=
ασNα

ϕ
SΩϕ−1

S w−ϕS wϕ−σN

ΩH
X

σ
1−σ (A.31)
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K1 =
∂C

∂rK
=
ασKr

−σ
K

ΩH
X

σ
1−σ (A.32)

M1 =
∂C

∂pM
=
ασMp

−σ
M

ΩH
X

σ
1−σ (A.33)

Unit skill intensity is

(
S

L

)
1

= Ωϕ−1
S

(
αLwS
αSwL

)−ϕ
For an inverse demand curve of the form P = AQ

1
η , revenue is AQ

η+1
η and the marginal revenue =

marginal cost condition is η+1
η AQ

1
η = C. Solving for profit maximizing output Q and revenue R

gives

Q = BC−η = BΩ−ηH X
η

1−σ1

R = DC1−η = DΩ
−(η+1)
H X

η+1
σ−1

where B =
(
η+1
η A

)−η
, D = AB

η+1
η . Increasing marginal costs leads to proportionately increas-

ing prices (because of the constant markup) and thus a decline in sales with elasticity η < 0 and a

decline in revenue with elasticity η+1 < 0. Hicks-neutral TFP improvements raise sales and revenue

with elasticities of −η > 0 and − (η + 1) > 0 respectively. Multiplying the unit factor demands

from (A.30) and (A.31) by the quantity demanded gives the full Marshallian factor demands,

L = L1Q =
ασNα

ϕ
Lw
−ϕ
L wϕ−σN

ΩH
X

σ
1−σ ×BΩ−ηH X

η
1−σ

S = S1Q =
ασNα

ϕ
SΩϕ−1

S w−ϕS wϕ−σN

ΩH
X

σ
1−σ ×BΩ−ηH X

η
1−σ

Taking logs of these factor demands and collecting constant parameters in k gives

lnL = kL + (−η − 1) ln ΩH − ϕ lnwL + (ϕ− σ) lnwN +

(
η + σ

1− σ

)
lnX

lnS = kS + (−η − 1) ln ΩH − ϕ lnwS + (ϕ− σ) lnwN +

(
η + σ

1− σ

)
lnX + (ϕ− 1) ln ΩS (A.34)
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To understand how these Marshallian factor demands respond to changes in technology, it is first

necessary to calculate cost shares and elasticities. First we calculate θN , θK , and θM the shares of

composite labor and capital in unit cost,

θN =
wNN1

C
=
ασNw

1−σ
N

X

θK =
rKK1

C
=
ασKr

1−σ
K

X

θM =
pMM1

C
=
ασKr

1−σ
K

X

Next, we calculate θLN and θSN , the shares of skilled and unskilled labor in the cost of a unit of

composite labor

θLN =
wLLN
wN

= αϕLw
1−ϕ
L

[
αϕLw

1−ϕ
L + αϕS

(
wS
ΩS

)1−ϕ
]−1

θSN =
wSLN
wN

= αϕS

(
wS
ΩS

)1−ϕ
[
αϕLw

1−ϕ
L + αϕS

(
wS
ΩS

)1−ϕ
]−1

Then we calculate the shares of skilled and unskilled labor in the unit cost of output. We do this

in two steps. First, we divide (A.30) by (A.29) to get

L1

C
=
ασNw

−σ
N

X
×

[
αϕLw

1−ϕ
L + αϕS

(
wS
ΩS

)1−ϕ
] ϕ

1−ϕ

Next multiply by wNwL
wN

,

wLL1

C
=
ασNw

1−σ
N

X
× αϕLw

1−ϕ
L

[
αϕLw

1−ϕ
L + αϕS

(
wS
ΩS

)1−ϕ
]−1

= θN × θLN

So we conclude as expected that
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θL = θN × θLN

Similarly,

θS = θN × θSN

Notice that θLN + θSN = 1 and θL + θS = θN and θL + θS + θK + θM = 1.

Next, compute the following elasticities,

∂ lnX

∂ ln ΩH
=
∂ lnwN
∂ ln ΩH

= 0

∂ lnwN
∂ ln ΩS

= −θSN

∂ lnX

∂ ln ΩS
= − (1− σ)wϕ−σN ασNα

ϕ
S

(
wS
ΩS

)1−ϕ
X−1 = (σ − 1) θS

Substituting these expressions into equations (A.34) yields equations (14) and (15). These equations

have straightforward intuition:

� For both S and L, the effect of Hicks-neutral technological progress is to reduce the employ-

ment required to produce a unit of ouput, and thus decrease employment with an elasticity

of -1. But at the same time, costs decrease with an elasticity of -1 and thus increase demand

with elasticity η, so the net effect on employment of Hicks-neutral technological progress is

(η − 1) Ω̂H .

� The effect of skill-augmenting technological progress has multiple channels. First, suppose

that σ = ϕ, which means we have a simple 3-factor CES function and the second term dis-

appears. The term (η − σ) θSΩ̂S that appears in both equations represents the cost-reducing

effect of skill-augmenting technological progress, which reduces costs with an elasticity of θS

and thus increases labor demand with an elasticity (η − σ) θS . The term (ϕ− 1) Ω̂S in equa-

tion (15) represents the usual balance between the efficiency effect which reduces employment

with an elasticity of -1 and the substitution between the other factors and S which increases

employment of S with an elasticity σ = ϕ.
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� The coefficient (σ − ϕ) θSN is negative if ϕ, the elasticity of substitution between L and S

within N , exceeds σ, the elasticity of substitution between N and the other factors. When

S becomes more productive, there is both substitution within N towards S and substitution

towards N from the other factors.

It is instructive to compute output elasticities directly from the primal production function (1) and

(2). We have

lnYft = ln ΩHft +
1

γ
ln Ỹft, Ỹft =

[
αNN

γ
ft + αKK

γ
ft + αMM

γ
ft

]
lnNft =

1

ρ
ln Ñft, Ñft

[
αLL

ρ
ft + αS (ΩSftSft)

ρ
]

Output elasticities ε are

εY N = αN
Nγ−1
ft

Ỹft
, εY K = αK

Kγ−1
ft

Ỹft
, εYM = αM

Mγ−1
ft

Ỹft

εNL = αL
Lρ−1
ft

Ñft

, εNS = αS
Ωρ
SftS

ρ−1
ft

Ñft

εY L = εY N εNL, εY S = εY N εNS

Evidently, these output elasticities are complex functions of parameters and the data, and will differ

depending on where in the sample they are evaluated. But recall that we normalize all data series,

including productivity, by their geometric means. Thus at the geometric mean of the normalized

data, which we denote by superscript g, we have

Y g = Ωg
H = Ωg

S = Ng = Kg = Mg = Lg = Sg = 1

which along with the constant returns to scale assumptions αN + αK + αM = αL + αS = 1 in turn

implies that the distribution parameters αj have a very simple interpretation as output elasticities

at the geometric mean of the data,

εgY N = αN , εgY K = αK , εgYM = αM , εgNL = αL, εgNS = αS , εgY L = αNαL, εgY S = αNαS

61



A.2.5 Quantifying the aggregate effect of techies and trade on relative demand for

skill

Here we describe in detail how we quantify the effect of techies and trade on changes in the aggregate

skill ratio between 2009 and 2013.

To get predicted values for productivity, we set all error terms to zero and iterate forward.

Starting from t− 1 = 2009, and setting the time fixed effects equal to zero to eliminate notational

clutter, we have

ω̂f2010 = βZzf2009 +Bωf2009 ,

where βZ and B are estimated parameters from equations (16) and (17), ωf2009 is estimated pro-

ductivity in 2009, and ω̂f2010 is predicted productivity in 2010. All ωft (whether predicted or not)

are 2× 1 vectors with elements ωHft and ωSft. Iterating forward gives

ω̂f2013 = βZzf2012 +BβZzf2011 +B2βZzf2010 +B3βZzf2009 +B4ωf2009 . (A.35)

Suppose that beginning in 2009, zft = 0. Plugging this into (A.35) we can define

ω̂0
f2013 = B4ωf2009

and thus the effect of the actual path of firm decisions (captured in the sequence of zfts) on predicted

productivity is

ω̂f2013 − ω̂0
f2013 = x = βZzf2012 +BβZzf2011 +B2βZzf2010 +B3βZzf2009 . (A.36)

The 2 × 1 vector x defined by equation (A.36) is key in what follows. Note that (A.36) is not

affected if we explicitly account for the estimated time fixed effects: since the terms involving the

fixed effects are unchanged when we set zft = 0, they would show up in the definition of both ω̂f2013

and ω̂0
f2013 and thus would cancel out in the definition of (A.36). The same holds for any elements

of the vector zft that we are not interested in (such as size and age): since these are identical in

the definitions of both ω̂f2013 and ω̂0
f2013, their effects cancel out in (A.36).

When we consider the effect of firm decisions on techies, all elements of zft in (A.36) are set

to zero, except for firm expenditures on techies. Similarly, when we consider the effect of firm

trade decisions, the only non-zero element of zft in (A.36) are the firm indicators for exporting or
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importing.

To get the effect of predicted productivity on predicted Sf2013 and Lf2013, we substitute the

elements of x (under each experiment: techies or importing) for dωHft and dωSft in equations

(14)-(15). In doing so, we use industry-specific estimates of the elasticities η, σ and ϕ. We replace

θSN by the industry-specific estimate of αS , and θS by the industry-specific estimate of αSαN ,

because the data do not permit us to gauge the expenditure share on skilled labor in total costs.

The reason is that we do not know the costs of firms, since we do not observe the cost of capital (we

observe all other components of costs). Since we normalize all of our input data by the geometric

mean for each industry, at the point of normalization θSN = αS and θS = αSαN . We then use

these predicted percent changes between 2009 and 2013 to get predicted levels in 2013, based on

the actual 2009 levels of Sf2009 and Lf2009. Finally, we sum across the predicted Sf2013 and Lf2013

to get predicted aggregate levels S2013 and L2013 in 2013. These are used to compute predicted

S2013/L2013).

We compare the predicted change S2013/L2013 − S2009/L2009 to the actual change in the data,

as described in the main text.

A.2.6 Firm choice of techies

In this section we describe a very simple model of a firm’s choice of how many techies to employ.

The purpose is to give intuition about why some but not all firms choose to hire techies, and to

motivate the correlations that are reported in Table 1. We describe the firm’s optimal choice of

techies, given a simple function from current techies to future productivity. A simple two-period

model is sufficient to illustrate the mechanisms at work. We also assume that there is just one

dimension to productivity, and that the firm faces the demand curve given by equation (3).

The relationship from techies to changes in log productivity is

ωft = ωft−1 +Max

[
δ ln

(
Tft−1

γ1f

)
, 0

]
, δ ≥ 0 (A.37)

Here, effective techie services per unit of techies employed is 1
γ1f
≤ 1. Fixed costs of employing

positive techies are γ0f . Although the elasticity of productivity with respect to techies is constant

and equal to δ, the level of techie employment required to attain a given ∆ωft will differ across

firms because of differences in γ1f .
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The production function is

Yft = ΩftLft

where Lf = F (Xf ) , F is the CES aggregator, Xf is vector of inputs, and Ωft = eωft . Let w be

the cost of the input bundle. By equation (3), revenue is

Rft = A [ΩftLft]
η−1
η

The static profit-maximizing input choice is

Lft = Ωη−1
ft

[
η − 1

η

A

w

]η
Plugging this back into the expression for revenue gives optimized revenue for given productivity,

Rft = BΩη−1
ft , B = Aη

(
η − 1

η

)η−1

w1−η

With no discounting, the firm chooses Tft−1 to maximize two-period profits,

Πf = BΩη−1
ft−1 +BΩη−1

ft − rTft−1 − δ0fI (Tft−1 > 0)

where I () is the indicator function. There will be two solutions, one the corner solution with

Tft−1 = 0 and the other an interior optimum with Tft−1 > 0. When Tft−1 > 0, equation (A.37)

implies Ωft =
[
Tft−1

γ1f

]δ
Ωft−1. Substituting this into the expression for profits gives

ΠT
f = BΩη−1

ft−1 − rTft−1 − γ0f +B

([
Tft−1

γ1f

]δ
Ωft−1

)η−1

(A.38)

At the interior solution, the firm chooses Tft−1 to maximize ΠT
f . The solution of this problem is

Tft = (δη − δ)
1

1−δ(η−1) r
1

1−δ(η−1)γ
δ(η−1)
δ(η−1)−1

1f Ω
1−η

δ(η−1)−1

f1 (A.39)

For high enough values of δ, the second order condition of the profit maximization problem doesn’t

hold and optimal techie employment is infinite. To rule this out we assume δ < 1
η−1 < 1. This

restriction implies that the elasticities of techies with respect to r and γ1f are negative, and that

the elasticity of techies with respect to ωf1 is positive.

Plugging the solution (A.39) back into the expression for Ωft gives
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Ωft =

[
γ1fr

δ (η − 1)

] −δ
1−δ(η−1)

Ω
1

1−δ(η−1)

ft−1 (A.40)

This equation establishes the intuitive result that optimized Ωft is decreasing in r and γ1f , and

increasing in Ωft−1.

To figure out whether Tf1 = 0 or Tf1 > 0 yields higher profits, the firm simply computes

maximized profits in each case. Profits at the corner solution are

ΠC
f = 2BΩη−1

f1

To compute profits at the interior solution, substitute (A.39) and (A.40) into (A.38) to obtain

ΠT
f = BΩη−1

f1 − rγ0f + +

(
Ωf1

γδ1f

) η−1
1−δ(η−1)

B [ r

δ (η − 1)

] δ(η−1)
δ(η−1)−1

− rδ (η − 1)
1

1−δ(η−1)


Thus the difference between the two profit levels is

ΠT
f −ΠC

f = −rγ0f +

(
Ωf1

γδ1f

) η−1
1−δ(η−1)

B [ r

δ (η − 1)

] δ(η−1)
δ(η−1)−1

− rδ (η − 1)
1

1−δ(η−1)


A necessary condition for this to be positive is that the term in brackets is positive. This will be

more likely when demand (captured by B) is higher, and less likely when r is higher. If the term

in brackets is positive, the whole expression is more likely to be positive the smaller is γ1f and γ0f

and the larger is Ωf1. If the term in brackets is negative, then ΠT
f −ΠC

f < 0 even if γ0f = 0, which

shows that fixed costs are not a necessary condition for zero techies to be optimal.

The lessons from this exercise are quite simple and intuitive:

� The optimal amount of techies is more likely to be positive when demand and/or initial

productivity are higher.

� The optimal amount of techies is more likely to be zero when fixed costs of techies are high

and/or when the efficiency of techies are low.

� The optimal amount of techies may be zero even if the fixed cost of employing techies is zero.

� When the optimal amount of techies is positive, it is increasing in initial productivity and

the efficiency of techies.
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Firms that export will have a higher demand level A, and thus will be more likely to employ techies.

The predictions from this simple model are consistent with the correlations in Table 1.

A.3 Additional tables
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Table A2: Techie and trade effects on Hicks neutral productivity, simplified production function
(1) (2)

Techies 0.4872***
(0.1068)

Exporting 0.0074 0.0077
(0.0049) (0.0049)

Importing 0.0214*** 0.0214***
(0.0063) (0.0063)

Techies : ICT 0.7129***
(0.1253)

Techies : R&D 0.2846**
(0.1227)

lagged ωHft 0.8545*** 0.8544***

(0.0102) (0.0102)
Other controls Yes Yes

Notes to Table A2: Dependent variable for all regressions is estimated Hicks neutral productivity
ωHft computed from simplified production function estimation, see text for details. Weighted least
squares estimation of equation (16), pooled across industries, with industry × year fixed effects.
Other controls include firm size and age. Observations weighted by firm employment. Bootstrapped
standard errors clustered by firm in parentheses. Sample: 568,650 observations on 192,961 firms
during 2009-2013. Asterisks indicate statistical significance, * = 0.10, ** = 0.05, *** = 0.01.

Table A3: Techie and trade effects on productivity, techies in production
(1) (2) (3) (4)

Hicks neutral ωHft Skill augmenting ωSft
Techies 0.2828 0.2735***

(0.3136) (0.0465)
Techies : ICT 0.7938** 0.2377***

(0.3999) (0.0496)
Techies : R&D -0.2018 0.3074***

(0.4683) (0.0638)
Exporting -0.0089 -0.0084 0.0300*** 0.0300***

(0.0308) (0.0307) (0.0030) (0.0030)
Importing 0.0241 0.0243 0.0136*** 0.0136***

(0.0422) (0.0422) (0.0031) (0.0031)
other controls yes yes yes yes

Notes to Table A3: Weighted least squares estimation of equations (16) and (17), pooled across
industries, with industry × year fixed effects. Techies included in S and L in production function
estimation. Other controls included lagged ωHft and ωSft, lagged firm size and age. Observations
weighted by firm employment. Bootstrapped standard errors clustered by firm in parentheses.
Sample: 568,650 observations on 192,961 firms during 2009-2013. Asterisks indicate statistical
significance, * = 0.10, ** = 0.05, *** = 0.01.
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Table A4: Techie and trade effects on skill demand
(1) (2)

log Skill premium -3.1312*** -3.1299***
(0.0517) (0.0516)

Techies 0.9328***
(0.1390)

Exporting 0.1490*** 0.1502***
(0.0156) (0.0156)

Importing 0.1386*** 0.1388***
(0.0149) (0.0148)

Techies : ICT 1.8250***
(0.1920)

Techies : R&D 0.1460
(0.1365)

lagged ωHft 0.0067* 0.0064*

(0.0038) (0.0038)
lagged ωSft 0.9795*** 0.9780***

(0.0853) (0.0852)
Other controls Yes Yes

Notes to Table A4: Dependent variable for all regressions is log hours of skilled/unskilled hours
worked. Weighted two stage least squares estimation of equation (20), pooled across industries,
with industry × year fixed effects. Other controls include firm size and age. Observations weighted
by firm employment. Bootstrapped standard errors clustered by firm in parentheses. Sample:
568,650 observations on 192,961 firms during 2009-2013. Asterisks indicate statistical significance,
* = 0.10, ** = 0.05, *** = 0.01.
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