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Abstract

How does an increase in the size of the market, say due to fertility, immigration, or

globalization, affect welfare? We study this question using a model with heterogeneous firms,

Kimball preferences, fixed costs, and monopolistic competition. We decompose changes in

welfare from increased scale into changes in technical efficiency and changes in allocative

efficiency due to reallocation. We non-parametrically identify residual demand curves with

firm-level data from Belgian manufacturing firms and, using these estimates, quantify our

theoretical results. We find that around 80% of the aggregate returns to scale are due to

changes in allocative efficiency. As markets get bigger, competition intensifies and triggers

Darwinian reallocations: socially-valuable firms expand, small firms shrink and exit, and new

firms enter. However, important as they are, improvements in allocative efficiency are not

driven by reductions in markups or deaths of unproductive firms. Instead, they are caused

by a composition effect that reallocates resources from low- to high-markup firms.
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1 Introduction

Aggregate increasing returns to scale underlie some of the most fundamental problems in

economics, ranging from the mechanics of growth, to the gains from trade, to the benefits

from industrial and competition policy. Despite their importance, the origins and magnitudes

of these forces remain unclear. This paper argues that, to a large extent, increasing returns to

scale at the aggregate level may reflect changes in allocative rather than technical efficiency.

That is, as the market becomes larger, competition intensifies and reallocates resources across

firms in ways that boost welfare. Thus, the aggregate return to scale is not an exogenous

technological primitive. Instead, it is an endogenous outcome, affected by frictions and

market structure and likely varies with time, place, and policy. Furthermore, even mild

increasing returns at the micro level can catalyze large increasing returns at the macro level.

In this paper, we consider economies with fixed costs, entry and exit, and monopolistic

competition between heterogeneous firms. We study how welfare and real GDP change

in response to an increase in the size of the market, say due to immigration, fertility, or

globalization. Because of technological economies of scale, increases in market size raise

individual welfare even when the allocation of resources is held constant as fixed costs are

spread over a larger population. However, the change in population also triggers reallocations

of resources, and these reallocations could further increase welfare. It is these endogenous

changes in the allocation of resources, which we refer to as changes in allocative efficiency,

that we focus on in this paper.1

These reallocation effects only matter if the initial equilibrium is inefficient. This is because

if the initial equilibrium is efficient, changes in consumer welfare locally behave like the

solution to a planning problem. The logic of the envelope theorem then implies that changes

in welfare only come from changes in technical efficiency and not from reallocation. In

efficient equilibria, the marginal benefit of any input is equated across competing uses and so

reallocations of resources have no first-order effect on welfare.

Some classic models of increasing returns that emphasize the importance of reallocations,

such as Melitz (2003), actually have efficient equilibria. The efficiency of the equilibrium is a

consequence of assuming Constant-Elasticity-of-Substitution (CES) demand systems. In such

models, reallocations may take place, but to a first-order, these reallocations are irrelevant for

welfare.2 In such settings, comparative statics depend only on the technological aspects of

the problem, that is, the aspects of the problem that are relevant to a social planner.

1We define changes in allocative efficiency in response to a shock as the changes in welfare or real GDP that can
be attributed to the equilibrium reallocation of resources caused by the shock. See footnote 18 for more details and
see Baqaee and Farhi (2019) for a formal discussion.

2A similar remark applies to Hopenhayn (1992), who assumes perfect competition and decreasing returns at the
margin at the producer level. This model also has efficient equilibria and, as a result, equilibrium reallocations are
irrelevant for welfare to a first-order.
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However, this simple elegance comes at the expense of realism. CES demand imposes

constant and uniform markups with complete pass-through of marginal costs into prices.

The data, on the other hand, features substantial heterogeneity in both markups and pass-

throughs. Therefore, matching the empirical heterogeneity of markups and pass-throughs

requires deviating from the CES benchmark. This in turn necessitates confronting ineffi-

ciencies and changes in allocative efficiency due to reallocations. In the empirically relevant

cases, an increase in market size intensifies competition amongst firms. This triggers real-

locations along several margins, and because the economy is inefficient to begin with, these

reallocations impact welfare.

We propose a new approach for decomposing and interpreting comparative statics in

this type of model. We characterize changes in technical and allocative efficiency separately.

The “Darwinian” forces in the model are those which intensify competition and reallocate

resources across firms as the market becomes larger. In the empirically relevant case, as the

market gets larger, these forces are (1) a reduction in the price index due to new entry, (2) an

increase in the minimum level of productivity a firm must have to survive, and (3) a reduction

in firms’ desired markups. We decompose changes in allocative efficiency into the different

reallocations driven by adjustments along these three different margins of firm behavior. We

quantify this decomposition by non-parametrically estimating the model using firm-level

data for Belgium.

In our empirical calibration, we find that changes in allocative efficiency are more impor-

tant than changes in technical efficiency in determining aggregate increasing returns to scale.

They account for between 70% and 90% of the overall effect. Furthermore, we show the typical

mechanisms for reallocation emphasized in the previous literature, such as the toughening of

selection and reductions in markups (2 and 3 above), are not the key drivers of the improve-

ments in allocative efficiency. On the contrary, our estimates indicate that these particular

mechanisms are harmful. Instead, we identify a different composition effect resulting from (1)

that reallocates from low-markup firms to high-markup ones and unambiguously improves

welfare. This channel turns out to be the main source of welfare gains.3

To understand these reallocation effects, in our analysis we consider margins of adjustment

one-by-one. In a first step, we let firms adjust their entry behavior, but hold exit behavior and

markups constant. In the second step, we allow firms to adjust their entry and exit behavior,

but not their markups. In the third and final step, we allow firms to also adjust their markups,

which coincides with the full equilibrium outcome. Below, we describe the intuition of this

step-by-step analysis and the novel composition effect that drives the welfare gains.

3This reallocation from low- to high-markups firms improves efficiency because high-markup firms are inef-
ficiently too small relative to low-markup firms. Baqaee and Farhi (2019) show that this type of reallocation can
explain a significant fraction of aggregate TFP growth in the US over the last two decades. This paper raises the
possibility that increases in scale, perhaps driven by globalization, could be responsible for these reallocations.
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Figure 1: The residual demand curve in log-log space. An increase in market size shifts the
demand curve to the right and down (moving from solid to dashed line), holding fixed markups
and the selection cut-off. To see the reallocation effect, compare how quantities change for firms
A and B at different points on the demand curve. The inelastic firm expands relative to the elastic
firm.

Intuition for Composition Effect. Consider the residual per-capita demand curve for a

product
p
P

= Υ′(
y
Y

),

where p and y are the price and quantity per capita of some product variety, P is an aggregate

price index, Y is an aggregate per-capita utility index, and Υ′ is a decreasing function. To

illustrate this demand curve, in Figure 1, we assume that larger firms face more inelastic

demand curves and hence charge higher markups than smaller firms. This assumption,

which is empirically justified, implies that the demand curve is log-concave (concave in

log-log space).

Holding fixed the allocation of resources across firm types, an increase in market size

increases welfare since an increase in population results in more varieties, and more varieties

increase welfare. This is the improvement in technical efficiency. When the equilibrium is

efficient, this effect coincides with the average micro technological return to scale, and is all we

need to consider. However, in an inefficient equilibrium, there are also changes in efficiency

due to reallocations.

Consider first the equilibrium response allowing only for adjustment in entry behavior

but holding exit behavior and markups constant. In Figure 1, an increase in population shifts

the demand curve down, because the aggregate price index P falls, and to the right, because

the utility index Y rises. This means that demand per capita falls by more for the relatively

elastic firms (A to A′) as compared to the inelastic ones (B to B′). In fact, the demand for
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the highly inelastic firms can even increase if the rightward shift is large enough (this is the

case illustrated in the figure). So, resources are reallocated away from the elastic firms with

low markups towards the inelastic firms with high markups. Because the low-markup firms

were too large and the high-markup ones were too small to begin with, these reallocations

unambiguously increase welfare.4 The positive changes in allocative efficiency associated

with this composition effect turn out to be the largest positive force in the model when we

take it to the data.

This effect relies critically on the fact that the firm size distribution is non-degenerate and

that the residual demand curve is not iso-elastic. The effect would disappear if the firm-size

distribution were degenerate (homogeneous firms), or if the demand curve were linear in

log-log space (CES demand system). In the former case, all firms are at the same point on the

demand curve and in the latter case, shifting demand does not differentially affect different

firms. Either way, there would be no reallocation from shifts in the demand curve.

Of course, in equilibrium, exit behavior and markups adjust as well, leading to further

changes in allocative efficiency. Similar to Asplund and Nocke (2006) and Melitz and Otta-

viano (2008), we find that with log-concave demand curves, increases in population drive up

the marginal/cut-off productivity level, reduce the probability of survival, and drive down

markups. However, unlike the effect outlined in Figure 1, the toughening of selection and the

reduction in markups have theoretically ambiguous effects on welfare. Empirically, we find

they actually tend to reduce allocative efficiency.

Our theoretical results do not depend on parametric assumptions. This is useful since

there is no consensus on a parametric functional form for representing preferences, and our

approach ensures that parametric restrictions are not inadvertently shutting down important

channels. We use cross-sectional firm-level information from Belgium on pass-throughs

(from Amiti et al., 2019) to non-parametrically identify the demand system, and given these

estimates, we quantify how welfare changes in response to shocks. Importantly, the Kimball

structure allows us to estimate our model from information on pass-throughs and does not

require estimates of firm-level markups (which are harder to estimate). Non-parametric

identification allows us the freedom to match the data in terms of both pass-throughs and sales

shares, whereas typical parametric specifications of preferences, for instance CES, quadratic,

or Klenow and Willis (2016) have counterfactual properties.5

Finally, by separately characterizing the behavior of welfare and real GDP, we also clarify

4The fact that this composition effect improves welfare does not rely on log-concavity of the demand curve in
Figure 1. For example, if the demand curve were log-convex, so that smaller firms had lower elasticities and higher
markups, they would be too small to begin with, and they would be the ones to grow in response to entry.

5With monopolistic competiton, CES preferences imply that the pass-through of marginal cost into prices must
be constant and equal to one. Klenow and Willis (2016) preferences imply that pass-throughs go to zero too quickly
(markups increase too rapidly) for very productive firms, so that without demand shifters, it becomes impossible
to match the fat right-tail of the firm size distribution (see page 45 of Amiti et al., 2019). Quadratic preferences used
by Melitz and Ottaviano (2008) force pass-throughs to start at 0.5 and decline to zero.
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some potentially confusing issues. It is well-known that when the set of goods can change

due to entry and exit, real GDP and welfare may not be the same. However, we show that

changes in real GDP are entirely driven by reductions in markups, and do not depend at all

on the reallocation effects that are so crucial for welfare. Therefore, intuitions that apply to

real GDP cannot naively be used to understand the behavior of welfare and vice versa.

Relatedly, in the literature, aggregate productivity (TFP) is sometimes conflated with

the average of firm productivities (for example, Melitz and Ottaviano, 2008). However,

the growth in this average is not aggregate TFP growth as defined by or measured using

national income statistics. We formally show that changes in ad-hoc productivity indices and

changes in aggregate TFP behave in different ways. In particular, increases in ad-hoc average

productivity indices due to a right-shift in the productivity cut-off do not, by themselves, lead

to an increase in aggregate TFP.

Many of the ideas that we develop regarding the response of the economy to changes in

population apply to changes in other parameters. In the appendix, we provide analytical com-

parative statics for changes in fixed costs of entry, fixed overhead costs, and the productivity

distribution, as well as their decomposition into technical and allocative efficiency.

Finally, in addition to our comparative static results, in the appendix, we analytically

characterize (to a second-order) the distance of the economy from the efficient frontier as well

as the optimal combination of industrial and competition policy that restores efficiency. We

also compute the distance to the frontier in our empirical application. The welfare losses

from misallocation are between 2.5% and 6.3% in Belgium in our simple model. Therefore,

reallocation effects can be substantial even when the economy is not too far from the efficient

frontier.

Related Literature. This paper builds on the vast literature on entry and monopolistic

competition using a representative consumer with a taste for variety following Spence (1976)

and Dixit and Stiglitz (1977).

Initially, the theoretical analysis of monopolistic competition was undertaken under the

assumption that firms are homogeneous, for example Krugman (1979), Mankiw and Whin-

ston (1986), Vives (1999), or Venables (1985). The heterogeneous-firm case has been studied

by Melitz (2003) when efficient, and by Asplund and Nocke (2006), Melitz and Ottaviano

(2008), Zhelobodko et al. (2012), Dhingra and Morrow (2019), Mrázová and Neary (2017),

and Mrázová and Neary (2019) when inefficient. For efficient models, like Melitz (2003), the

envelope theorem implies that reallocations have no direct effect on welfare to a first-order.

Like us, Dhingra and Morrow (2019) also study inefficient models, but their focus is primar-

ily on comparing the decentralized equilibrium to the first-best, and providing qualitative

conditions under which the effect of market expansion can be signed.

Relative to these papers, our paper makes several contributions. First, we provide analyti-
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cal comparative statics for models with Kimball demand in the second best.6 Our comparative

statics are stated in terms of sufficient statistics that are measurable in the initial equilibrium.

Therefore, as long as an equilibrium exists and varies smoothly in response to changes in

market size, our formulas describe its movement. Second, we decompose the overall effect

into technical and allocative efficiency, and further decompose changes in allocative efficiency

into adjustments along different margins of adjustment. This helps highlight a new mecha-

nism, distinct from movements in the minimum productivity cut-off or changes in markups

through which market size affects efficiency. Third, we provide an empirical strategy for

backing out demand curves from data, allowing us to quantify our comparative statics and

decompositions. This procedure allows us to perform local and global comparative statics.

Fourth, we analyze real GDP as well as welfare, clarifying the similarities and differences

between the object we typically measure (real GDP) and the one we care about (welfare).

The focus of this paper is comparative statics in the second-best, and we do not, in the

body of the paper, analyze the economy’s distance to the frontier. Quantifying an economy’s

distance from the efficient frontier is the subject of a vast literature (e.g. Restuccia and

Rogerson, 2008, Hsieh and Klenow, 2009, and Baqaee and Farhi, 2019). In particular, some

recent papers have focused on the social cost of markups in models with entry (e.g. Edmond

et al., 2018, Bilbiie et al., 2019, or Behrens et al., 2018). It should be noted that these papers

study a very different question compared to this paper. However, in Appendix E, we also

characterize the decentralized economy’s distance from the efficient frontier, thereby linking

our results to these aforementioned papers.

The reallocation of resources towards firms with high markups, which drives most of the

increasing returns to aggregate scale in the present paper relates to our previous work in

Baqaee and Farhi (2019). There, we showed that the well-documented increase in average

markups in the U.S. since 1980 is in large part driven by a composition effect whereby firms

with high markups are getting larger. We also showed that these reallocations generated

improvements in allocative efficiency which explained close to 50% of aggregate TFP growth

over the past twenty years. An interesting possibility, suggested by this paper, is that these

reallocations are in part caused by an increase in scale, perhaps due to globalization.

Finally, although our model is static, it is related to models of endogenous growth in which

increasing returns to scale can lead to sustained growth (e.g. Romer, 1986, Romer, 1990,

Grossman and Helpman, 1991, Aghion and Howitt, 1992, Jones, 1995), and to the analysis of

Perla et al. (2020) who find large gains from trade from increased technology adoption in a

growth model with inefficiencies stemming from a technology-adoption externality.

Structure of the paper. The structure of the rest of the paper is as follows. Section 2

sets up the model and defines the equilibrium. Section 3 describes the solution strategy

6We do not provide conditions under which equilibria exist or are unique. Instead, we characterize comparative
statics of locally isolated equilibria.

6



and discusses efficiency. Section 4 analyzes the case where firms are homogeneous. Section 5

considers the case with heterogeneous firms. Section 6 backs out demand curves from the data

and quantifies our results. Section 7 summarizes two extensions developed in the appendix:

(1) comparative static results for changes in fixed costs or productivities, and (2) an analytical

characterization of optimal policy and a second-order approximation and quantification of

the distance to the efficient frontier. Section 8 concludes. The appendix contains all the proofs.

2 Model

In this section, we specify the model and describe the equilibrium.

2.1 Set Up

Households. There is a population of L identical consumers. Each consumer supplies one

unit of labor and consumes different varieties of final goods indexed by ω ∈ R+. Consumers

have homothetic Kimball (1995) preferences, with per-capita utility Y defined implicitly in

units of consumption by ∫ ∞

0
Υ(

yω
Y

)dω = 1, (1)

where yω is the per-capita consumption of variety ω and Υ is an increasing and concave

function in units of utils with Υ(0) = 0.7 CES preferences are a special case of equation (1)

when Υ is a power function.

Consumers maximize their utility Y subject to the following budget constraint∫ ∞

0
pωyωdω = 1, (2)

where pω is the price of variety ω. Normalize the nominal wage to one so that the income

of each consumer is equal to one. This expression for the budget anticipates the fact that in

equilibrium, there are no profits because of free entry.

The per-capita inverse-demand curve for an individual variety ω is

pω
P

= Υ′(
yω
Y

), (3)

7Kimball preferences are a natural benchmark. They are flexible enough to generate residual demand curves
of any shape. They are also homothetic with linear Engel curves for varieties of different sizes within a sector. We
view this property as desirable given the absence of precise empirical guidance on possible deviations from it. An
implication of homotheticity is that scale effects do not appear in the absence of fixed costs and entry. We have also
derived similar versions of our results (available upon request) using non-homothetic separable preferences which
do generate scale effects in the absence of fixed cost and entry (as in Krugman, 1979 or Dhingra and Morrow, 2019).
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where the price aggregator P is defined as

P =
δ̄
Y

(4)

and the demand index δ̄ is defined as

1
δ̄

=

∫ ∞

0
Υ′(

yω
Y

)
yω
Y

dω.

Equation (3) demonstrates the appeal of Kimball preferences — by choosing Υ, demand

curves of any desired (downward-sloping) shape can be generated. Equation (3) can be

thought of as a relative demand curve for yω/Y as a function of the relative price pω/P.

Therefore, each variety competes with the price aggregator P, which acts like an aggregate

price index for substitution.

However, this price index P does not coincide with the ideal price index PY for the rep-

resentative consumer: deflating income by P does not yield welfare.8 In fact, d log P =

d log δ̄ + d log PY. Since in general, δ̄ is not a constant, d log P , d log PY. It is only in the CES

case, when Υ(x) = x(σ−1)/(σ), that these two price indices coincide since then δ̄ = σ/(σ − 1) is

constant.9 Going forward, we refer to P as “the” price index without further qualification,

despite the fact that it is not the ideal price index.

This inverse demand curve can be inverted into a per-capita demand curve for an indi-

vidual variety. We denote the price elasticity of this demand curve for an individual variety

by

σ(
y
Y

) =
Υ′( y

Y )

− y
YΥ′′( y

Y )
. (5)

Monopolistic competition models with Kimball demand are parsimonious in the sense that

competition across varieties is mediated by the price index; every variety competes with the

price index. The flexibility of the demand system comes from the fact that it allows different

varieties to face different “intensities” of competition, as captured by the different elasticities

of the demand curve at different points.

Firms. Each variety is supplied by a single firm seeking to maximize profits under monop-

olistic competition. Firms can enter to supply new varieties by incurring a fixed entry cost

of fe units of labor. Upon entry, firms draw a type θ ∈ R+ from a distribution with density

g(θ) and cumulative distribution function G(θ). Each firm’s productivity Aθ is an increasing

function of its type θ. Having drawn its type, the firm then decides whether to produce or

8Let e(pω,Y) be the expenditure function of a household as a function of the price of all varieties pω and
welfare Y, where the price of unavailable varieties is set to infinity. Since preferences are homothetic, we can write
e(
{
pω

}
,Y) = PY(

{
pω

}
)Y, where PY(

{
pω

}
) is the ideal price index.

9Changes in the price index d log P also do not correspond to the way the deflators, such as the GDP deflator∫ ∞
0 pωyωd log pωdω, are measured in the data.
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to exit. Production requires paying an overhead cost of fo units of labor, with a constant

marginal cost of 1/Aθ units of labor per unit of the good sold. Finally, the firm decides what

price to set, taking as given their residual demand curve.

The profit-maximizing price pθ of a producing firm of type θ is a markup µθ over its

marginal cost 1/Aθ. Its per-capita quantity yθ is the demand at that price. We assume that

marginal revenue curves are strictly decreasing so that profit maximization always has a

unique solution.10 The price, markup, and per-capita quantity are determined implicitly by

pθ =
µθ
Aθ
, yθ = y(pθ), and µθ = µ(

yθ
Y

), (6)

where the markup function is given by the usual Lerner formula

µ(
y
Y

) =
1

1 − 1
σ( y

Y )

. (7)

A firm of type θ chooses to produce if, and only if,

Lpθyθ

(
1 − 1

µθ

)
≥ fo. (8)

Since profits are increasing in productivity levels, there is an endogenous cut-off θ∗ such that

firms of typeθ ≥ θ∗ decide to produce, and firms of typeθ < θ∗ exit. The zero-profit condition,

associated with entry, is

1
∆

∫ ∞

θ∗

[
Lpθyθ

(
1 − 1

µθ

)
− fow

]
g(θ)dθ ≥ fe. (9)

The parameter ∆ is introduced to allow the equations to represent a repeated version of the

static model with an infinite number of periods 0, 1, · · · ,∞, where each producing firm has

an exogenous probability ∆ of being forced to exit in every period t = 0, 1, · · · ,∞. Under this

interpretation, we assume there is no discounting so that the expected net present value of

profits is then given by the left-hand side of the entry equation.

Equilibrium. In equilibrium consumers maximize utility taking prices as given; firms

maximize profits taking prices other than their own and consumer welfare as given; and

markets clear.
10In terms of primitives, this requires that the Kimball aggregator satisfy always satisfy [Υ′′′(x)x + 2Υ′′(x)] < 0.
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2.2 Summary of the Equilibrium Conditions

Since data is usually recorded in terms of sales rather than physical quantities, we restate the

model’s conditions in terms of sales. Define the sales share density

λθ = (1 − G(θ∗))Mpθyθ, (10)

where M is the mass of entrants and θ∗ is the selection cut-off so that (1−G(θ∗))M is the mass of

surviving firms.11 The sales share density is such that the aggregate sales share (as a fraction

of income) of firms with type in (θ, θ + dθ) is λθg(θ)/(1 − G(θ∗))dθ. Quantities per capita yθ
and prices pθ can all be recovered from the sales share density λθ and markups µθ:

yθ =
λθAθ

µθ(1 − G(θ∗))M
and pθ =

µθ
Aθ
. (11)

Below we rewrite all the equilibrium conditions in terms of the endogenous variables M, Y,

λθ, µθ, and exogenous parameters L, f , fe∆, and Aθ.

Using the expectation conditional on survival with measure [g(θ)/(1 − G(θ∗))]1{θ≥θ∗}dθ,

consumer welfare per capita is given implicitly by

1 = (1 − G(θ∗))ME
[
Υ(

λθAθ

µθ(1 − G(θ∗))MY
)
]
, (12)

restating the definition in equation (1). Similarly, the free entry condition is

M fe∆
L

= E
[
λθ

(
1 − 1

µθ

)
− (1 − G(θ∗))M fo

L

]
, (13)

restating that entry costs exactly offset the aggregate variable profit share net of the overhead

costs. The cut-off productivity value θ∗ is the minimum θ that satisfies

λθ∗

(
1 − 1

µθ∗

)
≥ (1 − G(θ∗))M fo

L
, (14)

restating that the overhead costs must cover the variable profit share. The individual markup

equations is

µθ = µ(
λθAθ

µθ(1 − G(θ∗))MY
). (15)

restating the Lerner condition. Individual demand is

µθ
Aθ

= PΥ′(
λθAθ

µθ(1 − G(θ∗))MY
). (16)

11We refer to λθ as a density since it integrates to one (due to our choice of numeraire) and is always non-negative.
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Finally, the price and demand index equations are

P =
δ̄
Y

(17)

and
1
δ̄

= (1 − G(θ∗))ME
[

λθAθ

µθ(1 − G(θ∗))MY
Υ′(

λθAθ

µθ(1 − G(θ∗))MY
)
]
. (18)

To streamline the exposition, we have made use of the following convention. For two

variable xθ > 0 and zθ, define

Ex[zθ] =

∫ ∞
θ∗ xθzθ

g(θ)
1−G(θ∗) dθ∫ ∞

θ∗ xθ
g(θ)

1−G(θ∗) dθ
. (19)

We write E to denote Ex when xθ = 1 for all θ. The operator Ex operates a change of measure

by putting more weight on types θ with higher values of xθ. In the rest of the paper, we will

often encounter E, Eλ, and Eλ(1−1/µ), which respectively correspond to integrals with respect

to the physical density, the sales share density, and the profit share density.

3 Central Concepts and Solution Strategy

In this section, we introduce some central concepts and describe the solution strategy.

3.1 Markups, Pass-Throughs, and Infra-Marginal Surplus

In order to characterize changes in consumer welfare and in real GDP, we will need the

following definitions for markups, pass-throughs, and infra-marginal surplus ratios.

Markups, pass-throughs, and Marshall’s second laws of demand. It is important to

define a number of notions related to markups and their behavior. We have already defined the

markup function µ(y/Y) and described its relation to the elasticity of the individual demand

function

µ(
y
Y

) =
1

1 − 1
σ( y

Y )

. (20)

Define the individual pass-through of a variety as the elasticity of its price to its productivity

ρ = −d log p/d log A = 1 − d logµ/d log A. This elasticity is necessarily positive, and can be

computed by differentiating the individual demand equation µ( y
Y )/A = PΥ′( y

Y ) with respect

11



to A, holding Y and P constant (since each firm is infinitesimal):

ρ(
y
Y

) =
1

1 +
y
Yµ
′( y

Y )
µ( y

Y )
σ( y

Y )
. (21)

The markup and pass-through of a variety of type θ are denoted by µθ = µ(yθ/Y) and

ρθ = ρ(yθ/Y).

A natural assumption is that markups are increasing with productivity. This condition is

equivalent to the requirement that the individual demand curves be log-concave in log price

(see Melitz, 2018). We call this the weak version of Marshall’s second law of demand. Given that

productivity is increasing in the type of a firm, it is also equivalent to the requirement that µθ
be increasing in θ, or equivalently,

µ′(
y
Y

) ≥ 0. (22)

As discussed by Melitz (2018), a stronger version of Marshall’s second law of demand is

the requirement that pass-throughs be less than one and decreasing with productivity. The

strong law implies the weak law, and is equivalent to the requirement that individual marginal

revenue curve be log-concave. Given that productivity is increasing in the type of a firm, it is

also equivalent the requirement that ρθ ≤ 1 be decreasing in θ, or equivalently

ρ(
y
Y

) ≤ 1 and ρ′(
y
Y

) ≤ 0. (23)

Both the weak and strong version have empirical support (see Figure 4a in Section 6),

however, our propositions do not require them to hold (unless explicitly mentioned). Never-

theless, we expect these “laws” to hold in most empirically relevant applications.

Infra-marginal surplus ratio and aligned preferences. We also define the infra-marginal

surplus ratio of a variety δ as the amount of infra-marginal surplus per unit sales. More pre-

cisely, δ is the ratio of the consumption equivalent utility δ̄Υ(y/Y) from a marginal variety to

its sales share py = δ̄Υ′(y/Y)y/Y. It is given by the infra-marginal surplus ratio function

δ(
y
Y

) =
Υ( y

Y )
y
YΥ′( y

Y )
≥ 1. (24)

Figure 2 gives a visual intuition for δ as the ratio of consumer surplus A + B to revenues A.12

We denote the equilibrium infra-marginal surplus ratio of a variety of type θ by δθ =

δ(yθ/Y). There is an important relationship between the demand index δ̄ and the infra-

12When goods enter and exit at a choke price we naturally have B = 0 for these firms. In these cases, the entry-exit
margin can be said to be “neoclassical” in the sense that revenues reflect consumer surplus. As can be seen from
equation (29), in such models, the equivalence between real GDP and welfare is restored.
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Figure 2: Graphical illustration of δθ as the area under the residual demand curve divided by
revenues. That is δθ = (A + B)/A ≥ 1.

marginal surplus ratios δθ: the former is the sales-weighted average of the latter13

Eλ[δθ] = δ̄. (25)

We say that (social and private) preferences are aligned if the infra-marginal consumer

surplus ratio varies with productivity in the same direction as markups, or in other words

if δ′(y/Y) and µ′(y/Y) have the same sign.14 For example, if Marshall’s weak second law of

demand holds, so that µ′(y/Y) ≥ 0, preferences are aligned if, and only if, δ also increases with

productivity. It is easy to see that a necessary and sufficient condition in terms of demand

primitives is

δ′(
y
Y

) =
1 − [σ( y

Y ) − 1][δ( y
Y ) − 1]

y
Yσ( y

Y )
≥ 0. (26)

Whereas Marshall’s second law of demand has empirical support, whether or not preferences

are aligned has not been empirically documented one way or another. In fact, when we

calibrate our model to match pass-throughs, we find that preferences are not aligned. Nev-

ertheless, the notion of aligned preferences is useful theoretically as a sufficient condition for

signing some comparative statics.

3.2 Consumer Welfare and Real GDP Per Capita

We are interested in changes in consumer welfare and real GDP per capita in response to

changes in the exogenous parameters (note that consumer welfare is defined per capita). The

13This follows from the definitions δ = 1/E[(1 − G(θ∗))MΥ′(yθ/Y)yθ/Y] and 1 = (1 − G(θ∗))ME(Υ(yθ/Y)).
14This terminology, due to Dhingra and Morrow (2019), captures the idea that when preferences are “aligned,”

then private gains from entry (which are increasing in markups) are aligned with social preferences (which are
increasing in the infra-marginal consumer surplus).
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change in consumer welfare, measured using the equivalent or compensating variation, is

d log Y. (27)

Changes in real GDP per capita are defined following the procedures used by statistical

agencies. That is, using Divisia indices for continuing varieties present before and after the

change.15 Hence, the change in real GDP per capita is defined to be nominal income deflated

by the GDP deflator. In other words,

d log Q = −Eλ[d log pθ]. (28)

Since the supply of the primary factor (labor) is exogenous in our model, changes in real GDP

per capita d log Q are equal to changes in aggregate TFP. An important theme of this paper

is that changes in welfare and changes in aggregate TFP are different objects with different

determinants.

If the model did not allow for the creation and destruction of varieties, then changes in

consumer welfare d log Y, and changes in real GDP per capita/aggregate TFP d log Q would

coincide.16 Because the model does allow for entry and exit, changes in consumer welfare

and real GDP/aggregate TFP do not coincide.17

More concretely, changes in welfare are given by

d log Y =

(
Eλ[δθ] − 1

)
d log M +

(
Eλ[δθ] − δθ∗

)
λθ∗

g(θ∗)
1 − G(θ∗)

dθ∗ + Eλ
[
d log(

Aθ

µθ
)
]
, (29)

whereas changes in real GDP are given by

d log Q = Eλ
[
d log(

Aθ

µθ
)
]
. (30)

15In principle, changes in real GDP can either be defined using a quantity index or a price index. In the body of
the paper, we use the price index definition. We include a discussion of the quantity index in Appendix H.

16This is also true in models of entry devoid of non-convexities featuring no fixed costs and demand curves with
choke prices, where prices and quantities at the variety level change smoothly. If new goods enter smoothly from
the choke price, then δθ = 1 for all entrants, and real GDP and aggregate TFP in equation (30) coincide with welfare
in equation (1). This applies, for example, to Arkolakis et al. (2018). They consider an open economy with an export
margin where export quantities vary smoothly from zero (at the choke price) because there are no fixed costs in
exporting. They analyze the effect of changes in iceberg trade costs (somewhat analogous to productivity shocks) as
opposed to scale shocks. In their model, entry is not affected by iceberg costs and so plays no role in their analysis.
For these reasons, our results are not comparable to theirs.

17A related point is that aggregate TFP is not equal to an average of productivity levels across firms. For example,
the sales weighted average productivity level Eλ[Aθ] is not a sensible measure of aggregate TFP. Such an average is
ill-defined because it is unit-dependent, and does not measure economic efficiency. To see the latter point, note that
even in an efficient model, where welfare and real GDP are maximized, Eλ[Aθ] is not being maximized and can be
driven to be arbitrarily high by changing units or by introducing distorting taxes that reduce welfare and real GDP
but nonetheless increase Eλ[Aθ]. See Baqaee and Farhi (2019) for more details.
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Intuitively, consumer welfare changes d log Y incorporate the infra-marginal consumer sur-

plus brought about by the entry of new varieties d log M, or destroyed by the exit of varieties

dθ∗ via the first two terms on the right-hand side of the expression. In contrast, changes in

real GDP per capita/aggregate TFP d log Q do not, and instead only take into account changes

in the intensive margin of prices d log pθ = d log(µθ/Aθ).

3.3 Changes in Technical and Allocative Efficiency

To understand changes in consumer welfare and real GDP in response to changes in exogenous

parameters, it will be useful to decompose them into changes in technical and allocative

efficiency. Changes in technical efficiency capture the direct impact of the shock, holding the

allocation of resources constant. Changes in allocative efficiency capture the indirect impact

of the equilibrium reallocation of resources triggered by the shock. Because the economy is

inefficient to begin with, these reallocations typically have nonzero first-order effects.

To make this precise, following Baqaee and Farhi (2019), we define the allocation vector

X = (le, lo, {lθ}). It describes the fractions of labor allocated to the following activities: entry,

overhead, and variable production of varieties of type θ. Together with the technology vector

A = (L, fe∆, fo, {Aθ}), the allocation vector X entirely describes any feasible allocation. Let

Y(A,X) be the associated level of consumer welfare.

We will decompose changes in welfare into changes in technical and allocative efficiency

as

d log Y =
∂ logY
∂ logAd logA︸             ︷︷             ︸
technical efficiency

+
∂ logY
∂X dX︸       ︷︷       ︸

allocative efficiency

, (31)

and characterize each in terms of sufficient statistics in the initial equilibrium. Intuitively,

changes in technical efficiency are the changes in welfare that are directly due to changes

in technology d logA, holding the allocation of resources X constant. Changes in allocative

efficiency are the changes in welfare that are due to the equilibrium reallocation of resources

dX = (dX/d logA)d logA triggered by the shocks, holding technology A constant.18 These

latter effects are the Darwinian reallocations, which take resources away from some firms and

move them to others, as the market becomes larger.

In efficient economies, the envelope theorem implies there are only changes in technical

18There are different notions of changes in allocative efficiency. Each is obtained by comparing changes in welfare
in equilibrium against changes in welfare under a different benchmark allocation rule. Our notion captures changes
in allocative efficiency due to reallocation: the benchmark allocation rule keeps the allocation of resources constant.
A different notion is the change in the distance to the efficient frontier: the benchmark allocation rule is the first-best
allocation. The first notion identifies changes in allocative efficiency as changes in welfare due reallocation, holding
technology constant. Since technology is held constant, welfare can only increase if the efficiency of the allocation
improves. The second notion identifies changes in allocative efficiency as changes in the distance to the efficient
frontier due to technology and reallocation. Both notions are used in the literature but they are different. See Baqaee
and Farhi (2019) for a discussion.
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efficiency and no changes in allocative efficiency. In inefficient economies, there are both

changes in technical efficiency and changes in allocative efficiency.

3.4 Outline of the Rest of the Paper

In the following sections, we provide analytical characterizations of first-order comparative

statics of the model with respect to changes in parameters. In the main text of the paper,

we focus exclusively on shocks to population. We treat shocks to other parameters, like

productivity or fixed costs, in Appendix F.

To hone intuition, we begin by studying the homogeneous firm special case, before consid-

ering the model with heterogeneity. In each case, we derive expressions for changes in welfare

and real GDP, and break down the effect into changes in technical and allocative efficiency. As

mentioned earlier, we derive comparative statics in terms of measurable sufficient statistics

that can be taken to data, presupposing that an equilibrium exists and is locally isolated.

Non-parametric sufficient statistics. We avoid putting any additional parametric struc-

ture on the model (the Kimball aggregator or the productivity distribution). Instead, we

express comparative statics in terms of ex-ante measurable non-parametric sufficient statis-

tics introduced in Section 3.1: sales shares λθ, markups µθ, pass-throughs ρθ, and relative

infra-marginal consumer surplus ratios δθ. In Section 6, we show that µθ, ρθ, and δθ are

related to each other so that if we can measure one, then we can recover the rest by solving

some differential equations (up to boundary conditions). To calibrate the model, we will also

need the hazard rate γθ∗ = ga(log Aθ∗)/[1 − Ga(log Aθ∗)] of the log-productivity distribution at

the selection cut-off, where ga(log Aθ) = g(θ)/(∂ log Aθ/∂θ). The results make contact with the

data through these sufficient statistics.

4 Homogeneous Firms

To build intuition, we start by analyzing the case where firms are homogeneous. This case

is obtained by assuming that all types have the same productivity Aθ = A. We denote the

common markup, pass-through, and individual demand elasticity by µ, ρ, and σ.

We proceed as follows. We start by discussing the sources of inefficiency. We then study

shocks to population. We end by analyzing the special case of CES preferences.

To aid with the intuition, we state our results using both markups µ and elasticities σ, but

recall that the two are connected via µ = 1/(1 − 1/σ) or equivalently σ = 1/(1 − 1/µ).
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4.1 Sources of Inefficiency

Since reallocation effects are the key object of interest, understanding their effect requires

understanding the sources of inefficiency in the initial equilibrium. With homogeneous firms,

the only margin that can be distorted is the allocation of labor to entry (and overhead) vs.

variable production. As a result, social efficiency boils down to entry efficiency. This will no

longer be true with heterogeneous firms, where distortions will arise on several other margins.

The allocation matrix provides an intuitive way to think about entry efficiency. Starting at

the initial equilibrium, change the allocation of resources by increasing the fraction of labor

allocated to entry and overhead and decreasing the fraction of labor allocated to variable

production. Compute the resulting change in consumer welfare. We say that there is (locally)

too much entry if the change in consumer welfare is negative and that there is too little entry

if it is positive.19 There is locally too much (too little) entry if, and only if, the following

condition is verified (violated)

δ < µ. (32)

Rearranging (26) shows this condition is automatically verified under weak second Marshall

law of demand and aligned preferences.

To derive this condition, use the following formula, obtained by differentiation of the

definition of consumer welfare,

d log Y = δd log M + d log y. (33)

The intuition for this formula is straightforward: new varieties capture a total sales share

equal to d log M, with an effect δd log M on consumer welfare; the per-capita quantity of each

existing variety changes by d log y, with an effect d log y on consumer welfare.

Note that the initial allocation of labor allocates a fraction l = 1/µ to variable production

and le + lo = 1 − 1/µ to entry and overhead. Consider a reduction in the fraction of labor

allocated to variable production d log l < 0 and a complementary increase in the fraction of

labor allocated to entry and overhead d log le = d log lo = −[1/(µ − 1)]d log l > 0. The change

in consumer welfare is d log Y = [1− (δ− 1)/(µ− 1)]d log l,which is negative (too much entry)

if and only if δ < µ.

Indeed, in this experiment, we have d log y = d log l − d log M < 0, since the amount of

labor per capita available for each variety is reduced by the reallocation of labor away from

variable production and by the labor required to produce the new varieties. We also have

d log M = −1/(µ− 1)d log l > 0, because of the reallocation of labor to entry and overhead. The

19The comparative static underlying this definition is a feasible allocation, but not an equilibrium allocation. It
can only be supported as an equilibrium allocation by introducing a subsidy on entry. The defining question can
then be reformulated as whether this subsidy on entry decreases or increases equilibrium consumer welfare.
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result follows.

4.2 Shocks to Population

Increases in population can be interpreted literally as immigration or increased fertility, or in

a more stylized way as the trade integration of more and more countries which are otherwise

operating under autarky. Changes in consumer welfare and real GDP per capita in response

to increases in population can therefore be interpreted as either gains from scale or as gains

from trade.

Proposition 1. Suppose that firms have the same productivity Aθ = A. In response to changes in
population d log L, changes in consumer welfare are given by

d log Y = (δ − 1)d log L︸          ︷︷          ︸
technical efficiency

+ δ
ξ

1 − ξd log L︸          ︷︷          ︸
allocative efficiency

, (34)

where

ξ =

(
1 − ρ

) (
1 − δ − 1

µ − 1

)
1
σ

=

(
1 − ρ

) (
1 − δ

µ

)
. (35)

This proposition provides the change in welfare in terms of ex-ante sufficient statistics

and decomposes the effect into technical and allocative efficiency following equation (31). We

assume throughout that, in the initial equilibrium, ξ < 1 guaranteeing that 0 < d log Y < ∞.

In response to a positive population shock d log L > 0, there are in general both changes

in technical efficiency and changes in allocative efficiency. Changes in technical efficiency are

given by (δ − 1)d log L > 0. Recall that the technical efficiency effect holds fixed the fraction

of labor allocated to entry, overhead, and variable production. Because we hold the fraction

of labor allocated to entry (and overhead) constant, the increase in population implies a

proportional increase d log L > 0 in entry. The sales share captured by these new varieties is

also d log L. Therefore the increase in the number of varieties increases consumer welfare by

δd log L > 0. On the other hand, the increase in the number of varieties reduces the amount of

labor per capita allocated to the production of each variety, and hence the per-capita quantity

of each variety, by d log L. This implies a reduction −d log L < 0 in consumer welfare. The

overall effect balances out these two offsetting effects.

There are also changes in allocative efficiency. Intuitively, there are two different scenarios

whereby allocative efficiency improves. In the first scenario, the increase in population causes

markups to fall, which happens when pass-through is incomplete ρ < 1. If there was too

much entry to begin with µ > δ, then this reduction in markups improves allocative efficiency

because it discourages entry. The other scenario is where the increase in population raises

markups (ρ > 1) and there is too little entry to begin with µ < δ. The second scenario violates
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Marshall’s second law of demand and is less empirically relevant.20

We refer to the fact that markups decrease with market size as the pro-competitive effect of

scale. In the homogeneous-firm case, these pro-competitive effects are the exclusive source

of changes in allocative efficiency. That is, if markups did not change, there would not be

any changes in allocative efficiency. In the next section, we will see that in the presence

of heterogeneity, there are other drivers of allocative efficiency that are not related to the

pro-competitive effect. In fact, quantitatively, we will find that these pro-competitive effects

(reductions in markups) are quantitatively much less significant than the other sources of

changes in allocative efficiency.

Proposition 1 allows us to easily determine the sign of changes in allocative efficiency, and

hence whether changes in allocative efficiency amplify or mitigate the effects of the shocks.

Corollary 1. Suppose that firms have the same productivity Aθ = A. Increased population increases
allocative efficiency if and only if ξ > 0. As long as pass-through is incomplete (ρ < 1), this is
equivalent to there being too much entry δ < µ. There is always too much entry under weak second
Marshall law of demand and aligned preferences.

Now, consider the effects of the population shock on real GDP per capita.

Proposition 2. Suppose that firms have the same productivity Aθ = A. In response to changes in
population d log L, changes in real GDP per capita are given by

d log Q =
1 − ρ
σ

(d log Y + d log L), (36)

where d log Y is given by Proposition 1.

An increase in population leads to a reduction in markups under incomplete pass-through,

and this pro-competitive effect increases increase real GDP per capita d log Q = −d log p.

4.3 CES Example

It is interesting to study the CES benchmark, obtained by setting Υ(x) = x(σ−1)/σ, where with

some abuse of notation, σ > 1 is some scalar. In this case, the elasticity of substitution is

constant and equal to σ, markups are constant µ = 1/(1 − 1/σ), pass-throughs are equal to

one ρ = 1, and the infra-marginal surplus ratio is constant δ = σ/(σ − 1). Moreover, entry is

efficient since δ = µ.

20To see the formal perturbation, note that changes in allocative efficiency are δ[ξ/(1−ξ)]d log L. The shock reduces
the price index by d log P = −(1/σ)(d log Y + d log L) < 0 (since ξ < 1 implies that d log Y > 0). When pass-through is
incomplete ρ < 1 (e.g. when the weak second Marshall law of demand holds), this triggers a reduction in markups
by d logµ = (1 − ρ)d log P < 0 and reduces the variable profit share and hence entry by [1/(µ − 1)](1 − ρ)d log P < 0.
This in turn changes consumer welfare by [(δ − 1)/(µ − 1) − 1](1 − ρ)d log P. These changes in consumer welfare are
positive if and only if there is locally too much entry to begin with (δ < µ). The result in the proposition is obtained
by replacing d log P for its expression as a function of d log Y and solving for the fixed point.
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Changes in consumer welfare are given by

d log Y = (δ − 1)d log L︸          ︷︷          ︸
technical efficiency

+ 0︸︷︷︸
allocative efficiency

. (37)

Unlike in the general case, shocks to population only lead to changes in technical efficiency

and do not lead to any change in allocative efficiency. The reason, which is twofold, is

straightforward: first, there is no change in markups (ρ = 1) and hence no change in the

fraction of resources allocated to entry; second entry is actually efficient to begin with (δ = µ),

so even if resources were reallocated, it would not matter for welfare.

The response of real GDP per capita is

d log Q = 0, (38)

since markups and productivity shifters do not change.

4.4 Discussion

Increases in market size affect both technical and allocative efficiency. The positive changes in

technical efficiency arise from increasing economies of scale. When the allocation of resources

is kept constant, the total quantity sold by each firm remains constant, the per-capita quantity

declines, and new firms enter. If new varieties create inframarginal surplus δ > 1, then welfare

improves.

There are also changes in allocative efficiency which come into play as the allocation of

resources adjusts to the shock. When the weak second Marshall law of demand holds, existing

firms reduce their markups, the total quantities sold by these firms expands at the expense of

entry. If there was too much entry to begin with, this reallocation of resources is beneficial.

The beneficial nature of these reallocation effects hinges entirely on second-best principles.

It depends on whether there was too much or too little entry from a social perspective to begin

with, and on whether reallocations decrease or increase entry.

When the weak second law holds, an increase in population is pro-competitive in the sense

that it always reduces markups and expands the total (not per capita) quantities produced by

existing firms. However, these pro-competitive effects do not necessarily increase consumer

welfare. They do so only if there was too much entry to begin with, because the reduction in

markups has the effect of reducing profit shares, and hence entry. By contrast, the effect on

real GDP per capita is unambiguous: the reduction in markup always increases real GDP per

capita because it is associated with decreases in prices of existing firms.
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5 Heterogeneous Firms

In this section, we turn to the case of heterogeneous firms. Once again, to understand the role

of reallocation, we must discuss the sources of inefficiency in the initial equilibrium. We then

study shocks to population. We end by analyzing the special case of CES preferences.

5.1 Sources of Inefficiency

As before, understanding the comparative statics relies on second-best principles. Therefore,

it helps to first consider the different margins of adjustment, and what efficiency looks like

along each margin. With homogeneous firms, the only margin that could be distorted was

the allocation of labor to entry (and overhead) vs. production. With heterogeneous firms,

more margins can be distorted: the allocation of labor to entry (and overhead) vs. variable

production, but also the selection cut-off determining which varieties are allocated labor for

variable production at all, and the allocation of labor for variable production across active

varieties.

The allocation matrix continues to give us an intuitive way to think about efficiency along

these different margins. The following expression for changes in consumer welfare, derived

from the definition of consumer welfare, will be useful for this purpose

d log Y = Eλ[δθ]d log M − δθ∗λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ[d log yθ]. (39)

We discuss the three different kinds of inefficiency in the heterogeneous model in turn.

Entry efficiency. We say that there is too much (too little) entry if consumer welfare

increases (decreases) when labor is reallocated from variable production to entry and over-

head, but keeping the selection cut-off and the relative allocation of labor across non-exiting

varieties constant. There is too much (too little) entry if and only if the following condition is

verified (violated)

Eλ[δθ] < Eλ
[
µ−1
θ

]−1
, (40)

which is a comparison of the sales-weighted average of the infra-marginal surplus ratios and

the harmonic average of markups. This is an averaged version of the same condition for the

homogeneous firm model.

The intuition is the following. The initial allocation of labor allocates a fraction l = E[lθ] =

Eλ[1/µθ] to variable production and le + lo = 1 − Eλ[1/µ] to entry and overhead. Consider

a reduction in the fraction of labor allocated to variable production d log lθ = d log l < 0 and

a complementary increase in the fraction of labor allocated to entry and overhead d log le =

d log lo = −[Eλ[1/µθ]/(1 − Eλ[1/µθ])]d log l > 0. The reduction in the per-capita quantity of

21



each variety d log yθ = d log l − d log M < 0 reduces consumer welfare by Eλ[d log yθ] < 0.

We also have an increase in entry d log M = −[Eλ[1/µθ]/(1 − Eλ[1/µθ])]d log l > 0, which

increases consumer welfare by Eλ[δθ]d log M > 0. Finally, we have no change in selection

dθ∗ = 0. Plugging these perturbations into Equation (39), the overall effect on welfare is

d log Y = [1 − (Eλ[δθ] − 1)Eλ[1/µθ]/(1 − Eλ[1/µθ])]d log l, which is negative (too much entry)

if and only if 1/Eλ[1/µθ] < Eλ[δθ]. In the homogeneous-firm case, this condition collapses to

the simple δ < µ.

Selection efficiency. We say that there is too little (too much) selection if consumer welfare

increases (decreases) when the selection cut-off is increased and the labor previously allocated

to variable production and overhead of the newly exiting varieties is reallocated proportion-

ately to entry, overhead, and to variable production. There is too little (too much) selection if

and only if the following condition is verified (violated)

δθ∗ < Eλ[δθ]. (41)

The intuition is the following. Suppose that we increase the selection cut-off by dθ∗ > 0, and

reallocate the labor previously allocated to the variable production and overhead of varieties

with type in [θ∗, θ∗ + dθ∗) proportionately to entry, overhead, and variable production. The

exiting varieties reduce consumer welfare by −δθ∗λθ∗[g(θ∗)/(1−G(θ∗))]dθ∗. The new varieties

d log M = λθ∗[g(θ∗)/(1 − G(θ∗))]dθ∗ increases consumer welfare by Eλ[δθ]d log M. There is no

change in the production of existing varieties d log yθ = 0. Plugging these perturbations into

(39), the overall effect on welfare is (Eλ[δθ] − δθ∗)λθ∗[g(θ∗)/(1 − G(θ∗))]dθ∗, which is positive

(too little selection) if and only if δθ∗ < Eλ[δθ].

Relative production efficiency. Finally, we say that the supply of a variety is too large

(too small) compared to another if consumer welfare increases (decreases) when labor is

reallocated from the former to the latter. The supply of variety θ′ is too large (too small)

compared to that of variety θ if, and only if, the following condition is verified (violated)

µθ′ < µθ. (42)

The intuition is the following. Consider a reduction d log lθ′ < 0 in the fraction of

labor allocated to the supply of varieties in (θ′, θ′ + dθ′) and a complementary increase

d log lθ = −(g(θ′)/g(θ))(lθ′/lθ)d log lθ′ > 0 in the fraction of labor allocated to the supply

of varieties in (θ, θ + dθ′), which, using the fact that lθ′/lθ = (λθ′/µθ′)/(λθ/µθ), can be

rewritten as d log lθ = −(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ > 0. This leads to a decrease

d log yθ′ = d log lθ′ < 0 in the quantity of the former varieties and an increase d log yθ =

−(g(θ′)/g(θ))(λθ′/µθ′)/(λθ/µθ)d log lθ′ > 0 in the quantity of the latter varieties. Plugging

these perturbations into (39), this effect on welfare is g(θ′)λθ′d log yθ′dθ′+ g(θ)λθd log yθdθ′ =
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−(µθ/µθ′ − 1)λθ′g(θ′)dθ′d log lθ′ , which is positive if and only µθ > µθ′ .

5.2 Shocks to Population

We characterize how welfare responds to changes in market size and decompose the effect

into different reallocations. Recall that γθ∗ = ga(log Aθ∗)/[1 − Ga(log Aθ∗)] is the hazard rate of

the log-productivity distribution at the selection cut-off.

Proposition 3. In response to changes in population d log L, changes in consumer welfare are given
by

d log Y =

(
Eλ[δθ] − 1

)
d log L︸                  ︷︷                  ︸

technical efficiency

+
ξε + ξµ + ξθ

∗

1 − ξε − ξµ − ξθ∗
(
Eλ[δθ]

)
d log L︸                                     ︷︷                                     ︸

allocative efficiency

, (43)

where

ξε =

(
Eλ[δθ] − 1

) (
Eλ[σθ] − Eλ(1−1/µ)[σθ]

) (
Eλ

[
1
σθ

])
,

ξθ
∗

=

(
Eλ[δθ] − δθ∗

) (
λθ∗γθ∗

σθ∗ − Eλ(1−1/µ)[σθ]

σθ∗ − 1

) (
Eλ

[
1
σθ

])
,

ξµ =

(
Eλ

[
(1 − ρθ)

(
1 − Eλ[δθ] − 1

µθ − 1

)]) (
Eλ

[
1
σθ

])
.

This proposition provides the change in welfare in terms of measurable sufficient statistics

in the initial equilibrium and decomposes the effect. We assume throughout that ξε+ξµ+ξθ
∗
<

1, which guarantees that welfare is differentiable 0 < d log Y < ∞ (this is verified in our

empirical application). We examine this expression term by term and explain its underlying

intuition.

The intuition for the changes in technical efficiency is the same as in the case of homoge-

neous firms covered in Section 4. The only difference is that the infra-marginal surplus ratios

δθ are heterogeneous and matter through their average Eλ[δθ]. We now dissect the allocative

efficiency term.

Each of ξε, ξθ
∗
, and ξµ relates to adjustments along a specific margin. Starting at the initial

equilibrium an increase in population d log L > 0 leads each firm to adjust its behavior on

three margins: entry, exit, and markup. We decompose the general equilibrium response

by analyzing three successive allocations which allow firms to adjust along more and more

margins. All three allocations feature the same technical efficiency effect, but different changes

in allocative efficiency, driven by different changes in the allocation of resources.21 First, we

21This decomposition differs from the one in Dhingra and Morrow (2019), who decompose changes in utils for
given changes in real income, and focus on comparing representative firm models with heterogeneous firm ones.
Our decomposition is of the change in equivalent variation for given changes in population, and our decomposition
is of the different margins of firm behavior.
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consider what would happen if free entry holds but firms cannot not adjust their markups or

alter their decision to operate upon entry (holding µθ and θ∗ constant). Second, we consider

what would happen if free entry holds and firms can adjust their decision to operate but could

not alter their markups (holding µθ constant). Last, we consider what happens if free entry

holds, and firms can adjust both their exit and markup choices.

Entry only margin. In the first step, consider the equilibrium where firms can only adjust

their entry behavior (free entry) but can neither adjust exit behavior nor their markups. The

resulting change in consumer welfare is given by Proposition 3 but with ξµ = ξθ
∗

= 0.

Changes in allocative efficiency are strictly positive (ξε > 0) as long as there is non-trivial

heterogeneity. To see this, note that

ξε

(Eλ[δθ] − 1)Eλ
[

1
σθ

] = Eλ[σθ] − Eλ(1−1/µ)[σθ] =
Covλ[σθ, 1

µθ
]

Eλ[1 − 1
µθ

]
,

where Covλ[σθ, 1/µθ] denotes the covariance of price-elasticities σθ and inverse markups 1/µθ
under the sales share probability measure λθg(θ)/[1 − G(θ∗)]. Since the price elasticity of

demand σθ and the reciprocal of the markup 1/µθ covary positively, ξε is positive as long as

there is any heterogeneity.

Intuitively, the increase in population causes the price index to fall. The reduction in the

price index triggers bigger reductions in per-capita quantities and sales for firms with higher

elasticities and lower markups than for firms with lower elasticities and higher markups. Since

the former were too large and the latter too small to begin with, this reallocation improves

welfare. Basically, because it improves efficiency, this reallocation frees up labor, which ends

up being used in entry, and this always improves welfare, irrespective of whether there was

too much or too little entry to begin with. This is the composition effect that is graphically

illustrated in Figure 1 in the introduction. This effect, which is unambiguously positive, will

turn out to be the dominant welfare-improving force in the model.

If the weak second Marshall law of demand holds, then it is the bigger firms that have

have higher markups, and the beneficial reallocations are away from small firms and towards

big firms. However, the composition effect is always positive, irrespective of whether the

weak second Marhsall law of demand holds or not.22

The detailed intuition for the changes in allocative efficiency captured by ξε is as follows.

The shock increases consumer welfare d log Y > 0. It leads to a reduction in the price index

22This composition effect is related to the “Matthew Effect” discussed by Mrázová and Neary (2019), who show
that when Marshall’s weak second law holds, an increase in scale increases the profits of large firms. The difference
here is that we relate this composition effect to welfare, and that the welfare relevant reallocation is in terms of
employment as opposed to profits. Furthermore, inspection of ξε shows that this effect is always positive regardless
of whether or not the weak second Marshall law of demand holds. In particular, if the demand curve is log-convex,
even though it still increases welfare, the composition effect becomes an “anti”-Matthew effect.
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by d log P = −Eλ[1/σθ](d log Y + d log L) < 0. As a result, sales shares change by (σθ −
Eλ[σθ])d log P. This reallocates resources towards varieties with lower elasticities σθ, which

also have higher markups µθ, and increases the aggregate variable profit share and entry

by −(Eλ[σθ] − Eλ(1−1/µ)[σθ])d log P > 0. This then increases consumer welfare by −(Eλ[δθ] −
1)(Eλ[σθ] − Eλ(1−1/µ)[σθ])d log P > 0. The result in the proposition is obtained by replacing

d log P by its expression as a function of d log Y and solving for the fixed point.

Entry and selection only margins. In the second step, consider the equilibrium where

firms can adjust their entry behavior and also their exit behavior (that is, firms can choose

whether or not to exit after drawing their type), but still cannot adjust their markups. The

resulting changes in consumer welfare are given by Proposition 3 but with ξµ = 0.

There is a new source of changes in allocative efficiency captured by ξθ
∗
, 0 which

accounts for changes in the selection cut-off, and whether or not there was too much selection

in the initial equilibrium. Intuitively, when the weak second Marshall law of demand holds,

markups are increasing with productivity and so the demand elasticity is higher at the selection

cut-off than above it. Hence, the reduction in the price index disproportionately hurts firms at

the selection cut-off and so the selection cut-off increases dθ∗ > 0. This increase in the selection

cut-off improves welfare if, and only if, there is too little selection to begin with (E[δθ] > δθ∗).

The formal perturbation can be derived by noting that the sales shares of the exiting

varieties with θ ∈ [θ∗, θ∗ + dθ∗) is λθ∗(g(θ∗)/[1 − G(θ∗)])dθ∗. This is equal to λθ∗γθ∗d log Aθ∗ ,

where d log Aθ∗ is the change in productivity associated with a change in type fromθ∗ toθ∗+dθ∗.
This reallocates sales from exiting firms to the average surviving firm and changes consumer

welfare by (E[δθ] − δθ∗)λθ∗(g(θ∗)/[1 − G(θ∗)])dθ∗. These changes in allocative efficiency are

positive (ξθ
∗
> 0) if there is too little selection to begin with.

It is important to note that the fact that θ∗ increases is not, on its own, evidence of an

improvement in allocative efficiency. In other words, increases in the cut-off θ∗, due to

intensifying competition, are only socially desirable if the marginal firm provides households

with less infra-marginal surplus than the average surviving firm. In fact, in our empirical

Section 6 we find that increases in selection cut-off reduce welfare because preferences are not

aligned.

Entry, exit, and pricing/markup margins. Last, consider the equilibrium where firms

can not only adjust their entry and exit behavior, but also their pricing/markup behavior.

The resulting changes in consumer welfare are the full-blown changes in equilibrium welfare

given by Proposition 3.

There is a new source of changes in allocative efficiency captured by ξµ , 0. Adjustments

along this margin (markups) are the pro-competitive effects of scale.

The intuition for the additional changes in allocative efficiency captured by ξµ is very

similar to that presented in the case of homogeneous firms in Section 4. The only difference is
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that the terms in ξµ are appropriately averaged versions of the now heterogeneous underlying

sufficient statistics. In the homogeneous-firm case, the ξε and ξθ
∗

were equal to zero because

there was no heterogeneity, so we only had to contend with the markup margin. In that

case, the reduction in markups increased welfare if, and only if, there was too much entry to

begin with. In the heterogeneous-firm case, these changes in allocative efficiency are positive

(ξµ > 0) if and only if Eλ(1−ρ)
[
1 − (Eλ[δθ] − 1)/(µθ − 1)

]
> 0.

When reallocations along all three margins are beneficial, so that ξε ≥ 0, ξθ
∗ ≥ 0, and

ξµ ≥ 0, we can unambiguously sign the changes in allocative efficiency.

Corollary 2. Sufficient conditions for positive changes in allocative efficiency in response to increases
in population are: (1) that the strong second Marshall law of demand hold; (2) that the condition
Eλ

[
(1 − ρθ)

[
1 − (Eλ[δθ] − 1)/(µθ − 1)

]]
> 0, which can be stronger or weaker than the condition for

excessive entry, hold; and (3) that there be too little selection Eλ[δθ] > δθ∗ , which is automatically
verified if (1) holds and if, in addition, preferences are aligned. More precisely, we always have ξε ≥ 0,
with a strict inequality as long as there is non trivial heterogeneity; (1) and (3) imply ξθ

∗
> 0; and (2)

implies that ξµ > 0.

Appealing as they may be, these conditions will not always be verified in our empirical

application, and in fact, we will sometimes find ξθ
∗ ≤ 0 or ξµ ≤ 0. Nonetheless, we will find

that ξε > 0 will always be large enough to dominate the other terms, resulting in large positive

changes in allocative efficiency from increases in scale.

Finally, we can also characterize the change in real GDP per capita as an appropriately-

averaged version of that presented in the case of homogeneous firms in Section 4.

Proposition 4. In response to changes in population d log L, changes in real GDP per capita are

d log Q =
(
Eλ

[
(1 − ρθ)

]) (
Eλ

[ 1
σθ

]) (
d log Y + d log L

)
, (44)

where d log Y is given by Proposition 3.

5.3 CES Example

Once again, we consider the CES benchmark, Υ(x) = x(σ−1)/σ, where σ > 1 is some scalar. With

heterogeneous firms, this example is a closed-economy version of Melitz (2003). The markups

are constant µ = 1/(1 − 1/σ), pass-throughs are equal to one ρ = 1, and the infra-marginal

surplus ratio is constant δ = σ/(σ − 1). Moreover, entry is efficient since δ̄ = µ̄. Furthermore,

since Eλ(δθ) = δθ∗ , the exit/selection margin is also efficient. Finally, since markups are

constant, there is no adjustment of markups. This means that changes in consumer welfare
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are simply given by technical efficiency effects

d log Y = (δ − 1) d log L︸          ︷︷          ︸
technical efficiency

+ 0︸︷︷︸
allocative efficiency

. (45)

The fact that changes in allocative efficiency are zero is not surprising: the CES model is

efficient, so this result is a consequence of the envelope theorem.

Next, consider changes in real GDP per capita, which are

d log Q = 0, (46)

since markups do not change in response to changes in population, despite the fact that

welfare increases.

5.4 Discussion

We can now take stock and dispel some common misconceptions. Although we conduct this

discussion for shocks to population, which as discussed above, can also be interpreted as

shocks to trade integration, the spirit of our remarks applies more broadly to other shocks.

There are positive changes in technical efficiency arising from economies of scale because

fixed entry and overhead costs can be spread across a larger population. When the allocation

of resources is kept constant, the total quantity sold by each firm remains constant, the per-

capita quantity declines, and new firms enter.

There are also changes in allocative efficiency which come into play as the allocation of

resources adjusts to the shock. First, holding exit and pricing/markup behavior constant,

there is a reallocation away from firms with higher elasticities and lower markups towards

firms with lower elasticities and higher markups. This is the entry-only margin. Since the

former were too large and the latter too small to begin with, this reallocation is beneficial. It

frees up labor, which ends up being used in entry, and this is always beneficial, irrespective

of whether there was too much or too little entry to begin with.

Second, holding markups constant the cut-off moves and this reallocation is beneficial

depending on whether there the cut-off moves in a socially beneficial direction. Under

Marshall’s second law, the cut-off increases and causes the smallest firms to exit. If there was

too little selection to begin with, this reallocation of resources is beneficial.

Third, existing firms change their markups their markups and the total quantities sold

by these firms changes at the expense of entry. This last effect is the only one that operates

in models with homogeneous firms. Under Marshall’s strong second law, an increase in

market size causes markups to fall. The reduction in the average markup discourages entry,

and is beneficial if there was too much entry in the initial equilibrium. However, in models
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with heterogeneity, this effect is complicated by ambiguous reallocation effects across existing

firms. These reallocation effects are ambiguous because large firms reduce their markups

more than small firms but face less elastic demand curves. Whether these reallocations are

beneficial or not (i.e. whether ξµ is positive or negative) is therefore an empirical question.

The beneficial nature of these three reallocation effects hinges entirely on second-best

principles: in which direction the underlying margin is distorted, and in which direction

the reallocation effect is moving this margin. It has nothing to do with the productivities of

expanding and shrinking or disappearing firms per se.

The relative expansion of high-markup firms at the expense of low-markup firms under-

lying the reallocation effects ξε increases consumer welfare only because high-markup firms

were too small to begin with from a social perspective, not because they have “higher pro-

ductivities”. Similarly, the exit of the smallest firms underlying the second reallocation effect

ξθ
∗

increases consumer welfare only if selection was too weak to begin with, which amounts

to assuming that the marginal firm has lower infra-marginal consumer surplus ratio than

average. Finally, the relative expansion of existing firms at the expense of entry underlying

part of the third reallocation effect increases consumer welfare if and only if there was to much

entry to begin with, which is the case when the average infra-marginal consumer surplus ratio

is less than the average markup.23

Similarly, these reallocations affect consumer welfare and real GDP or aggregate TFP

through very different channels. In other words, the nature of the consumer welfare gains is

distinct from that of aggregate TFP gains, and intuitions supporting the latter should not be

used to shed light on the former. Indeed, changes in aggregate TFP only arise from changes

in markups. For example, holding pricing/markups constant, aggregate TFP is completely

unaffected. In particular, the oft-emphasized increase in the minimal productivity cut-off has

no effect on aggregate TFP.

This last observation may be of independent interest. In the literature, aggregate TFP

is sometimes conflated with some ad-hoc productivity index obtained as an average of firm

productivities (for example, Melitz and Ottaviano, 2008). However, the growth in this index is

not aggregate TFP growth defined as real GDP growth net of the effects of factor growth. While

the increase in the minimal productivity cut-off directly increases these ad-hoc productivity

indices, it has no independent impact on aggregate TFP. Of course, in equilibrium, aggregate

TFP does increase, but only because of the reduction in markups.

23Although it is not directly relevant for welfare, it is possible to characterize how the absolute size of firms
changes in response to an increase in population. Assuming that the strong second Marshall law of demand holds,
big firms always expand and small firms shrink in absolute terms as long as their pass-throughs are close enough to
one since d log(lθL) = (1−ρθσθ/Eλ(1−1/µ)[σθ])(d log Y + d log L). Similarly, the size of the smallest firms (at the cut-off)
increases since d log(lθ∗L) = [1/(σθ∗ − 1)][σθ∗/Eλ(1−1/µ)[σθ] − 1 + σθ∗ (1 − ρθ∗ )(1 − 1/Eλ(1−1/µ)[σθ])](d log Y + d log L).
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6 Empirical Application

In this section, we take the theory to the data. We first describe our non-parametric estimation

procedure. We then implement it using Belgian data and decompose returns to aggregate

scale into changes in technical and allocative efficiency following Proposition 3.

6.1 Non-Parametric Model Estimation Approach

To derive a non-parametric estimate of the Kimball aggregator Υ, we use a restriction imposed

by the demand system: the time-series pass-through capturing how a firm changes its markup

in response to a productivity shock is equal to the cross-sectional pass-through capturing how

markups increase as we move up the productivity distribution across firms.

We will take two objects as data: (1) the density of sales shares λθ, and (2) the distribution

of pass-throughs ρθ. Sales are readily available in our dataset, and we use estimates of pass-

throughs by firm size from Amiti et al. (2019). The pass-through function is a third-order

differential equation in the Kimball aggregator, and can be used to solve for Υ up to boundary

conditions. For boundary conditions, we need to take a stand on the average levels of first

and second derivatives, i.e. on the average markup µ̄ and on the average infra-marginal

consumption surplus ratio δ̄ (these will be constants of integration). We will present our

estimates for different values of these variables.

Observation of salesλθ and pass-throughs ρθ will allow us to back out productivities Aθ up

to a normalizing constant and markupsµθ up to the average markup µ̄. Usingσθ = 1/(1−1/µθ)

to recover elasticities will then allow us to back out infra-marginal surplus ratios δθ and the

whole Kimball aggregator up to the average infra-marginal surplus ratio δ̄.

Basically, cross-sectional observations on pass-throughs allows us to trace the individual

demand curve and hence to back out the Kimball aggregator Υ up to some constants δ̄ and µ̄.

Through this procedure, we will therefore be able to recover the whole nonlinear structure of

the model.24

In our empirical application, we use a uniform type distribution with g(θ) = 1 and G(θ) =

1 − θ by ranking firms by increasing size and associating their type to the fraction of firms

with smaller sizes. The type distribution itself is irrelevant: the only thing that matters is the

relation of the measure over types to the measure over sales.

In principle, one could alternatively use markups µθ (second derivatives of the Kimball

24We refer the reader to Appendix G for the discussion of a model with taste shocks and heterogeneous overhead
costs in which cross-section and times-series are entirely disconnected. Although Proposition 3 can be adjusted to
account for taste-shifters, non-parametric estimation of this richer model would require a great deal of additional
data. In particular, we would need additional data on markups µθ, the distribution of infra-marginal surplus ratios
δθ, and overhead costs fo,θ. All of this information would be very difficult to obtain in practice, and even with all this
extra information, only local estimation could be achieved, which would be enough for local comparative statics
but not global ones.
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aggregator) or infra-marginal surplus ratios δθ (first derivatives of the Kimball aggregator) in

conjunction with sales λθ to recover Υ. However, these objects are much harder to estimate,

requiring either strong structural assumptions in the case of µθ, or in the case of δθ experi-

mental data tracing out individual demand curves. In comparison, estimating pass-throughs

is less daunting. The downside is that it will require outside information or informed guesses

to pin down boundary conditions µ̄ and δ̄.

Productivities, quantities, elasticities, and infra-marginal surplus ratios. Produc-

tivities Aθ and markups µθ must simultaneously solve the two differential equations

d logλθ
dθ

=
ρθ

µθ − 1
d log Aθ

dθ
, (47)

d logµθ
dθ

= (1 − ρθ)
d log Aθ

dθ
. (48)

The intuition for the first differential equation for sales shares is the following: compared to a

firm of type θ, a firm with type θ+dθ has higher productivity log Aθ+dθ−log Aθ = d log Aθ/dθ,

lower price log pθ+dθ − log pθ = ρθd log Aθ/dθ, and higher sales logλθ+dθ − logλθ = (σθ −
1)ρθd log Aθ/dθwith σθ − 1 = 1/(µθ − 1). The intuition for the second differential equation for

markups is the following: compared to a firm of type θ, a firm with type θ + dθ has higher

markup logµθ+dθ − logµθ = (1 − ρθ)d log Aθ/dθ.

Combining the two differential equations yields

d logµθ
dθ

= (µθ − 1)
1 − ρθ
ρθ

d logλθ
dθ

. (49)

Given sales shares λθ and pass-throughs ρθ, this differential equation allows us to recover

markups µθ up to a constant µθ∗ . The constant µθ∗ ≥ 1 can be chosen to match a given value

of the (harmonic) sales-weighted average markup µ̄ ≥ 1.

Either of the two differential equations for sales shares or markups then allows us to

recover productivities up to a constant Aθ∗ . This constant Aθ∗ can be normalized to 1. For

example, using the differential equation for sales shares, we get

d log Aθ

dθ
=
µθ − 1
ρθ

d logλθ
dθ

,

with initial condition Aθ∗ = 1.

Next we can then recover quantities using

yθ =
λθAθ

(1 − G(θ∗))Mµθ
. (50)
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Quantities are increasing in θ since d log yθ/d logθ = µθd logλθ/d logθ. We denote by θ(y)

the reverse mapping giving a firm type as a function of the quantity that it produces.

Finally, we can recover infra-marginal consumption surplus ratios using the differential

equation
d log δθ

dθ
=
µθ − δθ
δθ

d logλθ
dθ

, (51)

with initial condition δθ∗ chosen to match a given value of the average infra-marginal surplus

ratio Eλ[δθ] = δ̄.

Kimball aggregator. We can then recover the Kimball aggregator by combining the defi-

nition of δθ with the residual demand curve

Υ(
y
Y

) =
λθ(y)

(1 − G(θ∗))M
δθ(y)

δ̄
.

Fixed costs and Selection Cut-off. The information so far does not reveal the cut-off

value θ∗, so calibrating this number requires outside information. To calibrate the marginal

type θ∗, we step slightly outside the model and imagine that new firms operate for one year

before they choose to shut down. Hence, in their first year, the unconditional probability of

exit is higher than the exogenous death rate. We then fit a quasi-hyperbolic process to firm exit

probability by age as reported by Pugsley et al. (2018). The difference between the probability

of exit in the first period versus later periods identifies θ∗. Conditional on θ∗, we can back out

the fixed costs using the free-entry condition

fe∆
L

+ (1 − G(θ∗))
fo
L

=
1
M

E
[
λθ

(
1 − 1

µθ

)]
, (52)

and the selection condition

(1 − G(θ∗))
fo
L

=
1
M
λθ∗

(
1 − 1

µθ∗

)
, (53)

where total population L, mass of firms M, and ∆ can be normalized to 1.

6.2 Empirical Implementation

In this section, we implement the non-parametric estimation procedure described above using

estimates of the firm-level pass-throughs and the distribution of firms sales. We then use the

estimated model in conjunction with our theoretical formulas to investigate quantitatively

the effects of population shocks and the origins of increasing aggregate returns to scale. We

quantify both local and global comparative static effects of increasing market size.
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(b) Cumulative sales share distributions.

Figure 3: The blue dots are data showing the average sales-weighted pass-through and cumulated
sales share for firms smaller than the percentile given by the x-axis. The solid red line is a fitted
spline.

Data sources. We only give a brief account of our data sources and procedures. The full

details can be found in Appendix A. We rely on Amiti et al. (2019) who report estimates of pass-

throughs by firm size for manufacturing firms in Belgium. They use annual administrative

firm-product level data (Prodcom) from 1995-2007, which contains information on prices and

sales, collected by Statistics Belgium. They merge this with Customs data, and using exchange

rate shocks as instruments for changes in marginal cost, they show that they can identify the

partial equilibrium pass-through by firm size (under assumptions that are consistent with our

model). Their estimates are shown in Figure 3a. Prodcom does not sample very small firms

(firms must have sales greater than 1 million euros to be included). Therefore, we merge their

estimates of the pass-through function ρ (as a function of size) with the sales distribution λ for

the universe of Belgian manufacturing firms (from VAT declarations). The cumulative sales

share distribution is shown in Figure 3b.

For firms that are smaller than the smallest firms in Prodcom, we interpolate their pass-

through in such a way that the smallest firm has pass-through equal to one. This is consistent

with the estimates of Amiti et al. (2019) who find that the average pass-through for the smallest

75% of firms in Prodcom is already 0.97.25

Boundary Conditions. Our results require taking a stand on two boundary conditions: the

average infra-marginal surplus ratio δ̄ = Eλ[δθ] and on the average markup µ̄ = 1/[Eλ[1/µθ]].

For the purposes of discussion, in the paper, we focus on two benchmark calibrations of δ̄: (1)

efficient entry δ̄ = µ̄, and (2) efficient selection δ̄ = δθ∗ . We consider two different values for the

25In mapping the model to the data, we assume that products sold by the same firm are perfect substitutes, so
each firm is a different variety. We could alternatively assume that each product is a separate variety. Appendix B
provides results using this assumption. Although this affects numbers change, the overall message does not change.
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Figure 4: Pass-throughs and sales share density as a function of firm type θ.

average markup µ̄ = 1.045 and µ̄ = 1.090, which are chosen so that d log Y/d log L ≈ 0.13 under

the first assumption, and d log Y/d log L ≈ 0.30 under the second assumption. An aggregate

scale elasticity d log Y/d log L ∈ [0.13, 0.3] is broadly in line with the literature (Bartelme et

al., 2019; Jones, 2019).26 In Appendix C, we vary both boundary conditions along a 2-

dimensional grid and show that the two benchmark cases we focus on are representative of

broader patterns.

Estimation Results. Figures 4a and 4b display pass-throughs ρθ and log sales logλθ as

a function of firm type θ. These are derived by differentiating the splines in Figures 3 (see

Appendix A for more details). Sales are initially increasing exponentially (linear in logs), but

become super-exponential towards the end reflecting a high degree of concentration in the

tail. Pass-throughs decrease from 1 for the smallest firms to about 0.3 for the largest firms.

Marhsall’s strong second law of demand therefore holds.

Figure 5a shows that markups µθ are increasing and convex in log productivity log Aθ.

For brevity, we only show graphs of the estimates for µ̄ = 1.090 but the patterns are similar for

the other case (though obviously, markups are lower when we set µ̄ = 1.045). The net markup

ranges from close to zero for the smallest firms to almost 80% for the very largest firms. The

heterogeneity in markups is a consequence of the vast dispersion in the firm size distribution

and estimated pass-throughs. Figure 5b shows the log productivity/quality distribution. As

with the sales density, the productivity density is also initially exponential, and becomes super

exponential in the tail, however, the pattern is more pronounced. The main reason is that

elasticities are decreasing in θ.

Figures 5d and 5c show the infra-marginal surplus ratio δ for the efficient-selection case

26In a CES model, d log Y/d log L = 0.13 correspond to setting an elasticity of substitution around 8 whilst
d log Y/d log L = 0.3 corresponds to an elasticity of substitution around 4.
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Figure 5: Markups and infra-marginal surplus ratios with µ̄ = 1.090.

(δθ∗ = δ̄) and the efficient-entry case (µ̄ = δ̄). In both cases, δθ is U-shaped which means that

preferences are not aligned.

Finally, Figure 6 plots the inverse residual demand curve in linear and log-log terms.

Figure 6a shows that our estimate has a distinctly non-iso-elastic shape, indicating substantial

departures from CES. The Lerner formula ties the markup to the price elasticity of demand

σθ, which means that σθ is greater than 100 for the very smallest firms, and around 2.5 for the

very largest firms. The log-log plot also shows that the residual demand curve is log-concave,

which confirms that Marshall’s weak second of law of demand holds, and that markups are

increasing in size.

Implications. Markups are increasing in firm size (since Marshall’s strong second law

holds, the weak second law holds a fortiori). However, since the infra-marginal surplus ratios

are U-shaped, preferences are not globally aligned.
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Figure 6: Residual demand curve (price against quantity) for the efficient-selection case with
µ̄ = 1.09. The results for the efficient-entry case are similar.

In the efficient-entry case, entry is locally efficient µ̄ = δ̄ but we have δθ∗ > δ̄ implying that

selection is too tough to begin with. Welfare could be improved by allowing more small firms

to operate, and an increase in the selection cut-off worsens welfare. Nevertheless, this does

not imply that we would want small firms to become larger — since small firms have lower

markups, efficiency would be improved by having them produce less than they already do.

In other words, the smallest firms should continue to exist but produce less than they do.

The fact that an increase in the cut-off θ∗ reduces welfare may be counterintuitive. In fact,

it is sometimes taken for granted that an increase in the selection cut-off ipso facto increases

efficiency. However, as our results show, this argument is flawed.

In the efficient-selection case, selection is locally efficient δθ∗ = δ̄ but we have δ̄ < µ̄,

meaning that there is excessive entry. In both cases, markups µθ are increasing in θ indicating

that small firms are too large and large firms are too small along the intensive margin.

6.3 Shocks to Population

In this section, we report the elasticities of consumer welfare and real GDP per capita to

changes in population.

Baseline. Table 1 implements Proposition 3. It reports the elasticity of consumer welfare to

population and its decomposition into changes in technical efficiency and changes in allocative

efficiency

d log Y = d log Ytech + d log Yalloc.

The table also breaks down the allocative efficiency effect by considering the different margins

of adjustment. Welfare under the entry-only allocation d log Yε (holding fixedθ∗ and markups

µθ); welfare allowing entry and selection to adjust d log Yε,θ
∗

(holding fixed markups µθ);
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and welfare when all three margins can adjust d log Yε,θ
∗,µ = d log Y. Table 1 presents the

contributions of endogenous entry d log Yε−d log Ytech, exit d log Yε,θ
∗−d log Yε, and markups

d log Yε,θ
∗,µ−d log Yε,θ

∗
to changes in allocative efficiency. In other words, the sum of the three

adjustment rows gives the overall change in allocative efficiency in equilibrium.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.130 0.145 0.293 0.323
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.114 0.100 0.260 0.233

Adj. of Entry: d log Yε − d log Ytech 0.117 0.408 0.272 1.396
Adj. of Exit: d log Yε,θ∗ − d log Yε 0.000 -0.251 0.000 -1.006
Adj. of Markups: d log Yε,θ∗,µ − d log Yε,θ∗ -0.004 -0.057 -0.012 -0.157

Real GDP per capita 0.024 0.024 0.051 0.052

Table 1: The elasticity of welfare and real GDP per capita to population following Propositions
3 and 4 for heterogeneous firms case.

When discussing the results, for concreteness, we focus on the case with µ̄ = 1.045 but

similar comments apply to the case where µ̄ = 1.090. We start by discussing the case with

entry-efficiency first. By construction, the elasticity of consumer welfare to population is 0.13.

Only around a tenth of the overall effect is due to the technical efficiency effect δ̄ − 1 = 0.017.

Changes in allocative efficiency 0.114 account for around nine tenths of the overall effect.

An Increase in population therefore brings about considerable improvements in allocative

efficiency, and these improvements are about nine times larger than the technical efficiency

effects arising directly from technological increasing returns.

The changes in allocative efficiency from endogenous entry are large and positive at 0.117.

Increases in population lead to a reduction in the aggregate price index. This causes a larger

reduction in quantity per capita for small firms with high elasticities than for large firms with

low elasticities. This reallocation towards large firms, which were too small to begin with, and

away from small firms, which were too small to begin with, improves allocative efficiency. In

other words, the composition effect highlighted in Figure 1 of the introduction is large.

The changes in allocative efficiency from endogenous exit is zero by construction despite

the fact that the cut-off increases in response to the increase in population.

The changes in allocative efficiency from changes in markups are slightly negative −0.004.

There are several effects to consider. First, increases in in population lead to a reduction

in the price index. This triggers a pro-competitive effect by causing an overall reduction in

markups, and a reduction in entry, which is beneficial since there was too much entry to
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begin with (because µ̄ > δ̄). However, the changes in markups are not uniform, and larger

firms cut their markups by more than smaller firms since they have lower pass-through.

However, large firms also face less elastic demand curves than small firms, so that the overall

reallocation across large and small firms is, in principle, ambiguous and depends on whether

the pass-through effect dominates the elasticity effect. Here, the detrimental reallocation effect

dominates the beneficial pro-competitive effect, and the overall effect of changes in markups

is negative.

The elasticity of real GDP per capita is small at 0.024. This is much smaller than the elasticity

of consumer welfare. This is a consequence of the well-known result that the welfare benefits

of new goods are not reflected in changes in real GDP.27 Indeed, the positive changes in real

GDP can be entirely attributed to the reduction in markups of existing firms. In particular,

it also worth noting as before, that the movement in the minimal productivity cut-off on its

own plays no role in determining real GDP or aggregate TFP, even though the model is not

efficient. Hence, an increase in the cut-off does not translate into an increase in aggregate TFP.

Next, consider the efficient-entry case. The elasticity of welfare with respect to population

shocks is now slightly higher at 0.145. The technical efficiency effect is now 0.045, reflecting

the fact that δ̄ is calibrated to equal µ̄ = 1.045. The allocative efficiency effect is still much

more important than the technical efficiency effect at 0.100.

The composition effect from endogenous entry is now much larger at 0.408. The intuition

is the same as before: increases in population lead to a reduction in the aggregate price

index; this shifts resources away from small firms facing elastic demand and charging low

markups towards large firms facing less elastic demand and charging higher markups; this

also increases the profit share and triggers entry. The main reason the effects are so much

larger than they were in the efficient-selection case is because Eλ(δθ)−1 is now 0.045 instead of

0.017. This implies that entry is more valuable than it was before. Furthermore, since the new

entry moves the price index, and the changes in the price index cause large firms to expand

relative to small firms, there is a feedback loop from new entry, to changes in the price index,

to changes in aggregate profits, back to entry, amplifying the effect.

The selection effect from the adjustment of the exit cut-off is now non-zero and negative at

−0.27. The reason for this can be seen from inspecting Figure 5d, which shows that the infra-

marginal surplus at the cut-off is much higher than average, hence, as the cut-off increases in

response to toughening competition, socially valuable small firms are forced to exit.

Finally, the pro-competitive effect from the reduction in markups is still negative and larger

27The large gap between the welfare and real GDP effect should be interpreted with caution, because it is sensitive
to a dimension of the problem, namely dynamics, which we have abstracted from. The reason is that real GDP, while
it misses the infra-marginal surplus created immediately upon entry of a new variety, captures all the post-entry
productivity gains for this variety. Everything else equal, if new varieties enter small and grow larger over time by
improving their productivity, as would be realistic if varieties were identified with firms, there would be less of a
difference between welfare and real GDP. By contrast, If new varieties enter large, as would be realistic if varieties
where products, then there would be bigger difference between welfare and real GDP.
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in magnitude at −0.057. The reason the markup effect is now more negative than it was before

is because in the efficient-selection case there was too much entry, so the overall reductions

in markups had a positive effect (over and above the detrimental reallocation across existing

firms). Since we are now imposing entry efficiency, this latter effect no longer operates, and

the overall contribution of changing markups is more negative than before.

The response of real GDP per capita is basically unchanged at 0.024, since in both specifi-

cations, the average reduction in markups for existing firms is roughly the same.

How important can selection be? An important theme in the literature has been to

emphasize the role of the selection margin (increases in the productivity cut-off) as a driver

of productivity and welfare gains. However, in our baseline results, the selection margin is

either neutral (when δθ∗ = δ̄) or is deleterious (when δ̄ = µ̄). One may wonder how robust

this finding is and how it depends on our choice of boundary conditions.

To answer this question, we consider a third possibility for the initial conditions. We try

setting δθ∗ = 1, which implies that the residual demand curve for the infra-marginal firms is

perfectly horizontal. In other words, the marginal firms produce no infra-marginal surplus for

the household. This maximizes the importance of the selection margin for welfare, conditional

on our choice of µ̄. The results, however, are quantitatively very similar to those in Table 1.

Specifically, when µ̄ = 1.045, we find the overall effect on welfare is still 0.130 with technical

efficiency effect of 0.016 and an allocative efficiency effect of 0.114. The adjustment of entry

still accounts for the bulk of changes in allocative efficiency at 0.116. The contribution of

the adjustment of selection to welfare is now positive, but it is still close to insignificant at

0.001. And the pro-competitive effects through the endogenous adjustment of markups are

still negative and of similar magnitude to before at −0.003. Similarly, when µ̄ = 1.09, the

welfare effect is 0.293 with a technical efficiency effect of 0.033 and an allocative efficiency

effect of 0.260. Once again, the overwhelming force is the adjustment of entry (holding fixed

markups and selection) at 0.269, with a negligible contribution of the adjustment of selection

at 0.003 and a small and negative pro-competitive effect through the endogenous adjustment

of markups at −0.012.

These results suggest that the small role played by the selection margin is not an anomaly

resulting from our choice of initial conditions. In fact, given our choice of µ̄, it is impossible

to choose initial conditions that give selection a bigger role to play than the numbers in the

paragraph above. For more details, see the robustness exercise in Appendix C,

How important is heterogeneity? To emphasize the interaction of heterogeneity and

inefficiency, we compare our model to a model with homogeneous firms, calibrated to have a

pass-through equal to the average (sales-weighted) pass-through and a markup equal to the

harmonic average. The results can be found in Table 2.

The most striking difference is that the elasticity of consumer welfare to population is
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µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.030 0.045 0.060 0.090
Technical efficiency: d log Ytech 0.017 0.045 0.034 0.090
Allocative efficiency: d log Yalloc 0.013 0.000 0.026 0.000

Real GDP per capita 0.021 0.022 0.042 0.043

Table 2: The elasticity of welfare and real GDP per capita to population following Propositions
1 and 2 for homogeneous firms.

much smaller, because changes in allocative efficiency become negligible. With efficient entry

δ̄ = µ̄ = 1.045 and δ̄ = µ̄ = 1.090, there are no changes in allocative efficiency since the model

is efficient. With efficient selection, the changes in allocative efficiency are positive but fairly

small. They are small because without heterogeneity, there are no longer changes in allocative

efficiency from the entry margin (holding fixed selection and markups) or from the selection

margin (holding fixed markups). Instead, all the changes in allocative efficiency come from the

pro-competitive effect through the reduction of markups. The changes in allocative efficiency

are positive because δ̄ < µ̄, and so the reduction in markups, which reduces entry, improves

welfare because there was too much entry to begin with.

This exercise emphasizes once again that the much discussed pro-competitive effects (i.e.

reductions in markups) are small in comparison the changes in allocative efficiency arising

from reallocations across heterogeneous firms that we discussed above.

The effects of population increases on GDP per capita are also smaller than with hetero-

geneous firms. This is simply because, just like the change in welfare, the change in the price

index which triggers the reduction in markups is smaller.

Are there big nonlinearities? Table 1 shows that changes in allocative efficiency account

for the bulk of the marginal increase in welfare from a marginal increase in population. More

precisely, most of the effect comes from the reallocations from small firms with low markups to

big firms with high markups that take place when only the entry margin is allowed to adjust,

with a more limited role for the reallocations coming from the adjustment of markups and exit.

One might worry that these composition effects could peter out quickly if we kept increasing

the size of the population. Fortunately, since the model is identified globally, we can solve the

model for large shocks and thereby analyze potential nonlinearities.28 The results in Table 3

and Figure 7 below show that the forces identified for small shocks by Proposition 3 continue

to apply for large shocks.

28We do this by numerically solving the system of ordinary differential equations in Appendix D.
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Figure 7: Decomposition of changes in welfare and allocative efficiency following Proposition 3,
obtained by separately computing each term in the decomposition and integrating (cumulating)
the changes. The model is calibrated to have efficient selection and µ̄ = 1.09 at the initial point.

Table 3 reports the average (rather than the marginal) elasticity of welfare to a 0.5 log point

increase in population (a roughly 68% increase). The magnitude of and the decomposition of

the average effects are similar to those for the marginal effects reported in Table 1. Although

the model is far from being log-linear, the conclusion that changes in allocative efficiency

account for the bulk of aggregate increasing returns to scale, and in particular those changes

driven the reallocation from small firms with low markups to big firms with high markups

that take place when only the entry margin is allowed to adjust, with a more limited role for the

reallocations coming from adjustment of markups and exit. Interestingly, for the calibrations

assuming efficient selection with δ̄ = δθ∗ (columns 1 and 3), adjustments in exit continue to

play a negligible role even though the selection cut-off increases with the size of the shock.

Figure 7 shows cumulated changes in welfare, their breakdown into in technical and

allocative efficiency, and the breakdown of allocative efficiency into the reallocation effects

arising from the different margins of adjustment of firm behavior (entry, exit, and markups),

focusing on the calibration assuming efficient selection with δ̄ = δθ∗ and average markups

µ̄ = 1.09 (column 3). The first panel shows that even though their relative importance decreases

slightly with the size of the shock, changes in allocative efficiency continue to dwarf changes

in technical efficiency even for large shocks. The second panel shows that as the population

grows, changes in allocative efficiency due to reallocations from the adjustment of markups

start to account for a non-trivial part of overall changes in allocative efficiency. This happens

because as we increase population, average markups actually increase due to the composition

effect that reallocates resources away from low-markup firms and towards high-markup firms

(the average markup rises despite the fact that all individual markups decrease). This means
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that entry becomes more excessive, and hence that reallocations triggered by individual

markup reductions improve allocative efficiency more.

Are there larger increasing returns at the macro vs. micro levels? We also compare

increasing returns at the macro vs. micro levels. The micro return to scale for a surviving type

θ is the ratio of average cost to marginal cost minus one acθ/mcθ − 1, so that 0 corresponds to

constant returns to scale. The average cost is acθ = [ fe/(1 − G(θ∗)) + fo + Lyθ/Aθ]/(Lyθ). The

marginal cost is mcθ = 1/Aθ. The harmonic average across surviving producers of the micro

return to scale is equal to 1/E[1/(acθ/mcθ − 1)] = µ̄ − 1.29

Hence average micro technological increasing returns to scale are 0.045 when µ̄ = 1.045

and 0.090 when µ̄ = 1.090. Increasing returns at the aggregate level are much larger: between

0.130 and 0.145 in the former case and between 0.293 and 0.323 in the latter case. This

means that even small technological increasing returns at the micro level can give rise to large

increasing returns to scale at the aggregate level. Once again, the interaction of inefficiency

and heterogeneity is key. This result would neither hold if the economy were efficient nor if

there were no heterogeneity.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: ∆ log Y 0.100 0.099 0.215 0.216
Technical efficiency: ∆ log Ytech 0.025 0.048 0.052 0.098
Allocative efficiency: ∆ log Yalloc 0.075 0.051 0.162 0.117

Adj. of Entry: ∆ log Yε − ∆ log Ytech 0.066 0.107 0.145 0.272
Adj. of Exit: ∆ log Yε,θ∗ − ∆ log Yε 0.000 -0.065 0.000 -0.176
Adj. of Markups: ∆ log Yε,θ∗,µ − ∆ log Yε,θ∗ 0.008 0.008 0.017 0.021

Real GDP per capita 0.025 0.024 0.054 0.051

Table 3: The average elasticity of welfare and real GDP per capita to population for a large shock
∆ log L = 0.5.

7 Extensions

Before concluding, we describe some extensions which are developed in the appendix.

29From acθ = [(le + lo)/(1 −G(θ∗)) + lθ]/(Aθlθ) and mcθ = 1/Aθ, we have acθ/mcθ − 1 = [(le + lo)/(1 −G(θ∗))]/lθ and
hence 1/(acθ/mcθ − 1) = (1 − G(θ∗)lθ/(le + lo). The result follows since (1 − G(θ∗))lθ = λθ/µθ and le + lo = 1 − 1/µ̄.
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Other shocks. In the main text of the paper, we have focused exclusively on shocks to

population. In Appendix F, we provide comparative statics with respect to other parameters,

like productivity or fixed costs.

Optimal policy and distance to the efficient frontier. In the main text of the paper, we

have focused exclusively on comparative statics. In Appendix E.1, we provide an analytical

characterization of optimal policy. We also provide an analytical second-order approximation

of the distance to the efficient frontier which neatly decomposes the contributions of the

different margins of inefficiency (entry, selection, and relative production) to the overall

amount of misallocation. In Appendix E.2 we compute the distance to the efficient frontier in

our empirical application. There, we quantify the extent of misallocation in the decentralized

equilibrium compared to the first-best allocation, or in other words, the gains from optimal

policy. We find the number to be somewhere between 2.5% and 6.8% in Belgium. Therefore,

there can be large changes in allocative efficiency even though the decentralized economy is

not too far from efficiency. Note that when we increase the size of the market, the frontier also

moves, which means that changes in allocative efficiency due to reallocation are not equal to

changes in the distance from the frontier.

8 Conclusion

In this paper, we analyze how changes in market size affect welfare in a model with mo-

nopolistic competition, heterogeneous firms, variable markups and pass-throughs, entry, and

exit. We decompose the overall change into changes in technical and allocative efficiency. We

use firm-level information to non-parametrically recover demand curves and quantify this

decomposition.

We find that changes in allocative efficiency, due to the reallocation of resources, are a more

important source of welfare gains from increases in scale than changes in technical efficiency.

Quantitatively, the most important reallocation is a composition effect that shifts resources

from small firms with low markups towards big firms with high markups. This composition

effect results from the fact that the price index falls as the market becomes larger. This effect is

distinct from changes in the productivity cut-off and changes in markups. In fact, increases in

the productivity cut-off and the reduction in markups play only minor roles in comparison.

Two important implications are: that the aggregate return to scale is an endogenous

equilibrium outcome shaped by frictions and market structure, and not an exogenous tech-

nological primitive; and that even mild increasing returns to scale at the micro level can give

rise to large increasing returns to scale at the macro level.

Natural extensions of our analysis would be to consider alternative market structures

and entry processes, to add explicit dynamics, to model rich input-output structures, and to
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explicitly take trade into account.
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Online Appendix

Appendix A Details of Empirical Implementation

Amiti et al. (2019) provide estimates of the average sales-weighted pass-through (denoted

by α) for Belgian manufacturing firms conditional on the firms being smaller than a certain

size as measured by their numbers of employees. These estimates are based on information

from Prodcom, which is a subsample of Belgian manufacturing firms. Inclusion in Prodcom

requires that firms have turn-overs above 1 million euros, which means that the sample is not

representative of all manufacturers. The estimates are in Table 4.

No of employees Share of observations Share of employment Share of sales α

100 0.76313963 0.14761668 0.23096292 0.9719
200 0.85435725 0.22086396 0.3389753 0.8689
300 0.88848094 0.28832632 0.4083223 0.9295
400 0.92032149 0.33549505 0.48074553 0.8303
500 0.93746047 0.38345889 0.54008827 0.6091
600 0.94523549 0.41987701 0.58209142 0.6612
1000 0.96365488 0.52280162 0.66820585 0.6229
8000 0.99996915 0.99999999 0.99999174 0.6497

Table 4: Estimates from Amiti et al. (2019).

Our objective is to infer the pass-through ρ as a function of firm size. With some abuse of

notation, let θ ∈ [0, 1] be the fraction of observations in Prodcom up to some sales value. Let

λ(θ) be the sales share density of Prodcom firms of type θ. Then the variable “Share of sales”

is defined as

Λ(θ) =

∫ θ

0
λ(x)dx.

We fit a smooth curve to Λ(θ), then the pdf of sales shares λ(θ) is given by

λ(θ) =
dΛ

dθ
.

The curve we fit has the form exp(c0 + c1θ + c2θc3), where c0, c1, c2, c3 are chosen to minimize

the mean squared error.

Next, the variable α(θ) satisfies

α(θ) =

∫ θ
0 λ(x)ρ(x)dx∫ θ

0 λ(x)dx
,
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=

∫ θ
0 λ(x)ρ(x)dx

Λ(θ)
,

where λ(x) is the sales-share of firms of type x. Next we fit a flexible spline function to α(θ).

The fitted curve is shown in Figure 3a.

To recover the pass-throughs ρ(θ), we write

dα
dθ

=
λ(θ)ρ(θ)∫ θ
0 λ(x)dx

− λ(θ)∫ θ
0 λ(x)dx

α(θ).

In other words, we can recover the pass-through function via

ρ(θ) =

(∫ θ
0 λ(x)dx

)
λ(θ)

dα
dθ

+ α(θ),

=
Λ(θ)
λ(θ)

dα
dθ

+ α(θ).

This gives us pass-throughs as a function of the number of employees.

Next, we use information from VAT declaration in Belgium for the year 2014 to recover

the sales distribution of Belgian manufacturers (overcoming the sample selection issues in

Prodcom). Table 5 displays the underlying data.

As before, we let θ ∈ [0, 1] index the fraction of observations up to some size. Then the

variable “Share of sales” is defined as

Λ(θ) =

∫ θ

0
λ(x)dx,

where (abusing notation) λ is the sales share density of all manufacturing firms (rather than

just the ones in Prodcom). We fit a smooth curve to Λ(θ), then the pdf of sales shares λ(θ) is

given by

λ(θ) =
dΛ

dθ
.

The curve we fit has the form exp(c0 + c1θ + c2θc3), displayed in Figure 3b. Finally, we merge

our pass-through information from Prodcom with the sales density from VAT declarations by

assuming that the pass-through ρ of a firm with a given number of employees in Prodcom is

the same as it is in the bigger dataset. We then fit a smooth spline to this pass-through data

from [0, 1] assuming that the pass-through for the smallest firm is 1 and declines monotonically

from the smallest firm to the first observation (which is a pass-through of 0.97 for firms with

100 employees). Given a smooth curve for both λθ and ρθ we follow the procedure outlined

in Section 6.1, solving the differential equations numerically using the Runge-Kutta algorithm

on a large grid.
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Number of employees Share of sales Share of Observations

1 0.004559 0.16668
2 0.00826 0.284539
3 0.014786 0.375336
5 0.022269 0.489659
10 0.043011 0.652879
20 0.076444 0.779734
30 0.111713 0.843161
50 0.163492 0.906204
75 0.198242 0.932729
100 0.231815 0.947413
200 0.325376 0.974629
300 0.386449 0.983547
400 0.449491 0.989237
500 0.486108 0.991927
600 0.655522 0.994311
1000 0.740656 0.997386
8000 0.970654 0.999923

Table 5: Firm size distribution for manufacturing firms from VAT declarations in Belgium for
2014.

Appendix B Product-Level Data

In the body of the paper, we assume that different products produced by a single firm are

perfect substitutes from the perspective of the consumer, and so we use overall sales of a firm

as the sales of each variety. An alternative approach is to instead to treat each product as a

single variety instead. In Table 6 we display the average number of products each firm in

Prodcom sells, for each firm-size bin.

To map each product to a variety, we take the sales density for firms and divide the density

for firms of a given size by the average number of products (renormalizing the density so that

it still integrates to one). Mapping the model to the data in this way results in less dispersion

in sales, a left tail which is slightly less thick, and as a result, less dispersed estimates of

productivities and markups. The comparative statics for this version of the model are in

Table 7. The basic qualitative message of our previous results in Table 1 is unchanged, and

the composition effects from the adjustment of the entry margin (holding fixed markups and

selection) are still overwhelmingly the dominant force in the model.
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No of Employees No of Products No of firms

5 1.3636364 22
10 2.0550459 109
20 2.200495 404
30 2.4203297 728
50 2.4203895 873
75 2.3727506 389
100 3.294686 207
200 3.225 400
300 3.3308824 136
400 3.6511628 86
500 5.2162162 37
600 4.1724138 29
1000 8.3095238 42
8000 8.8780488 41

Table 6: Number of products on average from Prodcom sample in 2014.

µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Welfare: d log Y 0.080 0.133 0.176 0.294
Technical efficiency: d log Ytech 0.020 0.045 0.042 0.090
Allocative efficiency: d log Yalloc 0.060 0.088 0.134 0.204

Adj. of Entry: d log Yε − d log Ytech 0.056 0.136 0.126 0.327
Adj. of Exit: d log Yε,θ∗ − d log Yε 0.000 -0.037 0.000 -0.094
Adj. of Markups: d log Yε,θ∗,µ − d log Yε,θ∗ 0.004 -0.012 0.008 -0.029

Real GDP per capita 0.015 0.016 0.032 0.035

Table 7: The elasticity of welfare and real GDP per capita to population following Propositions
3 and 4 for heterogeneous firms case using product-level data.
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Appendix C Robustness to Boundary Conditions

Table 8 provides the elasticity of welfare and changes in allocative efficiency, following Propo-

sition 3 for different boundary conditions. Although the magnitude of d log Y/d log L changes

as we change the boundary conditions, the contribution of allocative efficiency to the overall

total is at least 50% of the overall effect. Table 9 breaks down the overall effect on allocative

efficiency into the different margins of adjustment (entry-only, selection, and markups). The

entry-only effect is always responsible for the bulk of the positive effect. As mentioned, for a

given µ̄, the selection effect is strongest when δθ∗ is lowest, but even for δθ∗ = 1, the selection

effect is negligible.

Table 8: Change in log welfare and allocative efficiency for different boundary conditions

δθ∗

1 2 3 4 5 6 7 8 9 10

1.05 [0.144,0.126] [0.150,0.122] [0.155,0.117] [0.161,0.112] [0.166,0.107] [0.171,0.102] [0.177,0.097] [0.182,0.092] [0.187,0.086] [0.192,0.082]
1.06 [0.180,0.158] [0.186,0.153] [0.191,0.148] [0.196,0.144] [0.202,0.139] [0.207,0.134] [0.212,0.128] [0.218,0.123] [0.223,0.118] [0.228,0.113]
1.07 [0.213,0.187] [0.218,0.183] [0.224,0.178] [0.229,0.173] [0.235,0.168] [0.240,0.163] [0.245,0.158] [0.251,0.153] [0.256,0.148] [0.261,0.143]
1.08 [0.255,0.225] [0.260,0.220] [0.266,0.215] [0.271,0.211] [0.276,0.206] [0.282,0.201] [0.287,0.196] [0.292,0.190] [0.297,0.185] [0.302,0.180]
1.09 [0.293,0.260] [0.299,0.255] [0.304,0.251] [0.310,0.246] [0.315,0.241] [0.321,0.236] [0.326,0.231] [0.331,0.226] [0.336,0.220] [0.341,0.215]

µ̄ 1.10 [0.336,0.299] [0.341,0.294] [0.347,0.289] [0.352,0.284] [0.357,0.279] [0.363,0.274] [0.368,0.269] [0.373,0.264] [0.378,0.259] [0.383,0.254]
1.11 [0.382,0.341] [0.387,0.336] [0.393,0.331] [0.398,0.326] [0.403,0.321] [0.409,0.316] [0.414,0.311] [0.419,0.306] [0.424,0.301] [0.429,0.296]
1.12 [0.433,0.388] [0.438,0.383] [0.443,0.378] [0.449,0.373] [0.454,0.368] [0.459,0.363] [0.464,0.357] [0.469,0.352] [0.474,0.347] [0.479,0.342]
1.13 [0.489,0.439] [0.494,0.435] [0.499,0.430] [0.505,0.424] [0.510,0.419] [0.515,0.414] [0.520,0.409] [0.525,0.404] [0.530,0.398] [0.535,0.393]
1.14 [0.551,0.498] [0.557,0.493] [0.562,0.487] [0.567,0.482] [0.572,0.477] [0.577,0.472] [0.582,0.466] [0.587,0.461] [0.592,0.455] [0.596,0.450]
1.15 [0.622,0.563] [0.627,0.558] [0.632,0.553] [0.637,0.548] [0.642,0.542] [0.647,0.537] [0.651,0.531] [0.656,0.526] [0.661,0.520] [0.665,0.515]

Each cell reports [d log Y/d log L, d log Yalloc/d log L] for different boundary conditions. Each column is a different
value for the boundary condition δθ∗ and each row is a different aggregate markup µ̄. Cells that approximately
correspond to efficient selection are colored in blue and cells that approximately correspond to efficient entry are
colored in yellow. The bulk of the changes in welfare are due to reallocation effects.
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Table 9: Change in allocative efficiency for different boundary conditions

δθ∗

1 3 5 7 9

1.05 [0.129,0.001,-0.004] [0.329,-0.169,-0.0430] [0.619,-0.428,-0.0850] [1.068,-0.842,-0.130] [1.84,-1.576,-0.177]
1.06 [0.162,0.002,-0.005] [0.376,-0.180,-0.0470] [0.689,-0.459,-0.0910] [1.182,-0.915,-0.139] [2.05,-1.743,-0.189]
1.07 [0.192,0.002,-0.007] [0.420,-0.191,-0.0510] [0.755,-0.490,-0.0970] [1.292,-0.986,-0.147] [2.263,-1.914,-0.201]
1.08 [0.232,0.003,-0.009] [0.476,-0.205,-0.0560] [0.843,-0.531,-0.106] [1.439,-1.085,-0.159] [2.559,-2.157,-0.216]
1.09 [0.269,0.003,-0.012] [0.530,-0.219,-0.0610] [0.927,-0.572,-0.114] [1.586,-1.184,-0.171] [2.867,-2.415,-0.231]

µ̄ 1.10 [0.310,0.004,-0.015] [0.591,-0.234,-0.0670] [1.023,-0.620,-0.124] [1.756,-1.303,-0.184] [3.244,-2.736,-0.249]
1.11 [0.355,0.004,-0.019] [0.658,-0.252,-0.0750] [1.131,-0.675,-0.135] [1.956,-1.445,-0.200] [3.715,-3.145,-0.269]
1.12 [0.406,0.005,-0.023] [0.735,-0.273,-0.0840] [1.257,-0.741,-0.149] [2.195,-1.619,-0.218] [4.322,-3.682,-0.293]
1.13 [0.463,0.006,-0.029] [0.822,-0.298,-0.0940] [1.403,-0.819,-0.164] [2.485,-1.836,-0.240] [5.134,-4.415,-0.321]
1.14 [0.527,0.007,-0.036] [0.922,-0.327,-0.107] [1.576,-0.916,-0.184] [2.847,-2.114,-0.266] [6.280,-5.470,-0.355]
1.15 [0.601,0.008,-0.046] [1.039,-0.362,-0.123] [1.785,-1.036,-0.207] [3.31,-2.481,-0.298] [8.023,-7.107,-0.396]

Each cell reports [d log Yε−d log Ytech, d log Yε,θ∗ −d log Yε, d log Yε,θ∗,µ−d log Yε,θ∗ ] for different boundary conditions.
Each column is a different value for the boundary condition δθ∗ and each row is a different aggregate markup µ̄.
The bulk of the positive changes in allocative are due to the entry-only margin. Changes in markups and selection
margin are either unimportant or harmful.

Appendix D Propagation and Aggregation Equations

In this section, we summarize the propagation and aggregation equations for the model with

heterogeneous firms. We expand the equilibrium equations presented in Section 2.2 to the first

order in the shocks. Changes in all the equilibrium variables are expressed via propagation

equations as functions of changes in consumer welfare. Changes in consumer welfare are

then expressed as as functions of the changes in the equilibrium variable via an aggregation

equation. Putting propagation and aggregation together yields a fixed point in changes in

consumer welfare.

Aggregate price index. Differentiating the definition of the price and demand indices, we

find

− d log P = −λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log Y + Eλ

[(
1 − 1

σθ

)
d log(

yθ
Y

)
]
. (54)

Combining this equation with the equation for quantities and markups, we get

− d log P = −λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + d log M + d log Y + Eλ

[
ρθ(σθ − 1)

(
d log Aθ + d log P

)]
. (55)

Finally, combining with the second equation for entry derived below, we find

d log P =

−d log Y − Eλ(1−1/µ)
[
(σθ − 1)d log Aθ

]
+

fe∆
L d log( fe∆

L )+[1−G(θ∗)] f
L d log( f

L )
fe∆
L +[1−G(θ∗)] f

L

Eλ(1−1/µ) [σθ]
. (56)
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This equation for the aggregate price index can be replaced in all the equations below.

Entry. We derive two equations for free entry. The first equation is obtained as follows.

Differentiating the free-entry condition, we find

fe∆
L d log( fe∆

L ) + [1 − G(θ∗)] f
L d log( f

L )
fe∆
L + [1 − G(θ∗)] f

L

+ d log M − g(θ∗)
1 − G(θ∗)

dθ∗ = Eλ(1−1/µ)

[
d log

(
λθ

(
1 − 1

µθ

))]
.

(57)

Combining with the equation for variable profit shares, we get

d log M = −
fe∆
L d log( fe∆

L ) + [1 − G(θ∗)] f
L d log( f

L )
fe∆
L + [1 − G(θ∗)] f

L

+ λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗

+ Eλ(1−1/µ)
[
(σθ − 1)

(
d log Aθ + d log P

)] − Eλ
[
ρθ(σθ − 1)

(
d log Aθ + d log P

)]
.

We can also use the equation for the demand index to get

d log M = −d log Y − d log P + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ − Eλ

[
ρθ(σθ − 1)

(
d log Aθ + d log P

)]
.

Sales shares. Differentiating the sales shares equation, we find

d logλθ = d log M − g(θ∗)
1 − G(θ∗)

+ d log Y + (σθ − 1)d log(
Aθ

µθ
) + σθd log P. (58)

Combining with the third equation for entry, we get

d logλθ = (λθ∗ − 1)
g(θ∗)

1 − G(θ∗)
dθ∗ + ρθ(σθ − 1)

(
d log Aθ + d log P

)
− Eλ

[
ρθ(σθ − 1)

(
d log Aθ + d log P

)]
.

Markups. Differentiating the markup equation, we get

d logµθ = (1 − ρθ)
(
d log Aθ + d log P

)
. (59)

Variable profit shares. Combining the equations for sales shares and for markups, we get

d log
(
λθ

(
1 − 1

µθ

))
= (λθ∗ − 1)

g(θ∗)
1 − G(θ∗)

dθ∗ + (σθ − 1)
(
d log Aθ + d log P

)
− Eλ

[
ρθ(σθ − 1)

(
d log Aθ + d log P

)]
.
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Quantities. Differentiating the individual demand function, we find

d log(
yθ
Y

) = σθ

(
d log(

Aθ

µθ
) + d log P

)
. (60)

Combining with the equation for markups, we get

d log(
yθ
Y

) = ρθσθ
(
d log Aθ + d log P

)
. (61)

Selection. Differentiating the selection condition, we get

(σθ∗ − 1)
(
∂ log Aθ

∂θ
|θ=θ∗

)
dθ∗ = −d log

(
λθ∗

(
1 − 1

µθ∗

))
+ d log M− g(θ∗)

1 − G(θ∗)
dθ∗ + d log(

fo
L

). (62)

Combining with the equations for variable profits shares and entry, we get

(σθ∗ − 1)
(
∂ log Aθ

∂θ
|θ=θ∗

)
dθ∗ = −(σθ∗ − 1)

(
d log Aθ∗ + d log P

)− d log P− d log Y + d log(
fo
L

), (63)

where we note that
∂ log Aθ

∂θ
|θ=θ∗ =

g(θ∗)
ga(log Aθ∗)

. (64)

Welfare. Differentiating the consumer welfare equation, we get

d log Y = −(δθ∗ − 1)λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ +

(
δ̄ − 1

)
d log M + Eλ

[
d log(

Aθ

µθ
)
]
. (65)

Combining with the equation for markups, we get

d log Y = −(δθ∗ − 1)λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + (δ̄ − 1)d log M + Eλ

[
ρθd log Aθ − (1 − ρθ)d log P

]
. (66)

Combining with the equations for the aggregate price index and entry leads to a fixed point

in d log Y.

Appendix E Distance to Efficient Frontier

In this appendix, we focus on the distance to the efficient frontier, that is the amount of

misallocation in the decentralized equilibrium compared to the first-best allocation.

In Appendix E.1, we provide an analytical second-order approximation which neatly

decomposes the contributions of the different margins of inefficiency to the overall amount of

misallocation. The proof of the main proposition can be found in Appendix E.3. In Appendix

E.1, we compute the distance to the frontier in our empirical application.
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E.1 Analytical Second-Order Approximation

In this section, we calculate the social costs of the distortions caused by monopolistic com-

petition around the efficient CES benchmark. We index the Kimball aggregator Υt by some

parameter t, where t = 0 gives an iso-elastic form for Υ (CES), and moving from t = 0 perturbs

the Kimball aggregator away from iso-elasticity in a smooth fashion. The proposition below

provides a second-order approximation in t of the distance to the efficient frontier, providing

a link between our framework and the literature on the social costs of misallocation with entry

(for example, Epifani and Gancia, 2011).

Proposition 5. The difference between welfare at the first-best allocation and the decentralized equi-
librium can be approximated around t = 0 by

log
Yopt

Y
≈1

2
Eλ

σθ (
µθ

Eλ [δθ]
− Eλ

[
µθ

]
Eλ [δθ]

)2 +
1
2
Eλ [σθ]

(
Eλ

[
µθ

]
Eλ [δθ]

− 1
)2

+
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)2 ,

where the remainder term is order t3.

The first term, familiar from the misallocation literature, captures distortions in the relative

sizes of existing firms. It scales with the dispersion of the ratios of markups to the average

infra-marginal surplus ratio µθ/Eλ[δθ]. It also scales with the elasticities of substitution σθ.30

The second term captures the distortions due to inefficient entry. It scales with the squared

distance to unity of the ratio of the average markup to the average infra-marginal surplus

ratio Eλ[µθ]/Eλ[δθ]. It also scales with the elasticities of substitution σθ.

The third and final term captures the distortions due to inefficient selection. It scales with

the squared difference between the infra-marginal surplus of the marginal firm δθ∗ and that of

the average Eλ(δθ). It also scales with the hazard rate of the log productivity distribution for

the marginal firm γ∗θ (rather than the price elasticity of demand), which captures the relevant

elasticity of the selection margin.31

In the CES case, markups are constant across varieties µθ = Eλ[µθ], the average markup is

equal to the average infra-marginal surplus ratio Eλ[µθ] = Eλ[δθ], and infra-marginal surplus

ratios are constant across varieties δθ∗ = Eλ[δθ]. As a result, all three terms are zero.

E.2 Empirical Application

In this appendix, we compute the distance to the efficient frontier in our empirical application.

30The first term is a particular case of the formulas in Baqaee and Farhi (2019) applied to the relevant distortions
µθ/Eλ[δθ] in the presence of entry (rather than to µθ when there is no entry).

31If there are many firms at the cut-off (high λθ∗ ) or the cut-off moves very quickly (high γθ∗ ) in response to
distortions, then the losses from selection inefficiency δθ∗ , Eλ(δθ) are amplified.
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µ̄ = 1.045 µ̄ = 1.090

δ̄ = δθ∗ δ̄ = µ̄ δ̄ = δθ∗ δ̄ = µ̄

Heterogeneous firms 0.024 0.027 0.057 0.065
Homogeneous firms 0.021 0.000 0.041 0.000

Table 10: Distance to the efficient frontier log(Yopt/Y).

We finish by computing the distance to the efficient frontier. The results are reported in

Table 10 both for the case with heterogeneous firms and for the case with homogeneous firms.

With heterogeneous firms, and with average markups µ̄ = 1.045 the distance to the frontier

is around 2.5%. The distance to the frontier is higher with higher average markups µ̄ = 1.09

at around 6%. In both cases, the numbers are similar for efficient entry and efficient selection.

While these numbers are sizable, one might think that they are not large enough. Indeed,

in Section 6.3, we saw in the decentralized equilibrium, cumulated changes in allocative

efficiency are large relative to cumulated changes in technical efficiency even for large increases

in population. If the distance to the frontier is sizable but not very large, doesn’t that mean

that the economy should quickly approach the frontier as we increase population? And then

shouldn’t this source of welfare gains grounded in misallocation quickly peter out? The

answer to these questions is no and the reason is the following. At the first-best allocation,

increases in population only increase welfare by improving technical efficiency. But changes in

technical efficiency for the first-best allocation (at the frontier) turn out to be much larger than

changes in technical efficiency for the decentralized equilibrium (inside the frontier). And so

the distance to the efficient frontier remains sizable even for large increases in population.32

With homogeneous firms, the distance to the frontier is zero when δ̄ = µ̄ since then entry,

which is the only margin that can be distorted, is efficient. Otherwise the distance to the

frontier is smaller than with heterogeneous firms, but not considerably so. Again, and for the

same reasons as those explained above, this does not contradict the earlier observation that

changes in allocative efficiency are small at the decentralized equilibrium with homogeneous

firms.

E.3 Proof of Proposition 5

To do this, imagine a social planner who can implement the efficient allocation by regulating

markups and imposing sales taxes. A sufficient condition is to set markups according to the

infra-marginal surplus each firm generates µopt
θ

= δθ and sales taxes to be the reciprocal of

markups τopt
θ

= 1/µθ. The markups provide socially optimal incentives along the extensive

32This discussion goes back to our definition of changes in allocative efficiency as the changes in welfare that
arise from the reallocation of resources as opposed to the change in the distance to the efficient frontier already
discussed in footnotes 1 and 18.
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margin and the output taxes undo the inefficiencies brought about by dispersed markups.

See Edmond et al. (2018) for an alternative implementation of the optimal allocation using

taxes.33 This section contributes to the literature by providing an analytical approximation

for distance to the efficient frontier.

At the decentralized monopolistically competitive equilibrium, we instead have µθ =

(1 − 1/σθ)−1 and τθ = 1. The equilibrium equations are

(1 − G(θ∗))M
∫ ∞

θ∗
Υ(

yθ
Y

)
g(θ)

1 − G(θ∗)
dθ = 1, (67)

ΛL =

∫ ∞

θ∗

λθ
τθ

g(θ)
1 − G(θ∗)

dθ, (68)

MΛL fe∆
L

=

∫ ∞

θ∗

(
λθ

1
τθ

(
1 − 1

µθ

)
− (1 − G(θ∗))MΛL fo

L

)
g(θ)

1 − G(θ∗)
dθ, (69)

λθ∗
1
τθ∗

(
1 − 1

µθ∗

)
=

(1 − G(θ∗))MΛL fo
L

, (70)

λθ = (1 − G(θ∗))M
τθµθΛLyθ

Aθ
, (71)

τθµθΛL

Aθ
= PΥ′(

yθ
Y

), (72)

P =
δ̄
Y
, (73)

1
δ̄

= (1 − G(θ∗))M
∫ ∞

θ∗

yθ
Y

Υ′(
yθ
Y

)
g(θ)

1 − G(θ∗)
dθ. (74)

Efficiency requires

µθ =
1
τθ

=
Υθ

yθ
Y Υ′

θ

. (75)

In step 1, we log-differentiate the equilibrium equations (at an arbitrary point). In step 2,

we specialize these equations to the monopolistically competitive equilibrium with changes

in markups and taxes towards the efficient point. We use the resulting formulas to compute

the distance to the efficient frontier by dividing the first order effect (of moving towards

the efficient point) by 1/2. This is because we know that the derivative once we reach the

efficient point is zero, and the average of two first-order approximations yields a second-

order approximation.

Step 1:

In the first step, we generalize the propagation equations to allow for policy.

33Bilbiie et al. (2019) also consider related issues in a dynamic context.
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Aggregate price index:

−d log P =
d log M + d log Y − λθ∗ g(θ∗)

1−G(θ∗) dθ
∗

1 +
∫ ∞
θ∗ λθ

(
Υ′
θ

− yθ
Y Υ′′

θ

− 1
)

g(θ)
1−G(θ∗) dθ

−
∫ ∞
θ∗ λθ

(
Υ′θ
− yθ

Y Υ′′
θ

− 1
) (

d logµθ + d log τθ + d log ΛL
) g(θ)

1−G(θ∗) dθ

1 +
∫ ∞
θ∗ λθ

(
Υ′
θ

− yθ
Y Υ′′

θ

− 1
)

g(θ)
1−G(θ∗) dθ

.

Sales shares:

d logλθ = d log M− g(θ∗)
1 − G(θ∗)

dθ∗+d log Y−
 Υ′θ
− yθ

Y Υ′′
θ

− 1

 (d logµθ + d log τθ + d log ΛL
)
+

Υ′θ
− yθ

Y Υ′′
θ

d log P.

(76)

Variable profits:

d log
(
λθ
ΛL

1
τθ

(
1 − 1

µθ

))
= d log M − g(θ∗)

1 − G(θ∗)
dθ∗ + d log Y − Υ′θ

− yθ
Y Υ′′

θ

(
d log τθ + d log ΛL

)
+

 1
µθ − 1

−
 Υ′θ
− yθ

Y Υ′′
θ

− 1

 d logµθ +
Υ′θ
− yθ

Y Υ′′
θ

d log P.

Quantities:

d log
( yθ

Y

)
= − Υ′θ
− yθ

Y Υ′′
θ

(
d logµθ + d log τθ + d log ΛL − d log P

)
. (77)

Labor share:

d log ΛL =
g(θ∗)

1 − G(θ∗)
dθ∗ +

∫ ∞
θ∗

λθ
τθ

(
d logλθ − d log τθ

) g(θ)
1−G(θ∗) dθ∫ ∞

θ∗
λθ
τθ

g(θ)
1−G(θ∗) dθ,

−
λθ∗
τθ∗

g(θ∗)
1−G(θ∗) dθ

∗∫ ∞
θ∗

λθ
τθ

g(θ)
1−G(θ∗) dθ,

. (78)

Entry:

d log M =
g(θ)

1 − G(θ∗)
dθ∗ +

∫ ∞
θ∗

(
λθ
ΛL

1
τθ

(
1 − 1

µθ

)) [
d log

(
λθ

1
τθ

(
1 − 1

µθ

))
− d log ΛL

] g(θ)
1−G(θ∗) dθ∫ ∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) g(θ)
1−G(θ∗) dθ

.

Replacing to get aggregate price index:

−d log P+d log ΛL =
d log Y∫ ∞

θ∗
λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

− yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

−
∫ ∞
θ∗

λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′θ
− yθ

Y Υ′′
θ

d log τθ
g(θ)

1−G(θ∗) dθ∫ ∞
θ∗

λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

− yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ
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+

∫ ∞
θ∗

λθ
ΛL

1
τθ

(
1 − 1

µθ

) (
1

µθ−1 −
(

Υ′θ
− yθ

Y Υ′′
θ

− 1
))

d logµθ
g(θ)

1−G(θ∗) dθ∫ ∞
θ∗

λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

− yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

+

(M(1−G(θ∗)) fo
L − λθ 1

τθ

(
1 − 1

µθ

)) g(θ∗)
1−G(θ∗) dθ

∗∫ ∞
θ∗

λθ
ΛL

1
τθ

(
1 − 1

µθ

) Υ′
θ

− yθ
Y Υ′′

θ

g(θ)
1−G(θ∗) dθ

.

Replacing to get entry:

d log M = −d log Y + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗

−
1 +

∫ ∞

θ∗
λθ

 Υ′θ
− yθ

Y Υ′′
θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

+

∫ ∞

θ∗
λθ

 Υ′θ
− yθ

Y Υ′′
θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ.

Selection cut-off: Υ′θ∗
− yθ∗

Y Υ′′
θ∗
− 1

 ∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = −d log
(
λθ∗

ΛL

1
τθ∗

(
1 − 1

µθ∗

))
+ d log M − g(θ∗)

1 − G(θ∗)
dθ∗. (79)

Welfare:

d log Y = d log M
(
δ̄ − 1

) − ∫ ∞

θ∗
λθ

(
d logµθ + d log τθ + d log ΛL

) g(θ)
1 − G(θ∗)

dθ

−
 Υθ∗

yθ∗
Y Υ′

θ∗
− 1

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗,

or

δ̄d log Y = − (
δ̄ − 1

) 1 +

∫ ∞

θ∗
λθ

 Υ′θ
− yθ

Y Υ′′
θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

−
∫ ∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ
− yθ

Y Υ′′
θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ

+

δ̄ − Υθ∗
yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗.

Step 2

We proceed in two steps.
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Applying the formula at the monopolistic competitive equilibrium. We start at

the monopolistic competitive equilibrium. We can simplify the equations to get

d log ΛL = −
∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ, (80)

− d log P + d log ΛL = d log Y −
∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ, (81)

d log M = −d log Y + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗

−
1 +

∫ ∞

θ∗
λθ

 Υ′θ
− yθ

Y Υ′′
θ

− 1

 g(θ)
1 − G(θ∗)

 d log P

+

∫ ∞

θ∗
λθ

 Υ′θ
− yθ

Y Υ′′
θ

− 1

 (d logµθ + d log τθ + d log ΛL
) g(θ)

1 − G(θ∗)
dθ,

 Υ′θ∗
− yθ∗

Y Υ′′
θ∗
− 1

 ∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = −d log Y +
Υ′θ∗
− yθ∗

Y Υ′′
θ∗

(
d log τθ∗ − d log P + d log ΛL

)
. (82)

The solution (apart from d log M which we do not need for what follows) is

d log ΛL = −
∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ, (83)

− d log P = d log Y, (84)

∂ log Aθ

∂θ

∣∣∣∣∣
θ=θ∗

dθ∗ = d log Y +

Υ′
θ∗

− yθ∗
Y Υ′′

θ∗
Υ′
θ∗

− yθ∗
Y Υ′′

θ∗
− 1

(
d log τθ∗ −

∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)
. (85)

Plugging into welfare, we get

1 − ∫ ∞

θ∗
λθ

(
δ̄ − 1

)  Υ′θ
− yθ

Y Υ′′
θ

− 1

 g(θ)
1 − G(θ∗)

dθ −
δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

dθ∗
 d log Y =

−
∫ ∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ
− yθ

Y Υ′′
θ

− 1

 (d logµθ + d log τθ
) g(θ)

1 − G(θ∗)
dθ

+

∫ ∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ
− yθ

Y Υ′′
θ

− 1

 (∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)

g(θ)
1 − G(θ∗)

dθ

+ λθ∗γθ∗

δ̄ − Υθ∗
yθ∗
Y Υ′

θ∗


Υ′
θ∗

− yθ∗
Y Υ′′

θ∗
Υ′
θ∗

− yθ∗
Y Υ′′

θ∗
− 1

(
d log τθ∗ −

∫ ∞

θ∗
λθd log τθ

g(θ)
1 − G(θ∗)

dθ
)
.
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Applying to changes in markups and taxes towards the efficient point. Efficiency

requires markups µθ = Υθ
yθ
Y Υ′

θ

and taxes on production τθ = 1/ Υθ
yθ
Y Υ′

θ

. Hence we use the forcing

variables (the endogenous response of Υθ
yθ
Y Υ′

θ

is second order)

d logµθ ≈ − log

 µθ
Υθ

yθ
Y Υ′

θ

 , (86)

d log τθ ≈ − log

 Υθ
yθ
Y Υ′

θ

 . (87)

Plugging into welfare, we get1 − ∫ ∞

θ∗
λθ

(
δ̄ − 1

)  Υ′θ
− yθ

Y Υ′′
θ

− 1

 g(θ)
1 − G(θ∗)

−
δ̄ − Υθ∗

yθ∗
Y Υ′

θ∗

λθ∗ g(θ∗)
1 − G(θ∗)

θ∗
 d log Y ≈

−
∫ ∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ
− yθ

Y Υ′′
θ

− 1


− log

 µθ
Υθ

yθ
Y Υ′

θ

 − log

 Υθ
yθ
Y Υ′

θ


 g(θ)

1 − G(θ∗)
dθ

−
∫ ∞

θ∗
λθ

1 − (
δ̄ − 1

)  Υ′θ
− yθ

Y Υ′′
θ

− 1

 ∫ ∞

θ∗
λθ log

 Υθ
yθ
Y Υ′

θ

 g(θ)
1 − G(θ∗)

dθ

 g(θ)
1 − G(θ∗)

dθ

+ λθ∗γθ∗

δ̄ − Υθ∗
yθ∗
Y Υ′

θ∗


Υ′
θ∗

− yθ∗
Y Υ′′

θ∗
Υ′
θ∗

− yθ∗
Y Υ′′

θ∗
− 1

− log

 Υθ∗
yθ∗
Y Υ′

θ∗

 +

∫ ∞

θ∗
λθ log

 Υθ
yθ
Y Υ′

θ

 g(θ)
1 − G(θ∗)

dθ

 .
And the loss function encapsulating the distance to the efficient frontier is

L ≈ 1
2

d log Y. (88)

Using the notation in the paper, we therefore get

L ≈ −1
2
Eλ

[(
1 − Eλ [δθ] − 1

µθ − 1

)
log

(
Eλ [δθ]
µθ

)]
+

1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)µ∗θ log

(Eλ [δθ]
δθ∗

)
, (89)

or

L ≈ 1
2
Eλ


(

µθ
Eλ[δθ] − 1

)2

µθ − 1
Eλ [δθ]

Eλ [δθ]
µθ

 +
1
2
λθ∗

µθ∗

δθ∗
γθ∗ (Eλ [δθ] − δθ∗)2 , (90)

or

L ≈ 1
2
Eλ

 µθ
µθ − 1

(
µθ

Eλ [δθ]
− 1

)2 +
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)2 , (91)

or

L ≈ 1
2
Eλ

σθ (
µθ

Eλ [δθ]
− 1

)2 +
1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)2 , (92)
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or

L ≈ 1
2
Eλ

σθ ( µθ
Eλ [δθ]

− Eλ
[
µθ

]
Eλ [δθ]

)2

+

(
Eλ

[
µθ

]
Eλ [δθ]

− 1
)2 +

1
2
λθ∗γθ∗ (Eλ [δθ] − δθ∗)2 , (93)

Appendix F Additional Comparative Statics

In this section, we characterize comparative statics with respect to shocks to the fixed costs

and shocks to the productivity distribution. We start with fixed cost shocks, and then examine

productivity shocks.

F.1 Shocks to Fixed Costs

As with population shocks, we begin by focusing on the homogeneous-firm case.

F.1.1 Homogeneous Firms

Proposition 6. Suppose that firms have the same productivity Aθ = A. In response to changes in
population d log L, changes in consumer welfare are given by

d log Y = (δ − 1)d log L︸          ︷︷          ︸
technical efficiency

+ δ
ξ

1 − ξd log L︸          ︷︷          ︸
allocative efficiency

, (94)

where

ξ =

(
1 − ρ

) (
1 − δ − 1

µ − 1

)
1
σ

=

(
1 − ρ

) (
1 − δ

µ

)
. (95)

Changes in entry costs d log( fe∆) and in overhead costs d log f0 respectively have the same effects
on consumer welfare as change in population shocks d log L = −[ fe∆/( fe∆ + f0)]d log( fe∆) and
d log L = −[ fo/( fe∆ + f0)]d log( fo).

Proposition 7. Suppose that firms have the same productivity Aθ = A. In response to changes in
population d log L, changes in real GDP per capita are given by

d log Q =
1 − ρ
σ

(d log Y + d log L), (96)

where d log Y is given by Proposition 1. Changes in entry costs d log( fe∆) and in overhead costs
d log f0 respectively have the same effects on these variables as change in population shocks d log L =

−[ fe∆/( fe∆ + fo)]d log( fe∆) and d log L = −[ fo/( fe∆ + fo)]d log( fo).
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F.1.2 Heterogeneous Firms

Now, we consider shocks to fixed costs when firms are heterogeneous.

Proposition 8. In response to changes in fixed costs of entry d log( fe∆) and fixed overhead costs
d log fo, changes in consumer welfare are given by

d log Y = −
(
Eλ[δθ] − 1

) fe∆d log( fe∆) + fod log fo
fe∆ + (1 − G(θ∗)) fo︸                                            ︷︷                                            ︸

technical efficiency

− ξε + ξµ + ξθ
∗

1 − ξε − ξµ − ξθ∗
(
Eλ[δθ]

) fe∆d log( fe∆) + (1 − G(θ∗)) fod log fo
fe∆ + (1 − G(θ∗)) fo︸                                                                              ︷︷                                                                              ︸

allocative efficiency

− ζθ
∗

1 − ξε − ξµ − ξθ∗
fe∆[d log( fe∆) − d log f ]

fe∆ + (1 − G(θ∗)) f︸                                                 ︷︷                                                 ︸
allocative efficiency

,

where ξε, ξθ
∗
, and ξµ are given in Proposition 3 and

ζθ
∗

=

(
Eλ[δθ] − δθ∗

) (
λθ∗γθ∗

1
σθ∗ − 1

)
. (97)

As with population shocks, we can provide sufficient conditions under which changes in

allocative efficiency amplify or mitigate the effects of the shocks.

Corollary 3. Sufficient conditions for positive changes in allocative efficiency in response to decreases
in the fixed cost of entry are the same as in Corollary 2. Indeed, (1), (2), and (3) imply ξε > 0, ξθ

∗
> 0,

and ξµ > 0. Furthermore, (1) and (3) imply ζθ
∗
> 0. Sufficient conditions for positive changes in

allocative efficiency in response to decreases in the fixed overhead cost if selection decreases (dθ∗ < 0)
are that (1) and (2) hold but that (3) fail (too much selection).

To understand these results, it is useful to observe that the model is homogeneous of degree

zero in fixed costs and population fe∆, f , and L. This is because they only matter through

fixed costs per capita ( fe∆)/L and f/L. This means that joint proportional reductions in fixed

costs of entry and fixed overhead costs d log( fe∆) = d log f < 0 have exactly the same effects on

consumer welfare as equivalent increases in population d log L = −d log( fe∆) = −d log f > 0.

With homogeneous firms, shocks to fixed costs act like scaled population shocks even in

isolation. The equivalent shock to population is inversely related to the shock to the total

fixed cost −[ fe∆d log( fe∆) + (1−G(θ∗)) f d log f ]/[ fe∆ + (1−G(θ∗)) f ]. This is no longer true with

heterogeneous firms because the two fixed costs impact selection in different ways.

Consider first a reduction in the fixed cost of entry d log( fe∆) < 0. This reduces the total

(entry and overhead) fixed cost per entering variety in proportion to the share of the fixed
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cost of entry in the total fixed cost [( fe∆)/[ fe∆ + (1 − G(θ∗)) f ]]d log( fe∆) < 0. This reduction in

fixed cost acts like an equivalent increase in population coupled with an equivalent increase

in the fixed overhead cost. The effect of the former was analyzed in Proposition 3 and

Corollary 2. The effect of the latter is to further increase the sales shares of exiting varieties by

−[λθ∗γθ∗/(σθ∗ − 1)][( fe∆)/[ fe∆ + (1 − G(θ∗)) f ]]d log( fe∆) > 0. This in turn increases consumer

welfare by −[(E[δθ] − δθ∗)λθ∗γθ∗/(σθ∗ − 1)][( fe∆)/[ fe∆ + (1 − G(θ∗)) f ]]d log( fe∆) > 0 as long as

there is too little selection (Eλ[δθ] > δθ∗). The result in the proposition is obtained by solving

the fixed point in d log Y.

Consider now a reduction in the fixed overhead cost d log f < 0. The effect on the selection

cut-off is reversed compared to the case of a reduction in the fixed cost of entry: compared to

an increase in population by −[(1−G(θ∗)) f/[ fe∆+ (1−G(θ∗)) f ]]d log( f ) > 0, the increase in the

fixed overhead cost reduces the selection cut-off, which typically overcomes the increase in

selection associated with the equivalent increase in population. If this is the case, the overall

change in consumer welfare from the change in selection is positive if and only if there is too

much selection (Eλ[δθ] < δθ∗).

In both cases, and exactly as for population shocks, we can decompose the general equi-

librium response by analyzing three successive equilibrium allocations which allow firms to

adjust along more and more margins: entry, entry and exit, and entry, exit and markups. All

three equilibrium allocations feature the same changes in technical efficiency, but different

changes in allocative efficiency, driven by different changes in the allocation of resources. The

corresponding changes in consumer welfare are respectively given by Proposition 8, but with

ξµ = ξθ
∗

= 0 and ζθ
∗

= 0, ξµ = 0, and without any modification.

We can also perform the same decomposition for changes in real GDP per capita.

Proposition 9. In response to changes in fixed costs of entry d log( fe∆) and fixed overhead costs
d log f , changes in real GDP per capita are given by

d log Q =
(
Eλ

[
(1 − ρθ)

]) (
Eλ

[ 1
σθ

]) (
d log Y +

fe∆d log( fe∆) + (1 − G(θ∗)) f d log f
fe∆ + (1 − G(θ∗)) f

)
, (98)

where d log Y is given by Proposition 8.

Proposition 9 can be used to decompose real GDP per capita along the same lines as the

decomposition of welfare in Proposition 8. Setting ξµ = ξθ
∗

= 0, ζθ
∗

= 0 and ρθ = 1 holds fixed

markups and selection but allows entry, setting ξµ = 0 and ρθ = 1 holds fixed markups but

allows entry and selection to adjust, and finally apply Proposition 9 without any modification

allows all margins to adjust.
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F.2 CES Example

The CES case is once again very simple. We have σθ = σ, µθ = µ = 1/(1 − 1/σ), ρ = 1, and

δ = σ/(σ − 1). This implies that ξε = ξθ
∗

= ξµ = 0. The simplicity of this expression is a

consequence of the fact that the equilibrium is efficient.

F.3 Shocks to Productivity

Now, we consider shocks to the distribution of productivity shifters, starting with the homogeneous-

firm case before moving onto the heterogeneous case.

F.3.1 Homogeneous Firms

Whereas the model is not homothetic in population and fixed costs L, fe, and f , it is homothetic

in productivity A.

Proposition 10. Suppose that firms have the same productivity Aθ = A. In response to changes in
productivity d log A, changes in consumer welfare are given by

d log Y = d log A︸ ︷︷ ︸
technical efficiency

+ 0︸︷︷︸
allocative efficiency

. (99)

In response to a positive productivity shock d log A > 0, individual quantities and con-

sumer welfare all increase proportionately with the shock d log y = d log Y = d log A. As a

result, there is no change in markups d logµ = 0, and hence individual prices decrease pro-

portionately with the shock d log p = −d log A. Entry remains unchanged d log M = 0. More

generally the allocation of resources actually stays unchanged, that is, the fractions of labor

allocated to entry, overhead, and variable production remain unchanged. The absence of

reallocations in turn implies that there are no changes in allocative efficiency. There are only

changes in technical efficiency.

Proposition 11. Suppose that firms have the same productivity Aθ = A. In response to changes in
productivity d log A, changes in real GDP per capita are given by

d log Q = d log A. (100)

Basically, the price of each variety is reduced by the amount of the productivity shock,

with no change in markups.

F.3.2 Heterogeneous Firms

Finally, we consider shocks to productivities when the firm-size distribution is heterogeneous.
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Proposition 12. In response to changes in productivity d log Aθ, changes in consumer welfare are
given by

d log Y = Eλ
[
d log Aθ

]
︸          ︷︷          ︸
technical efficiency

+
νε

[
d log Aθ

]
+ νθ

∗ [
d log Aθ

]
+ νµ

[
d log Aθ

]
1 − ξε − ξµ − ξθ∗︸                                                   ︷︷                                                   ︸

allocative efficiency

+
ξε + ξµ + ξθ

∗

1 − ξε − ξµ − ξθ∗
(
Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

]
+ Eλ

[
d log Aθ

])
︸                                                                            ︷︷                                                                            ︸

allocative efficiency

,

where ξε, ξθ
∗
, and ξµ are given in Proposition 3 and

νε
[
d log Aθ

]
=

(
Eλ [δθ] − 1

) (
Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

]
− Eλ

[
(σθ − 1)d log Aθ

])
,

νθ
∗ [

d log Aθ
]

= −
(
Eλ

[
δθ

]
− δθ∗

) (
λθ∗γθ∗

σθ∗d log Aθ∗ − Eλ(1−1/µ)
[
σθd log Aθ

]
σθ∗ − 1

)
,

νµ
[
d log Aθ

]
= −

(
Eλ

[
(1 − ρθ)

[
1 − Eλ [δθ] − 1

µθ − 1

]
d log Aθ

])
.

Exactly as for shocks to population and to fixed costs, we can decompose the general

equilibrium response by analyzing three successive equilibrium allocations which allow firms

to adjust along more and more margins: entry, entry and exit, and entry, exit and markups.

All three equilibrium allocations feature the same changes in technical efficiency given by

the sales-weighted changes in productivities, exactly as in Hulten’s theorem (Hulten, 1978).

These three equilibrium allocations feature different changes in allocative efficiency, driven

by different changes in the allocation of resources. The corresponding changes in consumer

welfare are respectively given by Proposition 12, but with ξµ = ξθ
∗

= 0 and νµ[d log Aθ] =

νθ
∗
[d log Aθ] = 0, ξµ = 0 and νµ[d log Aθ] = 0, and without any modification.

Changes in allocative efficiency are given by the sum of two sets of terms. The first

set of terms νε
[
d log Aθ

]
, νθ

∗ [
d log Aθ

]
, and νµ

[
d log Aθ

]
captures the effects of changes in

productivities d log Aθ holding the aggregate price index δ̄/Y constant. The second set of

terms capture the effects of changes in the aggregate price index d log P = (Eλ(1−1/µ)[(σθ −
1)d log Aθ] + d log Y)Eλ[1/σθ].

We have already discussed the effects of changes in the aggregate price index, for example

in Section 5.2. We therefore focus our discussion on the effects of changes in productivities

holding the aggregate price index constant. We quickly discuss the intuition for the terms

νε
[
d log Aθ

]
, νθ

∗ [
d log Aθ

]
, and νµ

[
d log Aθ

]
. These terms are then amplified by a multiplier

1/[1 − (ξε + ξµ + ξθ
∗
)] arising from solving the fixed point in d log Y.

The intuition for the term νε
[
d log Aθ

]
is the following. Productivity shocks change prices

for given markups, exit behavior, and aggregate price index. The sales shares of varieties
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with high markups tend to increase if they experience sufficiently higher relative productivity

shocks to offset their relatively lower elasticities. If they do, the variable profit share increases,

which increases entry by Eλ(1−1/µ)[(σθ − 1)d log Aθ] − Eλ[(σθ − 1)d log Aθ] and welfare by

(Eλ[δθ] − 1)(Eλ(1−1/µ)[(σθ − 1)d log Aθ] − Eλ[(σθ − 1)d log Aθ]).

The intuition for the term νθ
∗ [

d log Aθ
]

is the following. Productivity shocks change

exit behavior for given markups and aggregate price index. The selection cut-off tends

to decrease if the productivity increases relatively more and if the elasticity of substitu-

tion is relatively higher at the cut-off. If they do does, the sales share of exiting vari-

eties decreases by (σθ∗d log Aθ∗ − Eλ(1−1/µ)[σθd log Aθ])/(σθ∗ − 1), which changes welfare by

−(Eλ[δθ] − δθ∗)(σθ∗d log Aθ∗ − Eλ(1−1/µ)[σθd log Aθ])/(σθ∗ − 1).

The intuition for the term νµ
[
d log Aθ

]
is the following. Productivity shocks lead to changes

in markups for a given aggregate price index. Increases in productivity lead to increases in

markups, which increases the variable profit share. This in turn increases entry and changes

welfare by −Eλ[(1 − ρθ)[1 − [(Eλ[δθ] − 1)/(µθ − 1)]d log Aθ]].

Signing the overall changes in allocative efficiency is difficult because of offsetting effects.

For example if all productivity shocks are identical d log Aθ = d log A, then there are no

changes in allocative efficiency, since just like in the case with homogeneous firms, the model

is homothetic with respect to such shocks. In this special case, the terms capturing the effects

of changes in productivities given the aggregate price index exactly offset (term by term) the

terms capturing the effects of changes in the aggregate price index given productivities: the

terms in νε[d log Aθ] exactly offset the terms in ξε, the terms in νθ
∗
[d log Aθ] exactly offset the

terms in ξθ
∗
, and the terms in νµ[d log Aθ] exactly offset the terms in ξµ. This shows that

changes in allocative efficiency from productivity shocks depend finely on the distribution of

these shocks across types.

It turns out to be easier to determine if changes in consumer welfare are greater than sales-

and pass-through-weighted changes in productivity.

Corollary 4. Sufficient conditions for changes in consumer welfare to be greater than sales- and
pass-through-weighted changes in productivity

d log Y > Eλ
[
ρθd log Aθ

]
(101)

in response to positive changes in productivity are the conditions (1), (2), and (3) of Corollary 2,
together with two conditions ensuring that productivity shocks are sufficiently skewed towards large
firms

Eλ(1−1/µ)
[
(σθ − 1)d log Aθ

] − Eλ
[
ρθ(σθ − 1)d log Aθ

]
> 0, (102)

and
Eλ(1−1/µ)

[
(σθ − 1)d log Aθ

] − (σθ∗ − 1)d log Aθ∗ > 0. (103)

Finally, we can apply the same decomposition as above into three different equilibrium
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allocations incorporating more and more margins of adjustment: entry, entry and exit, and

entry, exit and markups. The corresponding changes in real GDP per capita are respectively

given by Proposition 13 below, but with ξµ = ξθ
∗

= 0 and νµ[d log Aθ] = νθ
∗
[d log Aθ] = 0 and

ρθ = 1, ξµ = 0 and νµ[d log Aθ] = 0 and ρθ = 1, and without any modification.

Proposition 13. In response to changes in productivities d log Aθ, changes in real GDP per capita
are given by

d log Q = Eλ
[
ρθd log Aθ

]
+

(
Eλ

[
(1 − ρθ)

]) (
Eλ

[ 1
σθ

]) (
d log Y + Eλ(1−1µ)

[
(σθ − 1)d log Aθ

])
,

where d log Y is given by Proposition 12.

Appendix G Differences in Tastes and Overhead Costs

In this section, we extend the model to allow for differences in tastes and overhead costs, by

allowing the Kimball aggregator Υ(θY ;θ) and the overhead cost fo(θ) to depend on the type θ

of the variety. Instead of ranking types by productivity, we rank them in increasing order of

variable profits to overhead cost ratio so that Xθ = λθ(1 − 1/µθ)/ fo,θ is increasing in θ. The

formulas in the paper continue to apply, with one exception: changes in selection are now

given by(
∂ log Xθ

∂θ
|θ=θ∗

)
dθ∗ = −(σθ∗ − 1)

(
d log Aθ − d log P

) − d log P − d log Y + d log(
fo,θ∗
L

). (104)

This implies that in all the formulas, we must now useγ∗θ = [gx(log Xθ∗)/[1−Gx(log Xθ∗)]]/(σθ∗−
1) where gx(log Xθ) = g(θ)/(∂ log Xθ/∂θ).

Empirical implementation requires more data than the strategy described in Section 6.1.

This is because the model is richer. To simplify the discussion, assume that overhead costs

are homogeneous so that fo,θ = fo.

The model without taste shocks required data on sales λθ and pass throughs ρθ as well

as taking a stand on the average markup µ̄ = 1/[Eλ[1/µθ]] and the average infra-marginal

surplus ratio δ̄ = Eλ[δθ]. The nonlinear model could then be perfectly identified, allowing us

to perform local and global counterfactuals.

Identification of the model with taste shocks requires additional data: we need data

on markups µθ and we need to take a stand on the whole distribution of infra-marginal

consumption surplus ratios δθ. Even with this data, we only have a local identification of the

model, allowing us only to perform local first-order counterfactuals.

The reason is that in the model without taste shocks, a bigger firm is a smaller firm which
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received a positive productivity shock. Cross-sectional observations then allow us to trace

the whole individual demand curve and hence to back out the Kimball aggregator up to some

constants. This simplification disappears in the model with taste shocks.

Appendix H Real GDP via a Quantity Index

In a neoclassical setting (without non-convexities), real GDP can in principle be measured in

two equivalent ways, either using a Divisia quantity index or a Divisia price index. In this

model, since new goods enter with finite sales, this breaks the equivalence between the two

indices. The price index is the definition we adopt in the body of the paper, however, for

completeness, we also discuss the quantity index. The quantity index measures the change in

individual quantities at constant prices

d log Qq = Eλ[d log yθ]. (105)

This is equal to

d log Qq = −d log M + λθ∗
g(θ∗)

1 − G(θ∗)
dθ∗ + Eλ

[
d log(

Aθ

µθ
)
]
, (106)

The two notions of changes in real GDP per capita differ. For the rest of this section, denote

the price-index notion (that we use in the body of the paper) using d log Qp: this is the change

in real GDP per capita measured at constant quantities (more precisely, the price index is

measured at constant quantities, and then changes in real GDP are defined to be changes in

nominal GDP deflated by the price index). Changes in real GDP per capita measured with

quantities d log Qp depend only on changes in prices d log(pθ/w) = d log(µθ/Aθ). For given

prices pθ/w = µθ/Aθ, they do not depend on the allocation of spending between new, existing,

and disappearing varieties. By contrast, changes in real GDP measured with quantities do

depend on the allocation of spending for given prices. In fact, d log Qq penalizes new product

creation since the quantity of new products produced is not included in the measure, but the

reduction in the quantity of existing products is included. The reduction in the quantity of

existing products comes about from the fact that, in order to produce new products, less of

the old products must be produced.

Since real GDP measured at constant prices has a physical interpretation, we can write

real GDP per capita measured with quantities Qq(A,X):34

34However, no such representation is available for real GDP measured with prices Qp.
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d log Qq =
∂ logQq

∂ logA d logA︸             ︷︷             ︸
technical efficiency

+
∂ logQq

∂X dX︸       ︷︷       ︸
allocative efficiency

. (107)

Note that changes in allocative efficiency are different for consumer welfare d log Y and for

changes in real GDP per capita at constant prices d log Qq. Changes in allocative efficiency are

changes in the object of interest originating in reallocation effects. It is therefore natural that

they depend on the object of interest.

Homogeneous Firms

Proposition 14. Suppose that firms have the same productivity Aθ = A. In response to changes in
population d log L, changes in real GDP per capita are given by

d log Qq = −d log L︸   ︷︷   ︸
technical efficiency

+ (1 − ρ)(d log Y + d log L)︸                         ︷︷                         ︸
allocative efficiency

, (108)

where d log Y is given by Proposition 1. Changes in entry costs d log( fe∆) and in overhead costs
d log f0 respectively have the same effects on these variables as change in population shocks d log L =

−[ fe∆/( fe∆ + fo)]d log( fe∆) and d log L = −[ fo/( fe∆ + fo)]d log( fo).

Changes in real GDP per capita measured with quantities are given by d log Qq = d log y
so that d log Qq = d log Y + d log(y/Y) = d log Y−ρ(d log Y + d log L). They can be decomposed

into changes in technical efficiency−d log L and changes in allocative efficiency (1−ρ)d log Y+

(1 − ρ)d log L.

Holding the allocation of resources constant, an increase in population d log L > 0 leads

to a proportional reduction −d log L < 0 in the per-capita quantity of each variety because

the number of varieties increases by d log L > 0. The new varieties do not contribute at all

to changes in real GDP measured with quantities. This explains, in this case, the negative

changes in technical efficiency −d log L < 0.

Turning to changes in allocative efficiency, the pro-competitive reduction in markups

reduces entry and increases the per-capita quantity of each variety. This explains, in this case,

the positive changes in allocative efficiency (1 − ρ)(d log Y + d log L) > 0.

CES Example Changes in real GDP per capita are given by

d log Qq = −d log L︸   ︷︷   ︸
technical efficiency

+ 0︸︷︷︸
allocative efficiency

. (109)

Even though the CES model is efficient, and there are no changes in allocative efficiency,

increases in population reduce real GDP measured using the quantity index. Intuitively, the
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production of new goods means that fewer units of existing goods are produced per capita.

Since the quantity index only measures changes in the quantity of existing goods per capita,

it falls in response to the shock.

Heterogeneous Firms

Proposition 15. In response to changes in population d log L, changes in real GDP per capita are

d log Qq = −d log L︸   ︷︷   ︸
technical efficiency

+
(
1 − Eλ

[
ρθσθ

]
Eλ

[ 1
σθ

]) (
d log Y + d log L

)
︸                                                 ︷︷                                                 ︸

allocative efficiency

, (110)

where d log Y is given by Proposition 3.

We can apply the same decomposition as above into three different equilibrium allocations

incorporating more and more margins of adjustment: entry, entry and exit, and entry, exit and

pricing/markups. The corresponding changes in real GDP per capita are respectively given

by Proposition 4, but setting ξµ = ξθ
∗

= 0 and ρθ = 1 (which holds fixed markups and the

cut-offs), ξµ = 0 and ρθ = 1 (which holds fixed markups but allows the cut-off to adjust), and

without any modification (allowing all margins to adjust).

For changes in real GDP per capita, it is actually even more interesting to study this

decomposition in reverse order, because of the more central role played by pricing/markups

in the evolution of these variables. This means incorporating more and more margins of

adjustment as follows: pricing/markups, pricing/markups and exit, and pricing/markups,

entry and exit. The corresponding changes in real GDP per capita are respectively given by

Proposition 4, but with ξε = ξθ
∗

= 0, ξε = 0, and without any modification. For example,

under assumptions (1), (2), and (3), changes in real GDP per capita measured with prices

increase as more and more margins of adjustment are incorporated.

69


