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Abstract

Global warming is a worldwide and protracted phenomenon with heterogeneous local economic ef-

fects. In order to evaluate the aggregate and local economic consequences of higher temperatures, we

propose a dynamic economic assessment model of the world economy with high spatial resolution. Our

model features a number of mechanisms through which individuals can adapt to global warming, includ-

ing costly trade and migration, and local technological innovations and natality rates. We quantify the

model at a 1◦ × 1◦ resolution and estimate damage functions that determine the impact of temperature

changes on a region’s fundamental productivity and amenities depending on local temperatures. Our

baseline results show welfare losses as large as 15% in parts of Africa and Latin America but also high

heterogeneity across locations, with northern regions in Siberia, Canada, and Alaska experiencing gains.

Our results indicate large uncertainty about average welfare effects and point to migration and, to a lesser

extent, innovation as important adaptation mechanisms. We use the model to assess the impact of car-

bon taxes, abatement technologies, and clean energy subsidies. Carbon taxes delay consumption of fossil

fuels and help flatten the temperature curve but are much more effective when an abatement technology is

forthcoming.

∗Cruz: jlca@princeton.edu. Rossi-Hansberg: erossi@princeton.edu. We thank Klaus Desmet, Per Krusell and participants at nu-
merous seminars and conferences for their feedback. We also thank the International Economics Section at Princeton University for
financial support.
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1 Introduction

The world is getting warmer due to carbon emissions generated by the economic activity of humans. Global

carbon emissions will affect temperatures everywhere over long periods of time and in geographically het-

erogeneous ways. What will be the impact of carbon emissions, and the implied changes in temperatures,

on the world economy and on the economy of particular regions? How will individuals react to these

changes and how are these reactions impacted by their ability to migrate, trade, or invest and develop al-

ternative centers of economic activity? What are the best policies to combat global warming and what are

their implications for different regions across the world? In this paper we propose and quantify a novel

global spatial dynamic assessment model to address these questions.

The nature of the global warming phenomenon determines the elements of our assessment model.

Global carbon emissions affect local temperatures around the world, so we want a model of the world econ-

omy. Because these effects are extremely heterogeneous across regions, even within countries, we want a

model with local geographic detail where temperatures affect both productivity and the living amenities

from residing in particular locations. Agents facing adverse temperature conditions that affect their welfare

in a given location will react by moving, by trading with other locations, and by developing centers of eco-

nomic activity in areas that are not so heavily affected or that benefit from warmer temperatures. Hence,

we require a model with costly trade and migration, as well as private technological investments. We also

need to introduce clean and carbon-based energy as inputs in production so that fossil fuels create carbon

dioxide emissions, which in turn affect global and local temperatures through a global carbon cycle and a

temperature down-scaling model. Because global warming is a protracted phenomenon developing over

hundreds of years and happening in a growing economy, we need an assessment model that is dynamic and

incorporates the implications of this growth on carbon emissions and adaptation over time. Such a model

will also allow us to study and understand the dynamic implications of this phenomenon across locations.

Once we incorporate dynamics over long periods of time, we also need to incorporate population changes

by means of birth and mortality rates that vary across regions with different incomes and temperatures.

Our starting point is the spatial growth framework in Desmet et al. (2018). We model trade, migration,

and innovation as in that paper. We add clean and carbon-based energy as inputs in production with im-

perfect substitutability, a carbon extraction technology that determines its cost as a function of the stock

of carbon extracted, and the associated carbon cycle that determines global temperature and, through a

local down-scaling factor, local temperatures. We model the effect of local temperature on fundamental

productivities and amenities through two distinct damage functions that determine the impact of tempera-

ture changes on each local characteristic, as a function of the current temperature. The estimated functions

indicate, as expected, that warm regions’ productivities and amenities are impacted negatively by increases

in temperatures, while the opposite is the case for the coldest regions. We also incorporate fertility into the

model, so every period agents living at a particular location have a natality rate (birth minus death rate)
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that depends on their income and the local temperature. This adds local and global population dynamics

to our model.

We quantify the model devoting particular attention to identify the effect that changes in local climatic

conditions have on local productivities and amenities. We start by using data from G-Econ, the Human De-

velopment Index, together with a number of parameters obtained from the literature, to invert the model

and obtain the local productivities and amenities that rationalize populations and income every five year-

period from 1990 to 2005 (the years for which G-Econ is available). This model inversion also yields the

migration costs that rationalize population movements across regions given the natality function we esti-

mate using United Nations net natality rates. We then use the fundamental productivities and amenities to

estimate how they are affected by changes in local temperatures. Because these fundamental productivities

and amenities come from a model with costly trade, migration, innovation, and fertility, these adaptation

mechanism are already taken explicitly into account. This is clearly preferable to estimating damage func-

tions from endogenous outcomes like output or population. We estimate the effect of climate on these

fundamentals allowing for the semi-elasticity to depend on local temperatures and include location as well

as time fixed effects. The estimated damage functions yield significant effects of changes in temperature for

wide ranges of initial current temperatures, but they also yield relatively large confidence intervals that we

use to assess the uncertainty underlying our results.

The final step in the quantification is to parameterize the effect of carbon use for future carbon extraction

costs and the carbon cycle. We model energy as a constant elasticity of substitution composite between

fossil fuels and clean energy. The cost of these two sources of energy evolves with the world’s endogenous

technology, but the cost of fossil fuels also depends on the amount of carbon that has been used in the

past, since the remaining stock is increasingly harder to extract. Using data from Bauer et al. (2017), we

estimate a convex relationship between cumulative emissions and the cost of extraction. Firms decide

on their use of fossil fuels, which leads to carbon emissions. A standard carbon cycle model (as in IPCC

(2013)) then generates global temperature dynamics.1 Our baseline analysis matches the global temperature

dynamics from 2000 to 2400 in the IPCC RCP 8.5 scenario almost exactly. To down-scale from global to local

temperatures we follow Mitchell (2003) and use a linear function with heterogeneous local factors that we

estimate as a function of a large number of local characteristics.2 The estimated down-scaling factors (the

local temperature change for a one degree change in global temperature) can be as large at 2.5 in parts of

Siberia and Alaska and as low as 0.5 in parts of Asia and South America.

With the quantified model in hand, we can simulate the economy forward over several centuries and

evaluate the economic consequences of global warming. This phenomenon is expected to have heteroge-

neous effects over space, where the hottest regions in South America, Africa, India and Australia experience

1We also include exogenous CO2 emissions from forestry and non-CO2 greenhouse gasses from RCP 8.5.

2We use Chebyshev polynomials of order 10 in latitude, longitude, elevation, distance to coast, distance to ocean, distance to
water, vegetation density and albedo.

3



welfare losses of 15% and the coldest regions in Alaska, Northern Canada, and Siberia undergo welfare

gains as high as 14%. On average, the world is expected to lose 6% in terms of welfare, although the exact

number depends on the yearly discount factor.3 By 2200, the average loss in welfare is 10% and in output

larger than 4%, although the uncertainty inherited from our estimated damage functions implies that the

95% confidence intervals include loses as high as 20% and 12%, respectively. The large uncertainty in aver-

age outcomes, however, does not translate into significant uncertainty on the spatial distribution of losses.

The relative distribution of loses is very similar in our baseline case compared to the worst or the best-case

scenarios (as measured by the 95% confidence intervals of our damage functions). When we decompose

the losses coming from the effect of global warming on amenities or productivity we find that about half of

the average effects come from the impact of temperature rise on productivity. Effects on amenities are par-

ticularly important for loses in Africa and gains at the most northern latitudes; while losses in productivity

affect almost all regions to the south of the 30◦ latitude.

Our evaluation of the effects of global warming emphasizes economic adaptation through migration,

trade, and endogenous local innovation. We assess the importance of each of these adaptation channels

using counterfactuals that increase the cost of migrating, trading, or investing by a certain percent globally.

If we increase migration costs by 25% throughout the globe, the average cost of global warming rises by an

additional 4% by the year 2200. Higher migration costs make global warming more costly for Africa, but

also for northern regions that benefit less from the influx of migrants. Increases in migration costs lead to

significantly faster population growth as more people stay in poorer areas where they have more children.

Compared to migration, we find a substantially smaller impact from increases in trade costs. The reason is

that the evolution of temperature is spatially correlated, and most trade is local. Furthermore, our model

features trade, but only an aggregate sector and therefore no adaptation through sectoral specialization.4

Innovation is somewhere in between, a rise in innovation costs has a large relative effect that benefits the

coldest places but hurts the warmest ones significantly. On average, though, less innovation implies that

regions in India and China, that will eventually be heavily affected by global warming, grow less and so

the world on average loses less from the rise in temperatures.

The last part of the paper uses our quantified model to evaluate a number of environmental policies.

The equilibrium allocation in the modeled economy is not efficient due to carbon emissions being a global

externality, but also due to the presence of production externalities, technology diffusion, and congestion

externalities. We study taxes on carbon dioxide, subsidies on clean energy, and the importance of abatement

technologies that eliminate the pernicious effects of carbon. Clean energy subsidies have only a modest

effect on carbon emissions and the corresponding evolution of global temperature since, although they

generate substitution towards clean energy, they also lead to a reduction in the price of energy which results

3In our baseline scenario we use a discount factor of β = 0.965 in an economy where real GDP grows around 3% per year.

4See Conte et al. (2020) for a related model that incorporates an agricultural and a non-agricultural sector and where trade plays
a more important role as an adaptation mechanism.
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in more production and ultimately more energy use. These effects tend to cancel each other out.

Carbon taxes have a larger effect on CO2 emissions and temperatures. The reduction in the use of

fossil fuels leads to less carbon emissions which results in lower temperatures that persist for hundreds of

years. However, the reduction in carbon use also implies that more carbon is left unexploited on Earth,

which yields lower future extraction costs. The implication is that carbon taxes primarily delay the use of

the carbon on Earth, rather than decreasing its total use. This has the effect of flattening the temperature

curve, with lower temperatures for long periods of time, but with little impact over the very long-run.

Hence, the effects of carbon taxes on the environment are primarily concentrated in the next 100 years

or so. Of course, this result also implies that carbon taxes can be particularly effective in combination

with abatement technologies. If abatement technologies are forthcoming, delaying carbon consumption

has tremendously positive effects since the effect of future emissions is abated using the new technology.

Thus, our results strongly suggest that carbon taxes should be combined with incentives to invent effective

abatement technologies. To use a analogy from the epidemiology literature, flattening an infection curve is

particularly effective if a cure is forthcoming, but much less so otherwise.5

Standard models of global warming use aggregate loss functions that relate the future path of the ag-

gregate economy to the evolution of climate variables. In many cases, these loss functions fail to incor-

porate the behavioral responses of individuals and firms. Because those functions are not derived from

micro-founded models in which optimal behavior is obtained as a response to climatic shocks, they fail to

consider that households and firms can adapt, although bearing costs, to the most salient consequences of

this phenomenon. Incorporating these responses is particularly important because of the vast heterogene-

ity that rising temperatures will have on the fundamentals of the economy. It is also essential, because only

a model that explicitly takes into account these behavioural adaptation responses across regions can prop-

erly account for potential changes in aggregate loss functions in policy counterfactuals and simulations of

alternative scenarios (an expression of the Lucas critique, Lucas (1976)). A quantitative dynamic model like

ours, with individual behavioural responses and an explicit treatment of spatial heterogeneity at a high

resolution is, therefore, a needed addition to the economics of climate change.

In the last decade there has been a surge of empirical estimates of climate damages that use panel

methodologies and exploit short-run weather variation to identify the causal effect of temperature on eco-

nomic and social outcomes. This wave of empirical papers was pioneered by the work of Deschênes and

Greenstone (2007), who study the impact of temperature on agricultural profits. This methodology has

been employed to quantify the weather effects on mortality (Barreca et al. (2016), Carleton et al. (2020)),

5As we know from standard Pigovian analysis we can address the negative externality created by fossil fuels using taxes that
increase their price. However, another potentially effective strategy is to increase the elasticity of substitution between fossil fuels
and clean sources in the technology to produce energy. In the aggregate, this elasticity is not a fundamental parameter of technology,
but rather a parameter that aggregates the many ways the world has to produce energy. As such, this parameter is not necessarily
either constant or policy invariant. Although we use estimates in the literature and fix it at 1.6 in our baseline scenario, we show
that increases in this elasticity can be extremely effective in reducing the use of fossil fuels over time as extraction costs rise. Such an
increase in this elasticity can be achieved, for example, by switching vehicles to use energy from all sources, as electric cars do.
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amenities (Albouy et al. (2016), Baylis (2020)), crime and conflict (Burke et al. (2015a)), migration (Missirian

and Schlenker (2017)), crop yields (Schlenker and Roberts (2009)), GDP and GDP growth (Dell et al. (2012),

Burke et al. (2015b)).6 This work has been useful to provide evidence of the link between temperature and

economic outcomes, but it cannot be used to determine the future effects of temperature across regions, or

to evaluate different policies.

Some of these estimates have been incorporated in economic models of global warming, also known

as Integrated Assessment Models (IAM), to quantify the economic consequences of this phenomenon. The

most popular models tend to consider coarse geographical units and display a limited role for adaptation

mechanisms in mediating climate damages (Nordhaus (2017), Anthoff and Tol (2014), Hope and Hope

(2013), IPCC (2013), Golosov et al. (2014)). A notable exception is Krusell and Smith (2017), who consider

a spatial resolution similar to ours but, in contrast to us, consider the effect of global warming on local

capital investments. We depart from their work, by explicitly incorporating trade, migration, innovation,

and population growth, and by estimating the damage functions on productivities and amenities, rather

than GDP.

These core models have been extended to analyze different dimensions of global warming. Popp (2004),

Acemoglu et al. (2012), Acemoglu et al. (2016), Acemoglu et al. (2019), Hassler et al. (2019) assess the role

of clean technology investments and innovations in mitigating climate damages. Benveniste et al. (2020)

explore the extent to which migration and border policies attenuate the level of exposure and vulnerability

to climate change impacts. Dietz and Lanz (2020) study the capacity to meet food demand for different

climate change conditions. Fried (2019) evaluates the role of investment in adaptation capital to reduce

damages from extreme weather. Hassler et al. (2018) compare the warming-induced losses in GDP and the

optimal carbon taxes, when considering extreme values for the climate sensitivity and economic damages.

Costinot et al. (2016) examine the losses in the agriculture sector when trade and production patterns are

allowed to adjust across different crops. Barrage (2019) studies the optimal environmental policy in the

presence of distortionary taxes.

We contribute to the development of IAMs by incorporating recent developments in spatial quantita-

tive models. In particular, we build on Desmet et al. (2018), that develops a spatial growth theory at a fine

level of geographical resolution and analyzes the evolution of the economy over several centuries. The

static spatial component resembles Allen and Arkolakis (2014), but adds costly migration, and the dynamic

component follows Desmet and Rossi-Hansberg (2014).7 We incorporate local fertility and population dy-

namics, energy use, fossil fuels extraction costs, a carbon cycle, effects of temperature on productivity and

amenity, among other features to these existing economic frameworks.

There is an incipient literature that addresses environmental questions through the lens of spatial dy-

namic models. Balboni (2019) quantifies the cost of road investment in the coasts of Vietnam under the

6Dell et al. (2014) and Auffhammer (2018) review this body of research.

7See Redding and Rossi-Hansberg (2017) for a survey of this literature.
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presence of sea level rise. Desmet et al. (2021) measure the spatial shifts in population and economic activ-

ity due to sea level rise, using a highly spatially disaggregated model, closer to ours. Desmet and Rossi-

Hansberg (2015), Nath (2020) and Conte et al. (2020) evaluate the impact of global warming across different

economic sectors which is something we do not incorporate in this paper. Relative to them, we add real-

istic spatial heterogeneity, dynamics and high spatial resolution, and population dynamics and effects of

temperature on amenities, respectively. Ultimately, our aim is to generate a model with all the necessary

elements to serve as a workhorse for a new generation of IAMs models that incorporate dynamics, rich

spatial heterogeneity, and micro-founded adaptation mechanisms.

The rest of the paper is structured as follows. Section 2 presents the economic and climate model. Section

3 quantifies the model and estimates the damage functions. Section 4 describes the baseline quantitative

implications of global warming. Section 5 discusses the role of the different forms of adaptation in medi-

ating the harmful effects of global warming. Section 6 analyzes the effect of a number of environmental

policies. Section 7 concludes.

2 The Model

The economic component of the model extends Desmet et al. (2018) among a number of dimensions. First,

we incorporate an endogenous law of motion for global population. Second, we consider that production

requires labor, land, and energy. Energy comes from fossil fuels or clean sources. The former type of

energy generates CO2 emissions, whereas the latter does not. Third, local climate conditions distort the

fundamental amenities, productivities, and natality rates in spatially heterogeneous ways.

The carbon cycle and the global temperature modules are based on the reduced-form models in IPCC

(2013). The projection from global to local temperature follows the statistical down-scaling approach, for-

malized by Mitchell (2003).

2.1 Endowment and Preferences

The world economy occupies a two-dimensional surface S, where a location is defined as a point r ∈ S

with land density H(r). In each period t, Lt agents live in the world economy. Global population is time-

dependent due to endogenous natality rates.

Every period, agents derive utility from consuming a set of differentiated varieties cωt (r) aggregated

according to a CES utility function, from local amenities, bt(r), and from their idiosyncratic preference for

the location where they live, εit(r). If agents move from r to s at t, utility is discounted by mobility costs,

m(r, s), which are paid as a permanent flow cost from t onward. Specifically, the period utility of agent i
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who resides in r in period t and has a location history r− = (r0, · · · , rt−1) is given by

uit(r−, r) =

[∫ 1

0

cωt (r)ρdω

]1/ρ

bt(r)ε
i
t(r)

t∏
s=1

m(rs−1, rs)
−1. (1)

Agents earn income from work. They inelastically supply one unit of labor and receive a wage wt(r).

They also receive a share of land rents, H(r)Rt(r), which are uniformly distributed across a location’s

residents. Thus, per capita real income is yt(r) = (wt(r) + Rt(r)/Lt(r))/Pt(r), where Lt(r) denotes local

population density (population per unit of land) and Pt(r) the local ideal CES price index.

Local amenities bt(r) are affected by congestion according to bt(r) = b̄t(r)Lt(r)
−λ, where b̄t(r) repre-

sents a location’s fundamental amenities and λ the congestion elasticity of amenities to population density.

Fundamental amenities can be distorted by local climate conditions through the damage function Λb(·).

This function denotes the percentage change in fundamental amenities when local temperature rises from

Tt−1(r) in period t− 1 to Tt(r) = ∆Tt(r) + Tt−1(r) in period t. Namely,

b̄t(r) =
(
1 + Λb(∆Tt(r), Tt−1(r))

)
b̄t−1(r) (2)

Hence, when Λb(∆Tt(r), Tt−1(r)) is negative (positive), amenities in cell r are damaged (improved) by

increases in local temperature. The dependence of the damage function on the level of temperature, and

not only on the change in temperature, captures the heterogeneous impacts over space that global warming

is expected to have. Naturally, and as we estimate in Section 3, the amenities in hot places (like Congo)

decline with further increases in temperature, whereas amenities in cold places (like Siberia) benefit from

warmer climate.

Households also experience idiosyncratic taste shocks, εit(r), that we assume are independent and iden-

tically distributed across households, locations, and time according to a Fréchet distribution with shape

parameter 1/Ω and scale parameter 1. A greater value of Ω implies more dispersion in agent’s tastes across

locations, acting as a second congestion force.

We assume that the flow-utility cost of moving from r to s is given by the product of an origin-specific

cost, m1(r), and a destination-specific cost, m2(s), so m(r, s) = m1(r)m2(s). Note that, since staying in

the same location is costless, m(r, r) = 1, origin costs are simply the inverse of destination costs, namely

m1(r) = 1/m2(r). Hence, the permanent utility cost of entering a location is compensated by a permanent

utility benefit when leaving, which implies that agents only pay the flow cost while residing there. This

way of modelling migration costs implies that migration decisions are reversible and, therefore, the location

choice of agents only depends on current variables and not on past or future ones. As is standard in discrete

choice models with idiosyncratic preferences, the fraction of households residing in r at period t is then
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given by

Lt(r)H(r)

Lt
=

ut(r)
1/Ωm2(r)−1/Ω∫

S
ut(v)1/Ωm2(v)−1/Ωdv

, (3)

where ut(r) denotes the component of local utility that is not idiosyncratic, namely,

ut(r) = bt(r)yt(r) = bt(r)

[∫ 1

0

cωt (r)ρdω

]1/ρ

. (4)

At the end of period t, after the migration decisions have been made, each household has nt(r) net off-

springs. Local natality rates are exogenous to the individual but endogenous to a location’s real income

and local temperature, nt(r) = η(yt(r), Tt(r)). Therefore, at the beginning of period t+ 1, before migration

decisions are made, local population density L′t+1(r) is determined by

L′t+1(r)H(r) = (1 + nt(r))Lt(r)H(r). (5)

Note that global population depends not only on the distribution of natality rates across space and time,

and through them on the distribution of income and local temperatures, but also on the spatial distribution

of population in the previous period.

2.2 Technology

In each cell there is a continuum of firms, producing differentiated varieties ω ∈ [0, 1]. Output is produced

using a constant returns to scale technology in land, labor, and energy. Output per unit of land of variety ω

is given by

qωt (r) = φωt (r)γ1zωt (r)
(
Lωt (r)χeωt (r)1−χ)µ , (6)

where Lωt (r) and eωt (r) denote the production workers and the energy use, both per unit of land. Note that,

since land is a fixed factor with share 1− µ, agglomerating labor and energy in a location yields decreasing

returns, which acts as a third congestion force.

A firm’s productivity is determined by its innovation decision, φωt (r) ≥ 1, and an idiosyncratic location-

variety productivity shifter, zωt (r). Firms can invest in innovation by paying a cost νφωt (r)ξ, expressed in

units of labor per land. The exogenous productivity shifter is the realization of a random variable which

is independent and identically distributed across varieties and time according to a Fréchet distribution

with cumulative distribution function F (z, a) = e−at(r)z
−θ

. The scale parameter at(r) governs the level of

productivity in a location and is affected by agglomeration externalities as a consequence of high population

density and endogenous past innovations. In particular, we let at(r) = āt(r)Lt(r)
α where α governs the

strength of the first agglomeration force.

The fundamental productivity, āt(r), is in turn determined by an endogenous dynamic process given
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by

āt(r) = (1 + Λa(∆Tt(r), Tt−1(r)))

(
φt−1(r)θγ1

[∫
S

D(v, r)āt−1(v)dv

]1−γ2

āt−1(r)γ2

)
. (7)

Equation (7) has four components. The term φt−1(r)θγ1 represents the shift in the local distribution of shocks

that results from the last period’s innovation decisions of firms, which are assumed to now be embedded in

the local technology.8 The individual contemporaneous effect of innovation affects the production function

in (6) directly. The term
[∫
S
D(v, r)āt−1(v)dv

]1−γ2
āt−1(r)γ2 denotes the level of past technology that firms

build on. It is composed of the location’s own technology level āt−1(r), as well as technology diffusion from

other locations, where the functionD(v, r) denotes the spatial decay in the strength of technology diffusion.

This specification follows Desmet et al. (2018) closely and all its dynamic implications are developed and

discussed there. It generates a spatial endogenous growth model. Important for our purposes is that we

add the term Λa(·), which incorporates the effect of temperature on local productivity. When the damage

function Λa(∆Tt(r), Tt−1(r)) is negative (positive), productivity in cell r at time t declines (increases) due to

temperature change. Since Λa(·) depends on temperature levels, it is flexible to capture the heterogeneous

spatial impacts of global warming on productivity.

Unlike Desmet et al. (2018), production does not only require land and labor, but also energy. Following

Golosov et al. (2014), Hassler et al. (2019), and Popp (2006), among others, energy and other factors are

aggregated through a Cobb Douglas production function where (1 − χ)µ denotes the share of energy in

the production process. In turn, energy is a CES composite between fossil fuels, ef,ωt (r), and clean sources,

ec,ωt (r), where the elasticity of substitution is given by ε.9 The use of fossil fuels generates CO2 emissions,

which accumulate in the atmosphere intensifying the greenhouse gas effect, whereas the use of clean energy

does not. Specifically, we let

eωt (r) =
(
κef,ωt (r)

ε−1
ε + (1− κ)ec,ωt (r)

ε−1
ε

) ε
ε−1

, (8)

where κ governs the relative productivity of both technologies in producing energy.

We assume competitive local energy markets and so the price of each type of energy is equal to its

marginal production cost. Producing one unit of energy of type j ∈ {f, c} requiresQjt (r) units of labor. The

cost of energy varies across locations, time, and source, according to

Qft (r) =
f(CumCO2t−1)

ζft (r)
and Qct(r) =

1

ζct (r)
. (9)

8As Desmet et al. (2018) shows, all firms in a given location and point in time make identical innovation decisions.

9This elasticity governs the extent to which energy sources might not be perfect substitutes due to their ease of use, their location,
or the existence of technologies and capital designed to primarily use a particular source. We introduce it as a fixed parameter, but
perform a number of counterfactual exercises to assess its impact.
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The evolution of the cost of fossil fuel,Qft (r), is composed of two terms. The numerator denotes the cost of

extracting fossil fuels from the ground, which we assume is increasing and convex in total world cumulative

CO2 emissions, CumCO2t−1, following Nordhaus and Boyer (2002). As cumulative emissions increase,

carbon reserves shrink, which rises the cost of extraction. Cumulative emissions are simply the sum of

cumulative emissions in the previous period plus the global CO2 emissions released at t, Eft , namely

CumCO2t = CumCO2t−1 + Eft = CumCO2t−1 +

∫
S

∫ 1

0

ef,ωt (v)H(v)dωdv. (10)

The denominator of the energy price relates to the productivity, ζjt (r), in energy generation of type j. We

assume that the rate at which technology evolves over time in the fossil fuel and clean sector is related to

global real GDP, ywt , which is endogenous in this model, as it depends on the investment decisions of firms.

In particular, we consider that an increase of one percent in global real GDP rises log-productivity in energy

generation by υj , where this elasticity is allowed to vary across types of energy. That is,

ζjt (r) =

(
ywt
ywt−1

)υj
ζjt−1(r), where ywt =

∫
S

(
Lt(v)H(v)

Lt

)
yt(v)dv. (11)

Consequently, firm’s innovations generate an externality on energy productivity improvements with mag-

nitude that depends on the evolution of real GDP.10

We also assume that land markets are competitive. Firms bid for land and the firm whose bid is the

largest wins the right to produce in that parcel. This is important since past innovations, embedded in

the level of the local idiosyncratic distribution of productivities, benefit all potential entrants. As proven

in Desmet and Rossi-Hansberg (2014), this implies that the solution to the dynamic innovation problem

of firms is to simply choose the level of innovation that maximizes their current profits (or equivalently

their bid for land), since all future gains of current innovations will accrue to land, which is the fixed factor.

Future firms profits are zero independently of a firm’s actions and so do not affect its decisions. Since there

is a continuum of potential entrants, firms end up bidding all of their profits after covering innovation costs.

Hence, in this economy, firm profits are zero and the maximum bid for land is the local land price, Rt(r),

every period. In sum, firms in r simply maximize

max
q,L,φ,ef ,ec

pωt (r, r)qωt (r)− wt(r)Lωt (r)− wt(r)νφωt (r)ξ − wt(r)Qft (r)ef,ωt (r)− wt(r)Qct(r)e
c,ω
t (r)−Rt(r)

where qωt (r) is given by (6) and (8), and pωt (r, r) is the price at location r of variety ω produced at r.

The first order conditions with respect to fossil fuel and clean energy allow us to rewrite the total energy

cost in labor units as the energy composite eωt (r) times its ideal price index Qt(r). Namely, Qt(r)eωt (r) =

10An alternative approach would be to explicitly model the purposeful innovation decisions by firms that extract and distribute
fossil fuels and generate clean energy, as we did for the technology of firms producing final goods. The aforementioned assumption
simplifies the model and captures the reality of the many technological spillovers between industries.

11



Qft (r)ef,ωt (r) +Qct(r)e
c,ω
t (r), where

Qt(r) =
(
κεQft (r)1−ε + (1− κ)εQfc (r)1−ε

) 1
1−ε

. (12)

Since technology is Cobb-Douglas, a firm’s energy costs are proportional to labor costs, so Qt(r)eωt (r) =

1−χ
χ Lωt (r). Thus, the problem of the firm collapses to a problem parallel to the one posed by Desmet et al.

(2018), and so all their results apply.

2.3 Prices, Export Shares, and Trade Balance

Goods markets are competitive, so firms sell goods at marginal cost after accounting for transport costs. Let

ς(s, r) ≥ 1 denote the iceberg trade cost of transporting a good from r to s. Then,

pωt (s, r) =
ς(s, r)mct(r)

zωt (r)
, (13)

where mct(r) denotes the marginal input cost at location r, which is common across firms since they face

the same prices and therefore make the same decisions. The marginal input costs is given by

mct(r) =MQt(r)(1−χ)µwt(r)
µ+γ1/ξRt(r)

1−µ−γ1/ξ, (14)

whereM is a proportionality constant that depends on production parameters.

As is standard in trade structures based on Eaton and Kortum (2002), the probability, πt(s, r), that a

good produced in r is consumed at s is then given by a gravity equation of the form

πt(s, r) =
at(r)[mct(r)ς(r, s)]

−θ∫
S
at(v)[mct(v)ς(v, s)]−θdv

. (15)

and the price index, Pt(r), of a location (where Γ(·) denotes the Gamma function) by

Pt(r) = Γ

(
−ρ

(1− ρ)θ + 1

)− 1−ρ
ρ
[∫

S

at(v)[mct(v)ς(r, v)]−θdv

]−1/θ

. (16)

Finally, since we are interested in outcomes over long periods of time, we impose trade balance cell by

cell, so that total income (labor income plus land rents) at r equals the total expenditure on goods from r.

Namely,

wt(r)Lt(r)H(r) =

∫
S

πt(v, r)wt(v)Lt(v)H(v)dv. (17)
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2.4 Climate and the Carbon Cycle

The burning of fossil fuels (as well as other activities, like deforestation) leads to emissions of carbon diox-

ide into the atmosphere. The carbon cycle defines how carbon flows accumulate in the atmosphere. The

evolution of atmospheric CO2 follows the dynamics proposed by IPCC (2013) where the stock of carbon in

the atmosphere, St, evolves according to

St+1 = Spre-ind +

∞∑
`=1

(1− δ`)
(
Eft+1−` + Ext+1−`

)
. (18)

As defined in (10), Eft denotes the endogenous CO2 emissions from fossil fuel combustion. In addition, Ext

are exogenous CO2 emissions from non-fuel combustion, taken from the Representative Consumer Path-

way (RCP) 8.5 IPCC scenario. The parameter Spre-ind denotes the CO2 stock in the pre-industrial era (1800)

and (1− δ`) is the share of CO2 emissions remaining in atmosphere ` periods ahead. Higher concentrations

of carbon dioxide rise the global radiative forcing, Ft+1, (net inflow of energy), which is approximated as

in Myhre et al. (1998), so

Ft+1 = ϕ log2(St+1/Spre-ind) + F xt+1 (19)

where ϕ denotes the forcing sensitivity, that is, the increase in radiative force when carbon stock dou-

bles with respect to its pre-industrial level. F xt denotes radiative forcing from non-CO2 greenhouse gases

(methane, nitrous oxide, among others). When the inflow of energy from the Sun exceeds the outflow of

energy exiting the planet, global temperature rises, according to a process defined by

Tt+1 = Tpre-ind +

∞∑
`=0

ζ`Ft+1−`, (20)

where Tpre-ind denotes worldwide temperature over land in the pre-industrial era and ζ` is the current

temperature response to an increase in radiative force ` periods ago.

Carbon emissions disseminate in the world quickly and affect global temperature, not local temper-

atures directly. This is why carbon emissions are a global externality. However, given that we want to

quantify our model at a fine geographical resolution, we need to take a stand on the evolution of local tem-

perature in response to changes in global temperatures. We follow Mitchell (2003), who argues that a linear

down-scaling relationship provides accurate results.11 In particular, we let

Tt(r)− Tt−1(r) = g(r) · (Tt − Tt−1) , (21)

where the coefficient g(r) tells us by how much, in ◦C, temperature in cell r changes when global temper-

11More precisely, Mitchell (2003) finds small non-linearities in the local climate response to the length of time over which warming
has occurred, to the rate at which it has occurred, and to the extent to which global temperature has stabilized. Incorporating these
non-linearities has only a negligible effect on our results.
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ature changes by one ◦C. The coefficients g(r) depend on local physical characteristics of a location, so we

keep them fixed over time.

2.5 Competitive Equilibrium and Balanced Growth Path

Together the conditions defined above define a dynamic competitive equilibrium of our model. We can

show that the system of equations that defines a spatial equilibrium in a given period can be reduced

to a system of equations for population and wages in each location. All other variables, including firm

investments, can then be directly computed using the equations presented above. We summarize this result

in the following lemma.

Lemma 1. For any t and for all r ∈ S, given CumCO2t−1, Lt, Tt(·), b̄t(·), āt(·), ς(·, ·),m(·, ·) and H(·), the equi-

librium energy priceQt(·), wage wt(·), population density Lt(·) and utility ut(·) schedules satisfy equations (3), (4),

(9), (11), (12) as well as the system of equations

wt(r) = w̄āt(r)
1

1+2θLt(r)
α−1+θ(λ+γ1/ξ−(1−µ)

1+2θ Qt(r)−
(1−χ)µ
1+2θ H(r)−

1
1+2θ

(
b̄t(r)

ut(r)

)− θ
1+2θ

,(
b̄t(r)

ut(r)

)−θ
Lt(r)

−λθwt(r)
−θ = κ1

(∫
S

āt(v)Lt(v)α−(1−µ−γ1/ξ)θQt(r)−(1−χ)µθwt(r)
−θς(r, v)−θdv

)
,

where κ1 is a time-invariant constant and the climatic variables Eft , CumCO2t, St+1, Ft+1, Tt+1, Tt+1(·) are com-

puted from equations (10), (18), (19), (20) and (21).

The proof the Lemma 1 is relegated to Appendix A.1 and parallels results in Desmet et al. (2018). Fur-

thermore, we can show that there exists a unique solution to the system in Lemma 1 if (i) ε = 1 or υf = υc,

and (ii) αθ + γ1

ξ ≤ λ+(1−µ)+Ω. The first condition requires that either the elasticity of substitution between

fossil fuels and clean energy is one (Cobb-Douglas) or the innovation elasticity with respect to global real

income growth is the same across energy types. Those assumptions allows us to keep the log-linear struc-

ture of the model.12 The second condition is identical to the one in Desmet et al. (2018). It states that the

static agglomeration economies associated with the local production externalities, α/θ, and the degree of

returns to innovation, γ1/ξ, do not dominate the three congestion forces. These three congestion forces are

governed by the value of the negative elasticity of amenities to density, λ, the share of land in production

which determines the degree of local decreasing returns, 1− µ, and the variance of taste shocks, Ω.

A spatial equilibrium in a given period determines firm innovation, energy use, and carbon emissions.

Hence we can use equations (2), (7), and the climate and carbon cycle model, to determine temperatures and

next period’s amenities and productivities. This allows us to compute the dynamic equilibrium forward,

period by period, for as many years as needed. As we show in Appendix A.3, eventually the distribution

12In the model quantification below, our baseline parametrization deviates from this condition slightly, but numerically we find
that the solution is robust to a variation in initial conditions.
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of population across space and the world real output growth rate converge to a balanced growth path if:

(i) total natality rates 1 + nt(r) converge to one as income per capita grows; (ii) the stock of carbon is finite,

and (1 − δ`), ζ`, E
x
` and F x` converge to constant values, so eventually temperatures stabilize; (iii) ε = 1

or υf = υc; and (iv) α
θ + γ1

ξ + γ1

ξ(1−γ2) ≤ λ + (1 − µ) + Ω. The last condition, which is identical to the

one in Desmet et al. (2018), states that agglomeration forces, that now include also dynamic agglomeration

forces through innovation, γ1

ξ(1−γ2) , are weaker than the three congestion forces. The dynamics of the model

are very protracted, so convergence to a balanced growth path is not fully achieved for the four-century

horizon that we consider. We now proceed to quantify our model.

3 Quantification

We quantify the model at the 1◦ latitude by 1◦ longitude spatial resolution, which is the spatial resolution

of the G-Econ dataset. Our baseline year is 2000. In order to quantify the model we need values for all the

economy-wide parameters, plus location specific values for initial fundamental amenities, productivities,

and migration costs, as well as bilateral transport costs. We also need to parametrize the extraction cost of

fossil fuels, estimate the damage functions on amenities, productivities, and natality rates, and quantify the

carbon cycle and climate module.

We follow the quantification strategy in Desmet et al. (2018) for the common parts of the model. Table

1 summarizes the parameter values used in the baseline case. Local fundamental amenities and productiv-

ities are recovered so that the model matches exactly population and income in 2000. Migration costs are

recovered so that the model matches exactly the observed change in population between 2000 and 2005.

All these local characteristics are exactly identified by an inversion procedure described in detail in Desmet

et al. (2018). Bilateral trade costs are based on optimal routing using the fast marching algorithm. In what

follows, we describe the estimation of three families of parameters and functions, namely, the evolution of

energy prices; the construction of the damage functions on amenities, productivities, and natality rates; and

the carbon cycle, as well as the climate and the down-scaling factors. Appendix B provides details on the

data used in the quantification.

3.1 Energy Prices

We split the estimation of the energy component in four steps. First, we parametrize the cost of extracting

fossil fuels f(·) from the ground. Second, we calibrate the energy share in production, µ(1 − χ), and the

share of fossil fuels in the energy aggregator, κ. Third, we construct prices for fossil fuels and clean energy

at the cell level for the year 2000 and retrieve the initial level of the productivities ζf0 (·), ζc0(·). Finally, we set

υf , υc to match historical data on global CO2 emissions and clean energy use.

To estimate the cost of extracting fossil fuels f(·), we employ estimates from Rogner (1997) and Bauer

et al. (2017). To construct quantity-cost relations for fossil fuel resources, Rogner (1997) analyzed histor-
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1. Energy: qωt (r) = φωt (r)γ1zωt (r)
(
Lωt (r)χeωt (r)1−χ)µ , eωt (r) = (κef,ωt (r)

ε−1
ε + (1− κ)ec,ωt (r)

ε−1
ε )

ε
ε−1

Qft (r) = f(CumCO2t)/ζ
f
t (r), Qct(r) = 1/ζct (r), ζjt (r) =

(
ywt /y

w
t−1

)υj
ζjt−1(r)

χ = 0.957 Relation between global GDP, CO2 emissions flow and price
ε = 1.6 Elasticity of substitution (Popp (2004); Papageorgiou et al. (2017))
κ = 0.89 Relation between prices and quantities of fossil fuels and clean energy
f(·) Extraction costs (Rogner (1997); Bauer et al. (2017))
ζf0 (·), ζc0(·) Target current cell-level energy use
υf = 0.95 Target historical global CO2 emissions
υc = 1.05 Target historical global clean energy use

2. Damage functions: Λa(∆Tt(r), Tt(r)), Λb(∆Tt(r), Tt(r)), nt(r) = η(yt(r), Lt(r))
Λa(·),Λb(·) Relation between temperature and productivities and amenities
η(·) Relation between real GDP and temperature and natalities

3. Carbon cycle and climate
g(·) IPCC (2013) and statistical down-scaling
4. Preferences:

∑
t β

tut(r), ut(r) =
(
1 + Λbt(r))

)
b̄t−1(r)Lt(r)

−λ[
∫ 1

0
cωt (r)ρdω]1/ρ, u0(r) = eHDI0(r)3/ψ

β = 0.965 Discount factor
ρ = 0.75 Elasticity of substitution of 4 (Bernard et al. (2003))
λ = 0.32 Relation between amenities and population (Desmet et al. (2018))
Ω = 0.5 Elasticity of migration flows wrt income (Monte et al. (2018))
ψ = 0.05 Relation between utility and HDI (Kummu et al. (2018))

5. Technology: qωt (r) = φωt (r)γ1zωt (r)
(
Lωt (r)χeωt (r)1−χ)µ , Fωr,t(z) = ea

ω
t (r)z−θ , aωt (r) = āt(r)Lt(r)

α

α = 0.06 Static elasticity of productivity to density (Carlino et al. (2007))
θ = 6.5 Trade elasticity (Eaton and Kortum (2002); Simonovska and Waugh (2014))
µ = 0.8 Non-land share in production (Greenwood et al. (1997); Desmet and Rappaport (2017))
γ1 = 0.319 Relation between population distribution and growth (Desmet et al. (2018))

6. Productivity evolution: āt(r) = (1 + Λat (r))
(
φt−1(r)θγ1

[∫
āt−1(v)dv

]1−γ2
āt−1(r)γ2

)
, ϕ(φ) = νφξ

γ2 = 0.993 Relation between population distribution and growth (Desmet et al. (2018))
ξ = 125 Desmet and Rossi-Hansberg (2015)
ν = 0.15 Initial growth rate of real GDP of 1.75%

7. Trade costs
ς(·, ·) Allen and Arkolakis (2014) and Fast Marching Algorithm

8. Migration costs
m2(·) Match population change between 2000 and 2005 (Desmet et al. (2018))

Table 1: Summary of parametrization.
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ical marginal production costs for different fossil fuel deposits and found a stable relation across regions

and time: extraction costs are flat when resources are abundant, but they rise sharply as the resource gets

exhausted.13 Bauer et al. (2017) extend the work of Rogner (1997) and formulate a database of fossil fuel

quantities and extraction costs, taking into account different technological, political and economic condi-

tions. We consider the scenario that closest resembles the most pessimistic scenario (RCP 8.5) of the IPCC

(2013).14 Figure 1 displays, in green, the estimates by Bauer et al. (2017) as a function of cumulative CO2

emissions. We specify the extraction cost function f(·) as

f(CumCO2t) =

(
f1

f2 + e−f3(CumCO2t−f4)

)
+

(
f5

maxCumCO2− CumCO2t

)3

, (22)

where CumCO2t denotes the cumulative CO2 extracted up to period t and the parameter maxCumCO2

denotes the total stock of carbon dioxide available to produce energy in the planet. We set the value of

maxCumCO2 to equalize the cumulative flow of CO2 for the next five centuries in the most pessimistic

scenario (RCP 8.5) of the IPCC (2013), that is 19,500 GtCO2.15 The rest of the parameters are chosen to fit the

estimates of Bauer et al. (2017). The black curve in Figure 1 displays the estimated extraction curve, which

is increasing and convex.

Figure 1: The extraction cost function f(·).

We calibrate the parameters χ and κ using the first order conditions of the firm’s profit maximization.

In particular, since technology is Cobb-Douglas, the world’s average relative expenditure in fossil fuels and

13Drilling costs in the oil and gas industry increase drastically with depth and coal mining is highly sensitive to the characteristics
of deep lying coal seams.

14Specifically, Bauer et al. (2017) present estimates for five Socio Economic Share Pathways (SSP), which consider different assump-
tions for the evolution of the world economy. We choose the scenario SSP5 (development based on fossil fuels), which is the one
closest to RCP 8.5, and aggregate the costs of coal, natural gas, and oil into a single fossil fuel in terms of tCO2 per usd.

15In comparison, Bauer et al. (2017) consider a smaller total stock of carbon dioxide of 12,550 GtCO2 and Mcglade and Ekins (2015)
of 14,666 GtCO2. Appendix F.5 presents results with a variety of alternative values for the total stock of carbon.
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clean energy, and the ratio of energy expenditures to the wage bill, are constants given by

(
Qf0
Qc0

)(
Ef0
Ec0

) 1
ε

=
κ

1− κ
, and

w0Q0E0

w0L0
=
µ(1− χ)

µ+ γ1/ξ
. (23)

We take the elasticity of substitution ε from Papageorgiou et al. (2017) and Popp (2004), who consider a

value of 1.6 and obtain global labor income from G-Econ database, so w0L0 = 46.6 trillion usd for the year

2000. We construct the global price of fossil fuels by aggregating the price of coal, natural gas, and oil as

in Golosov et al. (2014).16 This procedure yields an estimate for the price of fosil fuels of w0Qf0 = 78.22

usd/tCO2. Acemoglu et al. (2019) estimate the price of clean energy to be 1.15 times that of natural gas.

We use that relation to obtain a price of 249.90 usd per ton of oil equivalent (toe). In turn, one ton of oil

equivalent generates 2.8466 tons of CO2, which is the weighted average of carbon intensities of coal, oil,

and natural gas for the year 2000. With those prices and considering that the use of energy from fossil fuels

is Ef0 = 8.88 Gtoe (IPCC (2013)) and from clean sources is Ec0 = 1.23 Gtoe (BP (2019)) we obtain κ = 0.89

and χ = 0.96.17

The next step is to measure the productivity of dirty ζf0 (·) and clean energy ζc0(·) in the initial period for

each cell. To do so we use the first order conditions of the firm’s optimization problem in each cell, together

with equation (9), to obtain

ζf0 (r) =

(
µ+ γ1/ξ

µ(1− χ)κ

)(
e0(r)

L0(r)

)(
ef0 (r)

e0(r)

) 1
ε

f(CumCO20), (24)

and

ζc0(r) =

(
µ+ γ1/ξ

µ(1− χ)(1− κ)

)(
e0(r)

L0(r)

)(
ec0(r)

e0(r)

) 1
ε

. (25)

Labor at the cell-level is directly taken from the G-Econ database. To construct cell-level energy use of fossil

fuels and clean energy, we first start with data for CO2 emissions and clean energy use at the country-level

from BP (2019), Crippa et al. (2019) and IEA (2019). Then, we allocate energy use across cells within coun-

tries using the share of emissions in the Emissions Database for Global Atmospheric Research (EDGAR).

Finally, to estimate the elasticity of technology in the fossil fuel sector, υf , and in the clean energy

16Golosov et al. (2014) propose that energy from fossil fuels is a CES composite of coal, natural gas, and oil, with elasticity of
substitution of 1.11, which corresponds to the unweighted average of the elasticity of substitution between coal and oil, coal and
natual gas, and oil and natural gas, according to Stern (2012). Acemoglu et al. (2019) focus on the electricity sector and consider an
elasticity of substitution of 2, in line with Bosetti et al. (2007), so that fossil fuels are more substitutable between them than with respect
to clean energy. The representative prices of oil, natural gas and coal are the average of the Brent, U.S. Henry Hub, and U.S. Central
Appalachian, respectively, over the period 1983-2017 to smooth short-run fluctuations. Data on prices is taken from BP (2019) and
data on quantities from IEA (2019).

17This parametrization implies that the energy share in production is 3.3%, which is slightly smaller than the values used in the
literature, where Golosov et al. (2014) use 4%, Hassler et al. (2019) 5.55%, and Krusell and Smith (2017) 6%.

18



sector, υc, with respect to global real GDP growth, we construct historical global CO2 emissions and clean

energy use from IEA (2019) and BP (2019). We then run the model backwards in time for 50 periods and

find the elasticities that provide the best fit of the historical data on relative energy use. The resulting

elasticity for clean energy is larger than the one for fossil fuels since its use has expanded faster over time

(υc = 1.05 > 0.95 = υf ).18

3.2 The Effect of Local Temperature on Amenities and Productivities

To estimate the damage functions Λa(·) and Λb(·), which determine how temperature affects the fundamen-

tals of the economy, we first need to compute fundamental amenities and productivity in each location by

inverting the model. The inversion of the model requires solving the system of equations in Lemma 1 for

b̄t(r) and āt(r) using data on wages and population, as well as the data on the amount of land in each cell,

and the energy prices we described in the previous section.19 We can do so for the four periods of data

available in G-Econ, namely, 1990, 1995, 2000 and 2005.20

The model inversion exactly identifies āt(r) and b̄t(r)/ut(r), but is unable to separate b̄t(r) apart from

ut(r). Intuitively, we cannot identify the numerator from the denominator since, if we observe many indi-

viduals in a poor location, it could be because amenities are high or because individuals are trapped there

even though utility is very low. To disentangle a location’s amenities from its initial utility, we require a

measure of utility.21 Desmet et al. (2018) use as utility measure a subjective well-being survey from the

Gallup World Poll. However, this data is only available for one period and only at the country-, rather than

cell-level. Thus, we use the Human Development Index (HDI) as our measure of ut(r) after transforming

it into a cardinal measure of well-being that is linear in log-real income, as in our model.22

Once we compute the fundamentals that rationalize the observable data on wages, population and

energy prices, we identify the causal effect of temperature on amenities and productivities using a panel

fixed effects empirical specification, with temperature entering the regression in a flexible non-parametric

way. Our main empirical specification is given by

log(xt(r)) =

J∑
j=1

δxj · Tt(r) · 1{Tt(r) ∈ Tj}+ δz · Z(r) + ι(b) + ιt(s) + εt(r) (26)

18Appendix A.4 outlines the system of equations that solve the model backwards in time and Appendix D describes, in further
detail, the estimation of these elasticities.

19Appendix A.2 describes the inversion of the model in more detail.

20An alternative approach that would give us a longer time series would be to employ data on production from Kummu et al.
(2018). This dataset spans a longer period of time, from 1990 to 2015 at a yearly frequency, but it displays a coarser geographical
resolution with around 700 sub-national units.

21Once we identify b̄t(r), we can obtain the migration costs in order to match the model-implied net migration flows with the ones
observed in the data

22Appendix C.1 describes the details of this calculation, compares the geography of this index to the measure used in Desmet et al.
(2018), and presents corresponding robustness exercises.
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where xt(r) ∈ {b̄t(r), āt(r)/φt(r)} are the fundamental amenities and the ratio of fundamental productiv-

ities to innovations at cell r in period t. We use the ratio āt(r)/φt(r) in order to account for the effect of

endogenous innovation on fundamental productivity over time. The variable Tt(r) denotes the average

January temperature for locations in the Northern Hemisphere and the average July temperature for loca-

tions in the Southern Hemisphere over the last decade. The variable 1{Tt(r) ∈ Tj} is an indicator function

of temperature Tt(r) being in interval Tj . We partition the distribution of temperatures into J = 20 bins,

each comprising 5% of the observed temperature values.23 Average January or July temperatures over land,

respectively, range from −50.15◦C to 32.85◦C.

The non-parametric specification in (26) accommodates the potential non-linearities and bliss-points

in the effect of temperature on these fundamentals. That is, a temperature increase of 1◦C might have

different impacts in very cold regions, like Siberia, with respect to very hot places, like the Sahara. Thus,

the coefficient of interest δxj , which is the semi-elasticity of xt(r) with respect to temperature, is allowed to

vary according to the level of temperature. This implies that the damage function Λx(·) can be expressed as

the semi-elasticity δxj , evaluated at the current level of temperature, times the change in local temperature,

namely,

Λx(∆Tt(r), Tt−1) = δx(Tt(r)) ·∆Tt(r). (27)

Our specification also incorporates a set of time-invariant controls at the cell-level, Z(r), and a set of

fixed effects, ι(b) and ιt(s), to alleviate potential omitted variable bias. To the extent that temperature is

spatially correlated, any variable not included in the estimation, that is spatially correlated, would appear

in the error term and would bias our estimate of the coefficient δxj . Hence, we follow Nordhaus (2006) and

include a number of geographic attributes as cell-level covariates, Z(r). Alternatively, we can partition the

gridded map into blocks of size 2 cells by 2 cells, denoted by ι(b). Although a bit more spatially aggregated,

this specification captures any time-invariant local characteristic at the 2-cell spatial level. In addition, we

consider local regional trends at the sub-national level, ιt(s).24 Our preferred specification for the effect of

temperature on amenities considers the block time invariant fixed effects ι(b) and divides the regions of

Europe in countries. Amenities are driven by many local characteristics that are hard to explicitly control

for, as well as by differences in national history and cultural differences. Hence, using a flexible set of time-

invariant fixed effect and trends is important. To estimate the effect of temperature on local productivity

we control for geographic factors, Z(r), at a detailed local level and use the slightly broader definition of

European regional trends that divides Europe in four large regions. Geographic attributes have a direct im-

23We employ decadal rather than yearly temperature to capture the long-run effects of temperature thereby exploiting also cross-
sectional variation. We employ January and July, rather than yearly temperatures, because the former exhibits larger variation over
space, which allows us to better identify the temperature impact on fundamentals. We perform robustness exercises in Appendix C.3
where we use average temperatures. The results are similar, but the point estimates are noisier.

24We use two definitions of sub-national units. We start with the regions defined in Kummu et al. (2018) for the whole world and
aggregate those in Europe at the (i) country-level and (ii) at the region level, where we divide Europe in four regions (North, South,
West and East).
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pact on local productivities in agriculture, but also in other sectors through the availability of raw materials

and transportation networks. Broader regional evolution in technology depends on regional specialization

rather than national boundaries and so are captured through the many sub-national trends in the world

and the four European regions. Appendix C.2 describes the details and presents a number of robustness

exercises.

Figure 2 displays the baseline estimates of δb(Tt(r)) and δa(Tt(r)). We allow for spatially correlated

errors as in Conley (1999).25 The bars in the Figure denote the point estimates, the whiskers the 95% con-

fidence intervals and the solid gray curve a logistic approximation.26 The dashed gray lines represent the

95% confidence intervals of the logistic curves.27

Figure 2: Effect of temperature on fundamental amenities and productivities, using January temperatures

for the Northern Hemisphere and July temperatures for the Southern Hemisphere.

As expected, for very cold regions, increases in temperature rise both amenities and productivities. For

example, in the coldest bin of January-July temperatures, centered at -37.79◦C, an increase in 1◦C augments

local amenities by 2.22% and local productivities by 8.94%. In bins with warmer temperatures, the beneficial

effects of rising temperatures decline, until they reach zero and eventually turn negative. For January-

July temperatures in the warmest bin, centered at 25.77◦C, an increase in 1◦C reduces local amenities by

2.33% and local productivities by 15.87%. These results highlight the heterogeneous effects of temperature

on fundamentals across the range of temperature levels experienced in regions of the world. Extreme

temperatures have negative effects and amenities and productivities have bliss-points at moderate ones.

25We consider that correlation of errors between cells declines linearly with distance, so that when distance is greater than 550 km
(5 cells), correlation vanishes to zero.

26We opted for a logistic approximation to be conservative when extrapolating damages to temperatures that are hotter than the
ones historically observed. Albouy et al. (2016) and Graff-Zivin and Neidell (2014) argue that individuals reduce their time outdoors
as temperatures become uncomfortable, reducing their sensitivity to further temperature changes.

27The upper (lower) confidence interval of the logistic curve is constructed using the upper (lower) confidence interval of the point
estimates and fitting a logistic curve as well.
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Optimal temperatures for fundamentals are given by the temperatures at which δxj = ∂ log(xt(r))
∂Tt(r)

equals

zero. For amenities we estimate an optimal temperature of 8.8◦C, whereas for productivities of 4.5◦C.28

3.3 The Effect of Income and Temperature on Natality Rates

We specify local natality rates as a function of real income and temperature. In particular, we let

nt(r) = ηy (log(yt(r))) + ηT (Tt(r), log(ywt )) ,

where

ηy (log(yt(r))) = B(log(yt(r)); b
`) · 1(log(yt(r)) < b∗) + B(log(yt(r)); b

h) · 1(log(yt(r)) ≥ b∗), (28)

with B(log(yt(r)); b) = b0 + b2e−b1(log(yt(r))−b∗)2

and

ηT (Tt(r), log(ywt )) =
B(Tt(r); b

T )

1 + ebw[log(ywt )−log(yw0 )]
. (29)

The term ηy(·) captures the standard argument in Becker (1960) that, as income grows, household substi-

tutes quantity for quality by investing more in their children. Delventhal et al. (2019) analyze birth and

death rates across countries and find that almost all countries in the world have experienced (or are ex-

periencing) a demographic transition, that is, they move from a phase of high to one of low natality. Fur-

thermore, they argue that the start of this transition occurs at roughly the same income level. Hence, the

functional form in (28) specifies an inverse and asymmetric bell-shaped function, so that when income is

sufficiently low, natality rates are high but, as income grows, natality rates decline until they reach nega-

tive values, as evidenced by some rich countries today. To impose that global population is stable in the

long-run, natality rates tend towards zero as income rises further.29

The relation between temperature and natality is captured by ηT (·). Carleton et al. (2020) estimate

that higher income allows households to adapt to changes in temperature, thereby flattening the mortality

response to temperature. Barreca et al. (2016) argue that access to health care, electricity and, particularly,

air conditioner have been important adaptation mechanisms. Thus, we specify ηT (·) as a symmetric bell-

shaped function, so that when temperatures are extreme, natality rates are low, and they are maximized in

temperate climates. Finally, we interact this component with a decreasing function of global income, ywt , to

28Although the literature estimating the impact of temperature on fundamentals, rather than endogenous outcomes, is scarce, our
estimates for optimal temperatures are roughly in line with available studies. Burke et al. (2015b) employ country-level data for the
period 1960-2010 and, through panel methods, estimate that economic production is concave in annual temperature peaking at 13◦C.
Krusell and Smith (2017) consider that a yearly temperature of 11.6◦C maximizes productivity and Nordhaus (2006) estimates that the
optimal yearly temperature for output lies between 7◦C and 14◦C. If we translate this range to January-July temperatures, which is
the temperature measure we use in our estimation, this range becomes -5◦C to 6◦C, which includes our bliss-point for productivity.

29B(·) is a bell-shaped function where b0 and b2 + b0 are the minimum and maximum (maximum and minimum) values if b2 > 0

(b2 < 0), b1 > 0 governs the slope of the incline and decline, and b∗ is the value that maximizes the function.
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account for the remedies that a wealthier world would provide for the effect of temperature on mortality.

In order to estimate the parameters defining the natality rate function, b`, bh, bT , bw, we run the model

backwards for 50 periods and compute the endogenous historical population levels predicted by the model.

Thus, we find the coefficients that maximize the model’s fit with the country-level historical data on natality

rates.30 Figure 3 displays the resulting functions ηy(·) and ηT (·). They illustrate the position of the world

average, a cold and rich country (United States), and a hot and poor country (Zambia), for the years 1950

and 1999.31

Figure 3: The natality rate function.

Finally, with the the quantified natality rate function, we compute the migration costs m2(·) that make

the model exactly rationalize the population levels observed in 2005. The procedure to obtain the migration

costs is described in detail in Appendix A.5 and the procedure to estimate the natality function, as well as

some additional results, are presented in Appendix D.

3.4 Carbon Cycle and Temperature Downscaling

We adopt the specification of the carbon cycle and the global climate component proposed by IPCC (2013).

We choose parameter values such that the carbon cycle in Section 2.4 exactly reproduces the values dis-

played in IPCC (2013). The details and exact values used are discussed in Appendix E. As we will show

below, the end result will be that the endogenous evolution of temperature in our baseline scenario will

reproduce the temperature path of the RCP 8.5 scenario almost exactly.

We use equation (21) to down-scale worldwide temperature at the cell-level. We use the Berkeley Earth

Surface Temperature Database, which provides temperature data at a geographic resolution of 1◦ × 1◦.

30We weight countries by population size with additional weight for more recent observations. Additionally, we impose that the
natality function η(·) matches the global natality rate in 2000 and 2020. Figures 34 and 33 compare the cross-section of country-level
natality rates in 2000 and the historical global natality rates from the data and the estimation, respectively.

311950 and 1999 mark the beginning and end of the time period employed in the estimation of the natality rate function.
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In order to obtain a smooth spatial shape of the temperature scaler, g(·), we specify it as a function of

geographical attributes of each cell. Specifically, as a Chebyshev polynomial of order 10 on latitude and

longitude (including a cross term), elevation, distance to the coast, distance to non-frozen oceans, distance

to water bodies, vegetation density, share of ice-covered land and albedo.32 We estimate equation (21) by

weighted OLS, with higher weight given to more recent observations.33 The estimation procedure yields a

good fit; it captures 83% of the variation in the local temperature data. Appendix E elaborates further on

the construction of the temperature scaler.

Figure 4 plots the local January-July temperatures in 2000 and the temperature scaler for every cell of

the world. An increase in global temperature of 1◦C results in increases as large as 2.2◦C close to the north

pole, but as low as 0.5◦C in southern locations in Central and South America, Africa, South East Asia,

and Australia. Coastal regions tend to experience smaller increases in temperature compared to inland

locations. This pattern is attributed to the fact that land absorbs more heat than water. These results are in

line with predictions by IPCC (2007). Overall, Figure 4 illustrates the large heterogeneity in the impact of

global warming on local temperatures and underscores the importance of a high resolution spatial model.

Figure 4: Local January-July temperature in 2000 and temperature scaler.

4 The Baseline Scenario

In the baseline scenario we run the quantified model and obtain predictions for 400 years, corresponding

to the period 2001 to 2400. This scenario assumes that no new climate policy is put in place and that

the evolution of clean technology follows the process described in the previous sections. We organize the

exposition of the quantitative results as follows. First, we describe the endogenous evolution of aggregate

32Albedo is the ratio of light that a surface reflects compared to the total sunlight it receives. Surfaces that reflect a lot of light are
bright and have high albedo. For example, snow has a high albedo, whereas forests have a low albedo.

33The weight for year t is given by (2018− t)−1.

24



CO2 emissions and average global temperature and compare them with the projections by IPCC (2013).

Then, we explore the corresponding evolution of economic outcomes, namely, amenities, productivities,

population density, and real GDP. Finally, we run counterfactuals where we eliminate the effect of the rise

in temperatures in order to evaluate and decompose the welfare effects of global warming.

4.1 Emissions and Temperature in the Baseline Scenario

Figure 5 presents the path for CO2 emissions predicted by the model, as well as its comparison with the two

most pessimistic scenarios (RCP 8.5 and 6.0) in IPCC (2013). Carbon dioxide emissions from fossil fuel com-

bustion are expected to grow over the current century, since the improvements in productivity (generated

by endogenous growth in global real income) overcomes the increase in the relative price of carbon-based

energy that results from the larger extraction cost associated with increasing cumulative emissions. CO2

emissions reach a peak of 116 GtCO2 in 2110, a value slightly higher than the 106 GtCO2 of the most pes-

simistic IPCC scenario. After that point, the flow of carbon dioxide declines towards zero, since extraction

costs increase sharply as fossil fuels become exhausted. Note that, although the bell-shaped carbon dioxide

emission path is an endogenous outcome, derived from the optimizing behavior of agents, it parallels the

exogenous abatement process that makes the emission projections of IPCC (2013) decline eventually .

Figure 5: CO2 emissions and global temperature.

The rise in the concentration of greenhouse gases increases global temperatures, as shown in Figure

5, so that by the end of the current century, global temperature is expect to rise 5.3◦C with respect to its

pre-industrial level. By 2200 the rise in global temperatures reaches 7.4◦C. As carbon dioxide consumption

declines towards zero, global temperature approximates its long-run level at between 6 and 7◦C above pre-

industrial level. As expected, given our parametrization of the carbon cycle and the close match between

the emission trajectory in our model and that in the RCP 8.5 scenario, the temperature evolution matches

the RCP 8.5 almost exactly.
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As illustrated in Figure 4, the increase in global temperatures yields heterogeneous increases in local

temperatures across the world. In 2000, only 19.91% of the land surface experienced January-July tempera-

tures higher that 20◦C. Two hundred years later this share is predicted to increase to 30.59%, covering most

of North and Central Africa, the Middle East, India, Brazil and Central America. At the other extreme, in

2000, 11.18% of the global land surface exhibited January-July temperatures below -30◦C, mainly located in

North Canada, Greenland, and Northern Russia. This share is expected to decline to 0.45% in 2200.34

4.2 Local Amenities, Productivity, and Population in the Baseline Scenario

To measure how changes in temperature distort economic outcomes, we compare two scenarios: A factual

scenario, our baseline, in which temperature affects fundamental amenities, productivities, and natality

rates as described in Section 3, and a counterfactual scenario, in which temperature does not disrupt these

fundamentals and, therefore, has no effect on economic outcomes.

Figure 6 shows the ratio of fundamental amenities and productivities in 2200 in the scenario with global

warming relative to the counterfactual scenario without global warming. Values greater (lower) than one

indicate that temperature changes are predicted to increase (decrease) the respective fundamental charac-

teristic. As we argued before, the estimated temperature damage functions, Λb(·) and Λa(·), imply that rises

in temperature have differentiated effects over space depending on the level of temperature. In the year

2200, the coldest places in the world experience amenity gains as large as 40%, while the hottest places in the

world are projected to suffer amenity losses of 16%. The pattern of changes in amenities depends primar-

ily on latitude, with equatorial regions losing the most, but the geographic patterns are quite rich. Inland

regions in Africa, South America, and Australia lose more than what their latitude would predict, as does

the U.K., and parts of continental Europe. The average amenity losses, weighted by the 2200 population in

the baseline scenario, amounts to 5.1%.

The impact of global warming on fundamental productivities by 2200 exhibits similar patterns, although

more pronounced. Note that the effects on productivity are not only driven by the direct impact of tem-

perature on the estimated damage function, Λa(·), but also by endogenous innovation decisions. In parts

of Alaska, Northern Canada, Greenland, and Northern Russia productivity doubles relative to the scenario

without global warming, and in a few areas the changes in productivity can be even larger. In contrast,

in Brazil, Africa, Middle East, India, and Australia we observe declines in productivity of up to 60%. On

average, and again weighting by employment in the baseline scenario, world fundamental productivity

declines by 19% by 2200 due to rising temperatures.

The geographic configuration of amenities and productivites determines the desirability for residing

and producing in particular regions of the world. As the world becomes warmer, the regions where ameni-

ties and productivity deteriorate see their population decline. The magnitude of the decline depends on

34Appendix F.1 presents additional results on the evolution of local temperature over time.
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Figure 6: Gains and losses in amenities and productivities from global warming in the year 2200.

natality rates and migration costs, as well as their trade network and other local characteristics. Figure 7

presents population density in 2200 relative to the counterfactual scenario without global warming. Clearly,

global warming generates migration towards colder places. Areas to the south of the 30◦ latitude in the

Northern Hemisphere tend to lose population, while areas to the north tend to gain. Most of the developed

world (U.S., Europe, and Japan) is just at the boundary and so is not greatly affected. In two centuries,

population density in the north of the world is projected to increase by more than 100%, whereas locations

close to the Equator are projected to experience declines in population density of roughly 18%. Note that,

although inflow migration to the coldest regions is large in relative terms, it is small in absolute terms, since

these areas are only sparsely populated. Overall, by 2200, 5.85% of the population resides in a different

location due to global warming. More than 600 million people are displaced by this dimension of climate

change, namely global warming, alone!

Figure 7: Spatial pattern of population and global population.

Global warming not only affects relocation of population over space, but also its global level. In the
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baseline scenario, world population grows until the year 2118, reaching a peak of 11.3 billions inhabitants,

as depicted in Figure 7. Afterwards, population declines as the world gets richer and natality rates decline.

Since natality rates converge to zero as income grows, global population converges to a stable long-run

level. The figure also presents the United Nations global population estimates. The model’s population

predictions for the first century are somewhat higher than the median estimate by UN (2019), but within

the 80% confidence interval. The long-run level of global population estimated by UN (2004) at 9 billions

inhabitants is close to our projection in 2400. Global warming has a relatively small impact on world pop-

ulation, the model predicts that higher temperatures lower population in the next 50 years by roughly 31

millions; in the next 100 years by 35 millions; and in the next 200 years by 27 millions.

4.3 The Welfare Cost of Global Warming

To evaluate the welfare consequences of global warming, we compute the present discounted value (PDV)

of local utility that is not idiosyncratic, namely,
∑∞
t=0 β

tut(r). We also present results for the discounted

value of real income,
∑∞
t=0 β

tyt(r). We use a value of the discount factor of β = 0.965.35 Our choice of the

discount factor is restricted by a real output growth rate that is slightly larger than 3% per year. Clearly, to

do proper comparisons we need a discount factor for which present discounted values remain finite in all

exercises.

Figure 8 displays the spatial distribution of welfare gains, as well as an initial population weighted

histogram of the distribution of gains and losses. As before, values smaller than one indicate that the

region suffers losses from global warming. The welfare effects of this phenomenon are quite heterogeneous

across space. Welfare losses range from 15% in Central and Southern Africa to gains of 14% in the most

northern parts of Russia. The right-hand panel of Figure 8 clearly shows that the distribution of damages is

bi-modal. The left peak of the distribution, with losses of around 10%, corresponds to India, while the right

peak, that experiences small effects, corresponds to parts of China, Europe, Japan, and the U.S. On average,

the world is expected to experience welfare losses of 6% in our baseline scenario. As we underscore in the

next subsection, there is tremendous uncertainty about the exact level of these aggregate losses, but much

less uncertainty about their spatial distribution.36

Figure 9 presents losses in the present discounted value of real GDP. The spatial distribution and shape

of the histogram are similar than those for welfare. However, the largest losses (7%), largest gains (4%) and

standard deviation (0.02) are smaller than those of welfare. This is natural, since the welfare calculation

includes the effect of temperature on amenities which intensifies the magnitude and dispersion of climate

damages around the world. Furthermore, as we showed in Figure 7, global warming makes people move

to locations that have, at least initially, relatively low fundamental amenities.

35Appendix F.3 present robustness exercises with respect to the discount factor.

36Global average welfare losses are calculated as the population weighted average of the relative present discounted value of utility
in the baseline case relative to the counterfactual without global warming.
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Figure 8: Welfare losses due to global warming.

Figure 9: Real GDP losses due to global warming.

4.4 Uncertainty

Our baseline scenario is computed using the logistic fit of the damage coefficients by temperature bin that

we estimated in Section 3.2. As we discussed there, although we find evidence of significant temperature

effects on amenities and productivity for locations with low and high temperatures, the estimation also

yields large confidence intervals. The implied uncertainty embedded in the imprecise estimation of the

damage functions translates in uncertainty about the effect that global warming will have on the economy.

Of course, we are also uncertain about many of the other parameters of the model as well as about the

model specification itself. However, Desmet et al. (2018) perform a number of back-casting exercises that

lend credibility to the long-run performance of the economic model and its parametrization. Hence, here we

restrict attention to the parametric uncertainty related to the imprecision in the estimation of the coefficients

of the temperature damage functions for fundamental amenities and productivities.

Figure 10 presents the global average losses from real GDP and welfare over time in the baseline estima-
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tion (solid line) and for damage functions determined by the logistic fit of the boundaries of the different

confidence intervals, namely 60%, 80%, 90% and 95%. Baseline damages in real GDP and welfare intensify

through the next two centuries, achieving a peak of 4.3% and 9.4%, respectively.37 Figure 10 illustrates

how uncertain we are about the aggregate effect of global warming. The 95% confidence interval includes

catastrophic welfare losses of as much as 20% by 2200 but also small global gains. Confidence intervals

widen during the first two centuries as temperature increases, but shrink slightly when temperature starts

declining.

The large uncertainty on aggregate losses revealed in Figure 10 does not translate into large uncertainty

on local relative effects. Figure 11 displays the spatial distribution of real GDP and welfare for the baseline

case, the lower 95% confidence interval (i.e. the worst-scenario), and the upper 95% confidence interval

(i.e. the best-scenario). The level of the distributions are clearly different. In the worst-scenario, only a

negligible part of the population, 0.02%, experiences welfare gains. Whereas, in the best-scenario, 46.94%

of the population undergoes welfare losses. However, the range, standard deviation, and shape of local

losses remains roughly similar in all scenarios.38 This is the sense in which we are less uncertain about

relative local effects than about the magnitude of average effects. In the baseline, as well as the best and

worst scenarios, the losers from global warming are primarily Central America, Brazil, Africa and India.

Figure 10: Real GDP and welfare losses over time.

37Baseline average damages in real GDP rise until the year 2176. Damages in welfare, in comparison, keep increasing, although
mildly, since the damage function on amenities has a greater slope than that of productivities for relatively warm temperatures and
population keeps moving to locations with relatively low fundamental amenities.

38As we move to more optimistic scenarios, the standard deviation of welfare losses tends to augment slightly. This is the result of
the shape of the damage functions on amenities and productivities across different confidence levels. In the most pessimistic scenario,
marginal damages seem to be roughly constant in the hottest bins while they are declining in the most optimistic scenarios, as shown
in Figure 2.
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Figure 11: Distribution of Real GDP and welfare losses by uncertainty level.

4.5 Decomposing the Losses from Global Warming by Source

As we have argued above, the two main direct channels through which global warming affects economic

outcomes are the effects of changes in temperatures on amenities and productivities. In fact, incorporating

the effect of temperature on amenities at this level of spatial disaggregation is, we believe, novel to our

study. To understand the contribution of each of these two sources of economic effects, we decompose

the warming damages as those arising exclusively from the effect of temperature on local amenities and

those arising exclusively from the effect of temperature on local productivities. That is, we calculate two

additional counterfactual scenarios setting each of the damage functions to zero for every period and cell,

respectively.

Figure 12: Distribution of Real GDP and welfare losses by damage source.

Figure 12 compares the cross-section of losses in the PDV of real GDP and welfare across damage

sources. The spatial distribution of real GDP losses is mainly driven by the productivity component. The
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amenity component affects real GDP through its effect on the spatial distribution of population and the

corresponding effects of investment. However, the effects are small compared to the direct impact of pro-

ductivity. In contrast, when we analyze the cross-sectional distribution of welfare, the role of amenities is

very large and governs the overall shape of the distribution. For welfare, the productivity component is

more uniform across regions with implied losses for almost all locations. This exercise highlights the impor-

tance of incorporating the effect of changes in temperature on amenities when assessing the local welfare

impact of global warming.

Figure 13 displays the spatial composition of losses in welfare when the damage function only takes

into account damages on amenities or productivities, respectively. The large dispersion in the effect coming

exclusively from amenities implies large gains in Russia, Canada, and Alaska, and losses in South America,

Africa, and India. In contrast, the spatial distribution of the effects coming exclusively through the pro-

ductivity channel implies losses in most of the southern regions. All southern regions, including Australia,

suffer, and the losses reach further north to Mexico and the Southern part of the U.S., as well as India and

China. Clearly, the spatial distribution of the losses from global warming that result from each source are

quite different.

Figure 13: Spatial distribution of real GDP and welfare losses due to global warming by damage source.

To end this section, Figure 14 decomposes the evolution of economic losses over time. When we consider

damages on amenities only, cold regions become more amenable for living, which creates an incentive for

people to move to some of the most productive places in the world. This migration boosts agglomeration

and thus rises global average real GDP slightly for the first 200 years. Eventually, as temperatures decline

due to the rising cost of extracting fossil fuels, this process reverses. Welfare, in contrast, exhibits only losses

that accelerate as rising temperatures deteriorate amenities in the developing world. When we isolate the

damages from warming coming from changes in local fundamental productivity, the evolution of losses

in real GDP is similar to the benchmark scenario for the first century. Without the impact of climate on

amenities, however, less people move north which results in less agglomeration and slightly larger real
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GDP losses. The difference is much larger when considering welfare. The effect on amenities essentially

doubles the impact of global warming on welfare throughout. Overall, Figure 14 shows that the effect

of temperature on fundamental productivity and the effect of temperature on amenities, each account for

about half of the total welfare losses from global warming.

Figure 14: Real GDP and welfare losses by damage source over time.

5 Adaptation

In the model we have put forward, agents react to rises in temperatures by moving, trading, and investing

in different locations on Earth. These adaptation mechanisms help agents cope with experienced changes

in the economic environment. Modelling the effect of global warming using a micro-founded general equi-

librium framework that incorporates these mechanisms allows us to incorporate and assess the role of

economic adaptation in shaping the economy’s response. Of course, the extent to which agents use these

adaptation channels depends on their cost. In this section, we evaluate the importance of the different

mechanisms by comparing our baseline results with counterfactual scenarios where agents face higher mi-

gration, trade, or innovation costs.39

5.1 Migration

In the baseline scenario we set local migration costs such that the model accounts exactly for the distribution

of local population changes between 2000 and 2005. Here, we consider global increases in migration costs

by raising the migration cost function m2(·) to a power ϑ > 1, which corresponds to a proportional increase

of size ϑ − 1 if m2(·) is close enough to one. Larger migration frictions imply that agents migrate less to

the most productive locations, leading to lower incomes, energy and fossil fuel use, CO2 emissions, and

39Appendix H provides additional details and results.
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temperatures. Lower temperatures, in turn, increase productivity and amenities in some locations. In

addition, since higher migration costs imply that agents remain in poor locations, and overall incomes are

lower, natality rates are higher, leading to increases in population, aggregate fossil fuel consumption, and

temperatures. These feedback mechanisms make the effect of migration costs quite complex.

Figure 15 presents the welfare impact of higher migration costs across space and over time. The left

panel presents relative welfare with and without global warming in the baseline case with respect to rela-

tive welfare with and without global warming in the case with log migration cost that are 25% higher (the

diff-and-diff effect of migration costs on the effect of temperature). Red areas in the figure represent loca-

tions where larger migration costs make global warming more costly (namely, the baseline better). Clearly,

higher migration costs hurt northern regions that tend to benefit from temperature rises by attracting mi-

grants. In contrast, it benefits regions in Latin America, and especially Oceania, that are relatively sparsely

populated and, in the baseline scenario, suffer large population losses and the correspondingly lower in-

vestments in technology due to global warming. Higher migration frictions make these places keep more of

their population, and associated technology growth, as temperatures rise over time. Perhaps surprisingly,

Central Africa, India, and China, all have larger losses from global warming when migration costs are large.

The reason is that their high density and low income imply that much of the resulting increases in popula-

tion concentrate there, leading to higher productivity growth but also lower amenities due to congestion.40

The latter effect dominates in dense developing countries, but the former dominates in sparsely populated

regions, like Oceania.

The right panel of Figure 15 presents the evolution of average welfare losses over time. The dashed

lines present the overall effects for two different magnitudes of ϑ. To help with the interpretation, we also

present scenarios (solid lines) where we keep the evolution of temperature and population as in the baseline

scenario. These exercises abstract from the feedback effect of temperatures and population on the economy.

Comparing dashed and solid lines reveals the importance of these feedback effects. In the short-run, higher

migration costs reduce economic activity leading to smaller temperature increases and smaller losses. In

the long-run, in contrast, increases in population lead to more fossil fuel use, higher temperatures, and

larger losses. Overall, larger migration costs lead to significantly larger losses from global warming. 25%

larger migration costs lead to losses from temperature change that are more than a third larger by 2200.

Over time, these differences decline, since in all scenarios carbon reserves are eventually depleted.

These results show that migration is indeed an essential adaptation mechanism. One that is quanti-

tatively important, but differentially so across regions in the world. Ultimately, the best way to adapt to

global warming is for agents to migrate to regions that lose less or even gain from temperature increases.

Many of these regions are sparsely populated today, due to their lack of amenities and productivity, but

could be improved as temperatures rise and new migrants invest in them over the next centuries.

40The implied increases in population that result from this large change in migration costs are as large as 6 billion people by 2150,
stabilizing afterwards.
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Figure 15: Welfare across different migration costs.

5.2 Trade

As with migration costs, we study the effect of global increases in commercial frictions that rise the bilateral

iceberg trade costs ς(·, ·) to some power ϑ > 1. Figure 16 presents the spatial and dynamic effect on welfare

for values of ϑ of 1.5 and 2. The left panel presents the spatial distribution of the relative effect of global

warming on welfare in the baseline scenario with respect to the same relative effect in the scenario with

higher trade costs. In this diff-and-diff calculation, large values, represented in red, identify areas that are

hurt by larger trade costs. To understand the figure, it is important to realize that gravity in trade implies

that most trade flows are very local. Because increases in temperatures are spatially correlated, areas that

trade significantly with each other tend to experience similar shocks. This explains the small impact of

trade on welfare in Figure 16.41

The spatial pattern in Figure 16 is markedly different than the one for migration. As with migration,

larger trade costs make warming more harmful in Africa, India, and China. However, it also makes warm-

ing more harmful in Central and South America, as well as Europe, and less harmful in northern regions in

Canada, Scandinavia, and Russia. Trade has little impact on northern regions since their relative isolation

implies that they trade little with the rest of the world anyway. In contrast, regions in more central, well

connected geographies, rely more on trade and so they suffer from the double impact of higher trade costs

and higher temperatures. In addition, as with migration, higher trade costs reduce incomes which results in

higher natality rates, particularly in the developed world, leading to additional congestion. Brazil, Africa,

and India are affected the most.

The right panel of Figure 16 shows the temporal evolution of average welfare. As with migration, we

plot cases keeping the evolution of temperatures and population constant, as well as the full equilibrium

41Importantly, our work abstracts from trade across industries due to local comparative advantage. If temperature affects the
comparative advantage of regions, trade can play a much more important role as an adaptation mechanism. See Desmet and Rossi-
Hansberg (2015), Nath (2020) and Conte et al. (2020) for studies that develop this mechanism.
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evolution. The small effect of trade is evident, particularly when conditioning on the temperature path.

Once we take the effect of changes in income and population on the evolution of temperature into account,

we get smaller losses from global warming with higher trade costs in the short-run, but larger ones in the

long-run. Similar to the case of changes in migration costs, lower incomes lead to smaller increases in

temperature in the short-run, but larger population leads to greater losses from temperature rises in the

long-run.42 Overall, adaptation through trade seems to play only a minor role in our results.

Figure 16: Welfare across different iceberg trade costs.

5.3 Innovation

The final adaptation mechanism we study in this section is innovation. Firm investments respond to market

size and allow a region’s technology to grow relative to that of other regions. Innovation improves northern

regions’ productivity, as they become warmer and gain population. It also accelerates the relative losses of

regions that get too warm and lose market size due to the implied lower productivity and lower amenities.

We study here the effect of lowering γ1 (or, equivalently, increasing ξ). Changes in these parameters amount

to changing the returns or cost of innovation proportionally across locations. Larger costs of innovation

reduce real GDP growth and, therefore, growth in CO2 emissions, curbing the temperature path. As with

trade and migration costs, the lower real GDP growth pushes upwards natality rates and global population.

Figure 17 presents the spatial and dynamic implications of lower innovation returns (or higher innova-

tion costs). The left panel presents the diff-and-diff for the welfare consequences of global warming in the

baseline relative to the exercise with high innovation costs. The spatial pattern of this measure is simpler

than the one for the other mechanisms. The upmost northern regions are hurt more (benefited less) by

global warming when innovation costs are higher. Developing these areas by improving their productivity

and moving economic activity to the north becomes more costly. The same phenomenon is apparent in the

42World population increases as much as 7 billion by 2200 when ϑ = 2.
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upmost southern regions, including Oceania and the southern tip of South America and Africa.

The right panel of Figure 17 presents the dynamic evolution of the cost of global warming. In all cases,

with and without feedback effects from temperature, larger innovation costs lead to smaller losses from

global warming. The reason is that larger innovation costs imply smaller benefits from density in locations

that are eventually negatively affected by higher temperatures. In particular, Africa, India, and China

experience lower technology growth and, therefore, attract less migrants from other locations. Given that

these are the regions more affected by temperature rises, the average cost from this phenomenon declines.

This effect builds up over time and is significant only after 2150. Once we incorporate the feedback effect

through changes in the temperature and population paths, the lower temperature growth generates lower

costs from global warming when innovation costs are larger even in the short-run.

These results illustrate the importance of studying the impact of adaptation mechanisms in a spatial

model. The reason that higher innovation costs result in smaller costs from global warming is funda-

mentally spatial, as explained above. Overall, adaptation through innovation is an important mechanism,

particularly in determining the spatial distribution of the welfare cost of global warming.

Figure 17: Welfare across different innovation costs.

6 Environmental Policies

Global warming constitutes a worldwide externality and so policy can potentially alleviate some of its

negative economic impacts. Furthermore, in the model we have proposed, there are local and global tech-

nological externalities, as well as congestion costs, all of which imply that the competitive equilibrium is not

efficient. Hence, in this framework, achieving the first best would require a number of policies that address

these other sources of inefficiencies as well. This is in general hard, since such policies would require local

and global dynamic policies that are currently unknown and, therefore, neither proposed nor implemented.

In fact, in our framework, the mechanisms that make the firm’s innovation decision effectively static in the
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competitive equilibrium, do not imply the same for the planner’s problem. Hence, solving for the optimal

policy in our model, even without considering global warming is, so far, beyond our capabilities. Therefore,

we proceed by evaluating some popular climate policies, rather than by designing optimal environmental

policy.

A commonly proposed solution to the global carbon emission externality is to impose a global carbon

tax, τ , to increase the cost of fossil fuels and discourage their use. This follows the standard Pigouvian

logic of using taxes or subsidies to equate the social and private marginal cost of fossil fuels.43 In the same

spirit, we also consider a common and global clean energy subsidy, s, that reduces the marginal cost of

renewable energy. Thus, the cost of energy per unit of land becomes wt(r)(1 + τ)Qft (r)ef,ωt (r) + wt(r)(1 −

s)Qct(r)e
c,ω
t (r).44 We assume that the balance of taxes and subsidies is taxed or rebated lump sum at each

location. Because carbon taxes delay the depletion of the stock of fossil fuels on Earth, we also study the

potential gains from carbon taxes when an abatement technology is forthcoming. Finally, although mostly

relegated to the appendix, we study the effect of policies that increase the elasticity of substitution between

fossil and clean energy; for example, by encouraging the use of electric rather than gasoline vehicles.

6.1 Carbon Taxes

Figure 18 displays the evolution of CO2 emissions and global temperatures when considering carbon taxes

of 50%, 100% and 200%, keeping clean energy subsidies at zero.45 As expected, carbon taxes reduce current

consumption of fossil fuels at impact. For instance, a tax of 200% diminishes carbon emissions by 60%

with respect to the benchmark scenario in the initial period. However, as the economy grows and the pro-

ductivity of energy production increases, CO2 emissions rise. Eventually, though, extraction costs increase

sharply, and the price of fossil fuels relative to clean energy rises, generating a decline in CO2 emissions.

Carbon taxes not only reduce initial emissions but they also delay the year and the magnitude of the peak

in CO2 emissions. For example, with a tax of 200% the peak is 3.43 GtCO2 lower and occurs 35 years later

than in the scenario with no carbon taxes.

In sum, the main effect of a carbon tax is to delay dirty energy consumption, by spreading its use over

time; less current consumption but more future consumption. The more protracted path for CO2 emissions

has stark implications for the evolution of global temperatures: It flattens the temperature curve. A carbon

tax of 200% leads to an evolution of average global temperatures that is as much as 4◦C lower in the first

half of the 22nd century, peaks 100 years later at a temperature roughly 2◦C lower, but eventually converges

to the same temperature once the stock of carbon is depleted in both scenarios. This intertemporal CO2

43See Hassler et al. (2019) for a modern treatment and quantification of Pigouvian logic applied to climate policy.

44As already imposed in the notation and although potentially superior, we leave for future research an analysis of spatially
heterogeneous policies or policies that vary over time. Such analysis is certainly feasible in our framework.

45Given that the price of fossil fuels in the initial period is on average 73 usd/tCO2, a carbon tax of 50% equals 37 usd/tCO2,
similar to the maximum in the E.U. Emissions Trading Scheme; a carbon tax of 200% equals 146 usd/tCO2, close to the Swedish tax.
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utilization pattern, governed in part by the convex cost of carbon extraction relative to clean energy, is

essential in determining the effectiveness of carbon taxes. Carbon taxes tend to delay, not eliminate, the use

of fossil fuels (even when the elasticity of substitution between fossil fuels and clean energy is rather large,

ε = 1.6, as in our calibration).

Figure 18: CO2 emissions and global temperature under different carbon taxes.

Figure 19 presents global real GDP and welfare for each tax level relative to the baseline scenario with

no environmental policy. At impact, the implementation of a uniform proportional carbon tax reduces the

use of fossil fuels, which makes energy more expensive overall, and thus reduces income and welfare. The

decline in welfare is less pronounced than that of real GDP, as welfare depends on real income which incor-

porates the lump sum transfer. Furthermore, initially, carbon taxes reduce firm innovation since potential

current profits decline, and therefore reduce the growth rate of the economy. Of course, as time evolves,

the flattening of the temperature curve has beneficial effects on amenities and productivities, leading to

higher real income and welfare, as well as higher growth rates. Eventually, the curves in Figure 19 cross

one, meaning that the implementation of the carbon tax is, on average, beneficial after that period. In the

long-run, real GDP and welfare keep increasing due to a larger global population.46

The implementation of carbon taxes generates an intertemporal trade-off with short-term costs and long-

term benefits. This naturally implies that any overall assessment of carbon policies depends on the chosen

discount factor. Table 2 presents the global average real GDP and welfare losses from global warming

across different tax levels and discount factors, with respect to a scenario in which environmental policies

are absent. Our choice of discount factor is limited by the balanced-growth-path growth rate. In order to

obtain finite present discounted values of welfare and real GDP for all future paths, we chose a baseline

discount factor of β = 0.965.47 For this value, carbon taxes are not desirable today. The largest present

46In the short-run, the implementation of carbon taxes reduces global income, rising natality rates. Consequently, global population
is higher when we impose CO2 levies.

47We also consider a value of β = 0.969 that, given the balanced-growth-path growth rate of 0.03, implies that we value the relative
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Figure 19: Real GDP and welfare under different carbon taxes.

discounted value of real GDP or welfare in Table 2 is obtained for τ = 0. However, if we increase the

discount factor to β = 0.969, a carbon tax of 200% or more maximizes welfare and real GDP. This large

sensitivity of the optimal carbon tax is natural given the path shown in Figure 19 and cautions us not to rely

too heavily on PDV statistics that depend on specific values of the discount factor. Ultimately, the discount

factor used determines the policy-maker’s preferences for the welfare of current versus future generations.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

τ=0% 3.043% 1 1 3.024% 1 1
τ=50% 3.048% 0.991 1.019 3.028% 0.997 1.016
τ=100% 3.050% 0.987 1.030 3.030% 0.995 1.024
τ=200% 3.053% 0.981 1.042 3.032% 0.993 1.033

Table 2: PDV of real GDP and welfare gains under different carbon taxes and discount factors.

The impact of carbon taxes is not only heterogeneous over time, but also across space. Figure 20 com-

pares the welfare impact across locations of a carbon tax of 200%. As expected, the regions that are projected

to gain from imposing the carbon tax are the regions that were projected to lose the most from global warm-

ing in Figure 8. Welfare gains from the tax range from 2% in South America, Central Africa, and South Asia;

to losses of 6% in the coldest places, those expected to gain from higher temperatures. Two interesting ex-

ceptions are the Middle East and Algeria. They obtain relatively low gains from the global carbon tax,

compared to their projected losses from global warming. The economy of those regions relies heavily on

fossil fuel, so a carbon tax generates large distortions in production.48

gains in all period similarly.

48Appendix G.2 evaluates the role of carbon taxes in the worst-case-scenario for climate damages and Appendix I.1 develops
further the discussion on the temporal and spatial effects of carbon taxes.
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Figure 20: Local welfare effects of a carbon tax of 200% with a discount factor of β = 0.965.

6.2 Abatement

We have shown that the main effect of carbon taxes is to delay the use of fossil fuels, without affecting the

total stock of carbon released to the atmosphere, thereby flattening the evolution of global temperatures over

time. Of course, delaying CO2 emissions, and flattening the temperature curve can be extremely beneficial

if, at some point, humans invent an abatement technology that allows us to use fossil fuels without emit-

ting CO2 into the atmosphere (or capture CO2 in the atmosphere through geoengineering). An abatement

technology would eliminate, or reduce, the negative externality that results from the use of fossil fuels.49

Since an abatement technology cures the economy from emitting CO2 emissions after its invention, delaying

the use of fossil fuels and flattening the temperature curve can become a very effective strategy, one that

does affect total CO2 emissions.50 This is why carbon taxes and abatement technologies are complementary

policies.

To illustrate this argument, here we consider a simple case in which an abatement technology becomes

available at no cost in the year 2100.51 Figure 21 introduces the abatement technology to the exercises repre-

49More precisely, if we denote by νt(r) the share of CO2 emissions abated in region r at period t, the evolution of atmospheric
CO2, given by equation (18), becomes

St+1 = Spre-ind +
∞∑
`=1

(1− δ`)
(
E′ft+1−` + Ex

t+1−`

)
(30)

E′ft =

∫
S

∫ 1

0
(1− νt(r)) ef,ωt (v)H(v)dωdv (31)

The law of motion of fossil fuel extraction is still given by equation (10).

50The interaction of carbon taxes and an abatement technology within our framework is analogous to lock-downs and the intro-
duction of a vaccine in a pandemia: a lockdown delays current infections at an economic cost, but reduces total infections only if a
vaccine is forthcoming.

51As in Nordhaus (2015), we could alternatively assume that preventing a share νt(r) of CO2 emissions in region r at period t costs
a fraction, (1 −$1,t(r) · νt(r)$2 ), of household’s income. We could assume that $1,t(r) declines over time to reflect the widening
menu of technological alternatives and that it varies across regions depending on their carbon intensity. The parameter $2 controls
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sented in Figure 18. The solid curves present CO2 emissions and global temperature under different carbon

taxes when the abatement technology is not available. The dashed curves, present the results with the in-

troduction of a perfect abatement technology in 2100. When the abatement technology is introduced, the

flow of CO2 into the atmosphere drops discontinuously and permanently to zero. The cut in the cumulative

carbon dioxide emissions has transcendental consequences in the temperature path, which declines until it

reaches a new and much lower steady-state.

Figure 21: CO2 emissions and global temperature under different carbon taxes, when considering the in-

troduction of an abatement technology in 2100.

Figure 22 replicates Figure 19 but includes, in dashed lines, the global average real GDP and welfare

effects of the implementation of a carbon tax relative to a scenario with no carbon taxes, when we introduce

the abatement technology in 2100. Since the abatement technology eliminates the effect of carbon emission

on temperatures, and therefore on amenities and productivity, the deceleration of growth caused by global

warming that we observe after 2100 without an abatement technology is now avoided.52

Table 3 shows global average PDV of real GDP and welfare gains under the implementation of carbon

taxes when an abatement technology becomes available in 2100. When comparing it with Table 2, we ob-

serve that, when an abatement technology is forthcoming, large carbon taxes are beneficial for the economy

for both discount factors. With β = 0.969, the impact of this policy is very large and can yield gains in real

GDP of more than 7% and in welfare of more than 8%. These results illustrate how the abatement tech-

nology and carbon taxes are complementary policies. That is, a forthcoming abatement technology makes

the degree of non-linearity in costs. At a global scale, Nordhaus (2015) considers $1,t = 0.0334 and $2 = 2. Of course, because of
well-understood free-rider problems, the abatement policy would still need to be imposed by a global agreement.

52Note that relative real GDP and welfare can be slightly lower in the abatement case for a couple of decades after the invention
of the abatement technology. The reason is that the difference in temperatures between the benchmark scenario with and without
abatement can be larger than the difference in temperature with and without abatement in the scenario with a carbon tax, depending
on the second derivative of the temperature function at the time the abatement technology arrives. After a few decades, this effect is
always dominated by the faster increases in temperature in the case without abatement.
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Figure 22: Real GDP and welfare under different carbon taxes, when considering the introduction of an

abatement technology in 2100.

carbon taxes a much more effective policy. In fact, this combination of policies is the most effective one we

have found in our analysis.53

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

τ=0% 3.052% 1 1 3.037% 1 1
τ=50% 3.058% 0.994 1.031 3.043% 1.003 1.034
τ=100% 3.061% 0.992 1.050 3.046% 1.004 1.056
τ=200% 3.065% 0.989 1.074 3.051% 1.006 1.082

Table 3: PDV of real GDP and welfare gains under different carbon taxes and discount factors, when con-

sidering the introduction of an abatement technology in 2100.

6.3 Clean Energy Subsidies

Clean energy subsidies have two countervailing effects. First, they make clean energy less expensive,

thereby creating incentives for agents to produce energy with clean sources. The magnitude of this ef-

fect is governed by the elasticity of substitution in energy production which we set at ε = 1.6, as well as

by the initial relative productivity of clean energy, which is heterogeneous across locations and chosen to

match relative energy use. Second, clean energy subsidies reduce the price of the energy composite. This

additional effect is also governed by the share of clean energy in the energy composite, which is initially

about 12%. Figure 23 shows that in the quantitative model we have put forward, these two effects roughly

53Appendix I.3 provides additional results and Appendix I.4 quantifies the welfare benefits when the abatement technology be-
comes available one century later.
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cancel out. Subsidies as large as 75% yield only a minuscule reduction in CO2 emission and temperatures.

We conclude that clean energy subsidies are not an effective way to combat global warming.54

Figure 23: CO2 emissions and global temperature under different clean energy subsidies.

At impact, the subsidy on clean energy leads to a reduction in the composite price of energy. Given

our Cobb-Douglas production function, the subsidy acts like a positive production subsidy that increases

output and encourages innovation, which accelerates growth. Given that the model features dynamic

spillovers that are not internalized in equilibrium, such a subsidy is potentially beneficial. Furthermore,

the subsidy leads to declines in energy costs that varies across locations. Areas using more clean energy

relatively to fossil fuels undergo greater declines in the composite price of energy. On average, developed

countries tend to be more intensive in clean energy, attracting more households to those places. The re-

location of people towards the most productive places rises global real GDP and welfare, but also lowers

natality rates and world population in the long-run. A lower population in the balanced growth path leads

to lower long-run growth rates. In sum, subsidies increase output and welfare in the short-run, but even-

tually reduce them in the long-run. As with carbon taxes, the overall economic effects from the subsidy

depend on the discount factor. In this case, however, the sign of the short- and long-run effects are reversed

relative to the carbon tax. Larger discount factors result in smaller gains or losses. Table 4 presents these

results.

Figure 24 presents the spatial distribution of welfare gains from a 75% clean energy subsidy relative

to the baseline. The left panel shows the heterogeneous spatial effects from the subsidy. As we discussed

above, the subsidy has only a small impact on the temperature path. The main source of spatial hetero-

geneity comes from the differences in the relative price of fossil fuels and clean energy. Remember that, in

the quantification of our model, we infer this relative price using the relative use of energy sources, which

is available at the country level only (which explains the national demarcations in the figure). Scandinavia

has a large relative price of fossil fuels (partly because of other prevailing policies) and so it benefits more

54Appendix I.2 evaluates the joint effect of carbon taxes and clean energy subsidies.
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PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

s=0% 3.043% 1 1 3.024% 1 1
s=25% 3.040% 1.011 1.009 3.020% 1.007 1.000
s=50% 3.034% 1.032 1.021 3.012% 1.020 0.996
s=75% 3.012% 1.094 1.044 2.989% 1.050 0.975

Table 4: PDV of real GDP and welfare gains under different clean energy subsidies and discount factors.

from the subsidy than the Arabian peninsula or Australia, where fossil fuels are relatively cheap. Paraguay

benefits significantly, since clean energy is cheap there due to the abundance of hydroelectric power. The

right panel presents the distribution of welfare gains. Parts of Africa and South America gain in welfare

more than 6%, while some regions in North Africa or the Arabian peninsula gain only 2%. Higher discount

factors would make some of these regions lose.

Figure 24: Local welfare effects of a clean energy subsidy of 75% with a discount factor of β = 0.965.

7 Conclusions

The goal of this paper is to propose a novel geographically detailed integrated assessment model of the

effect of global warming on economic outcomes and welfare. The large heterogeneity in projected temper-

ature changes across regions of the world, and the heterogeneous effects of these changes across locations

and over time, underscore the need for assessment models that feature a realistic geography with many

locations and agents that make decisions to live, move, trade, and invest across them. The micro-founded

spatial dynamic model that forms the core of the proposed framework features local population growth,

costly migration and trade, endogenous technology investments, as well as local fossil and energy use and

its impact on local temperature and, correspondingly, its heterogeneous effect on amenities and productiv-
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ity. Thus, the proposed model allows us to incorporate a number of endogenous adaptation mechanisms

that have been mostly absent in assessment models so far. Furthermore, it allows us to estimate the impact

of global warming on economic outcomes by explicitly aggregating the dynamic effects on local outcomes.

When we quantify the proposed economic model for the world economy at a fine level of spatial reso-

lution we obtain local effects of global warming on welfare that range from losses of 15% to gains of 14%.

We find that the distribution of relative losses across locations is fairly robust to the damage functions we

estimate but, in contrast, our estimates imply large uncertainty about overall welfare losses. The 95% confi-

dence interval of average welfare losses in 2200 ranges from losses of 20% to zero. This wide range reflects

the realty that, although the data allows us to estimate significant effects from temperature on fundamental

productivity and amenities, the estimates are still imprecise given that the rise in temperatures has only

recently started to affect economic outcomes more severely.

The model we propose can be used as a workhorse model to study a number of additional dimensions of

climate change as well as alternative policies. A few examples are coastal flooding, as analyzed in Desmet

et al. (2021), the increased likelihood of extreme weather events, or the political economy of climate policy

as determined by the spatially heterogeneous effects we have uncovered.

Inevitably, our model abstracts from some important aspects. First, the model we propose does not in-

troduce multiple sectors and the effect of temperature on relative sectoral productivity. Conte et al. (2020)

show how this can be done in a related framework. Second, we have abstracted from purposeful innova-

tions in green, fossil, and abatement technologies. In our model these technologies only evolve through

spillovers from other innovations. Third, the model we develop gains tractability from assuming an eco-

nomic structure in which anticipatory effects from future shocks or policy only affect land rents, but do

not affect allocations. That is, future events do not affect the spatial evolution of the economy. Incorporat-

ing anticipatory effects in rich spatial model with endogenous investments and growth is still infeasible,

although potentially interesting. Of course, the importance of anticipatory effects to evaluate protracted

phenomena, like global warming, is debatable.

Global warming presents a daunting challenge for humanity. Designing the best tools to address it

requires modern micro-founded economic models that incorporate multiple forms of adaptation and the

rich spatial heterogeneity of the world. Our hope is that this paper contributes to this effort.
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A Proofs

In this section, we discuss the solution of the model, as well as the existence and uniqueness of a balanced

growth path. Additionally, we outline the solution of the model backwards in time and the system of

equations that solve for fundamental amenities, productivities and migration costs.

A.1 Forward Solution

In this subsection, we compute the forward solution of the model under the presence of proportional carbon

taxes, τt(r), and clean energy subsidies, st(r). Those taxes are charged to the firm and uniformly rebated to

the households residing in region r itself through a lump-sum transfer, Φt(r).

The firm’s cost minimization problem, in terms of fossil fuels and clean energy, is given by:

wt(r)Qt(r)eωt (r) = min
ef ,ec

wt(r)(1 + τt(r))Qft (r)ef,ωt (r) + wt(r)(1− st(r))Qct(r)e
c,ω
t (r)

st
(
κef,ωt (r)

ε−1
ε + (1− κ)ec,ωt (r)

ε−1
ε

) ε
ε−1

= eωt (r)

The First Order Conditions with respect to ef,ωt (r) and ec,ωt (r) imply the following relations, whereQt(r)

is the ideal energy price index.

ec,ωt (r)

ef,ωt (r)
=

(
1− κ
κ

1 + τt(r)

1− st(r)
Qft (r)

Qct(r)

)ε
(32)

Qt(r) =
(
κε(1 + τt(r))

1−εQft (r)1−ε + (1− κ)ε(1− st(r))1−εQct(r)1−ε
) 1

1−ε
(33)

We define the lump-sum transfer, per unit of land, as shown in equation (34).

Φt(r) =

∫ 1

0

Φωt (r)dω

Φωt (r) =
(
τt(r)Qft (r)ef,ωt (r)− st(r)Qct(r)e

c,ω
t (r)

)
(34)

= Qt(r)eωt (r)−
(
Qft (r)ef,ωt (r) +Qct(r)e

f,ω
t (r)

)
= Qt(r)eωt (r)− Q̃t(r)1−εQt(r)εeωt (r)

Q̃t(r) =
(
κε(1 + τt(r))

−εQft (r)1−ε + (1− κ)ε(1− st(r))−εQct(r)1−ε
) 1

1−ε
(35)

Equation (33) reduces the firm’s problem to:

max
q,L,φ,e

pωt (r, r)φωt (r)γ1zωt (r)
(
Lωt (r)χeωt (r)1−χ)µ − wt(r)Lωt (r)

− wt(r)νφωt (r)ξ − wt(r)Qt(r)eωt (r)−Rt(r)
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The First Order Conditions with respect to eωt (r) and Lωt (r) imply:

Qt(r)eωt (r) =

(
1− χ
χ

)
Lωt (r) (36)

Equation (36) collapses the firm’s problem to:

max
L,φ

pωt (r, r)

(
1− χ
χ

1

Qt(r)

)(1−χ)µ

φωt (r)γ1zωt (r)Lωt (r)µ − wt(r)L
ω
t (r)

χ
− wt(r)νφωt (r)ξ −Rt(r)

The First Order Conditions with respect to φωt (r) and Lωt (r) imply:

wt(r)L
ω
t (r) = µχ (pωt (r, r)qωt (r)) (37)

χµνφωt (r)ξ = (γ1/ξ)L
ω
t (r) (38)

We define total labor demand, L̄ωt (r), as the demand from production, Lωt (r); innovation, Lφ,ωt (r); fossil

fuel energy, Lf,ωt (r); and clean energy, Lc,ωt (r). Then, we insert equations (35), (36) and (38).

L̄ωt (r) = Lωt (r) + Lφ,ωt (r) + Lf,ωt (r) + Lc,ωt (r)

= Lωt (r) + νφωt (r)ξ +Qft (r)ef,ωt (r) +Qct(r)e
c,ω
t (r)

= Lωt (r) +
γ1/ξ

µχ
Lωt (r) +

(
Q̃t(r)
Qt(r)

)1−ε

Qt(r)et(r)

= Lωt (r) +
γ1/ξ

µχ
Lωt (r) +

(
Q̃t(r)
Qt(r)

)1−ε(
1− χ
χ

)
Lωt (r)

=
µχ+ γ1/ξ + µ(1− χ)(Q̃t(r)/Qt(r))1−ε

µχ
Lωt (r)

To ease notation, define the term ϕt(r) as shown in (39). Observe that when taxes and subsidies are zero,

ϕt(r) = 1.

ϕt(r) =
µχ+ γ1/ξ + µ(1− χ)(Q̃t(r)/Qt(r))1−ε

µ+ γ1/ξ
(39)

L̄ωt (r) =

(
µ+ γ1/ξ

µχ

)
ϕt(r)L

ω
t (r) (40)

Due to the Cobb Douglas formulation of the production function, rents Rt(r) can be expressed as a

constant fraction of revenue, by inserting equations (37) and (38).

Rt(r) = pωt (r, r)qωt (r)− wt(r)L
ω
t (r)

χ
− wt(r)νφωt (r)ξ

= (1− µ− γ1/ξ)p
ω
t (r, r)qωt (r) (41)
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Since in equilibrium Rt(r) is taken as given by firms producing at r, the decisions of how much to

innovate, φωt (r), how many workers to hire per unit of land, Lωt (r), and how much energy to use from

fossil fuels, ef,ωt (r), and clean energy, ec,ωt (r), are independent of the local idiosyncratic productivity shocks,

zωt (r), and so are identical across varieties ω. Hereinafter, we drop the superscript ω, except from production

labor, Lωt (r), to differentiate it from total labor demand, Lt(r).

We arrange firm sales by inserting equations (37) and (38).

pt(r, r)qt(r) = pt(r, r)

(
1− χ
χ

1

Qt(r)

)(1−χ)µ

φt(r)
γ1zt(r)L

ω
t (r)µ

= pt(r, r)zt(r)

(
1− χ
χ

1

Qt(r)

)(1−χ)µ(
γ1χ

ξν

pt(r, r)qt(r)

wt(r)

) γ1
ξ
(
µχ

pt(r, r)qt(r)

wt(r)

)µ
(pt(r, r)qt(r))

1−µ−γ1/ξ) = pt(r, r)zt(r)

(
1− χ
χ

1

Qt(r)

)(1−χ)µ(
γ1χ

ξν

) γ1
ξ

(µχ)
µ
wt(r)

−µ−γ1/ξ (42)

We define marginal cost, mct(r), as shown below and insert equations (37) and (40) in equation (42).

mct(r) = pt(r, r)zt(r)

=

(
1− χ
χ

1

Qt(r)

)−(1−χ)µ(
γ1χ

ξν

)− γ1
ξ

(µχ)
−µ

wt(r)
µ+γ1/ξ (pt(r, r)qt(r))

1−µ−γ1/ξ

=

(
1− χ
χ

1

Qt(r)

)−(1−χ)µ(
γ1χ

ξν

)− γ1
ξ

(µχ)
γ1/ξ−1

wt(r)L
ω
t (r)1−µ−γ1/ξ

=

(
1− χ
χ

)−(1−χ)µ(
γ1χ

ξν

)− γ1
ξ

µ−µχ−(µ+γ1/ξ)

× ϕt(r)−(1−µ−γ1/ξ)Qt(r)(1−χ)µwt(r)Lt(r)
1−µ−γ1/ξ (43)

We define total revenue per unit of land,Rt(r), as the sum of labor revenue, rents and lump sum transfer.

Rt(r) = wt(r)Lt(r) +Rt(r) + wt(r)Φt(r)

= wt(r)Lt(r) + (1− µ− γ1/ξ)yt(r) + wt(r)

1−

(
Q̃t(r)
Qt(r)

)1−ε
Qt(r)et(r)

= wt(r)Lt(r) +

(
1− µ− γ1/ξ

µχ

)
wt(r)Lt(r) + wt(r)

1−

(
Q̃t(r)
Qt(r)

)1−ε
(1− χ

χ

)
Lωt (r)

=

(
1− µ− γ1/ξ + µχ

µχ

)
wt(r)Lt(r) + wt(r)

1−

(
Q̃t(r)
Qt(r)

)1−ε
(µ(1− χ)

µ+ γ1/ξ

)
1

ϕt(r)
Lt(r)

=

(
1

µ+ γ1/ξ

)(
wt(r)Lt(r)

ϕt(r)

)
(44)
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Now, we combine equations (4) and (44), where yt(r) = Rt(r)/Lt(r).

ut(r) = b̄t(r)Lt(r)
−λ Rt(r)
Lt(r)Pt(r)

= b̄t(r)Lt(r)
−λ
(

1

µ+ γ1/ξ

)(
wt(r)

ϕt(r)

)(
1

Pt(r)

)
(45)

We solve for Pt(r) and employ equations (16) and (43).

Pt(r) =
b̄t(r)

ut(r)
Lt(r)

−λ
(

1

µ+ γ1/ξ

)(
wt(r)

ϕt(r)

)
(46)

= Γ

(
−ρ

(1− ρ)θ + 1

)− 1−ρ
ρ
(∫

S

at(v)[mct(v)ς(r, v)]−θdv

)− 1
θ

= (p̄κ̄)

(∫
S

āt(v)Lt(v)α−(1−µ−γ1/ξ)θϕt(v)(1−µ−γ1/ξ)θQt(v)−(1−χ)µθwt(v)−θς(r, v)−θdv

)− 1
θ

(47)

And we define p̄ and κ̄ as shown below.

p̄ = Γ

(
−ρ

(1− ρ)θ + 1

)− 1−ρ
ρ

κ̄ =

(
1− χ
χ

)−(1−χ)µ(
γ1χ

ξν

)− γ1
ξ

µ−µχ−(µ+γ1/ξ)

We manipulate the equation (47) to obtain (48).

(
b̄t(r)

ut(r)

)−θ
Lt(r)

λθ

(
wt(r)

ϕt(r)

)−θ
= κ1

×
(∫

S

āt(v)Lt(v)α−(1−µ−γ1/ξ)θϕt(v)(1−µ−γ1/ξ)θQt(v)−(1−χ)µθwt(v)−θς(r, v)−θdv

)
(48)

Where κ1 = ((µ+ γ1/ξ) p̄κ̄)
−θ. Now, we use the condition that trade is balanced cell by cell, given by

equation (17), considering the expression of revenue per unit of land found in equation (44), and insert the

expression for trade shares, given by equation (15).

wt(r)H(r)Lt(r)

ϕt(r))
=

∫
S

πt(v, r)wt(v)H(v)Lt(v)

ϕt(v)
dv

= p̄−θ
∫
S

at(r)[mct(r)ς(r, v)]−θPt(v)θwt(v)H(v)Lt(v)

ϕt(v)
dv (49)

We insert equation (43) in the left-hand side of equation (49).

wt(r)H(r)Lt(r)

ϕt(r)at(r)
mct(r)

θ

=
wt(r)H(r)Lt(r)

1−α

ϕt(r)āt(r)

(
κ̄ϕt(r)

−(1−µ−γ1/ξ)Qt(r)(1−χ)µwt(r)Lt(r)
1−µ−γ1/ξ

)θ
(50)
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We insert equation (46) in the right-hand side of equation (49).

∫
S

Pt(v)θ
(
wt(v)H(v)Lt(v)

ϕt(v)

)
ς(r, v)−θdv

=

∫
S

(
b̄t(v)

ut(v)
Lt(v)−λ

(
1

µ+ γ1/ξ

)(
wt(v)

ϕt(v)

))θ (
wt(v)H(v)Lt(v)

ϕt(v)

)
ς(r, v)−θdv (51)

We manipulate equations (50) and (51) to obtain equation (52).

āt(r)
−1wt(r)

1+θLt(r)
1−α+(1−µ−γ1/ξ)θQt(r)(1−χ)µθϕt(r)

−(1+(1−µ−γ1/ξ)θ)H(r)

= κ1

∫
S

(
b̄t(v)

ut(v)

)θ
Lt(v)1−λθϕt(v)−(1+θ)wt(v)1+θH(v)ς(r, v)−θdv (52)

Equations (3), (4), (9), (11), (12), (48) and (52) define a system of equations that solves for ut(r), Lt(r), wt(r)

and Qt(r). Assuming trade costs are symmetric, we use equations (48) and (52) and introduce the function

f1(·), which is the ratio of the left-hand sides of (52) and (48).

f1(r) =
āt(r)

−1wt(r)
1+θLt(r)

1−α+(1−µ−γ1/ξ)θQt(r)(1−χ)µθϕt(r)
−(1+(1−µ−γ1/ξ)θ)H(r)(

b̄t(r)
ut(r)

)−θ
Lt(r)λθwt(r)−θϕt(r)θ

= āt(r)
−1wt(r)

1+2θLt(r)
1−α−θ(λ+γ1/ξ−(1−µ)

× ϕt(r)−(1+θ(2−µ−γ1/ξ)Qt(r)(1−χ)µθH(r)

(
b̄t(r)

ut(r)

)θ
(53)

Obviously, f1(r) equals the right-hand sides.

f1(r) =

∫
S

(
b̄t(v)
ut(v)

)θ
Lt(v)1−λθϕt(v)−(1+θ)wt(v)1+θH(v)ς(r, v)−θdv∫

S
āt(v)Lt(v)α−(1−µ−γ1/ξ)θϕt(v)(1−µ−γ1/ξ)θQt(v)−(1−χ)µθwt(v)−θς(r, v)−θdv

Under the assumption that ς(r, v) = ς(v, r), we can express f1(·) as shown below.

f1(r) =

∫
S
f1(v)−λf2(v, r)dv∫

S
f1(v)−(1+λ)f2(v, r)dv

f2(v, r) =

(
b̄t(v)

ut(v)

)θ(1+λ)

āt(v)−λLt(v)1−λθ−λ[α−1+θ(λ+γ1/ξ−(1−µ))]Qt(v)(1−χ)µθλ

× ϕt(v)−(1+λ)(1+θ)+λθ(γ1/ξ−(1−µ)wt(v)(1+λ)(1+θ)+θH(v)1+λς(v, r)−θ

We follow the procedure of Desmet et al. (2018) and Theorem 2.1 in Zabreyko et al. (1975) to argue that

57



f1(r) = f1. Then, we solve for wt(r)/ϕt(r) using equation (53).

(
wt(r)

ϕt(r)

)
= f

1
1+2θ

1 āt(r)
1

1+2θLt(r)
− 1−α−θ(λ+γ1/ξ−(1−µ)

1+2θ

× ϕt(r)−
µ+γ1/ξ

1+2θ Qt(r)−
(1−χ)µθ

1+2θ H(r)−
1

1+2θ

(
b̄t(r)

ut(r)

)− θ
1+2θ

We insert the expression for wt(r)/ϕt(r) in equation (48) and manipulate terms to obtain equation (54).

(
b̄t(r)

ut(r)

)− θ(1+θ)
1+2θ

āt(r)
− θ

1+2θLt(r)
[L

×Qt(r)
(1−χ)µθ2

1+2θ H(r)
θ

1+2θϕt(r)
− (µ+γ1/ξ)θ

2

1+2θ

= κ1

∫
S

(
b̄t(v)

ut(v)

) θ2

1+2θ

āt(v)
1+θ
1+2θLt(v)[RQt(v)−(1−χ)µ

θ(1+θ)
1+2θ

×H(v)
θ

1+2θϕt(v)
(µ+γ1/ξ)θ(1+θ)

1+2θ ς(r, v)−θdv (54)

Where the terms [L and [R are defined as follow.

[L = λθ − θ

1 + 2θ
[α− 1 + θ(λ+ γ1/ξ − (1− µ))]

[R = 1− λθ +
1 + θ

1 + 2θ
[α− 1 + θ(λ+ γ1/ξ − (1− µ))]

We utilize the expression for migration shares, given by equation (3), and solve for Lt(r).

Lt(r) = H(r)−1ut(r)
1/Ωm2(r)−1/Ω

(
Lt∫

S
ut(v)1/Ωm2(v)−1/Ωdv

)
(55)

We employ this expression and insert it in equation (54).

b̄t(r)
− θ(1+θ)

1+2θ āt(r)
− θ

1+2θQt(r)
(1−χ)µθ2

1+2θ H(r)
θ

1+2θ−[L

× ϕt(r)−
(µ+γ1/ξ)θ

2

1+2θ m2(r)−
[L
Ω ut(r)

[L
Ω +

θ(1+θ)
1+2θ

= κ1

(
Lt∫

S
ut(v)1/Ωm2(v)−1/Ωdv

)[R−[L
×
∫
S

b̄t(v)
θ2

1+2θ āt(v)
1+θ
1+2θQt(v)−(1−χ)µ

θ(1+θ)
1+2θ

×H(v)
θ

1+2θ−[Rϕt(v)
(µ+γ1/ξ)θ(1+θ)

1+2θ m2(v)−
[R
Ω ut(r)

[R
Ω −

θ2

1+2θ ς(r, v)−θdv (56)
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We combine equations (9), (11) and (12) to find an expression for the price of energy.

Qt(r) =
(
κε(1 + τt(r))

1−εQft (r)1−ε + (1− κ)ε(1− st(r))1−εQct(r)1−ε
) 1

1−ε

=

κε(1 + τt(r))
1−ε

(
f(CumCO2t)

ζft (r)

)1−ε

+ (1− κ)ε(1− st(r))1−ε
(

1

ζct (r)

)1−ε
 1

1−ε

=

κε(1 + τt(r))
1−ε

(
f(CumCO2t)(
ywt /y

w
t−1

)υj
)1−ε

+ (1− κ)ε(1− st(r))1−ε

(
1(

ywt /y
w
t−1

)υj
)1−ε

 1
1−ε

(57)

We rewrite global average real GDP, ywt , making use of equations (3) and (4).

ywt =

∫
S

(
Lt(v)H(v)

Lt

)
yt(v)dv

=

(
Lt∫

S
ut(v)1/Ωm2(v)−1/Ωdv

)1+λ ∫
S

L−1
t H(v)−λut(v)1+ 1

Ω [1+λ]m2(v)−
1
Ω [1+λ]b̄t(v)−1dv (58)

Therefore, equations (56), (57) and (58) define a system of equations that solves for ut(r) and Qt(r). In

order to guarantee existence and uniqueness of the solution, we can consider (i) ε = 1 or (ii) υf = υc = υ.

In the first case, the energy price Qt(r) collapses to:

Qt(r) =

(
ywt
ywt−1

)−(κυf+(1−κ)υc)(
(1 + τt(r))f(CumCO2t)

κ

)κ(
(1− st(r))

(1− κ)

)1−κ

In the second case, the energy price Qt(r) collapses to:

Qt(r) =

(
ywt
ywt−1

)−υ (
κε(1 + τt(r))

1−εf(CumCO2t)
1−ε + (1− κ)ε(1− st(r))1−ε) 1

1−ε

Consequently, in both cases, we can represent Qt(r) as the product a location-invariant term and an

exogenous term Q̂t(r).

Qt(r) =

(
ywt
ywt−1

)−υ̂
Q̂t(r) (59)

We insert equation (59) in equation (56).

B1,t(r)ût(r)
[L
Ω +

θ(1+θ)
1+2θ ) = κ1

∫
S

B2,t(v)ût(v)
[R
Ω −

θ2

1+2θ ς(r, v)−θdv (60)

B1,t(r) = b̄t(r)
− θ(1+θ)

1+2θ āt(r)
− θ

1+2θ Q̂t(r)
(1−χ)µθ2

1+2θ

×H(r)
θ

1+2θ−[Lϕt(r)
− (µ+γ1/ξ)θ

2

1+2θ m2(r)−
[L
Ω

B2,t(v) = b̄t(v)
θ2

1+2θ āt(v)
1+θ
1+2θ Q̂t(v)−(1−χ)µ

θ(1+θ)
1+2θ

×H(v)
θ

1+2θ−[Rϕt(v)
(µ+γ1/ξ)θ(1+θ)

1+2θ m2(v)−
[R
Ω
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Where B1,t(·) and B2,t(·) are exogenous functions and ût(·) is given by:

ût(r) = ut(r)
(
ywt−1

)−υ̂(1−χ)µθ
(

Lt∫
S
ut(v)1/Ωm2(v)−1/Ωdv

)[R−[L+υ̂(1−χ)µθ(1+λ)

×
(∫

S

L−1
t H(v)−λut(v)1+ 1

Ω [1+λ]m2(v)−
1
Ω [1+λ]b̄t(v)−1dv

)υ̂(1−χ)µθ

It follows from theorem 2.19 in Zabreyko et al. (1975) that the solution to equation (60) exists and is

unique if:

[R
Ω
− θ2

1 + 2θ
≤ [L

Ω
+
θ(1 + θ)

1 + 2θ
α

θ
+
γ1

ξ
≤ λ+ Ω + (1− µ) (61)

And ut(r) can be retrieved as:

ut(r) = ût(r)
(
ywt−1

) υ̂(1−χ)µθ
υ̂(1−χ)µθ−θ

(
Lt∫

S
ût(v)1/Ωm2(v)−1/Ωdv

)− [R−[L+υ̂(1−χ)µθ(1+λ)

υ̂(1−χ)µθ−θ

×
(∫

S

L−1
t H(v)−λût(v)1+ 1

Ω [1+λ]m2(v)−
1
Ω [1+λ]b̄t(v)−1dv

)− υ̂(1−χ)µθ
υ̂(1−χ)µθ−θ

A.2 Fundamental Amenities and Productivities

To solve for the fundamentals b̄t(r)/ut(r) and āt(r), employ the system of equations defined by equations

(48) and (53) of Appendix A.1.

A.3 Balanced Growth Path

To prove the existence and uniqueness of a Balanced Growth Path, recall the evolution of amenities and

technology, given by:

b̄t(r) =
(
1 + δb(Tt(r)) ·∆Tt(r)

)
b̄t−1(r)

āt(r) = (1 + δa(Tt(r)) ·∆Tt(r))

(
φt−1(r)θγ1

[∫
S

D(v, r)āt−1(v)dv

]1−γ2

āt−1(r)γ2

)

For fundamental amenities to be constant over time, we require that local temperature reaches a Steady

State for every cell. To show this behavior, remember that as the cost of extracting fossil fuels rises sharply,

its use declines towards zero. Hence, in the long-run, carbon dioxide emissions converge to zero.

By assuming that emissions from deforestation also converge to zero in the long-run and the share of

CO2 emissions remaining in the atmosphere ` periods ahead, (1 − δ`), converge to a constant value in the

long-run, then the carbon stock in the atmosphere also converges to a constant value.
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More specifically, employing the characterization of the carbon cycle outlined in equations (86)-(88),

Si,t+1 converges to zero, i ∈ {1, 2, 3}, and S0,t+1 converges to S∗ = S0,2000 + a0(maxCumCO2f,x), where

maxCumCO2f,x represents the cumulative and finite flow of emissions from fuel combustion and defor-

estation.

By assuming that radiative forcing from non-CO2 GHG converges to zero in the long-run, then radiative

forcing, Ft+1, converges to a stable value given by F ∗ = ϕ log2(S∗/Spre-ind), according to equation (19).

Finally, under the assumption that the temperature response to an increase in radiative force ` periods ago,

ζ`, converges to a constant value, global temperature reaches a Steady State. More precisely, employing

equations (89) and (90), global temperature reaches a Steady State given by T ∗ =
(

c1/d1

1−e−1/d1
+ c2/d2

1−e−1/d2

)
F ∗.

Since global temperature achieves a stable level in the long-run, equation (21) implies the same conclusion

for local temperature.

By the aforementioned arguments, fundamental amenities are constant in the Balanced Growth Path.

When additionally imposing that total natality rates, 1 + nt(r), converge to one as income grows, global

population achieves a stable value, L∗. Consequently, productivity growth rates follow:

āt+1(r)

āt(r)
= φt(r)

θγ1

[∫
S

D
āt(v)

āt(r)
dv

]1−γ2

(62)

In a BGP in which technology growth rates are constant, so āt+1(r)/āt(r) is constant over time and space

and āt(s)/āt(r) is constant over time, the investment decision will also be constant over time but potentially

different across locations. We divide equation (62) evaluated at region r with respect to that evaluated at

region s to obtain:

āt(s)

āt(r)
=

(
φ(s)

φ(r)

) θγ1
1−γ2

=

(
L(s)/ϕt(s)

L(r)/ϕt(r)

) θγ1
ξ(1−γ2)

(63)

Where the last equality comes from equation (40). We arrange equation (63), integrate over s and solve

for āt(r).

L∗ =

∫
S

L(s)H(s)ds =

∫
S

(
āt(s)

āt(r)

) ξ(1−γ2)
θγ1

(
ϕt(s)

ϕt(r)

)
L(r)H(s)ds

āt(r) = κ2,t

(
L(r)

ϕt(r)

) θγ1
ξ(1−γ2)

(64)

κ2,t =

(∫
S

āt(s)
ξ(1−γ2)
θγ1 ϕt(s)H(s)ds

) θγ1
ξ(1−γ2)

(L∗)
− θγ1
ξ(1−γ2)
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We insert equation (64) in equation (54) and define ]L and ]R as shown below.

(
b̄(r)

ut(r)

)− θ(1+θ)
1+2θ

L(r)]LQt(r)
(1−χ)µθ2

1+2θ H(r)
θ

1+2θϕt(r)
− θ2

1+2θ

(
µ+

γ1
ξ −

γ1
ξ(1−γ2)

)

= κ1κ2,t

∫
S

(
b̄(v)

ut(v)

) θ2

1+2θ

L(v)]RQt(v)−(1−χ)µ
θ(1+θ)
1+2θ H(v)

θ
1+2θϕt(v)

θ(1+θ)
1+2θ

(
µ+

γ1
ξ −

γ1
ξ(1−γ2)

)
ς(r, v)−θdv (65)

]L = λθ − θ

1 + 2θ

[
α− 1 + θ

(
λ+

γ1

ξ
+

γ1

ξ(1− γ2)
− (1− µ)

)]
]R = 1− λθ +

1 + θ

1 + 2θ

[
α− 1 + θ

(
λ+

γ1

ξ
+

γ1

ξ(1− γ2)
− (1− µ)

)]

We substitute the migration shares, given by equation (55), in equation (65) and arrange terms.

b̄(r)−
θ(1+θ)
1+2θ Qt(r)

(1−χ)µθ2

1+2θ H(r)
θ

1+2θ−]L

× ϕt(r)
− θ2

1+2θ

(
µ+

γ1
ξ −

γ1
ξ(1−γ2)

)
m2(r)−

]L
Ω ut(r)

]L
Ω +

θ(1+θ)
1+2θ

= κ1κ2,t

(
L∗∫

S
ut(v)1/Ωm2(v)−1/Ωdv

)]R−]L
×
∫
S

b̄(v)
θ2

1+2θQt(v)−(1−χ)µ
θ(1+θ)
1+2θ H(v)

θ
1+2θ−]R

× ϕt(v)
θ(1+θ)
1+2θ

(
µ+

γ1
ξ −

γ1
ξ(1−γ2)

)
m2(v)−

]R
Ω ut(r)

]R
Ω −

θ2

1+2θ ς(r, v)−θdv (66)

For the price of energy to be the product of a location-invariant term and a location-specific time-

invariant term, Qt(r) =
(
ywt
ywt−1

)−υ̂
Q(r), we assume (i) ε = 1 or (ii) υf = υc = υ.

When considering ε = 1, ϕt(r) collapses to:

ϕt(r) =
µχ+ γ1/ξ + µ(1− χ)κ̃(r)

µ+ γ1/ξ

lim
ε→1

(
Q̃t(r)
Qt(r)

)1−ε

= lim
ε→1

(
κε(1 + τ(r))−εQft (r)1−ε + (1− κ)ε(1− s(r))−εQct(r)1−ε

κε(1 + τ(r))1−εQft (r)1−ε + (1− κ)ε(1− s(r))1−εQct(r)1−ε

)

=

(
κ

1 + τ(r)
+

1− κ
1− s(r)

)
= κ̃(r)

And when considering υf = υc = υ, ϕt(r) collapses to:

ϕt(r) =
µχ+ γ1/ξ + µ(1− χ)κ̆(r)

µ+ γ1/ξ(
Q̃t(r)
Qt(r)

)1−ε

=

(
κε(1 + τ(r))−ε(f̃)1−ε(ywt /y

w
t−1)−υ(1−ε) + (1− κ)ε(1− s(r))−ε(ywt /ywt−1)−υ(1−ε)

κε(1 + τ(r))1−ε(f̃)1−ε(ywt /y
w
t−1)−υ(1−ε) + (1− κ)ε(1− s(r))1−ε(ywt /y

w
t−1)−υ(1−ε)

)

=

(
κε(1 + τ(r))−ε(f̃)1−ε + (1− κ)ε(1− s(r))−ε

κε(1 + τ(r))1−ε(f̃)1−ε + (1− κ)ε(1− s(r))1−ε

)
= κ̆(r)

Consequently, ϕt(r) might vary across locations, but is constant over time. Now, we combine equation
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(66) and the definition of the energy price and manipulate terms.

B1(r)ût(r)
]L
Ω +

θ(1+θ)
1+2θ = κ1κ2,t

∫
S

B2(v)ût(v)
]R
Ω −

θ2

1+2θ ς(r, v)−θdv (67)

B1(r) = b̄(r)−
θ(1+θ)
1+2θ Q(r)

(1−χ)µθ2

1+2θ H(r)
θ

1+2θ−]Lϕ(r)
− θ2

1+2θ

(
µ+

γ1
ξ −

γ1
ξ(1−γ2)

)
m2(r)−

]L
Ω

B2(r) = b̄(r)
θ2

1+2θQ(r)−
(1−χ)µθ(1+θ)

1+2θ H(r)
θ

1+2θ−]Rϕ(r)
θ(1+θ)
1+2θ

(
µ+

γ1
ξ −

γ1
ξ(1−γ2)

)
m2(r)−

]R
Ω

Where B1(·) and B2(·) are exogenous functions and ût(·) is given by:

ût(r) = ut(r)
(
ywt−1

)−υ̂(1−χ)µθ
(

L∗∫
S
ut(v)1/Ωm2(v)−1/Ωdv

)]R−]L+υ̂(1−χ)µθ(1+λ)

×
(∫

S

L∗−1H(v)−λut(v)1+ 1
Ω [1+λ]m2(v)−

1
Ω [1+λ]b̄(v)−1dv

)υ̂(1−χ)µθ

It follows from theorem 2.19 in Zabreyko et al. (1975) that the solution to equation (67) exists and is

unique if:

]R
Ω
− θ2

1 + 2θ
≤ ]L

Ω
+
θ(1 + θ)

1 + 2θ
α

θ
+
γ1

ξ
+

γ1

ξ(1− γ2)
≤ λ+ Ω + (1− µ) (68)

And ut(·) can be retrieved as:

ut(r) = ût(r)
(
ywt−1

) υ̂(1−χ)µθ
υ̂(1−χ)µθ−θ

(
L∗∫

S
ût(v)1/Ωm2(v)−1/Ωdv

)− ]R−]L+υ̂(1−χ)µθ(1+λ)

υ̂(1−χ)µθ−θ

×
(∫

S

L−1
t H(v)−λût(v)1+ 1

Ω [1+λ]m2(v)−
1
Ω [1+λ]b̄(v)−1dv

)− υ̂(1−χ)µθ
υ̂(1−χ)µθ−θ
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A.4 Backward Solution

Rewrite equations (2) and (7) as shown below and define the terms \L, \R and κ2.

b̄t(r) =
b̄t+1(r)

Λbt+1(r)

āt(r) =

(
µ+ γ1/ξ

γ1/ξ
ν

) θγ1
ξγ2
(∫

S

D(r, v)āt(v)

) γ2−1
γ2
(
āt+1(r)

Λat+1(r)

) 1
γ2

Lt(r)
− θγ1
ξγ2

Λxt+1(r) = Λx(Tt+1(r),∆Tt(r)), x ∈ {a, b}

\L = λθ − θ

1 + 2θ
[α− 1 + θ(λ+ γ1/ξ − γ1/(ξγ2)− (1− µ))]

\R = 1− λθ +
1 + θ

1 + 2θ
[α− 1 + θ(λ+ γ1/ξ − γ1/(ξγ2)− (1− µ))]

κ2 = κ1

(
µ+ γ1/ξ

γ1/ξ
ν

) θγ1
ξγ2

Then, insert them in equation (54).

(
b̄t+1(r)

Λbt+1(r)

)− θ(1+θ)
1+2θ

((∫
S

D(r, s)āt(s)ds

) γ2−1
γ2
(
āt+1(r)

Λat+1(r)

) 1
γ2

)− θ
1+2θ

× Lt(r)\LQt(r)
(1−χ)µθ2

1+2θ H(r)
θ

1+2θϕt(r)
−(µ+γ1/ξ)θ

2

1+2θ ut(r)
θ(1+θ)
1+2θ

= κ2

∫
S

(
b̄t+1(v)

Λbt+1(v)

) θ2

1+2θ

((∫
S

D(v, s)āt(s)ds

) γ2−1
γ2
(
āt+1(v)

Λat+1(v)

) 1
γ2

) 1+θ
1+2θ

× Lt(v)\RQt(v)−(1−χ)µ
θ(1+θ)
1+2θ H(v)

θ
1+2θϕt(v)(µ+γ1/ξ)

θ(1+θ)
1+2θ ut(v)−

θ2

1+2θ ς(r, v)−θdv (69)

And substitute the migration shares, given by equation (4), in equation (69), assuming D(r, s) = D.

(
b̄t+1(r)

Λbt+1(r)

)− θ(1+θ)
1+2θ

(
āt+1(r)

Λat+1(r)

)− θ
1+2θ

1
γ2

×Qt(r)
(1−χ)µθ2

1+2θ H(r)−\L+ θ
1+2θϕt(r)

− (µ+γ1/ξ)θ
2

1+2θ m2(r)−
\L
Ω ut(r)

\L
Ω +

θ(1+θ)
1+2θ

= κ2

(∫
S

Dāt(s)ds

) γ2−1
γ2
(

Lt∫
S
ut(v)1/Ωm2(v)−1/Ωdv

)\R−\L
∫
S

(
b̄t+1(v)

Λbt+1(v)

) θ2

1+2θ
(
āt+1(v)

Λat+1(v)

) 1+θ
1+2θ

1
γ2

×Qt(v)−(1−χ)µ
θ(1+θ)
1+2θ H(v)−\R+ θ

1+2θϕt(v)
(µ+γ1/ξ)θ(1+θ)

1+2θ m2(v)−
\R
Ω ut(v)

\R
Ω −

θ2

1+2θ ς(r, v)−θdv (70)
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A.5 Migration Costs

To solve for the migration costs, m2(r), recall the expression for migration shares.

ut(r) = m2(r)H(r)ΩLt(r)
Ω

(
Lt∫

S
ut(v)1/Ωm2(v)−1/Ωdv

)−Ω

And substitute it in equation (54).

b̄t(r)
− θ(1+θ)

1+2θ āt(r)
− θ

1+2θLt(r)
[L+

Ωθ(1+θ)
1+2θ Qt(r)

(1−χ)µθ2

1+2θ

×H(r)
θ[1+Ω(1+θ)]

1+2θ m2(r)
θ(1+θ)
1+2θ ϕt(r)

−(µ+γ1/ξ)θ
2

1+2θ

= κ1

(
Lt∫

S
ut(s)1/Ωm2(s)−1/Ω

) Ωθ
1+2θ

×
∫
S

b̄t(v)
θ2

1+2θ āt(v)
1+θ
1+2θLt(v)[R−

Ωθ2

1+2θQt(v)−(1−χ)µ
θ(1+θ)
1+2θ

×H(v)
θ[1−Ωθ]

1+2θ m2(v)−
θ2

1+2θϕt(v)(µ+γ1/ξ)
θ(1+θ)
1+2θ ς(r, v)−θdv (71)

For simplicity, consider the normalization minsm2(s) = 1.

B Data

Population and GDP at 1◦ × 1◦. Data on population and GDP, in Power Purchasing Parities, for 1◦ × 1◦

cells across the entire world come from the G-Econ 4.0 research project. For the estimation of fundamental

amenities and productivities, we use data for the years 1990, 1995, 2000, 2005. We consider the same 17,048

cells that in 2000 have positive population, GDP and land. If some of these cells display missing values for

1990, 1995 or 2005, we linearly extrapolate the missing data, and, in each period, we cap GDP per capita at

the percentile 97.13.

Human Development Index at 1◦ × 1◦. Kummu et al. (2018) provide data on the Human Development

Index at a yearly frequency, from 1990 to 2015, at a subnational level, considering around 700 geographic

units. This data is presented at a resolution of 5 arc-min, so we aggregate it at a resolution of 60 minutes by

considering the mode across cells.

Geographical attributes at 1◦ × 1◦. Elevation data, measured as meters above the sea level at a resolution

of 1◦×1◦ is taken from the University of Washington, Join Institute for the Study of the Atmosphere and the

Ocean, http://research.jisao.washington.edu/data_sets/elevation/. In order to construct

the standard deviation and the mean absolute error, also known as roughness, within each 1◦ × 1◦ cell, we

use the aforementioned dataset at a resolution of 0.25◦ × 0.25◦ and compute these statistics over the cells

with positive land.

Distance to the coast is taken from the NASA Ocean Biology Processing Group https://oceancolor.
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gsfc.nasa.gov/docs/distfromcoast/. This data is provided at a resolution of 0.1◦ × 0.1◦, so we

compute the average distance within each 1◦ × 1◦ cell. Distance to non-frozen oceans is taken from G-Econ

database and displayed at a resolution of 1◦ × 1◦. Distance to nearest water body either inland or sealand

(ice-covered land areas are not considered as water bodies) is taken from Carrea et al. (2015), which presents

data at 1◦ × 1◦.

The following data are obtained from the NASA Earth Observations, https://neo.sci.gsfc.nasa.

gov at a geographical resolution of 1◦×1◦. Vegetation density is taken as the average over the period 1951-

1980.55 Share of ice-covered land is taken over April of 2010. Albedo, which is the ratio of light that a

surface reflects compared to the total sunlight that falls, is taken over April of 2010.56 Land cover classifica-

tion considers the year 2010.57

Temperature at 1◦ × 1◦. Gridded temperature data comes from the Berkeley Earth Surface Temperature

(http://berkeleyearth.org/data-new/). This dataset provides information as far as 1750, as fre-

quent as daily maximum, minimum and average temperature and as fine as 0.25◦ × 0.25◦. We employ the

database that provides annual temperature at a resolution of 1◦ × 1◦.

For the cells with missing temperature, we take the simple average temperature across the nine sur-

rounding cells, that is, we create a block of cells of size 3×3 centered at the cell with missing data. If there

are still cells with missing temperature (which occurs in the case of small islands), we create a block of cells

of size 5×5 centered at the cell with missing data and take the simple average temperature. We continue

with this procedure until the cell is filled with temperature data.

Historical CO2 emissions and clean energy at country-level. Crippa et al. (2019) (https://edgar.jrc.

ec.europa.eu/overview.php?v=booklet2020) provide CO2 emissions for all countries considered

in this analysis, except for Greenland. We supplement this observation with data from the World Bank.

Additionally, Crippa et al. (2019) consider international marine and international aviation. We split those

emissions across countries according to the distribution provided in IEA (2020).

Since IEA (2020) provides information for aggregate regions that comprise several countries, like For-

mer Soviet Union or Other Africa, we partition the emissions of those aggregate regions across countries

according to the pattern displayed in Crippa et al. (2019) for total emissions.

As for the use of clean energy, expressed in tons of oil equivalent (toe), we use information from BP

(2019) and define clean energy as the sum of nuclear, hydroelectricity and renewables (wind, solar, among

others). Since this database provides information for some aggregate regions, like Other South America and

55The vegetation index ranges from -0.1 to 0.9 and have no unit. Rather, they are index values in which higher values (0.4 to 0.9)
show lands covered by green, leafy vegetation and lower values (0 to 0.4) show lands where there is little or no vegetation.

56Surfaces that reflect a large share of the light falling on them are bright, and have high albedo, like snow. Surfaces that do not
reflect much light are dark, and have low albedo, like forests.

57This dataset partitions land based on characteristics of the surface that satellites can detect, such as water, soil, and vegetation
types. There are 17 categories of land cover: 9 classes of natural vegetation, 3 classes of developed lands, 2 classes of mosaic lands,
and 3 classes of non-vegetated lands (snow/ice, bare soil/rocks, water).
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Other Middle East, we partition the energy use of those aggregate regions across countries according to the

pattern for CO2 emissions presented in Crippa et al. (2019). In order to make comparable CO2 emissions

and use of clean energy, we take the ratio of tons of CO2 per ton of oil equivalent to be 2.8466.

CO2 emissions and clean energy at 1◦ × 1◦. The Emission Database for Global Atmospheric Research

(EDGAR) v4.0 https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/EDGAR/datasets/v40/

contains global emission inventories for greenhouse gases and air pollutants. These emissions are calcu-

lated as totals by country from 1970 to 2008, and distributed at a resolution of 0.1◦ × 0.1◦ using proxy data.

We aggregate thi data at 1◦ × 1◦ by considering the sum across cells.

We employ the CO2 distribution from residential emissions. We prefer this specification over total emis-

sions or emissions from production, because the former considers emissions that occur over cells with no

land and the latter displays high level of CO2 in cells scarcely populated and with low income levels (due to

presence of plants producing steel or cement, for instance), we consider that such pattern does not represent

the long-run trend of CO2 emissions.

In order to define carbon dioxide emissions at the cell-level, we disaggregate the country-level emissions

according to the spatial pattern displayed in the EDGAR database. As no gridded data for clean energy

exists, we split the country-level clean energy use using the spatial pattern of the EDGAR database. Figure

25 displays the spatial distribution of CO2 emissions and clean energy in 2000.

Figure 25: Spatial distribution of CO2 emissions and clean energy in 2000.

Historical net natality at country-level. Crude birth rates and crude death rates at the country-level since

1950 at a yearly frequency are taken from the World Population Prospects of the United Nations (https:

//population.un.org/wpp/Download/Standard/Population/).

Projections of non-fuel combustion CO2 emissions and non-CO2 forcing. Forecasts up to 2500 for CO2 flow

and forcing for RCP 8.5, 6.0, 4.5 and 2.6 are taken from the RCP Database version 2.0 (http://www.iiasa.

ac.at/web-apps/tnt/RcpDb). Carbon dioxide from deforestation is considered as OtherCO2 and we

consider that 1 GtC equals 44/12 GtCO2. Non-CO2 forcing is considered as Total anthropogenic and natural
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radiative forcing minus CO2 forcing.

Projections of global population. Global population levels at a quinquenial frequency for the medium

scenario, as well as 80% and 95% confidence intervals are taken from the World Population Prospects of

the United Nations (https://population.un.org/wpp/Download/Standard/Population/). In

order to make consistent total population from United Nations and G-Econ in the year 2000, from the

former dataset I substract the total population of the initial period and add the total population of the year

2000 displayed in the G-Econ database.58

Cost of extracting fossil fuel. Bauer et al. (2017) estimate the cost of extracting fossil fuels and present

estimates for different Socio Economic Share Pathways (SSP), which consider alternative assumption re-

garding the evolution of the world economy. We choose the scenario SSP5 (development based on fossil

fuels), which is the one that closest resembles the RCP 8.5. Then, we aggregate the costs of hard coal and

lignite into a single fossil fuel in terms of tCO2 per usd, considering the conversion factors of 0.0946 and

0.1012 GtCO2 per EJ, respectively. Finally, we rank costs from the least to the most expensive.

C Damage Functions on Amenities and Productivities

In this section, we detail how we employ the Human Development Index (HDI) as our measure of utility,

how we estimate our main empirical specification for the damage function on amenities and productivities,

and perform some robustness exercises of these functions.

C.1 HDI as a Measure of Utility

The HDI is constructed as a geometric mean of indices evaluating three dimensions of human development:

a long and healthy life, being knowledgeable and have a decent standard of living. The health dimension is

assessed by life expectancy at birth; the education dimension by mean of years of schooling for adults aged

25 years and more and expected years of schooling for children of school entering age; and the standard

of living dimension by Gross National Income (GNI) per capita. The HDI uses the logarithm of income, to

reflect the diminishing importance of income with increasing GNI.

HDIt(r) =
(
IHealth
t (r) · IEduc

t (r) · I Income
t (r)

)1/3

(72)

I Income
t (r) =


1 if GNIt(r) > 75, 000

log(GNIt(r))−log(100)
log(75,000)−log(100) if 100 ≤ GNIt(r) ≤ 75, 000

0 if GNIt(r) < 100

(73)

58This adjustment is performed since the G-Econ database does not display information for some regions of the world, like Libya
and some parts of Africa and Asia.
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We manipulate equations (72) and (73), in order to obtain a measure of well-being that is linear in log-

real income.

HDIt(r)
3 = ψ0,t(r) + ψ1,t(r) log (GNIt(r)) + log

(
εit(r)

)
. (74)

Consequently, there is a direct relationship between equation (74) and the definition of utility in our

model, given by equation (1). Ignoring migration costs, the flow utility of an individual i residing in location

r in the model is given by:

log
(
uit(r)

)
= log (bt(r)) + log (yt(r)) + log

(
εit(r)

)
Accordingly, we estimate the following regression.

HDIt(r)
3 = ψ0 + ψ log (yt(r)) + εit(r) (75)

Where the HDI is obtained from Kummu et al. (2018), which present this index at a yearly frequency,

from 1990 to 2015 at a subnational level, considering around 700 geographic units. Real-income, yt(r) =

Lt(r)ut(r)/b̄t(r), is computed using data on population and the ratio of utility in terms of amenities, de-

rived from the model inversion. We estimate equation (75) aggregating cells at the subnational level and

weighting observations by population size.

Table 5 shows the results of the estimation. Column (1) denotes the specification of equation (75). Col-

umn (2) allows the intercept to be time-dependent, ψ0,t. Column (3) allows the intercept and the slope to

be time-dependent, ψ0,t and ψt. As can be observed, the estimates of ψt are relatively stable over time.

Columns (4)-(6) repeat the aforementioned exercises weighting each subnational unit by land size rather

than population size as in Columns (1)-(3). We take the central estimate of ψ = 0.045, given by Column (2).

Finally, we compare the spatial pattern of the HDI with that of the Cantril ladder. This measure of

subjective well-being is employed in Desmet et al. (2018). Figure 26 evidences that both measures of util-

ity display a similar spatial configuration for the year 2000. However, we prefer the HDI as it provides

more cross-sectional and temporal variation, which allows to better identify the effect of temperature on

fundamentals.

C.2 Estimation of Damage Functions

In order to estimate the effect of temperature on amenities and productivities, we employ equation (26) as

our main empirical specification. The variable Tt(r) denotes the average temperature over the last decade

for January in the Northern Hemisphere and July in the Southern Hemisphere, and 1{Tt(r) ∈ Tj} is an

indicator function for temperature Tt(r) being in interval Tj . We partition the distribution of temperature

into J = 20 bins, each comprising 5% of the observed temperature values.

The variable Z(r) is a vector of cell-level geographic attributes. Namely, mean, standard deviation and
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(1) (2) (3) (4) (5) (6)
logrealgdp 0.107*** 0.0450*** 0.0974*** 0.0447***

(0.00657) (0.00813) (0.00657) (0.00813)

1990×logrealgdp 0.0338*** 0.0360***
(0.00658) (0.00193)

1995×logrealgdp 0.0412*** 0.0407***
(0.00574) (0.00188)

2000×logrealgdp 0.0459*** 0.0424***
(0.00529) (0.00185)

2005×logrealgdp 0.0510*** 0.0427***
(0.00516) (0.00184)

subcountry fe X X X X X X
year fe X X X X
weight pop X X X
weight land size X X X
N 2,952 2,952 2,952 2,952 2,952 2,952
R2 0.9822 0.9880 0.9910 0.9863 0.9927 0.9933
RMSE 0.0297 0.0245 0.0211 0.0300 0.0219 0.0211
Standard errors in parentheses, clustered by country
* p < 0.10, ** p < 0.05, *** p < 0.01

Table 5: Estimation of utility measure from HDI.

Figure 26: Cantril ladder and Human Development Index in 2000.

average deviation of elevation, distance to the coast, to a water body and to non-frozen oceans. Each of

these six covariates, Zi(r), is transformed by means of a Chebyshev polynomial, Zji (r), j ∈ {1, · · · , 5}.

Accordingly, the vector Z(r) comprises the 30 elements of Zji (r). Additionally, we consider an indicator

70



function for 16 different types of land.59

Zji (r) = cos

(
j · arccos

(
Z̃i(r)

maxs∈S |Z̃i(s)|

))

Z̃i(r) =

(
Zi(r)−

1

2

(
min
s∈S

Zi(s) + max
s∈S

Zi(s)

))

With respect to the time-invariant fixed effects, ι(b), we partition the 180◦ × 360◦ gridded map into

blocks of size 2◦ × 2◦. As for the time-varying fixed effects at the subnational level, ιt(s), we take as basis

the subnational levels, as delimited in Kummu et al. (2018), and aggregate the subnational units in Europe

at the (i) country-level, as defined in Desmet et al. (2018), and (ii) at the region level, considering North,

South, West and East. Figure 27 displays the spatial demarcations of the subnational units.60

Figure 27: Time-varying fixed effects at the subnational level, ιt(s).

We estimate equation (26), modeling the error term as in Conley (1999). That is, we consider that errors

are spatially correlated, so that correlation linearly declines from one to zero as distance increases. When

distance is greater or equal than 550 km (5 cells) correlation equals zero, as in Schlenker and Roberts (2009).

We implement this error structure through the Stata package acreg, developed by Colella et al. (2019).

To smooth the behavior of the point estimates across temperature bins, δ̂xj , we fit the logistic curve

δx(T ), given by equation (77), across the point estimates of each bin, weighting them by the inverse of their

standard errors, se(δ̂xj ), to provide a greater weight to the more accurate estimates. In other words, we

59Zi(r) denotes the variable in raw units (for instance, in meters when considering elevation) and Zj
i (r) the Chebyshev transfor-

mation for the j-th polynomial so that it lies between minus one and one.

60We aggregate the subnational units in Europe, because some of them have a size of one cell, precluding a proper identification.
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estimate the coefficients (δxmin, δ
x
max, δ

x
center) that solve (76).61

min

J∑
j=1

1

se(δ̂j)

(
δ̂j − δx(Tj)

)2

(76)

st δx(T ) = δxmin +
δxmax − δxmin

1 + e0.15∗(T−δxcenter)
(77)

Where Tj is the (2j − 1)/(2J)-th percentile of the temperature observations, j ∈ {1, · · · , J = 20}. To

estimate the upper and lower α% confidence interval of the logistic function, we solve (76), but replace the

point estimates of each bin j by their upper and lower α% confidence intervals, respectively.

C.3 Robustness Exercises

In this subsection, we present robustness exercises regarding the estimation of the damage functions Λa(·),Λb(·).

Figure 28 presents the damage function considering January temperature for all cells in the world, rather

than January temperatures in the Northern Hemisphere and July temperatures in the Southern Hemisphere.

The quantitative results are in line with those of the main specification.

Figure 28: Effect of temperature on fundamental amenities and productivities, using January temperature

for all cells.

Figure 29 plots the main specification using January-July temperatures for one year, rather than the ten-

year average. Although the results are similar to the main specification, the use of only one year provides

noisier results in terms of the standard errors, and the transition from benefits in cold regions to damages

in warm places is less smooth.

Figure 30 implements a finer partition of the temperature observations, by considering 50 bins, each

comprising 2% of the observed temperature values. Given the finer partition of the data, there are less

observations in each bin and therefore the standard errors tend to be larger with respect to the baseline

61To achieve convergence of the non linear estimation, we exogenously set to 0.15 the slope coefficient of the logistic function.
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Figure 29: Effect of temperature on fundamental amenities and productivities, using one-year variation of

January-July.

estimation. This behavior is more pronounced at the middle of the temperature distribution. However, the

logistic smoothing is similar to that in the main specification.

Figure 30: Effect of temperature on fundamental amenities and productivities, using 50 bins.

Tables 6 and 7 evaluate how the standard errors of the main specification of the damage functions for

amenities and productivities vary under different assumptions of the errors. Column (1) considers that

errors are spatially correlated with a cutoff of 550km, as in the main specification. Column (2) extends the

degree of correlation to 1,100km. Column (3) considers that errors are homoskedastic and no correlation

between observations exists. Column (4) replaces the homoskedastic assumption by heteroskedasticity.

Column (5) clusters the errors within subnational units, as defined in Kummu et al. (2018). The last three

columns are estimated with the stata package reghdfe, implemented by Correia (2016).
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Damage Function on Amenities

Coefficient Standard Errors
(1) (2) (3) (4) (5)

0.0138 (0.0031)*** (0.0039)*** (0.0013)*** (0.0014)*** (0.0076)*
0.0175 (0.0031)*** (0.0039)*** (0.0014)*** (0.0015)*** (0.0073)**
0.0203 (0.0032)*** (0.0040)*** (0.0014)*** (0.0016)*** (0.0072)***
0.0200 (0.0033)*** (0.0041)*** (0.0015)*** (0.0017)*** (0.0074)***
0.0216 (0.0034)*** (0.0042)*** (0.0016)*** (0.0018)*** (0.0078)***
0.0240 (0.0037)*** (0.0045)*** (0.0017)*** (0.0020)*** (0.0084)***
0.0258 (0.0039)*** (0.0047)*** (0.0019)*** (0.0023)*** (0.0092)***
0.0266 (0.0043)*** (0.0049)*** (0.0023)*** (0.0029)*** (0.0092)***
0.0228 (0.0046)*** (0.0051)*** (0.0032)*** (0.0038)*** (0.0088)***
0.0077 (0.0076) (0.0083) (0.0060) (0.0069) (0.0111)
0.0083 (0.0081) (0.0081) (0.0047)* (0.0060) (0.0095)
0.0047 (0.0054) (0.0056) (0.0028)* (0.0033) (0.0086)
-0.0057 (0.0037) (0.0039) (0.0023)** (0.0026)** (0.0059)
-0.011 (0.0033)*** (0.0035)*** (0.0021)*** (0.0023)*** (0.0055)**

-0.0142 (0.0029)*** (0.0031)*** (0.0019)*** (0.0021)*** (0.0048)***
-0.0168 (0.0028)*** (0.0029)*** (0.0018)*** (0.0019)*** (0.0045)***
-0.0167 (0.0026)*** (0.0027)*** (0.0017)*** (0.0018)*** (0.0042)***
-0.0192 (0.0026)*** (0.0026)*** (0.0016)*** (0.0017)*** (0.0043)***
-0.0213 (0.0025)*** (0.0025)*** (0.0016)*** (0.0016)*** (0.0042)***
-0.0227 (0.0025)*** (0.0026)*** (0.0016)*** (0.0016)*** (0.0044)***

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 6: Standard errors of the damage function on amenities, when the error term is (1) spatially correlated

up to 550 km, (2) spatially correlated up to 1100 km, (3) homoskedastic, (4) heteroskedastic and (5) clustered

at the subnational level.

D Natality Rates, Energy Elasticities and Migration Costs

In this section, we outline the procedure to estimate the parameters of the natality rate function, b`, bh, bT , bw,

the elasticities of energy productivity growth to global real GDP growth, υf , υc and the migration cost func-

tion, m2(·). To construct the natality rate function η(·), we set the parameter bT0 to target the global natality

rate observed in the year 2000, nw0 .

nw0 L0 =

∫
S

ηy(y0(v); b`, bh)L0(v)H(v)dv +

∫
S

ηT (T0(v), log(yw0 ); bT , bw)L0(v)H(v)dv

And we impose the functional form of equation (29).

nw0 L0 −
∫
S

ηy(y0(v); b`, bh)L0(v)H(v)dv =

∫
S

ηT (T0(v), log(yw0 ); bT , bw)L0(v)H(v)dv

= 0.5

∫
S

(
bT0 + bT2 e−b

T
1 (T0(v)−b∗T )

2)
L0(v)H(v)dv

= (0.5)bT0 L0 + (0.5)bT2

∫
S

(
e−b

T
1 (T0(v)−b∗T )

2)
L0(v)H(v)dv
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Damage Function on Productivities

Coefficient Standard Errors
(1) (2) (3) (4) (5)

0.0638 (0.0137)*** (0.0168)*** (0.0049)*** (0.0056)*** (0.0279)**
0.0718 (0.0151)*** (0.0183)*** (0.0054)*** (0.0063)*** (0.0313)**
0.0997 (0.0160)*** (0.0193)*** (0.0057)*** (0.0066)*** (0.0309)***
0.0991 (0.0163)*** (0.0191)*** (0.0060)*** (0.0071)*** (0.0315)***
0.1009 (0.0184)*** (0.0216)*** (0.0065)*** (0.0078)*** (0.0346)***
0.0912 (0.0209)*** (0.0236)*** (0.0076)*** (0.009)*** (0.0351)***
0.0516 (0.0243)** (0.0273)* (0.0090)*** (0.0105)*** (0.0409)
0.0683 (0.0308)** (0.0349)* (0.0115)*** (0.0134)*** (0.0436)
0.0484 (0.0448) (0.0514) (0.0178)*** (0.0206)** (0.0677)
0.0578 (0.0871) (0.0962) (0.0418) (0.0469) (0.1001)
0.1216 (0.0905) (0.0413)*** (0.0285)*** (0.0343)*** (0.1588)
-0.0482 (0.0579) (0.0407) (0.0146)*** (0.0183)*** (0.1400)
-0.0537 (0.0470) (0.0378) (0.0113)*** (0.0141)*** (0.1159)
-0.0897 (0.0392)** (0.0353)** (0.0098)*** (0.0120)*** (0.1057)
-0.1150 (0.0329)*** (0.0301)*** (0.0086)*** (0.0104)*** (0.0892)
-0.1104 (0.0289)*** (0.0256)*** (0.0078)*** (0.0093)*** (0.0780)
-0.1147 (0.0265)*** (0.0244)*** (0.0072)*** (0.0086)*** (0.0735)
-0.1396 (0.0253)*** (0.0244)*** (0.0068)*** (0.0082)*** (0.0708)**
-0.1544 (0.0251)*** (0.0250)*** (0.0069)*** (0.0084)*** (0.0701)**
-0.1574 (0.0253)*** (0.0269)*** (0.0070)*** (0.0086)*** (0.0696)**

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 7: Standard errors of the damage function on productivities, when the error term is (1) spatially

correlated up to 550 km, (2) spatially correlated up to 1100 km, (3) homoskedastic, (4) heteroskedastic and

(5) clustered at the subnational level.

Hence, we can define bT0 as a function of the remaining parameters [ = (b`, bh, bT1 , b
T
2 , b
∗T ) and data on the

initial period x0 = (nw0 , L0(·), y0(·), T0(·)). Where local population is obtained from the G-Econ database,

local real income is constructed as y0(r) = L0(r)λu0(r)/b̄0(r) so that the ratio of utility to amenities is

computed as in Appendix A.2,62 and local temperature comes from the Berkeley Earth Surface Temperature

Database (BEST).

bT0 ([, x0) = 2nw0 −
1

L0

∫
S

(
2ηy(y0(v); b`, bh) + bT2 e−b

T
1 (T0(v)−b∗T )

2)
L0(v)H(v)dv (78)

Analogously, we set the parameter bw to target the global natality rate observed in the year 2020, nw20.

62To solve for this ratio we require data on local wages and energy prices, which come from G-Econ, EDGAR and BP databases.
Further details of the data are described in Appendix B.
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The natality rates nw0 and nw20 are taken from the World Population Prospects of the United Nations.

nw20L20 −
∫
S

ηy(y20(v); b`, bh)L20(v)H(v)dv

=

∫
S

ηT (T20(v), log(yw20); bT , bw)L20(v)H(v)dv

=
1

1 + ebw[log(yw20/y
w
0 )]

∫
S

(
bT0 ([, x0) + bT2 e−b

T
1 (T20(v)−b∗T )

2)
L20(v)H(v)dv (79)

Hence, we can define bw as a function of the parameters [ and data on the initial and twentieth period.

bw([, x0, x20) =
1

log(yw20/y
w
0 )

log

∫S
(
bT0 ([, x0) + bT2 e−b

T
1 (T20(v)−b∗T )

2)
L20(v)H(v)dv

nw20L20 −
∫
S
ηy(y20(v); b`, bh)L20(v)H(v)dv

− 1

 (80)

Now, we describe the algorithm employed to jointly solve for the parameters and functions of interest.

1. Guess m2(·), [, υf , υc and x20.

2. Run the model backwards for 50 periods using equation (70) of Appendix A.4, taking the behavior of

local historical temperature as in the BEST dataset,63 and retrieve Lt(·) and yt(·).

3. Compute the natality rates at the country-level induced from the model.64 If the difference between

the model induced and the historical natality rates is small enough, go to the next step. Otherwise,

use the solution of (81) to update [ and go back to step 2.

min
[

SSR([) =

168∑
c=1

1999∑
t=1950

Lct (uct)
2 (81)

st uct =
(
nc,datat − nc,modelt ([)

)2

(82)

nc,modelt ([) =

∫
v∈c η(yt(v), Tt(v); [)Lt(v)H(v)dv∫

v∈c Lt(v)H(v)dv

Where c denotes countries, t periods of time, Lct is the weight given to each observation, based on

historical country-level population data, and uct is the error between the model and the data for each

observation. Let B be the number of elements in the vector [.

We solve (81) as follows: If SSR(·), evaluated at the guess, is small enough, the procedure ends.

Otherwise, we update [ in the j-th iteration as shown below.

[j+1 = [j + %(X ′jDXj)
−1(X ′jDuj) (83)

63The backward solution of the climatic model does not provide very accurate results with respect to the historical observations.
Therefore, we prefer to employ observed past data.

64We consider 168 countries, following the classification of Desmet et al. (2018).
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Where Xj is a matrix of size (168 · 50) × B comprising the derivatives of nc,modelt (·) evaluated at [j ,

D is a matrix of size (168 · 50) × (168 · 50) comprising the population weights, and uj is a matrix of

size B × (168 · 50) comprising the errors evaluated at [j . Additionally, % is step size scalar parameter

chosen at each iteration to improve convergence.

At each iteration, % is set to one, and a candidate [∗j+1 is compute from (83). If SSR([∗j+1) < SSR([j),

then [j+1 = [∗j+1 and the iteration is completed. Otherwise, % is halved, a new [∗j+1 is computed, and

the process is repeated. The NLLS estimation concludes when SSR([j+1) is small enough.

4. Compute the migration costs that target population distribution in the year 2005 using equation (71)

of Appendix A.5. If the difference between the guess and the targeted migration costs is small enough,

run the model 20 periods in the future, update x20 and go to the next step. Otherwise, use the targeted

migration costs to update m2(·) and go back to step 2. Figure 31 displays the logarithm of migration

costs of the last iteration of the algorithm.

Figure 31: Log-Migration costs.

5. If the difference between the model induced, Ef,modelt , and historical data on global carbon dioxide

emissions, Ef,datat , from 1950 to 1999 is small enough, run the model 20 periods in the future, update

x20 and go to the next step. Otherwise, update υf based on (84) and go back to step 2.

υf
′

=
Ef,data1999 − Ef,data1950

Ef,model1999 − Ef,model1950

(84)

6. If the difference between the model induced, Ec,modelt , and historical data on global clean energy use,

Ec,datat , from 1965 to 1999 is small enough, run the model 20 periods in the future, update x20 and the

algorithm concludes.65 Otherwise, update υc based on (85) and go back to step 2. Figure 32 compares

65The BP database does not contain information on clean energy use for the years 1950-1964.
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the historical and model estimated flow of global CO2 emissions and clean energy use.66

υc
′

=
Ec,data1999 − Ec,data1965

Ec,model1999 − Ec,model1965

(85)

Figure 32: Historical global CO2 emissions and clean energy use.

Figure 33 compares the evolution of global population and natality rates in the data and the model.

Figure 34 plots the cross-section of the country-level natality rates in the data and the cell-level natality

rates estimated by the algorithm for the year 2000. Figure 35 displays in solid black curves the natality

rate functions on log real GDP and temperature, and in green bubbles the observed relationships between

country-level natality rates, temperature and model induced log real GDP, where the size of the bubbles

depends on population levels.67

These figures reveal that the model predicts lower dispersion in natality rates with respect to the data.

Steeper natality rate functions might exacerbate the long-run effects of shocks to the economy. For instance,

a rise in iceberg trade costs that reduces income at impact would generate a huge increase in the natal-

ity rates of the subsequent periods, generating greater levels of population in the long-run and therefore

higher growth rates in the BGP. In other words, the direct effect of higher commercial frictions would be

overshadowed by the evolution of global population.

E Carbon Cycle and Temperature Down-scaling

In this section, we describe the parametrization of the carbon cycle and the temperature down-scaling. Re-

garding the evolution of the stock of carbon dioxide, displayed in equation (18), the share of CO2 remaining

66The dashed black curve in Figure 32 represents the 11-year moving average of global CO2 emissions.

67We consider the model-induced log real GDP, because it is hard to construct a measure of real income from the data that captures
the same elements of this model for every year of the period 1950-1999.
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Figure 33: Historical global population and natality rates: model and data.

Figure 34: Natality rates in 2000: country-level data and cell-level model fit.

Figure 35: Natality rate function on real GDP and temperature: model and data.
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in the atmosphere ` periods ahead, (1 − δ`), is approximated by a sum of exponentials, as in Forster et al.

(2007) and Joos et al. (2013).

(1− δ`) = a0 +

3∑
i=1

(ai · e−`/bi)

According to IPCC (2013), we set a0 = 0.2173, a1 = 0.2240, a2 = 0.2824, a3 = 0.2763, b1 = 394.4, b2 =

36.54, b3 = 4.304. To simplify the evolution of carbon stock, we rewrite the law of motion as a recursive

vector representation.

St+1 = S0,t+1 +

3∑
i=1

Si,t+1 (86)

S0,t+1 = S0,t + a0(Eft + Ext ) (87)

Si,t+1 = (e−1/bi)Si,t + ai(E
f
t + Ext ), i ∈ {1, 2, 3} (88)

Thus, the model requires the initial values of the four layers, S0,i, i ∈ {0, 1, 2, 3}. Following Golosov et al.

(2014), we consider S0,2000 = 2, 429 GtCO2 as the sum of the pre-industrial stock, Spre-ind = 2, 200 GtCO2,

plus a share a0 of the historical cumulative carbon emissions,
∑1999
`=1945(Ef` + Ex` ) = 1, 054 GtCO2. The

remaining three layers, S1,2000 = 224, S2,2000 = 178, S3,2000 = 37 GtCO2, are computed as the discounted

sum of past emissions.68

With respect to the effect of forcing on global temperature, the response to a unit forcing can be repre-

sented by a sum of two exponentials, as in Boucher and Reddy (2008).

ζ` =

2∑
j=1

cj
dj
· e−`/dj

We take the forcing sensitivity to be ϕ = 5.35 and the climate parameters to be c1 = 0.631, c2 =

0.429, d1 = 8.4, d2 = 409.5.69 Analogously to the carbon circulation, we rewrite the temperature module as

a recursive vector representation.

Tt+1 = T1,t+1 + T2,t+1 (89)

Tj,t+1 = (e−1/dj )Tj,t +
cj
dj
Ft+1, j ∈ {1, 2} (90)

Where T1,2000 = 1.01◦C is the discounted sum of past forcings (from 1825 to 2000) and T2,2000 = 8.19◦C

68Historical data for CO2 stock and projections for CO2 emissions and forcing for every RCP are taken from http://www.iiasa.

ac.at/web-apps/tnt/RcpDb.

69Etminan et al. (2016) provide new calculations of the radiative force with respect to Myhre et al. (1998). They propose a GHG
concentration-dependence for the forcing sensitivity, so that it can be expressed as ϕ = 5.35 +ϕ1|St−Spre-ind|+ϕ2(St−Spre-ind)2 +

ϕN (Nt +Npre-ind)/2, where Nt denotes the stock of nitrous oxide.
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is the discounted sum of past forcings plus the pre-industrial temperature Tpre-ind = 8.1◦C. We interpret

temperature as that over land, excluding that over water.

To construct the mapping from global to local temperature, we estimate equation (21), where the object

of interest is the temperature scaler function, g(·). We parametrize this function as an additive separable

Chebyshev polynomial of order 10 in the following arguments: latitude, longitude, product of latitude and

longitude, mean elevation, distance to the coast, distance to the ocean, distance to a water body, vegetation

density, albedo and share of land covered by ice.

Therefore, we can define the function g(·) as shown in equation (91), where Zi(·) denotes each of the ten

covarites mentioned in the previous paragraph, Zji (·) is the Chebyshev polynomial of order j ∈ {1, · · · , 10}

of covariate i and βji is the set of coefficients to be estimated by OLS.70

g(r) =
10∑
i=1

10∑
j=1

βjiZ
j
i (r) (91)

Zji (r) = cos

(
j · arccos

(
Z̃i(r)

maxs∈S |Z̃i(s)|

))

Z̃i(r) =

(
Zi(r)−

1

2

(
min
s∈S

Zi(s) + max
s∈S

Zi(s)

))

To estimate (21) and (91), we construct the temperature variables as follows: Tbase(r) is the average

temperature from 1950 to 1979 in cell r, Tt(r) is the yearly temperature from 1980 to 2017 in cell r, and Tbase

is the global average of Tbase(r), where each cell is weighted by land size. Finally, we provide more weight

to the more recent observations, according to ωt = (2018− t)−1. The estimation procedure is able to capture

83% of the variance of the data.

F Sensitivity Results of the Baseline Scenario

In this section, we provide additional results for the baseline scenario and test the sensitivity of the numer-

ical results to different discount factors, elasticities of energy substitution and size of fuel deposits.

F.1 Additional Results of the Baseline Scenario

Figure 36 shows the evolution of local temperature from the year 2000 to 2200 and Figure 37 the histogram

of amenity and productivity losses attributed to global warming in the year 2200.

70When constructing the product of latitude and longitude, we first normalize latitude and longitude so that they lie between
minus one and one, and then we multiply them. That is, we define this product as Zj

lat(·)× Z
j
lon(·).
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Figure 36: Local January-July temperature in 2000 and 2200.

Figure 37: Histogram of losses in amenities and productivities from global warming in the year 2200.

F.2 Additional Results of the Environmental Policies

Figures 38 and 39 present the spatial distribution of real GDP gains from a 200% carbon tax and a 75% clean

energy subsidy relative to the baseline scenario with no environmental policies, respectively. The spatial

pattern is in line with that of welfare. However, North of Africa and Middle East tend to display larger

distortions in real GDP, since those regions are more intensive in fossil fuels.

F.3 Baseline Results with a Discount Factor of β = 0.969

Figures 40 and 41 explore the spatial dimension of welfare and real GDP losses when considering a higher

discount factor of β = 0.969, rather than β = 0.965 as in Section 4. The spatial patterns and the shape of

the histograms resemble those of Figures 8 and 9. However, when considering this higher discount factor,

losses in global average welfare and real GDP are roughly 1% larger.
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Figure 38: Local real GDP effects of a carbon tax of 200% with a discount factor of β = 0.965.

Figure 39: Local real GDP effects of a clean energy subsidy of 75% with a discount factor of β = 0.965.

Figure 40: Welfare losses due to global warming with a discount factor of β = 0.969.
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Figure 41: Real GDP losses due to global warming with a discount factor of β = 0.969.

Figure 42 displays the spatial distribution of real GDP and welfare for the baseline case, the worst- and

best-scenario. The overall shape of the distributions is similar to that of Figure 11, but the greater discount

factor rises the level of damages.

Figure 42: Real GDP and welfare distribution losses by uncertainty level with a discount factor of β = 0.969.

F.4 Sensitivity to Elasticity of Substitution between Energy Sources

In this subsection, we explore the robustness of the quantitative results when considering different degrees

of substitution between fossil fuel and clean energy, ε ∈ {0.5, 1.6, 3, 6}. Figure 43 displays the evolution of

global carbon dioxide emissions and temperature, across different energy substitution levels, where ε = 1.6

denotes the benchmark calibration.

Since the elasticity of energy productivity growth with respect to global real GDP growth is higher for

clean than for dirty energy (υc = 1.05 > 0.95 = υf ), then increases in worldwide income imply greater

84



Figure 43: CO2 emissions and global temperature across different elasticities of energy substitution.

reductions in the price of clean energy compared to that of fossil fuels.71 Thus, with higher energy substi-

tution, the economy consumes more of the relatively cheap source of energy, and less of the expensive one,

leading to a flatter evolution of the CO2 flow.

Figure 44 presents the transition of losses in worldwide real GDP and welfare. As global temperature

rises at a slower speed with higher energy substitution, the adverse consequences of global warming atten-

uate.72 In this sense, policies aiming at rising the substitutability between clean and dirty energy sources,

like research to reduce the cost of clean energy storage, are projected to have a remarkable impact. Further-

more, the attenuation of warming damages is expected to be larger the higher (lower) the elasticity of clean

(dirty) energy productivity growth to real income growth, ϑc (ϑf ), or the steeper extraction cost functions,

f(·), as they increase the relative price of dirty to clean energy.

When exploring the cross-section of warming damages, the coldest regions are relatively better-off un-

der lower energy substitution, as in those cases, temperature reaches greater values, inducing amenity- and

productivity-gains in such places. The converse occurs for tropical regions. Henceforth, greater energy sub-

stitution, diminishes both the gains in cold places and the losses in warm places, reducing the dispersion

of warming damages on welfare. Figure 45 shows the ratio of welfare losses in the benchmark scenario

(ε = 1.6) with respect to that in high energy substitution case (ε = 6) and the comparison of the spatial

distribution of welfare losses under different values for ε.

Now, we evaluate the sensitivity of environmental policies to different degrees of energy substitution.

First, we assess the effect of an spatial- and time-invariant carbon tax of 200%, keeping clean energy sub-

sidies at 0%. Figure 46 displays in solid curves the evolution of global carbon dioxide emissions and tem-

71If the relationship between the elasticities of clean and dirty energy productivity growth to real income growth were such that
υc < υf , then with more energy substitution, the evolution of the carbon dioxide flow would be steeper.

72To the extent that all the carbon available in the ground is depleted, the long-run global temperature is insensitive to the elasticity
of substitution across energy sources.
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Figure 44: Real GDP and welfare losses over time across different elasticities of energy substitution.

Figure 45: Welfare losses over space across different elasticities of energy substitution.

perature without abatement and in dashed curves those with the introduction of a free geoengineering

technology in 2100.

Conditional on the same proportional carbon tax, its implementation leads to a larger decline in the use

of fossil fuels at impact with higher energy substitution, as firms can more easily substitute energy con-

sumption towards clean sources. Over time, the evolution of carbon dioxide emissions is more protracted

with greater values of ε.

Since the cumulative CO2 flow released to the atmosphere monotonically declines as the energy substi-

tution increases, the introduction of an abatement yields stronger differences in long-run temperature with

respect to the absence of such technology.

When examining the global real GDP and welfare losses, Figure 47, we observe that the distortion in

output in the first periods due to the implementation of a carbon tax is smaller when energy types are more

substitutable. In the transition, even though, temperature is more sensitive to environmental policies with
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Figure 46: CO2 emissions and global temperature with a carbon tax of 200% across different elasticities of

energy substitution.

greater energy substitution, the evolution of economic benefits arising from the carbon tax is more modest.

This effect is explained by the behavior of total population: the introduction of the CO2 levy reduces income

in the first periods, being this decline greater with lower energy substitution. Accordingly, the smaller ε,

the larger the increase in natality rates and global population. Summarizing, the larger rise in productivity

from higher population levels outweighs the temperature differences when ε is low. So, in those cases, the

economic benefits of a carbon tax augment for the next centuries.73

Figure 47: Real GDP and welfare with a carbon tax of 200% across different elasticities of energy substitu-

tion.

73Note that relative real GDP and welfare can be slightly lower in the abatement case for a couple of decades after the invention
of the abatement technology. The reason is that the difference in temperatures between the benchmark scenario with and without
abatement can be larger than the difference in temperature with and without abatement in the scenario with a carbon tax, depending
on the second derivative of the temperature function at the time the abatement technology arrives. After a few decades, this effect is
always dominated by the faster increases in temperature in the case without abatement.
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Tables 8 and 9 summarize the global real GDP and welfare gains for a carbon tax of 200% under different

discount factors and elasticities of substitution between fossil fuel and clean energy. The former compares

the scenario with carbon taxes and no abatement with respect to the benchmark case, whereas the latter

compares the scenario with carbon taxes and the introduction of a costless geoengineering technology in

2100 with respect to the benchmark case.

For low discount factors, the initial production distortions have a greater weight, so economic benefits

rise with energy substitution. For high discount factors, real GDP and welfare display a concave shape in

the energy elasticity of substitution.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

ε=0.5 2.888% 0.970 0.999 2.868% 0.990 1.017
ε=1.6 3.053% 0.981 1.042 3.032% 0.993 1.033
ε=3.0 3.048% 0.993 1.021 3.023% 1.002 1.016
ε=6.0 3.045% 1.005 1.005 3.017% 1.017 1.005

Table 8: PDV of real GDP and welfare gains with a carbon tax of 200%, with no abatement, under different

elasticities of energy substitutions and discount factors.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

ε=0.5 2.879% 0.976 1.013 2.883% 1.001 1.042
ε=1.6 3.065% 0.989 1.074 3.051% 1.006 1.082
ε=3.0 3.064% 0.998 1.055 3.049% 1.012 1.068
ε=6.0 3.060% 1.006 1.028 3.046% 1.018 1.043

Table 9: PDV of real GDP and welfare gains with a carbon tax of 200%, with the introduction of an abate-

ment technology in 2100, under different elasticities of energy substitutions and discount factors.

As for the cross-section of welfare gains under a carbon tax of 200% with no abatement, higher levels of

energy substitution shift to the right and increase the dispersion of the welfare distribution. In other words,

tropical regions gain more from carbon taxes with higher energy substitution, due to the larger decline in

temperature and the smaller production losses in the first periods, as the rise in the price of the energy

composite is less pronounced.74

Now, we examine the effect of a spatial- and time-invariant clean energy subsidy of 75%, keeping carbon

taxes at 0%. As expected, higher energy substitution leads to greater declines in CO2 emissions and a more

prolonged path for global temperature, as illustrated in Figure 49.

At impact, the subsidy on clean energy leads to a reduction in the composite price of energy, so that

74Tropical regions tend to be more carbon intensive and a carbon tax generates larger production distortions.
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Figure 48: Welfare gains over space with a carbon tax of 200% across different elasticities of energy substi-

tution.

Figure 49: CO2 emissions and global temperature with a clean energy subsidy of 75% across different

elasticities of energy substitution.

the countries initially using more clean energy relatively to fossil fuels undergo greater declines in the

composite price of energy. Those declines are larger, the higher the energy elasticity.

On average, developed countries tend to be more intensive in clean energy, attracting more households

to those places. So, the relocation of persons towards the most productive places is stronger when energy

sources are more substitutable, augmenting global real GDP and welfare, as shown in Figure 50.

The boost in innovation, due to the population allotment towards productive places, and the more

protracted path for global temperature with high ε, rise the economic benefits of the environmental policy

for the subsequent decades until they reach a peak. Afterwards, global real GDP and welfare benefits

start to diminish, as the income increase reduces natality rates and so does global population. Table 10

summarizes the global real GDP and welfare gains of a clean energy subsidy of 75% under different degrees
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of energy substitution and discount factors.

Figure 50: Real GDP and welfare with a clean energy subsidy of 75% across different elasticities of energy

substitution.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

ε=0.5 2.871% 1.005 0.999 2.852% 1.003 0.998
ε=1.6 3.012% 1.094 1.044 2.989% 1.050 0.975
ε=3.0 2.992% 1.155 0.992 2.967% 1.089 0.934
ε=6.0 2.982% 1.186 0.960 2.954% 1.118 0.911

Table 10: PDV of real GDP and welfare gains with a clean energy subsidy of 75% under different elasticities

of energy substitutions and discount factors.

F.5 Sensitivity to Carbon Deposit Size

In this subsection, we explore the robustness of the quantitative results when considering different sizes

of carbon deposits. Schwerhoff and Stuermer (2020) argue that over the past three centuries, extraction

of non-renewable resources has increased, but their real prices do not display an increasing trend. They

predict that the interaction of innovation and geological properties allows for a constant real resource price

on the Balanced Growth Path.75

To incorporate this conclusion in our analysis, we consider that the extraction cost function is character-

ized by the same parameters (f1, · · · , f5), but modify the carbon deposit size according to maxCumCO2 ∈

{9,700 GtCO2,19,500 GtCO2,45,300 GtCO2}, where 19,500 GtCO2 denotes the benchmark calibration; 9,700

75Moreover, they also predict a constant growth rate of extraction, since innovation converts previously inaccessible lower grade
deposits into economic recoverable reserves and since greater resource quantities are found in progressively lower grade deposits
(Fundamental Law of Geochemistry).
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GtCO2 the CO2 emissions for the next five centuries according to the RCP 6.0; and 45,300 GtCO2 the stock

of fossil fuels resources estimated in Table 4 of Gaedicke et al. (2020).

Figure 51 compares the extraction cost functions under different carbon deposit sizes, so that with larger

carbon deposits we are able to reconcile the findings by Schwerhoff and Stuermer (2020) in terms of constant

extraction costs for a sufficiently long period of time.

Figure 51: Extraction cost function across different sizes of carbon deposits.

Figure 52 illustrates that larger carbon deposits generate greater peaks in CO2 emissions occurring pro-

gressively later in time, as the extraction cost function displays a larger flat part. Since the extraction cost

functions rise sharply when the resource gets exhausted, carbon dioxide emissions eventually decline to-

wards zero. Accordingly, the larger carbon deposits not only generates higher long-run temperatures, but

also faster temperature increases in the short-run.

Figure 52: CO2 emissions and global temperature across different sizes of carbon deposits.

The monotonically increase in the temperature evolution with greater carbon stocks in the ground am-

plifies economic losses over time, as depicted in Figure 53. In this sense, greater deposits of fossil fuels
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widen the dispersion of welfare losses across regions, because warm (cold) regions face amenity and pro-

ductivity deteriorations (improvements) with higher temperature levels, as shown in Figure 54.

Figure 53: Real GDP and welfare losses over time across different sizes of carbon deposits.

Figure 54: Welfare losses over space across different sizes of carbon deposits.

Now, we evaluate the sensitivity of environmental policies to different sizes of carbon deposits. First,

we assess the effect of an spatial- and time-invariant carbon tax of 200%, keeping clean energy subsidies at

0%. Figure 55 displays in solid curves the evolution of global carbon dioxide emissions and temperature

without abatement and in dashed curves those with the introduction of a free geoengineering technology

in 2100. A carbon tax has the same effect on CO2 emissions at impact, regardless of the deposit size, since

the extraction cost curves have basically the same derivative when evaluated at zero.

When analyzing the evolution of economic benefits of the carbon tax, the initial decline in production

is identical across deposit sizes, leading to the same real GDP and welfare global losses at impact. How-

ever, over the next decades, welfare is higher the lower the carbon deposit, since the extraction cost curve

displays a higher slope, amplifying the rise in fossil fuel price and thus the temperature decline. This situ-
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Figure 55: CO2 emissions and global temperature with a carbon tax of 200% across different sizes of carbon

deposits.

ation reverts after one century, because for the scenario with large carbon deposits, the level of cumulative

extraction induces a sharp increase in the price of fossil fuels. In the long-run, the welfare benefits of the

carbon tax across carbon deposits converge to the same trend.

When considering the introduction of a costless geoengineering technology in 2100, the welfare im-

provements due to the environmental policy in the long-run are greater with larger carbon deposits, be-

cause the difference in long-run temperature with and without the abatement is higher.76 Tables 11 and 12

summarize the global real GDP and welfare gains for a carbon tax of 200%, and a carbon tax of 200% with

an abatement technology under different discount factors and sizes of carbon deposits.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

maxCumCO2=9,700 GtCO2 3.062% 0.984 1.044 3.044% 0.993 1.036
maxCumCO2=19,500 GtCO2 3.053% 0.981 1.042 3.032% 0.993 1.033
maxCumCO2=45,300 GtCO2 3.041% 0.980 1.037 3.016% 0.998 1.021

Table 11: Real GDP and welfare gains with a carbon tax of 200%, with no abatement, under different sizes

of carbon deposits and discount factors.

Now, we examine the effect of a spatial- and time-invariant clean energy subsidy of 75%, keeping car-

bon taxes at 0%. Figure 57 shows that the clean subsidy yields minuscule reductions in the flow of CO2

emissions and the path for global temperature, regardless of the size of fossil fuel deposits.

76Note that relative real GDP and welfare can be slightly lower in the abatement case for a couple of decades after the invention
of the abatement technology. The reason is that the difference in temperatures between the benchmark scenario with and without
abatement can be larger than the difference in temperature with and without abatement in the scenario with a carbon tax, depending
on the second derivative of the temperature function at the time the abatement technology arrives. After a few decades, this effect is
always dominated by the faster increases in temperature in the case without abatement.
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Figure 56: Real GDP and welfare with a carbon tax of 200% across different sizes of carbon deposits.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

maxCumCO2=9,700 GtCO2 3.066% 0.988 1.060 3.052% 1.000 1.061
maxCumCO2=19,500 GtCO2 3.065% 0.989 1.074 3.051% 1.006 1.082
maxCumCO2=45,300 GtCO2 3.064% 0.989 1.087 3.050% 1.012 1.101

Table 12: PDV of real GDP and welfare gains with a carbon tax of 200%, with abatement, under different

sizes of carbon deposits and discount factors.

Figure 57: CO2 emissions and global temperature with a clean energy subsidy of 75% across different sizes

of carbon deposits.

The implementation of a green subsidy generates larger short-run benefits in terms of global real GDP

and welfare the smaller the carbon deposit, as illustrated in Figure 58. Since extraction costs are higher

the smaller the carbon deposit, a clean subsidy has a larger effect on the relative price of fossil fuels to

clean energy. Consequently, more households migrate towards the clean-intensive places, which tend to be
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high-productive places, rising global production and welfare.

Figure 58: Real GDP and welfare with a clean energy subsidy of 75% across different sizes of carbon de-

posits.

Table 13 summarizes the global real GDP and welfare gains of a clean energy subsidy of 75% under

different discount factors and sizes of carbon deposits. For low (high) discount factors, real GDP and

welfare rise with smaller (greater) carbon deposits.

The Balanced Growth Path growth rate of real GDP and welfare, for both carbon taxes and clean subsi-

dies, rise with lower carbon deposits, as the short-run high price of fossil fuels reduces income, increasing

natality rates and consequently global population.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

maxCumCO2=9,700 GtCO2 3.018% 1.106 1.029 2.999% 1.056 0.959
maxCumCO2=19,500 GtCO2 3.012% 1.094 1.044 2.989% 1.050 0.975
maxCumCO2=45,300 GtCO2 3.003% 1.084 1.059 2.975% 1.046 0.991

Table 13: PDV of real GDP and welfare gains with a clean energy subsidy of 75% under different sizes of

carbon deposits and discount factors.

G Global Warming in the Worst-Scenario

This section shows the effects of global warming when considering that the damage functions Λa(·),Λb(·)

are described by the lower 95% confidence interval. Additionally, we quantify the role of environmental

policies in improving real GDP and welfare in the most pessimistic scenario.
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G.1 The Welfare Cost of Global Warming in the Worst-Scenario

Figure 59 displays the spatial configuration of fundamental amenities and productivities in the year 2200

in the worst-scenario relative to the counterfactual scenario with no warming damages. The most affected

places face amenity and productivity losses of 17% and 70%, respectively. As a comparison, in the bench-

mark scenario, the most affected places experienced losses of 16% and 60%, respectively.77

Figure 59: Losses in amenities and productivities from global warming in the year 2200 in the worst-

scenario.

On average, the economy experiences welfare losses of 13% and real GDP losses of 7%, which are larger

than those projected in the benchmark case: 6% and 3%, respectively. The most damaged zones in the planet

face welfare losses of almost 20%, whereas a minuscule 0.02% fraction of population, located in arctic zones,

experience welfare gains. Figures 60 and 61 present the spatial distribution of welfare and real GDP losses.

G.2 Environmental Policies in the Worst-Scenario

As shown in Figure 62, the implementation of a carbon tax has the same real GDP and welfare changes

at impact, as in the benchmark scenario. However, as time evolves the slopes of both variables are higher

than those of the baseline case, as CO2 levies have a higher potential to improve real GDP and welfare. As a

comparison, in the worst-scenario, for a tax of 200%, welfare losses become zero by the year 2076; whereas

in the baseline case that event occurs 61 years later.

After those points in time, real GDP and welfare keep rising above the levels of the baseline case. When

considering a tax of 200% and a discount factor of β =0.969, welfare rises by 3.5% in the worst-scenario and

by 3% in the benchmark scenario.

Under the introduction of an abatement technology, the benefits for the economy are much higher, as

77Lower amenities and productivities in the worst-scenario translate into lower income, with respect to the benchmark case. Hence,
natality rates augment, yielding higher levels of global population in the most pessimistic scenario.
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Figure 60: Welfare losses due to global warming in the worst-scenario.

Figure 61: Real GDP losses due to global warming in the worst-scenario.

illustrated by the dashed curves in Figure 62. By the year 2400, global average welfare (real GDP) gains

with the geoengineering technology in the most pessimistic scenario reach a value of 8.8% (7.1%); whereas

in the benchmark scenario, they are 4.5% (4.8%).

Table 14 quantifies the gains in global average real GDP and welfare from the implementation of taxes

of 50%, 100% and 200% on the use of fossil fuels with respect to a scenario with no CO2 levies, when no

geoengineering technology is introduced. Table 15 performs a similar comparison, but taking into account

the presence of a free abatement technology in 2100.

As clean energy subsidies barely affect the temperature path, their effects on the economy are very

similar with respect to those of the benchmark case. Table 16 shows the values of global average real GDP

and welfare gains when enforcing subsidies on the use of clean energy of 25%, 50% and 75%.

97



Figure 62: Real GDP and welfare gains under different carbon taxes in the worst-scenario, when considering

the introduction of an abatement technology in 2100.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

τ=0% 3.053% 1 1 3.030% 1 1
τ=50% 3.057% 0.995 1.020 3.033% 1.004 1.017
τ=100% 3.059% 0.993 1.031 3.034% 1.006 1.026
τ=200% 3.061% 0.992 1.043 3.035% 1.011 1.036

Table 14: PDV of real GDP and welfare gains under different carbon taxes and discount factors in the

worst-scenario.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

τ=0% 3.062% 1 1 3.046% 1 1
τ=50% 3.068% 1.002 1.039 3.051% 1.015 1.047
τ=100% 3.071% 1.004 1.065 3.054% 1.025 1.079
τ=200% 3.074% 1.008 1.097 3.057% 1.038 1.119

Table 15: PDV of real GDP and welfare gains under different carbon taxes and discount factors in the

worst-scenario, when considering the introduction of an abatement technology in 2100.

H Adaptation

This section deepens on the relevance of adaptation channels in shaping the economic consequences of

global warming. More specifically, we compare the temporal and spatial dimension of warming losses in

real GDP when considering economies with higher migration, commercial and innovation frictions. Those

patterns display large similarities with those of welfare discussed in Section 5.
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PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

s=0% 3.053% 1 1 3.030% 1 1
s=25% 3.050% 1.011 1.008 3.027% 1.007 1.000
s=50% 3.043% 1.032 1.018 3.019% 1.020 0.995
s=75% 3.022% 1.093 1.036 2.995% 1.051 0.971

Table 16: PDV of real GDP and welfare gains under different clean energy subsidies and discount factors in

the worst-scenario.

Figure 63: Real GDP across different migration costs.

Figure 64: Real GDP across different iceberg trade costs.

I Additional Results regarding Environmental Policies

In this section we delve into the economic response over time and space of the implementation of car-

bon taxes, assess the welfare benefits of joint carbon taxes and clean energy subsidies, provide additional
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Figure 65: Real GDP across different innovation costs.

results regarding the introduction of an abatement technology in 2100 and contrast the results when the

geoengineering innovation becomes available one century later.

I.1 Temporal and Spatial Evolution of Carbon Taxes

At impact, the implementation of a carbon tax of 200% rises the price of energy faced by firms in every

cell of the world. However, these increases are heterogeneous: places in which fossil fuels are relatively

expensive, like Canada and Europe, face smaller increases in the total energy price, as shown in Figure 66.

Figure 66: Relative price in fossil fuels and clean energy in the year 2000, and energy price increase with a

carbon tax of 200% in the year 2001.

Even though at impact all regions are damaged from the implementation of a CO2 levy, the places

with lower increases in the total price of energy suffer less, as they attract more households, rising current

productivity through agglomeration externalities. Figure 67 compares real GDP and welfare in the year
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2001 under the implementation of a CO2 tax of 200% with respect to a scenario with no environmental

policy.

Figure 67: Local real GDP and welfare effects of a carbon tax of 200% in the year 2001.

As time evolves, and as a consequence of the carbon tax, warm regions avoid higher temperatures,

whereas cold places are not able to achieve more suitable temperatures for residing and producing. Figure

68 shows the evolution of real GDP and welfare after one century. These maps suggest that the effect of

temperature outweighs that of the initial distribution of relative prices.

Figure 68: Local real GDP and welfare effects of a carbon tax of 200% in the year 2100.

After another century, the welfare effects preserve the same spatial pattern. However, real GDP has a

different spatial configuration, as displayed in Figure 69. The places that have the highest use of fossil fuels

with respect to clean energy are projected to undergo losses in real GDP by the year 2200. This is attributed

to the large tax burden originated from the high use of fossil fuels.
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Figure 69: Local real GDP and welfare effects of a carbon tax of 200% in the year 2200.

I.2 Carbon Taxes and Clean Energy Subsidies

Tables 17 and 18 present the global average real GDP and welfare gains arising from the interactions be-

tween carbon taxes and clean energy subsidies, respectively, considering discount factors of β = 0.965 and

β = 0.969. Additionally, Table 19 shows their growth rates in the Balanced Growth Path.

PDV of real GDP, β = 0.965 PDV of real GDP, β = 0.969

s=0% s=25% s=50% s=75% s=0% s=25% s=50% s=75%
τ=0% 1 1.011 1.032 1.094 1 1.009 1.021 1.044
τ=50% 0.991 1.003 1.024 1.087 1.019 1.027 1.037 1.055
τ=100% 0.987 0.980 1.020 1.083 1.030 1.037 1.046 1.060
τ=200% 0.981 0.993 1.015 1.079 1.042 1.048 1.055 1.064

Table 17: PDV of real GDP gains under different carbon taxes, clean energy subsidies and discount rates.

Welfare, β = 0.965 Welfare, β = 0.969

s=0% s=25% s=50% s=75% s=0% s=25% s=50% s=75%
τ=0% 1 1.007 1.020 1.050 1 1.000 0.996 0.975
τ=50% 0.997 1.004 1.017 1.048 1.016 1.015 1.009 0.983
τ=100% 0.995 1.003 1.015 1.047 1.024 1.023 1.016 0.987
τ=200% 0.993 1.001 1.014 1.046 1.033 1.031 1.022 0.989

Table 18: Welfare gains under different carbon taxes, clean energy subsidies and discount rates.
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Real GDP, BGP gr Welfare, BGP gr
s=0% s=25% s=50% s=75% s=0% s=25% s=50% s=75%

τ=0% 3.043% 3.040% 3.034% 3.012% 3.024% 3.020% 3.012% 2.989%
τ=50% 3.048% 3.045% 3.038% 3.016% 3.028% 3.024% 3.016% 2.992%
τ=100% 3.050% 3.047% 3.040% 3.018% 3.030% 3.026% 3.017% 2.992%
τ=200% 3.053% 3.050% 3.043% 3.019% 3.032% 3.028% 3.019% 2.993%

Table 19: Balanced-Growth-Path growth rate of real GDP and welfare under different carbon taxes and

clean energy subsidies.

I.3 Carbon Taxes and Abatement in 2100

Figure 70 presents, in solid curves, the global average real GDP and welfare gains from the enforcement

of different levels of carbon taxes, when no geoengineering technology arises, as in Figures 19 and 22.

The dotted curves evaluate the benefits of carbon taxes under the introduction of a costless abatement

technology in 2100 with respect to the benchmark scenario that considers no environmental policy and no

abatement technology.78 Table 20 summarizes the global real GDP and welfare gains of the implementation

of different carbon taxes and the introduction of the abatement technology, with respect to the absence of

both policies. The economic benefits overcome those of Table 3.

Figure 70: Real GDP and welfare under different carbon taxes, when considering the introduction of an

abatement technology in 2100.

78The dashed curves of Figure 22 are calculated as the ratio of welfare (or real GDP) with carbon taxes and abatement with respect
to zero carbon taxes and abatement. The dotted curves of Figure 70 are calculated as the ratio of welfare (or real GDP) with carbon
taxes and abatement with respect to zero carbon taxes and no abatement.
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PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

τ=0% 3.052% 1 1 3.037% 1 1
τ=50% 3.058% 1.016 1.098 3.043% 1.046 1.152
τ=100% 3.061% 1.014 1.119 3.046% 1.048 1.176
τ=200% 3.065% 1.011 1.145 3.051% 1.049 1.206

Table 20: PDV of real GDP and welfare under different carbon taxes and discount factors, when considering

the introduction of an abatement technology in 2100.

I.4 Carbon Taxes and Abatement in 2200

We extend the analysis of the introduction of an abatement technology and assess its benefits in terms

of real GDP and welfare when this innovation arises in the year 2200, rather than in the year 2100, as in

Section 6.2. A century of delay in geoengineering advances provides more modest beneficial effects for

the economy, as a higher share of the total stock of CO2 has already been released to the atmosphere and,

therefore, the reduction in long-run temperature is lower, as shown in Figure 71. Furthermore, the delay of

this technology reduces the differences in the steady state temperature across carbon taxes, attenuating the

benefits of stronger environmental policies.

Figure 71: CO2 emissions and global temperature under different carbon taxes, when considering the in-

troduction of an abatement technology in 2200.

Figure 72 and Table 21 perform a similar analysis to Figure 22 and Table 3. A century of delay in

geoengineering advances reduces welfare and real GDP gains in 2.3% and 1.5% for a tax of 200% and a

discount factor of β = 0.969.
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Figure 72: Real GDP and welfare under different carbon taxes, when considering the introduction of an

abatement technology in 2200.

PDV of real GDP Welfare
BGP gr β=0.965 β=0.969 BGP gr β=0.965 β=0.969

τ=0% 3.047% 1 1 3.030% 1 1
τ=50% 3.052% 0.992 1.024 3.034% 0.999 1.024
τ=100% 3.055% 0.988 1.039 3.037% 0.998 1.039
τ=200% 3.059% 0.984 1.059 3.041% 0.998 1.059

Table 21: PDV of real GDP and welfare under different carbon taxes and discount factors, when considering

the introduction of an abatement technology in 2200.
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