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1 Introduction

The use of tariffs to protect traded goods such as manufactures has a long history. In his famous

Report on Manufactures, Alexander Hamilton argues for moderate tariffs combined with direct sub-

sidies to promote manufacturing. Opposition to the proposed subsidies came from Thomas Jeffer-

son and James Madison, who favored even higher tariffs, and Madison’s administration produced

the first protectionist tariff in the United States (Irwin, 2004). The administration of President Don-

ald Trump enacted tariffs, often at 25%, to protect several manufacturing industries and against a

broad range of products from China. Significantly, the Chinese products were initially selected to

minimize the direct impact on consumer prices, leaving American businesses facing the brunt of

tariffs on their imported inputs (Fajgelbaum, Goldberg, Kennedy and Khandelwal, 2020).

Does modern trade theory offer any new answer to this old question of whether to protect the

traded sector? To answer this, we investigate a small-country model with two sectors – one traded

and the other nontraded – and with heterogeneous firms, monopolistic competition and CES pref-

erences (as in Melitz, 2003). We adopt a Pareto distribution for productivity (as in Chaney, 2008)

and also roundabout production (as in Caliendo and Parro, 2015). The differentiated intermediate

inputs in each sector are bundled into a finished good that is sold to home consumers and firms

in that sector, but not traded, while the differentiated inputs are traded in one sector. A tariff is

applied to imports of these differentiated intermediate inputs.

Demidova and Rodrı́guez-Clare (2009) obtain a formula for the optimal uniform tariff in a

small country with one sector and no roundabout production, which we denote by topt. Because

there is no roundabout production, we can think of this tariff as applying to imported final dif-

ferentiated goods. They argue that this single tariff instrument obtains the first-best by offsetting

two distortions: the need to correct for the markup on domestic final goods (by applying a tariff

equal to that markup) and the externality present because imported varieties bring surplus that

is not taken into account in domestic spending (by slightly lowering the tariff). When there is

roundabout production, topt does not correct for the double-marginalization that occurs when the

markup on domestic differentiated inputs is passed-through to the price of the bundled finished

good, which is further used as an input to the production of other differentiated inputs. In a
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closed economy, we show that this double-marginalization is corrected by applying a subsidy on

the bundled finished good. When this subsidy is not used, however, then a second-best policy

available in an open economy is to lower the import tariff below topt, thereby lowering the price of

the bundled finished good. Our main result is to show that the optimal second-best tariff on intermediate

inputs is below topt, provided that a certain (small) amount of roundabout production is present.

We obtain the optimal uniform, second-best tariff as a fixed-point of a formula that has two

new terms: a M term that reflects the relative monopoly distortion between the traded and non-

traded sectors; and a R term that reflects roundabout production in the traded sector, which ampli-

fies the monopoly distortion there. In a 186-country, 15-sector quantitative version of the model,

the optimal uniform tariff has a median value of only 10% (or 7.5% for countries with above-

median shares of manufacturing production), as compared to topt of 27.3% in a one-sector model

with manufacturing parameters, and is negative for five countries: Bhutan, Myanmar, New Cale-

donia, Hong Kong, and Spain.

Costinot, Rodrı́guez-Clare and Werning (2020) analyze optimal tariffs on final differentiated

goods with very general tastes and technologies, and they show that optimal tariffs can be lowered

(and even made negative) by having multiple sectors, a non-Pareto distribution for productivity,

or linear foreign preferences. They are the first to extend the analysis to nonuniform tariffs, and

they find that the importing country should use an import subsidy on the least efficient foreign

exporters. Haaland and Venables (2016) demonstrated a potential second-best role for reduced

trade taxes to offset a monopoly distortion, building on earlier work by Flam and Helpman (1987).

Lashkaripour and Lugovsky (2020) analyze optimal uniform first-best tariffs with multiple sectors

and input-output linkages, but when considering second-best tariffs, they do not incorporate these

linkages. As far as we are aware, then, the literature has not addressed the realistic case that

we examine here: second-best tariffs in the presence of roundabout production and a nontraded

sector. That is the critical gap we aim to fill, by providing a formula for the second-best tariff in

this setting and by characterizing the generality of low optimal tariffs on intermediate inputs.
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2 Two-Sector Economy with Roundabout Production

We analyze a two-sector Melitz (2003)-Chaney (2008) model with roundabout production, similar

to Arkolakis, Costinot, and Rodrı́guez-Clare (2012, section IV) and Costinot and Rodrı́guez-Clare

(2014). We summarize key equations here and Appendix A contains the full model. There are two

countries, k = i, j, and two sectors s = 1, 2, where sector 1 is traded and sector 2 is nontraded.

County i is a small open economy, and the foreign country j 6= i is the rest of the world. In the

foreign country, for simplicity we assume a single traded sector, s = 1.

In both sectors, firms produce differentiated inputs under monopolistic competition, which

are costlessly bundled into a finished good in CES fashion, with elasticity σs > 1. The finished good

is non-traded, and it is sold to domestic consumers as final goods and also to domestic firms as

intermediate inputs, used to produce differentiated inputs (e.g. firms produce machinery parts

using machines). In sector 1, the traded differentiated inputs are subject to iceberg costs and the

imported varieties are subject to a tariff, where one plus the ad valorem tariff for country i imports

from j is denoted by tji1; for simplicity, there is no foreign tariff.

The finished output in each sector has quantity Qis, price index Pis, and value Yis ≡ PisQis.

With roundabout production, the marginal cost of producing a differentiated input for a firm with

productivity ϕs = 1 in sector s is

xis ≡ wγis
i P1−γis

is , (1)

where 0 < γis ≤ 1 is the labor share. We refer to (1) as the input cost index.

A mass of firms Nis incur fixed labor costs of entry f e
is to receive a productivity draw from

a Pareto distribution, Gs(ϕs) = 1− ϕ−θs
s , with ϕs ≥ 1 and θs > σs − 1. As is familiar from the

Melitz-Chaney model, firms choose to produce the differentiated input for the domestic market

or to export if their productivities exceed some cutoff levels, and in each case, the firms then incur

additional fixed labor costs.

Consumers have Cobb-Douglas preferences over final goods in the two sectors:

Ui = Cαi
i1 C1−αi

i2 , (2)
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where αi > 0 is the expenditure share on the traded sector 1. Consumer income Ii includes labor

income (the only factor of production) wiLi, plus rebated tariff and tax revenue Bi, while free entry

ensures that expected firm profits equal zero.

Domestic consumer demand for finished goods equals αi Ii in sector 1 and (1− αi)Ii in sector

2. Let λijs denote the expenditure share of differentiated inputs that country j purchases from

country i, so λiis = 1 − λjis is the domestic expenditure share with λji2 ≡ 0 and λii2 ≡ 1 in

the nontraded sector 2. Then the total production cost of all differentiated inputs in sector 1 in

country i is σ1−1
σ1

∑k=i,j λik1Yk1; namely, the domestic sales and exports of differentiated inputs in

sector 1, adjusted by markups. Given the share (1− γis) of costs in (1) going to the finished good,

the demand for that good in sector 1 comes from domestic consumers and from domestic firms

producing those differentiated inputs for sale in both countries:

Yi1 = αi(wiLi + Bi) + γ̃i1
(
λiisYi1 + λij1Yj1

)
, with γ̃is ≡ (1− γis)

(
σs − 1

σs

)
< 1, (3)

while in the nontraded sector 2 this equation is simply Yi2 = (1 − αi)(wiLi + Bi) + γ̃i2Yi2. The

parameter γ̃is eliminates markups from the value of intermediate inputs before computing the

cost share, (1− γis), devoted to the finished good as an input.

The expenditure shares and the cutoff productivities are determined in equilibrium (see Ap-

pendix A), and we normalize the foreign wage at unity. The term λij1Yj1 appearing in (3) is the

value of country i exports of the differentiated inputs. Under balanced trade, this must equal the

net-of-tariff value of imports. Letting tji1 denote one plus the ad valorem import tariff used by

country i, then λij1Yj1 =
λji1
tji1

Yi1. Entry is proportional to the demand for those inputs for home

sale, λii1Yi1, plus the demand for exports, λij1Yj1 =
λji1
tji1

Yi1. Solving for Yi1 from (3) we find that

entry is

Ni1 =
αi(σ1 − 1)

f e
i1θ1 σ1

[
Li

1−αi
Λi1

+ (αi − γ̃i1)

]
, with Λi1 ≡

(
λii1 +

λji1

tji1

)
. (4)

Since λiis + λjis = 1, then Λi1 = 1 in free trade (with tji1 = 1) and autarky (tji1 → +∞ so

λii1 = 1 and λji1 = 0). It follows that Ni1 is equal at these two points. But for 1 < tji1 < +∞

then Λi1 < 1, so that Λi1 is a ∪-shaped function of the tariff. We show (see Appendix A.2) that

Λi1 achieves its minimum at the same tariff at which tariff revenue Bi/wi is maximized. It follows
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from (4) that entry is a ∪-shaped function of the tariff, just like Λi1, unless there is no nontraded

sector and αi = 1, in which case entry is constant. The intuition for this result is Lerner symmetry

(Costinot and Werning, 2019), whereby the import tariff acts like an export tax, and starting from

free trade the tariff depresses entry into the traded sector. Entry into the nontraded sector is

Ni2 =
(1− αi)(σ2 − 1)
f e
i2θ2 σ2(1− γ̃i2)

(
Li +

Bi

wi

)
, (5)

which is a ∩-shaped function of the tariff because revenue Bi/wi has that pattern.

3 Optimal Consumer and Producer Taxes in a Closed Economy

We first discuss the distortions arising in a closed economy from having monopolistic production

of the differentiated inputs, where both sectors s = 1, 2 are nontraded. The markup on the differ-

entiated inputs is fully passed-through to the price of the bundled, finished good. That distortion

then operates on two margins: consumer purchases of finished goods; and firm purchases of fin-

ished goods as inputs, where the higher price on the finished good is further passed-through to

raise the price of intermediate inputs, creating a double-marginalization of the markup on inter-

mediate inputs. Rather than correcting the monopoly distortion at its source (i.e. in the price of

differentiated inputs), it will be instructive to correct it by using tax/subsidies on purchases of the

finished goods on these two margins. So we consider both consumer and producer tax/subsidies

on purchases of the finished goods, where one plus the ad valorem rates are denoted by tc
is and tp

is,

respectively.

We consider two solutions to the closed-economy problem (see Appendix B): first, choosing

both the consumer and producer tax/subsidies optimally; and second, using only the consumer

tax/subsidy while setting tp
is ≡ 1. When both instruments are used, we obtain the solution

tp
is =

(
σs − 1

σs

)
< 1 and

tc
i1

tc
i2
=

(
σ1 − 1

σ1

)/(
σ2 − 1

σ2

)
. (6)

The optimal producer subsidies tp
is < 1 exactly counteract the markups on differentiated inputs
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which would otherwise be fully passed-through to finished goods prices.1 With these subsidies,

firms pay prices for finished goods that reflect their marginal costs. In addition, optimal consump-

tion tax/subsidies are needed so that, in relative terms, these prices offset the markups implicit in

finished goods’ prices faced by consumers.

In contrast to this first-best case, consider the second-best policy that involves consumption

tax/subsidies only. Because of double-marginalization of the markups charged on differentiated

outputs, the sector s elasticity σs effectively becomes σ̃is ≡ 1 + γis(σs − 1), and the markup is

σ̃is
(σ̃is−1) . The solution for the optimal consumption tax/subsidies is

tc
i1

tc
i2
=

(
σ̃i1 − 1

σ̃i1

)/(
σ̃i2 − 1

σ̃i2

)
for σ̃is ≡ 1 + γis(σs − 1). (7)

To interpret (7), the sector with the lowest effective elasticity must have the lowest tax (i.e. greatest

subsidy) to offset the effective monopoly distortion, which is inversely measured by γis(σs − 1).

Even if the elasticities σs ≡ σ > 1 are identical then the sector with the strongest roundabout

production (lowest γis) must be subsidized in consumption, because it has the highest effective

markup due to double-marginalization. The intuition from the second-best case will be useful as

we examine tariffs on trade, as we turn to next.

4 Optimal Uniform Tariffs in a Small Open Economy

4.1 First-best tariff

Demidova and Rodrı́guez-Clare (2009) analyze a small, open economy with one sector, s = 1, and

no roundabout production, so we should think of the imports as final differentiated goods. They

identify two distortions arising from monopolistic competition. The first is the markup charged

on the domestic differentiated varieties which can be corrected by subsidizing domestic buyers of

those inputs, where one minus the ad valorem subsidy is the inverse of the markup:

t∗ii1 = ρ1 with ρi ≡
σi − 1

σi
< 1. (8)

1The need for such subsidies in a dynamic monopolistic competition model was noted by Judd (1997, 2002).
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Alternatively, the markup on domestic varieties can be offset by using a tariff on imported varieties

equal to the markup, t1 ≡ 1/ρ1 , which is the optimal tariff with homogeneous firms (Gros, 1987).

With heterogeneous firms, however, Demidova and Rodrı́guez-Clare (2009) find that there is

a second distortion: each new foreign variety brings surplus, which domestic buyers do not take

account of in their spending. One way to correct this externality is to use an import subsidy, and

they find that one minus the optimal ad valorem subsidy is

t∗ji1 =
θ1ρ1

(θ1 − ρ1)
< 1, (9)

where the inequality follows from θ1 > σ1 − 1. Furthermore, they argue that that an equivalent

policy to using t∗ii1, t∗ji1 is to multiply the tariff t1 = 1/ρ1 by the import subsidy in (9), and then

both distortions are corrected by a single instrument, which is the optimal tariff:2

topt ≡ t1 × t∗ji1 =
θ1

(θ1 − ρ1)
> 1. (10)

If we add a second sector or roundabout production, however, then the equivalence of using

the policy t∗ii1, t∗ji1 < 1 and the optimal tariff topt > 1 no longer holds. To see this, suppose that

we “scale-up” t∗ii1, t∗ji1 by dividing by ρ1, thereby obtaining tii1 = 1 and topt, and then use a sub-

sidy of ρ1 on the finished good to offset this scaling-up. With a single sector and no roundabout

production, this subsidy does not make any difference because consumers cannot substitute away

from the finished good and firms do not purchase it. But once we add multiple sectors and/or

roundabout production, then substitution by consumers and firms means that the subsidy of ρi

is needed to avoid double-marginalization, as we found in the closed economy. Analogously, for

an open economy with multiple sectors and input-output linkages, Lashkaripour and Lugovsky

(2020) argue that such subsidies must be applied in the first-best; in that case, the first-best tariffs

for a small country are the same with and without input-output linkages.3 Our interest is in the

2The same small-country formula for the optimal tariff as (10) is obtained by Felbermayr, Jung and Larch (2013),
who show that the optimal tariff in a large country is higher.

3See their section 4(ii) and especially footnote 23, which explains that for a small open economy the equations for
the first-best taxes and tariffs are identical with and without input-output linkages. These authors consider a wide
class of models introduced by Kucheryavyy, Lyn and Rodrı́guez-Clare (2016), which includes the Melitz-Pareto case.
Depending on the model being considered, the first-best tariff formula is not necessarily the same as topt, but in all cases
the first-best tariff does not depend on input-output linkages for a small country. When considering the second-best
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second-best tariff obtained in the absence of such subsidies, as we turn to next.

4.2 Second-best Tariff

We now add the nontraded sector 2, and we suppose that the only policy instrument available is

a uniform import tariff (or subsidy). Because we are no longer using the instruments tii1, tp
i1 or tc

i1,

for convenience we drop subscripts from the import tariff tji1 and simply denote it by ti with an

optimal second-best value t∗i . The fact that a subsidy on the finished good is not used creates a

robust reason for lowering the optimal tariff below topt. A slight reduction of the tariff below its

first-best value ordinarily causes only a second-order loss in welfare, but it now brings a first-order

gain in welfare because it lowers the price of the finished good purchased by firms.

Entry provides a second possible reason to have t∗i < topt. As we showed in section 2, starting

from free trade a tariff in sector 1 leads firms to exit that sector and move into sector 2. That will

lead to a welfare loss if the monopoly distortion is greater in the traded sector. Let D(ti) denote

the marginal welfare impact of firms entering the traded sector – holding the cutoff productivities

constant – relative to the share of spending on that sector (αi).4 We find that

D(ti) =

[
σ̃i1

(σ̃i1 − 1)
− σ̃i2

(σ̃i2 − 1)
Λi1(1− γ̃i1)

1− γ̃i1Λi1
− Ed

]
(11)

where Ed > 0 and all such script-variables depend on sector 1 parameters and λii1 (and therefore

depend on the tariff). The first term appearing in (11), σ̃i1
(σ̃i1−1) , is the effective markup in sector

1, and the second term is the effective markup in sector 2 multiplied by Λi1(1−γ̃i1)
1−γ̃i1Λi1

(which is ≤ 1

for ti ≥ 1) that reflects tariff revenue. The third term −Ed < 0 appears because the tariff is an

inefficient instrument to influence entry, so it has a deadweight loss.

We see from (11) that D(ti) > 0 so that entry into the traded sector leads to a welfare gain –

and exit leads to a welfare loss –when that effective markup there is sufficiently above the effective

markup in the nontraded sector. For the 186 country quantitative model used in the next section,

we find that σ̃i1 in manufacturing (one of the industries in the traded sector) and σ̃i2 in the non-

traded sector (services) both have median values of about two. It follows that D(ti) < 0 at the

tariffs without such subsidies, however, they do not incorporate input-output linkages.
4See Appendix C.1 for the total change in utility from selection and entry (i.e. the term D(ti)).
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median , so it is inefficient to lower the tariff to promote entry into manufacturing. But for about

10% of countries we find that D(ti) > 0 when comparing manufacturing with services, which

creates an argument for encouraging entry into manufacturing by lowering the tariff.

In our theoretical work, we want to allow the effective distortion in the traded sector to be

greater or less than that in the nontraded sector. We will impose an upper-bound on the inverse

distortion of the traded sector as compared to the nontraded sector:

(σ̃i1 − 1)
σ̃i1

< κi
(σ̃i2 − 1)

σ̃i2
, (12)

where the parameter κi ≥ 1 will be specified in Theorem 1 below. Our aim is to choose κi high

enough to include a wide range of effective distortions in (12).

We can now state a general formula for the optimal second-best tariff t∗i , as compared to topt

(see Appendix C). Specifically, t∗i is obtained as a fixed point of the equation

t∗i = topt F(t∗i ), with F(ti) ≡
[

1− (1− γi1)R(ti)

1 + (1− αi)M(ti)

]
, (13)

where M(ti) captures the impact of the higher monopoly distortion in the traded versus the non-

traded sectors, and is defined by

M(ti) ≡M×
(
Em −

(ti − 1)
ti

θ1

)
D(ti)

A(ti)
with M > 0, Em > 0, (14)

where A(ti) is defined by

A(ti) ≡ αi − γ̃i1 + (1− αi)Ea with Ea > 0, (15)

while R(ti) reflects the impact of roundabout production and is defined by

R(ti) = R×
[

θ1 − ρ1 (1− λii1)

Λi1
− θ1ρ1

]
with R > 0. (16)

To explain these terms more carefully, recall that the distortion term D(ti) measures the marginal

welfare impact of firms moving from the nontraded to the traded sector, and notice that it en-
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ters (1− αi)M(ti), which appears in the denominator of (13), reflecting the impact of the relative

monopoly distortion on the optimal tariff. When αi = 1 so there is only the traded sector, then

this term vanishes, because there is no impact of the relative distortion between traded and non-

traded goods. But there is still roundabout production in traded goods alone, and the impact of

that roundabout production on the optimal tariff is captured by the term R(ti), appearing in the

numerator of (13).

More specifically, when αi = 1 and γi1 = 1 in (13), then we are back in the one-sector, no-

roundabout model and that formula immediately gives t∗i = topt. Outside of that special case,

there will be a lower optimal tariff, t∗i < topt, whenever (1− αi)M(t∗i ) ≥ 0 and (1− γi1)R(t∗i ) ≥ 0

with one of these inequalities holding strictly. For example, suppose that αi = 1 so there is only

a traded sector, but γi1 < 1 so there is some roundabout production. Then we can show that

R(t∗i ) > 0 at the fixed point of (13), so that roundabout production lowers the optimal tariff.

Next, suppose we add the nontraded sector so that αi < 1, in which case the denominator of

F(t∗i ) equaling [1 + (1− αi)M(t∗i )] comes into play. If the relative distortion in the traded sector is

positive, D(t∗i ) > 0, then provided that the other terms in (14) are positive we will have M(t∗i ) > 0,

so the denominator further reduces the optimal tariff. One of those other terms is A(ti). Recall that

we initially defined D(ti) as the marginal impact of entry into sector 1 relative to the size of that

sector (αi), and we loosely interpret A(ti) as the effective size of sector 1. As a regularity condition

we need to impose A(ti) > 0, which is guaranteed by the sufficient conditions specified in the

following result (proved in Appendix D).

Theorem 1.

(a) Pure roundabout: If αi = 1 and γi1 < 1, then R(t∗i ) > 0 and the optimal tariff is t∗i < topt.

(b) No roundabout: If γi1 = γi2 = 1 then (i) D(t∗i ) > 0 and the optimal tariff is t∗i < topt when

σ1 < σ2

[
σ1(θ1 − ρ1)

σ1θ1 − ρ1

]
< σ2, (17)

(ii) if σ1 ≥ σ2 then D(t∗i ) < 0 and the optimal tariff is t∗i > topt.
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(c) Two sectors with roundabout: Assume that αi < 1 and the following two conditions hold:

γi1 ≥
1

1 + σ1
ρ1
(θ1 − ρ1) (1− ρ1)

, (18)

αi ≥ min

γ̃i1,
−γi1θ1 + ρ1

(
1 + 1−γi1

σ1γi1

)
θ1(1−ρ1)

ρ1
+ ρ1

(
1 + 1−γi1

σ1γi1

)
 . (19)

Then A(ti) > 0 for ti > t′i, where t′i < 1 is an import subsidy. Furthermore, if there is enough roundabout

production so that

γi1 ≤ 1− ρ1[
θ1(1− ρ1) + ρ2

1

]
(θ1 − ρ1)

< 1, (20)

and the bounds in (12) hold where we specify κi as

κi =

[
δi +

γ̃i1θ1 (αi(1− ρ1) + γi1ρ1)
(
θ1 (1− ρ1) +

(
topt − γ̃i1

)
ρ1
)

(1− αi) (1− γ̃i1)
2

]
(topt − γ̃i1)

(1− γ̃i1)
, (21)

for δi ≡
1−ρ2

1γi1(1−γi1)

(
1− ρ1

(topt)2

)−1

topt+ 1
σ1

, then the optimal tariff is t∗i < topt with R(t∗i ) > 0.

Part (a) has already been discussed, and shows that roundabout production in a one-sector

model always lowers the optimal tariff. This result is the simplest demonstration that the tariff t∗i

on intermediate inputs is less than the tariff topt on final goods.

Part (b) deals with the opposite case where there is no roundabout production, so the imports

are differentiated final goods. In that case, A(ti) > 0 is guaranteed. Condition (17) used in part

(b)(i) ensures that the relative distortion in the traded sector sufficiently exceeds that in the non-

traded sector so that D(ti) > 0 for ti ∈ [1, topt]. In that case, the relative monopoly distortion is the

only factor operating to reduce the optimal tariff and we find that t∗i < topt because D(t∗i ) > 0 and

the denominator of F(t∗i ) exceeds unity. On the other hand, if the traded sector is less distorted

than the nontraded sector, with σ1 ≥ σ2, then we have the reverse outcome with D(t∗i ) < 0 and

t∗i > topt. So the tariff on final goods can be greater or less than that found in a one-sector model,

depending on the relative monopoly distortion across sectors.

In part (c) we allow for two sectors and roundabout production, and now we need A(ti) > 0.
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To ensure A(ti) > 0 for ti > t′i, where t′i < 1 is an import subsidy specified in the proof, we require

the sufficient conditions (18) and (19): the former is a lower-bound on γi1 and the latter is a lower-

bound on αi (but also depending on γi1). To illustrate these two lower-bound constraints, we rely

on parameter values that we adopt in our quantitative model of the next section. There we use

the EORA dataset that has input-output matrices for 186 countries in 2010 and 15 sectors (Lenzen,

Moran, Kanemoto and Geschke, 2013).5 The traded sectors include Manufacturing, Agriculture

and Mining (including petroleum extraction), while all Service industries are treated as nontraded.

We adopt parameters values for each of these sectors, and these are σ1 = 4.4 and θ1 = 5.1 for

Manufacturing which are used for illustrative purposes in Figure 1. The dots in Figure 1 are the

values of αi and γi1 when aggregating within all three traded sectors. We see that the two lower-

bounds constraints (18) and (19) are satisfied for all countries so that the regularity condition

A(ti) > 0 holds.

Now we check whether t∗i < topt holds in part (c), which allows for the nontraded sector and

roundabout production in both sectors. We already know from part (b) – where we excluded

roundabout production – that it is possible to find the reverse outcome t∗i > topt if the traded

sector is less distorted than the nontraded sector (σ1 ≥ σ2). We would like to know, however,

if a small amount of roundabout production is enough to overwhelm that relative distortion, so

that t∗i < topt due to R(t∗i ) > 0 regardless of the sign of D(t∗i ). Part (c) answers that question in

the affirmative. The needed amount of roundabout production is shown by the constraint (20),

which is an upper-bound on γi1 as graphed in Figure 1 and is very weak: all countries in our

sample satisfy this constraint, with Kuwait (KWT) near the borderline of (20) due to high γi1 (little

roundabout production) in petroleum extraction and thus in overall traded production.

To ensure that t∗i < topt in part (c), we also need to put a constraint on the relative distortion

across sectors, as was indicated by (12) with κi ≥ 1. The needed value of κi is indicated by (21),

which has a large median value of 9.1 in our sample of 186 countries. The line for which κi = 1 is

shown in Figure 1 with the thin solid region κi ≤ 1 illustrated by that line and the region above

it: for parameters in this region, we have κi < 1 and we can only find t∗i < topt if the traded

5EORA has 190 countries including the Rest of the World, which we omit, along with Belarus, Moldova and the
Former Soviet Union because their input-output tables are nonsensical.
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Figure 1: Parameter Restrictions
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sector is more distorted than the nontraded sector (σ̃i1 < σ̃i2 in (12)). Conversely, if the traded

sector is less distorted in effective terms (σ̃1 ≥ σ̃i2), then we find that t∗i > topt. So just as (b)(ii)

of Theorem 1 illustrates that a high optimal tariff can arise in the case of a final good not used in

production, the thin solid region κi ≤ 1 shows that a high optimal tariff can arise even when there

is a small amount of roundabout production in the tradable sector, provided that this sector is

less distorted. As just noted, Kuwait (KWT) has little roundabout production and it is near to this

thin solid region at the top of Figure 1. Even though this country meets the sufficient conditions

to have t∗i < topt in our two-sector model – since it lies just within the lightly shaded region of

Figure 16 – in the multisector quantitative model analyzed in the next section we will find that

Kuwait and other OPEC countries have high optimal tariffs, t∗i > topt. So the result that a certain

6In the region of Figure 1 shown in white, we are unsure whether the second-best tariff is greater or less than topt

because Theorem 1 only provides sufficient conditions for each case.
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(small) amount of roundabout production is needed to ensure a low optimal tariff, as established

by Theorem 1(c), will carry over to the quantitative model.

We conclude this section by noting that the optimal tariff can be negative. In our working

paper (CFRT, 2020), we examine the conditions to ensure that the optimal tariff is negative, and

we find that it occurs for two types of countries: a Highly Linked Economy that has high roundabout

production (low γi1) and is very open (low λii1); and a Remote Economy, with a small traded sector

and with λii1 → 1, so that the economy is nearly closed to trade due to high iceberg costs, as may

occur for very distant countries. We find examples of both types in our quantitative analysis that

is discussed next.

5 Second-best Uniform Tariffs in a General, Calibrated Model

The quantitative model from our working paper (CFRT, 2020) uses the EORA dataset. Table 1 con-

tains the model elasticities and summary statistics, after grouping the 15 sectors into four broader

sectors. The estimates of σs and θs for goods are from Caliendo and Parro (2015), and satisfy the

relationship θs/ (σs − 1) = 1.5. Gervais and Jensen (2019) find that services have elasticities of sub-

stitution about one-quarter smaller than for manufacturing. We follow them, by setting σs = 2.8

for services and, given θs/ (σs − 1) = 1.5, setting θs = 2.7. We therefore have σs for traded goods

exceeding σs for services, generating higher markups in the nontraded sector.7

We slightly generalize the Melitz-Chaney model by allowing for nested CES with the upper-

level elasticity of substitution ωs, between the aggregates of home and foreign varieties, differing

from the lower-level elasticity σs, across different foreign (or home) varieties. Setting ωs = σs/1.25

best reproduces global trade growth between 1990 and 2010. With this structure we obtain the

one-sector, no-roundabout, small-country formula for the optimal tariff from Costinot, Rodrı́guez-

Clare and Werning (2020), which for nested CES is:8

topt =
ω1[

ω1 − (σ1−1)
θ1

] . (22)

7EORA allows for trade in service sectors, but we excluded that trade from our quantitative model.
8See their footnotes 21 and 20 and set x∗FF = 1.
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Table 1: Elasticities and Linkages by Broad Sector

Statistic Agriculture Mining Manufacturing Services

θs 8.61 13.03 5.05 2.70
σs 6.74 9.69 4.36 2.80
αis (p10) 0.00 0.00 0.15 0.66
αis (median) 0.01 0.00 0.20 0.79
αis (p90) 0.05 0.01 0.28 0.84
γis (p10) 0.31 0.29 0.24 0.46
γis (median) 0.51 0.46 0.28 0.56
γis (p90) 0.76 0.74 0.38 0.69
σ̃is = 1 + γis(σs − 1) (p10) 2.77 3.56 1.81 1.83
σ̃is = 1 + γis(σs − 1) (median) 3.93 4.98 1.96 2.01
σ̃is = 1 + γis(σs − 1) (p90) 5.37 7.42 2.28 2.24

We measure γis from our theoretical model by treating “labor” in that model as an aggregate

factor that includes both labor and capital services. Accordingly, Table 1 reports the shares of in-

dustry revenue from EORA that go to value-added, γis, which for Manufacturing varies across

countries from 24% at the 10th percentile to 38% at the 90th. Also reported is the effective elastic-

ity σ̃is ≡ 1 + γis(σs − 1) in each sector. We find that the median effective elasticity in Manufactur-

ing (1.96) is only slightly lower than the median effective elasticity in Services (2.01), with much

heterogeneity across countries, and both of these broad sectors are more distorted than the two

primary sectors, Agriculture and Mining.

The optimal tariffs in the quantitative model are computed numerically. Specifically, we start

at a world free trade equilibrium, calculated using 2010 input-output tables, and use a grid search

over positive and negative tariffs for each country. We evaluate the welfare effects from imposing

unilateral uniform tariffs across sectors of between -20% to +40% in increments mostly of 2.5% one

country at a time and summarize results in Figure 2.

Five countries have negative optimal tariffs in 2010: Bhutan; Myanmar; New Caledonia; Hong

Kong; and Spain. Bhutan, Myanmar and New Caledonia seem to fit our description of remote

economies, while Hong Kong and Spain are highly-linked economies. Our median 2010 optimal

tariff is 10%. For comparison we also plot optimal uniform tariffs using the one-sector formula

from (22). Using our parameters for each sector yields optimal tariffs of 16.0% for Agriculture;

10.6% for Mining; and 27.3% for Manufacturing. We plot two horizontal lines for the optimal

tariffs topt in Manufacturing and in Mining (which includes petroleum extraction).
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Figure 2: Optimal One-sector Tariffs and from the Quantitative Model
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Our median optimal tariff t∗i of 10% is less than two-fifths of topt in (22) which is 27.3% for

Manufacturing parameters (the dominant sector in trade). There is much variation across coun-

tries. Economies with at least the median proportion of Manufacturing production tend to have

lower optimal tariffs, with a median of 7.5%, or just over one-quarter of topt from equation (22) for

that sector. In contrast, the 13 countries where Mining (including petroleum extraction) accounts

for at least 10% of production – including many OPEC countries – have a median optimal tariff of

20%, which greatly exceeds topt in (22) of 10.6% for that sector. Even though a resource sector like

Mining was not introduced into our two-sector theoretical model, the possibility of high optimal

tariffs in oil-rich countries was suggested by our discussion of Kuwait in the previous section,

which has a low amount of roundabout production. Our finding of high optimal tariffs for oil

exporters is also supported by the high elasticity σs for Mining in Table 2, implying low markups

so that resources should be shifted to other sectors, and by large oil exporters exploiting the terms

of trade. But these countries are the exceptions that prove the rule: for countries that specialize in

Manufacturing, the numerical optimal tariffs are considerably lower than topt in nearly all cases.
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6 Conclusions

We began by asking whether modern trade theory has anything new to say about arguments for

protecting the traded sector. We did not mention a line of recent literature that to some extent

argues in favor of such protection. Specifically, this is the firm-delocation literature that combines a

monopolistically competitive traded sector with a competitive traded outside good (see e.g. Melitz

and Ottaviano, 2008, section 4; Bagwell and Lee, 2020). The traded numeraire good pins down

relative wages between countries, so the country applying tariffs is “small” in the sense that its

wages do not respond to its tariff. In this literature, encouraging entry into traded goods requires

positive import tariffs. Essentially, the ability to attract firms into the home country takes the

place of a conventional terms-of-trade motive for tariffs, so that the optimal tariff is positive even

though wages are fixed. Of course, with multiple countries pursuing this motive for protection,

there is ample scope for trade agreements to reduce the deadweight losses due to the tariffs (Ossa,

2011; Bagwell and Staiger, 2015).

The major differences between this class of models and our own are: (i) roundabout produc-

tion, so that tariffs are applied on imported intermediate inputs rather than final goods; and (ii)

the nontraded service sector, which does not fix relative wages between countries. Lerner sym-

metry holds in the traded sector, so that import tariffs are equivalent to export taxes and inhibit

entry into that sector. That logic does not apply when the numeraire good is traded, which gives

firm-delocation models a very different flavor: they act like partial equilibrium models because

wages are fixed, and perhaps are most appropriate to narrowly targeted tariffs, whereas our re-

sults depend on Lerner symmetry, which is a general equilibrium result and depends on having

broad tariffs applied to the traded sector. Determining the most appropriate range of applications

for each class of models is one important area for further research.
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APPENDIX

A Two-Sector Small Open Economy Model

We focus on a small open economy model, with two sectors s = 1, 2 and roundabout production in both
sectors. County i is the small home economy and the foreign country j 6= i is the rest of the world. In
the foreign country, for simplicity we assume a single traded sector denoted by s = 1 with no roundabout
production and no import tariff.

A.1 Description of Economy

The structure of the country i economy is illustrated in Figure A1. Firms in sector 1 of country i can source
differentiated inputs from countries k = i, j for i 6= j, and the CES production functions over the differenti-
ated inputs purchased from each country k and in total are

Qi1 ≡
(

∑
k=i,j

Q
σ1−1

σ1
ki1

) σs
σs−1

with Qki1 ≡

Nk1

∞∫
ϕ∗ki1

qki1 (ϕ)
σ1−1

σ1 g1(ϕ)dϕ


σ1

σ1−1

, (23)

where Nk1 are the mass of entrants in each of countries k who sell at the prices pki1 (ϕ), depending on
their productivities ϕ with Pareto distribution g1(ϕ). The cutoff productivity ϕ ≥ ϕ∗ki1 needed to sell from
country k to i will be derived below. The CES price indexes over the differentiated inputs purchased from

Figure A1: Schematic production structure
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each country k = i, j and in total are

Pi1 ≡
(

∑
k=i,j

P1−σ1
ki1

) 1
1−σ1

and Pki1 ≡

Nk1

∞∫
ϕ∗ki1

pki1 (ϕ)1−σ1 g1 (ϕ) dϕ


1

1−σ1

. (24)

The mass of input varieties sold from country k = i, j to i for firms with productivity ϕ ≥ ϕ∗ki1 is

Nki1 ≡ Nk1[1− G1(ϕ∗ki1)] = Nk1 ϕ∗−θ1
ki1 , (25)

using the Pareto distribution G1(ϕ) = 1− ϕ−θ1 with ϕ ≥ 1. Notice that the entry of firms Nk1 appearing in
(23) and (24) can be converted into the mass of varieties by multiplying and dividing by [1− G1(ϕ∗ki1)], in
which case the unconditional densities g1(ϕ) become conditional densities g1(ϕ)/[1− G1(ϕ∗ki1)]. In sector
2 we use the analogous definitions of Qii2, Pii2, and Nii2.

The total value of production of the finished good in country i and sector s is Yis = PisQis, and the CES
demand for intermediates of variety ϕ sold from country k = i, j to i is given by

qkis(ϕ) =

(
pkis(ϕ)

Pis

)−σs Yis
Pis

. (26)

In sector 2, however, the intermediates used in country i are purchased only from country i. A firm in
i supplying differentiated inputs has the marginal costs xis/ϕ, with the costs of input bundle supply xis
given by (1). We assume that fixed costs of the firm require only labor and are denoted by fiks and f e

is. In
country j, we ignore roundabout production and there is only sector 1, so that xj1 ≡ wj and the fixed labor
costs are f jk1 and f e

j1.
The profits in country k′ = i, j from supplying differentiated inputs to country k = i, j are

πk′ks(ϕ) = max
pk′ks(ϕ)≥0

{
pk′ks(ϕ)

tk′ks
qk′ks(ϕ)− xk′s

ϕ
τk′ks qk′ks(ϕ)− wk′ fk′ks

}
, (27)

where τk′ks are iceberg trade costs with τiis ≡ τjjs ≡ 1, and tji1 is one plus the ad valorem tariff charged
for country i imports from j in sector 1, with all other tariffs at unity: tkjs ≡ 1, k = i, j.9 The first-order
conditions for profit maximization yield

pk′ks(ϕ)

tk′ks
=

σs

σs − 1
xk′s τk′ks

ϕ
, (28)

qk′ks(ϕ) =

(
σs

σs − 1
xk′s τk′kstk′ks

ϕ

)−σs Yks

P1−σs
ks

. (29)

Substituting these expressions back into profits, we can readily solve for the cutoff productivity ϕ∗k′ks at
which profits are zero:

πk′ks(ϕ∗k′ks) = 0 =⇒ ϕ∗k′ks =

(
σs

σs − 1

)(
σswk′ fk′kstk′ks

YksPσs−1
ks

) 1
(σs−1)

xk′s τk′kstk′ks. (30)

9We briefly allowed for a domestic tax/subsidy of tiis 6= 1 in our discussion of first-best policies in the main text, but
that instrument is not used otherwise.
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We follow Melitz (2003) in defining the average productivity as

ϕ̄k′ks ≡

 ∞∫
ϕ∗

k′ks

ϕσs−1 gs(ϕ)[
1− Gs(ϕ∗k′ks)

]dϕ


1

σs−1

= Ks ϕ∗k′ks, with Ks ≡
(

θs

θs − σs + 1

) 1
σs−1

, (31)

where the constant Ks is obtained by computing the integral using the Pareto distribution.
We can substitute (29) into (23) to obtain the output of the finished good:

Qis = Kσs
s

(
σs

σs − 1

)−σs
(

Yis

P1−σs
is

)Nis ϕ∗−θs
iis

(
xis
ϕ∗iis

)1−σs

+ Njs ϕ∗−θs
jis

(
wj τjis tjis

ϕ∗jis

)1−σs


σs
σs−1

, (32)

where in the nontraded sector 2 the second terms in brackets does not appear, and this should also be
understood in the next two equations. Using (24) and (28) we obtain an expression for Pis:

Pis =

ϕ∗iis
−θs Nis

(
σs

σs − 1
xis
ϕ̄iis

)1−σs

+ ϕ∗jis
−θs Njs

(
σs

σs − 1
wjtjis

ϕ̄jis

)1−σs
 1

1−σs

. (33)

We can multiply this by (32) to obtain a preliminary expression for the value of production of the finished
goods in country i and sector s, Yis ≡ PisQis:

Yis = Kσs−1
s

(
σs

σs − 1

)1−σs
(

Yis

P1−σs
is

)Nis ϕ∗−θs
iis

(
xis
ϕ∗iis

)1−σs

+ Njs ϕ∗−θs
jis

(
wj τjis tjis

ϕ∗jis

)1−σs
 .

To simplify this expression, we can use (30) twice to obtain

Yis

P1−σs
is

= σswi fiis

(
σs

σs − 1
xis
ϕ∗iis

)σs−1
= σswj f jistjis

(
σs

σs − 1
wj τjistjis

ϕ∗jis

)σs−1

.

and substituting above we obtain

Yis = Kσs−1
s σs

(
Nis ϕ∗−θs

iis wi fiis + Njs ϕ∗−θs
jis wj f jis tjis

)
. (34)

The value of finished output in each sector, Yks, is sold to consumers and also back to domestic firms.
That finished output is costlessly bundled from home and (for sector 1) imported differentiated inputs. Let
λk′k1 denote the share of country k total expenditure in sector 1 on intermediate goods from country k′.
Using conditions (28)–(33) we can obtain the following expressions for the expenditure shares for inputs
sold by country k′ = i to country k = i, j:

λik1 = ϕ∗ik1
−θ1 Ni1

(
σ1

σ1 − 1
τik1xi1
ϕ̄ik1 Pk1

)1−σ1

(35)

= ϕ∗ik1
−θ1 Ni1

(
σ1 wi fik1

Yk1

)(
θ1

θ1 + 1− σ1

)
, (36)
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and for country i imported inputs:

λji1 = ϕ∗ji1
−θ1 Nj1

(
σ1

σ1 − 1
τji1 wj tji1

ϕ̄ji1 Pi1

)1−σ1

(37)

= ϕ∗ji1
−θ1 Nj1

(
σ1wj f ji1tji1

Yi1

)(
θ1

θ1 + 1− σ1

)
. (38)

The model is closed by making use of the market clearing condition described in the main text in (3),
which in sector 2 is simply Yi2 = (1 − αi)(wiLi + Bi) + γ̃i2Yi2, together with trade balances. Duty-free
imports in sector 1 of country i are Eji1 = (λji1Yi1)/tji1 while exports are Eij1 = λij1Yj1, so that trade balance
requires

λji1Yi1

tji1
= λij1Yj1. (39)

Note that using (36) and (38), then trade balance (39) implies

ϕ∗ij1
−θ1 Ni1 wi fij1 = ϕ∗ji1

−θ1 Nj1 wj f ji1. (40)

Again using (36) and (38) with home sales Eii1 = λii1Yi1 and exports Eij1 = λij1Yj1, we obtain an expression
for total sales of intermediate inputs in sector 1 by country i:

Eii1 + Eij1 = ∑
k=i,j

ϕ∗ −θ1
ik1 Ni1

(
θ1σ1 wi fik1
θ1 + 1− σ1

)
.

This equation is simplified by making use of free entry in country i. Expected profits must equal the fixed
costs of entry, so that for a country i firm:

∑
k=i,j

∞∫
ϕ∗ik1

πik1(ϕ)g1(ϕ)dϕ = wi f e
i1. (41)

To evaluate this integral we follow the approach of Melitz and Redding (2014), who note that CES de-
mand implies that πik1(ϕ) + wi fik1 =

[
πik1(ϕ∗ik1) + wi fik1

]
(ϕ/ϕ∗ik1)

σ1−1. It follows from (27) that πik1(ϕ) =[
(ϕ/ϕ∗ik1)

σ1−1 − 1
]

wi fik1, and so the above entry condition becomes:

∑
k=i,j

J1(ϕ∗ik1) fik1 = f e
i1 with Js(ϕ∗) ≡

∞∫
ϕ∗

[(
ϕ

ϕ∗

)σs−1
− 1

]
gs(ϕ)dϕ.

Completing the integral above using the Pareto distribution, we arrive at(
σ1 − 1

θ1 − σ1 + 1

)
∑

k=i,j
ϕ∗−θ1

ik1 fik1 = f e
i1, (42)

from which we can obtain an equation governing the mass of entrants Nis, namely

Ni1 =
(
Eii1 + Eij1

)/[
wi f e

i1

(
θ1 σ1

σ1 − 1

)]
. (43)

A4



In sector 2 the mass of entrants is governed by the same equation but without Eij2 appearing

Ni2 = Eii2

/[
wi f e

i2

(
θ1 σ2

σ2 − 1

)]
. (44)

The free entry condition for sector 2 is defined analogously to (41) but summing over country k = i only,
obtaining a condition that determines ϕii2:

J2(ϕ∗ii2) fii2 =

(
σ2 − 1

θ2 − σ2 + 1

)
ϕ∗−θ2

ii2 fii2 = f e
i2. (45)

A.2 Output, Entry and Λi1

As explained in the main text, the term λij1Yj1 appearing in (3) is the value of country i exports of the
differentiated inputs. Under balanced trade, this must equal the net-of-tariff value of imports. Letting tji1

denote one plus the ad valorem import tariff used by country i, then λij1Yj1 =
λji1
tji1

Yi1. Tariff revenue is

Bi =
tji1−1

tji1
λji1Yi1. We re-express tariff revenue as

Bi = (1−Λi1)Yi1 with Λi1 ≡
(

λii1 +
λji1

tji1

)
, (46)

and using these terms in (3), we can solve for real output Yi1/wi as

Yi1
wi

=
αi Ii

1− γ̃i1Λi1
=⇒ Yi1

wi
=

αiLi
1− αi + (αi − γ̃i1)Λi1

. (47)

Since λiis + λjis = 1, then Λi1 = 1 in free trade (with tji1 = 1) and autarky (tji1 → +∞ so λii1 = 1 and
λji1 = 0). It follows that Yi1/wi is equal at these two points. But for 1 < tji1 < +∞ then Λi1 < 1, so that
Λi1 is a ∪-shaped function of the tariff. We show below that Λi1 achieves its minimum at the same tariff at
which tariff revenue Bi/wi is maximized. Then we see from the the denominator of the second expression
in (47) that real output can be either a ∩-shaped or ∪-shaped function of the tariff depending on whether
αi > (<)γ̃i1. This ambiguity does not extend, however, to the entry of firms producing differentiated
inputs in sector 1. Using entry from (43) and noting that home sales are Eii1 = λii1Yi1 and exports are
Eij1 = λij1Yj1, we solve for entry into sector 1 as shown in (4), which is a ∪-shaped function of the tariff
provided that αi < 1.

For sector 2, the market clearing condition is Yi2 = (1− αi)(wiLi + Bi) + γ̃i2Yi2, which directly leads to

Yi2 =
1− αi
1− γ̃i2

Ii. (48)

Then making use of (44) with (48) we immediately obtain (5) in the main text.
It remains to be shown that tariff revenue Bi has its maximum at the same tariff at which Λi1 has its

minimum, as asserted in the main text. This follows directly from (46) and (47), from which we obtain

Bi = Yi1 (1−Λi1) =
αiwiLi (1−Λi1)

1− γ̃i1 − (αi − γ̃i1)(1−Λi1)
=

αiwiLi
1−γ̃i1
(1−Λi1)

− (αi − γ̃i1)
. (49)

It follows that Bi is monotonically decreasing in Λi1, so their critical points are at the same maximum-
revenue tariff.
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A.3 Domestic Production Share and T(tji1)

We now introduce the share of production (value-added) devoted to differentiated intermediate inputs that
are sold domestically in country i, which will be used many times in our derivations. The expenditure
share on imported intermediate inputs is λji1 in (37), so λji1Yi1 measures the value of imports inclusive of
tariffs (and iceberg costs). We can instead evaluate imports at the net-of-tariff prices by dividing by tji1
obtaining λji1Yi1/tji1 = (1− λii1)Yi1/tji1, which equals exports and can be summed with λii1Yi1 to obtain
the total value of production. It follows that the share of production sold to domestic firms – or the domestic
production share – is

λ̃ii1 ≡
λii1

λii1 +
(1−λii1)

tji1

=
tji1λii1

1 + λii1(tji1 − 1)
. (50)

We now claim that this share can be measured by

λ̃ii1 =
ϕ∗ii1
−θ1 fii1

ϕ∗ii1
−θ1 fii1 + ϕ∗ij1

−θ1 fij1
. (51)

To show this, we first rewrite the domestic expenditure share λii1 using (34), (36) for k = i, (38) and trade
balance (40) as

λii1 =
ϕ∗ii1
−θ1 fii1

ϕ∗ii1
−θ1 fii1 + ϕ∗ij1

−θ1 fij1tji1
. (52)

For the above two equations we obtain the relationship

tji1 =
(1− λii1)

λii1

λ̃ii1(
1− λ̃ii1

) , (53)

and as a result

1− tji1 =
λii1 − λ̃ii1

λii1
(
1− λ̃ii1

) . (54)

From these two equations we can readily confirm the second equality in (50), which shows that it is equiv-
alent to (51), so that is a correct formula for the domestic production share.

We can use this production share to define a simple function of the tariff T(tji1) given by

T(tji1) ≡ 1− γ̃i1 +
(
tji1 − 1

) (
1− λ̃ii1

)
. (55)

Notice that T(tji1) = 1− γ̃i1 in free trade (with tji1 = 1) and autarky (tji1 → +∞ so λii1 = 1 and λji1 = 0),
but T(tji1) > 1− γ̃i1 for 1 < tji1 =< +∞. It follows that T(tji1) is a ∩-shaped function of the tariff between
these two points, which is the same shape as tariff revenue Bi. In fact, T(tji1) and Bi have their critical points
at the same tariff, as we show just below.

In the main text we use Λi1 to characterize entry into sector 1, but throughout the rest of the Appendix
we mainly find it convenient to instead use the function T(tji1). These two concepts are inversely related,
which can be seen by using (53) and (54) to obtain

tji1 =
λ̃ii1
λii1

(1− λii1)

(1− λ̃ii1)
= [(tji1 − 1)(1− λ̃ii1) + 1]

(1− λii1)

(1− λ̃ii1)
.

Using this expression and T(tji1) from (55), with λji1 = 1− λii1 we can solve for

Λi1 ≡ λii1 +
λji1

tji1
= 1−

(tji1 − 1)[(T(tji1) + γ̃i1)− 1]
(tji1 − 1)(T(tji1) + γ̃i1)

=
1

(T(tji1) + γ̃i1)
. (56)
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We see that Λi1 and T(tji1) are inversely related, as asserted. Since 1−Λi1 =
T(tji1)−(1−γ̃i1)

T(tji1)+γ̃i1
from the above

equation, we can substitute this into (49) to obtain

Bi =
αiwiLi[T(tji1)− (1− γ̃i1)]

[T(tji1)− (1− γ̃i1)](1− αi) + 1− γ̃i1
=

αiwiLi

1− αi +
1−γ̃i1

[T(tji1)−(1−γ̃i1)]

. (57)

We see that Bi is monotonically increasing in T(tji1), so they have their critical points at the same maximum-
revenue tariff. Note that if we take αi = 1 so we are in a one-sector model, then Bi and T(tji1) are especially
simple affine transformations of each other, given by

Bi = wiLi

( T(tji1)

1− γi1
− 1
)

.

A.4 Labor Allocation

We now derive expressions for labor market demand in sectors 1 and 2:

Li1 = Ni1 f e
i1 + Ni1 fii1

∞∫
ϕ∗ii1

g (ϕ) dϕ + Ni1 fij1

∞∫
ϕ∗ij1

g (ϕ) dϕ

+γi1 (σ1 − 1) Ni1 ∑k=i,j

 ∞∫
ϕ∗ik1

πik1
wi

(ϕ) g (ϕ) dϕ + fik1

∞∫
ϕ∗ik1

g (ϕ) dϕ

 ,

Li2 = Ni2 f e
i2 + Ni2 fii2

∞∫
ϕ∗ii2

g (ϕ) dϕ

+γi2 (σ2 − 1) Ni2

 ∞∫
ϕ∗ii2

πii2
wi

(ϕ) g (ϕ) dϕ + fii2

∞∫
ϕ∗ii2

g (ϕ) dϕ

 .

Using the free entry condition (41), we obtain

Li1
Ni1

= (1 + γi1 (σ1 − 1))
(

f e
i1 + fii1 ϕ∗ii1

−θ1 + fij1 ϕ∗ij1
−θ1
)

, (58)

Li2
Ni2

= (1 + γi2(σ2 − 1))
(

f e
i2 + fii2 ϕ∗ii2

−θ2
)

. (59)

Also using (42) and (45), entry into sectors 1 and 2 becomes

Ni1 =
(σ1 − 1)

[1 + γi1 (σ1 − 1)] θ1

Li1
f e
i1

, (60)

Ni2 =
(σ2 − 1)

[1 + γi2(σ2 − 1)]θ2

Li2
f e
i2

. (61)

Combining the expressions, we obtain

Li1
Li2

=
Ni1
Ni2

[1+γi1(σ1−1)]θ1 f e
i1

(σ1−1)
[1+γi2(σ2−1)]θ2 f e

i2
(σ2−1)

. (62)
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To characterize the labor allocation across sectors, we need to use entry. We have already solved for Y1i
and Y2i in (47) and (48). Use these results in (43) and (44) and recall that home sales are Eii1 = λii1Yi1 and
Eii2 = Yi2 while exports are Eij1 = λij1Yj1 = λji1Yi1/tji1. Substituting the resulting expressions into (62),
labor allocation across sectors can be written as

Li1
Li2

=
αi

(1− αi)

(1− γ̃i1)
(

λii1 +
λji1
tji1

)
1− γ̃i1

(
λii1 +

λji1
tji1

) . (63)

The tariff formula (53) derived earlier can be used to simplify this expression for labor allocation. Using
(53) in (63), we obtain

Li1
Li2

=
αi

(1− αi)

(1− γ̃i1)

(
1+(tji1−1)λii1

tji1

)
1− γ̃i1

(
1+(tji1−1)λii1

tji1

)

=
αi

(1− αi)

(1− γ̃i1)
((

1− λ̃ii1
)

tji1 + λ̃ii1
)−1

1− γ̃i1
((

1− λ̃ii1
)

tji1 + λ̃ii1
)−1 .

Then we can also express the labor allocation as a fraction of total labor supply:

Li2
Li1 + Li2

=

(
Li1
Li2

+ 1
)−1

=

(
1− λ̃ii1

)
tji1 + λ̃ii1 − γ̃i1(

1− λ̃ii1
)

tji1 + λ̃ii1 − γ̃i1 +
αi

1−αi
(1− γ̃i1)

, (64)

Li1
Li1 + Li2

=
1

1−αi
(αi − γ̃i1) + γ̃i1(

1− λ̃ii1
)

tji1 + λ̃ii1 +
1

1−αi
(αi − γ̃i1)

. (65)

A.5 Income and Intermediate Demand

The tariff formula (53) can also be used to derive an alternative expression for income Ii, which depends on

tariff revenue given by Bi =
(
tji1 − 1

) λji1
tji1

Yi1. From trade balance we have
λji1Yi1

tji1
= λij1Yj1, and using (36)

and (60) we obtain

Bi =
(
tji1 − 1

)
λij1Yj,1 =

(
tji1 − 1

)
ϕ∗ij1
−θ1 Ni1

(
σ1wi fij1

) ( θ1

θ1 + 1− σ1

)
=

(
tji1 − 1

)
σ1 (σ1 − 1) fij1

(1 + γi1 (σ1 − 1)) (θ1 + 1− σ1) f e
i1

wiLi1 ϕ∗ij1
−θ1 .

Then income Ii = wiLi + Bi equals

Ii = wiLi +
(
tji1 − 1

) σ1

1 + γi1 (σ1 − 1)

fij1 ϕ∗ij1
−θ1

(θ1+1−σ1)
(σ1−1) f e

i1

wiLi1 = wiLi +
(
tji1 − 1

) (1− λ̃ii1
1− γ̃i1

)
wiLi1.
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Combining with (65), we have

Ii
wiLi1

=

(
1− λ̃ii1

)
tji1 + λ̃ii1 +

1
1−αi

(αi − γ̃i1)

1
1−αi

(αi − γ̃i1) + γ̃i1
+
(
tji1 − 1

) ( 1
1− γ̃i1

) (
1− λ̃ii1

)
,

=
(1− αi)

(
tji1 − 1

) (
1− λ̃ii1

)
+ 1− γ̃i1

αi (1− γ̃i1)
+
(
tji1 − 1

) (1− λ̃ii1
)

1− γ̃i1

=
1
αi

+

(
tji1 − 1

) (
1− λ̃ii1

)
αi (1− γ̃i1)

.

Using T(tji1) ≡ 1− γ̃i1 +
(
tji1 − 1

) (
1− λ̃ii1

)
from (55), we then obtain

Ii =
wiLi1

αi

T(tji1)

(1− γ̃i1)
. (66)

Next, we derive the expression for the value of the finished goods used as an intermediate input in
sector 1:

Intermediate demand = Ni1 (1− γi1)

 ∞∫
ϕ∗ii1

xi1qii1 (ϕ)

ϕ
g (ϕ) dϕ +

∞∫
ϕ∗ij1

xi1τij1qij1 (ϕ)

ϕ
g (ϕ) dϕ

 ,

and using the expression for profits:

xi1τij1qij1 (ϕ)

ϕ
= (σ1 − 1)πij1 (ϕ) + (σ1 − 1)wi fij1,

we then obtain

Intermediate demand = Ni1 (1− γi1) (σ1 − 1)∑k=i,j

∞∫
ϕ∗ik1

(πik1 (ϕ) + wi fik1) g (ϕ) dϕ.

Using the free entry condition (41), we have

Intermediate demand = Ni1 (1− γi1) (σ1 − 1)wi

(
f e
i1 + fii1 ϕ∗ii1

−θ1 + fij1 ϕ∗ij1
−θ1
)

.

Using labor market clearing (58), the intermediate demand is then given by

Intermediate demand = wiLi1
(1− γi1) (σ1 − 1)
(1 + γi1 (σ1 − 1))

.

It follows that the total demand for finished goods in sector 1 is

Yi1 = αi Ii + wiLi1
(1− γi1) (σ1 − 1)
(1 + γi1 (σ1 − 1))

.

After combining these expressions with (34) and (40), Ii is given in terms of sector 1 variables by

Ii =
wiLi1

αi

(σ1 − 1)
(1 + γi1 (σ1 − 1))

(
Kσ1−1

1
σ1

θ1 f e
i1

(
ϕ∗−θ1

ii1 fii1 + ϕ∗ij1
−θ1 fij1 tji1

)
− (1− γi1)

)
. (67)

For sector 2, there are no exports so that dividing the numerator and denominator of the ratio (σ2−1)
1+γi2(σ2−1)
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by σ2 to obtain ρ2
1−γ̃i2

, then income can also be written in terms of sector 2 variables as

Ii =
wiLi2
1− αi

ρ2

1− γ̃i2

(
Kσ2−1

2
σ2

θ2 f e
i2

ϕ∗−θ2
ii2 fii2 − (1− γi2)

)
=

wiLi2
(1− αi)

, (68)

because Kσ2−1
2

(
σ2−1
θ2 f e

i2

)
ϕ∗−θ2

ii2 fii2 = 1 from (31) and (45).

A.6 Equilibrium Conditions

We use the definition of small open economy following Demidova and Rodrı́guez-Clare (2013), where we
impose a fixed demand curve for country i exports to country j. In particular the wages, prices, entry,
and expenditure at county j are not affected by changes in the trade policy of i. Formally, the equilibrium
conditions of the small open economy are the following.

Definition 1. An equilibrium of small open economy, two-sector roundabout model using domestic labor for fixed
costs is characterized for a set of prices (wi, xi1, xi2, Pi1, Pi2) productivity cutoffs

(
ϕ∗ii1, ϕ∗ii2, ϕ∗ji1, ϕ∗ij1

)
, finished out-

puts (Yi1, Yi2) , mass of firms (Ni1,Ni2) , and expenditure shares
(
λii1, λji1

)
that solve the following equilibrium

conditions taking as given
{

Pj1, Yj1, Nj1, wj
}

:
Zero cut-off productivity (ZCP) from (30),

ϕ∗ii1 =

(
σ1

σ1 − 1

)(
σ1wi fii1

Yi1

) 1
σ1−1 xi1

Pi1
,

ϕ∗ij1 =

(
σ1

σ1 − 1

)(
σ1wi fij1

Yj1

) 1
σ1−1 xi1τij1

Pj1
,

ϕ∗ji1 =

(
σ1

σ1 − 1

)(
σ1wj f ji1

Yi1

) 1
σ1−1 wjτji1

(
tji1
) σ1

σ1−1

Pi1
,

ϕ∗ii2 =

(
σ2

σ2 − 1

)(
σ2wi fii2

Yi2

) 1
σ2−1 xi2

Pi2
,

Input cost indexes from (1),
xi1 = (wi)

γi1 (Pi1)
1−γi1 ,

xi2 = (wi)
γi2 (Pi2)

1−γi2 ,

Value of finished output from (47) and (48),

Yi1
wi

=
αi Ii

1− γ̃i1Λi1
,

Yi2 =
1− αi
1− γ̃i2

Ii,

with Ii = wiLi + Bi = wiLi + (1−Λi1)Yi1, Λi1 ≡
(

λii1 +
λji1
tji1

)
and γ̃1 = (1− γi1)

σ1−1
σ1

,
Price indexes from (33),

Pi1 =

ϕ∗ii1
−θ1 Ni1

(
σ1

σ1 − 1
xi1
ϕ̄ii1

)1−σ1

+ ϕ∗ji1
−θ1 Nj1

(
σ1

σ1 − 1
wjtji1

ϕ̄ji1

)1−σ1
 1

1−σ1

,
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Pi2 =

(
ϕ∗ii2
−θ2 Ni2

(
σ2

σ2 − 1
xi2
ϕ̄ii2

)1−σ2
) 1

1−σ2

,

Entry from (43) and (44),

Ni1 =
Λi1Yi1

wi f e
i1

(
θ1σ1
σ1−1

) ,

Ni2 =
Yi2

wi f e
i2

(
θ2σ2
σ2−1

) ,

Expenditure share from (35),

λii1 = ϕ∗ii1
−θ1 Ni1

(
σ1

σ1 − 1
xi1

Pi1 ϕ̄ii1

)1−σ1

and λji1 = 1− λii1,

with ϕ̄iis = Ks ϕ∗iis, Ks ≡
(

θs
θs+1−σs

) 1
σs−1 and λii2 ≡ 1,

Trade balance from (36), (38) and (39),

ϕ∗ij1
−θ1 Ni1wi fij = ϕ∗ji1

−θ1 Nj1wj f ji1.

Several other expressions such as free entry in (42) and (45), labor allocation in (64)–(65) and income in (67)–(68)
continue to hold but are not needed for the definition of equilibrium; these expressions will be useful in our analysis
below.

B Closed Economy Model

In the closed-economy model we allow for multiple sectors s = 1, ..., S, where we use αis > 0 to denote
the consumption share in each sector with with ∑S

s=1 αis = 1. We now introduce producer and consumer
tax/subsidies tc

is and tp
is on purchases of the finished good. The producer tax/subsidy means that the input

cost index is modified from (1) as
xis = wγis

i (tp
isPis)

1−γis , (69)

where Pis denotes the price of the finished good before the application of any tax/subsidies.
Without loss of generality, we assume that the government budget is balanced so that Bi = 0. In the

market clearing condition (3), there is no trade so that λiis = 1 and λijs = 0, and the consumer and firm pur-
chases must be divided by tc

is and tp
is, respectively, to obtain the net-of-tax purchases. Further multiplying

these purchases by the ad valorem tax rates tc
is − 1 and tp

is − 1, respectively, we obtain the balanced budget

0 =
S

∑
s=1

(tc
is − 1)

αiswiLi
tc
is

+ (tp
is − 1)

γ̃sYis

tp
is

. (70)

The term αiswiLi/tc
is on the right of (70) is the value of consumer purchases of the finished good. Dividing

this by the duty-free price index of the finished good, Pis, we obtain consumption in each sector, and so the
objective function for the government is

max
tc
is ,tp

is>0

S

∏
s=1

Cαis
is =

S

∏
s=1

(
αiswiLi
tc
isPis

)αis

, (71)

subject to the constraint (70).
To determine the optimal policies, we need an expression for the price index in each sector under au-
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tarky. Recall from (24) that Piis is the CES price index for differentiated inputs purchased from domestic
firms in each sector. Using the input price index in (69), we can substitute prices from (28) into (24) to
obtain

Piis = (Niis)
1

(1−σs)

(
σs

σs − 1

) wγis
i

(
tp
isPis

)1−γis

ϕ̄is
. (72)

In a closed economy we have Piis = Pis, and so we can solve for the price index Pis from (72)as

Pis = wi

[(
1

Niis

) 1
(σs−1)

(
σs

σs − 1

)
(tp

is)
1−γis

ϕ̄iis

] 1
γis

. (73)

This expression includes the average productivities, but these are not affected by the consumer or producer
taxes because from (31) they are proportional to the cutoff productivities, which are determined by the
free-entry condition like (45) but in each sector: Js(ϕ∗iis) fiis = f E

is .
Entry into each sector, Nis, is endogenous and is determined by (43), where the expenditure on the dif-

ferentiated inputs in the closed economy, Eiis, equals the net-of-tax value of the final good that are bundled
from them, Yis, and we ignore the term Eijs. In the market clearing condition (3), with no trade then λiis = 1
and λijs = 0, and the consumer and firm purchases must be divided by tc

is and tp
is, respectively, to obtain

the net-of-tax purchases

Yis =
αis
tc
is

wiLi +
γ̃is

tp
is

Yis, (74)

recalling that we have set Bi = 0 so that wiLi is consumer income. We solve for Yis =
αiswi Li

tc
is [1−(γ̃is/tp

is)]
, and then

entry from (43) is

Nis = (αisLi)

/[
tc
is

(
1− γ̃is

tp
is

)
f e
is

(
θs σs

σs − 1

)]
. (75)

Substituting (75) into (25), (73) and then (71) and ignoring constants, the objective function is

max
tc
is ,tp

is>0

S

∏
s=1

tc
is

[
tc
is

(
1− γ̃is

tp
is

)] 1
γis(σs−1) (

tp
is

) (1−γis)
γis


−αis

. (76)

We solve the problem (76) subject to (70) twice: in the first-best by choosing the optimal consumer and
producer tax/subsidies; and in the second-best by choosing tc

is while setting tp
is ≡ 1. The solutions are

shown in (6) and (7), respectively, for the case of just two sectors.

C Fixed-point Formula for the Second-Best Tariff

We now assume that no consumer or producer tax/subsidies apply to purchases of the finished good in
either sector, and the only policy instrument used is the tariff tji1 on imports of the differentiated inputs in
sector 1. For convenience we drop subscripts from the import tariff tji1 and simply denote it by ti. In this
Appendix we perform the comparative statics with respect to a change in the tariff to obtain the fixed-point
formula for the optimal tariff (13), and in Appendix D we develop the proof of Theorem 1.

We first derive an expression for the price index that is going to be used in order to express welfare as
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a function of productivity thresholds. From (33) the sector 1 price index is

Pi1 =

ϕ∗ii1
−θ1 Ni1

(
σ1

σ1 − 1
xi1
ϕ̄ii1

)1−σ1

+ ϕ∗ji1
−θ1 Nj1

(
σ1

σ1 − 1
wjtji1

ϕ̄ji1

)1−σ1
 1

1−σ1

.

We combine the entry thresholds ϕ∗ji1, and ϕ∗ii1, to obtain

(
σ1

σ1 − 1
wjτji1 ti

ϕ∗ji1

)1−σ1

=
σ1 wj f ji1 ti

σ1 wi fii1

(
σ1

σ1 − 1
xi1
ϕ∗ii1

)1−σ1

. (77)

Using this expression together with trade balance (40) and (1) we obtain

Pi1 =

(
σ1

σ1 − 1
1

K1

(
Ni1
fii1

) 1
(1−σ1)

) 1
γi1

(ϕ∗ii1)
− 1

γi1 wi

(
fii1 ϕ∗−θ1

ii1 + ϕ∗ij1
−θ1 fij1ti

) 1
γi1(1−σ1) . (78)

Similarly, we obtain

Pi2 =

(
σ2

σ2 − 1
1

K2

(
Ni2
fii2

) 1
(1−σ2)

) 1
γi2

( ϕ∗ii2)
− 1

γi2 wi

(
fii2 ϕ∗−θ2

ii2

) 1
γi2(1−σ2) .

Using expressions (67) and (68) for income and the above expressions for the price indexes, we substi-
tute these into indirect utility or welfare, which from (2) is given by

Ui =

(
αi Ii
Pi1

)αi
(
(1− αi)Ii

Pi2

)1−αi

.

Define the term,

Θ ≡


(σ1−1)

(1+γi1(σ1−1))(
σ1

σ1−1
1

K1

(
1
fii1

) 1
(1−σ1)

) 1−σ1
γi1(1−σ1)


αi
 1(

σ2
σ2−1

1
K2

(
1
fii2

) 1
(1−σ2)

) 1
γi2 (

ϕ∗ii2
)− 1

γi2

(
fii2 ϕ∗−θ2

ii2

) 1
γi2(1−σ2)


1−αi

which is a constant because ϕ∗ii2 is constant from (45). We then obtain the welfare expression,

Ui = Θ


K

σ1−1
1 σ1
θ1 f e

i1

(
ϕ∗−θ1

ii1 fii1 + ϕ∗ij1
−θ1 fij1 ti

)
− (1− γi1)(

fii1 ϕ∗−θ1
ii1 + ϕ∗ij1

−θ1 fij1ti

) 1
γi1(1−σ1)

(ϕ∗ii1)
1

γi1


αi  Li1

(Ni1)
1

γi1(1−σ1)

αi

×

 Li2

(Ni2)
1

γi2(1−σ2)

1−αi

.
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There is new term in this expression, given by Li1

(Ni1)
1

γi1(1−σ1)

αi
 Li2

(Ni2)
1

γi2(1−σ2)

1−αi

=

(
(1 + γi1 (σ1 − 1)) θ1 f e

i1
(σ1 − 1)

(Ni1)
1+γi1(σ1−1)

γi1(σ1−1)

)αi
(
(1 + γ2 (σ2 − 1)) θ2 f e

i1
(σ2 − 1)

(Ni2)
1+γi2(σ2−1)

γi2(σ2−1)

)1−αi

using (60), (61).
Totally differentiating welfare, Ûi can be written as

Ûi = αi

1 +
1− γi1

αi Ii
wi Li1

(1+γi1(σ1−1))
(σ1−1)

+
1

γi1 (σ1 − 1)

((1− λii1)
(
−θ1 ϕ̂∗ij1+t̂i

)
− θ1λii1 ϕ̂∗ii1

)
+

αi
γi1

ϕ̂∗ii1 + αi
1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
N̂i1 + (1− αi)

1 + γ2 (σ2 − 1)
γi2 (σ2 − 1)

N̂i2

= αi

(
1 +

(1− γi1) (σ1 − 1)
(1 + γi1 (σ1 − 1)) + σ1 (ti − 1)

(
1− λ̃ii1

) + 1
γi1 (σ1 − 1)

)

×
(
(1− λii1)

(
−θ1 ϕ̂∗ij1+t̂i

)
− θ1λii1 ϕ̂∗ii1

)
+

1
γi1

ϕ̂∗ii1

+αi
1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
N̂i1 + (1− αi)

1 + γi2 (σ2 − 1)
γi2 (σ2 − 1)

N̂i2, (79)

where the equality is obtained by using the following expression

1 +
1− γi1

αi Ii
wi Li1

(1+γi1(σ1−1))
(σ1−1)

+
1

γi1 (σ1 − 1)
= 1 +

1− γi1(
1 +

σ1(ti−1)(1−λ̃ii1)
(1+γi1(σ1−1))

)
(1+γi1(σ1−1))

(σ1−1)

+
1

γi1 (σ1 − 1)

= 1 +
(1− γi1) (σ1 − 1)

(1 + γi1 (σ1 − 1)) + σ1 (ti − 1)
(
1− λ̃ii1

) + 1
γi1 (σ1 − 1)

,

Now the strategy is to obtain expressions for ϕ̂∗ii1, and ϕ̂∗ij1. First, totally differentiate the free entry
condition (43) and use (51) to obtain

ϕ̂∗ii1 = −
(

1− λ̃ii1

λ̃ii1

)
ϕ̂∗ij1. (80)

Then we totally differentiate the price index (78) to obtain

P̂i1 =
1

γi1 (1− σ1)
N̂i1 + ŵi +

1
γi1

((
1− λ̃ii1

)
λ̃ii1

(
θ1

(1− σ1)
λii1 + 1

)
− θ1 (1− λii1)

(1− σ1)

)
ϕ̂∗ij1

+
1

γi1 (1− σ1)
(1− λii1) t̂i. (81)

Next, totally differentiate the expression for ϕ∗ij1 in (30) and recall that country i is a small open economy
so that the country j price index, value of output and input-cost index are fixed. It follows that ϕ̂∗ij1 is given
by

ϕ̂∗ij1 −
(

1
σ1 − 1

+ γi1

)
ŵi = (1− γi1) P̂i1. (82)

A14



Now combine (81) and (82) to obtain

ϕ̂∗ij1
1− γi1

− 1
1− γi1

(
1

σ1 − 1
+ γi1

)
ŵi =

1
γi1 (1− σ1)

N̂i1 + ŵi +
1

γi1

(
1− λ̃ii1

λ̃ii1

(
θ1λii1
1− σ1

+ 1
)
− θ1 (1− λii1)

1− σ1

)
ϕ̂∗ij1

+
1− λii1

γi1 (1− σ1)
t̂i. (83)

From trade balance (40), we have

ϕ̂∗ji1 = ϕ̂∗ij1 −
1
θ1

ŵi −
1
θ1

N̂i1. (84)

From the equality for ϕ̂∗ji1 and ϕ̂∗ii1 (77), we can see that

ϕ̂∗ji1 = ϕ̂∗ii1 −
(

1
σ1 − 1

+ γi1

)
ŵi − (1− γi1) P̂i1 +

σ1

σ1 − 1
t̂i.

Combining (80) and (82), ϕ̂∗ji1 is given by

ϕ̂∗ji1 = − 1
λ̃ii1

(
1

σ1 − 1
+ γi1

)
ŵi −

1
λ̃ii1

(1− γi1) P̂i1 +
σ1

σ1 − 1
t̂i,

and after using (84), we obtain

ϕ̂∗ij1−
1
θ1

ŵi −
1
θ1

N̂i1 = − 1
λ̃ii1

(
1

σ1 − 1
+ γi1

)
ŵi −

1
λ̃ii1

(1− γi1) P̂i1 +
σ1

σ1 − 1
t̂i.

Then from (82) we have

ϕ̂∗ij1 =
λ̃ii1

1 + λ̃ii1

1
θ1

(
ŵi + N̂i1

)
+

λ̃ii1

1 + λ̃ii1

σ1

σ1 − 1
t̂i. (85)

Using (83) and multiplying both sides by (1− γi1) we have

−
(

σ1

σ1 − 1

)
ŵi =

(
−1 +

1− γi1
γi1

(
θ1

(1− σ1)

(
λii1 − λ̃ii1

λ̃ii1

)
+

(
1− λ̃ii1

)
λ̃ii1

))
ϕ̂∗ij1

+
1− γi1

γi1 (1− σ1)
N̂i1 +

(1− γi1)

γi1 (1− σ1)
(1− λii1) t̂i.

Combining this expression with (85) and using ρ1 ≡ σ1−1
σ1

, we finally obtain

ŵi = E1 t̂i + E2N̂i1,

where

E1 =
1− 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
1− 1

σ1

1−λii1λ̃ii1
1−λ̃ii1

+
(

1
σ1
− θ1

σ1−1

)
(1− ti) λii1

)
1+λ̃ii1

λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti) λii1

) , (86)

E2 =

1−γi1
γi1

1
σ1

1+λ̃ii1
λ̃ii1

+ ρ1
θ1
− 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti) λii1

)
1+λ̃ii1

λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti) λii1

) . (87)
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Now substituting these expressions into (85), we obtain

ϕ̂∗ij1 =
λ̃ii1

1 + λ̃ii1

1
θ1

(1 + E2) N̂i1 +
λ̃ii1

1 + λ̃ii1

(
E1

θ1
+

1
ρ1

)
t̂i

=
λ̃ii1

1 + λ̃ii1

 1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1) λii1

)
1+λ̃ii1

λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1
(ti − 1) λii1

)
 t̂i

+
λ̃ii1

1 + λ̃ii1

1
θ1

(1 + E2) N̂i1. (88)

Note that
λ̃ii1

1 + λ̃ii1

1
θ1

(1 + E2) =
1
θ1

1+γi1(σ1−1)
σ1γi1

1+λ̃ii1
λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1
− 1

σ1
(1− ti) λii1

) .

Then from the welfare equation (79), using (80) we obtain

Ûi = αi

[
E3 (1− λii1) t̂i +

(
E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1

)
ϕ̂∗ij1

]

+αi
1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
N̂i1 + (1− αi)

1 + γi2 (σ2 − 1)
γi2 (σ2 − 1)

N̂i2, (89)

where

E3 ≡
(

1 +
(1− γi1) (σ1 − 1)

(1 + γi1 (σ1 − 1)) + σ1 (ti − 1)
(
1− λ̃ii1

) + 1
γi1 (σ1 − 1)

)
. (90)

Inverting (88), t̂i is given by

t̂i = −
1
θ1

1+γi1(σ1−1)
σ1γi1

λ̃ii1
1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1) λii1

)) N̂i1

+

1+λ̃ii1
λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1
(ti − 1) λii1

)
λ̃ii1

1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1) λii1

)) ϕ̂∗ij1.

Write this expression for t̂i as
t̂i = −E4N̂i1 + E5 ϕ̂∗ij1, (91)

where

E4 =
1
θ1

1+γi1(σ1−1)
σ1γi1

λ̃ii1
1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1) λii1

)) ,

E5 =

1+λ̃ii1
λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1
(ti − 1) λii1

)
λ̃ii1

1+λ̃ii1

(
1
ρ1

1+λ̃ii1
λ̃ii1

+ 1−γi1
γi1

1
θ1

1
σ1

1−λ̃ii1
λ̃ii1

(
1−λii1λ̃ii1

1−λ̃ii1
+ (ti − 1) λii1

)) .

Using (54), E4 and E5 can be written as

E4 =
1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

, (92)
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E5 =

1+λ̃ii1
λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1
(ti − 1) λii1

)
1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1
(1− λii1)

. (93)

Now we simplify the welfare expression in (89). First, note that using (91), we obtain

Ûi = αi

[
E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1

]
ϕ̂∗ij1

+αi

[
1 + γi1 (σ1 − 1)

γ1 (σ1 − 1)
− E3 (1− λii1) E4

]
N̂i1 + (1− αi)

1 + γi2 (σ2 − 1)
γi2 (σ2 − 1)

N̂i2. (94)

We seek to express N̂i1, N̂i2 as a function of ϕ̂∗ij1. From the labor market clearing condition Li1 + Li2 = Li

and using (60) and (61), we have

0 =
Li2
Li

N̂i2 +
Li1
Li

N̂i1,

which implies that

N̂i2 = − Li1
Li2

N̂i1. (95)

In addition, recalling (60), (61) and (64), we obtain

Ni2 wi f e
i2

(
θ2σ2

σ2 − 1

)
=

1
1− γ̃i2

wiLi2 =
1

1− γ̃i2
wiLi

( (
1− λ̃ii1

)
ti + λ̃ii1 − γ̃i1(

1− λ̃ii1
)

ti + λ̃ii1 +
1

1−αi
(αi − γ̃i1)

)
.

Here we define

li2 ≡
(
1− λ̃ii1

)
ti + λ̃ii1 − γ̃i1(

1− λ̃ii1
)

ti + λ̃ii1 +
1

1−αi
(αi − γ̃i1)

=
Li2
Li

,

and then N̂i2 is given by
N̂i2 = l̂i2,

where

l̂i2 = (1− li2)
(1− ti) λ̃ii1

ˆ̃λii1 +
(
1− λ̃ii1

)
ti t̂i(

1− λ̃ii1
)

ti + λ̃ii1 − γ̃i1
,

Combining this expression with (95), N̂i1 can be written as

N̂i1 = − Li2
Li1

(1− li2)

(
(1− ti) λ̃ii1

ˆ̃λii1 +
(
1− λ̃ii1

)
ti t̂i(

1− λ̃ii1
)

ti + λ̃ii1 − γ̃i1

)

= −
(

(1− ti) λ̃ii1
ˆ̃λii1 +

(
1− λ̃ii1

)
ti t̂i(

1− λ̃ii1
)

ti + λ̃ii1 +
1

1−αi
(αi − γ̃i1)

)
.

From (51) and (77), we can use
ˆ̃λii1 = θ1

(
1− λ̃ii1

)
λ̃ii1

ϕ̂∗ij1, (96)

and combining with (91), we obtain

−
((

1− λ̃ii1
)

ti + λ̃ii1 +
1

1− αi
(αi − γ̃i1)

)
N̂i1

= (1− ti) λ̃ii1θ1

(
1− λ̃ii1

)
λ̃ii1

ϕ̂∗ij1 +
(
1− λ̃ii1

)
ti(E5 ϕ̂∗ij1 − E4N̂i1).
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Then we arrive at

N̂i1 =

(
1− λ̃ii1

)
((1− ti) θ1 + tiE5)((

1− λ̃ii1
)

ti (E4 − 1)− λ̃ii1 − 1
1−αi

(αi − γ̃i1)
) ϕ̂∗ij1. (97)

Finally, from (64), (65) and (95), N̂i2 can be written as

N̂i2 = −
(

αi
1− αi

)
(1− γ̃1)(

1− λ̃ii1
)

ti + λ̃ii1 − γ̃i1
N̂i1. (98)

C.1 Total Change in Utility and Definition of D(ti)

We can use the above equations to obtain the total change in utility. Substituting (97) and (98) into the
second term of welfare in (94), we have

αi

(
1 + γi1 (σ1 − 1)

γ1 (σ1 − 1)
− E3 (1− λii1) E4

)
N̂i1 + (1− αi)

σ2

σ2 − 1
N̂i2 = D(ti)αi N̂i1,

where

D(ti) ≡
1 + γi1 (σ1 − 1)

γi1 (σ1 − 1)
− 1− γ̃i2

γi2ρ2

1 + γi1 (σ1 − 1)
σ1
(
1− λ̃ii1

)
(ti − 1) + (1 + γi1 (σ1 − 1))

− E3E4 (1− λii1) .

This initial definition D(ti) can be re-expressed using the function T(ti) in (55) to obtain the alternative
definition

D(ti) ≡
[

1 + γi1(σ1 − 1)
γi1(σ1 − 1)

−
(

1 + γi2(σ2 − 1)
γi2(σ2 − 1)

)
(1− γ̃i1)

T(ti)
− E3E4(1− λii1)

]
. (99)

Notice that the definition of D(ti) used in the main text, is obtained by further defining

Ed ≡ E3E4(1− λii1), (100)

and using (56) to derive (1−γ̃i1)
T(ti)

= Λi1(1−γ̃i1)
1−γ̃i1Λi1

, and also using the effective markups σ̃is
(σ̃is−1) defined in (7) so

that expression (11) in the main text follows.
It follows that Ûi can be written as

Ûi = αi

[
Eφ ϕ̂∗ij1 + D(ti)N̂i1

]
, (101)

where

Eφ ≡ E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
−
(

1− λ̃ii1

γi1λ̃ii1

)
. (102)

We see that the total change in utility in (101) is written as the sum of two terms: the first given by αiEφ ϕ̂∗ij1
reflects selection and includes all the changes in cutoff productivities; and second αiD(ti)N̂i1 reflects entry.
At the optimum, Ûi/

(
αi ϕ̂
∗
ij1

)
= 0, which implies from (97) that[
E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1

]

= −D(ti)

(
1− λ̃ii1

)
((1− ti) θ1 + tiE5)(

1− λ̃ii1
)

ti (E4 − 1)− λ̃ii1 − 1
1−αi

(αi − γ̃i1)
. (103)
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Using the tariff formula (53) repeatedly, we define

M̃(ti) =
γi1

(
E5 − (ti−1)

ti
θ1

)
(1− αi)

((
1− λ̃ii1

)
ti (1− E4) + λ̃ii1

)
+ αi − γ̃i1

λ̃ii1
λii1

D(ti), (104)

and then the first-order condition (103) becomes[
E3 (1− λii1) E5 + E3θ1

(
λii1 − λ̃ii1

λ̃ii1

)
− 1

γi1

(
1− λ̃ii1

)
λ̃ii1

]
=

(1− λii1) (1− αi)

γi1
M̃(ti).

Using 1−ti
ti

(1− λii1) =
λii1−λ̃ii1

λ̃ii1
from (53), we get

(1− λii1)

γi1

[
γi1E3E5 + γi1E3θ1

(
1− ti

ti

)
− 1

λii1ti

]
=

(1− λii1) (1− αi)

γi1
M̃(ti),

E5 + θ1

(
1− ti

ti

)
− 1

λii1tiγi1E3
= (1− αi)

M̃(ti)

γi1E3
.

Using (93), we obtain

(
1− ti

ti

)
θ1

ρ1
+

1 + λ̃ii1

λ̃ii1
− ρ1

θ1
+

1− γi1
γi1

1− λ̃ii1

λ̃ii1

ρ1

θ1
−

1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1
(1− λii1)

λii1tiγi1E3

= (1− αi)
M̃(ti)

γi1E3

(
1
ρ1

+
1− γi1

γi1

1
θ1

1
σ1

(1− λii1)

)
.

We multiply both sides by ti and use (53) again to get

(1− ti)
θ1

ρ1
+

1 + λ̃ii1

λ̃ii1
ti −

ρ1

θ1
ti +

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
−

1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1
(1− λii1)

λii1γi1E3

= (1− αi)
M̃(ti)ti
γi1E3

(
1
ρ1

+
1− γi1

γi1

1
θ1

1
σ1

(1− λii1)

)
.

Next we add and subtract 1
λii1

and use ti
λ̃ii1

= ti − 1 + 1
λii1

, to obtain

(1− ti)

(
θ1 − ρ1

ρ1

)
+ ti −

ρ1

θ1
ti +

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
−

 1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1
(1− λii1)

γi1E3
− 1

 1
λii1

= (1− αi)
M̃(ti)ti
γi1E3

(
1
ρ1

+
1− γi1

γi1

1
θ1

1
σ1

(1− λii1)

)
.

Note that

1
ρ1

+ 1−γi1
γi1

1
θ1

1
σ1
(1− λii1)

γi1E3
− 1 = (1− γi1)

1
γi1

1
θ1

1
σ1
(1− λii1) +

ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

γi1E3
.

Then the first-order condition becomes

(
θ1

θ1 − ρ1
− ti

)
(θ1 − ρ1)

2

θ1ρ1
+

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
− (1− γi1)

1
γi1

1
θ1

1
σ1
(1− λii1) +

ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

γi1E3

1
λii1
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= (1− αi)
M̃(ti)ti
γi1E3

(
1
ρ1

+
1− γi1

γi1

1
θ1

1
σ1

(1− λii1)

)
.

Now we find the common denominator for the second terms on the left-hand side using (90):

1− γi1
γi1

(1− λii1)

λii1

ρ1

θ1
− (1− γi1)

1
γi1

1
θ1

1
σ1
(1− λii1) +

ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

γi1E3

1
λii1

=
(1− γi1)

γi1E3
ρ1

 (1− λii1)

λii1

E3

θ1
−

1
γi1

1
θ1

1
σ1
(1− λii1) +

ρ1+(1−ti)(1−λ̃ii1)−1

(1−γi1)ρ1+(1−ti)(1−λ̃ii1)−1

ρ1

1
λii1


=

(1− γi1)

γi1E3

1
θ1

1
λii1

θ1 − θ1ρ1 − (1− λii1) ρ1 + (θ1 − ρ1 (1− λii1)) (ti − 1)
(
1− λ̃ii1

)
(1− γi1) ρ1 + (1− ti)

(
1− λ̃ii1

)
− 1

.

Then the first-order condition becomes(
θ1

θ1 − ρ1
− ti

)
(θ1 − ρ1)

2

θ1ρ1
− (1− γi1)

γi1E3

R̃(ti)

θ1
= (1− αi)

M̃(ti)ti
γi1E3

(
1
ρ1

+
1− γi1

γi1

1
θ1

1
σ1

(1− λii1)

)
,

where

R̃(ti) ≡
1

λii1

(
θ1 − θ1ρ1 − ρ1 (1− λii1) + (θ1 − ρ1 (1− λii1)) (ti − 1)

(
1− λ̃ii1

)
1− (1− γi1) ρ1 + (ti − 1)

(
1− λ̃ii1

) )
. (105)

The first-order condition can then be written succinctly using topt = θ1
θ1−ρ1

as

topt[1− (1− γi1)R(ti)] = ti[1 + (1− αi) M(ti)], (106)

where we define the terms M(ti) and R(ti) as in the following subsections. Dividing through by [1 +
(1− αi) M(ti)], we obtain the fixed-point formula (13).

C.2 Definition of M(ti) and A(ti)

Use M̃(ti) from (104), and replace E5 with Em ≡ E5 that was defined in (93):

Em =

1+λ̃ii1
λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1
(ti − 1) λii1

)
1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

> 0.

Then we define M(ti) as

M(ti) ≡
θ1

(θ1 − ρ1)
2

M̃(ti)

γi1E3

(
1 +

(1− γi1)

γi1

ρ1

θ1σ1
(1− λii1)

)

=
θ1

(
Em − (ti−1)

ti
θ1

)
(θ1 − ρ1)

2 E3

(
1 +

ρ1(1− γi1)

θ1σ1γi1
(1− λii1)

)
λ̃ii1
λii1

D(ti)

A(ti)

= M×
(
Em −

(ti − 1)
ti

θ1

)
D(ti)

A(ti)
, (107)

whereM is defined by

M≡ θ1

(θ1 − ρ1)
2 E3

(
1 +

ρ1(1− γi1)

θ1σ1γi1
(1− λii1)

)
λ̃ii1
λii1

> 0, (108)
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and the term A(ti) is given by the denominator of M̃(ti) from (104):

A(ti) ≡ αi − γ̃i1 + (1− αi)
[(

1− λ̃ii1
)

ti (1− E4) + λ̃ii1
]

, (109)

and we define Ea ≡ [(1− λ̃ii1)ti (1− E4) + λ̃ii1] to obtain expression (15) in the main text.
These expressions give us the definition of M(ti) used in (14) in the main text. To establish the sign of

Ea, we use E4 from (92) to note that

E4 (1− λii1) =
1
θ1

1+γi1(σ1−1)
σ1γi1

(1− λii1)

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

< 1.

Therefore, 1− E4 > 1− 1
(1−λii1)

= − λii1
(1−λii1)

, and it follows using (53) that

Ea = (1− λ̃ii1)ti (1− E4) + λ̃ii1 > − ti(1− λ̃ii1)λii1
(1− λii1)

+ λ̃ii1 = 0. (110)

C.3 Definition of R(ti)

The term R(ti) appearing in (106) is a transformation of R̃(ti) from (105)

R(ti) ≡
ρ1

θ1 (θ1 − ρ1)

R̃(ti)

γi1E3
=

ρ1

θ1 (θ1 − ρ1)

1
λii1

(θ1 − ρ1 (1− λii1)) (T + γ̃i1)− θ1ρ1

(1− γ̃i1)
T
ρ1

+ γi1γ̃i1
,

where the equality follows using T(ti) from (55) in (105). We rewrite this as

R(ti) = R× [(θ1 − ρ1 (1− λii1)) (T(ti) + γ̃i1)− θ1ρ1] , R ≡
ρ1

θ1(θ1−ρ1)λii1

(1− γ̃i1)
T(ti)

ρ1
+ γi1γ̃i1

> 0. (111)

Then expression (16) in the main text follows by using use (56) to rewrite T(ti) + γ̃i1 = 1
Λi1

.

D Proof of Theorem 1

While a fixed point to (13) exists under general conditions,10 to establish the properties of this fixed point
we rely on a slightly different form of the equation. Taking the difference between the numerator of F(ti)
times topt and the denominator times ti, we obtain

H(ti) ≡ topt [1− (1− γi1)R(ti)]− ti [1 + (1− αi) M(ti)] . (112)

The function H(ti) is a continuous function of the tariff provided that A(ti) > 0 in the interval of tariffs we
are interested in, so that M(ti) does not have any discontinuities. Our general approach in the next result is
to find high and low tariffs at which the sign of H(ti) switches, and then we apply the intermediate value
theorem to obtain a point where H(t∗i ) = 0, which by construction is a fixed-point of (13).

In order to apply the intermediate value theorem, we need to consider values of ti below unity, meaning
an import subsidy, so the revenue cost of the subsidy needs to be deducted from labor income wiLi to obtain
net income Ii. With enough roundabout production, it seems possible that at a very low tariff – meaning a
very high import subsidy – the revenue-cost of the subsidy could exhaust the labor income of the economy,
so that net income Ii = wiLi − Bi is zero. In that case, the there is no consumption by consumers in country

10 Let W(ti) denote utility Ui as a function of the tariff. Provided that W(ti) is continuous and differentiable, then it
will reach some maximum over the (compact) range of all possible tariffs and subsidies, and t∗i at that maximum will
satisfy the first-order condition (13).
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i (though the labor endowment Li is still provided), which is run like an overseas factory solely for the
benefit of foreign consumers. We need to check whether this extreme case can occur, and if it does, we
denote that minimal tariff (maximum import subsidy) by tmin

i ≥ 0. We give a more formal definition with:

Definition 2. tmin
i ≡ arg maxti≥0 {T(ti)|T(ti) = 0}, with λmin

ii1 denoting the value of λii1 at tmin
i .

To explain this definition, notice that using Bi from the main text in (57) that we can solve for income Ii
as

Ii = wiLi + Bi = wiLi

[
T(ti)

T(ti) + αi(T(ti)− (1− γ̃i1))

]
. (113)

We see that Ii = 0 ⇐⇒ T(ti) = 0. We do not rule out in Definition 2 the possibility that there might be
multiple tariffs at which T(ti) = 0, in which case tmin

i is chosen as the maximum of these.11 To solve for
tmin
i , we use the market clearing condition (3) together with trade balance (39) to get

Yi1 = αi Ii + γ̃i1

(
λii1Yi1 +

λji1

ti
Yi1

)
.

If we set Ii = 0 and use λii1 + λij1 = 1, then we solve for

1 = γ̃i1λmin
ii1 + γ̃i1

1− λmin
ii1

tmin
i

=⇒ tmin
i =

γ̃i1(1− λmin
ii1 )

(1− γ̃i1λmin
ii1 )

. (114)

We see that tmin
i = 0 for γi1 = 1 because then γ̃i1 = (1− γi1)ρ1 = 0. More generally for 0 ≤ γi1 ≤ 1 we have

0 ≤ γ̃i1 ≤ ρ1, and it follows from (114) that 0 ≤ tmin
i ≤ γ̃i1. Because we solved for tmin

i from the market
clearing condition when Ii = 0, it follows from (113) that T(tmin

i ) = 0. Negative income is not possible, so
at higher tariffs we have Ii > 0 and then T(ti) > 0 from (113).

Remark 2. We henceforth restrict our attention to tariffs in the range ti ≥ tmin
i , where Tmin ≡ T(tmin

i ) = 0 and
T(ti) > 0 ⇐⇒ ti > tmin

i .

Before proceeding with the proof of Theorem 1, we make use of the T(ti) function to slightly transform
the terms used within D(ti) and M(ti), as defined in Appendix C.1 and C.2. We first transform the elasticity
E3 appearing in (90) using T(ti) in (55) to obtain

E3 =

(
T(ti) + γ̃i1

T(ti)
+

1
γi1(σ1 − 1)

)
> 0,

and so

E3T(ti) =

(
1 +

1
γi1 (σ1 − 1)

)
T + γ̃i1 = (1− γ̃i1)

T(ti)

γi1ρ1
+ γ̃i1.

Using the above equation with (99), and noting that 1+γi1(σ1−1)
γi1(σ1−1) = 1−γ̃i1

γi1ρ1
, we obtain

D(ti)T(ti) =
1− γ̃i1
γi1ρ1

[
T(ti)−

1 + γi2 (σ2 − 1)
γi2 (σ2 − 1)

γi1ρ1 −
(

T(ti) + γi1ρ1
γ̃i1

1− γ̃i1

)
(1− λii1) E4

]
. (115)

Also, note that (109) can be rewritten using T(ti) from (55) as

A(ti) = αi − γ̃i1 + (1− αi)
[(

T(ti) + γ̃i1 − λ̃ii1
)
(1− E4) + λ̃ii1

]
. (116)

We now prove Theorem 1 by a series of Definitions, Lemmas and Remarks.

11If T(ti) is increasing in ti then tmin
i will be unique, and conditions to ensure that are provided in Lemma 7.
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From (111) we have R(ti) = R× [(θ1 − ρ1 (1− λii1)) (T(ti) + γ̃i1)− θ1ρ1] , whereR > 0. It appears that
the term [(θ1 − ρ1 (1− λii1)) (T(ti) + γ̃i1)− θ1ρ1] can be zero, particularly as T(ti) is low, so that R(ti) = 0.
For the proof of parts (a) and (c) in Theorem 1, we will make extensive use of this low tariff, which is defined
more formally as follows:

Definition 3. Define tR0
i ≡ arg maxti≥tmin

i
{R(ti)|R(ti) = 0} and denote TR0 ≡ T(tR0

i ), where it is understood

that TR0 uses the shares λ̃
R0
ii1 and λR0

ii1 which are evaluated at tR0
i .

This definition allows for the possibility that there could be multiple tariffs at which R(ti) = 0, in which
case tR0

i is chosen as the maximum of these points.

Lemma 3. The tariff tR0
i is given by

tR0
i = 1 +

ρ1(
1− λ̃

R0
ii1

) ρ1
(
1− λR0

ii1
)

θ1 − ρ1
(
1− λR0

ii1
) − (1− ρ1)(

1− λ̃
R0
ii1

) , (117)

with tmin
i < tR0

i < 1 and R(ti) > 0 for ti > tR0
i .

Proof: Because R > 0 in (16), then R(ti) = 0 implies [(θ1 − ρ1 (1− λii1)) (T(ti) + γ̃i1)− θ1ρ1] = 0. This
condition is rewritten as

TR0 =
θ1ρ1

θ1 − ρ1
(
1− λR0

ii1
) − γ̃i1 =

(
θ1

θ1 − ρ1
(
1− λR0

ii1
) − (1− γi1)

)
ρ1 > 0, (118)

because the first ratio on the right is greater than 1 and so it exceeds (1− γi1) . It follows from Remark 2
that tR0

i > tmin
i , and from Definition 3 that R(ti) > 0 for ti > tR0

i .
Using (55) we can solve for tR0

i to obtain obtain (117), which can also be written as

tR0
i = 1 +

1(
1− λ̃

R0
ii1

) (−(1− ρ1)θ1 + ρ1
(
1− λR0

ii1
)

θ1 − ρ1
(
1− λR0

ii1
) )

< 1

where the final inequality follows from θ1 > (σ1 − 1)⇒ θ1 (1− ρ1) > ρ1
(
1− λR0

ii1
)

. QED

PROOF OF PART (a)
We assume that αi = 1, and then H(ti) from (112) becomes H(ti) = topt − ti − topt(1− γi1)R(ti). With

R(tR0
i ) = 0 for tR0

i < 1, we obtain H(tR0
i ) = topt − tR0

i > 0. Checking the sign of R(topt), because T(topt) >

1− γ̃i1 it readily follows from (16) that R(topt) > 0. In that case we obtain H(topt
i ) = −topt(1− γi1)R(topt) <

0 for γi1 < 1. Using the continuity of R(ti) and therefore of H(ti), it follows from the intermediate value
theorem that there exists a tariff t∗i with tR0

i < t∗i < topt at which H(t∗i ) = 0. By construction, this tariff is a
fixed point of (13). QED

PROOF OF PARTS (b) AND (c)
From (107) we have M(ti) = M×

(
Em − (ti−1)

ti
θ1

)
D(ti)
A(ti)

, where M > 0 from (108). It appears to be

possible that M(ti) = 0 for two reasons: either D(ti) = 0 at some tariff; or Em − (ti−1)
ti

θ1 at some tariff. For
the proof of parts (b) and (c) in Theorem 1, we will make extensive use of the first of these points, where
D(ti) = 0, which is defined more formally as follows:

Definition 4. Define

tD0
i ≡

{
arg minti≥tmin

i
{D(ti) = 0} if this value exists,

+∞ otherwise,

and denote TD0 ≡ T(tD0
i ) and likewise for the shares λ̃

D0
ii1 and λD0

ii1 evaluated at tD0
i .
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Once again, we allow for multiple solutions for the tariff where D(ti) = 0, and in this case we choose
tD0
i as the minimum of them. Next, we establish a result for the term Em − (ti−1)

ti
θ1 that also appears within

M(ti) =M×
(
Em − (ti−1)

ti
θ1

)
D(ti)
A(ti)

, and could possibly make this expression equal to zero.

Lemma 4. Em − (ti−1)
ti

θ1 > 0 for all ti ∈ [tmin
i , topt

i ]. In addition, if γi1 = 1 then Em −
(t′′i −1)

t′′i
θ1 = 0 at a tariff

t′′i > topt
i .

Proof: From (93) we see that

Em −
(ti − 1)

ti
θ1 =

1+λ̃ii1
λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1
(ti − 1) λii1

)
1
ρ1

+ (1−γi1)(1−λii1)
γi1σ1θ1

− (ti − 1)
ti

θ1. (119)

Notice that the final term on the right is increasing in ti, so it takes its highest value over ti ∈ [tmin
i , topt

i ] at
ti = topt, in which that term equals ρ1. It follows that

Em −
(ti − 1)

ti
θ1 ≥

1+λ̃ii1
λ̃ii1
− ρ1

θ1
+ 1−γi1

γi1

1−λ̃ii1
λ̃ii1

(
ρ1
θ1

+ 1
σ1
(ti − 1) λii1

)
1
ρ1

+ (1−γi1)(1−λii1)
γi1σ1θ1

− ρ1

=
ρ1

λ̃ii1

1− ρ1
θ1

λ̃ii1 +
1−γi1

γi1

(
1− λ̃ii1

) ρ1
θ1

+ 1−γi1
γi1σ1

((
1− λ̃ii1

)
(ti − 1) λii1 −

ρ1
θ1
(1− λii1) λ̃ii1

)
1 + ρ1

(1−γi1)(1−λii1)
γi1σ1θ1


=

ρ1

λ̃ii1

1− ρ1
θ1

λ̃ii1 +
1−γi1

γi1

(
1− λ̃ii1

) ρ1
θ1

+ 1−γi1
γi1σ1

(
1− λ̃ii1

)
λii1

(
ti

topt − 1
)

1 + ρ1
(1−γi1)(1−λii1)

γi1σ1θ1


where the final line follows using (53). The second two terms in the numerator are

1− γi1
γi1

(
1− λ̃ii1

) (ρ1

θ1
− λii1

σ1

(
1− ti

topt

))
≥ 1− γi1

γi1

1
θ1σ1

(
1− λ̃ii1

)
(ti (θ1 − ρ1)− (θ1 − (σ1 − 1)))

which is positive for ti ≥ 1 and proves that Em − (ti−1)
ti

θ1 > 0 for all ti ∈ [tmin
i , topt

i ].
To evaluate (119) at higher levels of the tariff, note that with γi1 = 1 we have that

lim
ti→∞

(
Em|γi1=1 −

(ti − 1)
ti

θ1

)
= ρ1

(
2− ρ1

θ1

)
− θ1 < 0

because
(

2− ρ1
θ1
− θ1

ρ1

)
< 0 for θ1

ρ1
> 1. It follows that for γi1 = 1 then there exists a tariff t′′i > topt

i at which

Em −
(t′′i −1)

t′′i
θ1 = 0. QED

PROOF OF PART (b)(i)
If γis = 1 for s = 1, 2 then from (92) and (93) we have we have E3 = σ1

(σ1−1) and E4 = ρ1
θ1σ1

. Substituting these
into (99) we obtain

D(ti) =

[
σ1

(σ1 − 1)
−
(

σ2

(σ2 − 1)

)
1

T(ti)
− 1

σ1θ1
(1− λii1)

]
(120)

>

[
σ1

(σ1 − 1)
− σ2

(σ2 − 1)
− 1

σ1θ1

]
,
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where the inequality follows from T(ti) ≥ 1 for ti ∈ [1, topt] and λii1 < 1. It follows that D(ti) > 0 when
condition (17) holds.

Notice that when γi1 = 1 and E4 = ρ1
θ1σ1

then A(ti) in (109) becomes

A(ti) ≡ αi + (1− αi)

[(
1− λ̃ii1

)
ti

(
1− ρ1

θ1σ1

)
+ λ̃ii1

]
> αi > 0, (121)

which is bounded away from zero so that M(ti) is continuous. Then because Em − (ti−1)
ti

θ1 > 0 for ti ∈
[1, topt] from Lemma 4, it follows that M(ti) > 0 in that interval, and in particular M(topt

i ) > 0. From (112)
with γi1 = 1 it follows that H(topt) = −topt (1− αi) M(topt) < 0.

Now we make use of tD0
i which for γi1 = 1 is solved by setting (120) equal to zero, giving

σ1

(σ1 − 1)
−
(

σ2

(σ2 − 1)

)
1

T(tD0
i )
− 1

σ1θ1
(1− λii1) = 0. (122)

It follows that

T(tD0
i ) =

σ2
σ2−1

σ1
(σ1−1) −

(1−λii1)
σ1θ1

<

σ2
σ2−1

σ1
(σ1−1) −

1
σ1θ1

< 1,

since condition (17) implies σ1
σ1−1 −

1
σ1θ1

> σ2
(σ2−1) . Because T(tD0

i ) = 1 +
(
tD0
i − 1

) (
1− λ̃ii1

)
when γi1 = 1,

it follows immediately that tD0
i < 1.

We have already shown H(topt) = −topt (1− αi) M(topt) < 0. Since tD0
i < 1 then M(tD0

i ) = 0 and so
H(tD0

i ) = topt − tD0
i
[
1 + (1− αi) M(tD0

i )
]
= topt − tD0

i > 0. Using the continuity of M(ti) and therefore
of H(ti), it follows from the intermediate value theorem that there exists a tariff t∗i with tD0

i < t∗i < topt at
which H(t∗i ) = 0. By construction, this tariff is a fixed point of (13). QED

PROOF OF PART (b)(ii)
Under σ1 ≥ σ2, we have D(topt

i ) < 0 from (120). Using Lemma 4 it follows that M(topt
i ) < 0, and

therefore from H(ti) in (112), with γi1 = 1, we have H(topt) = −topt (1− αi) M(topt) > 0.
Now we check a higher tariff t′′i > topt from Lemma 4 at which Em− (ti−1)

ti
θ1=0 and therefore M(t′′i ) = 0.

From H(ti) in (112), with γi1 = 1, we have H(t′′i ) = topt − t′′i [1 + (1− αi) M(t′′i )] = topt − t′′i < 0. Using
from the continuity of M(ti) and therefore of H(ti), it follows from the intermediate value theorem that
there exists a tariff exists a tariff t∗i with topt

i < t∗i < t′′i at which H(t∗i ) = 0. By construction, this tariff is a
fixed point of (13). QED

PROOF OF PART (c)
We first establish conditions to ensure that A(ti) > 0, starting with the region ti ≥ topt.

Lemma 5. (1− E4)topt ≥ ρ1 when condition (18) holds, where E4 can be evaluated at any tariff. It follows that
A(ti) > αi(1− ρ1) + γi1ρ1 > 0 for all ti ≥ topt.

Proof: We want to ensure that (1− E4) ≥ ρ1
topt =

ρ1(θ1−ρ1)
θ1

. Use (92) to obtain

1−
1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

≥ ρ1 (θ1 − ρ1)

θ1
.

Then we take λii1 = 1 to get a sufficient condition

1− ρ1

θ1

1 + γi1 (σ1 − 1)
σ1γi1

≥ ρ1 (θ1 − ρ1)

θ1
⇐⇒ σ1

ρ1
(θ1 − ρ1) (1− ρ1) ≥

1− γi1
γi1

. (123)
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which is equivalent to (18) in the main text. Now the magnitude of A(ti) is established from

A(ti) = αi − γ̃i1 + (1− αi)
[(

1− λ̃ii1
)

ti (1− E4) + λ̃ii1
]

≥ αi − γ̃i1 + (1− αi)
[(

1− λ̃ii1
)

topt (1− E4) + λ̃ii1
]

≥ αi − (1− γi1)ρ1 + (1− αi)
[(

1− λ̃ii1
)

ρ1 + λ̃ii1
]

> αi(1− ρ1) + γi1ρ1,

where the first inequality follows from ti ≥ topt, the second from (1− E4)topt ≥ ρ1, and the final inequality
from [(1− λ̃ii1)ρ1 + λ̃ii1] > ρ1 . QED

Next, we define the tariff tA0
i at which A(ti) becomes zero, if it exists:

Definition 5. a) Define

tA0
i ≡

{
arg maxti≥tmin

i
{A(ti) = 0} if this value exists,

tmin
i otherwise,

and denote TA0 ≡ T(tA0
i ) and likewise for the shares λ̃

A0
ii1 and λA0

ii1 , which are evaluated at tA0
i .

In this definition we are looking for tariffs at which A(ti) = 0, but there will be no such tariffs if
A(ti) > 0 for all ti ≥ tmin

i . In that case, tA0
i = tmin

i < 1. On the other hand, if there are multiple tariffs at
which A(ti) = 0, then tA0

i is the maximum of these. From Lemma 5 which relies on condition (18) we know
that tA0

i < topt. In Lemma 8 below, we will further show that condition (19) ensures that tA0
i < tR0

i , and we
know that tR0

i < 1 from Lemma 3, so tA0
i < 1.

Remark 6. The tariff tA0
i is the import subsidy referred to as t′i in the statement of Theorem 1(c).

Lemma 7. For ti ∈ (tmin
i , 1), T(ti) is monotonically increasing in ti provided that A(ti) > 0.

Proof: From (54) combined with (55), T(ti) is given by

T =
λ̃ii1
λii1
− γ̃i1, (124)

which we differentiate to obtain,

dT =
λ̃ii1
λii1

(
ˆ̃λii1 − λ̂ii1

)
.

Totally differentiate (53), we can show that

λ̂ii1 =
(1− λii1)(
1− λ̃ii1

) [ ˆ̃λii1 −
(
1− λ̃ii1

)
t̂i

]
. (125)

Then combining with (96), we obtain

λ̂ii1 − ˆ̃λii1 =
θ1

λ̃ii1

(
λ̃ii1 − λii1

)
ϕ̂∗ij1 − (1− λii1) t̂i.

It follows that,

dT = − θ1

λii1

(
λ̃ii1 − λii1

)
ϕ̂∗ij1 +

λ̃ii1
λii1

(1− λii1)t̂i. (126)

Notice that the coefficient of t̂i in the final term is positive. We now show that ϕ̂ij1/t̂i is positive, so then
because λ̃ii1 < λii1 for ti < 1, we have established the monotonicity of T(ti).
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Using (91) and (97), we have

t̂i =

Em − tiE4

(
1− λ̃ii1

) (
Em − (ti−1)

ti
θ1

)
((

1− λ̃ii1
)

ti (E4 − 1)− λ̃ii1 − 1
1−αi

(αi − γ̃i1)
)
 ϕ̂∗ij1,

and so

ϕ̂∗ij1 =

((
1− λ̃ii1

)
ti (E4 − 1)− λ̃ii1 − 1

1−αi
(αi − γ̃i1)

)
((

1− λ̃ii1
)

ti (E4 − 1)− λ̃ii1 − 1
1−αi

(αi − γ̃i1)
)
Em − E4

(
1− λ̃ii1

)
(tiEm − (ti − 1) θ1)

t̂i.

Multiply the numerator and denominator by −(1− αi) and use (109) to obtain

ϕ̂∗ij1 =
A

AEm + (1− αi)E4
(
1− λ̃ii1

)
(tiEm − (ti − 1) θ1)

t̂i.

Because E4 > 0 and Em > 0, then for ti < 1 we have ϕ̂ij1/t̂i > 0. QED

Lemma 8. A(ti) > 0 for ti ∈ [tR0
i , topt] provided that (18) and (19) hold.

Proof:
There are two cases to consider. The first case is where tA0

i = tmin
i so that A(ti) > 0 for all ti > tmin

i . In
that case, the lemma holds trivially.

The second case is where tA0
i > tmin

i . Then according to (109), A(tA0
i ) = 0 at the tariff

(1− αi)
((

1− λ̃ii1
)

tA0
i (1− E4) + λ̃ii1

)
+ αi − γ̃i1 = 0,

so that, (
1− λ̃ii1

)
tA0
i = −

αi
(
1− λ̃ii1

)
+ λ̃ii1 − γ̃i1

(1− E4) (1− αi)
. (127)

Using the definition of T(ti) in (55), we can rewrite (109) as

(1− αi)
(

TA0 −
(
1− λ̃ii1

)
tA0
i E4

)
+ αi (1− γ̃i1) = 0, so that,

TA0 =
(
1− λ̃ii1

)
tA0
i E4 −

αi
1− αi

(1− γ̃i1) .

Combining with (127), TA0 can be written as

TA0 = − 1
1− αi

(
E4 (1− αi)

(
λ̃ii1 − γ̃i1

)
+ αi (1− γ̃i1)

(1− E4)

)

= −
(
λ̃ii1 − γ̃i1

) E4

(1− E4)
− αi (1− γ̃i1)

(1− αi) (1− E4)
. (128)

We know that the tariff tR0
i at which R(tR0

i ) = 0 occurs at

TR0 =
θ1ρ1

θ1 − ρ1
(
1− λR0

ii1
) − γ̃i1.

Our goal is to show that TA0 ≤ TR0, which will ensure that T(ti) is invertible in the range [tA0
i , 1] using
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Lemma 7 with A(ti) > 0 in that range. The condition TA0 ≤ TR0 holds if

−
(
λ̃ii1 − γ̃i1

) E 4

(1− E4)
− αi (1− γ̃i1)

(1− αi) (1− E4)
≤ θ1ρ1

θ1 − ρ1
(
1− λR0

ii1
) − γ̃i1, or,

−λ̃ii1
E4

(1− E4)
− αi (1− γ̃i1)

(1− αi) (1− E4)
≤ θ1ρ1

θ1 − ρ1
(
1− λR0

ii1
) − γ̃i1

1
1− E4

.

Drop the share on the left and we get the sufficient condition

1
(1− E4)

(γ̃i1 − αi)

(1− αi)
≤ θ1ρ1

θ1 − ρ1
(
1− λR0

ii1
) . (129)

If γ̃i1 < αi, this restriction is satisfied. However, for γ̃i1 > αi, then we need E4 sufficiently small so that the
above condition holds.

From Lemma 5 we know that (1− E4)topt < 1 and it follows that E4 < 1. Then the sufficient condition
for (129) is

(1− E4) ≥
(γ̃i1 − αi)

(1− αi)

[
1
ρ1
−
(
1− λR0

ii1
)

θ1

]
.

If αi ≥ γ̃i1 then this condition is automatically satisfied, since then the right-hand side is less than or equal
to zero, while the left-hand side is positive. For αi < γ̃i1, we can take λR0

ii1 = 1 to get the sufficient condition

1− E4 ≥
(γ̃i1 − αi)

(1− αi)

[
1
ρ1
− 1

θ1
+

1
θ1

]
≥ (γ̃i1 − αi)

(1− αi)

[
1
ρ1
− 1

θ1
+

λR0
ii1

θ1

]
.

We can substitute for E4 and the sufficient condition becomes

1−
1
θ1
+ 1

θ1

1−γi1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

≥ (γ̃i1 − αi)

(1− αi)ρ1
.

A sufficient condition for this inequality is obtained by taking λii1 = 1 on the left, so

1−
1
θ1
+ 1

θ1

1−γi1
σ1γi1

1
ρ1

≥ (γ̃i1 − αi)

(1− αi)ρ1
=⇒ αi ≥

−γi1 + ρ1

(
1
θ1
+ 1

θ1

1−γi1
σ1γi1

)
1
ρ1
− 1 + ρ1

(
1
θ1
+ 1

θ1

1−γi1
σ1γi1

) .

We therefore obtain (19) as the sufficient condition for tA0
i < tR0

i , which ensures the A(ti) > 0 for ti ∈
[tR0

i , topt]. QED

Lemma 9. D(tR0
i ) < 0. It follows by also using conditions (18) and (19) together with Lemma 4 that M(tR0

i ) < 0.

Proof: We evaluate D (ti) from (99) at tR0
i where we also evaluate the elasticities E3, and E4 at tR0

i . Then
D(tR0

i ) < 0 if the following expression is negative

1−
1+γi2(σ2−1)

γ2(σ2−1) γi1 (σ1 − 1)

σ1
(
1− λ̃ii1

) (
tR0
i − 1

)
+ (1 + γi1 (σ1 − 1))

− γi1 (σ1 − 1) (1− λii1)

1 + γi1 (σ1 − 1)

(
T(ti)+γ̃i1

T(ti)
+ 1

γi1(σ1−1)

)
1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

< 0.
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Using TR0 = θ1ρ1
θ1−ρ1(1−λR0

ii1 )
− γ̃i1, then we require

1−
1+γi2(σ2−1)

γ2(σ2−1) γi1 (σ1 − 1)

σ1
(
1− λ̃ii1

) (
tR0
i − 1

)
+ (1 + γi1 (σ1 − 1))

−γi1 (σ1 − 1) (1− λii1)

1 + γi1 (σ1 − 1)

(
θ1ρ1

θ1ρ1−γ̃i1(θ1−ρ1(1−λR0
ii1 ))

+ 1
γi1(σ1−1)

)
1
θ1

1+γi1(σ1−1)
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

< 0.

Given that 1+γi2(σ2−1)
γ2(σ2−1) > 1 then a sufficient condition is

1
σ1
(
1− λ̃ii1

) (
tR0
i − 1

)
+ (1 + γi1 (σ1 − 1))

+

(1− λii1)

(
θ1ρ1

θ1ρ1−γ̃i1(θ1−ρ1(1−λR0
ii1 ))

+ 1
γi1(σ1−1)

)
1
θ1

1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

≥ 1
γi1 (σ1 − 1)

.

Using tR0
i = 1 + ρ1(

1−λ̃
R0
ii1

) ρ1(1−λR0
ii1 )

θ1−ρ1(1−λR0
ii1 )
− (1−ρ1)(

1−λ̃
R0
ii1

) , we simply this inequality as

θ1 − ρ1
(
1− λR0

ii1
)

σ1ρ2
1
(
1− λR0

ii1
)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1
))

+

(1− λii1)

(
θ1ρ1

θ1ρ1−γ̃i1(θ1−ρ1(1−λR0
ii1 ))

+ 1
γi1(σ1−1)

)
ρ1

γi1(σ1−1)
σ1γi1

ρ1
1

γi1
1
σ1
(1− λii1) γi1 (σ1 − 1) + γi1 (σ1 − 1)

(
θ1 − ρ1

1
σ1
(1− λii1)

) ≥ 1
γi1 (σ1 − 1)

.

With simplifications, this inequality is expressed as

θ1 − ρ1
(
1− λR0

ii1
)

σ1ρ2
1
(
1− λR0

ii1
)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1
)) +

(
θ1ρ1(1−λii1)(σ1−1)

γi1θ1+(1−γi1)ρ1(1−λR0
ii1 )

+−σ1θ1 + ρ1 (1− λii1)

)
σ1ρ2

1 (1− λii1) + γi1 (σ1 − 1) (σ1θ1 − ρ1 (1− λii1))
≥ 0,

or,

1
σ1ρ2

1
(
1− λR0

ii1
)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1
)) ≥ (σ1−1)θ1γi1

γi1θ1+(1−γi1)ρ1(1−λR0
ii1 )

+ 1

σ1ρ2
1 (1− λii1) + γi1 (σ1 − 1) (σ1θ1 − ρ1 (1− λii1))

.

Cross-multiplying terms we obtain

1 +
γi1 (σ1 − 1) (σ1 − 1) θ1

σ1ρ2
1
(
1− λR0

ii1
)
+ γi1 (σ1 − 1)

(
θ1 − ρ1

(
1− λR0

ii1
)) ≥ (σ1 − 1) θ1γi1

γi1θ1 + (1− γi1) ρ1
(
1− λR0

ii1
) + 1,

so that we finally obtain the inequality

γi1θ1 + (1− γi1) ρ1

(
1− λR0

ii1

)
≥ ρ1

(
1− λR0

ii1

)
+ γi1

(
θ1 − ρ1

(
1− λR0

ii1

))
which is true because by canceling common terms it holds as an equality. QED

To prove Theorem 1(c), we rely on two, final Lemmas.
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Lemma 10. Provided that condition (20) holds, then

Dopt > δi

(
1− γ̃i1
γi1ρ1

)
− 1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)

(
1− γ̃i1

topt − γ̃i1

)
, (130)

where

δi ≡
1− ρ2

1γi1(1− γi1)
(

1− ρ1
(topt)2

)−1

topt + 1
σ1

. (131)

Proof: We define Topt ≡ T(topt) and Dopt ≡ D(topt). It follows from substituting the expenditure share (36)
for k = i into the production share (50) and then into T(ti) in (55) that

Topt = 1− γ̃i1 +

(
topt − 1

)
(1− λii1)

1 + (topt − 1)λii1
. (132)

It follows from (115) that

DoptTopt =

(
1− γ̃i1
γi1ρ1

) [
Topt (1− (1− λii1) E4)−

1 + γi2 (σ2 − 1)
γi2 (σ2 − 1)

γi1ρ1 − γi1ρ1
γ̃i1

1− γ̃i1
(1− λii1) E4

]
.

(133)
It should be understood that the shares appearing in these equations are also evaluated at topt. Our

strategy, however, is to treat these shares as parameters and differentiate DoptTopt with respect to the share
λii1 so as to obtain a lower-bound on DoptTopt. During this process, we are allowing the production share
to adjust parametrically according to (50).

The value DoptTopt changes with the share λii1 according to

∂DoptTopt

∂λii1
=

(
1− γ̃i1
γi1ρ1

) [
∂Topt

∂λii1
(1− (1− λii1) E4)−

(
Topt + γi1ρ1

γ̃i1
1− γ̃i1

)
∂ (1− λii1) E4

∂λii1

]
. (134)

From (132) we have

∂Topt

∂λii1
= −

(
topt − 1

)
1 + (topt − 1)λii1

−
(
topt − 1

)2
(1− λii1)

[1 + (topt − 1)λii1]
2

= −
(
topt − 1

)
topt

[1 + (topt − 1)λii1]
2 .

Also from (92) we see that (1− λii1) E4 =
(1−λii1)

θ1
+ 1

θ1

1−γi1
σ1γi1

(1−λii1)

1
ρ1
+ 1

θ1

1−γi1
γi1

1
σ1
(1−λii1)

=
1

θ1
+ 1

θ1

1−γi1
σ1γi1

1
ρ1(1−λii1)

+ 1
θ1

1−γi1
γi1

1
σ1

, and so

∂ (1− λii1) E4

∂λii1
= −

1
θ1
+ 1

θ1

1−γi1
σ1γi1[

1
ρ1(1−λii1)

+ 1
θ1

1−γi1
γi1

1
σ1

]2
1

ρ1 (1− λii1)
2

= −E4

1
ρ1(1−λii1)[

1
ρ1(1−λii1)

+ 1
θ1

1−γi1
γi1

1
σ1

] .
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Substituting these expressions into (134), we obtain

∂DoptTopt

∂λii1
= −

(
1− γ̃i1
γi1ρ1

) (
topt − 1

)
topt

[1 + (topt − 1)λii1]
2 [1− (1− λii1) E4]

+

(
Topt + γi1ρ1

γ̃i1
1− γ̃i1

)
E4

(
1−γ̃i1
γi1ρ1

)
1

ρ1(1−λii1)[
1

ρ1(1−λii1)
+ 1

θ1

1−γi1
γi1

1
σ1

]
= −

(
1− γ̃i1
γi1ρ1

) (
topt − 1

)
topt

[1 + (topt − 1)λii1]
2

 1
ρ1(1−λii1)

− 1
θ1

1
ρ1(1−λii1)

+ 1
θ1

1−γi1
γi1

1
σ1


+

(
Topt + γi1ρ1

γ̃i1
1− γ̃i1

)
E4

(
1−γ̃i1
γi1ρ1

)
1

ρ1(1−λii1)[
1

ρ1(1−λii1)
+ 1

θ1

1−γi1
γi1

1
σ1

]
>

{
−

(
topt − 1

)
topt

[1 + (topt − 1)λii1]
2 +

(
Topt + γi1ρ1

γ̃i1
1− γ̃i1

)
E4

} (
1−γ̃i1
γi1ρ1

)
1

ρ1(1−λii1)[
1

ρ1(1−λii1)
+ 1

θ1

1−γi1
γi1

1
σ1

] .

Using (132) it follows that ∂DoptTopt

∂λii1
> 0 if

E4
1 + γi1ρ1γ̃i1

1− γ̃i1
>

(
topt − 1

)
1 + (topt − 1)λii1

(
topt

[1 + (topt − 1)λii1]
− E4 (1− λii1)

)
. (135)

Substituting topt = θ1
θ1−ρ1

so that topt − 1 = ρ1
θ1−ρ1

, we simplify this expression to obtain(
E4 −

ρ1

θ1 − ρ1(1− λii1)

)(
ρ1(1− λii1)

θ1 − ρ1(1− λii1)
+ 1
)
> E4

(
1− 1 + γi1ρ1γ̃i1

1− γ̃i1

)
.

Then we substitute (92) on the left and we use the bound from Lemma 5 on the right, which implies that
E4 ≤ θ1−ρ1(θ1−ρ1)

θ1
, to obtain the sufficient condition 1

θ1
+ 1

θ1

1−γi1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1
(1− λii1)

− ρ1

θ1 − ρ1(1− λii1)

( ρ1(1− λii1)

θ1 − ρ1(1− λii1)
+ 1
)

>
θ1 − ρ1 (θ1 − ρ1)

θ1

(
1− 1 + γi1ρ1γ̃i1

1− γ̃i1

)
.

We set λii1 = 0 on the left to obtain a further sufficient condition

1
θ1
+ 1

θ1

1−γi1
σ1γi1

1
ρ1

+ 1
θ1

1−γi1
γi1

1
σ1

− ρ1

θ1 − ρ1
>

θ1 − ρ1 (θ1 − ρ1)

θ1

(
1− 1 + γi1ρ1γ̃i1

1− γ̃i1

)

After extensive simplification, this inequality is written as

(1− γi1)
2 ρ1 (θ1 − ρ1 (θ1 − ρ1)) (1 + γi1ρ1)

θ1 − ρ1

θ1
+ (1− γi1) (θ1 − 2ρ1) (1− (1− γi1) .ρ1)

> σ1γi1ρ1 (1− (1− γi1) ρ1)− σ1γi1 (1− γi1) (θ1 − ρ1 (θ1 − ρ1)) (1 + γi1ρ1) (θ1 − ρ1)

This inequality fails to hold at γi1 = 1, so lower values of γi1 are needed. The first set of terms on the left
will involve a cubic in γi1, so to avoid that a sufficient condition is obtained by ignoring those (positive)
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terms, resulting in

(1− γi1) (θ1 − 2ρ1) (1− (1− γi1) ρ1)− σ1γi1ρ1 (1− (1− γi1) ρ1)

≥ −σ1γi1 (1− γi1) (θ1 − ρ1 (θ1 − ρ1)) (1 + γi1ρ1) (θ1 − ρ1) .

A further simplification is obtained by observing that (1 + γi1ρ1) on the right is made smaller by replacing
it with (1− (1− γi1) ρ1), and dividing out that common term to obtain

(1− γi1) (θ1 − 2ρ1) ≥ σ1γi1 [ρ1 − (1− γi1) (θ1 − ρ1 (θ1 − ρ1)) (θ1 − ρ1)] .

A sufficient condition for this inequality to hold is provided by (20).
It follows that we can take λii1 = 0 to obtain a lower-bound for DoptTopt, and also λ̃ii1 = 0 from (50). So

we set both these shares at zero in (132) and (133) to obtain Topt|λii1=0 = topt − γ̃i1 and using this in (133),
we obtain

Dopt|λii1=0Topt|λii1=0

=

(
1− γ̃i1
γi1ρ1

) [
(topt − γ̃i1)

(
1− E4|λii1=0

)
+

1 + γi2 (σ2 − 1)
γi2 (σ2 − 1)

γi1ρ1 − γi1ρ1
γ̃i1

1− γ̃i1
E4|λii1=0

]
.

We use these expressions to obtain a bound on Dopt of

Dopt =
DoptTopt

Topt ≥
Dopt|λii1=0Topt|λii1=0

Topt

=

(
1− γ̃i1
γi1ρ1

) (topt − γ̃i1)
(
1− E4|λii1=0

)
+ 1+γi2(σ2−1)

γi2(σ2−1) γi1ρ1 − γi1ρ1
γ̃i1

1−γ̃i1
E4|λii1=0

1− γ̃i1 + (topt − 1)
(
1− λ̃ii1

) .

We further set λ̃ii1 in the denominator at zero to obtain another lower bound on Dopt of

Dopt >

(
1− γ̃i1
γi1ρ1

) (topt − γ̃i1)
(
1− E4|λii1=0

)
− 1+γi2(σ2−1)

γi2(σ2−1) γi1ρ1 − γi1ρ1
γ̃i1

1−γ̃i1
E4|λii1=0

topt − γ̃i1
(136)

=

(
1− γ̃i1
γi1ρ1

) [
1− E4|λii1=0

(
1 +

γi1ρ1

(topt − γ̃i1)

γ̃i1
1− γ̃i1

)
− 1 + γi2 (σ2 − 1)

γi2 (σ2 − 1)
γi1ρ1

topt − γ̃i1

]
.

Evaluating the second term in this expression, we apply (18) which is equivalent to (123) to obtain

E4|λii1=0 ≤
ρ1 + (θ1 − ρ1) (1− ρ1)

θ1 + (θ1 − ρ1) (1− ρ1)
=

topt − ρ1

topt + 1
σ1

.

In addition, the denominator of the term 1 + γi1ρ1
(topt−γ̃i1)

γ̃i1
1−γ̃i1

is bounded below by using (18) again to obtain

γ̃i1 = (1− γi1)ρ1 ≤ ρ1/topt and so
(
topt − γ̃i1

)
(1− γ̃i1) ≥

(
topt − ρ1

topt

) (
1− ρ1

topt

)
. It follows that

1− E4|λii1=0

(
1 +

γi1ρ1

(topt − γ̃i1)

γ̃i1
1− γ̃i1

)
≥

1− ρ2
1γi1(1− γi1)

(
1− ρ1

(topt)2

)−1

topt + 1
σ1

≡ δi.

Substituting these results into (136) we have shown (130), with δi defined as in (131). QED

Lemma 11. When conditions (18) and (20) hold, then Hopt < 0 for all parameters satisfying (12) when κi is chosen
as stated in part (c) of Theorem 1.
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Proof: Using (112), the needed condition is that

− (1− αi)Mopt

(
E opt

m −
(
topt − 1

)
topt θ1

)
Dopt

Aopt < (1− γi1)Ropt,

where Mopt, E opt
m , Dopt, Aopt and Ropt are all evaluated at topt. Using Lemma 10, we can rewrite this

expression as

γi1(σ1 − 1)
1 + γi1(σ1 − 1)

<

δi +
(1− γi1)Ropt Aopt

(1− αi)Mopt
(
E opt

m − (topt−1)
topt θ1

)
 (topt − γ̃i1)γi2 (σ2 − 1)
(1− γ̃i1)[1 + γi2 (σ2 − 1)]

.

Therefore, we satisfy condition (12), γi1(σ1−1)
1+γi1(σ1−1) < κi

γi2(σ2−1)
1+γi2(σ2−1) , by choosing κi as

κi =

δi +
(1− γi1)Ropt Aopt

(1− αi)Mopt
(
E opt

m − (topt−1)
topt θ1

)
 (topt − γ̃i1)

(1− γ̃i1)
.

Because many of the variables on the right-hand side of this equation depend on expenditure or production
shares, we now develop a lower-bound for κi that is independent of these shares.

Using the method in the proof of Lemma 4, we first obtain

E opt
m −

(
topt − 1

)
topt θ1 =

ρ1

λ̃ii1

1− ρ1
θ1

λ̃ii1 +
1−γi1

γi1

ρ1
θ1

(
1− λ̃ii1

)
1 + ρ1

(1−γi1)(1−λii1)
γi1σ1θ1

 .

We substitute this along with the lower-bound for A(topt) from Lemma 5, which we rewrite as A(topt) >
Ai ≡ αi(1− ρ1) + γi1ρ1, together with the expressions forMopt, Dopt and Ropt, to obtain

κi >

δi +

(1− γi1)θ1 (θ1 − ρ1)
2 ρ1 Ai

 (θ1 − ρ1 (1− λii1))
1

θ1−ρ1

+ −θ1ρ1+(θ1−ρ1(1−λii1))(1−γi1)ρ1

(θ1−ρ1+ρ1(1−λ̃ii1)−(θ1−ρ1)(1−γi1)ρ1)


(1− αi) (1− γ̃i1)

(
θ1 − ρ1 +

ρ1
γi1

(
1− λ̃ii1

))

(topt − γ̃i1)

(1− γ̃i1)
.

Now we use θ1−ρ1+ρ1λii1
θ1−ρ1

> 1 and (θ1 − ρ1 (1− λii1))
1

θ1−ρ1
< θ1

θ1−ρ1
to obtain the further lower-bound

κi >

δi +

(1− γi1)θ1 (θ1 − ρ1)
2 ρ1 Ai

(
θ1

θ1−ρ1
+ −θ1ρ1+(θ1−ρ1(1−λii1))(1−γi1)ρ1

(θ1−ρ1+ρ1(1−λ̃ii1)−(θ1−ρ1)(1−γi1)ρ1)

)
(1− αi) (1− γ̃i1)

(
θ1 − ρ1 +

ρ1
γi1

(
1− λ̃ii1

))
 (topt − γ̃i1)

(1− γ̃i1)
. (137)

Notice that

θ1

θ1 − ρ1
+

−θ1ρ1 + (θ1 − ρ1 (1− λii1)) (1− γi1) ρ1(
θ1 − ρ1 + ρ1

(
1− λ̃ii1

)
− (θ1 − ρ1) (1− γi1) ρ1

) =
θ1 (1− ρ1)− ρ1γ̃i1 (1− λii1) +

θ1
(θ1−ρ1)

ρ1
(
1− λ̃ii1

)
(θ1 − ρ1) (1− γ̃i1) + ρ1

(
1− λ̃ii1

)
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and then since λii1 < λ̃ii1 at topt we have

θ1 (1− ρ1)− ρ1γ̃i1 (1− λii1) +
θ1

(θ1−ρ1)
ρ1
(
1− λ̃ii1

)
(θ1 − ρ1) (1− γ̃i1) + ρ1

(
1− λ̃ii1

) >
θ1 (1− ρ1) +

(
θ1

θ1−ρ1
− γ̃i1

)
ρ1
(
1− λ̃ii1

)
(θ1 − ρ1) (1− γ̃i1) + ρ1

(
1− λ̃ii1

)
>

θ1 (1− ρ1) +
(

θ1
θ1−ρ1

− γ̃i1

)
ρ1

(θ1 − ρ1) (1− γ̃i1)
,

where the second line is obtained by using λ̃ii1 = 0 in numerator and λ̃ii1 = 1 in the denominator. Substi-
tuting these results into (137) and again using λ̃ii1 = 1 in the denominator, we obtain

κi >

[
δi +

γ̃i1θ1 Ai
(
θ1 (1− ρ1) +

(
topt − γ̃i1

)
ρ1
)

(1− αi) (1− γ̃i1)
2

]
(topt − γ̃i1)

(1− γ̃i1)
.

In the statement of Theorem 1(c), we use the lower-bound on the right with Ai ≡ αi(1 − ρ1) + γi1ρ1 to
specify κi, which gives a smaller (and therefore sufficient) range of effective markups in (12) to ensure that
H(topt

i ) < 0. QED

To complete the proof of part (c) we need to establish the tariff t∗i ∈ (tR0
i , topt

i ) with H(t∗i ) = 0. Using
R(tR0

i ) = 0, it follows from (112) that H(tR0
i ) =

(
topt − tR0

i
)
− tR0

i (1− αi)M(tR0
i ) > 0, because M(tR0

i ) < 0
from Lemma 9 since D

(
tR0
i
)
< 0. From Lemma 11 we have H(topt

i ) < 0. It follows from the continuity of
H(ti) that there exists a tariff t∗i < topt at which H(t∗i ) = 0. QED
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