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Abstract

This paper studies the non-parametric identification of the dynamic discrete-continuous

choice models. In contrast to the discrete-only model we show the discount factor is

identified. Our results further highlight why Euler equation estimation approaches that

ignore agents discrete choices are inconsistent. We estimate utility and discount factors

for a consumption-savings-retirement choice problem using the PSID. We show that the

relative risk aversion parameter and the intertemporal elasticity of substitution are sepa-

rately identified, and that the latter varies across agents due to the presence of the discrete

choice. The value function in this setup may be locally convex in wealth, and we find that

a simulated Universal Basic Income policy counterintuitively benefits wealthier working

households due to this effect.
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1 Introduction

It is well known that the optimal decision rule of an economic agent who chooses a continuous

quantity of a good so as to maximize their inter-temporal utility can be characterized by the

first-order condition Euler equation. This approach has been used in numerous literatures such

as consumption and saving, risk-sharing, asset pricing, labor supply, investment, and more.

Importantly, however, the assumptions that justify these models include agents being able to

freely and continuously adjust the optimal consumption of the goods in any given time. In

reality, agents make complex decisions which involve not only continuous but also discrete

decisions: either because of the nature of the goods, notably durables; or because consumption

decisions require adjustment or transaction costs and therefore are infrequently and discretely

adjusted. In general, the inter-temporal decision problem of an economic agent requires a

combination of (possibly multiple) discrete and continuous decisions: consumers choose which

retail stores to visit and how much to buy, which investment products to buy and how much to

invest, which tasks to perform and how much effort to exert, which retirement products to chose

and how much to consume, and so on.1 As noted by Chetty and Szeidl (2007), “the canonical

expected utility model of risk preferences...assumes that agents consume a single composite

commodity... When some goods cannot be costlessly adjusted, a composite commodity does

not exist, and the standard expected utility model cannot be applied”.

In this paper, we study the non-parametric identification of the utility function as well

as the discount factor of dynamic discrete-continuous choice (DDCC) models, and apply the

results to estimate these preferences in the context of a cosumption-saving-retirement choice

problem. On the one hand, adding the continuous choice to a discrete-only problem allows us to

achieve identification of the discount factor which would not typically be identified otherwise.

On the other hand, adding the discrete choice to a continuous-only model allows us to handle

the frictions that would otherwise lead to an inconsistent estimate. On this subject we make

three main contributions: first, we establish a new set of identification results of the utility

function and the discount factor in this class of model; second, we highlight the source of

inconsistency that characterizes the standard model of intertemporal decision based on the

simple Euler equation; and third, we estimate a consumption-saving-retirement model using a

1For example, the optimal consumption and investment with multiple risky assets likely involves
fixed/variable and observed/unobserved transaction costs as well as individual observed and unobserved het-
erogeneity. This problem has proven quite difficult to analyze even with parametric restrictions on the form of
the utility function (see for example Liu, 2004; Lynch and Tan, 2011; Gârleanu and Pederson, 2016).

2



simple two-step method approach which can be generally used to estimate this class of model.

We show that in this application, failing to account for the discrete choice yields a substantial

bias in the key estimates.

Specifically, we apply our non-parametric identification results to estimate a lifecycle prob-

lem with continuous consumption and binary retirement decisions using the Panel Survey of

Income Dynamics (PSID). A naive Euler equation approach which ignores the discrete choice

yields an estimated coefficient of relative risk aversion equal to 1.71 for working households,

which is thirty-eight percent larger than the estimate of 1.24 generated by the full model. This

is because the naive Euler equation approach mis-attributes the option value of the future

discrete choice — i.e., being able to retire in the next period — as risk-aversion in the instanta-

neous utility function. Such a degree of bias has important implications for welfare and policy.

Equally important, in the full model we estimate an annual discount factor of 0.96 on average

while the naive Euler equation approach yields a much lower value of 0.94, or roughly twice the

discount rate. Moreover, we find that the discrete choice is directly important to understand-

ing welfare, as both the level and the degree of risk-aversion are typically much higher under

retirement than when working — and increasingly so with age.

We use the model to estimate a counterfactual policy exercise of a Universal Basic Income

(UBI), in which a $750/month cash transfer is financed by an across-the-board 15 percentage

point increase in income taxes. Such a policy has clear implications for both the continuous

consumption choice as well as the discrete labor force participation choice. Having identified

not only the utility functions of working and retired households, but also the discount factor,

we are able to compute the change in lifetime expected discounted utility from this policy. The

effect is strongly progressive among retired households, benefitting the poorest households the

most. However, we find that among working households the benefits are actually higher for

wealthier households. Working households retire on average 1.2 years earlier under the policy

reform, but this is concentrated among wealthier households. They therefore benefit from a

greater option value from the discrete choice than do poorer households, which tend only to

benefit from the increased consumption conditional on remaining working. The presence of the

discrete choice thus overturns the welfare conclusions which would arise in a continuous-only

model.

Models of economic agents’ dynamic optimization problems based on the estimation of

Euler Equations using micro data are workhorses of modern macroeconomics, public finance,

consumer finance, and many other fields. However, this literature (see for example Alan et al.

3



(2019), Attanasio et al. (1999), Bond and Meghir (1994), Mulligan (2004) among others) has

mostly ignored the presence of discrete goods (such as durables) or costly consumption adjust-

ment. When costly adjustment or a discrete choice affects agents utility the Euler equation

can and must be augmented by two additional considerations: first, the alternative chosen

tomorrow may have a marginal utility of consumption different from the current alternative;

and second, the continuous choice may affect the probability with which future alternatives are

chosen. Both channels influence the optimal continuous choice.

To understand the first channel, consider a simple setting with two alternatives, one with

a relatively high marginal utility of consumption and the other relatively low. Taking for

now the discrete choice probabilities as exogenously given, an agent who has chosen the high

marginal utility good today knows that with some chance she will choose the low marginal

utility good tomorrow. The expected marginal utility of consumption tomorrow is therefore

lower than would result from considering only the chosen alternative, and the agent should

optimally consume relatively more today. Ignoring the possibility of alternatives with differing

marginal utilities would be similar to ignoring the presence of states that affect the marginal

utility, and the model would be misspecified in both cases.

In general, however, the discrete choice probabilities will themselves be affected by the

continuous state, and this introduces a second effect. Even if the marginal utilities from the

continuous choice are identical across all alternatives, the agent must take into account the

expected surplus from the next-period discrete choice when deciding her continuous choice.

The agent’s marginal utility from consumption may be unaffected by her discrete choice, but

both her level of utility and the possible transition of her wealth may be. As changes in the

agent’s wealth may cause her to switch from one discrete choice to another, her value function

may in fact be locally convex in wealth. Consumption today therefore affects the expected

surplus from the discrete choice tomorrow, and the agent will therefore consume differently

than if the choice probabilities were fixed. Ignoring the presence of the discrete choice would

mis-attribute this response to the option value from the discrete choice as pertaining to the

marginal utility of consumption and potentially yield substantially biased results.

Literature Review The limitations of identification of the dynamic discrete choice model

have been well studied. In general, the dynamic discrete choice model is not identified without

imposing additional restrictions, usually on the utility or value functions. Rust (1994), Magnac

and Thesmar (2002), and Levy and Schiraldi (2020) study the problem of identification of
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the discount factor and utility function and Komarova et al. (2018) and Abbring and Daljord

(2020) discuss the identification of the discount factor, respectively in a fully-parametric and

non-parametric framework.

In the context of the Euler-equation models identification has been studied by Chen and

Ludvigson (2009), Chen et al. (2014) and Escanciano et al. (2017) among others. Specifically,

Escanciano et al. (2017) show that the discount factor and the agents’ marginal utility is non-

parametrically set-identified under mild restrictions and point identified with the additional

assumption that the utility is increasing in the continuous-choice variable. The result is based

on the result that the Euler Equation can be interpreted as a Fredholm integral equation of

the second kind, and that the discount factor and the marginal utility are the eigenvalue-

eigenfunction pair that solve such an equation. Unfortunately, these results are not robust to

the presence of a discrete choice or adjustment costs which modify the Euler equation such that

the problem is no longer nested in the Type-II Fredholm class, and the results therefore cannot

be applied to a DDCC setting.

In the context of dynamic discrete-continuous model, Chetty and Szeidl (2007) points out

the importance of accounting for costly adjustment and infrequent consumption decisions prob-

lem in evaluating risk aversion with respect to moderate-stake shocks. However, they do not

study the identification or the estimation of the model, instead analyzing a stylized setting

where all uncertainty is resolved in the first period and there is no unobserved heterogeneity.

Beffy et al. (2019) consider a consumption-savings problem with a discrete set of labor supply

choices, which introduces similar optimization frictions but imposes a common utility func-

tion across alternatives. Iskhakov et al. (2017) and Gayle (2017) study estimation methods

for DDCC models. Iskhakov et al. (2017) provides a computational method to fully solve and

estimate these models, Gayle (2017) proposes a two-step estimation procedure in the class of

DDCC models that are characterized by finite dependence2. These papers do not study the

identification of these models and set the discount factor at a given known level, moreover we

also allow for time varying individual heterogeneity that affect both the discrete and contin-

uous choices. More closely related to our result is Blevins (2014) who extends the results of

non-parametric identification of the utility function in the dynamic discrete choice model to the

discrete-continuous models, but in the spirit of that literature he assumes the discount factor

is known and imposes a strong form of normalization of utility function in order to achieve

identification. In providing identification of the time preferences, we also are able to relax

2See Arcidiacono and Miller (2011)
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some assumptions about the normalization of the utility function. Finally, Schiraldi r© Levy r©
Bracke (2019) study a dynamic discrete-continuous model where individuals are present-biased.

2 Set-up and Assumptions

We consider a single-agent discrete-continuous dynamic optimization model with an infinite

time horizon indexed by t = 1, 2, ... and a stationary environment. The agent’s period-t flow

utility depends on their choices and the period-t state variables (s̄t, ζt, εt). We assume that

s̄t is observed by the researcher, while εt ≡ (εi0t, . . . , εJt) ∈ RJ+1 and ζt ∈ R are unobserved.

The observed state may be decomposed as s̄t ≡ (st, Lt, zt), where Lt ∈ R is the stock variable

in the agent’s intertemporal budget constraint (usually “wealth”), while st ∈ S captures any

remaining payoff-relevant states that are observed by the researcher. We separately write zt as

we will impose some additional constraints relative to st later to address selection. As typical

in the discrete-choice literature, we assume that S is finite for simplicity. Given that qt is

continuous, however, we assume that Lt is also continuous. Unobservable preferences shocks

are associated with both the discrete and continuous choices, and thus εt represents the vector

of individual idiosyncratic random preference shocks for each of the discrete alternatives, while

ζt is an individual-level shock which affects the marginal utility of consumption. The joint state

(s̄t, ζt, εt) evolves according to a time-homogeneous process that we describe below.3

At the beginning of the period, the agent observes the realization of (s̄t, ζt, εt) and simul-

taneously makes a discrete and a continuous choice (dt, qjt) ∈ J × R which is observed by the

researcher. Specifically, the agent chooses dt from a set J = {0, 1, . . . , J} of discrete, mutually

exclusive, and exhaustive alternatives. The agent also chooses the continuous quantity qt ∈ R.

They then receive an instantaneous payoff ūdt(qt, st, zt, ζt, εt). Note that Lt is omitted from the

utility function as we are controlling for qt and thus considering a direct utility function. Lt is

considered to affect choices only through its effect on the intertemporal budget constraint.4

3Our analysis can be extended to allow for the presence of an unobservable market-level shock, ξjt, and for
the possibility that it is correlated with some observable characteristics of the product, e.g. the price, as in the
spirit of the discrete choice models in the I.O. literature. To guarantee that ξjt is non-parametrically identified,
we may assume that it enters additively with the individual unobservable shock and replace in the text below
ζt with ζjt where ζjt ≡ ζt + ξjt.

4Note that in the applied discrete choice literature, the problem is often specified in terms of an indirect
utility function and therefore wealth (or income) appears in this function.
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Assumptions. We make the following additional assumptions, most of which are standard

assumptions used in the dynamic discrete choice literature (Rust, 1994; Aguirregabiria and

Mira, 2010, see,), with slight modifications in some cases to allow for the additional continuous

choice and the presence of an intertemporal budget constraint. Assumptions 1, 2 and 3 have

been widely used in dynamic discrete choice models since Rust (1987) demonstrated their role in

generating empirically tractable structural models of dynamic discrete choice (see Rust (1994),

Aguirregabiria and Mira (2010)).

Assumption 1. (Additive Separability of Discrete Shock) The instantaneous utilities are given

by, for each j ∈ J ,

ūj(qt, st, zt, ζt, εt) = uj(qt, st, zt, ζt) + εjt

where uj(·) is continuously differentiable for all j

Assumption 1 is an additive separability condition of the sort used in both static and

dynamic discrete choice analysis (e.g. McFadden (1974), Rust (1994)). Note that in our

context, although it requires εt to affect payoffs additively, ζt may still affect payoffs in a

nonseparable manner.

Assumption 2. (Independent Discrete Shock) The unobservable state variable εt is iid dis-

tributed over time and across agents with support RJ and CDF F (εt) which has finite first

moments and is continuous and twice differentiable in εt.
5

We proceed assuming that F (εt) is known. As discussed by Rust (1994) and Magnac and

Thesmar (2002), establishing non-parametric identification when the distribution of the errors

is unknown in the infinite-horizon case presents additional challenges that we want to abstract

away from.6

Future states are uncertain, and the agent’s actions and states today affect the distribution.

The evolution of the states is summarized by a Markov transition law Γ(s̄t+1, ζt+1, εt+1|s̄t, ζt, εt; dt, qt).
We make the following additional assumptions about the transition of the state variables and

the distribution of the shocks:7

5Rust(1994) presents a weaker version of this assumption where the second and higher moments of εt may
depend on the observable states. However, this weaker version of the assumption is hardly ever used in practice.

6See for example Blevins (2014) who provides new identification results for F (εt) in a similar context to ours
under additional exclusion restrictions.

7See Blevins (2014) and Hong and Shum (2010) for a similar extension of the conditional independent
assumption to the discrete-choice environment.
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Assumption 3. (Conditional Independence): The transition distribution of the states has the

following factorization:

Γ(s̄t+1, ζt+1, εt+1|s̄t, ζt, εt, dt, qt) =

λ(Lt+1|s̄t, st+1, dt, qt)π(st+1|s̄t, dt, qt)W (zt+1|st, Lt, dt)F (εt+1)G(ζt+1)

where λ(·), W (·), F (·), and G(·) have finite first moment and additionally F (·), and G(·) have

support R and are twice differentiable.

Assumption 3 is the conditional independence assumption of Rust (1987, 1994), which limits

the serial dependence of the unobservables. We allow st+1 to depend arbitrarily on the period-t

state variables and choices, and allow the same for Lt+1 but also permit dependence on st+1 to

allow for stochastic returns. As the unobserved shocks are not the main focus of this paper, we

assume that εjt and ζt are independently distributed over time.8 Similarly, Assumption 3 may in

fact allow for time-varying distributions but we suppress such variation and, for example, write

π(·) rather than πt(·). We assume that zt+1 may depend on st, Lt, and dt, but is conditionally

independent of qt and zt, which is motivated by the next assumption:

Assumption 4. (Unlimited encouragement) There exists k such that for all j ∈ J \ {k}:

1. The marginal utility ∂uj/∂q is independent of z for all (q, s̄, ζ).

2. For all (s, L) there exists a sequence {zj,n} such that lim
n→∞

Pr(dt = j|s, L, zj,n) = 1

Assumption 4 is made to address the selection on unobservables — particularly ζt — which

may affect the conditional continuous choice, and resembles the assumptions made in both the

static structural and reduced-form literatures (see for example Dubin and McFadden (1984),

Hewitt and Hanemann (1995) and Heckman (1979)).9 We impose two conditions, which may

fail to be satisfied by at most one alternative. The first condition excludes zt from the marginal

utility, and this combined with the conditional independence from Assumption 3 will guarantee

8We note that ζt+1 may be permitted to depend on st and ζt. In that case, Lemma 1 recovers not ζt but a
polynomial in the lagged state and conditional percentiles of consumption, the coefficients of which must then
be estimated along with the rest of the model. As our focus here is on the effect of the discrete choice, we
instead impose independence to keep the model parsimonious.

9In a static model Assumption 4 part 1 is sufficient to deal with the selection as (for example) discussed
in Dubin and McFadden (1984), when coupled with additive separability of the policy function in ζt. This
separability, however, is generically not satisfied in a dynamic setting even if the marginal utility of consumption
is additively separable in ζt due to the expected continuation value.
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that the optimal continuous choice is independent of zt for most alternatives. In contrast, the

optimal discrete choice may be affected by zt and the second part of Assumption 4 guarantees

that this is the case. Specifically, it states that for all but one alternative, there must be a

sequence of zt such that the probability of choosing alternative j approaches one.

Without the second part of Assumption 4, unknown selection on ζ would render the con-

tinuous policy function unrecoverable without imposing difficult-to-interpret and unverifiable

assumptions on it.10 Instead, our Assumption is both clear and verifiable, and applies in many

common settings. It may be viewed as a strengthening of the common encouragement design

of experiments with non-random treatment assignment. For example, suppose a consumer is

choosing between a local bodega in Manhattan and a Costco in New Jersey (which differ in

the marginal utility of their goods) but that the econometrician has data on the traffic in the

Holland Tunnel. We require that traffic may be sufficiently bad that the consumer chooses the

Manhattan store with arbitrarily high probability — but note that we do not require traffic

conditions that force them to New Jersey (and moreover the marginal utility in New Jersey

may always depend on traffic).

Two common features of decision environments will also satisfy this assumption. In our

application to consumption-savings-retirement, we treat retirement as an absorbing choice. We

may therefore use the lagged discrete choice as zt, which clearly satisfies both the conditional

independence and part 1 of Assumption 4. Moreover, conditional on starting the period retired,

the probability of remaining in this absorbing choice is one. Thus the second part is satisfied

as well.11 We also note that when there is variation in the choice set, as studied by Levy

and Schiraldi (2020), the realized choice set will clearly affect the choice probabilities without

affecting the conditional continuous choices, and if there is the possibility that the choice set

may be a singleton then it may be applied here.

Our next assumption relies on standard economic modeling of the intertemporal budget

constraint. We assume that the continuous choice qt and the continuous state variable Lt enter

the problem in a manner similar to how consumption and assets are usually treated. Treating Lt

as a general state variable requires some additional notation, but follows the standard budget

10In general, equation (12) may have an infinite number of solutions beyond the true policy functions. Unlim-
ited encouragement is a sufficient condition for uniqueness. There are other conditions on the policy functions
which are sufficient for uniqueness (e.g. linearity in ζ), but unlike 4, they would not be testable in the data.

11A second option in our application would be to use the head of household’s age, as empirically the probability
of retirement for sufficiently young households approaches zero. Instead, we choose to allow the marginal
utility of consumption to be age-dependent (violating part 1 of the assumption) and make use of the absorbing
retirement choice.
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constraint formulation. First, we assume that Lt+1 is a known function of s̄t, st+1, Lt, and

the period-t choices. Unlike the the state variables in st, economic theory can often provide

guidance on how Lt is modeled. Indeed, as in our application, it is often merely an accounting

identity. We will therefore make use of this economic structure rather than attempting to

recover it from the data. Second, we place restrictions on the form this function may take.

Specifically, that the next-period value is a known linear function of the end-of-period state:

fdt(st+1, st, Lt, qt) (Lt − qt − φjt (st, Lt)), where φjt(st, Lt) accounts for any fixed costs of the

chosen alternative. For example, if part of the state is the market interest rate (i.e. snt = rt) then

fdt(st+1, st, Lt, qt) = (1 + rt+1) yields the standard intertemporal asset accumulation equation.

That Lt and qjt enter in this form corresponds to an assumption that the agent is a price-

taker, as the price does not depend on the quantity chosen.12 We allow that the returns on the

decision-maker’s assets are stochastic and depend on st+1.

Assumption 5. (Intertemporal budget constraint evolution)

λ(Lt+1|st+1, s̄t, dt, qt) =

{
0, Lt+1 < B(s̄t, st+1, dt, qt)

1 Lt+1 ≥ B(s̄t, st+1, dt, qt)

where B(s̄t, st+1, dt, qt) ≡ fdt(st+1, st, Lt, qt)(Lt− qt− φdt(st, Lt)) for known functions fdt(·) 6= 0

and φj(s̄t) which are nondecreasing in Lt.

In our setting, Assumption 5 can be interpreted as the usual intertemporal budget con-

straint. The consumption-independent term φj(st, Lt) reflects any other expenditures or fixed

costs, and in our application is net income (negative, given that φj(st, Lt) enters negatively).

In other settings it may reflect transaction costs, switching costs, and so forth. We also note

that φj(s̄t) will only play an important role in Theorem 2, and may be arbitrary or omitted

entirely in Theorem 1, which forms the basis of our empirical analysis.

We conclude with the regularity conditions that guarantee an interior solution for the con-

tinuous choice.

Assumption 6. (Regularity Conditions) For all j, s, L, and ζ: uj(·) is continuous, differen-

tiable, and lim
q→∞

∂uj
∂q

= 0

Finally, we make a non-triviality assumption regarding the transitions of s:

12In some settings this will be a restrictive assumption. It may be relaxed, but doing so will require corre-
spondingly stronger assumptions to provide identification.

10



Assumption 7. (Non-trivial dependence of transitions) There exists j such that if q 6= q′ or

L 6= L′ then fj(·, L, q)π(·|s, L, z, q, j) 6= fj(·, L′, q′)π(·|s, L′, z, q′, j)

Assumption 7 requires that the continuous part of the decision-maker’s problem affects the

states in some way. One economically meaningful interpretation is that wealth or consumption

affect either the return or the distribution of returns the decision-maker faces. Specifically,

while they may not affect market returns per se, they may affect their own distribution of

returns for example by changing the marginal rate at which the returns are taxed as in our

application below. In other contexts, the continuous choice may directly affect the next-period

consumption utility, for example through habit formation. As we have assumed a stationary

utility function, it is natural to operationalize such spillovers through the state variables.

Finally, we must make an assumption regarding how the unobservable shock ζ enters the

utility function. Given that ζ is unobserved, some assumptions such as monotonicity may be

without loss of generality as they are a matter of labelling. However, we will require that

the policy function for the continuous choice is invertible in ζ, and so we make the common

assumption that the utility function is supermodular in ζ and q:13

Assumption 8. (Supermodularity). For all j ∈ J , the instantaneous marginal utility ∂uj(q, s, z, ζ)/∂q

is (weakly) supermodular in q and ζ

3 Decision process and Identification

In the rest of this paper, for notational convenience, we consider that the utility function does

not depend on zt.

3.1 Preliminary results

We assume individuals discount the future at rate δ in maximizing the present discounted value

of their lifetime utilities. Under the assumptions above, the value function from the perspective

of the beginning of the period can be expressed recursively as

V (s̄t, ζt, εt) = max
dt,qt
{udt(qt, st, ζt) + εdtt + δE[V (s̄t+1, ζt+1, εt+1)|dt, qt, s̄t]} (1)

13Similar monotonicity conditions have been widely used both in empirical work and in identification analysis
in related models, including, but not limited to, Matzkin (2003), Blevins (2014), Bajari et al. (2007), Chesher
(2003), Hong and Shum (2010), and Srisuma (2015).
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Note that the presence of the max operator in equation (1) means that the unconditional

value function is not guaranteed to be concave. Because the decision-maker is able to take the

upper envelope of the optimal continuous choices across all |J | discrete choices, there are likely

to be important convexities as the agent shifts their discrete choice. These may be smoothed out

to a degree by considering the ex-ante value function (or integrated value function), V̄ (s̄t, ζt),

defined as the continuation value of being in state (s̄t, ζt) and integrating V (s̄t, ζt, εt) over εt

(Rust, 1987, see,) :

V̄ (s̄t, ζt) =

∫
V (s̄t, ζt, εt)dF (εt) (2)

We now define the conditional value function vj(s̄t) as the present discounted value (net

of εt only) of choosing alternative j and the conditionally optimal quantity q∗jt, and behaving

optimally from period t + 1 on:

vj(s̄t, ζt) ≡ uj(q
∗
jt, st, ζt) + δE

[
V̄ (s̄t+1, ζt+1)|jt, s̄t, q∗jt

]
(3)

Turning to the discrete choice, we may write the discrete choice probabilities in terms of the

discrete-choice-specific value function as:

Pr(dt = jt|s̄t, ζt) = E
[
1 · (jt ∈ arg max

d
vd(s̄t, ζt) + εdt)|s̄t, ζt

]
(4)

Under Assumptions 1 and 2, there exists a one-to-one mapping from the conditional choice

probabilities to differences in the choice-specific value function in given the vector of states:

(∆v1(s̄, ζ), ...,∆vJ(s̄, ζ)) = Ψ(Pr(d = 1|s̄, ζ), ..., P r(d = J |s̄, ζ)) (5)

where ∆vj(s̄, ζ) = vj(s̄, ζ) − v0(s̄, ζ) for any j 6= 0. Moreover, the ex-ante value function has

the additivity property (Rust (1994, Theorem 3.1)):

V̄ (s̄, ζ) = Φk(s̄, ζ) + vk(s̄, ζ) (6)

for any alternative k. Notice that (5) implies that Φk is a unique function of the choice

probabilities, which are in turn a function of the state, and so we write Φk(s̄, ζ) for a more

compact notation. We may therefore re-write equation (3) as:

12



vj(s̄t, ζt) = uj(q
∗
jt, st, ζjt) + δE

[
Φ0(s̄t+1, ζt+1) + v0(s̄t+1, ζt+1)|jt, s̄t, q∗jt

]
(7)

Under the regularity conditions assumed, the agent’s continuous choice will be characterized

by the first-order condition of (7). Given that the agent is choosing optimally, an envelope

condition holds and we have ∂vj(s̄t, ζt)/∂L = ∂uj(q
∗
j , s, ζ)/∂qj (see Appendix A.1). We may

therefore write the first-order condition of (7) as:

∂uj(q
∗
jt, st, ζt)

∂q
= δE

[
fj(st+1, st, Lt, qt)

(
∂Φj(s̄t+1, ζt+1)

∂Lt+1

+
∂uj(q

∗
jt+1, s̄t+1, ζt+1)

∂q

) ∣∣jt, s̄t, q∗jt]
(8)

Equation (8) generalizes the familiar Euler equation to our discrete-continuous setting.

Relative to the problem with no discrete choice, the right-hand side accounts for the marginal

effect on the surplus from choice tomorrow from today’s consumption. As the choice surplus in

period t + 1 depends on the period t + 1 wealth, the agent’s period-t choice must account not

only for the expected future marginal utility but also this additional effect.

It is possible to write (8) for choice j in terms of any choice and therefore in terms of choice

0. Notice that

E
[
∂Φj(s̄t+1, ζt+1)

∂Lt+1

+
∂uj(q

∗
jt+1, st+1, ζt+1)

∂q

∣∣jt, s̄t, q∗jt] = E
[
∂Φ0(s̄t+1, ζt+1)

∂Lt+1

+
∂u0(q∗0t+1, st+1, ζt+1)

∂q

∣∣jt, s̄t, q∗jt]
(9)

Moreover, from (5), we know that vj(s̄, ζ) − v0(s̄, ζ) = Ψj(Pr(d = 1|s̄, ζ), ..., P r(d = J |s̄, ζ)).

As the choice probabilities are in turn functions of the state variables, we will write Ψj(s̄, ζ) for

a more compact notation. We differentiate this and again apply the envelope condition from

the continuous choice in order to rewrite the marginal utility from any alternative j in terms

of alternative 0:

∂uj
∂qj

=
∂u0

∂q0

+
∂

∂L
Ψj(s̄, ζ) (10)

Substituting in to equation (8), we obtain:

13



∂u0(q∗0t, st, ζjt)

∂q∗0t
+
∂Ψjt(s̄t, ζt)

∂Lt
= δE

[
fj(st+1, st, qt, Lt)

(
∂Φ0(s̄t+1, ζt+1)

∂Lt+1

+
∂u0(q∗0t+1, st+1, ζt+1)

∂q

)
|jt, st, q∗jt

]
(11)

We will refer to equation (11) as the generalized Euler equation, and it will form the basis

of our identification results.

3.2 Identification

In this section, we provide three approaches to identification based on the variation in the

data. The first approach requires the least structure on the data, but requires a more stringent

assumption on utility. This is relaxed in the second approach, which in return demands the

presence of alternative-specific fixed costs. The third approach establishes identification in

the case where the state transition probabilities are choice-independent (i.e. exogenous to the

decision-maker). Prior to these results, however, we first establish that in all three cases the

continuous policy function is recoverable from the data:

Lemma 1. Under Assumptions 1–6 and 8, ζ and {q∗j (s̄, z, ζ)}j∈J are identified

Proof of Lemma 1. Under Assumptions 3–6 and 8, q∗j (s̄, ζt) is invertible in ζt for all j. Moreover,

Assumption 3 implies the continuation value (given dt and s̄t) is independent of zt, while

Assumption 4 implies the marginal flow utility is independent of zt for all but one alternative

(without loss, let k = 0) and thus the maximizer of vj must be independent of zt as well.

Therefore for j > 0, q∗j is not a function of zt.

We thus have G(q∗j
−1(q, s, L)|s̄, j) = Q(q∗j (s, L, ζ)|s̄, j), where Q(·) is the (conditional) em-

pirical distribution of q.

Using the law of total probability, we have for all (s̄, z, ζ):

G(ζ) =
∑
j∈J

Pr(dt = j|s̄)G(ζ|s̄, dt = j)

= Pr(dt = 0|s̄)Q(q∗0 (s̄, ζ)|s̄, 0) +
J∑
k=1

Pr(dt = k|s̄)Q(q∗k(s, L, ζ)|s̄, k) (12)
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Thus, by part 2 of Assumption 4, we have for any j > 0 and any q:

lim
n→∞

Q(q∗j (s, L, ζ)|s, L, zjn, j) = G(ζ)

where the unconditional G(·) results from the fact that lim
n→∞

Pr(j|s, L, zjn) = 1 and the conti-

nuity of (12) in the choice probabilities. As Q(·) is a CDF of a continuous density and therefore

strictly monotone and continuous, we may obtain q∗j (s, L, ζ) = lim
n→∞

Q−1(G(ζ)|s, L, zjn, j)). As

q∗j is invertible, for any s̄ = (s, L, z) we also obtain ζ = q∗j
−1(q, s̄) and the conditional distribu-

tion G(ζ|s, L, z, j) = Q(q∗j (s̄, ζ)|s̄, j).
Finally, consider the remaining alternative 0 and any z such that Pr(dt = 0|s̄, z) 6= 0. We

obtain the conditional distribution of ζ by:

G(ζ|s̄, 0, z) = (Pr(0|s̄, 0))−1

(
G(ζ)−

J∑
k=1

Pr(k|s̄, z)G(ζ|s̄, k, z)

)

and then given (s̄, q) we obtain ζ = G−1(Q(q|s̄, 0, z)|s̄, 0) if dt = 0, while q∗0(s̄, ζ) =

Q−1(G(ζ|s̄, 0)|s̄, 0).

We note that the result is robust to the inclusion of a market-level shock to the marginal

utility, as we show in Appendix A.5.14 Moreover, if Assumption 3 is relaxed such that ζt+1 is

correlated with s̄t or ζt, the lemma serves only to recover ζt as an unknown function of s̄t−1 and

the conditional percentiles of period-t consumption. This must therefore be estimated as part

of the continuous policy function. As the unobserved shocks are not the focus of this paper, we

take the simple version of Lemma 1 as stated and proceed to establish our main identification

results.

3.2.1 Theorem 1

Our first identification result, which will underpin our empirical estimation, makes a standard,

though substantive, assumption on the marginal utility. We strengthen Assumption 8 to assume

that the marginal utility is separable in ζ.

Assumption 8′. (Separable marginal utility)

14That is, the marginal utility of alternative j receives both an individual shock ζit and aggregate shock ξjt.
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For all j ∈ J , marginal utility is given by:

T

(
∂uj(q, s, ζ)

∂q

)
= T

(
∂uj(q, s)

∂q

)
+ T (ζ)

for some strictly monotone transform T . Moreover,
∂uj(q,s)

∂q
is strictly monotone in q.

We state Assumption 8′ generally, but note that it nests two commonly used variations.

When T (x) = x, this reduces to additive separability in ζ. Similarly, if T (x) = ln(x) then

Assumption 8′ implies multiplicative separability, i.e. ∂uj(q, s, ζ)/∂q = ∂uj(q, s)/∂q · ζ. The

latter is commonly used in the macroeconomics literature, and we will impose this case in our

empirical application. Finally, the last part of Assumption 8′ ensures that the marginal utility

is invertible in q.

Theorem 1. Suppose Assumptions 1–7 and 8′. Then (∂u(·)/∂q, δ(·)) is point identified.

The full proof appears in Appendix A.2. Under Assumption 8′, the separability of the

continuous shock means that (Lt, ζt) pairs which would lead to the same quantity conditional

on choosing alternative 0 differ in their current-period marginal utility only through ζt. Because

it is possible to recover ζt by Lemma 1, this difference is known to the econometrician. The

proof proceeds by establishing that there exist also states which lead to the same end-of-period

wealth, and thus have the same support for period-(t + 1) wealth. The distribution of st+1

differs, however, and thus it is possible to construct a system of linear equations which is

invertible after considering multiple starting wealth levels. One may first recover the expected

marginal continuation value, then the marginal utility, and finally δ(st+1).

3.2.2 Theorem 2

In some settings the separability of Assumption 8′ is too strong. Our next result relax this

assumption by using the possibility that there is variation in the fixed costs of the various

alternatives in the data.

Suppose that s̄t = (st, Lt, zt, νt), where we now introduce νt ≡ {ν0t, . . . , νJt} to represent

possible shocks to the fixed costs of choosing each alternative. We assume that νt is independent

over time, and maintain the rest of the factorization of Assumption 3.15. As νt represents cost

15That is, we now write:
Γ(s̄t+1, zt+1, ζt+1, εt+1|s̄t, zt, ζt, εt, dt, qt) = λ(Lt+1|s̄t, st+1, dt, qt)π(st+1|s̄t, dt, qtW (zt+1|s̄t, dt))F (εt+1)G(ζt+1)H(νt+1)
where H(·) is treated as known as νt is observed.
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variation, we make the following assumption:

Assumption 9. (Cost variation) For all j, s, L: φj(s, L, νj) is continuous in νj; lim
νj→−∞

φj(s, L, z, νj) =

−∞; lim
νj→∞

φj(s, L, νj) =∞; and Eν [φj(s, L, νj)] is finite. Furthermore, the marginal utility does

not depend on ν.

Assumption (9) implies that arbitrary variation in the fixed costs φj(s, L, νj) will be available

in the data. In practice, only a finite amount of variation will be available and indeed the proof

of Theorem 2 will only require finite variation. In particular, there must be sufficient variation

in the costs to match continuous choices or end-of-period wealth levels across states or discrete

choices. The statement of assumption 9 is sufficient to guarantee this variation exists, but

in practice the particular variation needed in any application may be checked ex-post. The

assumption moreover states that the marginal utility of consumption is not affected by these

cost shocks, which is standard in most settings as they represent a purely financial outcome.

Theorem 2. Suppose Assumptions 1–9. Then (∂u(·)/∂q, δ(·)) is point identified.

The proof of Theorem 2 proceeds analogously to Theorem 1, but makes use of the observable

cost shocks of Assumption 9 (along with the current wealth) to avoid increasing the number of

unknowns in the period-t continuous choices and period-(t+ 1) value function where Theorem

1 relied on simultaneous variation in Lt and ζt.

3.2.3 Theorem 3

In some applications, the state transitions may be truly independent of the decision-maker’s

choices. Such applications treat the decision-maker as a price-taker, and assume that only

market-level variables affect utility. In such cases, Assumption 7 does not hold, and the rank

condition in equation (38) will fail. We now show that an alternative assumption can suffice.

Assumption 7′. (Choice-independent transitions and returns) There exist j, k such that for

all s, s′, L and q: fj(s) = αfk(s) where α 6= 1 and π(s′|s̄, j, q) = π(s′|s̄, k, q) .

Assumption (7′) places two requirements on the data. First, that there exist two discrete

alternatives which generate the same conditional transition probabilities. Although this is a

strong assumption to make in general, we note that the purpose of this section is to provide

an identification approach in exactly those applications where the decision-maker is faced with
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market-level variables that are plausibly exogenous to their choices. The substantive require-

ment, therefore, is that the gross returns for these two alternatives differ by a common ratio

across states. This will be necessary to keep the number of unknown values from proliferat-

ing when comparing the continuation values when choosing j and k, and while certainly not

without loss of generality, it is nonetheless a condition that may be verified in the data.

Theorem 3. Suppose Assumptions 1–7′ and either 8′ or 8–9. Then (∂u(·)/∂q, δ(·)) is point

identified.

3.2.4 Theorem 4: Utility

We next turn to the identification of the levels of utility from the marginal utilities. As is well-

known, some degree of normalization is required given that only differences in utilities affect

the decision-maker’s choices. We impose that the utility of consuming q0 = 0 for the reference

alternative is normalized to zero across states. Note that this is substantially weaker than what

is often imposed. For example, Blevins (2014) makes a similar, though considerably stronger,

assumption to identify the level of the utility function — namely, that u0 is known for all s, L,

ζ, and q.

Assumption 10 (Normalization of utility). u0(0, s, ζ) = 0 for all s̄ and ζ

Adding this normalization to our existing results allows us to recover the levels of utility:

Theorem 4. Suppose Assumptions 1–8′, or 1–9, or 1–7′ and either 8′ or 8–9; and suppose

Assumption 10. Then (u(·), δ(·)) is point identified.

Proof. Theorems 1–3 imply that the discount factor and marginal utilities are identified. We

proceed by showing that given these and the additional normalization of Assumption 10, the

levels of utility are also identified by the discrete choice.

Assumption 6 normalizes the level of utility when consuming q0 = 0, and therefore the

by the fundamental theorem of calculus u0 is pointwise identified . Given u0 and δ, we next

observe that v0 is also uniquely determined. Letting j = 0 in equation (7), v0 may be defined

recursively. Letting E0 be the expectation operator defined in (7) conditioned to j = 0, and

given δ < 1, it follows that δE0 is a contraction. This implies that (I − δE0)−1 exists, and we

can thus write v0 = (I − δE0)−1(u0 + δE0Φ0).

Finally, we identify the utilities from any alternative k 6= 0. By equation (10), the marginal

utilities follow directly from the known marginals of alternative 0, and thus alternative k is
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known up to a constant. Given the marginal utility of alternative j as well as v0, equation (7)

is also known up to this same constant. We may therefore difference equation (6) for alternative

k and alternative 0 to obtain a single equation which is linear in this constant and otherwise

known, which completes the proof.

4 Application to a Consumption-Savings-Retirement Set-

ting

We now apply our identification results based on Theorem 1 to estimate a dynamic discrete-

continuous choice model over consumption and working vs. retirement. The consumption-

savings part of the problem is part of a large literature in macroeconomics,16 but the discrete side

is largely ignored or treated separately.17 We show that it in fact has important consequences

for the estimates and policy consequences in this setting.

4.1 Description and Data

We estimate the model described above using data from the Panel Survey of Income Dynamics

(PSID). The PSID is a longitudinal study of individuals and families that began in 1968 which

contains annual information about the income, employment, and demographic characteristics

of individual households. A module of questions assessing wealth was first introduced in 1984

and systematically included in every wave beginning in 1999. Starting also with the 1999 wave,

the PSID began collection of information on a larger number of consumption components. Our

sample therefore covers the period 1999 to 2017. We eliminate households and observations

with missing values, and treat new households formed by the offspring of panel members as

separate entities. The final sample contains 15,864 households and 73,832 observations.

We follow Blundell et al. (2016) in constructing measures of wealth, income, and consump-

tion from the data recorded in the PSID. Wealth and income variables are provided at a high

degree of granularity. Household income comprises: wage income, farming/market gardening,

rent from roomers or boarders, other rental income (net), dividends, interest, trust funds or

royalties, alimony, all of the preceding accruing to the reference person’s spouse, and total

taxable income of any other household members. Assets comprise: real estate (net of mort-

16See among many others Attanasio and Weber (1995), Attanasio and Low (2004), Blundell et al. (2008)
17See for example Aguirregabiria (2010) where only the choice of retirement is analysed.
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gages), vehicles, businesses, stocks, checking and savings accounts, retirement accounts (in-

cluding defined-contribution, defined-benefit, and hybrid employer programs), cash value in life

insurance policies, valuables and collectables, and any rights to a trust or estate. Counterfac-

tual incomes for working newly retired heads are estimated by replacing the reference person’s

wage income or social security benefits with estimated social security benefits or wages in the

previous wave, respectively. State and Federal income taxes and marginal tax rates were esti-

mated using the TAXSIM27 program developed by the National Bureau of Economic Research

(Feenberg and Coutts, 1993).

In contrast to the high degree of precision with which wealth and income are recorded, a

known challenge to using the PSID is the relative paucity of expenditure variables. Prior to the

1999 expansion of the survey, only housing and food-related expenditures were recorded in the

PSID, leading many researchers to use food expenditure as a proxy for total expenditure in order

to make use of the full time-series. We make use of the expanded variables in order to construct a

measure of consumption which includes: food at home, food away from home, rent (or imputed

rent for homeowners), home insurance and utilities, travel (car insurance, repair, fuel, bus

and taxi fares, and other transport), education (tuition, other school expenses), childcare, and

health (insurance, hospital and doctor charges, and prescriptions). Although not exhaustive,

reviews of these expenditure variables have found that match closely the values recorded in the

more comprehensive Consumer Expenditure Survey where both are recorded, and constitute

the great majority of total household expenditures (Andreski et al., 2014). Nevertheless, the

PSID data may omit some of the variation in household expenditures.18

In order to maintain the stationarity of the state variables, all prices and returns are con-

verted to real values using the annual GDP deflator provided by the US Bureau of Economic

Analysis. The risk-free rate of return is assumed to be the effective federal funds rate. Both

series were retrieved from the Federal Reserve Bank of St. Louis.

Finally, although a large literature studies intra-household bargaining over consumption and

labour supply, we treat households as a single decision-maker. New households which enter the

panel through offspring leaving the household or separation of adult partners are treated as

independent households, and we treat household size itself as a state variable. The discrete

choice of working or retirement is based on the labor force participation status of the head of

18An alternative approach would be to attempt to back out consumption from the change in assets across
waves of the panel. This approach would require household-level data on returns, however, and would otherwise
mis-interpret high returns as low consumption — a highly undesirable form of error to introduce in to the Euler
condition estimation.
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household, as the labor force attachment of non-primary earners is often poorly characterized

by a binary status, and longer but non-permanent spells of voluntary unemployment are more

common (e.g. for parental leave). Labor force participation is based primarily on self-reported

status in order to separate retirement from unemployment. Finally, in order to avoid counting

“soft retirement”, reference persons with wage income are characterized as working regardless

of their self-report.

Table 1: Summary Statistics

All Working Retired Difference
(1) (2) (3) (4)

Age 45.25 39.82 63.53 -23.71∗∗∗

(16.47) (11.94) (16.43)
Household size 2.64 2.79 2.16 0.63∗∗∗

(1.47) (1.47) (1.36)
Years of education 13.65 13.82 12.66 0.99∗∗∗

(2.79) (2.68) (3.03)
Not in good health 0.162 0.106 0.355 -0.249∗∗∗

(0.369) (0.308) (0.478)
Total income 65,421 77,937 23,351 54,585∗∗∗

(106,570) (114,649) (55,257)
Total wealth 585,734 609,012 507,484 101,529∗∗∗

(1,568,329) (1,533,979) (1,676,334)
Consumption 34,022 35,748 28,220 7,528∗∗∗

(25,251) (25,778) (22,445)
Observations 73,832 56,904 16,928

Notes: Income, wealth, and consumption are in 2017 dollars. “Not in good health” is self-rated
health status “poor” or “fair” rather than “good”, “very good”, or “excellent”. Household size
is number of persons including reference person.

Table 1 reports summary statistics for the overall sample, and separately for the working

and retired subsamples. Unsurprisingly, heads of retired households are significantly older than

working households, The distributions of age of head, however, do have a substantial overlap in

their support, which is consistent with our model of retirement choice. Working households are

also larger on average, as children are more likely to be present in younger households, Retired

households are more likely to not report being in good health. Working households also report

a significantly mean household income than do retired households.19 They also report higher

total wealth than retired households, as many of the latter have already spent much of their

19While both means are of course heavily influenced by outliers, the difference in median income also differs
significantly across the two groups.
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retirement savings. This is also reflected in the relative consumption of the two subsamples, as

retired households’ mean annual consumption of $28,220 is higher than their mean income but

lower than that of working households.

4.2 Empirical Specification

While we have formally established conditions for nonparametric identification and therefore

the sources of variation in the data that identify the model, we now specify a utility function

in order to apply a more conventional parametric estimation. Additionally, as it is known

since Rust (1994) that a closed-form solution for the choice probabilities is available under

the stronger assumption that εijt are drawn from a common extreme value distribution, for

convenience we will make use of this stronger alternative assumption instead of Assumption 2:

Assumption 2′. (Extreme Value) εijt is distributed iid EV (0, σε).

and in the same spirit we operationalize Assumption 3 with

Assumption 3′. (Normal) ζit is distributed iid N(0, 1).

4.2.1 Utility

We treat households as unitary actors, abstracting from considerations of intra-household bar-

gaining. Household i maximises their lifetime expected discounted utility, given available re-

sources, by choosing whether to retire or to work, i.e. dit ∈ {R,W},20 and how much to

consume, qijt. Utility is assumed to be inter-temporally separable, and to match the theoret-

ical setup the time horizon is infinite and future utility flows are discounted geometrically at

a rate δi (potentially a function of individual characteristics). The flow utility function for

each alternative has two components, namely: uijt(qit, sit; θj) = uqj(qit, sit, ζit; θ
q
j ) + udj (sit; θ

d).

uqj(qit, sit, ζit; θ
q
j ) is a function of the continuous quantity chosen qit, and udj (sit) captures any

utility that consumers obtain from working or retirement which is not related to consumption.

The structural parameters θj = {θcj , θd} along with the discount factor are to be estimated.

We assume that the consumption-dependent components are of the Constant Relative Risk

Aversion (CRRA) form and, similarly to Attanasio and Weber (1995), assume that utility in

20We focus on the labour supply decision of the head of household. Including the spousal decision would
create a state-dependent choice set, as two-adult households would have choices involving secondary-earner
labour supply, which would not be available to single-adult households.
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consumption is shifted by household characteristics, Xijt, such as family size, head of household

age, and the unobservable component ζit. That is, uqj(qit, sit, ζit) ≡
q
1−γj
it

1−γj exp(Xijtβj + σζζit),

where θqj = {γj, βj, σζ} are the parameters to estimate and may differ across the discrete choices.

The second component, udj (sit) ≡ Mijtθ
d + εijt, is a function of consumer characteristics,

Mijt, which for the working choice includes: age, year of education, log of net real income

(i.e. wage plus other sources of income), health status plus the logit error shock εiWt. For

the retirement choice, it includes only the log of net real retirement income (which generically

differs from working income) and the logit error shock εiWt.
21

Households are able to move resources over time by saving or borrowing, and we abstract

from credit constraints. We denote with Lit+1 the wealth/stock of assets in period t+1 with real

risk-free gross interest rate of rt+1 between periods t and t+ 1. The net return, rijt+1, depends

from the individual decision of retirement as the marginal tax rate is potentially different as

the income is different in these two different alternatives. We assume that a non-retired head of

household may freely choose to retire and the quantity to consume, but once retired can choose

the continuous consumption level only. Given these assumptions, the problem for a working

household is given by:

max
{(qit,dit)}∞t=0

E

[
∞∑
t=0

δti

(
q

1−γdit
it

1− γdit
exp(β′ditXiditt + σζζit) +Midittθ

d + εijt

)
|sit, Lit

]

subject to the inter-temporal budget constraint

Lit+1 = (1 + ridtt+1)
(
Lit + Yijt − q∗iditt

)
(13)

where Yiditt is the net income at period t which includes labor income if the household works

and pension and social security benefits otherwise net of the income tax paid. Income in either

case is after-tax, and thus taxes enter the problem as νit. All income and consumption variables

are real.

If the head of household is already retired then they solve the following problem which

21While the utility of consumption is recovered from the Euler equation, the second component is identified
up to a level normalization one one alternative, therefore the constant is normalized to zero in MiRt.
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reduces to the standard one in the consumption-savings literature:

max
{qit}∞t=0

E

[
∞∑
t=0

δti

(
q1−γR
iRt

1− γR
exp(β′RXiRt + σζζit)

)
|sit, Lit, Ri

]

subject to the inter-temporal budget constraint

Lit+1 = (1 + riRt+1) (Lit + YiRt − q∗iRt) (14)

The utility function specified above satisfies Assumption 8′, i.e. marginal utility is multi-

plicative separable in ζit and therefore the continuous utility preferences along with the discount

factor are identified under Theorem 1. Finally, note that in this context φ(s̄ijt) accounts for the

gross income as well as taxes (on income and returns) conditional on the working/retirement

choice, thus that variation in φ(s̄ijt) is also useful in identifying the preferences and discount

factor as described in Theorem 2.

4.3 Estimation

We propose a two-stage estimation procedure in the spirit of Hotz and Miller (1993), Hotz

et al. (1994) and Bajari et al. (2007) among others. In the first stage, we estimate the policy

functions and recover ζit, and the second stage, we estimate the structural parameters.

First stage. In the first stage we estimate the continuous and discrete policy functions and to

retrieve ζit. We first estimate the unconditional probability of individual i choosing alternative

j, which can be found by integrating the multivariate logit probability over the distribution

of the unobserved individual characteristics ζit: Prijt(s̄it;λ
d) =

∫
Prijt(s̄it, ζ;λd)g(ζ)dζ.22 The

probabilities are functions of state variables, with λd being the parameters to estimate. There-

fore probability of observing individual i choosing to work or retire is given by the following

expression:

22Simulated choice probabilities are computed averaging the results from 50 random draws taken for every
observation from a standard-normal distribution. We use Halton draws to further reduce the sampling variance.
Results do not change substantively when we use more draws.
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LL =
∑
i,j,t

dijt logPrijt(s̄it;λ
d) (15)

The unconditional probability Prijt is sufficient to estimate the continuous policy function as

discussed below and retrieve ζit. We will, however, require the discrete policy conditional on

ζ̂it, i.e. P̂ rijt(s̄it, ζ̂; λ̂d), in the structural estimation step and the policy counterfactual.

We then proceed to recover ζit along with continuous policy functions for working and

retired households respectively. Notice that in our application choosing to retire is an absorbing

action, which satisfies Assumption 4 as given that the probability of remaining in this absorbing

choice is one. It also satisfies the conditional independence assumption as the current choice

is a sufficient statistic for the future value of the lagged choice. We thus may estimate the

continuous policy function for retired households by MLE. Specifically, we specify ln q∗iRt =

µ(s̄µiRt;λ
c1
R ) + σ(s̄σiRt;λ

c2
R ) · ζit, where µ(s̄µiRt, jit;λ

c1
R ) and ln σ(s̄σiRt, jit;λ

c2
R ) are polynomials in the

state variables with parameters λcR = {λc1R , λc2R } to estimate. As the policy is invertible, we

can retrieve the unobserved ζ for all households that newly choose to retire or who are already

retired, i.e. ζ̂it(qiRt|dt = R) = q∗−1
iRt (qiRt; λ̂

c
R) where qiRt is the observed quantity consumed.

We must then retrieve the unobserved ζit for those households who choose to work, and

in doing so also cover the continuous policy function conditional on working. We parametrize

this similarly to before with ln q∗iWt = µ(s̄µiWt;λ
c1
W ) + σ(s̄σiWt;λ

c2
W ) · ζit. To estimate the unknown

parameters λc2W , we use a GMM estimator where the set of moment conditions are based on

the fact we can write ζit as function of the unknown parameters entering the working policy

function:

ζit = q∗−1
iRt (qiRt; λ̂

c
R) · 1j=R + q∗−1

iWt(qiWt;λ
c
W ) · 1j=W (16)

Assuming that ζit is drawn from a standard normal distribution, we compute the following

empirical moments:
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gn(λc2W ) =



(∑
i,t ζ̃it

)
/(N · T )(∑

i,t s̄
µ
ijtPrijt(s̄it, λ̂d) ∗ ζ̃it

)
/(N · T )∑

i,t

(
ζ̃it −

(∑
i,t ζ̃it

)
/(N · T )

)2

/(N · T )− 1

( s̄σiWt
′ s̄σiWt)

−1 s̄σiWtζ̃
2
it


The first two moments are based on the condition that E[ζit] = 0 and E[ζit|s̄µijtP̄rijt] = 0,23

the third moment use the fact that var(ζit) = 1. The last moments will guarantee that ζ̃it is

uncorrelated with observables in Xit and follow the spirit of the Breush-Pagan test.24

Second stage. Next, we construct a set of moments from the continuous choice problem as

well as from the discrete one. We focus on the continuous part first. The optimal consumption

quantity is determined given the discrete choice j by the first-order condition of the value

function: (
∂vijt
∂qijt

)
= 0

As discussed in section 3.1 and by using the specification in (4.2.1), we can re-write the

equation above as follows:

q
−γj
ijt exp(Xijtβj + σζζit) =

E

[
(1 + rikt+1)δi

(
(q−γkikt+1 exp(Xikt+1βk + σζζit+1))− ∂ logPrikt+1

∂Lit+1

)
|s̄it, jit, qijt

]
(17)

We then remove the expectation by using the realized choices and states in period t+ 1 and

add the short run error term ηcit. This will avoid making arbitrary assumptions on evolution of

the states, instead relying only on the validity of the expectations operator in a random sample.

By taking a log transformation and manipulating the equation above we obtain:

∆ log qikt+1 =
1

γk

(
log(1 + rkt+1) + log(δi) + β′kXikt+1 − β′jXijt + σζ∆ζ̂it+1

+ Υikt+1 − (γk − γj) log(qijt) + µ+ η̃cit

)
(18)

23We condition on s̄µiWtP̄riWt as in Dubin and McFadden (1984).
24We have tested the validity of these moments in a Monte Carlo simulation (available upon request).
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where ∆ζ̂it ≡ ζ̂it+1 − ζ̂it and Υikt+1 ≡ log
(

1− ∂ log P̂ rkt+1

∂Lit+1

q
γk
ikt+1

exp(β′kXikt+1+σζ ζ̂it+1)

)
. Notice that

while the expectation of the expectational error from equation (17) is zero (i.e. E(ηcit) = 0), the

non-linear transformations required to obtain equation (18) leave the term log(1 + ηcit) which

is not mean-zero. We thus define µ ≡ E(log(1 + ηcit)) and treat it as a nuisance parameter,

leaving the de-meaned η̃cit ≡ log(1 + ηcit)− µ as the error term.

Notice that the first line of equation (18) is similar to the one traditionally estimated in the

consumption-savings literature (see for example Attanasio and Weber (1995)), but the discrete

choice creates some key differences: (1) the expected future surplus generates the term Υijt+1;

(2) if the agent consumes different alternatives in periods t and t+ 1 then the change in γ must

be directly accounted for; (3) the discount factor (along with uqj(qijt, sit, ζit; θ
q
j )) is identified by

Theorem 1 and may depend on (possibly stochastic) individual characteristics; (4) the elasticity

of intertemporal substitution is no longer equal to 1
γk

but to 1
γk

(1+
∂Υijt+1

∂ log(1+rikt+1)
) for the working

households.

Define Zc
it as the set of IVs25 to obtain the following moments:

mc =
1

NT

T∑
t=1

nt∑
i=1

(Zc
it)
′ η̃cit (19)

where NT is the total number of observations. Moreover to separately identify the discount

factor from µη̃ci we also use the following set of moments:26

mc2 =
1

NT

T∑
t=1

nt∑
i=1

ηcit (20)

For the discrete part, we start by taking the log of the probability ratio

log

(
PriWt

PriRt

)
= viWt − viRt (21)

First notice that left-hand side is estimated in the first step. Moreover, viRt ≡ uR(q∗iRt, s̄it, ζit)+

25In all models estimated in Table 2, we use as instruments along with the constant term, the current real
net return, lagged family size, lagged income, lagged consumption, and lagged log ζ , in addition to log age, log
education, health status and in columns 2 and 3 we also use retirement status interacted with the previous IVs.
Finally, we also use the probability of working interacted with the previous IVs in the full structural model in
column 3.

26For the full structural model we also interact ηcit with the probability of retiring.
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E
[
∞∑
τ=1

δτi uR(q∗iRτ , s̄iτ , ζiτ )|s̄it, R
]

and as discussed in section 3.1 we can write viWt = uW (q∗iWt, s̄it, ζit)+

E [viRt+1 − log(PriRt+1)|s̄it,W ]. As before we replace the future term with the realization of the

future consumption and state variables as observed in the data. Similar to before we remove

the expectation and we add the short run prediction error.27 The realized viRt is computed

using a forward simulation28 for 30 periods (60 years), matching individuals on all contem-

poraneous state variables and using the realized transitions to avoid making parametric as-

sumptions. We condition this process not only on s̄t but on the choices dt and qt to obtain

v̂iRt+1|s̄t,qt,dt =
∑30

τ=1 δ
τ
i

(q̂∗iRt+τ )1−γR

1−γR
exp(β′RX̂iRt+τ + σζ ln ζ̂it+τ ). Note that the removal of the

expectation and the matching each introduce a prediction error. We can then write equation

(21) as:

ln

(
P̂riWt

P̂riRt

)
=
q∗iWt

1−γW

1− γW
exp(β′WXiWt + σζ ζ̂it) + θ′MiWt + δi

(
v̂iRt+1|s̄t,W,q∗iWt

− log(P̂riRt+1)
)

−
(
q∗iRt

1−γR

1− γR
exp(β′RXiRt + σζ ζ̂it) + δiv̂iRt+1|s̄t,R,q∗iRt

)
+ ηdit

(22)

where ηdt is the (mean-zero) difference in prediction error. We define a new set of IVs Zd
it,

29

and use them to obtain the a new set of moments:

md =
1

NT

T∑
t=1

nt∑
i=1

(Zd
it)
′ηdit (23)

We then stacks the set of moments from (19), (20) and (23) and proceed to estimate the

parameters using a two-step efficient GMM procedure.

4.4 Results

Table 2 reports the main estimates of the full model which includes both the continuous choice

as well as the discrete choice and compares them with the Euler Equation estimations obtained

27See Kalouptsidi et al. (2020) for an overview of similar constructions used in the dynamic discrete choice
literature.

28See Hotz et al. (1994).
29We use log age, log education, log income for working and retirement and health status along with constant

term as instruments
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ignoring the discrete part as well when pooling working and retired households.

Panel A of Table 2 presents the parameters entering the continuous part of the utility

function, uqj(qijt, sit, ζit). In column 1, we present the results from the standard Euler Equation

estimation approach. In a typical application, the main coefficient of interest is that attached

to the net real return which is interpreted as 1/γ. In the absence of a discrete choice, this

coefficient is also the elasticity of intertemporal substitution and equal to 0.44 (= 1/γ with γ

equal to 2.29). In Column 2 we allow γ and the effect of family size to differ by working status

as in the main model. We find a substantially lower value of γR, 1.71, for the working subsample

compared to the retired households, γW = 2.31. This implies a higher intertemporal elasticity of

substitution for the working than for retired households. As in the CRRA specification γ is the

coefficient of relative risk aversion, this difference implies the intuitively appealing result that

retired households exhibit a significantly greater degree of risk-aversion in their instantaneous

utility than working households.

The estimated coefficients of relative risk aversion in the full model (column 3) for working

and retired households are lower than the previous model, respectively 1.24 and 1.45. While

the implied elasticity of intertemporal substitution is unique for retired household and equal to

the reciprocal of the coefficient of relative risk aversion, i.e. 0.69, the elasticity of intertemporal

substitution for working is not constant across households. The average value of 0.86 adjusts

1/γ to account for the marginal discrete choice surplus, i.e. 1
γdt+1

(1 +
∂Υidt+1t+1

∂ log(1+ridt+1t+1)
). The EIS

thus depends on the realized state variables including individual characteristics, generating

heterogeneity not only between households but within households over time.

Figure 1 shows the implications of our results in terms of the intertemporal elasticity of

substitution. It is not obvious from inspection how large an effect the
∂Υidt+1t+1

∂ log(1+ridt+1t+1)
term will

have on this particular elasticity, and we therefore plot the distribution of elasticities in our

working sample by splitting it between over- and under-60s. The dashed orange line in Figure

1 indicates the EIS for retired households for reference. The under-60 working distribution in

red shows a substantial degree of variation around its mean, confirming that heterogeneity in

the EIS is important for this group despite the relatively low probability of retiring. Far more

striking, however, is the over-60 working sample, whose bimodal distribution reflects the greater

probability of retirement — and hence greater impact of the discrete choice — for this group.

The additional peak for this group is clearly centered around the EIS for retired households, as

a significant fraction of older working households anticipate imminent retirement and consume

accordingly. In applications with a greater number of discrete alternatives, or in general where
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Table 2: Structural Estimates

Panel A: uqj(q
∗
ijt, sit, ζit) Euler Equation Full Model Panel B: udj (sit) Full Model

γ 2.2945 – – Health Status -1.0593
(0.4671) (moderate/bad) (0.0457)

γW – 1.7098 1.2428 Log(Educ) -0.3152
(0.3905) (0.1235) (0.0595)

γR – 2.3104 1.4453 Log(Net Incomej) 1.7448
(0.5165) (0.1456) (0.0443)

Family Size 0.1589 – – Log(Age) -1.9268
(0.0352) (0.1705)

Family SizeW – 0.0872 0.0692 Constant 7.5114
– (0.0261) (0.0117) (0.5410)

Family SizeR – -0.0086 0.0523
(0.0667) (0.0218)

Log(Age) 2.4170 2.4892 1.6748
(0.4993) (0.5640) (0.2226)

σζ 0.6507 0.4447 0.3092
(0.1397) (0.1101) (0.0370)

Constant – – -9.3160
(1.4236)

µη̃ci -0.0808 0.0208 0.0136

(0.0092) (0.093) (0.0040)

Panel C: δ = exp(β′X) Euler Equation Full Model

Constant -0.0582 -0.1890 -0.1193
(0.0260) (0.0447) (0.0176)

Log(Educ) 0.0233 0.0265 0.0178
(0.0070) (0.0078) (0.0043)

Health Status -0.0308 -0.0342 -0.0217
(moderate/bad) (0.0075) (0.0094) (0.0038)

Implied mean δi 0.9885 0.9403 0.9633
(0.0155) (0.0227) (0.0101)

Min δi 0.9757 0.9293 0.9562
Max δi 1.0031 0.9453 0.9666
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there is a greater amount of variation in the marginal discrete choice surplus, one would expect

to find an even higher degree of dispersion in this measure.

Figure 1: Distribution of intertemporal elasticity of substitution
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In Panel B of Table 2, we present the parameters entering the discrete (consumption-

independent) component of utility, udW (sit). Recall from the previous section that this is

normalized to 0 for the retirement choice. We find that the coefficient on health status in

the utility of working is negative and statistically significant, consistent with ill-health being an

important driver of retirement. There is also a large negative effect of ln(Age) which indicates

that retirement becomes relatively more desirable over time.30. Finally, we find that log income

enters with a positive coefficient and the income associated with the working choice is typically

larger than the retirement income.

Finally, Panel C of Table 2 presents the estimates of the discount factor δ from the three

approaches. The bias in the Euler equation approach is substantial: at the means of the

covariates, we estimate a value of δ of 0.99 and 0.94 in columns 1 and 2, respectively, as

compared to a mean of 0.963 for the full model, or roughly half the discount rate of column

2. We also estimate a substantial degree of heterogeneity in the discount factor depending on

years of education and health status, with additional years of education being associated with

30Note this does not follow directly from the fact that retirement is increasing in age, as so too are retirement
savings and retirement benefits and therefore retirement consumption opportunities.
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a higher discount factor and poor health being associated with a lower discount factor.31

To better interpret the coefficients in Table 2, we plot in Figure 2 the utility functions from

work and retirement at the means of the covariates. The x-axis indicates the level of consump-

tion and the y-axis the level of utility. The figure indicates that starting from moderate levels of

annual consumption of around $20,000, the level of utility is higher for retired households than

for working households. Only at very low levels of consumption is the level of utility higher

when working, though this may partially be an artefact of the constant relative risk aversion

utility specification. As the retired utility crosses the working from below, the effect of age

estimated in Panel 2 of Table 2 will serve to push the crossing point further to the left as the

head of household ages. As previously noted, prior estimates of retirement vs. working utility

based on a discrete-only framework do not identify the discount factor, and therefore could

not distinguish the flow utility from the value function. In contrast, Figure 2 shows clearly

that for most households that choose to work, it is primarily due to the continuation value

(i.e. the ability to finance future consumption, including in future retirement) rather than the

contemporaneous utility.

Figure 2: Estimated utility functions at covariate means
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31Although we treat these covariates as exogenous in our model, the results here to not imply a causal
relationship.
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4.5 Universal Basic Income

In this section, we apply our results to estimate the welfare effects of a counterfactual policy

implementation of a Universal Basic Income (UBI) program. As its name suggests, UBI is a

form of negative income tax in which all residents of a country receive a regular unconditional

cash transfer from the government, often in lieu of any other income assistance programs.

The political debate surrounding UBI has grown dramatically in recent years, but given the

substantial costs involved only a limited number of pilot experiments have been conducted (e.g.

Kangas et al., 2019). Moreover, one of the primary economic concerns regarding a UBI is the

unknown effect on labor force participation rates.

Our results are uniquely suited to estimating not just the magnitude of any labor force

participation rate response, but the consequences on lifetime utility of any such response. The

utility functions estimated in Section 4.4 indicate that at moderate levels of consumption, the

level of utility achieved from the retirement discrete choice is significantly greater than that

from the working discrete choice. As the baseline level of income is lower in retirement, a

UBI could allow higher levels of non-working consumption, and allow households to change

their discrete choice and obtain higher levels of utility. It is unclear a priori which households

will benefit the most from this option value. The higher taxes needed to finance the program

offset this wealth effect and may reduce lifetime wealth for higher-income households, but these

households may also be more likely to supplement their UBI income with their existing savings

and retire early.

In order to simulate this policy counterfactual it is first necessary to define the policy more

precisely, as a wide range of options have been proposed under the heading of UBI. The two

main dimensions of heterogeneity are the size of the cash transfer and the adjustments to the

tax code required to fund the program. Given the unprecedented scope of such an intervention,

it is impossible to state with any certainty what plausible parameters may be (Mogstad and

Kearney, 2019, see, e.g.). We therefore consider a variant somewhere in the middle of what has

been proposed: a $750 per month per household transfer, financed by a 15pp increase across

all marginal income tax rates (including both labor and capital income). We do not consider

any other changes to the tax code, such as to the Earned Income Tax Credit (EITC), which

would likely feature in a full UBI policy. The predictions we obtain follow from this particular

policy experiment and may differ in important ways if the features of the UBI reform differ.

In order to keep the model tractable, we assume that the policy functions from the previous

section remain valid. This requires the further restriction that there is no response on the
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intensive margin of labor supply, either through changes to wages or to hours worked conditional

on employment. This is of course a strong restriction, but to estimate the general equilibrium

effects of a UBI is well beyond the scope of this paper. We therefore focus on the effects on

consumption and the extensive margin of labor supply only, leaving the rest to future research.

To evaluate the effects of the policy, we perform a Monte Carlo simulation for 30 periods

(60 years) with 100 independent replications per household to compute expected utilities and

retirement ages. State variables evolve according to an (estimated) AR(1) process, and the

unobserved shocks ζ and ε are drawn according to the estimated distributions from the pre-

vious section. Simulated choices are then given by the estimated utilities and value functions.

Standard errors are obtained by bootstrapping both the structural parameters and the pol-

icy functions and re-simulating the policy on the bootstrap sample. Given the computational

burden, we choose a random 10% subsample of households for the Monte Carlo (though we

resample from the full dataset when bootstrapping the parameter estimates).

We find that the UBI experiment overall leads to a negligible change in average lifetime

utility and a modest change in retirement ages. Overall lifetime expected utility increases

by approximately 1.3% compared to the baseline level, although this is not statistically dis-

tinguishable from zero. This average effect, however, masks substantial heterogeneity, both

between working and retired households and within each group. We investigate this hetero-

geneity in Table 3 by regressing the post-UBI change in lifetime utility on initial age, income,

and wealth. We de-mean the regressors within each specification, so that the constant is more

usefully interpreted as the mean effect. Among retired households, which tend to be both older

and wealthier than working households, the mean change in utility is slightly negative though

not statistically significantly so. However, as there is only the continuous consumption choice

for these households to make, we find that the policy is significantly better for poorer retired

households. We find that wealth is associated with a statistically significant coefficient of -

0.081. This conforms to the straightforward intuition that the $750/month benefit is constant

across households, but both diminishing marginal utility and the increased tax burden reduce

or eliminate the benefit for wealthier households.

In contrast to the progressivity of UBI among retired households, we find that the benefits

are actually higher for better-off working households. In column (2) of Table 3, we find that

the mean change in lifetime utility for working households is positive though not significant at

0.119 — equivalent to one-off increase in consumption of approximately $1800 at the covariate

means. However, the effect is higher at higher wealth levels, and to a lesser extent at higher
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Table 3: Welfare Effects of UBI

Change in Lifetime Utility Change in Retirement Age
(1) (2) (3)

Constant -0.414 0.119 -1.207∗∗∗

(1.0185) (1.0299) (0.0881)
log(Age) -0.561∗∗∗ 0.057∗ 0.837∗∗∗

(0.1155) (0.0354) (0.018)
Education -0.002 0.012 -0.015∗∗∗

(0.0088)) (0.0130) (0.0024)
Log Wealth –0.081∗∗∗ 0.062∗∗∗ -0.261∗∗∗

(0.0190) (0.0090) (0.0089)

Observations 1519 4628 4628
Sample Retired Working Working

Notes: Dependent variable in columns (1) and (2) is change in expected discounted
lifetime utility with UBI policy reform relative to baseline. Dependent variable in
column (3) is change in retirement age (in years). All covariates are de-meaned by
sample. Bootstrapped standard errors in parentheses.

ages as well. At first glance this may appear counterintuitive, as the relative increase in taxes

should diminish the benefits for these households as seen among retired households. However,

we find that the discrete choice plays a key role here. As seen in section 3.1, the unconditional

value function may be locally convex in ranges where increases in wealth enable the household

to switch to the retired discrete choice and obtain the higher consumption utility thereof. If this

option value is higher for wealthier households, then it can dominate the higher tax burden. In

column (3), we show that the UBI policy does in fact have a larger effect on the discrete choices

of wealthier households. While the overall effect is a significant 1.2 year reduction in the average

retirement age, each doubling of wealth further magnifies the effect on average retirement age

by 3 months.32 For poorer households, the $750/month from the policy may simply not be

sufficient to enable retirement. It is important to note that these findings thus depend on the

specific policy proposal, and may be overturned for different monthly payments or tax reforms.

Nevertheless, they highlight the importance of considering the discrete labor supply choice in

addition to the continuous consumption choice when evaluating any such reforms.

32Note that in addition to the higher retirement consumption available to higher-income households, the 15pp
tax increase reduces the gap between retirement and working consumption.
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5 Conclusion

In this paper, we study the non-parametric identification of the utility function as well as the

discount factor of dynamic discrete-continuous choice models. We prove that these objects are

identified under one of the two key identifying assumptions: either the unobservable continuous

shock enters additively/multiplicatively in the marginal utility or there is an observable (product

specific) fixed costs of choosing a discrete alternative that affects the intertemporal budget

constraint but not the utility. We then apply the results to estimate these preferences in the

context of a consumption-saving-retirement choice problem. Using the PSID data, we estimate a

fully discrete-continuous model to study the consumption saving along with retirement decision.

We show that ignoring the discrete choice will bias the estimate. Specifically, estimating the

Euler Equation with a CRRA utility function while ignoring the discrete choice will constrain

the relative risk aversion parameter to coincide with the intertemporal elasticity of substitution.

We show that these two objects are generically separately identified. Moreover, the presence

of the discrete alternative implies that agents must take into account the expected surplus

from the next-period discrete choice when deciding her continuous choice and therefore the

elasticity of intertemporal substitution will varies across agents depending on their expectation

about the expected surplus which in turns depends on their current states. Therefore in a

model where there are lumpy adjustments/decisions we should expect heterogeneous elasticity

of intertemporal substitution a feature that is missing in a simple Euler Equation specification

where the lumpy decisions are not fully accounted for. Finally, we use our estimated model

to measure the effects of the UBI program. We consider a transfer of $750 per month per

household, financed by a 15pp increase across all marginal income tax rates. We find that the

UBI experiment leads to a minor increase in lifetime expected utility on average, but while the

benefit is decreasing in income among retired households, the presence of the discrete choice

reverses this finding among working households where higher-income households respond to

the policy by retiring relatively sooner than poorer households. Accounting for discrete as

well as continuous choices is therefore important not only for correctly estimating structural

parameters, but also directly in conducting counterfactual policy analyses.
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Appendix A

A.1 Envelope Condition

In this section, we demonstrate how the envelope condition on the agent’s continuous choice

extends to the discrete-continuous model.

As in the continuous-only model, we begin by noting that the first-order condition of equa-

tion (3) must hold for any alternative chosen with positive probability:

∂uj(q, st, ζt)/∂q + δE

[
∂V̄ (st+1, Lt+1, νt+1, ζt+1)

∂Lt+1

|jt, q, s̄t
]
∂Lt+1

∂q
= 0 (24)

where we apply the Dominated Convergence Theorem to reverse the order of the expectation

and derivative operators in the second term.

Next, define qj(s̄t, ζt) as the maximizer of the conditional value function given in (3), and

also define:

v̂j(q, s̄t, ζt) = uj(q, st, ζt) + δE
[
V̄ (s̄t+1, ζt+1)|jt, q, s̄t

]
(25)

Note that the following hold:

∂v̂j/∂q = ∂uj/∂q + δE

[
∂V̄ (st+1, Lt+1, νt+1, ζt+1)

∂Lt+1

|jt, q, s̄t
]
∂Lt+1

∂q
(26)

and

∂v̂j/∂Lt = δE

[
∂V̄ (st+1, Lt+1, νt+1, ζt+1)

∂Lt+1

|jt, q, s̄t
]
∂Lt+1

∂Lt
(27)

Finally, because vj(s̄t, ζt) ≡ v̂j(q(s̄t, ζt), s̄t, ζt), we have:

∂vj(st, Lt, νt, ζt)

∂Lt
=
dv̂j(q(s̄t, ζt), s̄t, ζt)

dLt

=
∂v̂j
∂q

∂q

∂Lt
+
∂v̂j
∂Lt

= δE

[
∂V̄ (st+1, Lt+1, νt+1, ζt+1)

∂Lt
|jt, q, s̄t

]
∂Lt+1

∂Lt
=
∂uj
∂q

(28)

where the third equality follows since
∂v̂j
∂q

∂q
∂L

= 0 by optimality of q(s̄, ζ) and the fourth

equality follows since ∂Lt+1/∂Lt = −∂Lt+1/∂q.
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A.2 Proof of Theorem 1

We prove pointwise identification. For notational convenience, we suppress zt, we consider the

additive separability under Assumption 8′,33 and finally we use fj(st+1, s, L, q) = fj(·, L). Given

q and s there exists a locus of (L, ζ) pairs such that q∗0(s̄, ζ) = q. Choose an arbitrary wealth

level L0(s), and consider ζ0(s) such that q = q∗0(s, L0(s), ζ0(s)).

From equation (11) we have:

∂u0(q, s)

∂q
+ ζ0(s) =

∑
st+1∈S

δ(st+1)f0(·, L0(s))V(st+1, B0(s, L0(s), st+1))π(st+1|s, 0, L0(s), q) (29)

where V(st+1, B) = Eζt+1

[
∂Φ0(st+1,B,ζt+1)

∂B
+

∂u0(q∗t+1,st+1,B,ζt+1)

∂q

]
is the expected marginal contin-

uation value, and B0(s, L, st+1) = B(s, st+1, L, 0, q) is next-period wealth conditional on a

realization of st+1 given the period-t choices.

Next, consider an arbitrary Lj(s). By assumption 8′ there exists some new ζj(s) such that

q∗0(s, Lj(s), ζj(s)) = q as before. For an alternative j 6= 0, in general q∗j (s, L
j(s), ζj(s)) =

qj(s) 6= q. Equation (11) implies, however:

∂u0(q, s)

∂q
+ ζj(s) +

∂Ψj(s, L
j(s), ζj(s))

∂L
= (30)∑

st+1∈S

δ(st+1)f0(·, Lj(s))V(st+1, Bj(s, L
j(s), st+1))π(st+1|s, j, Lj(s), qj(s))

where Bj(s, L
j(s), st+1) = B(s, st+1, L

j(s), j, qj(s)) similarly to B0. Generically these will differ

from the wealth levels induced by equation (29).

Subtracting equation (29) from (30) yields:

∂Ψj(s, L
j(s), ζj(s))

∂L
+ ζj(s)− ζ0(s) = (31)∑

st+1∈S

δ(st+1)
[
fj(·, Lj(s))V(st+1, Bj(s, L

j(s), st+1))π(st+1|s, j, Lj(s), qj(s))

− f0(·, L0(s))V(st+1, B0(s, L0(s), st+1))π(st+1|s, 0, L0(s), q)
]

Note that equation (31) has 2S unknowns: δ(st+1)V(st+1, Bk(st+1)) evaluated at each of S

33Note the general case will follow by substituting T−1(T (ζj(sn) − T (ζ0(sn))) in equation (31) and in the
definition of ∇Ψ in equations (36) and (38).
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possible states and for k ∈ {0, j}.
Next, choose some other state s′. By assumption 6, the marginal propensity to consume

out of wealth is less than one at sufficiently high wealth levels; i.e. ∂q0/∂L < 1. Given L(s)

and ζ0(s), for any arbitrarily chosen ζ0(s′), there therefore exists some L0(s′) which equalizes

end-of-period wealth when choosing alternative 0, i.e.:

L0(s′)− q∗0(s′, L0(s′), ζ0(s′)− φ0(s′) = L0(s)− q∗0(s, L0(s), ζ0(s))− φ0(s) (32)

The end-of-period wealth is thus the same when choosing alternative 0 in state (s, L0(s), ζ0(s))

as when choosing it in state (s′, L0(s′), ζ0(s′)), and thus so too will be the support of start-

of-period-(t + 1) wealth. That is, B0(s′, L0(s′), st+1) = B0(s, L0(s), st+1) for all st+1. The

transition probabilities may of course differ. So too may the continuous choice, which we

denote by q(s′) ≡ q∗0(s′, L0(s′), ζ0(s′)). Equation (11) then implies:

∂u0(q(s′), s′)

∂q
+ζ0(s′) =

∑
st+1∈S

δ(st+1)f0(·, L0(s′))V(st+1, B0(s, L0(s), st+1))π(st+1|s′, 0, L0(s′), q(s′))

(33)

By the same argument as above, for any arbitrary ζj(s′) there exists a Lj(s′) that induces the

same end-of-period wealth when choosing j in state (s′, Lj(s′), ζj(s′)) as in state (s, Lj(s), ζj(s)).

That is, Bj(s
′, Lj(s′), st+1) = Bj(s, L

j(s), st+1) for all st+1. Furthermore, by Assumption 8′,

there exists a ζj(s
′) such that q∗0(s′, Lj(s′), ζj(s′) = q∗0(s′, L0(s′), ζ(s′)) ≡ q0(s′). We thus obtain:

∂u0(q(s′), s′)

∂q
+ ζj(s′) +

∂Ψj(s
′, Lj(s′), ζj(s′))

∂L
= (34)∑

st+1∈S

δ(st+1)fj(·, Lj(s′))V(st+1, Bj(s, L
j(s), st+1))π(st+1|s′, j, Lj(s′), qj(s′))

where qj(s′) ≡ q∗j (s
′, Lj(s′), ζj(s′). Differencing (33) and (34) yields:

∂Ψj(s
′, Lj(s′), ζj(s′))

∂L
+ ζj(s′)− ζ0(s′) = (35)∑

st+1∈S

δ(st+1)
[
fj(·, Lj(s′))V(st+1, Bj(s, L

j(s), st+1))π(st+1|s′, j, Lj(s′), qj(s′))

−f0(·, L0(s′))V(st+1, B0(s, L0(s), st+1))π(st+1|s′, 0, L0(s′), q0(s′))
]
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Note that (35) introduces no new unknowns relative to equation (31): as the end-of-period

wealth is the same as before, the support of the distribution of next-period wealth will be the

same, though the probabilities will differ as the current state is different. We may repeat this

process at all s ∈ S to generate a system of S linear equations in 2S unknowns. WLOG, we

assume that s = s1, and let L0 = L0(s). Let ∇Ψ(L0) be the S × 1 vector whose nth element is

∂Ψj(sn, L
j(sn), ζj(sn))/∂L+ζj(sn)−ζ0(sn) for each of the S states. Let πk(L

0) be the S×S ma-

trix whose (n,m)th element is the product fk(sm, sn, L
k(sn), qk(sn))π(sm|sn, k, Lk(sn), qk(sn)).

Finally, let Wk(L
0) be the S× 1 vector whose nth element is δ(sn)V(sn, Bk(s1, L

k(s1), sn)). We

thus have:

∇Ψ(L0) =
[
πj(L

0) −π0(L0)
] [ Wj(L

0)

W0(L0)

]
(36)

Now consider some new wealth level L̃0. Similar to equation (32), there exists some ζ̃0(s)

such that:

L̃0(s)− q∗0(s, L̃0(s), ζ̃0(s)) = L0(s)− q∗0(s, L0(s), ζ0(s)) (37)

Since the end-of-period wealth induced by choosing alternative 0 at this wealth level and

marginal utility shock is the same as that induced at the original level choice in (29), so too

will be the continuation wealth level state-by-state. We may therefore repeat the steps leading

to equation (36) starting from L̃0 rather than L0, to generate an additional S linear equations

in the same unknowns as before. We may add these to (45) to obtain:[
∇Ψ(L0)

∇Ψ(L̃0)

]
=

[
πj(L

0) −π0(L0)

πj(L̃
0) −π0(L̃0)

][
Wj(L

0)

W0(L0)

]
(38)

Note that in the first matrix on the right-hand side of (38), πj combines the state transition

probabilities with the state-dependent returns fj. Assumption 7 guarantees that we can choose

L̃0 such that it will be full-rank. We therefore recover δ(st+1)V(st+1, B0(st+1)), and indeed

also δ(st+1)V(st+1, Bj(st+1)) by inverting this linear system. Returning to (29), however, the

marginal utility ∂u0(q, s)/∂q for any state s is also identified as it is now written in terms of

these parameters multiplied by data. Because q was arbitrary, the function ∂u0(·, ·, s, ·)/∂q is

pointwise identified.

Once the marginal utility ∂u0/∂q is known, V(s, B) may be recovered on its own by evalu-

ating E [∂Φ0/∂B + ∂u0/∂q]. Note that these may be recovered at any wealth states, including

43



those induced by choosing alternative j. The system of equations in (36) may therefore be

written as a linear system with S unknowns only: the values of δ(st+1). If there are any states

not in the support of π(st+1|s, 0, L, q), their values may be obtained by repeating this process at

some initial state where the transition probability is strictly positive. Thus δ(s) is identified.

A.3 Proof of Theorem 2

For notational convenience, we suppress zt and set fj(st+1, s, L, q) = fj(·, L). Consider an

arbitrary (q, s, L, ζ). Under Assumption 6, q∗0(s, L, ζ, ν0) is strictly monotone and unbounded

in L and, given that φ0(s, L, ν0) is strictly monotone in ν0, it will be strictly monotone in ν0 as

well. There therefore exists ν0 such that q∗0(s, ζ, ν0) = q.34

From equation (11) we have:

∂u0(q, s, ζ)

∂q
=
∑
st+1∈S

δ(st+1)f0(·, L)V(st+1, B0(st+1))π(st+1|s, 0, L, q) (39)

where V(st+1, B0) = Eζt+1,νt+1

[
∂Φ0(st+1,B0,ζt+1,νt+1)

∂B
+

∂u0(q∗t+1,st+1,ζt+1)

∂q

]
35 andB0(st+1) = B(s, st+1, L, ν, 0, q)

suppressing arguments for notational ease.

Similarly, for some alternative j we have:

∂u0(q, s, ζ)

∂q
+
∂Ψj

∂L
=
∑
st+1∈S

δ(st+1)fj(·, L)V(st+1, Bj(st+1))π(st+1|s, j, L, q∗j ) (40)

where Bj(st+1) = B(s, st+1, L, ν, j, q
∗
j (s, L, ζ, νj)) as above. Generically these will differ from

the wealth levels induced by equation (39).

Subtracting equation (39) from (40) yields:

∂Ψj(L, s, ζ, ν)

∂L
=
∑
st+1∈S

δ(st+1)
[
fj(·, L)V(st+1, Bj(st+1))π(st+1|s, j, L, q∗j ) (41)

−f0(·, L)V(st+1, B0(st+1))π(st+1|s, 0, L, q)]

34Strict monotonicity is not sufficient to imply that there is such a ν0. If there is not, however, then this implies
that the decision-maker will never consume q0 in state (s, L, ζ), and therefore this particular q is irrelevant both
in terms of observed behavior and in terms of calculating the value function. We therefore ignore such values,
and assume that ν0 does exist.

35We use the modified envelope to al
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Note that equation (41) has 2S unknowns: δ(st+1)V(st+1, Bk(st+1)) evaluated at each of S

possible states and for k ∈ {0, j}.
Next, choose some state s̃ 6= s. By assumption 9, there exists ν̃0 such that q∗0(s̃, L, ζ, ν̃0) +

φ0(s̃, L, ν̃0) = q + φ0(s, L, ν0).36 Thus the end-of-period wealth is the same as in equation (39)

and therefore so too is the support of period-(t + 1) wealth. The period-t continuous choice

will generically differ, however, and we denote its new value as q̃0:

∂u0(q̃0, s̃, ζ)

∂q
=
∑
st+1∈S

δ(st+1)f0(·, L)V(st+1, B0(st+1))π(st+1|s, 0, L, q̃0) (42)

We next find values to match both the continuous choice and end-of-period wealth when

choosing j. By the same argument as above, there exists a ν̃j such that q∗j (s̃, L̃, ζ̃, ν̃j) +

φj(s̃, L̃, ν̃j) = q∗j (s, L, ζ, νj) − φj(s, L, νj) for any given L̃. The induced end-of-period wealth

is therefore the same when choosing alternative j in state (s, L, ζ, ν) and in state (s̃, L̃, ζ, ν̃).

Moreover, we choose L̃j(L) to guarantee that q∗0(s̃, L̃j(L), ζ, ν̃0) = q∗0(s̃, L, ζ, ν̃0) We therefore

have:

∂u0(q̃0, s̃, ζ)

∂q̃0

+
∂Ψj

∂L
=
∑
st+1∈S

δ(st+1)fj(·, L̃j)V(st+1, Bj(st+1))π(st+1|s̃, j, L̃j, q̃j) (43)

and differencing (42) and (43) yields:

∂Ψj(L̃j, s̃, ζ, ν̃j)

∂L
=
∑
st+1∈S

δ(st+1)
[
fj(·, L̃j)V(st+1, Bj(st+1))π(st+1|s̃, j, L̃j, q̃j) (44)

−f0(·, L)V(st+1, B0(st+1))π(st+1|s̃, 0, L, q̃0)]

Note that (44) introduces no new unknowns relative to equation (41): as the end-of-period

wealth is the same as before, the support of the distribution of next-period wealth will be the

same, though the probabilities will differ as the current state is different. We may repeat this

36To see this, note that B(st, st+1, L, ν, j, q
∗
j ) is unbounded above as either Lt →∞ or νt → −∞. If not, then

there exists a B̄ as an upper bound. If the agent has at most B̄ resources, then conditional on any jt+1, the
expected quantity qj,t+1 is finite, and therefore E[u′(qj)] > 0. With a finite set of alternatives, the minimum
expected marginal utility also exists and is larger than zero. Since the agent could spend any additional resources
on consumption in period t + 1, the optimal consumption path must yield at least this utility and therefore
∂V/∂L is also strictly positive. If B̄ is an upper bound, however, then as Lt → ∞ it must be that qt → ∞ as
well. By assumption (6), this means the marginal utility of consumption in period t goes to zero, which leads
to a contradiction of the Euler equation. The same contradiction arises when ν → −∞. Because fj is finite,
the end-of-period wealth must be unbounded as a function of ν.
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process at all s ∈ S to generate a system of S linear equations in 2S unknowns. Let ∇Ψ(L)

be the S × 1 vector whose nth element is ∂Ψj(L, sn, ζn, νn)/∂L, where ζn and νn are chosen

as in equation (44). Let πk(L) be the S × S matrix whose (n,m)th element is the product

fk(sm, sn, L̃k(sn), qk(sn))π(sm|sn, k, L̃k(sn), qk(sn)) — noting that L̃0(s) = L for all s. Finally,

let Wk(L) be the S × 1 vector whose nth element is δ(sn)V(sn, Bk(sn)). We thus have:

∇Ψ(L) =
[
πj(L) −π0(L)

] [ Wj(L)

W0(L)

]
(45)

Notice that our starting point in Equation (39) is an arbitrary level of L (and ζ). We

can therefore consider a new starting level L′ to construct a similar equation to (45) without

introducing any new unknowns by considering a value ζ ′ which equates end-of-period wealth

in state (s, L′, ζ ′) and (s, L, ζ) conditional on choosing alternative 0, and following the same

construction for alternative j or states s̃. Thus, we may stack these new equations to (45) to

obtain: [
∇Ψ(L)

∇Ψ(L′)

]
=

[
πj(L) −π0(L)

πj(L
′) −π0(L′)

][
Wj(L)

W0(L)

]
(46)

Note that in the first matrix on the right-hand side of (46), πj combines the state transition

probabilities with the state-dependent returns fj. Assumption 7 guarantees that we can choose

L′ such that it will be full-rank. We can therefore recover δ(s) and ∂uj(·, ·, s, ·)/∂q for every j

pointwise following the same argument as the proof of Theorem 1.

A.4 Proof of Theorem 3

For notational convenience, we suppress zt. Furthermore, as this Theorem addresses limited

dependence of the state transitions on the decision-maker’s choices we highlight this by sup-

pressing all dependence of f and π on q and L. We begin by assuming that 9 is satisfied.

Consider an arbitrary (q, s, L, ζ). Under Assumption 6, q∗0(s, L, ζ, ν0) is strictly monotone and

unbounded in L and, given that φ0(s, L, ν) is strictly monotone in ν0, it will be strictly mono-

tone in ν0 as well. There therefore exists ν0 such that q∗0(s, L, ζ, ν0) = q. Finally, assume WLOG

that assumption 7′ relates to alternatives 0 and j.
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From equation (11) we have:

∂u0(q, s, ζ)

∂q
=
∑
st+1∈S

δ(st+1)f0(st+1)V(st+1, B0(st+1))π(st+1|s, 0) (47)

where V(st+1, B) = Eζt+1,νt+1

[
∂Φ0(st+1,B,ζt+1)

∂B
+

∂u0(q∗t+1,st+1,B,ζt+1)

∂q

]
andB0(st+1) = B(s, st+1, L, ν, 0, q)

suppressing arguments for notational ease.

Similarly, for some alternative j we have:

∂u0(q, s, ζ)

∂q
+
∂Ψj

∂L
=
∑
st+1∈S

δ(st+1)fj(st+1)V(st+1, Bj(st+1))π(st+1|s, j) (48)

where Bj(st+1) = B(s, st+1, L, ν, j, q
∗
j (s, L, ζ, νj)) as above. Generically these will differ from

the wealth levels induced by equation (47). However, under assumption 9 there exists a νj such

that:

q∗j (s, L, νj) = α−1 [(α− 1)L+ αq∗0(s, L, ν0) + αφ0(s, L, ν0)− φj(s, L, νj)] (49)

Equation (49) guarantees that the end-of-period wealth induced by choosing j is a proportion

1/α of that induced by choosing alternative 0, and therefore state-by-state the start-of-period-

(t+ 1) wealth will also coincide.

Subtracting equation (47) from (40) therefore yields:

∂Ψj(L, s, ζ, ν)

∂L
=
∑
st+1∈S

δ(st+1) [f0(st+1)(α− 1)V(st+1, Bj(st+1))π(st+1|s, j)] (50)

Note that equation (50) has S unknowns: δ(st+1)V(st+1, Bk(st+1)) evaluated at each of S

possible states and for k ∈ {0, j}.
Next, choose some state s̃ 6= s. By assumption 9, there exists ν̃0 such that q∗0(s̃, L, ζ, ν̃0) +

φ0(s̃, L, ν̃0) = q + φ0(s, L, ν0). The period-t continuous will generically differ, however, and we

denote its new value as q̃0:

∂u0(q̃0, s̃, ζ)

∂q
=
∑
st+1∈S

δ(st+1)f0(st+1)V(st+1, B0(st+1))π(st+1|s, 0, L, q̃0) (51)

By the same argument as above, there exists a ν̃j that will induce a 1/γ fraction of the

end-of-period wealth induced by choosing alternative 0. We may again difference the Euler
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equations as in (50) to yield:

∂Ψj(L, s̃, ζ, ν̃)

∂L
=
∑
st+1∈S

δ(st+1) [fj(st+1)(α− 1)V(st+1, Bj(st+1))π(st+1|s, j)] (52)

Note that (52) introduces no new unknowns relative to equation (50): as the end-of-period

wealth is the same as before, the support of the distribution of next-period wealth will be

the same, though the probabilities will differ as the current state is different. We may repeat

this process at all s ∈ S to generate a system of S linear equations in S unknowns. Let

∇Ψ(L) be the S × 1 vector whose nth element is ∂Ψj(L, sn, ζn, νn)/∂L, where ζn and νn are

chosen as in equation (52). Let π(L) be the S × S matrix whose (n,m)th element is the

product f0(sm)(1− α)π(sm|sn, 0). Finally, let W (L) be the S × 1 vector whose nth element is

δ(sn)V(sn, B0(sn)). We thus have:

∇Ψ(L) = π(L)W (L) (53)

Equation (53) is a linear system of S equations in S unknowns. Moreover, unlike equations

(36) and (45), the Markov matrix π(L) will generically be full rank and therefore the system may

be inverted. We therefore recover δ(st+1)V(st+1, B0(st+1)), and the rest of the proof proceeds

as before.

Finally, we note that when Assumption 8′ is holds, equation (49) may be satisfied by an

appropriate choice of L and ζ as in Theorem 1. The remainder of the proof proceeds in the same

way, with the substitution of ∇Ψ(L)n = ∂Ψj(Lj,n, sn, ζj,n)/∂L+ ζj,n− ζ0,n to accommodate the

use of ζ rather than φ.

A.5 Market-level Shocks

To we allow for the presence of a product-level aggregate shock, we assume:

Assumption 11. The continuous shock ζijt is additive in the market-level and individual com-

ponents: ζijt = ξjt + ζit

We then have the following corollary:

Corollary 1. Lemma 1 and assumption 11 guarantee that ζit and ξjt are identified.
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Proof of Corollary 1. Notice that ζijt = ζit + ξjt and E[ζ̃t|dt = j] = 0 which will immediately

implies the results.
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