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Abstract

We study learning via shared news. Each period agents receive the same quantity

and quality of first-hand information and can share it with friends. Some friends

(possibly few) share selectively, generating heterogeneous news diets across agents akin

to echo chambers. Agents are aware of selective sharing and update beliefs by Bayes’

rule. Contrary to standard learning results, we show that beliefs can diverge in this

environment leading to polarization. This requires that (i) agents hold misperceptions

(even minor) about friends’ sharing and (ii) information quality is sufficiently low.
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first-hand information becomes large, agents can hold opposite extreme beliefs resulting

in severe polarization. Our results hold without media bias or fake news, so eliminating

these is not sufficient to reduce polarization. When fake news is included, we show

that it can lead to polarization but only through misperceived selective sharing. News

aggregators can curb polarization caused by shared news.

JEL codes: D82, D83, D90

Keywords: polarization, echo chamber, selective sharing, learning, information

quality, fake news, misspecification

1 Introduction

Social divisions have been linked to economic and political issues such as inequality, political

gridlock, poor legislation, weak property rights, low trust, investment, and growth.1 Recent

decades have witnessed rising polarization in politics, media, and public opinions—especially

in the United States.2 “Americans are polarized not only in their views on policy issues

and attitudes towards government and society, but also about their perceptions of the same,

factual reality” (Alesina et al., 2020). Economists have thus been studying the causes of

belief polarization. Some have suggested a connection with the use of the Internet as a

source of information.3 Others have blamed misinformation—that is, fake news, bots, and

media bias—leading to discussions about regulating social media.4 Even if successful, will

such regulations curb polarization? Can polarization simply result from how people consume

and share information through their social connections, even without misinformation? Will

1See Zak and Knack (2001); Keefer and Knack (2002); Bartels (2008); Bishop (2009); McCarty et al.
(2009); Gilens (2012); Barber and McCarty (2015).

2See Pew Research Center (2014, 2020); Desmet and Wacziarg (2018) Bertrand and Kamenica (2018).
3See Periser (2011); Flaxman et al. (2016); Sunstein (2017); Azzimonti and Fernandes (2018); Tucker

et al. (2019); Zhuravskaya et al. (2020).
4See, for example, “Should the Government Regulate Social Media?”, Wall Street Journal (June 25, 2019)

and “Facebook Throws More Money at Wiping Out Hate Speech and Bad Actors”, Wall Street Journal
(May 15, 2018).
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the abundance and extensive sharing of information brought by technology lead to more or

less polarization?

We provide a theoretical framework to answer these questions and discuss implications

for policies aimed at curbing polarization. To this end, we build a simple benchmark model

that incorporates key empirical findings about how people share first-hand information via

social connections and absorb the resulting second-hand information. In a nutshell, people

often share selectively ; as a result, some people consume unbalanced diets of second-hand

information; moreover, they tend to misinterpret this information because they misperceive

how others share it selectively.5 We study the consequences for learning and belief polar-

ization. We find that misperceptions and quality of first-hand information (as opposed to

quantity) play critical and subtle roles. Our results do not require preexisting differences in

people’s worldviews nor misinformation. Yet, they imply that selective sharing is one (and

in a sense the only) channel through which fake news can lead to polarization. We sug-

gest mechanisms whereby changes in people’s information ecosystem and social connections

brought on by the Internet may contribute to polarization.

In our baseline model, agents learn about a binary state of the world, A or B, over time.

In every period, each agent gets an objective signal about the state with probability γ and

no signal otherwise (first-hand information). Signals are i.i.d. across agents and periods.

We refer to their informativeness as quality. In every period, each agent can remain silent

or share her signal with her social connections—called friends. She cannot tamper with

her signals, but can select which to share. We assume that some agents—called normal—

share every signal; other agents—called dogmatic—selectively share only signals supporting

5For evidence of selective sharing, see Shin and Thorson (2017); Weeks et al. (2017); Shin et al. (2018);
Pogorelskiy and Shum (2019); Levy (2020); Zhuravskaya et al. (2020). Unbalanced news diets are a distinctive
aspect of so-called echo chambers or media bubbles, which appear in a wealth of evidence (see Levy and Razin,
2019a; Zhuravskaya et al., 2020, for a review). Bertrand and Kamenica (2018) also stress the importance of
media diet driving social differences. Pogorelskiy and Shum (2019) provide evidence of misperception about
selective sharing.
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one state. To fix ideas, some people (possibly a tiny minority) may hold a dogmatic view

on whether to vaccinate children and share only articles in its favor; others simply share

any article on the topic. We refer to an agent’s sources of second-hand signals as her echo

chamber. If a majority of her dogmatic friends supports one state, it creates an unbalanced

news diet. We model misperception of selective sharing in a way that renders the agents

partially unresponsive to it (as found in Pogorelskiy and Shum (2019)) and is inspired by

the psychology literature.6 Each agent interprets all signals correctly, but thinks that they

arrive with probability γ̂ 6= γ. This is akin to assuming that friends read the newspaper less

or more often than they actually do. Thus, our agents have a common misspecified model

of selective sharing, based on which they update beliefs using Bayes’ rule. We also consider

other misperceptions and show that they have similar implications.

We find that people’s understanding of the selectivity of shared news turns out to be

crucial. Without any misperception, unbalanced selective sharing alone cannot lead to po-

larization (Remark 1). This is an important qualification of a common intuition about the

effects of echo chambers. If a person took at face value what her friends say supporting only

one view, her opinion could be swayed accordingly. In reality, however, only a few friends

may share information selectively and often people also get first-hand information. Even in

the absence of these mitigating factors, if a person fully understands how her friends select

what to share, she will adjust for it and her beliefs will not be distorted. It is unrealistic

that people are completely naive about selective sharing, but experimental evidence suggests

they do not fully take it into account either.

We analyze learning both in the short run (after one round of signals) and in the long

run (after infinitely many rounds). In the short run, an agent’s expected posterior can differ

from her prior, even when she has many normal friends. The intuition is that the silence of

a dogmatic friend indicates bad news for the state he supports. Yet, if an agent thinks that

6See Cross (1977); Svenson (1981); Odean (1998); Zuckerman and Jost (2001).
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this friend is informed less often than he is (γ̂ < γ), she reads too little into his silence,

thus enabling him to distort her posterior towards the state he supports. By contrast, if

an agent thinks that her friends are informed more often than they are (γ̂ > γ), she reads

too much into their silence, which distorts her posterior away from the state supported by

a dogmatic friend. Thus, if a majority of such friends favors, say, state A, her expected

posterior is distorted towards (away from) A if γ̂ < γ (γ̂ > γ)—at least when the signal

quality is sufficiently low. Perhaps unexpectedly, we find that even balanced echo chambers

can distort an agent’s posterior.

For the long run, abundant information can boost the distorting power of dogmatic

friends—instead of curbing it—thereby exaggerating incorrect learning. We identify a precise

quality threshold below which the agent’s long-run belief assigns probability one to a given

state, irrespective of the truth. For higher quality, her belief converges to the truth despite

the echo-chamber effect. Long-run incorrect learning requires unbalanced dogmatic friends:

If their majority favors A, the agent’s belief converges to A if γ̂ < γ and to B if γ̂ > γ.

Note that the imbalance can be arbitrarily small, yet offset many unfiltered signals.

It is easy to see how these forces can cause polarization. If the echo chambers of some

agents are unbalanced towards different states and information quality is sufficiently low,

their beliefs can move apart on average in the short run and almost surely in the long

run. One of our main contributions is to highlight the role of information quality. Indeed,

we find that for intermediate qualities polarization can occur even if all echo chambers are

unbalanced towards the same state. One may also expect that raising information quality

would undoubtedly help curb polarization. However, it can actually increase polarization

under some simple conditions, which we identify. The role of information quality also implies

that polarization in echo chambers and in beliefs need not go hand in hand.

We find that the expansion of social connections can be another driver of polarization.

This is not obvious, as more connections may provide greater scope for echo chambers to
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distort beliefs but also bring more information. Fixing its quality, we obtain conditions on

how the internal structure of echo chambers has to change for polarization to weaken. For

instance, it is possible that society is not polarized when people have small echo chambers,

but becomes polarized when they have similarly divided, but larger, echo chambers. This

could happen if social media recommend new friends in ways that depend only marginally

(or not at all) on how they share information.

Our analysis goes to the heart of why new communication technologies and formats

enabled by the Internet can increase polarization. They speed up the arrival of information

and possibly lower its quality—for instance, tweets and social-media posts tend to be short.

Moreover, overwhelmed by the stream of information, people may spread their attention

across more sources, thereby absorbing less content from each. This may effectively lower the

quality of consumed information. All of this can lead to polarization even without deliberate

misinformation.

Finally, we return to the motivating question of what policies may reduce the effects of the

Internet and news sharing more generally on polarization. Some of the drivers we highlight

may be off limits, as they result from legitimate personal rights: making friends and sharing

information as one pleases. Possible solutions may emerge from our focus on information

quality. An immediate one is that news outlets provide higher-quality information, but this

may be hard to incentivize and decentralize. Another solution is to exploit news aggregators.

Although their reasons to exist may be different, we show how aggregators can provide

higher-quality information even when they lose some information by summarizing facts. We

identify a minimal degree of aggregation that suffices to remove polarization. The catch is

that reaching this degree may require institutional aggregators that take into account the

externalities caused by selective sharing. These insights provide a rationale for authorities

to commit to releasing information only rarely in “digested” batches.
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Related Literature. The economics literature discusses at least three possible causes of

belief polarization. The one most closely related to our work is behavioral biases.7 Our

contribution to this literature is to highlight misperception of selective sharing as a driver

of polarization. Another cause is heterogeneity in preferences.8 Such heterogeneity would

exacerbate the polarization we find. A third cause is biased or multidimensional information

sources, where biases usually come from media competition over viewers.9 In our analysis,

the sources of first-hand information—which can be interpreted as media outlets—are not

biased. Thus, removing all media biases may still not be enough to curb polarization.

This paper fits into the growing literature on model misspecification and social learning.

The classic work of Berk (1966) provides a general model of individual misspecified learning

in the long run. We analyze short- and long-run learning in a more specialized model and

demonstrate the interaction with social information sharing to generate polarization. Bohren

(2016), Bohren and Hauser (2018), and Frick et al. (2020) analyze how model misspecification

impacts long-run learning in environments where agents learn from private signals and the

actions of others. In particular, Bohren and Hauser (2018) study when agents with different,

yet reasonable, models of the world have no limit beliefs (i.e., beliefs cycle) or different limit

beliefs (disagreement). Although close in spirit, our disagreement results are driven by a

fundamentally different mechanism, as all our agents have the same model of the world. We

also emphasize the role of information quality and its implications for curbing polarization.

Like Bohren and Hauser (2018), Mailath and Samuelson (2020) consider agents with different

misspecified models of the world. Molavi et al. (2018) study long-run learning on social

networks when non-Bayesian agents exhibit imperfect recall. They show that such agents

may overweight evidence encountered early on, which can lead to mislearning. Unlike these

7See, e.g., Levy and Razin (2019b); Hoffmann et al. (2019); Enke et al. (2019).
8See Dixit and Weibull (2007); Pogorelskiy and Shum (2019).
9See, e.g., Mullainathan and Shleifer (2005); Andreoni and Mylovanov (2012); Levendusky (2013); Conroy-

Krutz and Moehler (2015); Reeves et al. (2016); Perego and Yuksel (2018).
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authors, we assume that agents update beliefs via Bayes’ rule.10

A key element of our model is the idea of an echo chamber as the group of friends from

whom one receives information. This connects our work to a large literature that studies both

Bayesian and non-Bayesian learning in networks.11 One closely related paper is Levy and

Razin (2019a), which shows that an updating heuristic called “Bayesian Peer Influence” can

cause limit beliefs in networks to become polarized. However, their meaning of polarization

is different from ours: There the entire society’s consensus shifts towards a common extreme

belief; here the agents’ beliefs diverge to different extreme beliefs.

Recent empirical studies show that social media is an important source of news for people

and can lead beliefs and attitudes to diverge.12 Other evidence by Boxell et al. (2018)

suggests that the Internet does not drive polarization. Our model can predict in which

environments we expect to see the Internet drive polarization. We, thus, contribute to this

literature by providing a theoretical framework to better understand how social media can

contribute to polarization and to guide future empirical investigation and policy discussion.

2 Model

We consider a stylized model of learning from information shared through social connections.

Time t is discrete, where t = 0, . . . , T and T ≤ ∞. A state of the world ω ∈ {A, B} realizes

at t = 0. For example, ω can represent whether preserving the environment requires higher

national spending than the current level, or whether vaccines can harm children. There is a

10A nonexhaustive list of other recent work on misspecified learning includes Nyarko (1991); Esponda and
Pouzo (2016); Fudenberg et al. (2017); He (2018); Heidhues et al. (2018); Jehiel (2018); Esponda et al. (2019);
Ba and Gindin (2020); Dasaratha and He (2020); He and Libgober (2020); Frick et al. (2020); Fudenberg
et al. (2020); Li and Pei (2020).

11See DeMarzo et al. (2003); Golub and Jackson (2010); Eyster and Rabin (2010); Acemoglu et al. (2010);
Perego and Yuksel (2016); Azzimonti and Fernandes (2018); Pogorelskiy and Shum (2019); Spiegler (2019).

12See, e.g., Allcott and Gentzkow (2017); Bursztyn et al. (2019); Mosquera et al. (2019); Levy (2020). See
also Barberá (2020) and Zhuravskaya et al. (2020) for recent reviews of this literature.
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fixed group of agents who seek to learn ω.

Information. Each agent receives first-hand information from original sources and second-

hand information shared by other agents. For each t ≥ 1, agent i receives first-hand infor-

mation with probability γ ∈ (0, 1] in the form of a private signal sit ∈ {a, b}; with proba-

bility 1− γ she receives no signal. Signals are partially informative:

P(sit = a|ω = A) = P(sit = b|ω = B) = q, (1)

P(sit = b|ω = A) = P(sit = a|ω = B) = 1− q,

where 1
2 < q < 1. We refer to q as the information quality. The events of receiving a signal

and its realization are i.i.d. across agents and time.13

Selective Sharing. Agents share their first-hand information with other agents with whom

they have a social connection. We call these social connections friends. We aim to capture key

aspects of social information sharing suggested by experimental evidence (see Footnote 5).

The first is selectivity. In our model, after receiving her own signal, an agent can share

it with all her friends or stay silent. If she receives no signal, she stays silent. Thus, she

can selectively suppress information, but cannot fabricate information, which rules out fake

news. Concretely, an agent can share a newspaper article, but cannot edit its content.

We introduce three types of agents characterized by their information-sharing behavior.

An agent is normal if she shares any signal she receives, A-dogmatic if she shares only

signals sit = a, and B-dogmatic if she shares only signals sit = b. One interpretation is that

some agents dogmatically believe in their conviction that only one state is true and share

only information that supports it. Formally, in each period the dogmatic types share their

13In reality, people receive correlated news. However, strong evidence suggests that they often neglect
correlation, especially in second-hand news (Enke and Zimmermann, 2017; Eyster et al., 2018; Pogorelskiy
and Shum, 2019). Under correlation neglect, we can allow for arbitrary correlation between the agents’
signals within each period and our main results are qualitatively unchanged.
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received signals as follows:

σA(sit) =


share if sit = a

stay silent if sit = b,
σB(sit) =


stay silent if sit = a

share if sit = b.

Each agent’s type is exogenous and known to her friends.14

A key aspect of social news sharing is that it contributes to creating heterogeneous

information diets (Pew Research Center, 2014; Levy and Razin, 2019a).15 Agent i’s diet

depends on the composition of friends she listens to, namely, the number dAi ≥ 0 of A-

dogmatic friends, dBi ≥ 0 of B-dogmatic friends, and ni ≥ 0 of normal friends. We refer to

ei = (dAi, dBi, ni) as i’s echo chamber. If dAi 6= dBi, we say that i’s echo chamber—hence, her

information diet—is unbalanced and we refer to dAi − dBi as its imbalance. Otherwise, we

say that ei is balanced. Finally, we refer to the majority (minority) of an agent’s dogmatic

friends as her dogmatic majority (minority).

Timing. Within each period t ≥ 1 the timing is as follows: (1) signals realize; (2) each

agent i receives sit with probability γ; (3) each agent i shares her signal (if any) with friends

as specified by her type; (4) agents update beliefs based on all received signals.

Beliefs. We are interested in the beliefs of normal agents. They share a common prior

π ∈ (0, 1) that ω = A. Given a sequence st
i of information that agent i receives up to t (i.e.,

her signals, her friends’ signals, and their silence), let µ(st
i) be her Bayesian posterior that

ω = A. To examine learning in the short run, we will consider µ(s1
i ); to examine learning in

the long run and so the effects of abundant information, we will consider the (probability)

limit of µ(sT
i ) as T → ∞, denoted by µ(s∞

i ) = plimT→∞ µ(sT). We will introduce a formal

measure of belief polarization in Section 4. However, intuitively, polarization requires that

14In Section 6 we consider a more general model where dogmatic friends share their signals probabilistically
and their type may not be perfectly known.

15People also have heterogeneous news diets because they choose to listen to different first-hand sources.
We abstract from this aspect to focus on the effects of news sharing.
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beliefs move systematically apart between agents. It is well known that µ(s1
i ) and µ(s1

j )

for i 6= j can differ in completely standard Bayesian models simply because agent i and j

observe different signal realizations. Therefore, for the short run we adopt a more demanding

condition for polarization that looks at differences between the expectations E
[
µ(s1

i )
]

and

E
[
µ(s1

j )
]
. Recall that both must equal the prior π in standard Bayesian models.16

At first glance, one might think that selective sharing and unbalanced echo chambers

should suffice to give rise to belief polarization. This is not the case. Hereafter, let I{ω=A}

equal 1 if ω = A and 0 otherwise.

Remark 1. For any echo chamber ei and γ ∈ (0, 1], we have

E
[
µ(s1

i )
]

= π and µ(s∞
i ) = I{ω=A}.

This is because if an agent fully understands the effects of her echo chamber on her informa-

tion diet, selective sharing simply results in a specific information structure that is perhaps

less informative than under full sharing. Nonetheless, the agent gets some information ev-

ery period, so her belief must satisfy standard properties of Bayesian updating.

Misperception. To break the impossibility implied by Remark 1, we again refer to the em-

pirical evidence for guidance. Pogorelskiy and Shum (2019) suggest a third aspect specific to

learning from shared news: Agents often misperceive the selectivity of second-hand informa-

tion. When friends share their first-hand information, an agent simply has to absorb what

she receives. But if they share nothing, she faces a more complex inference problem: Why

did a friend remain silent? Did he get no signal? Did he suppress his signal? When does

he do so? It is reasonable that her answer to any of these questions may be miscalibrated.

In the baseline model, we consider the simplest form of miscalibration, which involves only

16As another interpretation, we can view each agent i and j as representative of a large group of individuals
that are similar within their group but differ between groups. Then, by the law of large numbers E

[
µ(s1

i )
]

and E
[
µ(s1

j )
]

approximate the empirical average belief of the respective group and may be used to assess

intra-group polarization.
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one parameter: the arrival probability of signals. Formally, we let each agent think that the

i.i.d. probability of getting a signal is γ̂ ∈ (0, 1]. We will refer to γ̂ < γ as under-estimating

news arrival and to γ̂ > γ as over-estimating news arrival. The agents continue to use Bayes’

rule to calculate µ(st), yet applied to this slightly misspecified model of the world. The rest

of the model is unchanged. Note that we, as the external observer, will calculate E
[
µ(st)

]
and µ(s∞) using the correct model of the world (i.e., γ not γ̂).17

Discussion of the Model

We discuss the motivation for our modeling choices. The analysis beginning in Section 3 does

not rely on anything mentioned here, so a reader may skip this section without confusion.

We can interpret misperceptions about news arrival as follows. An agent may under- or

over-estimate the probability that her friends receive signals. If γ̂ < γ, this may be a man-

ifestation of the so-called “illusory superiority” or “better-than-average” heuristic,18 which

can lead an agent to think that others are less informed than she is even though everyone is

equally informed. People often have unjustifiably favorable views of themselves relative to

the population average or even in person-to-person comparisons on various characteristics,

which may include how well informed they are or how good they are at getting and under-

standing information. By contrast, some agent may be insecure and think that her friends

are more informed than she is, even though everyone is equally informed (i.e., γ̂ > γ). The

case of γ̂ < γ seems more consistent with introspection and the psychology literature, but

we also analyze the case of γ̂ > γ for completeness. An agent may also misperceive the

probability of receiving her own signals. However, this turns out to have no effect because

she cannot selectively share signals with herself.

The key feature of misperception is that the agent’s view of the world rules out the true γ

17In Section 6 we will consider misperceptions about the friends’ types, their news-sharing behavior, or
the information quality and show that they all lead agents to misinterpret silence in ways similar to γ̂ 6= γ.

18See, e.g., Cross (1977); Svenson (1981); Odean (1998); Zuckerman and Jost (2001).
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from the set of possibilities. This is a defining feature of models with misspecification (like

those listed in the related literature). Thus, even if we allowed the agent to learn about the

probability of signal arrivals, she would not converge to the truth.

For simplicity, we assumed that each agent cannot choose which friends to share her signal

with: She either shares it with all friends or none. This is similar to posting a newspaper

article on one’s social-media page where all friends can see it. Also, our model is consistent

with the possibility that an agent may knowingly receive a friend’s shared signal through

another friend. This is similar to knowing the origin of a re-tweet on Twitter.

Sharing a signal takes the form of verifiable information in our model. By ruling out

fake news, we highlight the role of selective sharing in a baseline model to which these other

aspects can be added. The verifiability of shared information and the possibility of not

receiving first-hand information renders our model similar to Dye (1985). Allowing for this

possibility is one often-used way to give selective sharing a chance to be effective: Otherwise,

silence can be immediately interpreted as negative news.19

We take the types of news-sharing behavior as given because they approximate the find-

ings in the empirical literature (see, e.g., Pogorelskiy and Shum (2019)). Moreover, our focus

is not understanding why people tend to share to a greater extent news that supports their

convictions, but understanding its consequences for social learning. Future research may en-

dogenize news-sharing behavior in settings similar to ours. With regard to how we model

dogmatic agents, we can view such agents as having extreme beliefs that are very hard to

change—perhaps because they are stubborn, narrow minded, or blindly follow and promote

some ideas. Thus, we can model them as having degenerate prior beliefs in A or B, which

do not change with new information. One can also interpret our model as situations where

dogmatic agents can change their views, yet much more slowly than non-dogmatic agents.20

19For example, see Ben-Porath et al. (2018) and DeMarzo et al. (2019).
20For studies on people’s reluctance to change worldview see, e.g., Edwards (1968), Nisbett and Ross

(1980), Evans (1989), Nickerson (1998), and Galperti (2019).
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As a result, how they selectively share information is very persistent. Note that for our re-

sults to hold it is enough to have a few dogmatic agents.

Finally, a brief comment is in order on the heterogeneity between agents that we al-

low. We assume that the prior π, the true and misperceived probability of receiving signals

(γ and γ̂), and the signal distribution (1) are the same for all normal agents. Only the com-

position of echo chambers can differ between them. Starting from a setting where they are all

ex-ante identical and have the same model of the world helps to highlight the role of different

information diets due to echo chambers as a driver of belief polarization. It is intuitive that

adding differences between agents can introduce other drivers of polarization. One can eas-

ily infer the consequences of such additional differences from our results in the next section.

3 Single-Agent Learning

Before examining belief polarization among agents, we study how each individually updates

her belief under the effects of selective sharing and misperceptions. Since we focus on a

generic normal agent, we drop all i subscripts in this section.

3.1 Short Run

We begin with short-run learning. Recall that µ(s1) is the Bayesian posterior probability

that the agent assigns to state A given all the information she obtains after one period.

Our first result shows that, in the presence of misperception, selective news sharing can

distort learning even if it does not give rise to unbalanced news diets. Specifically, if the

agent under-estimates news arrival (γ̂ < γ), her expected posterior is distorted towards the

state she deems more likely ex ante. This is reminiscent of updating distortions usually

called confirmatory bias (Rabin (1998)). Conversely, if the agent over-estimates news arrival
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(γ̂ > γ), her expected posterior is distorted towards the state she deems less likely ex ante.

Proposition 1. Fix any agent with a balanced echo chamber.

1. If γ̂ < γ, then
(
E[µ(s1)]− π

) (
π − 1

2

)
> 0.

2. If γ̂ > γ, then
(
E[µ(s1)]− π

) (
π − 1

2

)
< 0.

To give some intuition, it is useful to explicitly write the agent’s posterior after one

period. Denote by aA the number of a-signals her A-dogmatic friends received and by bB the

number of b-signals her B-dogmatic friends received. From her perspective, aA is distributed

as a Binomial random variable with probability γ̂(1− q) and sample size dA, whereas bB

is distributed as a Binomial random variable with probability γ̂q and sample size dB. The

agent also receives n + 1 independent private signals: n from her normal friends plus her own

signal. Among these signals, let aN and bN denote the number of a-signals and b-signals,

which are multinomial random variables with probabilities γ̂(1− q) and γ̂q and sample size

n + 1. Note that (aA, bB, aN, bN) summarizes the agent’s information s1. By Bayes’s rule

her posterior belief is21

µ(s1) =
π

π + (1− π)QMΓ̂S
, (2)

where

Q ≡ 1− q
q

,

M ≡ aA + aN − (bB + bN),

Γ̂ ≡ γ̂(1− q) + (1− γ̂)

γ̂q + (1− γ̂)
,

S ≡ (dB − bB)− (dA − aA).

We can understand this expression as follows. The term QM captures the agent’s in-

terpretation of the received signals, which is always correct: By verifiability of information,

21This representation is derived in the proof of Proposition 2.
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the act of sharing a signal leaves no uncertainty regarding whether the signal was actually

received—hence, γ̂ is irrelevant. The term Γ̂S captures how the agent incorrectly interprets

the silence of her dogmatic friends. She observes silence from dB − bB B-dogmatic friends

and from dA − aA A-dogmatic friends. She attributes each instance of silence to an unfa-

vorable signal for the friend with probability γ̂ or to no signal with probability 1− γ̂. Note

that Γ̂ is a decreasing function of γ̂. Thus, a higher γ̂ increases Γ̂S if S < 0 and decreases Γ̂S

if S > 0, thereby distorting the posterior downward or upward depending on S. It is there-

fore not immediate that the average distortion goes in any specific direction. For instance,

the agent’s misperception could inflate or deflate updating, but have no effect on average.

The agent’s prior resolves this ambiguity. To see why, suppose she deems state A as

very unlikely ex ante (small π). Consider γ̂ < γ. Silence of A-dogmatic friends induces

her to update the probability that ω = A downward, while silence of B-dogmatic friends

induces her to update it upward. In both cases, the agent updates less than she should

because she excessively attributes silence to lack of news. However, this under-reaction has

asymmetric consequences for A- and B-dogmatic friends. When π is small, B-dogmatic

friends are relatively less likely to receive an unfavorable signal and thus remain silent than

A-dogmatic friends are. Put differently, π < 1
2 magnifies the under-reaction to the silence

of B-dogmatic friends relative to A-dogmatic friends, which distorts updating downward.

Figure 1a illustrates Proposition 1.

Our second result focuses on the effects of an imbalance in the agent’s echo chamber.

It states that if the agent under-estimates news arrival (γ̂ < γ), her expected posterior is

distorted towards the conviction of her dogmatic majority. By contrast, if the agent over-

estimates news arrival (γ̂ > γ), her expected posterior is distorted against her dogmatic

majority. However, for the dogmatic majority to have such effects the information quality

has to be sufficiently low.

Proposition 2. Fix any agent with an unbalanced echo chamber e = (dA, dB, n) that satisfies
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(a) n = 1, dA = 2, dB = 2

(b) n = 1, dA = 3, dB = 2 (c) n = 1, dA = 4, dB = 2

Figure 1: Graphs of the ratio between the expected posterior and the prior as a function of
q, for different echo chambers (determined by the values of n, dA and dB). Other parameters
are as follows: π = 0.001, γ = 0.8 and γ̂ = 0.5.

dA > dB. There exists qSR(e, γ, γ̂) > 1
2 such that, if q < qSR(e, γ, γ̂), then(

E[µ(s1)]− π
)

(γ̂− γ) < 0.

Our proof actually shows that the expected posterior is distorted as stated also conditional

on any true state of the world. Figures 1b and 1c illustrate Proposition 2.

Consider again how the agent updates (see (2)). If she has more A- than B-dogmatic

friends, she will tend to receive more signals supporting state A than B. Yet, this does not

imply that her posterior will be distorted towards A. To see why, it helps to consider extreme
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misperceptions. Suppose she severely under-estimates news arrival: γ > γ̂ ≈ 0. She then

interprets silence as almost certainly no news, rather than bad news for her dogmatic friends.

Thus, she essentially ignores silence and updates based only on the shared signals, which

tend to favor A. By contrast, suppose she severely over-estimates news arrival: γ < γ̂ ≈ 1.

She then interprets silence as almost certainly bad news for her dogmatic friend, rather than

no news. Thus, she reads too much into the silence of her dogmatic majority and incorrectly

updates her belief away from their preferred state. Put differently, her dogmatic majority

always drives her belief through selective sharing, but this can backfire and push her to

believe that the state is B. The case of γ̂ < γ seems more consistent with the common

understanding of the effects of echo chambers. It is, however, interesting that these effects

do not disappear when γ̂ > γ, but rather change direction.

Clearly, for such distortions to arise the information quality cannot be perfect (i.e., q =

1). Proposition 2 shows that for sufficiently low quality the imbalance between dogmatic

friends—however small—always prevails over the information coming from normal friends

and own signals. In some cases, it prevails for all q ∈
(

1
2 , 1
)

(for an example, see Figure 1c).

Corollary 1. Fix any agent with an unbalanced echo chamber that satisfies dA > dB.

1. If γ̂ < γ and π > 1
2 , then E[µ(s1)] > π for all q ∈

(1
2 , 1
)
.

2. If γ̂ > γ and π < 1
2 , then E[µ(s1)] < π for all q ∈

(1
2 , 1
)
.

However, it is not true that an agent’s echo chamber always distorts her learning towards

her dogmatic majority, even if her under-reaction to silence favors that majority (for an

example, see Figure 1b).
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3.2 Long Run - Abundant Information

We showed that with one round of information echo chambers can systematically distort be-

liefs. One may expect these distortions to vanish when information becomes abundant (i.e.,

in the long run after many signals). In fact, the opposite can occur: Abundant information

can exacerbate the effect of misperceived selective sharing and cause beliefs to be almost cer-

tainly incorrect, but only if information quality is sufficiently low. In this case, with prob-

ability 1 and irrespective of the true state, the agent’s posterior converges to a degenerate

belief on one state (denoted by δω). This is the state favored by her dogmatic majority if

γ̂ < γ and by her dogmatic minority if γ̂ > γ.

Proposition 3. Fix any agent with an unbalanced echo chamber e = (dA, dB, n) that satisfies

dA > dB. There exists qLR(e, γ, γ̂) ∈
(

1
2 , 1
)

such that the following holds:

1. If q < qLR(e, γ, γ̂) and γ̂ < γ, then the agent’s belief converges to δA with probability 1

(i.e., µ(s∞) = 1).

2. If q < qLR(e, γ, γ̂) and γ̂ > γ, then the agent’s belief converges to δB with probability 1

(i.e., µ(s∞) = 0).

3. If q > qLR(e, γ, γ̂), then the agent’s belief converges to δω with probability 1, where ω

is the true state (i.e., µ(s∞) = I{ω=A}).

It follows from the proof that for balanced echo chambers the agent’s posterior always con-

verges to δω with probability 1, where ω is the true state. Thus, the distortion in Proposi-

tion 1 does not survive in the long run.

We can intuitively understand this result as the outcome of a non-trivial race between

two kinds of information over time. The agent’s first-hand information provides an increas-

ingly accurate estimate of the state, which would result in perfect learning in a standard
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setting. The second-hand signals from her friends also provide more information, but are se-

lected in ways she does not correctly take into account. It turns out that with low quality

signals the distortion in each step of updating unveiled in Proposition 2 accumulates over

time leading the posterior astray. Thus, only high-quality information eventually removes

both the intrinsic distortions caused by selective sharing (Proposition 1 and Corollary 1) and

the distortions caused by echo-chamber imbalance (Proposition 2 and Corollary 1). Another

way to see the role of q is to reconsider the correct updating term QM and incorrect updat-

ing term Γ̂S in formula (2). As q increases from 1
2 (low informativeness) to 1 (high informa-

tiveness), QM falls from 1 to zero, thereby curtailing the misperception effect through Γ̂S.

While in the short run this curtailment may be complete only at q = 1, in the long run it is

always complete for a range of q < 1.

The threshold qLR that distinguishes correct and incorrect long-run learning has intuitive

comparative statics properties.

Proposition 4. The threshold qLR(e, γ, γ̂) is strictly increasing in |dA − dB| and |γ − γ̂|

and decreasing in n.

The threshold increases with the degree of echo-chamber imbalance and of misperception,

as both strengthen the forces leading posteriors astray. The threshold decreases with the

number of normal friends, as they provide more unfiltered information.

These properties uncover some subtleties in how echo chambers can drive people’s beliefs

apart. Even if the underlying information is the same for all, an agent with many but

moderately unbalanced dogmatic friends can learn the truth over time, while another with

few but severely unbalanced dogmatic friends can end up believing something false.
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3.3 Making and Losing Friends

Advances in technology—such as the development of social media—have expanded the group

of friends from which many agents receive second-hand information. How do these changes

affect individual learning? This section addresses this, focusing on the long run.

Suppose a normal agent makes or loses friends of any type, which changes the composition

of her echo chamber. How does this affect the range of information qualities that result in

incorrect learning?22

Proposition 5. Fix any agent with echo chamber e = (dA, dB, n) that satisfies dA > dB

and n ≥ 1. For any other echo chamber e′ = (λAdA, λBdB, λNn) with λN ≥ 0, λA ≥ 0 and

λB ≥ 0 that satisfy λAdA > λBdB, we have qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) if

λN − 1 ≥
(

λAdA − λBdB

dA − dB
− 1
)(

1 +
1
n

)
(3)

+
dAdB

dA − dB
· 1

n
·max

{
(λA − λB)

2
2− γ̂

, (λA − λB)

}
.

To understand this condition, start from the first term in parentheses, which measures the

net growth rate of the echo-chamber imbalance. If this is positive, then (3) requires normal

friends to grow sufficiently faster in order to decrease qLR. If instead more dogmatic connec-

tions reduce the echo-chamber imbalance, the number of normal friends can even fall—but

not too much—without increasing qLR. The second line of (3) takes into account what hap-

pens individually to the group of A- and B-dogmatic friends and hence to the flow of selected

signals the agent receives from each group. If the A-group grows more, then (3) requires an

even larger growth of normal friends to decrease qLR. If the B-group grows more, this par-

tially compensates the change in the imbalance and hence requires a smaller growth of normal

friends. One can show that qLR always increases if scaling is proportional (λA = λB = λN).

This could happen on social media, for instance, if how they suggest new connections is in-

22Appendix E provides a more general result that also covers the case of λAdA < λBdB.
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dependent of what news people share. In short, an increase in the number of friends involves

a trade-off between access to information and the scope for echo-chambers to distort beliefs.

We now ask a different question: Given the existing information quality, what changes

in an agent’s friends are sufficient to overcome her echo-chamber’s power to distort beliefs

and re-establish correct learning? Specifically, given any q̂ < qLR and λA = λB = λ, what

λN suffices to lower qLR below q̂?

Proposition 6. Fix any agent with echo chamber e = (dA, dB, n) that satisfies dA > dB and

n ≥ 1 and any q̂ ∈
(

1
2 , qLR(e, γ, γ̂)

)
. For any other echo chamber e′ = (λdA, λdB, λNn)

with λ ≥ 0 and λN ≥ 0, we have that qLR(e′, γ, γ̂) < q̂ if the following holds:

1. for γ̂ < γ,

λN >
dA − q̂(dA + dB)

(2q̂− 1)n
λ− 1

n
;

2. for γ̂ > γ,

λN >

(
γ̂
γ − 2q̂

)
(dA − dB) + 2dB

(2q̂− 1)n(2− γ̂)
λ− 1

n
.

Propositions 5 and 6 may have several practical implications. For instance, the growth

and types of an agent’s friends may be estimated using data from social-media platforms

about their news-sharing habits and composition. Given the desired λN, one can estimate

how long (if ever) it will take before her echo chamber stops distorting her beliefs (i.e., before

qLR falls below q̂). Alternatively, algorithms designed by social-media platforms often control

how people form new connections. Knowing the effects of echo chambers’ composition on

people’s learning can inform the design of such algorithms so as to limit the distortions of

selective news sharing.
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4 Belief Polarization in Society

We build on the previous results to examine belief polarization in society. We will treat the

set of normal agents as our society of interest, which we denote by N . We exclude dogmatic

agents based on the interpretation that they have degenerate beliefs, which therefore do not

respond to new information.

We begin by defining a measure of belief polarization. Polarization does not simply

mean heterogeneous beliefs but rather the existence of groups with sharply different beliefs

(Esteban and Ray (1994)), which usually emerge over time. For this reason, we start by

examining polarization in long-run beliefs. Denote the vector of echo chambers in N by

e = {(dAi, dBi, ni)}i∈N .

By Proposition 3, every e gives rise to a distribution of long-run beliefs across the agents

in N , which is characterized by the agents who converge to having a degenerate belief on

state ω ∈ {A, B}: Let

Nω(e) = {i ∈ N : µ(s∞
i ) = δω}.

We then define long-run polarization as23

Π(e) ≡ 2
|N |2 ∑

i,j∈N

∣∣∣µ(s∞
i )− µ(s∞

j )
∣∣∣ =

4|NA(e)||NB(e)|
|N |2 .

Note that Π(e) takes values in [0, 1] and attains its maximum when |NA(e)| = |NB(e)|.

Given the true state ω, we will call Nω(e) the set of “eventually correct” agents and N−ω(e)

the set of “eventually incorrect” agents.

23Note that by standard continuity arguments

Π(e) = plim
t→∞

2
|N |2 ∑

i,j∈N

∣∣∣µ(st
i)− µ(st

j)
∣∣∣ .
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Our previous results imply that selective information sharing can cause beliefs to polarize

in the long run if and only if it is combined with misperceptions. Indeed, Π(e) = 0 if

there are no misperceptions (Remark 1), or if all echo chambers are balanced. Otherwise,

Proposition 3 implies the following.

Corollary 2. Fix any society N with echo chambers e that satisfy dAi > dBi and dAj < dBj

for some i, j ∈ N . There always exists q > 1
2 such that Π(e) > 0.

This formalizes the common narrative that, if some agents in society have echo chambers

that skew their news diets in opposite directions—where the imbalances can be small—then

their beliefs can polarize.24 However, our results qualify this narrative: Belief polarization

requires sufficiently low quality of information and some misperception of the effects of echo

chambers, but does not require fake news nor that people look at the world in fundamentally

incompatible ways. Our results also show that oppositely unbalanced echo chambers are not

necessary for polarization to arise. By Propositions 3 and 4, if we take any society N such

that dAi ≥ dBi for all i ∈ N and dAj− dBj > dAk− dBk for some j, k ∈ N , then there always

exists q > 1
2 such that Π(e) > 0 if the true state is ω = B. For this society, if the informa-

tion quality is extremely low or high, long-run polarization is zero because either everybody

is eventually incorrect or everybody is eventually correct. But for intermediate information

quality some agents will be eventually correct despite their unbalanced echo chamber, while

others will be eventually incorrect.

These observations highlight the importance of information quality for echo chambers to

give rise to belief polarization. Intuition may suggest that as people receive better informa-

tion, disagreement should decline. In fact, this need not be true. The following result pro-

vides a necessary and sufficient condition for polarization to be non-monotonic in q.25 To

24Rich evidence shows that people on the left and right of the political spectrum tend to have more like-
minded friends than not, a fact that is often cited as a possible cause of polarization (e.g., Pew Research
Center (2014)).

25The same result holds for other, more general, measures of polarization, such as that axiomatized by
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this end, let Dω be the set of agents who will be eventually incorrect if their long-run belief

agrees with their ω-dogmatic friends, but the true state is not ω:

DA = {i ∈ N : (dAi − dBi)(γ− γ̂) > 0}

and DB is defined similarly by swapping dAi and dBi (Proposition 3).

Proposition 7. Fix any society N that has echo chambers e which satisfy qLR(ei, γ, γ̂) 6=

qLR(ej, γ, γ̂) for all i, j and fix ω. Then, Π(e) is decreasing in q over
(

1
2 , 1
)

if and only if

|D−ω| ≤ 1
2 (|N |+ 1). Otherwise, Π(e) is single peaked.

To see the intuition, it helps to consider how NB(e) and NA(e) change as q increases.

Assume the true state is B and γ̂ < γ. Fix some q ∈
(

1
2 , 1
)

. Then, NB(e) contains the

agents for whom (1) q > qLR and so learn correctly, or (2) dB > dA and q < qLR and so

have µ(s∞) = 0 irrespective of the true state; NA(e) contains all agents for whom dA > dB

and q < qLR. As q increases, all agents in NB(e) will remain there: For agents in group (1)

nothing changes; agents in group (2) may stay there or pass to group (1). By contrast, agents

in NA(e) will switch to NB(e) one by one:26 When q becomes larger than qLR for an agent in

NA(e), her echo chamber no longer distorts her long-run belief, which now converges to δB.

Thus, if the eventually incorrect agents outnumber the eventually correct agents initially

(i.e., for q ≈ 1
2), then as q increases it will cause a gradual migration into the set of eventually

correct agents and polarization will initially increase and then decrease towards zero.

To recap, our results suggest that increasing the quality of first-hand information for the

agents can be a way to counteract the power of echo chambers to polarize beliefs. However,

such quality increases may need to be significant to actually curb polarization.

Shifting perspective, one may wonder how changes in the distribution of echo chambers

Esteban and Ray (1994). Applied to our long-run beliefs, their measure takes the form ν1+α(1− ν) + (1−
ν)1+αν, where ν = |NA(e)|/|N |, α ∈ (0, α∗], and α∗ ≈ 1.6. One can show that this form is single peaked in
ν, which is key for the non-monotonicity in q.

26This is where we use the assumption that qLR(ei, γ, γ̂) 6= qLR(ej, γ, γ̂) for all i, j.
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in society affects the distribution of long-run beliefs and hence polarization. Propositions 5

and 6 show that the answer is not obvious—even in our stylized model—as both changes in

the echo-chamber imbalances and changes in the number of normal friends matter. Fix any q

and e such that Π(e) > 0. Suppose the agents make and lose friends, which results in e′.

By Proposition 6, if for each agent her normal friends grow sufficiently more than her echo-

chamber imbalance, then Π(e′) = 0. Thus, technology advances that expand the agents’

echo chambers can curb belief polarization. But the opposite can also happen: An agent

can learn correctly in a small echo chamber, but incorrectly after her echo chamber expands,

which can cause her belief to polarize from others. Our results highlight that what matters

is the composition of echo chambers, not their absolute size. These observations may offer a

new perspective on the evidence showing that polarization seems to be more pronounced for

demographic groups that are least likley to use the Internet and social media (Zhuravskaya

et al., 2020). Their echo chambers may be smaller, but also more unbalanced.

Our analysis also suggests that polarization in echo chambers need not lead to polariza-

tion in beliefs. Imagine two societies characterized by e and e′, where each distribution is

evenly divided in terms of echo-chamber imbalances (i.e., |DA| = |DB| = 1
2 |N |). The only

difference is that, for all agents, e involves small imbalances and e′ large imbalances. In terms

of echo chambers, we may view e as less polarized than e′. Yet, we can have Π(e) > Π(e′).

This may be counterintuitive, but becomes clear once we take into account the role of infor-

mation quality that we highlight, which may be high in the society with e′ and low in the

society with e. Importantly, our results provide tools to handle this complexity and predict

what happens based on the observable characteristics of a society summarized by e. Such

predictions can also guide policy interventions.

Finally, our theory also offers insights about belief polarization in the short run. To this

end, we now interpret each i ∈ N as a group of individuals who all have an echo chamber

with the same composition ei. Removing redundancies, assume ei 6= ej if i 6= j. We can
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summarize the beliefs within each group with their empirical average and then use these

summary statistics to quantify intra-group polarization in society. Importantly, if group i is

large enough, its empirical average belief in the short run is well approximated by E[µ(s1
i )]

by the Law of Large Numbers. Thus, we can define short-run polarization as

ΠSR(e) =
2
|N | ∑

i,j∈N

∣∣∣E[µ(s1
i )]−E[µ(s1

j )]
∣∣∣ .

Standard Bayesian learning without misperceptions implies ΠSR(e) = 0 (Remark 1). By

contrast, selective news sharing with misperceptions can lead to ΠSR(e) > 0. For instance,

Proposition 2 implies the following.27

Corollary 3. Fix any society N with echo chambers e that satisfies dAi > dBi and dAj < dBj

for some groups i, j. There always exists q > 1
2 such that ΠSR(e) > 0.

Thus, as long as some groups of people have echo chambers with opposite imbalances, our

model can also account for belief polarization in the short run. In contrast to the long run,

where this requires low information quality, for the short run polarization can arise even for

high information quality (Propositions 1 and 2 and Corollary 1). This could cause temporary

polarization: Even if all agents eventually learn correctly, their beliefs may polarize in the

short run.

5 Mitigating Polarization

Ferejohn et al. (2020) note that challenges to shaping the character of democratic institutions

include “managing the development of media and information technologies to ensure they

enhance, rather than degrade, robust pluralism and civil political engagement.” We take a

step in that direction in this section.

27The same result holds for the general measures of polarization axiomatized by Esteban and Ray (1994).
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How could a social planner address polarization generated by shared news? Selective

sharing and misperceptions seem hard to influence, as they belong to each individual’s private

life and personal freedom. It may instead be easier to influence people’s echo chambers and,

in particular, the quality of their first-hand information. With regard to echo chambers,

Section 3.3 described how influencing the rate at which people connect with friends on social-

media platforms may help avoid incorrect learning and hence belief polarization.

Acting on the quality of information seems the least intrusive intervention. One obvious

way is to directly increase q at the source. This may be difficult, however, due to technological

or economic reasons. For instance, it may involve incentivizing or forcing newspapers to

spend more on reporters, data gathering, and fact checking. Other ways may still exist to

increase the quality of information that people ultimately receive without changing q of the

primitive signals sit.

The last decades have witnessed the expansion of so-called news aggregators, namely,

online platforms that summarize the news for their users. Examples include The Drudge

Report, Apple News, or Yahoo! News. This may have several explanations: Aggregators

may help people handle the overload of daily news given time or attention constraints, or

may help pool news from different sources into one convenient access point. By filtering and

summarizing news, aggregators throw away some information relative to the totality of the

aggregated signals. Nonetheless, the resulting output can have higher information quality

than each aggregated signal individually, which is the key observation for our purposes.

Through the lens of our theory news aggregators can serve another function, which is to

curb polarization by undermining the distortions of selective news sharing.28

There are many ways to aggregate signals. To make our point we consider the following

28Other papers studying news aggregators in an economic context include Athey et al. (2017) and Hu
et al. (2019). Athey et al. (2017) explore experimentally the impact of news aggregators on the consumption
of news from other outlets, while the focus of Hu et al. (2019) is differentiation between personalized news-
aggregation providers.
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simple form, which has the advantage that one can easily provide a sufficient degree of

aggregation to ensure no polarization. Divide time into blocks of M periods, where M is an

odd number. For every agent i and t = 1, 2, . . ., define ŝi
Mt as a new signal that is released to

i at the end of each time block and reports whether more a or b signals realized in that block:

ŝi
Mt =


0, if ∑tM

k=(t−1)M+1 I{sik=a} <
M
2

1, if ∑tM
k=(t−1)M+1 I{sik=a} >

M
2 .

Clearly, ŝi
Mt conveys less information than do the aggregated M signals together. However,

ŝi
Mt has higher quality than each sit. To see this, suppose M = 3 and ω = A. We have

P(ŝi
3 = 1|ω = A) = P

(
3

∑
k=1

I{sik=a} ≥ 2
∣∣∣∣ω = A

)

= q3 + 3q2(1− q) > q = P(sit = a|ω = A).

Thus, substituting sit with ŝi
Mt worsens the quantity of information for the agents but im-

proves its quality. Note that in standard models this substitution would be irrelevant for

long-run learning.

The remaining question is how much aggregation is enough to curb polarization. The

next proposition gives an answer in terms of a sufficient finite number M of aggregated

periods.29 Let Π̂ be the limit polarization when signals sit are replaced with ŝi
Mt.

Proposition 8. Fix any society N with echo chambers e and information quality q such

that Π(e) > 0. Let q̄LR = maxi∈N qLR(ei, γ, γ̂). Then, Π̂(e) equals zero if

M > −2 ln (1− q̄LR)

(2q− 1)2 .

A few remarks are in order. Note that ŝi
Mt essentially reports whether the sample average

of a signals is above 1
2 or not. By the Law of Large Numbers, as M → ∞ that average is

29The threshold in Proposition 8 is a conservative condition based on tail bounds for Binomial cumulative
distributions, which do not have a closed form. Numerical methods may provide tighter conditions.

29



q > 1
2 if ω = A and 1− q < 1

2 if ω = B with probability 1. In other words, with infinite

aggregation, ŝi
Mt can learn the state and then report it to the agents. Clearly, this implies

correct learning, but is not how news aggregators work in reality. We can still conclude that

partial news aggregation can help curb polarization, because we showed that undoing the

effects of misperceived selective sharing in the long run does not require perfect information

quality.

Another observation is that our aggregators summarize the primitive signals for each

individual, but have a common degree of aggregation M. Since incorrect learning is caused

by news sharing, how much we aggregate agent i’s signals has to take into account the

information quality required for her friends to learn correctly. This is why our finite threshold

for M is in terms of the quality q̄LR of the agents for whom the effects of misperceived selective

sharing are the hardest to overcome. This is where Proposition 4 can guide how to adjust

M as echo chambers change. Also, if we knew that a subgroup of agents shares signals only

among themselves—essentially forming a sub-society N ′ ⊂ N—it would be possible to pick

a lower M tailored to this group. These points suggest that if agents choose degrees of news

aggregation for themselves based on their individual reasons, they may not internalize the

effects of the news they then share and create too little aggregation from society’s viewpoint.

This may call for institutional intermediaries or platforms that aggregate news taking into

account these externalities.

6 Extensions: Other Misperceptions

We now consider other ways in which agents may misperceive information. This clarifies

the main mechanism through which selective news sharing can lead to polarization: the

combination of unbalanced echo chambers and incorrect interpretation of friends’ silence.

Throughout this section, the true properties of first-hand information as well as timing
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remain as in the baseline model. We now assume that all agents correctly assign probability γ

to the arrival of first-hand information in each period (i.e., γ̂ = γ) in order to isolate the

effects of other misperceptions. We consider three:

(I) Agents misperceive the probabilities with which friends shares signals. To model this, we

allow for probabilistic selective sharing. Normal agents share any first-hand signal sit

with probability ν ∈ (0, 1] and stay silent with probability 1− ν. An A-dogmatic agent

shares sit = b with probability f ∈ [0, 1] and sit = a with probability g ∈ [0, 1], where

0 ≤ f < g ≤ 1; with the remaining probabilities, the agent stays silent. B-dogmatic

agents are like A-dogmatic agents, except for swapping probabilities of sharing a and b

signals. Note that our baseline model corresponds to ν = g = 1 and f = 0. We

continue to assume that all agents of a specific type are the same. Misperception (I)

means that each agent knows all her friends’ types, but replaces the true sharing

probabilities f , g, and ν with incorrect ones f̂ , ĝ, and ν̂ where f̂ < ĝ.

(II) Agents misclassify some of their friends’ types. With three types, there are in principle

many possible misclassifications. For conciseness, we consider the case where dogmatic

friends are misclassified as normal. The sharing behavior is deterministic as in the

baseline model (ν = g = 1 and f = 0). Let n̂A be the number of A-dogmatic friends

that an agent misclassifies as normal; define n̂B similarly. That is, the agent treats

these friends as always sharing any signal they receive, while in reality they share only

signals favorable to one state.

(III) Agents misperceive the quality of first-hand information. Each agent thinks that the

probability with which a signal matches the state is q̂ ∈
(

1
2 , 1
)

instead of the true q

given in equation (1). Note that this misperception differs conceptually from all other

misperceptions considered in this paper, which are about how friends share news.
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Proposition 9. Each of misperceptions (I), (II), and (III) alone can cause belief polarization

as the result of incorrect learning. This happens if and only if the true information quality q

is sufficiently low and there are appropriate, real or perceived, imbalances in echo chambers.

An echo-chamber imbalance means slightly different things depending on the misperception

(see Online Appendix A for a detailed analysis). For (I), it means a different number of

A- and B-dogmatic friends as well as a different gap in the probabilities of sharing signals

( f − g 6= f̂ − ĝ). For (II), it means a disagreement between the real and perceived difference

in the number of dogmatic friends (dA − dB 6= d̂A − d̂B). For (III), it means a different

number of A- and B-dogmatic friends.

Despite the differences between these misperceptions, they all cause incorrect learning

and polarization through the same fundamental mechanism as in the baseline model. That

is, the agents interpret silence incorrectly by misunderstanding how much of it depends

on lack rather than suppression of information. This is also the only mechanism through

which misperceptions of information quality cause polarization: If γ = 1 and selective

sharing unravels, the agents always learn correctly in the long run despite q̂ 6= q. For this

misperception to cause polarization the agents must over-estimate the information quality,

that is, q̂ > q.

One may interpret the case of q̂ > q as related to the idea of “fake news:” Such news

are false or very uninformative (low q), yet people mistakenly take them as reliable and

informative (high q̂). Our results then suggest that this form of fake news can cause incorrect

learning and polarization, but only indirectly through selective news sharing. This may

explain why, even though fake news have always existed, they may have become especially

powerful in the age of social media. This may provide a rationale for fact-checking as a way

to realign q̂ with q.

Finally, another takeaway in common with the baseline model is the role of low and
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high quality in enabling and preventing polarization, respectively. This further supports our

insights about the ability to mitigate polarization by aggregating news.

7 Concluding Remarks

We studied if and when learning from shared news can lead to belief polarization. Our

positive answer is consistent with some common narratives about news sharing, yet highlights

several qualifications. Selective sharing alone does not lead to polarization, even if it gives

rise to unbalanced news diets. It has to be combined with some misperception that causes

people to misinterpret when others do not share information. Moreover, this key mechanism

leads to polarization if (and only if) the quality of first-hand information is sufficiently low.

Our insights about the importance of information quality (in contrast to quantity) and echo-

chamber imbalances shed light on how policies that aim to improve news quality or diversify

people’s diet of shared news can curb or inflate polarization. We hope this advances our

understanding of some of the mechanisms behind polarization in modern societies.

Our analysis goes to the heart of why new communication technologies and formats en-

abled by the Internet may contribute to polarization. First, the dramatic expansion of com-

munication between people may have increased the consumption of selected second-hand

news (e.g., on social media). Second, the quality of consumed information may have wors-

ened: Tweets and social-media posts tend to be short and imprecise, and overwhelmed by

the information abundance, people may spread their limited attention across more sources

and hence absorb less content from each. Third, the Internet has offered bad actors a mega-

phone to spread fake news, and we found that it is the selective sharing of fake news—not

fake news per se—that can distort beliefs. However, our results suggest that even in the ab-

sence of fabricated news, specific aspects of how people share and process information online

would still cause polarization. To the extent that its causes are legitimate behaviors within
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people’s rights to free speech and self-determination, our analysis offers a new perspective

on whether the Internet—and in particular social media—may be held accountable for po-

larization and what regulations may address it.

While we focused on mitigating polarization, our theory also sheds light on how malev-

olent actors can leverage news sharing among people and misperceptions to exacerbate po-

larization. Obvious ways include using fake news to directly lower information quality or

expanding echo chambers’ imbalances. A more subtle way is to release bits of true but low-

quality news with high frequency (like Tweets) so as to leverage the power of misperceived

selective sharing. This may also serve to draw attention away from high-quality information

sources. A better understanding of what malevolent actors may try to do could offer guide-

lines for preemptive countermeasures.

Several directions remain for future research. We briefly mention two. We took selective

news-sharing behavior as given and fixed, modeling its key aspects found in the empirical

evidence. In reality, people choose what to share strategically—for example, to persuade

friends to take an action. As long as it involves suppressing specific information, our insights

about its consequences should be valid and may in turn be a steppingstone to understanding

what drives selective sharing in the first place.

Finally, the role of unbalanced echo chambers in our analysis begs the question of what

happens if we allow social links to form endogenously. In this process, people may follow

their demand for information or other socio-economic forces (identity, class, race, ideology,

work career, etc.).30 On the one hand, they may tend to link with like-minded friends, which

may create a vicious cycle where belief polarization and echo chambers’ imbalances reinforce

each other. On the other hand, they may be more likely to link with reliable sources of

objective information, which would have opposite implications. Which tendency prevails is

30Recent studies on homophily in social networks include, for example, Golub and Jackson (2012), Baccara
and Yariv (2013), and Halberstam and Knight (2016).
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ultimately an empirical question. We hope our framework can guide further theoretical and

empirical investigations of the relation between evolving social relations and polarization.

Renee Bowen, UC San Diego and NBER

Danil Dmitriev, UC San Diego

Simone Galperti, UC San Diego

35



Appendix

A Proof of Proposition 1

Consider an agent with n normal friends and d dogmatic friends of each type.

Without loss of generality, we can ignore the normal friends and assume that n = 0. Using

the Law of Total Expectation, we can rewrite E[µ] as a sum over all possible signal realizations

of dogmatic friends, where in each term we have the expected posterior conditional on a given

signal realization. The remaining uncertainty in this conditional posterior are signal realizations of

normal friends. Since the agent is not misspecified with respect to them, the expectation of that

conditional posterior must be equal to the “prior.” That is, it equals the posterior updated only

on the signals of dogmatic friends. Hence, we can focus on the dogmatic friends.

Let aA be the number of signals s = a that the A-dogmatic friends receive, and bB be the

number of s = b that the B-dogmatic friends receive. Denote s = {aA, bB}. Given the correct γ,

the posterior that ω = A is

µ∗(s) =
πP∗(s|A)

πP∗(s|A) + (1− π)P∗(s|B)
,

where

P∗(s|A) =
d!d!

aA!(d− aA)!bB!(d− bB)!
γaA+bB qaA (1− q)bB (γ(1− q) + (1− γ))d−aA (γq + (1− γ))d−bB ,

P∗(s|B) =
d!d!

aA!(d− aA)!bB!(d− bB)!
γaA+bB (1− q)aA qbB (γq + (1− γ))d−aA (γ(1− q) + (1− γ))d−bB .

Given the incorrect γ̂, the agent’s posterior belief given s will be

µ(s) =
πP(s|A)

πP(s|A) + (1− π)P(s|B)
, (4)

where P(s|A) and P(s|B) are calculated replacing γ with γ̂. To understand each term consider
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P∗(s|A), which is the conditional probability of observing s given ω = A. Then, (γq)aA is the

probability of getting aA signals s = a from A-dogmatic friends; (γ(1− q))bB is the probability of

getting bB signals s = b from B-dogmatic friends; (γq + (1−γ))dB−bB is the probability of observing

dB − bB B-dogmatic friends staying silent, as it is either a genuine silence (with prob. 1− γ) or a

suppressed signal s = a (with prob. γq); (γ(1− q) + (1− γ))dA−aA is the probability of observing

dA − aA A-dogmatic friends staying silent, as it is either a genuine silence (with prob. 1− γ) or

a suppressed signal s = b (with prob. γ(1− q)). For P∗(s|B), the probabilities q and 1− q are

reversed because the true state is B.

Consider the expectation of the difference between µ∗ and µ:

E[µ− µ∗] = ∑
s

(πP∗(s|A) + (1− π)P∗(s|B)) (µ(s)− µ∗(s))

= ∑
s

πP∗(s|A)

(
P(s|A)

P∗(s|A)
· πP∗(s|A) + (1− π)P∗(s|B)

πP(s|A) + (1− π)P(s|B)
− 1
)

= ∑
s

πP∗(s|A)

(
1 + ρQaA−bB ΓaA−bB

1 + ρQaA−bB Γ̂aA−bB
− 1
)

,

where

Q =
1− q

q
, Γ =

γ(1− q) + (1− γ)

γq + (1− γ)
, Γ̂ =

γ̂(1− q) + (1− γ̂)

γ̂q + (1− γ̂)
, ρ =

1− π

π
. (5)

Using the expression of P∗(s|A), we can write

E[µ− µ∗] = π ∑aA,bB

(
d!

aA !(d−aA)! ·
d!

bB !(d−bB)! γ
aA+bB qaA+bB (γ(1− q) + (1− γ))2d−aA−bB

)
×
(

1−q
q

)bB
(

γ(1−q)+(1−γ)
γq+(1−γ)

)bB−d ( 1+ρQaA−bB ΓaA−bB

1+ρQaA−bB Γ̂aA−bB
− 1
)

= π ∑aA,bB

(
d!

aA !(d−aA)! ·
d!

bB !(d−bB)! γ
aA+bB qaA+bB (γ(1− q) + (1− γ))2d−aA−bB

)
×Γ−d

(
QbB ΓbB +ρQaA ΓaA

QbB Γ̂bB +ρQaA Γ̂aA
QbB Γ̂bB −QbB ΓbB

)
= πΓ−d ∑0≤x≤y≤d

(
d!d!

x!(d−x)!y!(d−y)! γ
x+yqx+y(γ(1− q) + (1− γ))2d−x−y

)
(6)

×
(

QyΓy+ρQxΓx

Qy Γ̂y+ρQx Γ̂x QyΓ̂y −QyΓy + QxΓx+ρQyΓy

Qx Γ̂x+ρQy Γ̂y QxΓ̂x −QxΓx
)

.

The key is that while the original distribution P∗(s|A) is not symmetric between aA and bB, the
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last line involves a symmetric distribution between x and y. We want to prove that the sum in (6)

is negative for ρ > 1, which will imply E[µ− µ∗] < 0 for π < 1
2 .

Consider the derivative with respect to ρ of the term in the second line of (6), denoted by ∆xy:

∂∆xy

∂ρ
=

Qx+y(ΓxΓ̂y − ΓyΓ̂x)

(QyΓ̂y + ρQxΓ̂x)2
QyΓ̂y +

Qx+y(ΓyΓ̂x − ΓxΓ̂y)

(QxΓ̂x + ρQyΓ̂y)2
QxΓ̂x,

which is negative if and only if

ΓxΓ̂y − ΓyΓ̂x

(QyΓ̂y + ρQxΓ̂x)2
QyΓ̂y <

ΓxΓ̂y − ΓyΓ̂x

(QxΓ̂x + ρQyΓ̂y)2
QxΓ̂x.

Recall that y ≥ x. Note that ΓxΓ̂y − ΓyΓ̂x > 0 if and only if Γ̂y−x > Γy−x. If y = x, this holds with

equality and the derivative above is 0. If y > x, Γ̂y−x > Γy−x is equivalent to Γ̂ > Γ, which in turn

is equivalent to γ̂ < γ. From here on, we assume y > x.

Suppose γ̂ < γ. Then the derivative of ∆xy is negative if and only if

QyΓ̂y

(QyΓ̂y + ρQxΓ̂x)2
<

QxΓ̂x

(QxΓ̂x + ρQyΓ̂y)2
.

Note that QΓ̂ < 1, which implies (QΓ̂)y < (QΓ̂)x. Using this, we can obtain the equivalent

inequality

(2− (1 + ρ)2)(QΓ̂)x+y < ρ2((QΓ̂)2x + (QΓ̂)2y)

For ρ > 1, this inequality holds, as the left side is negative and the right side is positive. Given

that this holds for any x < y, it follows that the derivative of the entire sum in (6) is negative for

ρ > 1. Note that this sum is equal to 0 (term by term) at ρ = 1. This implies that the sum becomes

negative for all ρ > 1 as desired. In other words, given γ̂ < γ, moving the prior from 50-50 towards

a state will make the unconditional expected posterior of that state higher than the prior.

If γ̂ > γ holds, than the argument above applies in a symmetric way with all inequalities flipping

after dividing by ΓxΓ̂y − ΓyΓ̂x, which is negative. It will follow that moving the prior from 50-50

towards a state will make the unconditional expected posterior of that state lower than the prior.
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B Proof of Proposition 2

We will prove that there exists qSR > 1
2 such that, if q ∈

( 1
2 , qSR

)
, then E [µ|ω] > π or E [µ|ω] < π

for any ω depending on the signs of dA− dB and γ− γ̂. To this end, we will first find the derivative

of E [µ|ω] with respect to q at q = 1
2 and then show how its sign depends on dA − dB and γ− γ̂.

Using continuity of E [µ|ω] in q and the fact that E [µ|ω] = π at q = 1
2 , we will obtain the desired

conclusion.

Using (4) and (5), for a given realization s = (aA, bB, aN , bN), an agent’s posterior that ω = A

can be written as

µ(s) =
π

π + (1− π)QMΓ̂S
.

To compute E[µ|ω], it is useful to use iterated expectations and condition on the set of friends

who receive a signal. Let E [µ|ω, xA, xB, xN ] be the expected posterior conditional on the event

that the state is ω and that xA A-dogmatic friends, xB B-dogmatic friends, and xN normal friends

received a signal. For simplicity, xN includes the agent’s own signal. Abusing notation a bit, let

N = n + 1. We can then write

E [µ|ω] =
dA

∑
xA=0

dB

∑
xB=0

N

∑
xN=0

dA!dB!N!
xA!(dA − xA)!xB!(dB − xB)!xN !(N − xN)!

·

· γxA+xB+xN (1− γ)dA+dB+N−xA−xB−xN E [µ|ω, xA, xB, xN ] .

The derivative of E[µ|ω] with respect to q is

∂

∂q
E [µ|ω] =

dA

∑
xA=0

dB

∑
xB=0

N

∑
xN=0

dA!dB!N!
xA!(dA − xA)!xB!(dB − xB)!xN !(N − xN)!

·

· γxA+xB+xN (1− γ)dA+dB+N−xA−xB−xN
∂

∂q
E [µ|ω, xA, xB, xN ] .

(7)

We now find ∂
∂q E [µ|ω, xA, xB, xN ] and evaluate it at q = 1

2 .
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Lemma 1.

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

=
xN

∑
aN=0

xN !
aN !(xN − aN)!

(
1
2

)xN ∂

∂q
E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Proof. Letting H(q; A) = q and H(q; B) = 1− q, we can write

E [µ|ω, xA, xB, xN ] =
xN

∑
aN=0

xN !
aN !(xN − aN)!

H(q; ω)aN (1− H(q; ω))xN−aN E [µ|aN , ω, xA, xB, xN ] .

The derivative of E [µ|ω, xA, xB, xN ] can thus be represented as

∂

∂q
E [µ|ω, xA, xB, xN ] = ∑xN

aN=0
xN !

aN !(xN−aN)!

[
aN H(q; ω)aN−1(1− H(q; , ω))xN−aN−

−(xN − aN)H(q; ω)aN (1− H(q; ω))xN−aN−1
]

Hq(q; ω)E [µ|aN , ω, xA, xB, xN ] +

+ ∑xN
aN=0

xN !
aN !(xN−aN)! H(q; ω)aN (1− H(q; ω))xN−aN ∂

∂q E [µ|aN , ω, xA, xB, xN ].

If q = 1
2 , then H(q; ω) = 1

2 for each ω. Also, the agent will not update her prior based on any

signals: E [µ|aN , ω, xA, xB, xN ] = π. The above expression thus simplifies to

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

= ∑xN
aN=0

xN !
aN !(xN−aN)!

( 1
2

)xN−1
(2aN − xN) Hq

( 1
2 ; ω

)
π+

+ ∑xN
aN=0

xN !
aN !(xN−aN)!

( 1
2

)xN ∂
∂q E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Note that
xN

∑
aN=0

xN !
aN !(xN − aN)!

(
1
2

)xN−1

(2aN − xN) = 0,

because for each positive term in the sum there is an identical term with a negative sign. We can

then write

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

=
xN

∑
aN=0

xN !
aN !(xN − aN)!

(
1
2

)xN ∂

∂q
E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

�
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It remains to evaluate ∂
∂q E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

. The following is a first intermediate step.31

Lemma 2.

∂

∂q
E [µ|aN , ω, xA, xB, xN ] =

⌊
xA+xB−1

2

⌋
∑

aD=0

(xA + xB)!
aD!(xA + xB − aD)!

∂

∂q

(
f (aD, q, aN) + f (xA + xB − aD, q, aN)

)
,

where

f (k, q, aN) =
πH(q; ω)k(1− H(q; ω))xA+xB−k

π + (1− π)Qk−xB+2aN−xN Γ̂k−xB−(dA−dB)
.

Proof. Let aD ≤ xA + xB be the total number of s = a that A- and B-dogmatic friends have

received. Using aB = xB − bB and bN = xN − aN, we can write

µ =
π

π + (1− π)QaD−xB+2aN−xN Γ̂aD−xA−(dA−xA)+(dB−xB)

Note that µ includes the dogmatic friends who have not received a signal (dA − xA A-dogmatic

and dB − xB B-dogmatic), as the agent does not know whether they did not get a signal or they

suppressed it. Using this, we can obtain

E [µ|aN , ω, xA, xB, xN ] =
xA+xB

∑
aD=0

[
(xA + xB)!

aD!(xA + xB − aD)!
H(q; ω)aD (1− H(q; ω))xA+xB−aD

· π

π + (1− π)QaD−xB+2aN−xN Γ̂aD−xB−(dA−dB)

]
.

Using binomial symmetry, we get

E [µ|aN , ω, xA, xB, xN ] =

⌊
xA+xB−1

2

⌋
∑

aD=0

(xA + xB)!
aD!(xA + xB − aD)!

(
f (aD, q, aN) + f (xA + xB − aD, q, aN)

)
,

where f (k, q, aN) is as defined in the lemma. Taking the derivative with respect to q gives the

result. �

31The symbol bxc denotes the largest integer smaller than x.
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The next is a second intermediate step to evaluate ∂
∂q E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Lemma 3. At q = 1
2 ,

∂

∂q

(
f (aD, q, aN) + f (xA + xB − aD, q, aN)

)
=

(
1
2

)xA+xB−1

2π(1− π)

[
2(2aN − xN) +

2
2− γ̂

(xA − xB)− 2γ̂

2− γ̂
(dA − dB)

]
.

Proof. To simplify subsequent algebra, define z(q, γ̂) = ln(Γ̂) [ln(Q)]−1. Taking the derivative of

f (k, q, aN) with respect to q gives

∂

∂q
f (k, q, aN) =

π

π + (1− π)Qk−xB+2aN−xN+(k−xB−(dA−dB))z(q,γ̂)
·

·
(

(xA + xB − k)H(q; ω)k(1− H(q; ω))xA+xB−k−1 (−Hq(q; ω)
)

+ kH(q; ω)k−1(1− H(q; ω))xA+xB−k Hq(q; ω)
)

+H(q; ω)k(1− H(q; ω))xA+xB−kπ(1− π)·

·
[

(k−dB+2aN−xN)Qk−xB+2aN−xN−1+(k−xB−(dA−dB))z(q,γ̂) 1
q2

(π+(1−π)Qk−xB+2aN−xN Γk−xB−(dA−d−B))
2 +

+
(k− xB − (dA − d− B))Qk−xB+2aN−xN+(k−xB−1−(dA−dB))z(q,γ̂) (2−γ̂)γ̂

(γ̂q+(1−γ̂))2(
π + (1− π)Qk−xB+2aN−xN Γk−xB−(dA−dB)

)2

]
,

which evaluated at q = 1
2 equals

(
1
2

)xA+xB−1

(2k− xA − xB)Hq(q; ω)
π

π + (1− π)

+

(
1
2

)xA+xB

4π(1− π) ·
(k− xB + 2aN − xN) + (k− xB − (dA − dB)) γ̂

2−γ̂

(π + (1− π))2

=
( 1

2

)xA+xB−1 ·
[
(2k− xA − xB)Hq(q; ω)π

+2π(1− π)
(

(k− xB + 2aN − xN) + (k− xB − (dA − dB)) γ̂
2−γ̂

)]
.

Therefore, at q = 1
2 we have

∂
∂q ( f (aD, q, aN) + f (xA + xB − aD, q, aN)) =

( 1
2

)xA+xB−1
2π(1− π)

(
2(2aN − xN) + 2

2−γ̂ (xA − xB)− 2γ̂
2−γ̂ (dA − dB)

)
.
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We now further simplify ∂
∂q E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

.

Lemma 4.

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

=
4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB)) .

Proof. From Lemma 2 and 3 we have

∂

∂q
E [µ|aN , ω, xA, xB, xN ]

∣∣∣
q= 1

2

= ∑

⌊
xA+xB−1

2

⌋
aD=0

(xA+xB)!
aD !(xA+xB−aD)!

( 1
2

)xA+xB−1
2π(1− π)·

·
(

2(2aN − xN) + (xA − xB) + (xA − xB − 2(dA − dB)) γ̂
2−γ̂

)
= 4π(1− π)(2aN − xN) +

4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB)) .

The second equality follows from observing that the sum

⌊
xA+xB−1

2

⌋
∑

aD=0

(xA + xB)!
aD!(xA + xB − aD)!

(
1
2

)xA+xB−1

is a binomial expansion of
( 1

2 + 1
2

)xA+xB = 1.

Using Lemma 2, we then have

∂

∂q
E [µ|ω, xA, xB, xN ]

∣∣∣
q= 1

2

= ∑xN
aN=0

xN !
aN !(xN−aN)!

( 1
2

)xN
[
4π(1− π)(2aN − xN)

+ 4π(1−π)
2−γ̂ ((xA − xB)− γ̂(dA − dB))

]
=

4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB)) ,

where the equality follows from the symmetry of ∑xN
aN=0

xN !
aN !(xN−aN)! (2aN − xN) we used before. �

43



Finally, we return to the derivative of E[µ|ω]. Using Lemma 4, equation (7) simplifies to

∂

∂q
E [µ|ω]

∣∣∣
q= 1

2

=
dA

∑
xA=0

dB

∑
xB=0

N

∑
xN=0

dA!dB!N!
xA!(dA − xA)!xB!(dB − xB)!xN !(N − xN)!

γxA+xB+xN ·

· (1− γ)dA+dB+N−xA−xB−xN

(
4π(1− π)

2− γ̂
((xA − xB)− γ̂(dA − dB))

)
=

4π(1− π)

2− γ̂

[
dA

∑
xA=0

dA!
xA!(dA − xA)!

γxA (1− γ)dA−xA xA

−
dB

∑
xB=0

dB!
xB!(dB − xB)!

γxB (1− γ)dB−xB xB − γ̂(dA − dB)

]

=
4π(1− π)

2− γ̂
[E[xA]−E[xB]− γ̂(dA − dB)]

=
4π(1− π)

2− γ̂
(dA − dB)(γ− γ̂).

Thus, if dA > dB and γ > γ̂, then the derivative is positive, which means that E[µ|ω] is

distorted towards A for low q. If instead dA > dB and γ̂ > γ, then the derivative is negative, which

means that E[µ|ω] is distorted towards B for low q.

C Proof of Proposition 3

Recall that agent i has dA A-dogmatic, dB B-dogmatic, and n normal friends and that dA > dB.32

Given T periods, denote the number of signals s = a received by

• agent i as ai,

• A-dogmatic friend j of agent i as aA
j , j ∈ {1, 2, . . . , dA},

• B-dogmatic friend j of agent i as aB
j , j ∈ {1, 2, . . . , dB},

• normal friend j of agent i as aN
j , j ∈ {1, 2, . . . , n}.

Denote the number of signals s = b received by

32Our argument relates to that in Berk’s (1966) main characterization result. We provide a direct proof,
as this helps us show the dependence of the limit beliefs on the parameters of interest in this paper.
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• agent i as bi,

• A-dogmatic friend j of agent i as bA
j , j ∈ {1, 2, . . . , dA},

• B-dogmatic friend j of agent i as bB
j , j ∈ {1, 2, . . . , dB},

• normal friend j of agent i as bN
j , j ∈ {1, 2, . . . , n}.

Then, the number of no-signal arrivals for the same agents is given by

• (T − ai − bi) for agent i,

• (T − aA
j − bA

j ) for A-dogmatic friend j of agent i, j ∈ {1, 2, . . . , dA},

• (T − aB
j − bB

j ) for B-dogmatic friend j of agent i, j ∈ {1, 2, . . . , dB},

• (T − aN
j − bN

j ) for normal friend j of agent i, j ∈ {1, 2, . . . , n}.

Over the T periods, i’s A-dogmatic friend j stayed silent bA
j times, whereas her B-dogmatic friend k

stayed silent aB
k times.

Agent i’s posterior satisfies

µ(sT) =
π

π + (1− π)QMΓ̂S
,

where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j ,

S =
dB

∑
j=1

(T − bB
j )−

dA

∑
j=1

(T − aA
j ).

Thus, plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only if QMΓ̂S converges to zero

(resp. +∞) with probability 1 as T → ∞ or, equivalently, ln
(
QMΓ̂S) converges to −∞ (resp. +∞)

with probability 1 as T → ∞. Using z(q, γ̂) = ln(Γ̂)[ln(Q)]−1, we can write ln
(
QMΓ̂S) as
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ln(Q)K(x, T; q, γ̂), where

K(x, T; q, γ̂) = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j

+

(
dB

∑
j=1

(T − bB
j )−

dA

∑
j=1

(T − aA
j )

)
z(q, γ̂),

and

x = (ai, bi, (aN
j , bN

j )n
j=1, (aA

j , bA
j )dA

j=1, (aB
j , bB

j )dB
j=1).

Given ln(Q) < 0, we require that K(x, T; q, γ̂) converge to +∞ (resp. −∞) with probability 1 as

T → ∞. Note that

lim
T→∞

K(x, T; q, γ̂) = lim
T→∞

T
(

K(x, T; q, γ)

T

)
.

Using H(q; A) = q and H(q; B) = 1− q, by the Law of Large Numbers we have

plim
T→∞

K(x, T; q, γ̂)

T
= (γH(q; ω)− γ(1− H(q; ω))) +

n

∑
j=1

(γH(q; ω)− γ(1− H(q; ω)))

+
dA

∑
j=1

γH(q; ω)−
dB

∑
j=1

γ(1− H(q; ω)) +

+

(
dB

∑
j=1

(1− γ(1− H(q; ω)))−
dA

∑
j=1

(1− γH(q; ω))

)
z(q, γ̂)

= −γ(1 + n + (1 + z(q, γ̂))dB)− (dA − dB)z(q, γ̂) +

+γ
(

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
)

H(q; ω).

Given this, plimT→∞ K(x, T; q, γ̂) = +∞ (resp. −∞) if and only if this last expression is positive

(resp. negative), which is equivalent to

H(q; ω) > (resp. <) τ(q) =
1
2

+
((2− γ)z(q, γ̂)− γ) (dA − dB)

2γ (2(1 + n) + (dA + dB)(1 + z(q, γ̂)))
. (8)
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Note that

lim
q→ 1

2

τ(q) =
1
2

+
(γ̂− γ) (dA − dB)

γ(2− γ̂)(2(2− γ̂)(1 + n) + 2(dA + dB))
,

lim
q→1

τ(q) =
1
2

+
−γ(dA − dB)

2γ (2(1 + n) + (dA + dB))
∈ (0, 1).

In Online Appendix B, we show that τ(q) is decreasing and concave for q ∈
( 1

2 , 1
)

and τ′
( 1

2

)
= 0.

There are two cases to consider. Suppose ω = B and hence H(q; B) = 1− q. If γ̂ < γ, con-

dition (8) holds with “>” at q = 1
2 and with “<” at q = 1. Given the aforementioned prop-

erties of τ(q), there exists a unique qLR ∈
( 1

2 , 1
)

such that plimT→∞ µ(sT) = 1 if q < qLR and

plimT→∞ µ(sT) = 0 if q > qLR.33 If γ̂ > γ, condition (8) holds with “<” at q = 1
2 and hence at all

q ∈
( 1

2 , 1
)

by the properties of τ(q). It follows that plimT→∞ µ(sT) = 0 for all q ∈
( 1

2 , 1
)
.

Now suppose ω = A and hence H(q; A) = q. If γ̂ < γ, condition (8) holds with “>” at q = 1
2

and hence at all q ∈
( 1

2 , 1
)

by the properties of τ(q). It follows that plimT→∞ µ(sT) = 1 for all

q ∈
( 1

2 , 1
)
. If γ̂ > γ, condition (8) holds with “<” at q = 1

2 and with “>” at q = 1. By the

properties of τ(q), there exists a unique qLR ∈
( 1

2 , 1
)

such that plimT→∞ µ(sT) = 0 if q < qLR and

plimT→∞ µ(sT) = 1 if q > qLR.

D Proof of Proposition 4

Assuming dA > dB, we prove that qLR is increasing in dA and γ and decreasing in dB, n and γ̂.

The case of dA < dB follows similarly.

Consider the case of ω = B and γ̂ < γ. The value of qLR is the unique fixed point that satisfies

1− q =
1 + n + (1 + z(q, γ̂))dB + z(q,γ̂)

γ (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
,

33For q = qLR, plimT→∞ µ(sT) may not be unique, consistent with Berk’s (1966) discussion of his asymp-
totic carrier set A0 when this contains more than one point.
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or equivalently

q− 1
2

=
(γ− (2− γ)z(q, γ̂)) (dA − dB)

2γ (2(1 + n) + (dA + dB)(1 + z(q, γ̂)))
(9)

The right-hand side of the latter condition is strictly decreasing in dB, n and γ̂, which implies that

qLR is also decreasing in these variables. Since the right-hand side is increasing in γ, so is qLR.

Finally, one can show that the derivative of the right-hand side of the former condition with respect

to dA equals

(
(2− γ)z(q, γ̂)− γ(1 + z2(q, γ̂))

)
dB + (1 + n) ((1− γ)z(q, γ̂)− γ)

γ(2 + 2n + (dA + dB)(1 + z(q, γ̂)))2 < 0,

where the inequality follows from (2− γ)z(q, γ̂) < γ < γ(1 + z2(q, γ̂)) and (1− γ)z(q, γ̂) < γ.

This implies that qLR is increasing in dA.

Now consider the case of ω = A and γ̂ > γ. The value of qLR is determined by the equation

q =
1 + n + (1 + z(q, γ̂))dB + z(q,γ̂)

γ (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
.

We can rewrite it as

q− 1
2

=
((2− γ)z(q, γ̂)− γ) (dA − dB)

2γ (2(1 + n) + (dA + dB)(1 + z(q, γ̂)))
. (10)

By similar arguments, the right-hand side of the former condition is increasing in dA; the right-

hand side of the latter condition is strictly decreasing in n, dB, and γ and increasing in γ̂. The

properties of qLR follow similarly.

E Complete Proposition 5 and its Proof

While Proposition 5 focused on the case λAdA > λBdB, we state and prove a more general result

that also covers the case λAdA < λBdB.

Proposition 10. Fix any agent with echo chamber e = (dA, dB, n) that satisfies dA > dB and

n ≥ 1. For any other echo chamber e′ = (λAdA, λBdB, λNn) with λN ≥ 0, λA ≥ 0 and λB ≥ 0, we
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have qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) if

λN ≥ 1 +

(
|λAdA − λBdB|

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
· J(dA, dB, γ̂, λA, λB), (11)

where

J(dA, dB, γ̂, λA, λB) =


max

{
(λA − λB) 2

2−γ̂ , (λA − λB)
}

, if λAdA > λBdB

max
{(

λB
dB
dA
− λA

dA
dB

)
2

2−γ̂ ,
(

λB
dB
dA
− λA

dA
dB

)}
, otherwise.

Proof. We need to consider the fixed-point condition that defines qLR, which is (9) or (10) depending

on which state results in incorrect learning.

Case 1: γ̂ < γ. Suppose λAdA − λBdB > 0. Then incorrect learning can occur in state B under

both the original and the new echo chamber. A sufficient condition for qLR(e, γ, γ̂) < qLR(e′, γ, γ̂)

is the following:34

(γ− (2− γ)z(q, γ̂)) (λAdA − λBdB)

2(1 + λNn) + (λAdA + λBdB)(1 + z(q, γ̂))
<

(γ− (2− γ)z(q, γ̂)) (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
, for all q.

Given γ̂ < γ, one can show that γ− (2− γ)z(q, γ̂) > 0 for all q. Using this and rearranging, the

previous condition becomes

λN > 1 +

(
λAdA − λBdB

dA − dB
− 1
)(

1 +
1
n

)
+

(λA − λB)dAdB(1 + z(q, γ̂))

(dA − dB)
· 1

n
.

Since z(q, γ̂) takes values between 0 and γ̂
2−γ̂ , we obtain the sufficient condition

λN > 1 +

(
λAdA − λBdB

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
·max

{
(λA − λB)

2
2− γ̂

, (λA − λB)

}
.

Now suppose λAdA − λBdB < 0. In this case, incorrect learning occurs in state B for the

34Note that qLR(e, γ, γ̂) > qLR(e′, γ, γ̂) if the opposite inequality holds, which happens if λA = λB = λN
for instance.
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original echo chamber and state A for the new echo chamber. Then, qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) if

the following holds:

((2− γ)z(q, γ̂)− γ) (λAdA − λBdB)

2(1 + λNn) + (λAdA + λBdB)(1 + z(q, γ̂))
<

(γ− (2− γ)z(q, γ̂)) (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
, for all q.

Dividing by (γ− (2− γ)z(q, γ̂)) and simplifying as before we obtain the sufficient condition

λN > 1 +

(
λBdB − λAdA

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
·max

{(
λB

dB

dA
− λA

dA

dB

)
2

2− γ̂
,
(

λB
dB

dA
− λA

dA

dB

)}
.

Case 2: γ̂ > γ. Suppose λAdA− λBdB > 0. Then incorrect learning can occur in state A under

both the original and the new echo chamber. Then, qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) if the following holds:

((2− γ)z(q, γ̂)− γ) (λAdA − λBdB)

2(1 + λNn) + (λAdA + λBdB)(1 + z(q, γ̂))
<

((2− γ)z(q, γ̂)− γ) (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
, for all q.

For γ̂ > γ, the difference (2− γ)z(q, γ̂)− γ is positive when q is close to 1
2 . It also must be positive

to have qLR > 1
2 . Thus, we can divide both sides by it and simplify in the same way as above,

obtaining the sufficient condition

λN > 1 +

(
λAdA − λBdB

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
·max

{
(λA − λB)

2
2− γ̂

, (λA − λB)

}
.

Now suppose λAdA − λBdB < 0. Then, incorrect learning occurs in state A for the original

echo chamber and state B for the new echo chamber. In this case, qLR(e, γ, γ̂) < qLR(e′, γ, γ̂) if the

following holds:

(γ− (2− γ)z(q, γ̂)) (λAdA − λBdB)

2(1 + λNn) + (λAdA + λBdB)(1 + z(q, γ̂))
<

((2− γ)z(q, γ̂)− γ) (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
, for all q.
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Following the same steps as before, we obtain the sufficient condition

λN > 1 +

(
λBdB − λAdA

dA − dB
− 1
)(

1 +
1
n

)
+

dAdB

dA − dB
· 1

n
·max

{(
λB

dB

dA
− λA

dA

dB

)
2

2− γ̂
,
(

λB
dB

dA
− λA

dA

dB

)}
.

�

F Proof of Proposition 6

Case 1: ω = B and γ̂ < γ. In this case, qLR is defined by condition (9). Fix dA, dB, n, λ and

q̂, we need to find λN such that

q̂ >
1
2

+
(γ− (2− γ)z(qLR, γ̂)) (λdA − λdB)

2γ (2(1 + λNn) + (λdA + λdB)(1 + z(qLR, γ̂)))
.

Since the right-hand side is decreasing in z(q, γ̂), we obtain a sufficient condition by imposing the

inequality for the lowest value of z(q, γ̂), which is 0. Rearranging yields the following condition:

λN >
dA − q̂(dA + dB)

(2q̂− 1)n
λ− 1

n
.

Case 2: ω = A and γ̂ > γ. In this case, qLR is defined by condition (10). Fixing again

dA, dB, n, λ and q̂, we need to find λN such that

q̂ >
1
2

+
((2− γ)z(q, γ̂)− γ) (λdA − λdB)

2γ (2(1 + λNn) + λ(dA + dB)(1 + z(q, γ̂)))
.

Since the right-hand side is increasing in z(q, γ̂), we obtain a sufficient condition by imposing the

inequality for the highest value of z(q, γ̂), which is γ̂
2−γ̂ . Rearranging gives the following:

λN >

(
γ̂
γ − 2q̂

)
dA −

(
γ̂
γ − 2(1− q̂)

)
dB

(2q̂− 1)n(2− γ̂)
λ− 1

n
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G Proof of Proposition 7

For this proof, we will use the notation Π(q; e), Nω(q; e), and N−ω(q; e) to explicitly account for

the dependence of Π and these sets on q. We start with the following Lemma 5.

Lemma 5. As q increases, the set Nω(q; e) weakly expands and the set N−ω(q; e) weakly shrinks,

both in the sense of set inclusion.

Proof. Fix any q̂ > 1
2 . Suppose i ∈ Nω(q̂; e). There are two possibilities. If qLR(ei, γ, γ̂) > q̂,

then i’s dogmatic majority must be towards the correct state ω. Increasing q beyond qLR(ei, γ, γ̂)

will lead the agent to learn correctly that the state is ω. Hence, i ∈ Nω(q; e) for all q > q̂. If

qLR(ei, γ, γ̂) < q̂ (for simplicity we omit the knife-edge case of equality), then i is already learning

correctly and increasing q will not change her asymptotic beliefs. Thus, i ∈ Nω(q; e) for all q > q̂.

We conclude that Nω(q; e) does not shrink as q increases.

Now consider j ∈ N−ω(q̂; e). This means that qLR(ei, γ, γ̂) > q̂. Increasing q beyond qLR(ei, γ, γ̂)

will lead j to learn correctly, which means she will leave N−ω(q; e).

�

Without loss of generality, label the agents so that qLR(ei, γ, γ̂) < qLR(ej, γ, γ̂) if and only if

i < j. Suppose ω = A. Fix any q̂ > 1
2 and consider sets NA(q̂; e) and NB(q̂; e). Let i(q̂) be the

lowest i such that qLR(ei, γ, γ̂) > q̂. As q increases to any q′ that satisfy qLR(ei(q̂), γ, γ̂) < q′ <

qLR(ei(q̂)+1, γ, γ̂), agent i(q̂) will flip from NB(q; e) to NA(q; e). This implies

|NA(q′; e)| = |NA(q̂; e)|+ 1 and |NB(q′; e)| = |NB(q̂; e)| − 1.

Consider the long-run polarization:

Π(q̂; e) =
4
|N | · |NA(q̂; e)||NB(q̂; e)|

Π(q′; e) =
4
|N | · (|NA(q̂; e)|+ 1) (NB(q̂; e)− 1)
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Note that Π(q̂; e) ≥ Π(q′; e) if and only if

|NB(q̂)| ≤ |NA(q̂)|+ 1.

Hence, Π(q; e) weakly decreases as q increases if and only if initially (i.e., at q = q̂) the set of

eventually incorrect agents is smaller than the set of eventually correct agents plus one. Since

NB(q; e) weakly shrinks in q, a necessary and sufficient condition for Π(q; e) to be weakly decreasing

in q is that |NB( 1
2 ; e)| = |DB| is weakly smaller than |N | − |DB|+ 1, that is, |DB| ≤ 1

2 (|N |+ 1).

H Proof of Proposition 8

Consider ω = A—the argument is the same for ω = B. We want to find M such that P(ŝi
M =

1|ω = A) > q̄LR. This ensures by Proposition 3 that all agents in N learn correctly and hence

Π̂(e) = 0. Now, note that

P(ŝi
M = 0|ω = A) = P

(
M

∑
k=0

I{sik=a} <
M
2
|ω = A

)

=
bM

2 c
∑
k=0

M!
(M− k)!k!

qk(1− q)M−k

≤ exp

−2M

(
q−

⌊M
2

⌋
M

)2
 ,

where the last inequality follows from Hoeffding’s inequality (Hoeffding (1963)). Therefore, our

desired condition holds if

2M

(
q−

⌊M
2

⌋
M

)2

> − ln(1− q̄LR).

Recalling that M is an odd number by assumption (i.e., M = 2m + 1 for m ∈N), we have that

2M

(
q−

⌊M
2

⌋
M

)2

> 2M
(

q− 1
2

)2

.
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Therefore, it suffices that

2M
(

q− 1
2

)2

> − ln(1− q̄LR).
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Online Appendix: Additional Proofs
(For Online Publication Only)

A Other Misperceptions

In this appendix, we state and prove the formal results about long-run learning under each of

misperceptions considered in Section 6. Together, they imply Proposition 9.

A.1 Misperception (I): Random Selective Sharing

Proposition 11. Fix any agent with echo chamber e = (dA, dB, n), true probabilities of selective

sharing g and f , and perceived probabilities of selective sharing ĝ and f̂ .

• If dA > dB and g − f > ĝ − f̂ , there exists sufficiently small q > 1
2 such that the agent’s

belief converges to δA with probability 1 (i.e., µ(s∞) = 1).

• If dA > dB and g − f < ĝ − f̂ , there exists sufficiently small q > 1
2 such that the agent’s

belief converges to δB with probability 1 (i.e., µ(s∞) = 0).

• In either case, there exists sufficiently large q < 1 such that the agent’s belief converges to δω

with probability 1, where ω is the true state (i.e., µ(s∞) = I{ω=A}).

• If dA = dB, the agent’s belief converges to δω with probability 1, where ω is the true state

(i.e., µ(s∞) = I{ω=A}).

Proof. Adapt the terminology of Proposition 3’s proof as follows. Let ak
j be the number of signals

s = a that have been shared by agent i’s friend j of type k ∈ {A, B, N}. Define bk
j similarly for s = b.

Then, agent i’s posterior that ω = A is

µ(sT) =
π

π + (1− π) ·QM ·
(

(1−γ)+γ(q(1−ĝ)+(1−q)(1− f̂ ))

(1−γ)+γ((1−q)(1−ĝ)+q(1− f̂ ))

)S ,
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where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

(aA
j − bA

j )−
dB

∑
j=1

(bB
j − aB

j ),

S =
dB

∑
j=1

(T − aB
j − bB

j )−
dA

∑
j=1

(T − aA
j − bA

j ).

For p̂ = (ĝ, f̂ ), define the function

z(q, γ, p̂) = ln

(
(1− γ) + γ(q(1− ĝ) + (1− q)(1− f̂ ))

(1− γ) + γ((1− q)(1− ĝ) + q(1− f̂ ))

)
[ln Q]−1 .

Similarly to Proposition 3, we have plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only

if plimT→∞
K(x,T;q,γ,p,p̂)

T > 0 (resp. < 0), where

plim
T→∞

K(x, T; q, γ, p, p̂)

T
= γ(1 + νn)(2H(q; ω)− 1)

+ γdA(gH(q; ω)− f (1− H(q; ω)))− γdB(g(1− H(q; ω))− f H(q; ω))

+ dB(1− γ f H(q; ω)− γg(1− H(q; ω))z(q, γ, p̂)

− dA(1− γgH(q; ω)− γ f (1− H(q; ω))z(q, γ, p̂)

= −γ(1 + νn)− γ f dA − γgdB + ((1− γg)dB − (1− γ f )dA) z(q, γ, p̂)

+ γ
(

2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂))

+ f (dA + dB)(1− z(q, γ, p̂))
)

H(q; ω).

The required inequality is then

H(q; ω) > (resp. <)
γ(1 + νn) + γ f (1− z(q, γ, p̂)) dA + γg (1 + z(q, γ, p̂)) dB + (dA − dB)z(q, γ, p̂)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
,

which is equivalent to

H(q; ω) > (resp. <)
1
2

+

((
1− γ

2 ( f + g)
)

z(q, γ, p̂)− γ
2 (g− f )

)
(dA − dB)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
.
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Fix state ω = B so that H(q; B) = 1− q. The inequality above takes form

q < (resp. >)
1
2

+

(γ
2 (g− f )−

(
1− γ

2 ( f + g)
)

z(q, γ, p̂)
)

(dA − dB)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
. (12)

This implies that if dA = dB, then plimT→∞ µ(sT) = 0.

It can be shown that

lim
q→1

z(q, γ, p̂) = 0 and lim
q→ 1

2

z(q, γ, p̂) =
γ
2 (ĝ− f̂ )

(1− γ) + γ
2 (2− ĝ− f̂ )

,

which increases in ĝ and decreases in f̂ . Using this limit, condition (12) at q = 1
2 becomes

1
2
< (resp. >)

1
2

+

1
2

(
(g− f )− (ĝ− f̂ )

)
(dA − dB)

2(1 + νn)(1− γ
2 (ĝ + f̂ )) + g(dA + dB)(1− γ(ĝ + f̂ ))

,

and at q = 1 it becomes

1 < (resp. >)
(g− f )(dA − dB)

(2(1 + νn) + (g + f )(dA + dB))
.

Given dA > dB, the first condition holds with “<” whenever (g− f ) > (ĝ− f̂ ); the second holds

with “>”. By continuity, there exists q′ and q′′ that satisfy 1
2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 1

if q < q′, and plimT→∞ µ(sT) = 0 if q > q′′.

Now suppose ω = A so that H(q; A) = q. The key inequality takes form

q > (resp. <)
1
2

+

((
1− γ

2 ( f + g)
)

z(q, γ, p̂)− γ
2 (g− f )

)
(dA − dB)

γ (2(1 + νn) + g(dA + dB)(1 + z(q, γ, p̂)) + f (dA + dB)(1− z(q, γ, p̂)))
. (13)

At q = 1
2 , it takes form

1
2
> (resp. <)

1
2
−

1
2

(
(g− f )− (ĝ− f̂ )

)
(dA − dB)

2(1 + νn)(1− γ
2 (ĝ + f̂ )) + g(dA + dB)(1− γ(ĝ + f̂ ))
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and at q = 1, it takes the form

1 > (resp. <)− (g− f )(dA − dB)

2(1 + νn) + ( f + g)(dA + dB)
.

Given (g− f ) < (ĝ− f̂ ), the first condition holds with “<”; the second condition holds with “>”.

By continuity, there exists q′ and q′′ that satisfy 1
2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 0 if q < q′,

and plimT→∞ µ(sT) = 1 if q > q′′.

�

A.2 Misperception (II): Friends’ Types

Proposition 12. Fix any agent with echo chamber e = (dA, dB, n) and misperceived number of

dogmatic friends d̂A ≤ dA and d̂B ≤ dB.

• If dA − dB > d̂A − d̂B, there exists sufficiently small q > 1
2 such that the agent’s belief

converges to δA with probability 1 (i.e., µ(s∞) = 1).

• If dA − dB < d̂A − d̂B, there exists sufficiently small q > 1
2 such that the agent’s belief

converges to δB with probability 1 (i.e., µ(s∞) = 0).

• In either case, there exists sufficiently large q < 1 such that the agent’s belief converges to δω

with probability 1, where ω is the true state (i.e., µ(s∞) = I{ω=A}).

• If dA − dB = d̂A − d̂B = 0, the agent’s belief converges to δω with probability 1, where ω is

the true state (i.e., µ(s∞) = I{ω=A}).

Proof. Let the perceived number of A-dogmatic and B-dogmatic friends be d̂A = dA − n̂A and

d̂B = dB − n̂B. Then agent’s i posterior belief is

µ(sT) =
π

π + (1− π) ·QM ·
(

(1−γ)+γ(1−q)
(1−γ)+γq

)S ,
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where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j ,

S =
d̂B

∑
j=1

(T − bB
j )−

d̂A

∑
j=1

(T − aA
j ).

Define the function

z(q, γ) = ln
(

(1− γ) + γ(1− q)

(1− γ) + γq

)
[ln Q]−1.

Similar to Proposition 3, we have plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only if

plimT→∞
K(x,T;q,γ)

T > 0 (resp. < 0), where

plim
T→∞

K(x, T; q, γ)

T
= γ(1 + n)(2H(q, ω)− 1) + γdAH(q, ω)− γdB(1− H(q, ω))+

+
(

d̂B(1− γ(1− H(q, ω)))− d̂A(1− γH(q, ω))
)

z(q, γ)

= −γ(1 + n)− γdB + d̂B(1− γ)z(q, γ)− d̂Az(q, γ)+

+ γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
)

H(q, ω).

The required inequality is then

H(q; ω) > (resp. <)
γ(1 + n) + γdB + γd̂Bz(q, γ) + (d̂A − d̂B)z(q, γ)

γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
) ,

which is equivalent to

H(q; ω) > (resp. <)
1
2

+
−γ

2 (dA − dB) +
(
1− γ

2

)
(d̂A − d̂B)z(q, γ)

γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
) .

Note that if d̂A − d̂B = dA − dB = 0, this inequality holds with “>” when ω = A and “<” when

ω = B, implying plimT→∞ µ(sT) = I{ω=A}.
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Fix state ω = B so that H(q; B) = 1− q. Then the inequality above takes form

q < (resp. >)
1
2

+
γ(dA − dB)− (2− γ)(d̂A − d̂B)z(q, γ)

2γ(2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ))
. (14)

It can be shown that

lim
q→1

z(q, γ) = 0 and lim
q→ 1

2

z(q, γ) =
γ

2− γ
.

Using this limit, condition (14) at q = 1
2 becomes

1
2
< (resp. >)

1
2

+
γ
(

(dA − dB)− (d̂A − d̂B)
)

2γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B) γ
2−γ

) ,

and at q = 1 it becomes

1 < (resp. >)
1
2

+
γ(dA − dB)

2γ(2(1 + n) + (dA + dB))
.

The first inequality holds with “<” if and only if d̂A − d̂B < dA − dB; the second holds with “>”.

By continuity, there exists q′ and q′′ that satisfy 1
2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 1 if q < q′

and plimT→∞ µ(sT) = 0 if q > q′′.

Now suppose ω = A so that H(q; A) = q. The key inequality takes form

q > (resp. <)
1
2

+
−γ

2 (dA − dB) +
(
1− γ

2

)
(d̂A − d̂B)z(q, γ)

γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B)z(q, γ)
) . (15)

At q = 1
2 , it takes form

1
2
> (resp. <)

1
2
−

γ
(

(dA − dB)− (d̂A − d̂B)
)

2γ
(

2(1 + n) + (dA + dB) + (d̂A + d̂B) γ
2−γ

) ,
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and at q = 1, it takes form

1 > (resp. <)
1
2
− γ(dA − dB)

2γ(2(1 + n) + (dA + dB))
.

The first inequality holds with “<” whenever d̂A − d̂B > dA − dB; the second holds with “>”. By

continuity, there exists q′ and q′′ that satisfy 1
2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 0 if q < q′ and

plimT→∞ µ(sT) = 1 if q > q′′.

�

A.3 Misperception (III): Information Quality

Proposition 13. Fix any agent with echo chamber e = (dA, dB, n) and any perceived information

quality q̂ > 1
2 .

• If dA > dB and γ < 1, there exists sufficiently small q ∈
( 1

2 , q̂
)

such that the agent’s belief

converges to δA with probability 1 (i.e., µ(s∞) = 1) and sufficiently large q < 1 such that

the agent’s belief converges to δω with probability 1, where ω is the true state (i.e., µ(s∞) =

I{ω=A}).

• If either dA = dB or γ = 1, the agent’s belief converges to δω with probability 1, where ω is

the true state (i.e., µ(s∞) = I{ω=A}).

Proof. Fix echo chamber e = (dA, dB, n). Keep notations the same as in the proof of Proposition 3.

After T periods, the agent’s posterior in state A is

µ(sT) =
π

π + (1− π) ·
(

1−q̂
q̂

)M
·
(

γ(1−q̂)+(1−γ)
γq̂+(1−γ)

)S ,
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where

M = (ai − bi) +
n

∑
j=1

(aN
j − bN

j ) +
dA

∑
j=1

aA
j −

dB

∑
j=1

bB
j ,

S =
dB

∑
j=1

(T − bB
j )−

dA

∑
j=1

(T − aA
j ).

Define the function

z(q̂, γ) = ln
(

(1− γ) + γ(1− q̂)

(1− γ) + γq̂

) [
ln
(

1− q̂
q̂

)]−1

.

Similar to Proposition 3, we have plimT→∞ µ(sT) = 1 (resp. plimT→∞ µ(sT) = 0) if and only if

plimT→∞
K(x,T;q,q̂,γ)

T > 0 (resp. < 0), where

plim
T→∞

K(x, T; q, q̂, γ)

T
= −γ(1 + n + (1 + z(q̂, γ))dB)− (dA − dB)z(q̂, γ)+

+ γ(2(1 + n) + (dA + dB)(1 + z(q̂, γ)))H(q; ω).

The required inequality is then

H(q; ω) > (resp. <)
γ(1 + n) + γ(1 + z(q̂, γ))dB + (dA − d− B)z(q̂, γ)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
,

which is equivalent to

H(q; ω) > (resp. <)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

Note that if dA = dB or γ = 1 (which implies z(q̂, γ) = 1), then the inequality holds with “>”

when ω = A and “<” when ω = B, implying plimT→∞ µ(sT) = I{ω=A}.

Fix state ω = B so that H(q; B) = 1− q. Then the inequality above takes form

q < (resp. >)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.
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At q = 1
2 , it takes form

1
2
< (resp. >)

1
2

+
(γ− (2− γ)z(q̂, γ))(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
,

and at q = 1, it takes form

1 < (resp. >)
1
2

+
(γ− (2− γ)z(q̂, γ))(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

As shown in the Online Appendix B, z(q̂, γ) is a (weakly) decreasing function that achieves max-

imum at q̂ = 1
2 , with value of γ

2−γ . Thus, γ− (2− γ)z(q̂, γ) > 0 for any q̂ > 1
2 . Given this and

dA > dB, the first inequality above holds with “<”; the second holds with “>”. By continuity, there

exist q′ and q′′ that satisfy 1
2 < q′ ≤ q′′ < 1, plimT→∞ µ(sT) = 1 if q < q′ and plimT→∞ µ(sT) = 0

if q > q′′.

Now suppose ω = A so that H(q; A) = q. The key inequality then is

q > (resp. <)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

At q = 1
2 , this inequality takes form

1
2
> (resp. <)

1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
,

and at q = 1, it takes form

1 > (resp. <)
1
2

+
((2− γ)z(q̂, γ)− γ)(dA − dB)

γ (2(1 + n) + (dA + dB)(1 + z(q̂, γ)))
.

Given (2− γ)z(q̂, γ)− γ < 0 and dA > dB, both inequalities hold with “>”. Therefore, for any

q > 1
2 , plimT→∞ µ(sT) = 1.

�
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B Properties of τ(q)

We will prove that τ(q) in condition (8) is concave for q ∈
( 1

2 , 1
)

and that τ′
( 1

2

)
= 0. Recall that

we assume dA > dB. We can write

τ(q) =
1 + n + (1 + z(q, γ̂))dB + z(q,γ̂)

γ (dA − dB)

2(1 + n) + (dA + dB)(1 + z(q, γ̂))
=

A + Bz(q, γ̂)

C + Dz(q, γ̂)
=

B
D

+
AD− BC

D(C + Dz(q, γ̂))
,

where

A = 1 + n + dB, B = dB +
dA − dB

γ̂
, C = 2 + 2n + dA + dB, D = dA + dB.

Also, we have that

AD− BC = −
(

dA + dB

γ̂
+

(2− γ̂)(1 + n)

γ̂

)
(dA − dB) ,

which is strictly negative. Therefore, τ(q) is concave if and only if g(q) is convex, where

g(q) =
1

C + Dz(q, γ̂)
.

We will prove this in steps.

Lemma 6. zq(q, γ̂) ≤ 0 for q ∈
( 1

2 , 1
)

and limq→ 1
2

zq(q, γ̂) = 0.

Proof. Consider the derivative of z(q, γ̂) with respect to q:

∂

∂q

ln
(

γ̂(1−q)+(1−γ̂)
γ̂q+(1−γ̂)

)
ln
(

1−q
q

) =
− γ̂(2−γ̂)

γ̂2q(1−q)+(1−γ̂)
· ln
(

1−q
q

)
+ ln

(
γ̂(1−q)+(1−γ̂)

γ̂q+(1−γ̂)

)
· 1

q(1−q)

ln2
(

1−q
q

)
=
− γ̂(2−γ̂)

γ̂2q(1−q)+(1−γ̂)
· ln
(

1−q
q

)
+ ln

(
1−q

q

)
· z(q,γ̂)

q(1−q)

ln2
(

1−q
q

)
=

(
1−γ̂

q(1−q)
+ γ̂2

)
z(q, γ̂)− (2− γ̂)γ̂

ln
(

1−q
q

)
· (γ̂2q(1− q) + (1− γ̂))

.

(16)
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Note that limq→ 1
2

z (q, γ̂) = γ̂
2−γ̂ > 0 = z(1, γ̂). This immediately implies that limq→ 1

2
zq(q, γ̂) = 0.

As z(q, γ̂) is continuously differentiable for q ∈
( 1

2 , 1
)
, it is enough to prove that there are

no local maximum on
( 1

2 , 1
)

in order to show that zq(q, γ̂) ≤ 0 holds on this interval. At an

intermediate local maximum, zq(q, γ̂) = 0 must hold. This requires that

(
1− γ̂

q(1− q)
+ γ̂2

)
z(q, γ̂)− (2− γ̂)γ̂ = 0

and hence

z(q, γ̂) =
γ̂(2− γ̂)

γ̂2 + 1−γ̂
q(1−q)

(17)

≤ γ̂(2− γ̂)

γ̂2 + 1−γ̂
1
4

=
γ̂

2− γ̂
.

This rules out that z(q, γ̂) is increasing at q = 1
2 , since it would need to achieve a local maximum

with value above γ̂
2−γ̂ . Now note that the right-hand side of (17) is strictly decreasing in q over( 1

2 , 1
)
. If z(q, γ̂) was to decrease at first (as q rises from 1

2) and then increase before going down to 0,

the value of z(q, γ̂) at the corresponding local maximum would be necessarily above the right-hand

side of (17), which is a contradiction. One final case is that z(q, γ̂) is decreasing at first, passing

through a local minimum, and then is increasing until q = 1. This would mean that the value at

the local minimum is less than z(1, γ̂), which is equal to 0. Since z(q, γ̂) > 0 for q ∈ ( 1
2 , 1) and

γ̂ ∈ (0, 1), this case is also impossible. We conclude that z(q, γ̂) is weakly decreasing over
( 1

2 , 1
)
. �

This implies that limq→ 1
1

g′ (q) = 0 because

g′(q) = −
Dzq(q, γ̂)

(C + Dz(q, γ̂))2 .

Lemma 7. g(q) is convex.
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Proof. Since

g′′(q) =
2D2 (zq(q, γ̂)

)2 − D(C + Dz(q, γ̂))zqq(q, γ̂)

(C + Dz(q, γ̂))3 ,

the result follows if we can prove that zqq(q, γ̂) < 0 for all q ∈
( 1

2 , 1
)
.

Using (16) and letting K(q) = 1[
ln
(

1−q
q

)]2
(γ̂2q(1−q)+(1−γ̂))

2
, we have

zqq(q, γ̂) = K(q)

[(
− (1−γ̂)(1−2q)

q2(1−q)2 +
(

1−γ̂
q(1−q)

+ γ̂2
)

zq(q, γ̂)
)

ln
(

1−q
q

) (
γ̂2q(1− q) + (1− γ̂)

)
−
((

1−γ̂
q(1−q)

+ γ̂2
)

z(q, γ̂)− γ̂(2− γ̂)
) (

−1
q(1−q)

(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1−q

q

)
γ̂2(1− 2q)

)]

= K(q)

[(
(1−γ̂)(2q−1)

q2(1−q)2 +
(

1−γ̂
q(1−q)

+ γ̂2
)

zq(q, γ̂)
)

ln
(

1−q
q

) (
γ̂2q(1− q) + (1− γ̂)

)
+

+
((

1−γ̂
q(1−q)

+ γ̂2
)

z(q, γ̂)− γ̂(2− γ̂)
) (

1
q(1−q)

(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1−q

q

)
γ̂2(2q− 1)

)]
.

Let

C1(q) =
(1− γ̂)(2q− 1)

q2(1− q)2 +

(
1− γ̂

q(1− q)
+ γ̂2

)
zq(q, γ̂),

C2(q) =

(
1− γ̂

q(1− q)
+ γ̂2

)
z(q, γ̂)− γ̂(2− γ̂),

C3(q) =
1

q(1− q)

(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1− q

q

)
γ̂2(2q− 1).

Then we can write

zqq(q, γ̂) = K(q)

[
C1(q) ln

(
1− q

q

) (
γ̂2q(1− q) + (1− γ̂)

)
+ C2(q)C3(q)

]
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Using the expression of zq(q, γ̂), we can write C1(q) as

C1(q) =
(1− γ̂)(2q− 1)

q2(1− q)2 +
γ̂2q(1− q) + (1− γ̂)

q(1− q)
·

(
1−γ̂

q(1−q)
+ γ̂2

)
z(q, γ̂)− γ̂(2− γ̂)

ln
(

1−q
q

)
(γ̂2q(1− q) + (1− γ̂))

=
(1− γ̂)(2q− 1) ln

(
q

1−q

)
+ γ̂(2− γ̂)q(1− q)−

(
γ̂2q(1− q) + (1− γ̂)

)
z(q, γ̂)

q2(1− q)2 ln
(

q
1−q

)
and therefore

C1(q) ln
(

1− q
q

) (
γ̂2q(1− q) + (1− γ̂)

)
= −

(
γ̂2q(1− q) + (1− γ̂)

)
·

·
(1− γ̂)(2q− 1) ln

(
q

1−q

)
+ γ̂(2− γ̂)q(1− q)−

(
γ̂2q(1− q) + (1− γ̂)

)
z(q, γ̂)

q2(1− q)2

Using

C2(q)C3(q) =
(γ̂2q(1−q)+(1−γ̂))z(q,γ̂)·

[
(γ̂2q(1−q)+(1−γ̂))+ln

(
1−q

q

)
γ̂2(2q−1)q(1−q)

]
q2(1−q)2

−γ̂(2− γ̂)
(γ̂2q(1−q)+(1−γ̂))q(1−q)+ln

(
1−q

q

)
γ̂2(2q−1)q2(1−q)2

q2(1−q)2 ,

we can write

zqq(q, γ̂)q2(1− q)2

K(q)
=
(

2
(
γ̂2q(1− q) + (1− γ̂)

)
+ ln

(
1−q

q

)
γ̂2(2q− 1)(1− q)

)
·

·
(
γ̂2q(1− q) + (1− γ̂)

)
z(q, γ̂)

+
(
γ̂2q(1− q) + (1− γ̂)

) [
(1− γ̂)(2q− 1) ln

(
1−q

q

)
− 2γ̂(2− γ̂)q(1− q)

]
+ ln

(
q

1−q

)
γ̂3(2− γ̂)(2q− 1)q2(1− q)2

= 2
(
γ̂2q(1− q) + (1− γ̂)

)2 z(q, γ̂) + ln
(

q
1−q

)
γ̂3(2− γ̂)(2q− 1)q2(1− q)2

−
(
γ̂2q(1− q) + (1− γ̂)

)
ln
(

q
1−q

)
(2q− 1)

[
γ̂2(1− q)z(q, γ̂) + (1− z(q, γ̂))

]
−2
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)(2− z(q, γ̂))q(1− q).
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Let

D1(q) = 2
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)

− ln
(

q
1−q

)
(2q− 1)(1− z(q, γ̂))− 2z(q, γ̂)(2− z(q, γ̂))q(1− q)

and

D2(q) = z(q, γ̂)3(2− z(q, γ̂))q2(1− q)2

−
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)2(1− q)z(q, γ̂)

Then we have

zqq(q, z(q, γ̂))q2(1− q)2

K(q)
=
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
D1(q) + ln

(
q

1− q

)
(2q− 1)D2(q).

(18)

Note that

D1(q) ≤ 2
(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

) z(q,γ̂)
2−z(q,γ̂)

− ln
(

q
1−q

)
(2q− 1)(1− z(q, γ̂))− 2z(q, γ̂)(2− z(q, γ̂))q(1− q)

= 1
2−z(q,γ̂)

[
2z(q, γ̂)3q(1− q) + 2z(q, γ̂)(1− z(q, γ̂))

− ln
(

q
1−q

)
(2q− 1)(1− z(q, γ̂))(2− z(q, γ̂))− 2z(q, γ̂)(2− z(q, γ̂))2q(1− q)

]
=

1− z(q, γ̂)

2− z(q, γ̂)
E(q),

where E(q) = 2z(q, γ̂)(1− 4q(1− q))− ln
(

q
1−q

)
(2q− 1)(2− z(q, γ̂)). Differentiating this expres-

sion with respect to q, we get

E′(q) = 2z(q, γ̂) · 4(2q− 1)− 1
q(1− q)

(2q− 1)(2− z(q, γ̂))− 2 ln
(

q
1− q

)
(2− z(q, γ̂))

= (2q− 1)

(
4z(q, γ̂)− 2− z(q, γ̂)

q(1− q)

)
− 2 ln

(
q

1− q

)
(2− z(q, γ̂))

< (2q− 1) (4z(q, γ̂)− 4(2− z(q, γ̂)))− 2 ln
(

q
1− q

)
(2− z(q, γ̂)) < 0
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for q ∈
( 1

2 , 1
)
. Therefore, E(q) < E

( 1
2

)
for any q ∈

( 1
2 , 1
)
, where

E
(

1
2

)
= 2z(q, γ̂)

(
1− 4 · 1

4

)
− ln(1)

(
2 · 1

2
− 1
)

(2− z(q, γ̂)) = 0.

Therefore, we can conclude that D1(q) < 0 for q ∈
( 1

2 , 1
)
.

Returning to D2(q), note that

D2(q) = z(q, γ̂)2(1− q)
[
z(q, γ̂)(2− z(q, γ̂))q2(1− q)−

(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)

]
< z(q, γ̂)2(1− q)

[
z(q, γ̂)(2− z(q, γ̂))q(1− q)−

(
z(q, γ̂)2q(1− q) + (1− z(q, γ̂))

)
z(q, γ̂)

]
The expression in the brackets is the negative of the numerator in zq(q, z(q, γ̂)). Given that

zq(q, z(q, γ̂)) is negative and its expression includes ln
(

1−q
q

)
, it follows that the numerator has to

be positive. This implies that the expression above is negative, and therefore, D2(q) must be neg-

ative as well.

Using D1(q) < 0 and D2(q) < 0 for q ∈
( 1

2 , 1
)

and (18), we can conclude that zqq(q, z(q, γ̂)) < 0

for q ∈
( 1

2 , 1
)
.
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Barberá, P. (2020). Social Media, Echo Chambers, and Political Polarization, Chapter 3,

pp. 34–55. Cambridge University Press.

Bartels, L. M. (2008). Unequal Democracy: The Political Economy of the New Gilded Age.

Princeton University Press.

Ben-Porath, E., E. Dekel, and B. Lipman (2018). Disclosure and Choice. Review of Economic

Studies 85(3), 1471–1501.

Berk, R. H. (1966, 02). Limiting Behavior of Posterior Distributions when the Model is

Incorrect. Ann. Math. Statist. 37(1), 51–58.

Bertrand, M. and E. Kamenica (2018). Coming Apart? Cultural Distances in the United

States over Time. NBER Working Papers 24771, National Bureau of Economic Research,

Inc.

70



Bishop, B. (2009). The Big Sort: Why the Clustering of Like-Minded America is Tearing us Apart.

Houghton Mifflin Harcourt.

Bohren, A. and D. Hauser (2018). Social Learning with Model Misspecification: A Frame-

work and a Robustness Result. PIER Working Paper Archive 18-017, Penn Institute for

Economic Research, Department of Economics, University of Pennsylvania.

Bohren, J. A. (2016). Informational Herding with Model Misspecification. Journal of

Economic Theory 163(C), 222–247.

Boxell, L., M. Gentzkow, and J. Shapiro (2018). Greater Internet Use is Not Associated with

Faster Growth of Political Polarization Among US Demographic Groups. Proceedings of

the National Academy of Sciences 115(3).

Bursztyn, L., G. Egorov, R. Enikolopov, and M. Petrova (2019). Social Media and Xeno-

phobia: Evidence from Russia. NBER Working Paper No. 26567.

Conroy-Krutz, J. and D. C. Moehler (2015). Moderation from Bias: A Field Experiment on

Partisan Media in a New Democracy. The Journal of Politics 77(2), 575–587.

Cross, P. (1977). Not Can But Will College Teachers Be Improved? New Directiosn for

Higher Education 17, 1–15.

Dasaratha, K. and K. He (2020). Network Structure and Naive Sequential Learning.

Theoretical Economics 15(2), 415–444.

DeMarzo, P., I. Kremer, and A. Skrzypacz (2019). Test Design and Minimum Standards.

American Economic Review 109(6), 2173–2207.

DeMarzo, P., D. Vayanos, and J. Zweibel (2003). Persuasion Bias, Social Influence, and

Unidimensional Opinions. Quarterly Journal of Economics 118(3), 909–968.

71



Desmet, K. and R. Wacziarg (2018). The Cultural Divide. CEPR Discussion Papers 12947,

C.E.P.R. Discussion Papers.

Dixit, A. and J. Weibull (2007). Political Polarization. Proceedings of the National Academy

of Sciences 104(18), 7351–7256.

Dye, R. (1985). Disclosure of Nonproprietary Information. Journal of Accounting

Research 23(1), 123–145.

Edwards, W. (1968). Conservatism in Human Information Processing. Formal

Representation of Human Judgment.

Enke, B. and F. Zimmermann (2017). Correlation Neglect in Belief Formation. The Review

of Economic Studies 86(1), 313–332.

Enke, B., F. Zimmermann, and F. Schwerter (2019). Associative Memory and Belief Forma-

tion. Working paper.

Esponda, I. and D. Pouzo (2016). Berk–Nash Equilibrium: A Framework for Modeling

Agents With Misspecified Models. Econometrica 84, 1093–1130.

Esponda, I., D. Pouzo, and Y. Yamamoto (2019). Asymptotic Behavior of Bayesian Learners

with Misspecified Models. arXiv preprint arXiv:1904.08551.

Esteban, J.-M. and D. Ray (1994). On the Measurement of Polarization. Econometrica 62(4),

819–851.

Evans, J. S. B. (1989). Bias in Human Reasoning: Causes and Consequences. Lawrence

Erlbaum Associates, Inc.
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