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Abstract

A key parameter in the analysis of wage inequality is the elasticity of substitution between

skilled and unskilled labor. We question the common view that the elasticity exceeds 1. Two

biases, publication and attenuation, conspire to pull the mean elasticity reported in the lit-

erature to 1.9. After correcting for the biases, the literature is consistent with the elasticity

in the US of 0.6–0.9. Our analysis relies on 729 estimates of the elasticity collected from 76

studies as well as 37 controls that reflect the context in which the estimates were obtained.

We use recently developed nonlinear techniques to correct for publication bias and employ

Bayesian and frequentist model averaging to address model uncertainty. Our results sug-

gest that, first, insignificant estimates of the elasticity are underreported. Second, because

researchers typically estimate the elasticity’s inverse, measurement error exaggerates the

elasticity, and we show the exaggeration is substantial. Third, elasticities are systematically

larger for developed countries, translog estimation, and methods that ignore endogeneity.
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1 Introduction

The elasticity of substitution between skilled and unskilled workers ranks among the most

frequently estimated parameters in labor economics: we found 729 estimates reported in 76

studies. The parameter commands the predictions of the canonical model of skill differentials,

especially the effect on the skill premium of a changing ratio of skilled workers and biased tech-

nological change (for instance, Katz & Murphy, 1992; Acemoglu, 2002; Ciccone & Peri, 2005).

It is also important for other questions, including the usefulness of cross-country heterogene-

ity in education for explaining cross-country heterogeneity in labor productivity (Klenow &

Rodriguez-Clare, 1997). Unlike most important parameters in economics, for which often little

consensus exists and calibrations vary by the order of magnitude (see, for example, Havranek,

2015, in the context of the elasticity of intertemporal substitution), the elasticity of substitution

between skilled and unskilled labor is with extraordinary consistency commonly calibrated at

1.5. As Cantore et al. (2017, p. 80) put it: “Most of [the] estimates [of the elasticity] range

between 1.3 and 2.5, with a consensus estimate around 1.5.” In this paper we use meta-analysis

(Stanley, 2001) to show that the literature is instead consistent with an elasticity below 1.

The observation by Cantore et al. (2017) is based on some of the most prominent papers in

the literature (Katz & Murphy, 1992; Ciccone & Peri, 2005; Autor et al., 2008), but holds equally

true for the literature as a whole as far as the first moment is concerned: the 729 estimates we

collect have a mean of 1.9 and median of 1.4. Nevertheless, Figure 1 illustrates that individual

studies estimating the elasticity show more disagreement than what is often acknowledged in

the applications of the estimates. Elasticities larger than 1 (suggesting that skilled and unskilled

labor are gross substitutes) dominate the literature and also frequently include values around 4.

Elasticities smaller than 1 (suggesting that skilled and unskilled labor are gross complements)

are not rare; indeed, the figure indicates a slight trend toward smaller elasticities in recent

years. So the literature is consistent with a wide range of potential calibrations, though of

course the first moment is key in informing them. The problem is that the mean reported

estimates in economics are routinely exaggerated by publication bias (Brodeur et al., 2016;

Bruns & Ioannidis, 2016; Christensen & Miguel, 2018; DellaVigna et al., 2019; Blanco-Perez &

Brodeur, 2020; Brodeur et al., 2020), often by a factor of 2 or more (Ioannidis et al., 2017).1

1On the other hand, some recent meta-analyses find no or only mild publication bias: Card et al. (2018) in
the literature on active labor market programs and Imai et al. (2020) in the literature on the present bias.
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Figure 1: Many studies defy the consensus of 1.5 elasticity
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Notes: The vertical axis shows the median estimate of the elasticity
of substitution reported in individual studies. The horizontal axis
shows the median year of the data used in the studies. The horizon-
tal line denotes unitary elasticity. The dashed line denotes a linear
trend. Outliers are omitted from the figure for ease of exposition
but included in all tests.

Publication bias stems from the tendency of authors, editors, or referees to prefer results

that are statistically significant and consistent with the theory (Stanley, 2005). In the context

of the elasticity of substitution between skilled and unskilled labor, negative estimates are

inconsistent with the canonical model and zero estimates are unintuitive. Few researchers are

eager to interpret such estimates, though negative or insignificant estimates of the elasticity will

appear from time to time given sufficient imprecision in data and methods. We hypothesize that

such estimates are underreported in the literature. The resulting selective reporting creates a

paradox: while it most likely improves the inference drawn from an individual study when the

researcher does not focus on negative and insignificant estimates, the literature as a whole gets

biased towards larger elasticities. The reason is that no upper limit exists that would mirror the

lower limit of zero (or statistical insignificance) and ensure symmetry in censoring. McCloskey &

Ziliak (2019) liken the problem to the Lombard effect in biology, in which speakers increase their

vocal effort in the presence of noise. So, too, can researchers intensify specification searching in

response to noise in their data and try a different estimation setup to obtain a larger estimate.

Our identification is based on a basic property of the techniques used to estimate the elasticity:

the ratio of the estimate to its standard error has a t-distribution, and thus in the absence of
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bias the numerator and denominator of the ratio should be statistically independent quantities.

Aside from intuitive linear techniques based on the Lombard effect, we employ caliper tests

due to Gerber & Malhotra (2008) and new nonlinear techniques due to Ioannidis et al. (2017),

Andrews & Kasy (2019), and Furukawa (2020).

We have noted that publication bias has been identified in many fields of economics. In most

cases, however, it is moderated by attenuation bias in the opposite direction. The “iron law

of econometrics” (Hausman, 2001) ensures that virtually all estimates are biased downwards in

magnitude because the independent variable is almost always measured with error. The inter-

play between publication and attenuation biases must be ubiquitous in economics, but to our

knowledge has not been explored before. The most famous and frequently used measurements

of the elasticity of substitution between skilled and unskilled labor estimate the inverse of the

elasticity, thus compounding potential publication bias with inevitable attenuation bias toward

larger estimates. For example, extreme measurement error would lead to a zero estimated re-

gression coefficient and thus infinite elasticity. The literature of course realizes the attenuation

bias problem, since data on both wages and labor supply can be notoriously noisy, and mea-

surement error is mentioned frequently in the literature (among others by Katz & Murphy,

1992; Angrist, 1995; Borjas, 2003; Bound et al., 2004; Borjas & Katz, 2007; Autor et al., 2008;

Card, 2009; Behar, 2010; Verdugo, 2014; Kawaguchi & Mori, 2016), though it is hard to find

an instrument that would be free of the error. A crude but straightforward way to measure

attenuation bias is to compare the implied estimates of the elasticity when the dependent and

independent variables are switched. The approach was used in this literature by Bowles (1970)

but not since. We employ meta-analysis techniques to exploit the fact that a portion of the

literature estimates the elasticity directly.

Our results suggest strong publication and attenuation bias. After correcting for the former,

the mean reported elasticity decreases from 1.9 to 1, which is consistent with the typical impact

of publication bias in economics identified by Ioannidis et al. (2017): twofold exaggeration.

The mean of inverted estimates is 1.5 larger than the mean of direct estimates, indicating

substantial attenuation bias; the difference remains 1.5 even when we control for publication

bias and other 35 controls that reflect the context in which the estimates were obtained (for

example, variable definition, data characteristics, design of the production function, estimation
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technique, and publication characteristics). To address the resulting model uncertainty, we use

Bayesian (Raftery et al., 1997; Eicher et al., 2011) and frequentist (Hansen, 2007; Amini &

Parmeter, 2012) model averaging, both thoroughly described in Steel (2020). For the former

we also employ the dilution prior (George, 2010) that alleviates potential collinearity. Finally,

we create a synthetic study that uses all estimates in the literature but assigns more weight

to those that are better specified (using Card, 2009, and Autor, 2014, as benchmarks). The

resulting estimates for the US range between 0.6 and 0.9, casting doubt on the common view

that skilled and unskilled labor are gross substitutes. We also find that larger estimates of

the elasticity are associated with developed countries, translog function, higher frequency data,

ignoring endogeneity, and controlling for the demand for skills.

The remainder of the paper is structured as follows: Section 2 briefly discusses how the elas-

ticity of substitution between skilled and unskilled labor is estimated, how we collect estimates

from primary studies, and presents a bird’s eye view of the literature. Section 3 examines pub-

lication bias. Section 4 investigates the sources of heterogeneity in the literature and calculates

the mean elasticity implied by the absence of publication bias and identification problems. Sec-

tion 5 concludes the paper. Appendix A presents additional diagnostics and robustness checks.

The data and codes are available in an online appendix at meta-analysis.cz/skill.

2 The Elasticity Dataset

The elasticity of substitution between skilled and unskilled labor is usually defined as the change

of the ratio in which these two factors are used in production divided by the change of the ratio of

their marginal products. Under perfect competition, production factors are paid their marginal

products and the elasticity can be written as

σUS =

d(LU/LS)
LU/LS

d(wS/wU )
wS/wU

= −d log(LU/LS)

d log(wU/wS)
, (1)

where LS and LU denote skilled and unskilled labor; wS and wU denote their respective wage

rates. Under a quasi-concave production function the elasticity of substitution attains any

value from zero to infinity. If σ = 0, the two types of labor form perfect complements. Fixed

proportions of the two inputs are needed to increase production; they cannot be substituted
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for each other. If σ ∈ (0, 1), skilled and unskilled workers are gross complements: an increased

supply of skilled workers increases the demand for unskilled workers. A unitary elasticity

implies that relative quantity changes are exactly proportional to relative price changes. If

σ > 1, skilled and unskilled workers form gross substitutes: unskilled workers can more easily

work on positions intended for skilled workers (though with a lower productivity), and skilled

workers can be tapped for a menial job. An increased supply of skilled workers decreases the

demand for unskilled workers.

To estimate the elasticity researchers usually assume a constant elasticity of substitution

(CES) production function:

Y = [α(aLS)ρ + (1− α)(bLU )ρ]
1
ρ , (2)

where skilled labor LS and unskilled labor LU are the sole factors of production, a and b

are indices of factor-augmenting technology, and α is a technology parameter interpretable as

indexing the “share of work” allocated to LS . The elasticity can be easily derived from the

parameter ρ as σ = 1
1−ρ .

Whether researchers assume a one-level CES function or a nested one (also taking into

account other inputs, such as capital), they typically employ the following steps. First, marginal

products are obtained by taking derivatives of Y with respect to LS and LU . The assumption

of competitive labor markets implies the equality of the wage ratio and the ratio of marginal

products. Substituting (σ − 1)/σ for ρ then leads to the definition of the skill premium wS
wU

:

wS
wU

=
α

1− α

(a
b

)σ−1
σ

(
LS
LU

)− 1
σ

.

Taking logarithms produces a specification that can be estimated:

ln

(
wS
wU

)
= ln

(
α

1− α

)
+
σ − 1

σ
ln

(a
b

)
− 1

σ
ln

(
LS
LU

)
. (3)

The main coefficient of interest, the inverse of the elasticity (1/σ), can thus be interpreted as

the effect of the relative supply of skilled labor on the wage premium to skills. Researchers

often include into (3) other variables that capture different characteristics of workers or labor

markets, most frequently a proxy for the demand for skills.
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Such straightforward specifications have been employed, for example, by Katz & Murphy

(1992), Borjas (2003), and Gallego (2012). An important exception are papers along the lines of

Krusell et al. (2000), who estimate parameters of a structural model that was primarily designed

to explore capital-skill complementarity but that is also informative concerning the elasticity

of substitution between skilled and unskilled workers. Alternatively, some researchers employ

the relative share of skilled labor as the dependent variable and regress it on the wage premium

(see, for example Li, 2010). Other researchers use the translog cost function to obtain estimates

of the elasticity. This approach is adopted by, for example, Bergstrom & Panas (1992), who

simultaneously estimate the cost function and cost share equations by iterative Zellner-efficient

procedures. More details on the various estimation techniques employed in the literature are

available in Section 4.

We search for studies in Google Scholar, which allows our search query to go through the

full text of research papers, not just the title, keyword, and abstract, which is the case for other

databases. We examine the first 500 studies returned by the search. We read the abstract of

each study to identify those that may potentially include empirical estimates of the elasticity;

we then download such studies and read them in detail. Furthermore, we inspect the lists of

references of all these studies to find any potentially important papers omitted by our Google

Scholar search. We also exploit the previously published narrative reviews by Freeman (1986),

Hamermesh (1996), and Behar (2010), and terminate the literature search on March 31, 2019.

The data and codes are available in the online appendix at meta-analysis.cz/skill.

Three co-authors have collected 1/3 of the data each and randomly checked 20% of the data

collected by the remaining two co-authors in order to identify and correct potential inconsis-

tencies in coding. The final sample includes 729 estimates of the elasticity collected from 76

studies listed in Table 1; we call them primary studies. The oldest study was published in

1970, the most recent one in 2018, covering almost 50 years of research. Almost all collected

studies are written in English, with the exception of Jamet (2005), written in French. The

histogram of the collected estimates is presented in Figure 2 and shows that the distribution is

asymmetric, skewed to the right. The estimated elasticities are widely dispersed, ranging from

−437 (Blankenau & Cassou, 2011) to 1, 000 (Psacharopoulos & Hinchliffe, 1972); such extreme

values are given by the fact that in most papers the regression estimate has to be inverted to
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Table 1: Studies used in the meta-analysis

Acemoglu (2002) Dougherty (1972) Krusell et al. (2000)
Angrist (1995) Dupuy (2007) Kwack (2012)
Askilden & Nilsen (2005) Dupuy & Marey (2008) Li (2010)
Autor (2014) Fallon & Layard (1975) Lindquist (2005)
Autor et al. (2008) Fernandez & Messina (2017) Malmberg (2018)
Avalos & Savvides (2006) FitzGerald & Kearney (2000) Manacorda et al. (2010)
Behar (2010) Foldvari & van Leeuwen (2006) Medina & Posso (2010)
Bergstrom & Panas (1992) Freeman (1975) Mello (2011)
Berndt & Christensen (1974) Freeman & Medoff (1982) Mollick (2008)
Berndt & Morrisson (1979) Gallego (2012) Murphy et al. (1998)
Binelli (2015) Gancia et al. (2013) Nissim (1984)
Blankenau & Cassou (2011) Giannarakis (2015) Psacharopoulos & Hinchliffe (1972)
Blundell et al. (2016) Glitz & Wissmann (2017) Razzak & Timmins (2008)
Borghans & ter Weel (2008) Goldin & Katz (2009) Reshef (2007)
Borjas (2003) Gyimah-Brempong & Gyapong (1992) Riano (2009)
Borjas & Katz (2007) Heckman et al. (1998) Robbins (1996)
Bound et al. (2004) Jamet (2005) Santamaria (2004)
Bowles (1970) Jensen & Morrisey (1986) Silva (2008)
Card (2009) Johnson (1970) te Velde & Morrissey (2004)
Card & Lemieux (2001) Katz & Murphy (1992) Tinbergen (1974)
Choi et al. (2005) Kawaguchi & Mori (2016) Verdugo (2014)
Ciccone & Peri (2005) Kearney (1997) Wei et al. (2016)
Corker & Bayoumi (1991) Kesselman et al. (1977) Welch (1970)
Cruz et al. (2017) Kim (2005) Yang (2012)
Das (1999) Klenow & Rodriguez-Clare (1997)
Denny & Fuss (1977) Klotz et al. (1980)

obtain the elasticity, and when the regression estimate is close to zero (for example, because of

measurement error), the implied elasticity is huge in absolute value. To prevent these outliers

from driving our results, we winsorize the sample at 4% (the level at which our results stabilize

and hold irrespective of further winsorization) and work with the winsorized sample from now

on. After winsorization the reported elasticities range from −0.34 to 8.81 and are characterized

by a mean of 1.93 and a median of 1.41. It is worth noting that the median estimate (by

definition not affected by winsorization) is identical to the estimate of Katz & Murphy (1992),

the most iconic and cited result in the literature, and also close to the consensus value of 1.5

presciently identified by Cantore et al. (2017).

Of the 729 estimates we collect, merely 253 (or 34.7%) fall into the (1, 2) interval, from

which most of the calibrations in the literature are drawn. Next, 471 (64.6%) estimates in

our sample support the hypothesis that skilled and unskilled labor are gross substitutes. In

contrast, 216 (29.6%) estimates fall into the (0, 1) interval, suggesting gross complementarity

between the two types of labor. While many estimates are reported that are in the vicinity of

0.5 and 1.5, Figure 2 shows a surprising drop in the frequency of estimates around 1, the case
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Figure 2: Distribution of the reported estimates
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Notes: The figure depicts a histogram of the elasticities reported by
individual studies. The vertical lines denote the interval 〈1, 2〉, from
which most of the values used for calibrations are drawn.

Figure 3: Cross-country heterogeneity in the elasticity
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the dividing line inside the box is the median value. The whiskers represent the
highest and lowest data points within 1.5 times the range between the upper
and lower quartiles. Outliers are excluded from the figure. The vertical line
denotes unitary elasticity. For ease of exposition, outliers are excluded from
the figure but included in all statistical tests.
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Figure 4: Estimates of the elasticity vary both within and across studies
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where the CES function reduces to Cobb-Douglas. In any event, the figure makes it clear that

there is substantial heterogeneity in the literature. Figure 4 shows that results vary significantly

not only across studies, but also within studies, and the same observation holds for individual

countries (Figure 3).

Before proceeding to a detailed analysis, let us take a first look at the potential causes of

heterogeneity. Table 2 provides summary statistics for various subsamples of the data. It also

provides a weighted mean: weighting by the inverse of the number of estimates reported per

study ensures that all studies get the same weight. The exact definitions of the listed groups

can be found later in Table 5. First, Table 2 suggests that short-run estimates, ones produced

using first-difference estimation or the error-correction model, do not differ much on average

from long-run estimates. The Hicks definition of the elasticity seems to yield larger estimates

than the remaining definitions in our sample. The smaller mean corresponding to the remaining

definitions is, however, not driven by Allen-Uzawa elasticities (which, in theory, can be negative)

but by the estimates of Morishima and Shadow elasticities. Moreover, most of the collected

estimates are derived as the inverse of the estimated regression coefficient, and this seems to be

associated with systematically larger elasticities compared to the estimates derived directly from

the estimated regression. On average, the difference between direct and inverted estimates is

1.5, a finding that indicates substantial attenuation bias and suggests (1.10, 2.65) as the interval

for the underlying mean elasticity corrected for the bias.

Second, the table suggests that the definition of “skills” matters for the estimated elasticity.

Once the skill of a worker is defined by experience, profession, or training rather than by

education background, skilled and unskilled labor become less substitutable (a pattern also

apparent visually in Figure 5a). In contrast, the elasticity does not change much when high

school instead of college is taken as the threshold for skill (typically in developing countries).

Third, the elasticity differs with different data characteristics. For example, substitutability

increases with an increase in data frequency. Substitutability also seems to be a little higher

when the time dimension of the data is not accounted for (Figure 5c). Both weighted and

unweighted means indicate that with with sectoral data researchers tend to find less evidence

for substitutability compared to the case when micro data are used (Figure 5b), although one

would expect more substitutability with more aggregated data.
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Table 2: Summary statistics for different subsets of the literature

Unweighted Weighted

No. of observations Mean 95% conf. int. Mean 95% conf. int.

Horizon
Short-run effect 55 1.89 1.44 2.35 2.24 1.72 2.76
Long-run effect 674 1.93 1.77 2.09 2.37 2.20 2.53

Variable definition
Hicks elasticity 641 1.96 1.79 2.12 2.45 2.28 2.62
Other elasticity 88 1.72 1.33 2.12 1.82 1.44 2.20
Skilled by college 199 2.91 2.56 3.25 2.35 2.10 2.60
Skilled by high school 172 2.18 1.89 2.48 3.23 2.79 3.67
Skilled by occupation 358 1.26 1.10 1.43 1.80 1.61 2.00

Data characteristics
Higher frequency 53 3.48 2.73 4.22 3.27 2.59 3.94
Annual frequency 580 1.86 1.69 2.03 2.35 2.17 2.53
Lower frequency 96 1.46 1.30 1.63 1.39 1.25 1.54
Micro data 76 2.21 1.72 2.70 2.02 1.57 2.47
Sectoral data 342 1.31 1.12 1.51 1.72 1.54 1.90
Aggregated data 311 2.54 2.30 2.77 2.63 2.38 2.88
Cross-section 151 2.42 2.05 2.79 2.61 2.21 3.01
Panel or time-series 578 1.80 1.64 1.96 2.27 2.10 2.43

Structural variation
United States 287 2.25 1.99 2.51 2.30 2.08 2.52
Developing country 227 1.36 1.18 1.55 2.21 2.01 2.40
Developed country 502 2.18 1.99 2.38 2.39 2.19 2.59
Male workers 143 2.46 2.11 2.80 2.62 2.27 2.98
Male & female workers 586 1.80 1.63 1.97 2.27 2.09 2.44
Manufacturing sector 275 1.15 0.97 1.34 2.34 2.08 2.59
Other than manufacturing sector 454 2.40 2.20 2.60 2.36 2.16 2.56

Design of the production function
One-level CES function 419 1.51 1.35 1.67 2.08 1.91 2.24
Multi-level CES function 190 2.53 2.18 2.88 2.25 1.94 2.57
Other function 120 2.43 2.00 2.87 2.85 2.41 3.29

Estimation technique
Dynamic model 124 1.36 1.07 1.65 1.81 1.54 2.08
Unit fixed effects 372 1.70 1.52 1.88 2.08 1.89 2.27
Time fixed effects 116 2.38 2.02 2.73 2.73 2.25 3.20
OLS method 447 1.66 1.48 1.85 2.20 2.01 2.39
IV method 178 2.61 2.26 2.97 2.85 2.52 3.18
SUR method 43 1.37 1.03 1.72 1.61 1.15 2.06
ML method 49 2.31 1.89 2.72 2.74 2.24 3.23
Inverted estimate 389 2.65 2.44 2.87 2.55 2.35 2.76
Direct estimate 340 1.10 0.93 1.26 1.99 1.74 2.23

Publication characteristics
Unpublished study 298 1.18 1.00 1.36 1.74 1.54 1.93
Published study 431 2.45 2.24 2.65 2.63 2.41 2.84
Top journal publication 206 2.16 1.88 2.45 2.61 2.28 2.95

All estimates 729 1.93 1.78 2.08 2.36 2.20 2.51

Notes: The table reports summary statistics of the reported elasticity of substitution for different subsets of the literature.
The exact definition of the variables is available in Table 5. Weighted = estimates are weighted by the inverse of the
number of estimates reported per study.
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Figure 5: Prima facie patterns in the data

(a) Skill definition
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(b) Data aggregation
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(c) Data dimension
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(d) Country classification
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Notes: The figure depicts histograms of the reported elasticities divided based on the definition of skills, aggregation of
data, dimension of data, and country development status. We use the IMF definition to classify countries as developed or
developing.

Fourth, a systematic role of structural variation (underlying differences in the elasticity

across countries, industries, and genders) is not clear-cut. The differences in the means of the

elasticity between developing and developed countries (Figure 5d) as well as between manu-

facturing and other sectors almost disappear once each study is given the same weight. If a

more homogenous sample is considered, such as that with male workers only, the estimated

substitutability gets a bit higher on average. The design of the production function and the

estimation technique involved, in contrast, are associated with different elasticities. When other

than CES function is used (typically the translog function), the estimated elasticities tend to be

larger. Moreover, OLS, dynamic models, and SUR produce smaller estimates in comparison to,
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for example, time fixed effects and IV. But inference based on Table 2 may suffer from omitted

variable bias, and a more nuanced analysis is needed. We provide such an analysis in Section 4.

To illustrate the potential differences in quality not captured by differences by the variables

introduced above, we single out unpublished studies (working papers or published analyses that

did not undergo the peer-review process), which seem to produce considerably smaller estimates

than peer-reviewed studies. The finding is consistent with higher quality studies reporting larger

estimates, but can also be consistent with publication bias stemming from the preferences of

editors and referees for such estimates. In this context it is important to note that there is

little reason to expect publication bias to only affect published studies. Researchers write

their papers with the intention to publish, and rational authors will accommodate the expected

preferences of editors and referees already in the working paper version. Even more plausibly,

publication bias stems simply from the desire to report results that are reasonable (positive)

and interesting (statistically significant), and the publication process plays a small role in such

selective reporting. The next section analyzes publication bias in detail.

3 Publication Bias

An intuitive feature of the elasticity of substitution between skilled and unskilled labor is its

nonnegativity. As Kearney (1997, p. 33) notes on his negative estimates: “The implied coeffi-

cients . . . violate standard economic theory.” Some researchers, such as Bowles (1970, p. 73), act

upon such fact and “exclude [negative elasticity] values . . . as implausible on a priori grounds.”

While a zero elasticity is possible in theory, it is also often deemed implausible and rarely in-

terpreted. What follows is a general tendency in the literature to discriminate against negative

and insignificant (small positive) values of the elasticity. While large positive estimates are

sometimes also deemed implausible, and already Tinbergen (1974, p. 217) was “struck by the

high elasticity figures obtained by several others,” there exists no upper threshold that would

immediately identify implausibility, and large estimates can thus be often retained. Hence the

mean and median estimates in the literature are probably biased upwards. Note that such

publication bias is natural, inevitable in economics, and does not require any ulterior motives

on the side of authors, editors, or referees. It is a task for those who review and interpret the
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literature to correct for the bias. As far as we know, no one has so far attempted to do so in

the case of the elasticity of substitution between skilled and unskilled labor.

We use several methods to identify and correct for publication bias, but the underlying

identification strategy remains the same: in the absence of bias, there should be no relationship

between estimates and their standard errors. Departures from the absence of a relationship

(linear or nonlinear) identify the magnitude of bias. The strategy follows from the fact that

the ratio of the estimates to their standard errors has a t-distribution, which means that the

nominator and denominator form statistically independent quantities. If, in contrast, positive

and statistically significant estimates are preferred, researchers will compensate large standard

errors (given by noise in the data or estimation technique) by searching for large point estimates.

This specification search can involve trying different subsamples, different treatment of outliers,

different techniques, or different control variables. Again we note that no ulterior motives are

necessary: negative and insignificant estimates can simply be viewed as evidence that there is

something wrong with the estimated specification and that it should be adjusted.

Figure 6: The funnel plot suggests publication bias
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Notes: When there is no publication bias, estimates should be sym-
metrically distributed around the mean (denoted by the vertical
line). Outliers are excluded from the figure for ease of exposition
but included in all statistical tests.

It is certainly possible that our identification assumption, quite commonly used in the meta-

analysis literature, can be violated in labor economics. If a research technique influences both

the estimate and the corresponding standard error in the same direction, a positive correlation
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between the two quantities arises but cannot be interpreted as publication bias. For example,

consider IV and OLS estimates in the literature. IV estimates come with larger standard errors,

and if they also correct for downward endogeneity bias, the entire literature will feature a positive

correlation between estimates and standard errors even in the absence of publication bias. In

fact we find (in the next section) that IV estimates of the elasticity tend to be smaller than OLS

estimates, which means that our measures of publication bias are probably understated. But

estimates and standard errors can be affected by many method choices, and one cannot hope to

explicitly control for all of them. A natural solution is to instrument the standard error using

the inverse of the square root of the number of degrees of freedom used in the primary studies,

which is proportional to the standard error by definition and should not be much correlated

with method choices. Alas, in our case the instrument is weak. We thus additionally use caliper

tests (Gerber & Malhotra, 2008), which are not based on the aforementioned assumption and

compare the ratio of estimates in a narrow band above and below a specified threshold for

t-statistics (1.96 and 0).

In the remainder of the section we go through individual tests for publication bias. A simple

visual tool is the so-called funnel plot (Egger et al., 1997), a scatter plot of the estimated

elasticity values on the horizontal axis plotted against their estimated precision (the inverse

of the standard error) on the vertical axis. If there is no publication selection bias in the

literature, the funnel plot should be symmetrical around the mean value. While imprecise

estimates at the bottom of the funnel plot are dispersed, with increasing precision the estimates

get closer to the underlying mean. Thus the plot should attain an inverted funnel shape. The

funnel plot for our dataset is shown in Figure 6, and it is apparently asymmetric: negative and

small positive estimates are underrepresented in the literature. Funnel asymmetry can simply

be tested formally by regressing the horizontal axis on the (inverted) vertical axis (Card &

Krueger, 1995):

σij = σ0 + β · SE(σij) + εij , (4)

where σij stands for the i-th estimate of the elasticity of substitution reported in the j-th study,

SE(σij) denotes its standard error, and εij is the error term. If the estimated β is significantly

different from zero, we obtain evidence of funnel asymmetry and hence publication bias. If

we assume that publication bias is a linearly increasing function of the standard error (in the
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Table 3: Linear and nonlinear techniques detect publication bias

Panel A: unweighted OLS Fixed effects Hierarchical Bayes

Standard error 0.375
∗∗∗

0.316
∗∗∗

0.540
∗∗∗

(publication bias) (0.0450) (0.0375) (0.0041)
[0.220, 0.454] – –

Constant 1.350
∗∗∗

1.439
∗∗∗

1.360
∗∗∗

(effect beyond bias) (0.295) (0.0568) (0.0039)
[0.695, 2.052] – –

Observations 638 638 638

Panel B: weighted Study-weighted Precision-weighted Top journals

Standard error 0.257
∗∗∗

0.827
∗∗∗

0.388
∗∗∗

(publication bias) (0.0885) (0.146) (0.0929)
[0.061, 0.498] [0.500, 1.198] [-0.123, 0.927]

Constant 1.829
∗∗∗

1.086
∗∗

1.571
∗∗∗

(effect beyond bias) (0.224) (0.468) (0.281)
[1.355, 2.304] [-0.072, 2.170] [0.788, 3.258]

Observations 638 638 152

Panel C: non-linear WAAP Stem-based method Selection model
(Ioannidis et al., 2017) (Furukawa, 2020) (Andrews & Kasy, 2019)

Effect beyond bias 0.950
∗∗∗

0.833
∗∗∗

1.020
∗∗∗

(0.052) (0.107) (0.058)
Observations 638 638 638

Notes: The first two panels report the results of the regression σij = σ0 + β · SE(σij) + εij, where σij denotes
the i-th effect estimated in the j-th study, and SE(σij) denotes its standard error. In the second column of Panel
A study-level fixed effects are included. In the first column of Panel B the model is weighted by the inverse of
the number of estimates per study. Precision-weighting indicates that the model is weighted by the inverse of the
standard error of an estimate. The “top journals” subsample includes the most prestigious outlets in our sample:
American Economic Review, Quarterly Journal of Economics, Journal of Political Economy, Econometrica, Review of
Economics and Statistics, and Science. In Panel C, WAAP stands for Weighted Average of the Adequately Powered.
Standard errors, clustered at the study level, are reported in parentheses (except for Hierarchical Bayes, which has
posterior standard deviation in parentheses; stars for Hierarchical Bayes are presented only as an indication of the
parameter’s importance to keep visual consistency with the rest of the table). 95% confidence intervals from wild
bootstrap in square brackets (Roodman et al., 2018). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

nonlinear and caliper tests we will abandon this strong assumption), σ0 measures the mean

elasticity corrected for the bias (Stanley, 2005). We cluster standard errors at the study level

and also report confidence intervals resulting from wild bootstrap (Roodman et al., 2018).

Table 3 presents the results of various estimation techniques used to run Equation 4 on the

sample of observations for which standard errors are available (which means that we have to

drop the 91 estimates for which no precision was reported; we also note that our results do

not change qualitatively if we focus solely on long-run estimates, see Table A1). The baseline

model in the first column of Panel A uses OLS. In the second column we control for unobserved

heterogeneity across studies by employing study-level fixed effects; in the third column we use

a multilevel estimation technique which implements partial pooling at the study level and uses

within-study variation to influence pooling weights. This so-called Hierarchical Bayes model
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implements the Gibbs sampler with a standard prior according to Rossi et al. (2005). The

results are consistent with our interpretation of the funnel plot: we find publication bias in the

literature. The mean elasticity beyond publication bias in Panel A corresponds to the value of

1.4 echoed by many studies (for example, Katz & Murphy, 1992).

In panel B of Table 3 we apply two different weighting schemes. First, we weight (4) by the

inverse of the number of estimates reported per study. This way all studies get the same weight

in our analysis irrespective of how many estimates they report. Second, we weight the regression

by the inverse of standard error of the estimate (i.e., precision). This way we explicitly address

heteroskedascity inherent in (4). In the third column of Panel B we only include estimates

from studies published in the most prestigious journals in our sample: The American Economic

Review, Quarterly Journal of Economics, Journal of Political Economy, Econometrica, Review

of Economics and Statistics, and Science. The results corroborate the presence of publication

bias. We find it interesting to observe that the subsample of estimates published in top journals

produces results very similar to the baseline case. The problem with both Panel A and Panel B

is that these techniques assume a linear relationship between the standard error and publication

bias. While a good intuitive start, there is little reason to believe the first-order approximation

is realistic.

Panel C of Table 3 features more realistic (nonlinear) techniques that were recently developed

to match patterns in large samples of meta-analyses and replication efforts. We apply three

different methods: the weighted average of adequately powered estimates by Ioannidis et al.

(2017), the stem-based method by Furukawa (2020), and the selection model by Andrews & Kasy

(2019). Ioannidis et al. (2017) propose a correction procedure that focuses on estimates with

statistical power above 80%. The method of Furukawa (2020) extends the approach of Stanley

et al. (2010), who suggest to use 10% of the most precise estimates, and selects the optimal ratio

of the most precise studies endogenously by exploiting the trade-off between bias and efficiency.

The estimator of Andrews & Kasy (2019) represents the latest incarnation of selection models

in the tradition of Hedges (1992); the technique gives more weight to estimates that appear

underreported in the literature (such as those insignificant at the 5% level). Several Monte Carlo

simulations have shown that nonlinear techniques perform better than linear approximations

(Ioannidis et al., 2017; Furukawa, 2020). The three techniques yield remarkably consistent
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Figure 7: The distribution of t-statistics peaks at 2
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Notes: The figure represents the distribution of t-statistics of the
reported estimates of the elasticity overlaid on a corresponding nor-
mal distribution. Red lines represents critical value of 1.96 associ-
ated with significance at the 5% level and the value of 0 associated
with changing the sign of the estimate. We exclude estimates with
large t-statistics from the figure for ease of exposition but include
them in statistical tests.

results and suggest an underlying mean elasticity of about 1, compared to the naive mean of

1.9 prior to the correction for publication bias.

We have noted that all the major tests of publication bias are based on the assumption that

in the absence of bias there is no relationship between estimates and their standard errors. A

method that does not rely on this assumption was introduced by Gerber & Malhotra (2008)

and is called “caliper test;” unfortunately, it can only examine the presence of bias and does not

offer an estimate of the corrected elasticity. The test is based on the idea that publication bias

is consistent with sudden jumps in the frequency of the t-statistic, especially around the critical

value of 1.96 (recomputing t-statistics to z-statistics would not change our results because in

the vast majority of studies both are virtually identical) but also at 0. Indeed, Figure 7 shows

that both thresholds are associated with jumps, with a stronger jump at 1.96. Caliper tests

seek to identify the significance of the jump by comparing in a narrow band the frequency of

estimates above and below the threshold. With a sufficiently narrow caliper both frequencies

should be the same. Our results in Table 4 confirm that the frequency jumps are significant

both in statistical and economic terms. Near the thresholds, estimates significant at the 5%

level dominate the insignificant ones 59% to 41%; positive estimates dominate negative ones
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Table 4: Caliper tests indicate publication bias

Threshold for t-statistic: 1.96 caliper size: 0.4 caliper size: 0.5 caliper size: 0.6

Share of estimates above caliper minus 0.5 0.0902
∗∗

0.0804
∗

0.0886
∗∗

(0.0447) (0.0414) (0.0393)

Observations 122 143 158

Threshold for t-statistic: 0 caliper size: 0.6 caliper size: 0.7 caliper size: 0.8

Share of estimates above caliper minus 0.5 0.153
∗∗∗

0.167
∗∗∗

0.177
∗∗∗

(0.0553) (0.0517) (0.0480)

Observations 75 84 96

Notes: The table reports results for caliper tests introduced by Gerber & Malhotra (2008). The tests compare the
relative frequency of estimates above and below an important threshold for the t-statistic. We use calipers of different
sizes depending on the number of observations available (for the second threshold narrower calipers are unfeasible
due to the lack of observations in the immediate vicinity of zero). A test statistic of 0.153, for example, means that
65.3% estimates are above the threshold and 34.7% estimates are below the threshold. Standard errors are reported
in parentheses and clustered at the study level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

65% to 35%. We conclude that publication bias in the literature is substantial and caused by

preference for both positive and statistically significant estimates.

4 Heterogeneity

The empirical literature on the elasticity of substitution between skilled and unskilled labor

is characterized by significant variation in the reported estimates, as we have shown earlier in

Figure 3 and Figure 4. While publication bias explains a piece of this variation, individual

studies (and individual specifications within the studies) differ greatly in terms of the data and

methods used. In this section we control, in addition to the standard error, for 36 variables

that capture the different context in which researchers obtain their estimates. Given the model

uncertainty inherent in such an exercise, we use Bayesian and frequentist model averaging. Our

goals are threefold. First, we examine whether the relationship between estimates and standard

errors, which serves as an indication of publication bias, is robust to controlling for the various

aspects of study design. Second, we aim to identify the aspects that are the most effective

in explaining the differences among the reported elasticities. Third, as the bottom line of our

analysis we create a synthetic study that computes an implied mean elasticity using all estimates

but giving more weight to those that are arguably better identified, all the while correcting for

publication and attenuation bias.
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4.1 Variables

The studies estimating the elasticity differ in so many dimensions that it is unfeasible to control

for all differences. In the previous section we used study-level fixed effects, which capture study

idiosyncrasies but not the characteristics of individual estimation specifications. At the risk

that we still omit some characteristics others would find relevant—the list of potential ones is

unlimited—, we identify 42 main characteristics (and consequently, to avoid the dummy trap,

codify 36 explanatory variables to be used in model averaging) which we distribute for ease

of exposition into six categories: variable definition, data characteristics, structural variation,

design of the production function, estimation technique, and publication characteristics. Table 5

lists all the codified characteristics, provides their definitions, and gives summary statistics

including the simple mean, standard deviation, and mean weighted by the inverse of the number

of estimates reported in a study. Given the number of estimates that we collect, the construction

of the dataset required manual collection of about 30,000 data points by three of the co-authors

upon carefully reading the primary studies.

Table 5: Description and summary statistics of regression variables

Variable Description Mean SD WM

Elasticity estimate Estimate of the elasticity of substitution between
the skilled and unskilled labor (response variable).

1.93 2.07 2.47

Standard error (SE) Standard error of the estimate of the elasticity of
substitution. The variable is important for gauging
publication bias.

1.52 3.46 1.76

Variable definition
Hicks elasticity =1 if Hicks (1963) elasticity of substitution is esti-

mated.
0.88 0.33 0.85

Other elasticity =1 if Allen-Uzawa (Allen & Hicks, 1934; Uzawa,
1962), Morishima (1967), or Shadow (Berndt &
Christensen, 1974) elasticity of substitution is es-
timated (reference category for the different types
of the elasticity).

0.12 0.33 0.15

Skilled by college =1 if tertiary education (college) is used in the esti-
mation as the definition of skill.

0.27 0.45 0.47

Skilled by high school =1 if secondary education (high school) is used as
the definition of skill (reference category for the def-
inition of skills).

0.24 0.42 0.21

Skilled by occupation =1 if occupation type, e.g. white collar, is used for
the definition of skill.

0.49 0.50 0.32

Data characteristics
Higher frequency =1 if higher than annual frequency of the data is

used; typically monthly, quarterly, or semi-annual.
0.07 0.26 0.09

Annual frequency =1 if annual frequency of the data is used in the
estimation (reference category for data frequency).

0.80 0.40 0.83

Continued on next page
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Table 5: Description and summary statistics of regression variables (continued)

Variable Description Mean SD WM

Lower frequency =1 if lower than annual frequency of the data is
used; typically three, five, or ten years.

0.13 0.34 0.08

Micro data =1 if micro-level data (unit = single worker or firm)
are used in the estimation.

0.10 0.31 0.17

Sectoral data =1 if sector-level data (unit = sector) are used in
the estimation.

0.47 0.50 0.18

Aggregated data =1 if aggregated data (unit = economy or regions)
are used in the estimation (reference category for
the type of data aggregation).

0.43 0.49 0.65

Cross-section =1 if cross-sectional data are used; =0 if time-series
or panel data are used.

0.21 0.41 0.27

Data midyear The logarithm of the median year of the time period
of the data used to estimate the elasticity.

3.94 0.34 3.94

Data length The logarithm of the number of years of the data
period used in the estimation.

2.53 1.35 2.31

Structural variation
United States =1 if the country for which the elasticity is esti-

mated is the United States.
0.39 0.49 0.41

Developing country =1 if a developing country is considered, =0 if a
developed country is considered in the estimation.

0.31 0.46 0.18

Male workers =1 if male workers only are considered, =0 if female
or a mixed sample is considered in the estimation.

0.20 0.40 0.25

Manufacturing sector =1 if the elasticity is estimated for the manufactur-
ing sector, =0 if another sector is considered.

0.38 0.49 0.13

Design of the production function
One-level CES function =1 if one-level CES functional form of the produc-

tion function is used in the estimation.
0.57 0.49 0.33

Multi-level CES func-
tion

=1 if multi-level CES functional form of the produc-
tion function is used in the estimation.

0.26 0.44 0.39

Other function =1 if other functional forms of the production func-
tion including the translog form of the production
or cost function and undisclosed production form is
used (reference category for the functional form).

0.16 0.37 0.28

Time control =1 if time control is included in the model (captur-
ing, e.g., technological change).

0.52 0.50 0.48

Location control =1 if location/unit control is included (capturing
spatial variation).

0.13 0.34 0.15

Education control =1 if control for the level of education is included
(or the level of experience or part-time status).

0.03 0.16 0.09

Macro control =1 if macroeconomic indicators are included. 0.09 0.29 0.09
Population control =1 if socioeconomic variables are included. 0.01 0.11 0.02
Sectoral control =1 if the model controls for different sectors. 0.04 0.21 0.08
Age control =1 if a control for the age of workers is included. 0.07 0.25 0.12
Ethnicity control =1 if control for ethnicity, nationality, or other

immigration-related variable is included.
0.03 0.16 0.09

Capital control =1 if a capital-related control is included (capturing
changes in capital stock under a capital-skill com-
plementarity technology).

0.08 0.27 0.11

Estimation technique
Dynamic model =1 if the model form used for estimation is dynamic

(VAR, ECM, VECM, PAD, ADL, DLTM, DOLS)
0.17 0.38 0.19

Unit fixed effects =1 if the model is estimated in first differences or
cross-sectional fixed effects are considered.

0.51 0.50 0.45

Time fixed effects =1 if time fixed effects are included in the model. 0.16 0.37 0.12

Continued on next page
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Table 5: Description and summary statistics of regression variables (continued)

Variable Description Mean SD WM

Long-run effect =1 if long-run effect is estimated. 0.92 0.26 0.92
OLS method =1 if the ordinary least squares method or its vari-

ations (WLS, GLS) are used.
0.61 0.49 0.58

IV method =1 if instrumental estimation method is used, in-
cluding 2SLS, 3SLS, and GMM.

0.24 0.43 0.22

SUR method =1 if the seemingly unrelated regression method is
used.

0.06 0.24 0.05

ML method =1 if maximum likelihood or its variations (FIML,
LIML, SPML) are used for estimation (reference
category for the method variables).

0.07 0.25 0.06

Inverted estimate =1 if the elasticity is computed by inverting the es-
timated regression coefficient. The variable is im-
portant for gauging attenuation bias.

0.53 0.50 0.66

Direct estimate =1 if the elasticity is not an inversion of the esti-
mated regression coefficient (reference category).

0.47 0.50 0.34

Publication characteristics
Impact factor The discounted recursive RePEc impact factor of

the outlet.
0.69 1.03 1.03

Citations The logarithm of the number of per-year citations
of the study in Google Scholar.

1.36 1.13 1.77

Published study =1 if the study was published in a peer-reviewed
journal.

0.59 0.49 0.70

Notes: SD = standard deviation, WM = mean weighted by the inverse of the number of estimates reported per
study, CES = constant elasticity of substitution, VAR = vector autoregression, ECM = error correction model,
VECM = vector error correction model, PAD = partial adjustment model, ADL = autoregressive distributed lag
model, DLTM = distributed lag and trend model, DOLS = dynamic ordinary least squares, WLS = weighted least
squares, GLS = generalized least squares, 2SLS = two-stage least squares, 3SLS = three-stage least squares, GMM
= generalized method of moments, LIML = limited information maximum likelihood, FIML = Fuller LIML, SPML
= simulated pseudo-maximum likelihood.

Variable definition A fundamental issue in the estimation of the elasticity is its definition.

The Hicks elasticity, as referred to in Equation 1 in Section 2, is by far the most common mea-

sure in our sample, accounting for about 90% of the collected estimates (and about 97% of the

estimates for which standard errors are available). The Allen-Uzawa elasticity of substitution

is an alternative derived from the cost function and has been applied by Jensen & Morrisey

(1986), Bergstrom & Panas (1992), and Askilden & Nilsen (2005), among others. An impor-

tant distinction is that the Allen-Uzawa elasticity can, in theory, be negative; also it does not

measure the changes of relative quantities moving along an isoquant of production, as the Hick-

sian measure does. Instead, Allen-Uzawa is a one-factor-one-price elasticity. The Morishima

elasticity (Gyimah-Brempong & Gyapong, 1992), on the other hand, is a two-factor-one-price

elasticity: tracking a change in a factor ratio in response to a change in the price of one factor.

The Morishima elasticity is more similar to Hicks elasticity and cannot plausibly be negative.
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The final special case of the elasticity is the so-called Shadow elasticity (Berndt & Christensen,

1974), which allows prices to change such that the average cost is fixed.

Another key issue in the estimation of the elasticity is the definition and measurement of

skills. Most commonly, researchers use a cut-off level of a pre-specified education achievement.

For instance, Dupuy & Marey (2008) estimate the elasticity between college-educated workers

and other workers (variable Skilled by college), Mello (2011) uses primary education for the cut-

off, and Ciccone & Peri (2005) consider all workers with at least secondary education as skilled

(Skilled by high school). Next, some researchers identify skilled and unskilled workers based on

the type of occupation (Skilled by occupation). Typically, production workers are considered to

be unskilled and non-production workers are considered to be skilled. In other instances skilled

and unskilled workers are frequently referred to as “white collars” and “blue collars.” Examples

of the use of this proxy for skill can be found in Berndt & Christensen (1974), Kearney (1997),

and Reshef (2007).

Data characteristics The studies in our sample also differ in the type of data used to produce

estimates of the elasticity. An important aspect is data frequency. With higher frequencies,

transitory variation from different frictions in the data is often present and if not accounted for

it can generate a biased estimate of the long-run elasticity of substitution (Chirinko & Mallick,

2017). Four fifths of the estimates in our sample employ annual data; higher frequencies such

as monthly, quarterly, or semi-annual appear relatively scarcely. Another challenge that the

researchers have to face is that of data aggregation. Hamermesh (1996) classifies empirical

studies of labor demand into three main groups based on the level of data aggregation. First,

there are studies using aggregated data, where the unit of observation is the economy or region.

Second, aggregation is conducted at the level of industries (captured by the variable Sectoral

data). The third group consists of studies where firms or individuals are used as units of

observation (Micro data).

There are several potential problems with data aggregation. For instance, Hamermesh (1996)

criticizes using linear aggregation techniques to aggregate nonlinear relationships. Even with

the assumption of identical technologies in all firms, one cannot expect that parameters in the

estimated equations are the same for the particular firm and for the aggregated case. Moreover,

aggregating workers into groups means implicitly assuming that these workers are very close p-
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substitutes or q-complements. Furthermore, Broadstock et al. (2007) warns that the estimated

elasticity involving an aggregate is not necessarily a weighted average of the elasticities for the

disaggregated inputs. A practical issue with aggregated data is that fewer observations used in

regressions are usually linked with lower precision and that measurement error can differ from

that in disaggregated data, which has consequences for both publication and attenuation biases.

Another important aspect of data is their dimension: if purely cross-sectional data are

used or if the time dimension is also taken into account. When a researcher wishes to generate

estimates interpretable as short-run, she uses first-differences or an error-correction model, which

require the time dimension to be reflected in the data. In case the long-run elasticity is estimated,

Hamermesh (1996, p. 63) notes that “there is nothing inherently more attractive in cross-sections

or time-series data. Rather, the choice depends on the degree of spatial aggregation in each type

of available data.” In practice, time series at the micro level are quite rare, and cross-sectional

data generally enable greater disaggregation. To account for the potential negative trend in the

elasticity over time as suggested earlier by Figure 1, we control for the midpoint of the data

period employed in the primary study using the variable Data midyear. It should be noted

that the literature typically discusses a possible recent increase in the elasticity, not a decrease

(Autor, 2014). Finally, Data length captures the number of years of the data period used in the

estimation of the elasticity.

Structural variation Inherent differences in the elasticity among countries, sectors, and

genders could give rise to another source of heterogeneity. A large part of our sample consists of

elasticities computed for the United States (about 40%). The strong consensus in the literature

about the elasticity lying between 1 and 2 is to a large extent derived from the US studies

by Katz & Murphy (1992), Ciccone & Peri (2005), Autor et al. (2008), and Goldin & Katz

(2009). Evidence on structural variation has been rather rare in the literature. Psacharopoulos

& Hinchliffe (1972) report larger estimates for developed countries compared to developing ones,

while Tinbergen (1974) finds the values between 0.4 and 2 for both developing and developed

countries. Later studies on Developing countries, such as Behar (2010) or Manacorda et al.

(2010), suggest values between 2 and 4. On balance, according to our reading of the literature

the prevailing view is still that the elasticity is larger in more developed countries (Foldvari &

van Leeuwen, 2006).
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Many studies use more homogenous samples to derive estimates that are not contaminated

by structural variation (Ciccone & Peri, 2005). About 20% of the estimates in our sample are

derived from male cohort studies. Borjas (2003) points out that female labor participation in

the earlier cross-sections is much lower than male participation. Card & Lemieux (2001) analyze

the substitutability of labor between age cohorts and argue that vast inter-cohort changes in

female labor supply relevant to their sample period could contaminate the analysis. We account

for these data differences with a variable called Male workers. Some authors, such as Blankenau

& Cassou (2011), suggest that manufacturing and skilled services (financial or health services,

for example) often stand out in the industry-specific analyses. These sectors, with a shifting

demand to skilled labor and heavier on specific skill-set (Berman et al., 1994), may display

different elasticities. We create a separate dummy for manufacturing, for which we have enough

observations.

Design of the production function Researchers typically assume one-level CES (constant

elasticity of substitution) production function. But other functional forms are used as well,

including the multilevel (or nested) CES function, translog production function, and translog

cost function. The one-level CES production function as in (2) was introduced by Solow (1956)

but originally included capital and labor production factors (ignoring skill differences among

workers). For the sake of simplicity, some authors consider solely (2), which treats skilled

and unskilled labor as the only factors of production. In this form the elasticity is constant

irrespective of changes in relative labor supply (Ciccone & Peri, 2005) and can be derived from

the parameter ρ as σ = 1/(1− ρ). Under the CES framework, more production factors can be

nested (Multi-level CES ) and there are many ways to do so.

Most often, three production factors are considered in estimation: skilled labor, unskilled

labor, and capital. One stream of the literature assumes production to be a CES function of

capital and labor at the first level and further decomposes labor into skilled and unskilled at the

second level via the Cobb-Douglas specification (therefore, the elasticity of substitution between

capital and labor is restricted to one; Avalos & Savvides, 2006). Another stream of the literature

assumes a CES function with capital and labor at the first level and further decomposes labor

into skilled and unskilled parts at the second level via another CES specification (as in Borjas,

2003; Borjas & Katz, 2007). Finally, some studies apply alternative nesting schemes with a CES
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function of capital, skilled labor, and unskilled labor at the first level; at the second level, skilled

workers are divided into more groups according to their specific skills via a CES specification

(Manacorda et al., 2010). Among the more complex nesting structures is the one used by

Krusell et al. (2000) and followed by Lindquist (2005) and Dupuy (2007). They employ four

production factors (capital structure, capital equipment, skilled labor, and unskilled labor) and

a three-level nesting structure.

Another type of the production function used by the primary studies in our sample is the

transcendental logarithmic (translog) function. It is the second-order approximation of the CES

function around ρ = 0 (Berndt & Christensen, 1973). Unlike in the CES framework, when the

translog form is used the elasticity of substitution is allowed to vary with the relative supply

of differently educated workers (Ciccone & Peri, 2005). The translog form has been used to

define several measures of elasticity, including Allen-Uzawa, Morishima, and Shadow elasticity

(Bergstrom & Panas, 1992). Most researchers working within the translog framework use a cost

function instead of a production function. The main reason is convenience: with the translog

cost function estimation of the elasticity is more straightforward.

Multiple control variables are commonly employed in the basic specification of the production

functions described above. These variables capture different characteristics of either workers or

labor markets. The most frequent one is time control capturing potential technological changes

that affect the demand for skills; these controls are used in about half of the regressions in

our sample. Other variables control for the location (Acemoglu, 2002), changes in the level of

education (Gallego, 2012; Autor et al., 2008), different macroeconomic circumstances such as

the level of minimum wage, unemployment rate, and labor market reforms (Manacorda et al.,

2010; Autor et al., 2008), and socioeconomic factors such as city size, college share, and union

membership (Freeman & Medoff, 1982; Card, 2009). The authors of primary studies also capture

industry differences, variations in age cohorts, ethnicity, and capital stock.

Estimation techniques We control for all models that are dynamic, thus account for the

fact that the elasticity may change in response to shocks (models such as vector autoregression,

partial adjustment model, or distributed lag model, among others). We codify studies that

account for unit fixed-effects either using unit dummies or first differences. This method controls

for persistent features that could affect the level of skill (or the level of technology used in
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firms) in specific cohorts of labor force: features such as location (Borjas & Katz, 2007), degree

(Kawaguchi & Mori, 2016), age (Angrist, 1995), and industry (Razzak & Timmins, 2008). On

the other hand, we also codify studies that account for time fixed-effects. This method controls

for temporal dynamics of unobservable factors changing in time that could affect the supply

of workers or wages. As to the short-run and long-run elasticities, most researchers do not

explicitly declare which type of elasticity they estimate. For the purpose of our analysis we

code the estimated elasticity as short-run only if it is produced using first-difference estimation

or the short-run equation of an error-correction model.

A notorious issue in the empirical literature estimating substitution elasticities is that of

potential endogeneity bias. Researchers try to address this problem by instrumenting labor

supply, but good instruments are rarely available. An example of a suitable instrument can be

found in Ciccone & Peri (2005), who use state and year specific compulsory school attendance

and child labor laws as instruments for relative labor supply of more educated workers. Silva

(2008), on the other hand, instruments the relative share of skilled labor with a variable called

“minimum wage intensity” defined as the share of workers potentially affected by new mini-

mum wage legislation. To account for potential systematic variation stemming from the use of

different estimation techniques, we codify estimates that are obtained using OLS, instrumental

variable estimators, seemingly unrelated regression, and maximum likelihood.

Finally, we account for the fact that most of the collected elasticities are derived as inverse

values of the estimated regression parameters, such as −1/σ in (3). The “iron law of econo-

metrics” implies that due to ubiquitous measurement error the estimated regression coefficients

are biased towards zero (Hausman, 2001), thus biasing the implied elasticities upwards. Some

studies switch the dependent and independent variable in order to estimate the elasticity di-

rectly, and the difference between direct and inverted estimates can be used to roughly gauge

the importance of attenuation bias in the literature.

Publication characteristics To account for aspects of quality not captured by the variables

introduced above, we employ three additional variables. First, we use the number of citations

taken from Google Scholar (variable Citations) normalized by the number of years since the first

draft of the study appeared in Google Scholar. Second, we use the RePEc recursive discounted

impact factor, which is available for journal articles as well as working papers (variable Impact
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factor). Third, we distinguish between studies published in peer-reviewed outlets (Published

studies) and other papers.

4.2 Estimation

Ideally we would regress the collected elasticities on the 37 variables described above using

OLS. Given such a large number of regressors, however, the probability that many will prove

redundant is high, which would compromise the precision of parameter estimates for the more

important regression variables. In other words, we face substantial model uncertainty; to ad-

dress it, we employ model averaging techniques, both Bayesian and frequentist. The Bayesian

approach allows us to estimate the probability that an individual explanatory variable should

be included in the underlying model. The frequentist approach is computationally more cum-

bersome, but does not require the choice of priors and serves as a useful robustness check.

The goal of Bayesian model averaging (BMA) is to find the best possible approximation of

the distribution of each regression parameter. The method yields three basic statistics for each

variable: posterior mean, posterior variance, and posterior inclusion probability. In our case

BMA is to run 237 regressions determined by all the possible combinations of the explanatory

variables. We simplify this computationally demanding task by employing the Metropolis-

Hastings algorithm of the bms package for R by Zeugner & Feldkircher (2015), which walks only

through the most likely models. The likelihood of each model is reflected by posterior model

probabilities (analogous to information criteria in the frequentist setting). Posterior means

are then computed as the estimated coefficients weighted across all models by their posterior

model probability. The posterior inclusion probability of a particular variable is defined as the

sum of posterior model probabilities for all models where this candidate regressor is included

(analogous to statistical significance in the frequentist setting). For more details on BMA, we

refer the reader to Raftery et al. (1997) and Eicher et al. (2011).

BMA requires explicit priors concerning the model (model prior) and regression coefficients

(g-prior). Our baseline model prior and g-prior reflects our lack of knowledge in both areas:

we employ a uniform model prior, which gives each model the same prior probability, and the

unit information g-prior, which provides the same information as one observation from the

data (suggested by Eicher et al., 2011). Nevertheless, we perform several robustness checks
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to make sure the results hold under different priors: we combine the unit information prior

with the dilution prior according to George (2010), which accounts for collinearity in the data

by adding a weight that is proportional to the determinant of the correlation matrix of the

variables included in the individual model. Furthermore, we combine the random model prior

(following Ley & Steel, 2009) with the hyper-g prior (suggested by Feldkircher & Zeugner,

2012): while the random model prior assumes that the distribution of the model size to be beta-

binomial (which reflects the fact that no model size is preferred), the hyper-g prior sets the prior

expected shrinkage factor equivalent to the BRIC parameter prior (see Fernandez et al., 2001,

suggesting multivariate normal distribution that has a covariance matrix specified depending on

the data). In our application of frequentist model averaging we use Mallow’s weights (Hansen,

2007) with orthogonalization of the covariate space according to Amini & Parmeter (2012) to

narrow down the number of estimated models. For more details and applications of model

averaging techniques in economics, we refer the reader to the superb survey by Steel (2020).

4.3 Results

The results of Bayesian model averaging are visualized in Figure 8. Each column represents an

individual regression model, and the width of the column indicates the corresponding posterior

model probability. The columns are ordered by posterior model probability from left to right in

descending order. Each row of the figure represents a variable that we consider. The rows are

ordered by the posterior inclusion probability from top to bottom in descending order. Each

cell with a blue color (darker in grayscale) indicates a positive sign of the posterior mean of the

regression coefficient for the variable in a given model. Each cell with a red color (lighter in

grayscale) indicates a negative sign. If a variable is excluded from the model, the corresponding

cell is blank. The figure suggests that approximately one third of our explanatory variables are

useful in explaining the heterogeneity in the reported estimates of the elasticity of substitution;

moreover, for these variables the signs of their coefficients are robust across virtually all the

models.

The corresponding numerical results are reported in Table 6. The first specification repre-

sents our baseline BMA exercise. To interpret the posterior inclusion probabilities (PIPs) of

the BMA means, we follow Jeffreys (1961), who denotes evidence of an effect that is ‘weak’ for

30



F
ig

u
re

8:
M

o
d

el
in

cl
u

si
on

in
B

ay
es

ia
n

m
o
d

el
av

er
ag

in
g

0
0.

03
0.

07
0.

1
0.

14
0.

18
0.

21
0.

25
0.

29
0.

33
0.

36
0.

4
0.

43
0.

47
0.

5
0.

53
0.

57
0.

6
0.

64
0.

67
0.

71
0.

75
0.

79
0.

82
0.

86
0.

9
0.

93
0.

97
1

e
nv

er
te

d
es

tim
at

e
ne

le
ve

l
fu

nc
tio

n
 

ul
ti

le
ve

l
io

n
 

 
ec

to
rc

on
tro

l
ig

he
rf

re
qu

en
cy

im
e

co
nt

ro
l

m
et

ho
d

ev
el

op
in

g
co

un
try

ro
ss

se
ct

io
n

ap
ita

lc
on

tro
l

m
pa

ct
fa

ct
or

m
et

ho
d

ki
lle

d
by

oc
cu

pa
tio

n
at

a
le

ng
th

ita
tio

ns
ni

te
d

ta
te

s
ge

co
nt

ro
l

ic
ks

el
as

tic
ity

 
du

ca
tio

n
co

nt
ro

l 
im

e
fix

ed
 e

ffe
ct

s
ic

ro
da

ta
m

et
ho

d
an

uf
ac

tu
rin

g
se

ct
or

at
a

m
id

ye
ar

th
ni

ci
ty

co
nt

ro
l

oc
at

io
n

co
nt

ro
l

ow
er

fre
qu

en
cy

ac
ro

ki
lle

d
by

co
lle

ge
al

e
w

or
ke

rs
yn

am
ic

m
od

el
ub

lis
he

d
st

ud
y

ec
to

ra
ld

at
a

on
g

ru
n

ef
fe

ct
op

ul
at

io
n

co
nt

ro
l

N
o

te
s:

O
n

th
e

v
er

ti
ca

l
a
x
is

th
e

ex
p

la
n

a
to

ry
v
a
ri

a
b

le
s

a
re

ra
n

k
ed

a
cc

o
rd

in
g

to
th

ei
r

p
o
st

er
io

r
in

cl
u

si
o
n

p
ro

b
a
b

il
it

ie
s

fr
o
m

th
e

h
ig

h
es

t
a
t

th
e

to
p

to
th

e
lo

w
es

t
a
t

th
e

b
o
tt

o
m

.
T

h
e

h
o
ri

zo
n
ta

l
a
x
is

sh
o
w

s
th

e
v
a
lu

es
o
f

cu
m

u
la

ti
v
e

p
o
st

er
io

r
m

o
d

el
p

ro
b

a
b

il
it

y.
B

lu
e

co
lo

r
(d

a
rk

er
in

g
ra

y
sc

a
le

)
=

th
e

es
ti

m
a
te

d
p

a
ra

m
et

er
o
f

a
co

rr
es

p
o
n

d
in

g
ex

p
la

n
a
to

ry
v
a
ri

a
b

le
is

p
o
si

ti
v
e.

R
ed

co
lo

r
(l

ig
h
te

r
in

g
ra

y
sc

a
le

)
=

th
e

es
ti

m
a
te

d
p

a
ra

m
et

er
o
f

a
co

rr
es

p
o
n

d
in

g
ex

p
la

n
a
to

ry
v
a
ri

a
b

le
is

n
eg

a
ti

v
e.

N
o

co
lo

r
=

th
e

co
rr

es
p

o
n

d
in

g
ex

p
la

n
a
to

ry
v
a
ri

a
b

le
is

n
o
t

in
cl

u
d
ed

in
th

e
m

o
d

el
.

N
u

m
er

ic
a
l

re
su

lt
s

a
re

re
p

o
rt

ed
in

T
a
b

le
6
.

A
ll

v
a
ri

a
b

le
s

a
re

d
es

cr
ib

ed
in

T
a
b

le
5
.

31



a PIP between 0.5 and 0.75, ‘substantial’ for a PIP between 0.75 and 0.95, ‘strong’ for a PIP

between 0.95 and 0.99, and ‘decisive’ for a PIP larger than 0.99. The other two specifications

in Table 6 represent robustness checks: first, ordinary least squares that exclude all the vari-

ables deemed unimportant by baseline BMA (with PIP below 0.5); second, frequentist model

averaging (FMA) that includes all the variables we have collected. Thus our baseline estima-

tion technique is purely Bayesian, the first robustness check uses Bayesian techniques for the

selection of variables but frequentist techniques for estimation, and the second robustness check

is purely frequentist. In addition, Appendix A provides more robustness checks that focus on

different priors and weights (Table A3; including the dilution prior that addresses collinearity)

and subsamples of our data (Table A4; long-run elasticities and Hicks elasticities). We will

concentrate on the variables for which we have the most robust evidence across the models.

The pre-eminent variable in this respect is the standard error, which shows the strongest asso-

ciation with the reported elasticity in all the models we run. Thus model averaging techniques

corroborate our previous findings concerning publication bias.

Variable definition Although we include several distinct elasticity measures in our sample,

including Hicks, Allen-Uzawa, Morishima, and Shadow, the different measures do not constitute

an important factor driving the magnitude of the reported elasticities (in addition, we show

in the third specification of Table A4 in Appendix A that our BMA results are robust to

considering Hicks elasticities only). Several studies, including Goldin & Katz (2009), Mello

(2011), and Binelli (2015) suggest that a lower education cut-off for skills (such as when skilled

workers are defined as those with a high-school diploma) usually produces larger elasticities of

substitution. The mechanism is intuitive but we do not find evidence that would support it.

Nor do we support the notion that defining skills by occupation brings systematically different

elasticities compared to definition by education, which was indicated by the prima facie pattern

in Figure 5a.

Data characteristics Our results do suggest, however, that the differences between estimates

can partly be explained by differences in data frequency. Higher than annual data granularity

(usually monthly, quarterly, or semi-annual) systematically inflates the reported elasticity, which

can be due to measurement error associated with higher frequency data. Measurement error in
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Table 6: Why estimated elasticities vary

Response variable: Bayesian Frequentist check Frequentist
Estimated elasticity of substitution model averaging (OLS) model averaging

P. mean P. SD PIP Coef. SE p-value Coef. SE p-value

Constant 1.67 NA 1.00 1.22 0.41 0.00 1.86 1.41 0.19
Standard error (SE) 0.31 0.02 1.00 0.32 0.04 0.00 0.31 0.02 0.00

Variable definition
Hicks elasticity 0.08 0.30 0.10 0.00 0.38 1.00
Skilled by college 0.00 0.04 0.03 0.00 0.31 1.00
Skilled by occupation -0.17 0.25 0.39 -0.21 0.30 0.48

Data characteristics
Higher frequency 0.98 0.25 1.00 1.04 0.40 0.01 0.90 0.36 0.01
Lower frequency -0.01 0.07 0.03 0.00 0.44 1.00
Micro data -0.03 0.12 0.08 0.00 0.43 1.00
Sectoral data 0.00 0.03 0.02 0.00 0.05 1.00
Cross-section 0.43 0.42 0.57 0.64 0.37 0.09 0.59 0.40 0.15
Data midyear 0.03 0.16 0.05 0.00 0.53 1.00
Data length -0.07 0.11 0.37 -0.04 0.16 0.83

Structural variation
United States 0.07 0.16 0.19 0.03 0.24 0.89
Developing country -0.33 0.24 0.73 -0.36 0.17 0.03 -0.37 0.20 0.07
Male workers 0.00 0.04 0.03 0.00 0.11 1.00
Manufacturing sector -0.02 0.10 0.06 0.00 0.07 1.00

Design of the production function
One-level CES function -1.75 0.30 1.00 -1.55 0.39 0.00 -1.65 0.50 0.00
Multi-level CES function -1.20 0.31 1.00 -1.01 0.45 0.02 -1.09 0.61 0.07
Time control 0.63 0.18 0.99 0.69 0.19 0.00 0.52 0.23 0.02
Location control 0.01 0.06 0.04 0.00 0.11 1.00
Education control -0.06 0.24 0.10 0.00 0.42 1.00
Macro control -0.01 0.05 0.03 0.00 0.22 1.00
Population control 0.00 0.06 0.02 0.00 0.07 1.00
Sectoral control -1.20 0.30 1.00 -1.19 0.33 0.00 -1.01 0.44 0.02
Age control 0.08 0.22 0.15 0.13 0.57 0.82
Ethnicity control -0.02 0.14 0.05 0.00 0.24 1.00
Capital control -0.32 0.39 0.47 -0.53 0.35 0.13

Estimation technique
Dynamic model 0.00 0.03 0.02 0.00 0.09 1.00
Unit fixed effects 0.52 0.13 1.00 0.54 0.24 0.02 0.47 0.19 0.01
Time fixed effects 0.03 0.11 0.10 0.00 0.18 1.00
Long-run effect 0.00 0.04 0.02 0.00 0.07 1.00
OLS method 0.02 0.09 0.07 0.00 0.21 1.00
IV method -0.38 0.25 0.78 -0.45 0.28 0.10 -0.43 0.34 0.21
SUR method -0.46 0.64 0.39 -0.92 0.67 0.17
Inverted estimate 1.55 0.20 1.00 1.56 0.21 0.00 1.49 0.19 0.00

Publication characteristics
Impact factor -0.08 0.11 0.40 -0.16 0.11 0.15
Citations -0.06 0.09 0.37 -0.03 0.05 0.63
Published study 0.00 0.03 0.02 0.00 0.26 1.00

Studies 61 61 61
Observations 638 638 638

Notes: P. mean = posterior mean, P. SD = posterior standard deviation, PIP = posterior inclusion probability, SE =
standard error. Bayesian model averaging employs the combination of the uniform model prior and the unit information
g-prior recommended by Eicher et al. (2011). The frequentist check (OLS) includes the variables recognized by BMA to
comprise the best model and is estimated using standard errors clustered at the study level. Frequentist model averaging
applies Mallow’s weights (Hansen, 2007) using orthogonalization of covariate space suggested by Amini & Parmeter
(2012) to reduce the number of estimated models. All variables are described in Table 5. Additional details on the
benchmark BMA exercise can be found in the Appendix A in Table A2 and Figure A1.
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the independent variable results in attenuation bias in the estimated regression parameter, which

translates to an upward bias in the elasticity (typically the inverse of the regression parameter).

Next, our results suggest that data aggregation does not influence the reported elasticities

systematically. Using purely cross-sectional data seem to affect the reported elasticity, but

evidence for this effect is weak in both Bayesian and frequentist frameworks. It is also interesting

to note that the downward trend in the reported elasticities shown in Figure 1 does not survive

controlling for other aspects of study design. Moreover, the length of the sample period does

not matter systematically for the resulting elasticity.

Structural variation Jones (2014) mentions that the differences in human capital between

high- and low-skilled workers might be larger in rich countries because of higher standards in

education and training. This notion constitutes an argument in favor of smaller elasticities

of substitution in developed economies. But according to our results it is developing countries

that show smaller elasticities. A significant portion of literature, including Klenow & Rodriguez-

Clare (1997) and Caselli (2005), suggest that the efficiency of labor input varies between rich

and poor countries. If we perceive the elasticity as a measure of ‘efficiency of a productive

economy’ (de La Grandville, 1989), countries with a low efficiency of human capital display

a smaller elasticity of substitution between skilled and unskilled labor. As Malmberg (2018)

argues, larger elasticities imply that in order to maximize output efficiently the share of skilled

labor within the force must be higher. The share of skilled labor is indeed much larger in

developed countries than in the developing world. Moreover, we find that using only male labor

force data, data for manufacturing, or data for the US does not systematically matter for the

reported elasticities.

Design of the production function If the elasticity is estimated within a framework distinct

from the CES (typically translog), it tends to be, with decisive posterior inclusion probability,

larger. As Ciccone & Peri (2005) point out, for example, the main difference between the CES

and translog approaches is that the translog one allows the elasticity of substitution to vary

with the relative supply of differently skilled workers. If the wage share of more skilled workers

increases over time, in the translog specification the elasticity is pushed upward. While translog

is more flexible and allows for the estimation of elasticities between different factors, it has the
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incremental disadvantage of being more prone to misspecification bias and measurement error

(see, for example, Freeman & Medoff, 1982).

Next, we observe that controlling for the time period is associated with systematically larger

elasticities. Functions of time are typically added to regression specifications in order to proxy

for varying demand for skills, and a lack of this control may constitute omitted variable bias.

On the other hand, once the authors of primary studies control for sectoral differences in the

data, the elasticity estimates get systematically smaller. We also find weak evidence across our

models that the inclusion of capital control matters: in theory, industries with a larger stock of

capital have higher wages because labor productivity is higher. Increases in the capital stock

increase the marginal product of skilled labor, but decrease the marginal product of unskilled

labor; excluding the capital control could thus bias the elasticity estimates.

Estimation technique When studies employ panel data, fixed effects can be used to control

for unobserved features that might affect the education of workers or the technology chosen

by firms. Our results suggest that ignoring unit fixed-effects can drive the reported elasticity

downwards. Time fixed-effects, on the other hand, do not affect the estimates systematically.

Next, we do not find that long- and short-run effects differ systematically. In contrast, we find

that accounting for endogeneity yields systematically smaller elasticity estimates. The evidence

for this effect gets even stronger once only Hicks or long-run elasticity estimates are considered

(see Table A4). Our results are also consistent with attenuation bias, which drives the regression

estimate downwards and the elasticity, computed typically as the estimate’s inverse, upwards.

The result is in line with Bowles (1970), who nevertheless argues that the bias is not large. In

our case, however, direct estimates tend to be 1.5 smaller than inverted estimates, which implies

a large effect.

Publication characteristics Our results indicate that publication characteristics, which we

included as rough proxies for quality not captured by the remaining variables, are not system-

atically associated with the reported elasticities. Influential and obscure studies tend to present

similar results on average once the characteristics of data and methods are taken into account.

The discussion has so far focused mostly on statistical significance, especially the posterior

inclusion probability resulting from Bayeasian model averaging. Table 7 explores the economic
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significance of the key variables identified as important by BMA and FMA. The table shows the

effect on the implied elasticity when we increase the value of the corresponding variable by one

standard deviation (the panel on the left) and when we increase the value of the corresponding

variable from the sample minimum to sample maximum (the panel on the right). The vari-

ables with the largest effect on the substitution elasticity are the standard error (a proxy for

publication bias), functional form (CES versus translog), and inverted estimation (a proxy for

attenuation bias). Changes in these characteristics can routinely alter the reported elasticity

by 0.7 or more.

Table 7: Economic significance of key variables

One-std.-dev. change Maximum change
Effect on σ % of best practice Effect on σ % of best practice

Standard error 1.08 151% 5.06 705%
Higher frequency 0.25 35% 0.98 137%
Cross-section 0.17 24% 0.43 60%
Developing country -0.15 -22% -0.33 -47%
One-level CES function -0.87 -121% -1.75 -244%
Multi-level CES function -0.53 -74% -1.20 -168%
Time control 0.32 44% 0.63 88%
Sectoral control -0.25 -34% -1.20 -167%
Unit fixed effects 0.26 37% 0.52 73%
IV method -0.16 -23% -0.38 -53%
Inverted estimate 0.77 108% 1.55 216%

Notes: The table shows ceteris paribus changes in the reported elasticities implied by changes in the variables that
reflect the context in which researchers obtain their estimates. For example, increasing the estimate’s standard error
by one standard deviation is associated with an increase in the estimated elasticity by 1.08, about one and half times
the size of the implied best practice estimate (conditional on ideal data, method, and publication characteristics, as
described in Table 8). Increasing the standard error from the sample minimum to the sample maximum is associated
with an increase in the estimated elasticity by 5.06, about seven times the best practice estimate. A detailed
description of the variables is available in Table 5.

The model averaging analysis suggests that the reported elasticity of substitution is affected

by many data and method choices, including ones that arguably lead to a bias. Publication and

attenuation bias work in concert, but the other potential biases often influence the elasticity

in the opposite direction. As the bottom line of our analysis we thus compute an implied

elasticity conditional on the entire sample of collected elasticities, our baseline BMA results,

and a definition of best practice methodology in the literature. Since best practice is subjective,

we choose three alternative strategies. First and second, we rely on two distinct definitions from

the literature: Card (2009) and Autor (2014). These are meticulous contributions by leaders

in the field and have also been published in prestigious journals, American Economic Review
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and Science. We copy their data and method characteristics and plug them in the values of our

variables in order to compute the fitted values from BMA and, hence, the implied elasticity. The

only exception are proxies for publication and attenuation bias in the literature: we plug zero

for the standard error and 0.5 for the dummy variable that equals one for inverted estimates.

Third, we create a subjective definition of best practice based on our reading of the literature.

It turns out that the results of the three strategies do not differ much.

Table 8: Best-practice elasticities implied for different data sets

Subjective best practice Autor (2014) Card (2009)

All data 0.72 0.53 0.49
(0.21, 1.22) (0.21, 0.85) (-0.51, 1.49)

Manufacturing & male workers 0.53 0.48 0.44
(0.01, 0.91) (0.18, 0.79) (-0.56, 1.44)

USA 0.86 0.68 0.64
(0.3, 1.42) (0.37, 0.98) (-0.37, 1.64)

Developing countries 0.46 0.27 0.23
(0.01, 0.91) (-0.16, 0.71) (-0.81, 1.28)

Notes: The table presents mean estimates of the elasticity of substitution between skilled and unskilled labor
implied by the Bayesian model averaging and our definition of best practice in the first column, the methods
used by Autor (2014) in the second column and by Card (2009) in the third column (with the exception that
in the latter two cases we plug in 0.5 instead of 1 for the variable Inverted estimate and zero for the variable
Standard error). That is, the table attempts to answer the question what the mean elasticities would look
like if the literature was approximately corrected for publication and attenuation biases and all studies in the
literature used the same strategy as the one that we prefer or the ones employed by Autor (2014) and Card
(2009). The 95% confidence intervals in parentheses are approximate and constructed using the standard errors
estimated by OLS with standard errors clustered at the study level.

Our subjective definition of best practice is the following. We plug in zero for the stan-

dard error in order to correct for publication bias. (Note that in Section 3 we have shown

that the linear correction for publication bias is conservative.) We prefer long-run estimates

of the elasticity, because the long-run estimate is more relevant for calibration. We also prefer

firm-level panel data, annual granularity, and maximum length of the data period. We plug

in the maximum for the midyear of the data used in the primary studies because we want to

give more weight to recent data. We prefer when skills are defined by a college degree. We

prefer the multilevel CES structure with all potential control variables included in estimation;

furthermore, we prefer dynamic models estimated with unit and time fixed effects and account-

ing for endogeneity. We also prefer studies published in peer-reviewed journals with a large

impact factor and those with a high number of citations. All other variables (including the ones

corresponding to structural variation) are set to their sample means.
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Table 8 reports the results. The first row shows the overall estimate, the second row shows

the estimate corresponding to a more homogeneous dataset of male workers in manufacturing,

the third row shows the estimate for the US, and the last row shows the estimate for developing

countries. We find it useful to focus on the estimate for the US because it is comparable with the

best known estimates in the literature: our analysis implies an elasticity of 0.6–0.9, much less

than the typical calibration of 1.5. The confidence intervals are wide due to the large number of

variables included in model averaging, but a similar point estimate of the implied elasticity with

tight confidence intervals can be derived for the US when one runs a parsimonious regression

controlling only for publication bias, attenuation bias, and (downward) omitted variable bias

stemming from ignoring the demand for skills. In a nutshell, we find that the literature is

consistent with the notion that skilled and unskilled labor are gross complements.

5 Concluding Remarks

We collect 729 estimates of the elasticity of substitution between skilled and unskilled labor

reported in 76 studies to provide the first quantitative synthesis of the literature. We measure the

extent of two biases that drive the mean reported elasticity upwards: publication bias (stemming

from the underreporting of small estimates) and attenuation bias (stemming from measurement

error and estimating the inverse of the elasticity in most regressions). Correcting for publication

bias by itself shrinks the mean elasticity from 1.9 to 1, suggesting that selective reporting is

associated with a twofold exaggeration. The twofold exaggeration emerges as a rule of thumb

in economics and social sciences more generally, as evidenced by both large-scale surveys of

meta-analyses (Doucouliagos & Stanley, 2013; Ioannidis et al., 2017) and extensive replication

studies (Klein et al., 2014; Open Science Collaboration, 2015; Camerer et al., 2018; Klein et al.,

2018). Direct estimates of the elasticity are on average 1.5 smaller than elasticities for which

the regression coefficient needs to be inverted, a finding that is consistent with attenuation bias

in the vicinity of 0.75. The interplay of the two biases in labor economics evokes Griliches

(1977), who finds that in measuring the return to education, attenuation bias almost exactly

offsets omitted variable bias (which is often correlated with publication bias via specification

searching). Unfortunately in the case of the elasticity of substitution the two biases work in

concert.
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The aforementioned results hold when we control for additional 35 variables that reflect

the context in which the estimates were obtained in the primary studies: for example, variable

definition, data characteristics, design of the production function, estimation technique, and

publication characteristics. Using so many variables creates model uncertainty problems, and

we address them by using both Bayesian model averaging (which is the natural response to

model uncertainty in the Bayesian setting; Steel, 2020) and frequentist model averaging. For

the former we also employ a dilution prior that addresses potential collinearity (George, 2010).

We find that larger estimated elasticities are associated with data from developed countries,

higher frequency, translog function, ignoring endogeneity, and controlling for the demand for

skills. We then compute the implied elasticity conditional on best practice methodology (using

Card, 2009, and Autor, 2014, as benchmarks). The resulting estimates for the US range between

0.6 and 0.9, suggesting that skilled and unskilled labor form gross complements. Among other

things, this finding implies that in the canonical model skill-biased technical change compresses

the skill premium (Johnson, 1997).

Three qualifications of our results are in order. First, our correction for attenuation bias

is crude: we compare the estimates of the elasticity when the dependent and independent

variables are switched in the regression. Such approach gives us bounds for the interval of

plausible estimates, but does not clearly identify the underlying elasticity. We use the midpoint

of the interval. To measure the extent of attenuation bias precisely, one would need to collect

the data used in the 76 primary studies. Such an extension, while relevant, is on the boundary

of feasibility and beyond our scope in this paper. Second, our correction for publication bias

(following Stanley, 2005; Ioannidis et al., 2017; Andrews & Kasy, 2019; Furukawa, 2020) relies

on the assumption that in the absence of the bias no correlation exists between estimates and

their standard errors. While common in the meta-analysis literature, the assumption can be

violated in labor economics: it is enough for an unobserved method choice to influence both

estimates and standard errors in the same direction, and a positive correlation arises that will

be spuriously interpreted as publication bias. A straightforward solution is to use the number

of observations as an instrument for the standard error, but unfortunately in our case the

instrument proves weak. We thus additionally employ the caliper test (Gerber & Malhotra,

2008; Brodeur et al., 2020), which does not rely on the assumption and also finds that negative
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and insignificant estimates are underreported. Third, estimates reported in the same study are

not independent. We address this issue by clustering standard errors at the study level, using

wild bootstrap, and employing a Hierarchical Bayesian model.
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Appendices

A Robustness Checks and BMA Diagnostics

Table A1: Linear and nonlinear techniques detect publication bias among long-run estimates

Panel A: unweighted OLS Fixed effects Hierarchical Bayes

Standard error 0.375
∗∗∗

0.312
∗∗∗

0.470
∗∗∗

(publication bias) (0.0464) (0.0393) ( 0.0045)
[0.209, 0.459] – –

Constant 1.306
∗∗∗

1.403
∗∗∗

1.440
∗∗∗

(effect beyond bias) (0.300) (0.0604) (0.0047)
[0.646, 2.063] – –

Observations 600 600 600

Panel B: weighted Study-weighted Precision-weighted Top journals

Standard error 0.256
∗∗∗

0.782
∗∗∗

0.376
∗∗∗

(publication bias) (0.0901) (0.143) (0.109)
[0.048, 0.503] [0.486, 1.140] [-0.115, 1.109]

Constant 1.791
∗∗∗

1.002
∗∗

1.564
∗∗∗

(effect beyond bias) (0.233) (0.483) (0.283)
[1.338, 2.267] [-0.127, 2.165] [0.845, 3.263]

Observations 600 600 149

Panel C: non-linear WAAP Stem-based method Selection model
(Ioannidis et al., 2017) (Furukawa, 2020) (Andrews & Kasy, 2019)

Effect beyond bias 0.954
∗∗∗

0.829
∗∗∗

0.963
∗∗∗

(0.054) (0.045) (0.059)
Observations 600 600 600

Notes: Only long-run estimates are considered. The first two panels report the results of the regression σij =
σ0 +β ·SE(σij)+ εij, where σij denotes the i-th effect estimated in the j-th study, and SE(σij) denotes its standard
error. In the second column of Panel A study-level fixed effects are included. In the first column of Panel B the
model is weighted by the inverse of the number of estimates per study. Precision-weighting indicates that the model
is weighted by the inverse of the standard error of an estimate. The “top journals” subsample includes the most
prestigious outlets in our sample: American Economic Review, Quarterly Journal of Economics, Journal of Political
Economy, Econometrica, Review of Economics and Statistics, and Science. In Panel C, WAAP stands for Weighted
Average of the Adequately Powered. Standard errors, clustered at the study level, are reported in parentheses
(except for Hierarchical Bayes, which has posterior standard deviation in parentheses; stars for Hierarchical Bayes
are presented only as an indication of the parameter’s importance to keep visual consistency with the rest of the
table). 95% confidence intervals from wild bootstrap in square brackets (Roodman et al., 2018). ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A2: Summary of the benchmark BMA estimation

Mean no. regressors Draws Burn-ins Time No. models visited
14.1637 3 · 105 1 · 105 1.229579 mins 74,645
Modelspace Visited Topmodels Corr PMP No. obs.
1.4 · 1011 22.10% 100% 0.9561 638
Model prior g-prior Shrinkage-stats
Uniform/18.5 UIP Av = 0.9984

Notes: We employ the priors suggested by Eicher et al. (2011), who recommend using the
uniform model prior (each model has the same prior probability) and the unit information prior
(the prior provides the same amount of information as one observation from the data).

Figure A1: Benchmark model size and convergence, benchmark BMA

0.
00

0.
10

0.
20

Posterior Model Size Distribution 
 Mean: 13.4888

Model Size

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Posterior Prior

0 10000 20000 30000

0.
00

0
0.

01
0

Posterior Model Probabilities
(Corr: 0.9465)

Index of Models

PMP (MCMC) PMP (Exact)

46



Table A3: Why elasticities vary (alternative priors and weights)

Response variable: Bayesian Bayesian Bayesian
Estimated elasticity model averaging model averaging model averaging

(dilution prior) (hyper-g prior) (weighted)

P. mean P. SD PIP P. mean P. SD PIP P. mean P. SD PIP

Constant 1.54 NA 1.00 1.88 NA 1.00 0.09 NA 1.00
Standard error (SE) 0.31 0.02 1.00 0.31 0.02 1.00 0.02 0.00 0.99

Variable definition
Hicks elasticity 0.07 0.27 0.08 0.08 0.29 0.12 0.76 0.13 1.00
Skilled by college 0.00 0.03 0.01 0.00 0.06 0.06 0.13 0.07 0.83
Skilled by occupation -0.16 0.25 0.34 -0.18 0.24 0.45 0.00 0.02 0.05

Data characteristics
Higher frequency 0.88 0.30 0.96 0.98 0.26 1.00 0.02 0.05 0.15
Lower frequency -0.01 0.08 0.03 -0.01 0.08 0.07 -0.02 0.05 0.16
Micro data -0.01 0.08 0.03 -0.05 0.16 0.15 0.00 0.02 0.06
Sectoral data 0.00 0.02 0.01 0.00 0.04 0.04 -0.42 0.04 1.00
Cross-section 0.37 0.39 0.53 0.47 0.45 0.61 0.00 0.03 0.05
Data midyear 0.02 0.11 0.03 0.03 0.18 0.08 0.23 0.04 1.00
Data length -0.05 0.09 0.28 -0.09 0.12 0.44 0.00 0.00 0.03

Structural variation
United States 0.04 0.13 0.13 0.05 0.15 0.17 0.00 0.01 0.03
Developing country -0.22 0.24 0.52 -0.41 0.22 0.86 0.00 0.01 0.03
Male workers 0.00 0.03 0.01 0.00 0.04 0.05 0.00 0.02 0.06
Manufacturing sector -0.01 0.08 0.04 -0.02 0.10 0.08 0.00 0.02 0.05

Design of the production function
One-level CES function -1.69 0.29 1.00 -1.81 0.31 1.00 -1.33 0.09 1.00
Multi-level CES function -1.19 0.31 0.99 -1.24 0.31 1.00 -1.16 0.09 1.00
Time control 0.63 0.19 0.97 0.61 0.17 1.00 0.34 0.05 1.00
Location control 0.00 0.04 0.02 0.02 0.08 0.08 0.00 0.01 0.03
Education control -0.03 0.17 0.05 -0.12 0.31 0.18 0.37 0.13 0.96
Macro control -0.01 0.06 0.03 -0.01 0.06 0.05 0.37 0.08 1.00
Population control 0.00 0.05 0.01 0.00 0.09 0.03 0.46 0.23 0.88
Sectoral control -1.12 0.35 0.97 -1.22 0.30 1.00 0.00 0.01 0.03
Age control 0.03 0.14 0.06 0.19 0.31 0.34 0.01 0.04 0.07
Ethnicity control -0.01 0.10 0.03 -0.04 0.16 0.09 0.01 0.05 0.05
Capital control -0.16 0.32 0.24 -0.49 0.38 0.73 0.00 0.01 0.03

Estimation technique
Dynamic model 0.00 0.02 0.01 -0.01 0.04 0.05 0.01 0.02 0.10
Unit fixed effects 0.49 0.15 0.97 0.53 0.13 1.00 0.00 0.01 0.05
Time fixed effects 0.01 0.08 0.04 0.05 0.13 0.16 -0.02 0.05 0.15
Long-run effect 0.00 0.03 0.01 0.00 0.06 0.04 -0.05 0.09 0.32
OLS method 0.02 0.08 0.06 0.00 0.08 0.07 -0.31 0.06 1.00
IV method -0.25 0.26 0.54 -0.48 0.21 0.93 -0.38 0.06 1.00
SUR method -0.20 0.48 0.18 -0.81 0.69 0.67 -0.04 0.12 0.14
Inverted estimate 1.53 0.20 1.00 1.54 0.20 1.00 0.03 0.06 0.22

Publication characteristics
Impact factor -0.04 0.08 0.20 -0.14 0.12 0.64 0.05 0.03 0.86
Citations -0.04 0.08 0.24 -0.06 0.09 0.37 0.00 0.01 0.04
Published study 0.00 0.02 0.01 0.00 0.04 0.04 -0.21 0.05 1.00

Studies 61 61 61
Observations 638 638 638

Notes: P. mean = posterior mean, P. SD = posterior standard deviation, PIP = posterior inclusion probability. In the first
specification from the left we employ Bayesian model averaging (BMA) using uniform model prior (Eicher et al., 2011) and
dilution prior suggested by George (2010), which accounts for collinearity. The second specification uses a random model
prior advocated by Ley & Steel (2009) and the data-dependent hyper-g prior suggested by Feldkircher & Zeugner (2012).
In the third specification we weight our data by the inverse of the number of observations used in a study. All variables
are described in Table 5.
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Table A4: Why elasticities vary (different subsamples)

Response variable: Bayesian Frequentist Bayesian
Estimated elasticity model averaging model averaging) model averaging

(long-run elasticity) (long-run elasticity) (Hicks elasticity)

P. mean P. SD PIP Mean SE p-val. P. mean P. SD PIP

Constant 1.61 NA 1.00 2.12 2.20 0.34 1.60 NA 1.00
Standard error (SE) 0.31 0.02 1.00 0.31 0.02 0.00 0.31 0.02 1.00

Variable definition
Hicks elasticity 0.03 0.19 0.06 0.00 0.20 1.00
Skilled by college 0.03 0.11 0.11 0.00 0.29 1.00 0.00 0.03 0.03
Skilled by occupation -0.07 0.18 0.18 -0.15 0.31 0.62 -0.07 0.16 0.18

Data characteristics
Higher frequency 0.87 0.42 0.88 0.86 0.44 0.05 1.17 0.25 1.00
Lower frequency -0.06 0.17 0.13 0.00 0.61 1.00 -0.01 0.07 0.04
Micro data -0.02 0.11 0.06 0.00 0.43 1.00 -0.02 0.10 0.07
Sectoral data 0.00 0.03 0.02 0.00 0.10 1.00 0.00 0.03 0.03
Cross-section 0.10 0.26 0.18 0.41 0.40 0.31 0.65 0.45 0.75
Data midyear 0.16 0.39 0.19 0.00 0.71 1.00 0.09 0.29 0.12
Data length -0.03 0.08 0.21 -0.06 0.13 0.68 -0.06 0.11 0.26

Structural variation
United States 0.01 0.07 0.05 0.03 0.17 0.88 0.08 0.17 0.21
Developing country -0.52 0.18 0.96 -0.41 0.23 0.07 -0.36 0.24 0.77
Male workers 0.01 0.06 0.04 0.00 0.07 1.00 0.00 0.03 0.03
Manufacturing sector -0.01 0.06 0.04 0.00 0.02 1.00 -0.02 0.10 0.06

Design of the production function
One-level CES function -1.82 0.30 1.00 -1.72 0.43 0.00 -2.00 0.33 1.00
Multi-level CES function -1.18 0.33 1.00 -1.16 0.54 0.03 -1.41 0.34 1.00
Time control 0.26 0.26 0.60 0.42 0.20 0.04 0.63 0.18 0.99
Location control 0.00 0.06 0.03 0.00 0.05 1.00 0.01 0.07 0.05
Education control -0.01 0.12 0.04 0.00 0.33 1.00 -0.16 0.37 0.19
Macro control -0.01 0.05 0.04 0.00 0.23 1.00 0.00 0.04 0.03
Population control -0.01 0.10 0.03 0.00 0.28 1.00 0.00 0.07 0.02
Sectoral control -1.18 0.31 1.00 -1.02 0.44 0.02 -0.78 0.49 0.80
Age control 0.22 0.37 0.31 0.18 0.66 0.78 0.04 0.15 0.08
Ethnicity control 0.00 0.07 0.03 0.00 0.11 1.00 -0.03 0.16 0.06
Capital control -0.89 0.43 0.89 -0.66 0.41 0.11 -0.22 0.34 0.35

Estimation technique
Dynamic model 0.00 0.03 0.02 0.00 0.09 1.00 -0.01 0.06 0.05
Unit fixed effects 0.44 0.15 0.97 0.41 0.19 0.03 0.53 0.13 1.00
Time fixed effects 0.02 0.11 0.07 0.00 0.24 1.00 0.03 0.10 0.09
Long-run effect 0.00 0.05 0.03
OLS method 0.03 0.13 0.08 0.00 0.22 1.00 0.00 0.06 0.04
IV method -0.59 0.23 0.94 -0.52 0.35 0.13 -0.50 0.21 0.93
SUR method -0.64 0.70 0.52 -1.01 0.70 0.15 0.00 0.11 0.02
Inverted estimate 1.61 0.20 1.00 1.57 0.19 0.00 1.56 0.19 1.00

Publication characteristics
Impact factor -0.05 0.10 0.21 -0.07 0.09 0.44 -0.12 0.12 0.56
Citations -0.16 0.11 0.76 -0.16 0.11 0.14 -0.02 0.06 0.16
Published study 0.00 0.04 0.03 0.00 0.31 1.00 0.00 0.03 0.03

Studies 58 58 57
Observations 600 600 620

Notes: P. mean = posterior mean, P. SD = posterior standard deviation, PIP = posterior inclusion probability, SE =
standard error. In the first specification from the left we employ Bayesian model averaging (BMA) on the subsample of
long-run elasticities using a uniform model prior with the unit information prior on Zellner’s g (Eicher et al., 2011). The
specification yields results almost identical to that using the dilution prior suggested by George (2010), which accounts for
collinearity. The second specification employs frequentist model averaging by applying Mallow’s weights (Hansen, 2007)
using orthogonalization of covariate space suggested by Amini & Parmeter (2012) to reduce the number of estimated
models. In the third specification we only use Hicks elasticities and apply uniform model prior with the unit information
prior on Zellner’s g (Eicher et al., 2011). All variables are described in Table 5.
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