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1 Introduction

Uncertainty shocks have been in recent years at the heart of the business cycle debate.

Since Bloom (2009), a vast literature studying the link between uncertainty and economic

fluctuations has grown up.1 From a theoretical point of view, uncertainty might induce

agents to postpone private expenditures and investment, thus producing a potentially

important temporary downturn in economic activity.

A huge effort has been devoted to construct measures of uncertainty. Several papers

propose proxies of uncertainty which are not model-based but exploit different sources of

information, such as stock market volatility (Bloom, 2009, Bekaert et al., 2013, Caldara et

al., 2016), forecast disagreement in survey data (Bachmann et al., 2013), the frequency of

selected keywords in journal articles (Baker et al., 2016) or the unconditional distribution

of forecast errors (Jo and Sekkel, 2019). On the contrary, other papers (e.g. Jurado

et al. 2015, JLN henceforth, Ludvigson et al. 2019, LMN henceforth) start from a

rigorous statistical definition of uncertainty as the conditional volatility of a forecast error

and specify and estimate a stochastic volatility model by using sophisticated time series

techniques.

A common feature of these studies is that, once the external measure is available,

the effects of uncertainty on the economy are estimated by including such measure into a

SVAR model and then identifying the shock by means of a set of restrictions. Results so far

are mixed. Stock market volatility measures (VIX and VXO) and the index developed by

Rossi and Sekhposyan (RS henceforth) have small and barely significant effects on output,

whereas other measures, such as the Economic Policy Uncertainty index (EPU henceforth)

of Baker et al. (2016), have large and significant effects. A few papers, among others,

Jurado et al. (2015), find big and persistent effects. Almost all papers use VAR models

to estimate the effects of uncertainty, whereas no one uses them to estimate uncertainty

itself. This opens the door to a potential problem of inconsistency between the estimates

of uncertainty and its effects.

Our research is motivated by two questions. First, is it possible to estimate uncertainty

1A few prominent contributions are Fernandez-Villaverde et al. (2011), Bachmann et al. (2013), Bekaert

et al. (2013), Caggiano et al. (2014), Rossi and Sekhposyan (2015), Jurado et al. (2015), Scotti (2016),

Baker et al. (2016), Caldara et al. (2016), Leduc and Liu (2016), Basu and Bundik (2017), Fajgelbaum

et al. (2017), Piffer and Podstawsky (2017), Nakamura et al. (2017), Bloom et al. (2018), Carriero et

al. (2018a, 2018b), Shin and Zhong (2018), Jo and Sekkel (2019), Ludvigson et al. (2019), Angelini and

Fanelli (2019).

1



and its effects within a single model without relying on any external measures or proxies?

Second, can standard VAR models deliver trustworthy uncertainty estimates? The answers

are yes and yes. In this paper we propose a simple approach to estimate uncertainty and

its effect within a single framework based on standard VAR models.

Throughout the paper, we focus on the definition of uncertainty used in JLN: uncer-

tainty is the forecast error variance, conditional to agents’ information, or, equivalently,

the conditional expectation of the square of the forecast error. Our procedure is extremely

simple and unfolds in four steps: (i) estimate a VAR; (ii) compute the implied squared

forecast error for the combination variable-forecast horizon of interest; (iii) regress the

squared forecast error onto the current and past values of the VAR variables; (iv) use

the coefficients of this regression to compute the impulse response functions of the uncer-

tainty shock and the related variance decomposition. The fitted values of the regression

in step (iii) provide an estimate of uncertainty. The innovation of this uncertainty esti-

mate is the uncertainty shock. This procedure ensures consistency between the estimate

of uncertainty and the estimated effects of uncertainty shocks.

Under suitable conditions, steps (iii-iv) are equivalent to using the squared forecast

error as the instrument within a proxy SVAR. Hence, our method can be thought of as a

proxy SVAR, where the proxy, instead of being an external variable, is a function of the

estimated forecast error. The relevance condition of the instrument is clearly satisfied:

the squared forecast error is correlated with the uncertainty shock by the very definition

of uncertainty. However, in order for the exogeneity condition to hold, we need the ad-

ditional assumption that uncertainty (or, more precisely, the squared prediction error)

is not affected on impact by other structural shocks. This assumption is questionable.2

To relax it, we impose orthogonality constraints with respect to other structural shocks

within the standard proxy SVAR procedure. This represents a methodological innovation

in the literature on Proxy SVAR where the effects are typically estimated without relying

on any other additional restriction.

Our method has a few noticeable advantages. First, we have a clear and rigorous

definition of uncertainty for each variable and horizon in the VAR. Second, we avoid the

problematic choice of an external uncertainty measure. Third, we avoid the inconsis-

tency implied by the use of two different models to estimate uncertainty and assess its

business-cycle effects, since we use the same model for both purposes. Fourth, we avoid

2Notice however that most papers in the uncertainty literature make precisely the same assumption,

by adopting a Cholesky identification scheme with the external uncertainty measure ordered first.
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the restrictive assumptions on the form of the conditional distribution of the shocks, typi-

cal of fully specified time-varying volatility models. Finally, estimation is quite simple, in

that we use just ordinary least squares.

We apply our procedure to a US macroeconomic data set and find that (a) our estimates

of uncertainty are reliable, in that (a.1) the squared prediction errors are significantly

predicted by a linear combination of the VAR variables, with sizable explained variances;

(a.2) uncertainty estimates obtained with our linear approximation are strongly correlated

with comparable estimates in the literature (notably, JLN and LMN measures); (a.3)

price uncertainty and interest-rate uncertainty are related to recognizable economic events.

As for the impulse response functions and variance decomposition, we find that (b) a

substantial fraction of uncertainty is exogenous, that is, generated by exogenous shocks

to uncertainty; (c) exogenous uncertainty shocks explain a large fraction of business-cycle

fluctuations; (d) results are robust with respect to the choice of the uncertainty horizon

and variable, the number of lags and the choice of the variables included in the VAR.

The remainder of the paper is organized as follows. Section 2 discusses the econometric

approach. Section 3 presents the results. Section 4 concludes.

2 Econometric approach

This section discusses the econometric approach to estimate uncertainty and identify the

effects of the uncertainty shock in a simple VAR model.

2.1 The VAR model

Our starting point is the assumption that the macroeconomic variables in the n-dimensional

vector yt follow the VAR model

A(L)yt = µ+ εt, (1)

where εt is orthogonal to yt−k, k > 0, and A(L) = I −
∑p

k=1AkL
k is a matrix of degree-p

polynomials in the lag operator L. By inverting the VAR, we get the VMA representation

yt = δ +B(L)εt, (2)

where B(L) =
∑∞

k=0BkL
k = A(L)−1, with B0 = In, is the matrix of reduced form impulse

response functions and δ = B(1)µ. The implied h-step ahead prediction error is

et+h =
h−1∑
k=0

Bkεt+h−k. (3)
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2.2 VAR-based uncertainty

Following JLN, we define uncertainty as the conditional volatility of the prediction error.

For variable i and horizon h we have:

U iht = Ete
2
i,t+h. (4)

The expected value cannot be computed without introducing additional assumptions about

the conditional distribution of the VAR residuals (for example, a stochastic volatility

model). However, we can approximate it by linear projections. Precisely, we approximate

the log of uncertainty by taking the orthogonal projection of the log of the squared predic-

tion error onto the linear space spanned by the constant and the present and past values

of the y’s:3

log(U iht) ≈ Proj
(
log(e2i,t+h)|yi,t−k, i = 1, . . . , n; k = 0, . . . , q

)
(5)

= θ + c(L)′yt

= θ + c′0yt + · · ·+ c′qyt−q.

where cj is an n-dimensional column vector of coefficients. Notice that, if the VAR resid-

uals were serially independent (and therefore independent of lagged y’s), then log(e2i,t+h)

would be orthogonal to the predictors, implying c(L) = 0. Hence our procedure requires

that the VAR residuals, while being serially uncorrelated, are not serially independent.

Using the estimated (in-sample) forecast errors, the parameters of the projection above

can be estimated from the regression

log(e2i,t+h) = θ + c(L)′yt + νt = θ + c′0yt + · · ·+ c′qyt−q + νt, (6)

where the error νt is orthogonal to yt and its past history. In the empirical section we

document that the estimated coefficients are significantly different from zero thus rejecting

serial independence. Uncertainty can then be estimated as the exponential of the fitted

values θ̂ + ĉ(L)′yt.

2.3 Identifying uncertainty shocks

Here we discuss how to identify the uncertainty shock and estimate its effects. First of

all, notice that log uncertainty is a linear combination of the VAR variables, see equation

3We approximate the log uncertainty rather than uncertainty itself to avoid negative estimates of

uncertainty. However by approximating directly uncertainty very similar results are obtained.
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(5), and therefore a combination of VAR residuals. Precisely

log(U iht) ≈ θ + c(L)′yt

= θ + c(L)′B(L)εt

= θ + g(L)′εt. (7)

where g(L) =
∑∞

j=0 gjL
j .

To begin, we consider the simple case in which the uncertainty shock is simply the

innovation of log uncertainty, normalized to have unit variance. Although quite common,

this is a strong assumption and will be relaxed later on. From equation (7) the innovation

is

g′0εt = c′0B0εt = c′0εt

(recall that B0 = In). Then the normalized innovation u∗t is

u∗t =
c′0√
c′0Σεc0

εt = v′εt, (8)

where Σε is the variance-covariance matrix of εt. The corresponding vector of impulse

response functions for the variables included in the VAR is

d∗(L) = B(L)Σεv, (9)

with contemporaneous effects equal to Σεv, being B(0) = In (see Appendix A for details).

2.4 Adding orthogonality constraints

The normalized innovation u∗t is the uncertainty shock under the assumption that no other

shock has non-zero contemporaneous effects on uncertainty. It is the same assumption

made when identifying the uncertainty shock as the first Cholesky shock in a VAR with

the external measure of uncertainty ordered first. While common in the literature, this

assumption is questionable, see for instance Bachmann et al. (2013).

We can relax this assumption by imposing orthogonality restrictions with respect to

other identified shocks. This can be done by projecting the uncertainty innovation onto

these shocks and taking the residual. More formally, the non-normalized uncertainty

shock orthogonal to the structural shock D1εt, where D1 is an identifying vector, is ut =

[c′0− c′0ΣεD
′
1D1]εt. As an example, we could impose orthogonality with respect to a long-

run shock, identified as the only one shock affecting GDP in the long run. Under this

identification scheme, the uncertainty shock has transitory effects on output.
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Similarly, one can restrict to zero the impact coefficient of the uncertainty shock on a

given variable by imposing orthogonality with respect to the VAR residual of that variable.

For instance, to impose a zero impact effect on GDP, GDP being ordered first in yt, it

suffices to impose orthogonality with respect to ε1t = D2εt, where D2 = [1 0 · · · 0].

More generally, let D be the m× n matrix having on the rows the vectors D1, D2,. . .,

Dm, with m < n. If we want to impose orthogonality with respect to the corresponding

m shocks D1εt, D2εt . . . , Dmεt, we have to take the residual of the orthogonal projection

of the uncertainty innovation u∗t onto Dεt, normalized to have unit variance. The cor-

responding uncertainty shock, call it ut, can be computed from the VAR coefficients by

applying the formulas

ut = γεt (10)

γ =
β√
β′Σεβ

β = c′0 − c′0ΣεD
′(DΣεD

′)−1D.

The impulse-response functions for the variables included in the VAR corresponding

to the shock ut = γεt are

d(L) = B(L)Σεγ. (11)

Notice that the impulse response functions derived in equations (9) and (11) do not

include the effects of u∗t (or ut) on uncertainty itself. It can be seen from equation (6) that

such responses are

d∗u(L) = c(L)d∗(L)′ (12)

du(L) = c(L)d(L)′. (13)

for u∗t and ut, respectively. The last equation identifies the effect of the uncertainty

shock on uncertainty as du(L)ut = du(L)γεt, let us call it the exogenous component. The

part of uncertainty not driven by the uncertainty shock, i.e. the endogenous component,

is therefore c(L)yt − du(L)ut = [c(L)B(L) − du(L)γ]εt. Since the two components are

orthogonal, we can compute a variance decomposition both for the total variance and for

the prediction errors at all horizons.

2.5 Equivalence with proxy SVAR

Our procedure is equivalent in population to estimating a proxy SVAR using zt = log(e2i,t+h)

as the external instrument for the uncertainty shock.4 When the number of lags in equa-

4On the proxy SVAR approach see Mertens and Ravn (2013) and Stock and Watson (2018).
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tion (5) is the same as the number of lags in the VAR, the results of the two procedures

are identical even in sample.

For the instrument to be valid, the standard assumptions of relevance and exogeneity

have to hold. The intuition of why the squared forecast error is a good candidate is the

following. Consider the orthogonal decomposition

e2i,t+h = Ete
2
i,t+h + vit = U iht + vit.

Since vit is independent of uncertainty, e2i,t+h must be correlated with the uncertainty shock

and so will be the log, which is the instrument we use. Hence relevance is ensured by the

very definition of uncertainty. If the other shocks have zero impact effect on uncertainty, as

assumed in Section 2.3, then the exogeneity assumption is also fulfilled, so that log(e2i,t+h)

is a valid proxy to identify the uncertainty shock.

Let us come now to the equivalence. The proxy SVAR approach consists in projecting

the VAR residuals εt onto the proxy zt. The population parameters are φ = Eztεt/Ez
2
t

(see Mertens and Ravn, 2013). The impact effects φ are therefore proportional to Eztεt.

It is easily seen that our population impact effects are also proportional to Eztεt, so that

they are equal to those of the proxy SVAR when the same normalization is imposed. If

the proxy zt is log(e2i,t+h), from equations (6) and (2) we get

zt = ω + c(L)′B(L)εt + νt, (14)

where ω = θ + c′0δ and νt is orthogonal to yt−k, k ≥ 0 and therefore to εt−k, k ≥ 0.

Post-multiplying by ε′t and taking expected values we get Eztε
′
t = c′0Σε, since B(0) = I.

But we have already seen that our impact effects are Σεv = Σεc0/α with α =
√
c′0Σεc0

(see equations (8) and (9)). Hence our impact effects are Eztεt/α.

In Appedix B we also show that the OLS estimates are equal to those of Mertens and

Ravn (2013) if q = p, i.e. when the number of lags of yt included in the regression of zt is

equal to the number of lags of the VAR. Hence, as far as the estimation of the effects of

uncertainty are concerned, our approach and the standard proxy SVAR approach produce

the same results.

Te advantage of our method is that it allows us to get an estimate of uncertainty itself,

besides the uncertainty shock and its impulse-response functions. On the other hand, the

above discussion clarifies that, for the identification of the uncertainty shock, the linear

approximation of uncertainty in equation (5) is not needed: we just need the standard

assumptions of relevance and exogeneity.
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2.6 Summary of the procedure

Summing up, our procedure is the following.

1. Estimate by OLS the VAR in equation (1) to get B̂(L) = Â(L)−1, the vector of

residuals ε̂t and its sample variance-covariance matrix Σ̂ε. Compute êt+h according to

equation (3).

2. Compute ẑt = log(ê2i,t+h). Estimate by OLS equation (6) to get θ̂ and ĉ(L) and

compute Û iht according to equation (6) as Û iht = exp(θ̂ + ĉ(L)′yt).

3. Compute û∗t and d̂∗(L) according to equations (8) and (9) by replacing c0 and Σε

with the corresponding estimates. Alternatively:

3′. Specify the relevant orthogonality restrictions by choosing the matrix D. Compute

the estimates ût and d̂(L) according to equations (10) and (11) by replacing c0 and Σε

with the corresponding estimates.

4. Get the estimate of the IRFs of uncertainty, either d∗u(L) or du(L), according to

(12).

In Appendix C we describe in detail our bootstrap procedure to construct confidence

bands.

If the goal is to exclusively estimate the effects of uncertainty shocks, an alternative

and equivalent procedure is the following.

a. Estimate by OLS the VAR in equation (1) to get B̂(L) = Â(L)−1, the vector of

residuals ε̂t and its sample variance-covariance matrix Σ̂ε. Compute êt+h according to

equation (3).

b. Compute ẑt = log(ê2i,t+h) and use it as the external instrument in a proxy SVAR to

obtain the effects of the uncertainty shock.

3 Empirics

In this section, we present the main results of our empirical analysis.

3.1 Specification

We collect data for the US economy. The data span is 1960:Q1-2019:Q3. Our benchmark

VAR includes seven variables: the log of real per-capita GDP, the unemployment rate, CPI

inflation, the federal funds rate, the log of the S&P500 stock price index, a component of

the Michigan Consumer Confidence Index, i.e. expected business conditions for the next
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12 months (E1Y), and the spread between BAA corporate bond yield and GS10 (BAA-

GS10).5 The last four variables are included essentially because they are supposed to

quickly react to shocks and therefore are hopefully able to better capture the information

necessary to reveal uncertainty. In the robustness section, we replace stock prices and the

spread BAA-GS10 with a different set of forward-looking variables. Note that we do not

include uncertainty measures in the model, since we want to verify whether the VAR is

able to produce reliable estimates of uncertainty without specific external information.

We include just one lag in the VAR, as suggested by the BIC criterion. In the robust-

ness section we show results for 2 and 4 lags.

We estimate equation (6) for all variables and forecast horizons equal to 1, 4 and 8.

In all cases, following the BIC criterion, we include yt without further lags on the right-

hand side (i.e. q = 0 and c(L) = c0). In the robustness section we include also yt−1, so

that p = q and our method produce exactly the same result as the proxy-SVAR method

discussed above.

We perform a number of robustness checks, which will be discussed below.

3.2 Estimated uncertainty

Our procedure requires that the log of future squared forecast errors are predictable by

means of current (and possibly lagged) y’s. It is therefore important to document the

overall significance of the regressors in equation (6).

Table 1 shows the R2 statistic along with the F -test for the overall significance of

the regression, for all variables and horizons, when using just the contemporaneous VAR

variables as regressors (q = 0). All regressions but the one for stock price uncertainty

at horizon 8 are significant at the 5% level, and 16 regressions out of 21 are significant

at the 1% level. The VAR variables predict the squared prediction errors implied by the

VAR itself. This result, to our knowledge, was not found before and, as already observed,

implies that the VAR residuals are not serially independent. This preliminary step lends

support to the validity of our approximation procedure.6

Table 2 shows the correlation coefficients of three of our uncertainty indexes, computed

according to equation (5), namely the GDP uncertainty index, 4 quarters ahead (ÛGDP4,t ),

the unemployment rate uncertainty index, 4 quarters ahead (ÛUN4,t ) and the stock price

5GDP and stock prices are taken in log levels to take into account potential cointegration relations.
6The R2 might appear small for several equations; notice however that R2 = 0.15, corresponding to

unemployment uncertainty at the one-year horizon (which is the uncertainty used in our baseline VAR

below) roughly corresponds to the R2 of a univariate AR(1) model with the sizable coefficient 0.4.
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uncertainty index, 1-quarter ahead (ÛS&P1,t ), with (a) the VXO index, extended as in

Bloom (2009), (b) the LMN (2020) financial uncertainty index 3-months (LMN fin), (c)

the JLN (2015) macroeconomic uncertainty index 12 months (JLN), (d) the LMN (2020)

real uncertainty index 12-months (LMN real), (e) the Becker et al. (2016) US Economic

Policy Uncertainty index (EPU) and (f) the Rossi and Sekhposyan (2015) 4-quarters ahead

uncertainty index (RS).

Our indexes are highly positively correlated with each other and with JLN and LMN

indexes, which are consistent with ours as for the definition of uncertainty. In particular,

our GDP uncertainty 4-quarters and unemployment rate uncertainty 4-quarters exhibit

correlation coefficients with JLN uncertainty 12-months as high as 0.71 and 0.79, respec-

tively.

Figure 1 shows the graphs of the above uncertainty indexes, along with gray areas

indicating US recessions according to the NBER dating. It is seen that in most cases the

indexes anticipate recessions; they start increasing before the beginning of the recessions,

and start reducing before the end of the recessions.

Figure 2 shows two additional uncertainty indexes: inflation uncertainty, 4-quarters,

and federal funds rate uncertainty, 1-quarter. These uncertainties are considerably differ-

ent from the previous ones, particularly because they do not exhibit a peak corresponding

to the Great Recession. Inflation uncertainty is large during periods of high inflation, with

peaks corresponding roughly with oil shocks. Federal funds rate uncertainty is high when

the federal funds rate is high, i.e. during the so-called “stop and go” monetary policy

period and during the Volcker era; it is very low at the end of the sample, when interest

rates are close to zero.

3.3 Impulse response functions

To begin, we have to choose the relevant uncertainty. Two quite natural choices for

macroeconomic uncertainty (see LMN, 2020) are GDP uncertainty and unemployment

uncertainty. As a benchmark, we choose unemployment uncertainty, mainly because the

R2 reported in Table 1 are larger and more significant than those for GDP. In the ro-

bustness section we show results for GDP uncertainty. As for the horizon, we choose 4

quarters. In the robustness section, we show results for h = 1 and h = 8.

The literature does not provide a widespread consensus about a set of identification

restrictions for the exogenous uncertainty shock. Here we present results for three identi-

fication schemes.

10



With Identification I, the uncertainty shock is simply the VAR innovation of uncer-

tainty u∗t , see Section (2.3). Therefore, the only shock affecting uncertainty on impact is

the uncertainty shock. As already observed, this scheme is questionable. On the other

hand, it is quite common in the literature, hence results may be useful for comparison.

With Identification II, we just impose that the uncertainty shock is orthogonal to a

long-run shock, identified as the only shock having effects on the level of GDP after 40

quarters. Hence, we include just one row in the matrix D appearing in equation (10). This

amounts to assuming that (i) the uncertainty shock has transitory effects on output, and

(ii) only the long run shock and the uncertainty shock itself affect uncertainty on impact.

With Identification III, we impose that the uncertainty shock is orthogonal to the

long-run shock above and, in addition, to the VAR innovations of GDP, unemployment,

CPI and the federal funds rate (hence, we add four rows to the matrix D). In this way we

impose that (i) the uncertainty shock has transitory effects on output; (ii) the slow-moving

variables (output, unemployment and prices) do not react to uncertainty on impact, as

is assumed for the monetary policy shock à la Christiano et al. (1999); in addition, (iii)

the federal funds rate does not react to uncertainty on impact. The last constraint is

imposed because, given (ii), (iii) entails that the uncertainty shock is orthogonal to a

monetary policy shock which moves on impact the federal funds rate and therefore cannot

be confused with it. On the other hand, the monetary policy shock, as well as the long-

run shock and, possibly, other unidentified transitory shocks, may affect uncertainty on

impact.

Figure 4 shows results for Identification I. As expected, the uncertainty shock reduces

output and increases unemployment. The effects are very large, as in JLN (2015), but

not that much persistent, since they vanish after about 4 years. This result is different

from those in JLN and Carriero et al. (2018b). Inflation is not affected significantly.

The federal funds rate reduces, reacting to the slowdown of real activity and prices. Stock

prices reduce on impact. The confidence index goes down on impact, reflecting consumers’

expectations. The BAA-GS10 spread increases, reflecting the increased risk premium of

Baa Corporate bonds.

Table 3 shows variance decomposition. The uncertainty shock accounts for a very high

fraction of GDP and especially the unemployment rate. The shock explains more than

one half of unemployment fluctuations at the one-year horizon. The effect on the risk

premium is also big: according to this identification, the uncertainty shock explains about

three quarters of the spread variance at the one-year horizon.
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Figure 5 shows results for Identification II. Results are very similar to those of Identi-

fication I. Again, inflation is not significantly affected.

The variance explained by the uncertainty shock (see Table 3) is slightly reduced

but still very high. As for the stock market, the effects are smaller, consistently with

Carriero et al. (2018b): the uncertainty shock explains about 20% of volatility at the one

year horizon. Finally, the shock explains more than 90% of uncertainty itself on impact,

leaving a very limited role for the long-term shock.

Figure 6 shows results for Identification III. Results are qualitatively similar to those

of Identification I. The effects on output and unemployment are now smaller, but still

significant for both GDP and unemployment.

Overall the variance explained by the uncertainty shock (see Table 3) is now much

smaller. Still, at the one-year and the 4-year horizons, uncertainty shocks explains about

10% of output volatility and about 30% of unemployment volatility. Exogenous uncer-

tainty considerably reduces at all horizons; however, it is still close to 80% on impact and

about 50% at medium- and long-term horizons.

3.4 Robustness checks

For all robustness exercises we use Identification I as our benchmark. In the first exercise,

we change the uncertainty horizon, by using h = 1 and h = 8 in place of h = 4. Results are

reported in Figure 6. The black solid lines correspond to the benchmark h = 4, the blue

dotted lines correspond to horizon h = 1 and the magenta dotted-dashed lines correspond

to horizon h = 8. Results are very similar. We conclude that changing the horizon does

not change the results.

In the second exercise, reported in Figure 7, we change the uncertainty variable and

use (i) GDP uncertainty at the 4 quarter horizon (blue dotted lines) and (ii) stock prices

uncertainty at the 1 quarter horizon (magenta dotted-dashed lines), in place of the bench-

mark unemployment uncertainty (black solid lines). For GDP uncertainty, results are very

similar to the benchmark. As for stock market uncertainty, the effects are much smaller,

suggesting that financial uncertainty does not affect systematically real activity.

In the third exercise, reported in Figure 8, we change the number of lags and use 2 lags

(blue dotted lines) and 4 lags (magenta dotted-dashed lines) instead of 1 lag (benchmark

case, black solid lines). Results are somewhat different from those obtained in the baseline

model, particularly because the effects on GDP and stock prices are more persistent.

However, both the sign and the size of the responses are similar to those of the baseline
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specification.

In the next exercise we change the VAR specification, by removing stock prices and

the spread BAA-GS10, and including two different forward-looking variables: the ISM

New Order Index and another component of the Michigan Consumer Confidence Index,

the expected business conditions for the next five years (E5Y).7 We remove the spread

mainly to avoid a possible contamination of uncertainty shocks with credit market shocks

(Gilchrist and Zakrajsek, 2012, Caldara et al., 2016). Results are reported in Figure 9.

The effects of uncertainty shocks on the variables which are included in both specifications

are similar.

In the last two exercises we retain the baseline specification for the VAR, but change

the way we estimate uncertainty. First, we use the squares of the prediction error in

place of their logs, i.e. we do not use equation (5), but simply replace the conditional

expectation appearing in equation (4) with the linear projection. The effects of the implied

uncertainty shock are very similar to those of the baseline model (Figure 10). Second, we

specify q = 1 instead of q = 0 in equation (5), so that we have q = p and the results are

identical to those obtained with the proxy SVAR approach. The results are reported in

Figure 11. The effects on GDP and stock prices are larger and more persistent than in

the benchmark model, whereas those on unemployment are smaller. However, the main

results are confirmed: a positive uncertainty shock has large negative effects on economic

activity.

All in all the results appear to be robust to changes in several features of the model

specification.

4 Conclusions

We have shown that it is possible to produce reliable uncertainty estimates with a standard

VAR model, without modeling time-varying volatility and using only OLS. The basic idea

is to compute the squares of the prediction errors implied by the VAR model and replace

expected values with linear projections.

Our estimate of uncertainty is a linear combination of the VAR variables. Therefore,

the uncertainty shock is a linear combination of the VAR residuals and its effects can be

computed by applying simple formulas to the reduced form impulse response functions.

In this way, the same VAR model is used to estimate both uncertainty and its effects on

7The latter variable is studied in depth in Barsky and Sims, 2012.
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the macro economy.

We have also provided simple formulas that can be used to impose suitable orthogo-

nality constraints on the uncertainty shock.

The advantage of our procedure is twofold: on the one hand, we avoid the problematic

choice of an external uncertainty measure; on the other hand, we avoid imposing restrictive

assumption about the structure of conditional volatility.

Our procedure can be regarded as a variant of a proxy SVAR with the log of the

squared prediction error taken as the relevant proxy. Under suitable conditions, the two

methods yield the same results.

The procedure described here can easily be adapted to a factor model or a factor-

augmented VAR. Moreover, it can be applied to survey-based forecast errors associated

with local projection impulse-response functions estimation.

We have applied our procedure to a US macroeconomic quarterly data set. Our main

conclusion is that a substantial fraction of macroeconomic uncertainty is exogenous and

uncertainty shocks explain a large part of business cycle fluctuations.
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Appendix A: A useful formula

If the unit-variance structural shock is v′εt, its impact effects are d = Σεv. To see this,

consider first the Cholesky representation with orthonormal shocks: yt = B(L)CC−1εt,

where C is such that CC ′ = Σε. Any other fundamental representation with orthogonal,

unit-variance shocks will be given by

yt = B(L)CUU ′C−1εt,

where U is a unitary matrix (i.e. UU ′ = I). Assuming, without loss of generality, that

the structural shock of interest is the first one, the impact effects are d = CU1, where U1

is the first column of U , and the vector identifying the structural shock is v′ = U ′1C
−1.

Hence U1 = C ′v and d = CC ′v = Σεv.
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Appendix B: The relation with standard proxy SVAR

In the main text we have shown that in population our procedure is equivalent to the

proxy-SVAR methodology.

Here we show that the OLS estimates are identical to those of Mertens and Ravn

(2013) if the number of lags of yt included in the regression of zt is equal to the number

of lags of the VAR for yt (see equation (14)).

Let us begin with OLS estimation of the VAR in equation (1), which we report here

for convenience:

yt = µ−A1yt−1 − · · · −Apyt−p + εt. (15)

We need some additional notation. Let

Yk =


y′p+1−k

y′p+2−k
...

y′T−k

 , ı =


1

1
...

1

 , X =
(

ı Y1 · · · Yp

)
, E =


ε′p+1−k

ε′p+2−k
...

ε′T−k

 .

Moreover, let Y = Y0. Hence the VAR equation can be written as

Y = XA+ E ,

where A =
(
µ −A1 · · · −Ap

)′
. The OLS estimates of A and E are

Â = (X ′X)−1X ′Y, Ê = Y −X(X ′X)−1X ′Y.

Of course we have X ′Ê = 0.

Mertens and Ravn (2013) focuses on the effects of the structural shock. Such effects

are estimated by performing the OLS regression of ε̂t onto the proxy zt, which for ease

of exposition and without loss of generality we assume to be zero-mean. Precisely, let

z =
(
z′p+1 z′p+2 · · · z′T

)′
, and consider the regression equation

Ê = zφ′ + V.

The vector of the impact effects is obtained as the OLS estimator of φ, suitably normal-

ized (for instance to get unit variance for the corresponding structural shock). The OLS

estimator of φ is

φ̂ = Ê ′z/z′z. (16)

The vector of the impact effects is then obtained by normalizing the above vector in the

desired way.
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Our proposed procedure focuses on the estimation of the structural shock, rather than

the estimation of the corresponding impulse-response functions. We compute the OLS

regression of z onto the columns of Y and X:

z = Y c0 +Xb+ ν,

where b = (θ′ c′1 · · · c′p)′ (see equation 5). Letting W =
(
Y X

)
, the fitted value of z

(which in our case is the estimate of uncertainty) is W (W ′W )−1W ′z and the residual is

ν̂ = z−W (W ′W )−1W ′z. Clearly, W ′ν̂ = 0, so that Y ′ν̂ = 0 and X ′ν̂ = 0. Hence Ê ′ν̂ = 0.

Pre-multiplying the above equation by Ê ′ we get

ĉ0 = (Ê ′Y )−1Ê ′z = (Ê ′Ê)−1Ê ′z,

where the last equality is obtained by observing that Ê ′Y = Ê ′
(
X(X ′X)−1X ′Y + Ê

)
=

Ê ′Ê . Hence ĉ0 could be obtained equivalently by OLS regression of zt onto εt. This makes

sense: the estimated structural shock is nothing else than the OLS projection of the proxy

zt onto the VAR residuals. The reason why we do not follow this way is that it would not

enable us to get an estimate of uncertainty.

We have shown above that the impact effects of c′0εt are proportional to Σεc0. Hence

we estimate such impact effects as Ê ′Ê ĉ0 = Ê ′z, up to a multiplicative constant which is

fixed by the unit variance normalization. These effects are proportional to the ones in

equation (16) and are equal once we impose the same normalization.
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Appendix C: The bootstrap procedure

To construct confidence bands we draw randomly T − p times (with replacement) from

the uniform discrete distribution with possible values p + 1, . . . , T , to get the sequence

t(τ), τ = p + 1, . . . , T and the corresponding sequences ετ = ε̂t(τ), rτ = r̂t(τ), τ =

p + 1, . . . , T . Then we set yτ = yt for τ = 1, . . . , p. Moreover, according to (15), we set

yτ = µ̂−Â1yτ−1−· · · ,−Apyτ−p+ετ , and, according to (6), zτ = θ̂+ĉ′0yτ+· · ·+ĉ′pyτ−p+rτ ,

for τ = p+ 1, . . . , T . Having the artificial series yτ , τ = 1, . . . , T , and zτ , τ = p+ 1, . . . , T ,

we re-estimate the relevant impulse-response functions. We repeat the procedure N times

to get a distribution of IRFs and take the desired point-wise percentiles to form the

confidence bands.

The above procedure takes into account the parameter estimate uncertainty of both

the VAR and the proxy equation (6). On the other hand, we treat zt as an observed

variable, whereas in our case it is estimated. This cannot be avoided since we do not have

a fully specified stochastic volatility model enabling us to reproduce the correct covariances

between the squared prediction errors and the lagged variables.
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Tables

R2 p-value (F-test)

h = 1 h = 4 h = 8 h = 1 h = 4 h = 8

Per Capita GDP 0.15 0.08 0.06 0.00 0.01 0.04

Unemployment rate 0.19 0.15 0.13 0.00 0.00 0.00

CPI inflation 0.09 0.08 0.07 0.00 0.01 0.02

Federal Funds Rate 0.43 0.25 0.27 0.00 0.00 0.00

S&P500 0.10 0.09 0.05 0.00 0.00 0.08

E1Y 0.08 0.08 0.06 0.01 0.01 0.04

spread BAA-GS10 0.21 0.09 0.07 0.00 0.00 0.02

Table 1: R2 of regression (5) and p-values of the F-test of the significance of the regression.

ÛGDP
4,t ÛUN

4,t ÛS&P
1,t VXO LMN F12m JLN 12m LMN R12m EPU RS 4q

ÛGDP
4,t 1.00 - - - - - - - -

ÛUN
4,t 0.76 1.00 - - - - - - -

ÛS&P
1,t 0.45 0.69 1.00 - - - - - -

VXO 0.29 0.56 0.43 1.00 - - - - -

LMN F12m 0.45 0.60 0.50 0.78 1.00 - - - -

JLN 12m 0.71 0.79 0.48 0.47 0.52 1.00 - - -

LMN R12m 0.68 0.76 0.49 0.28 0.44 0.82 1.00 - -

EPU 0.45 0.48 0.33 0.35 0.38 0.29 0.25 1.00 -

RS 4q 0.13 0.13 0.16 0.28 0.31 0.14 0.12 -0.14 1.00

Table 2: Correlation of our estimated uncertainty measures, GDP uncertainty 4-quarter

ahead (ÛGDP4,t ), unemployment rate uncertainty 4-quarter ahead (ÛUN4,t ) and S&P uncer-

tainty 1-quarter ahead (ÛS&P1,t ) with existing measures: VXO, LMN financial 12-month

ahead (LMN F12m), JLN 12-month ahead (JLN 12m), LMN real 12-month ahead (LMN

R12m), economic policy uncertainty (EPU), and Rossi and Sekhposyan 4-quarter ahead

(RS 4q).
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Identification I

h = 0 h = 4 h = 16 h = 40

Per Capita GDP 12.7 38.6 27.4 14.7

Unemployment rate 9.9 54.3 55.4 42.2

CPI inflation 1.1 1.3 6.4 6.4

Federal Funds Rate 1.2 8.9 22.6 19.2

S&P500 21.4 24.4 12.2 6.5

E1Y 62.2 50.6 38.8 36.4

spread BAA-GS10 61.3 75.9 68.2 67.6

Uncertainty 100.0 89.4 68.7 67.8

Identification II

h = 0 h = 4 h = 16 h = 40

Per Capita GDP 10.8 35.0 23.8 13.3

Unemployment rate 11.4 56.0 54.9 42.2

CPI inflation 0.7 0.9 6.8 6.7

Federal Funds Rate 1.4 9.8 24.4 20.7

S&P500 18.5 21.0 10.0 5.7

E1Y 60.7 48.5 37.4 35.1

spread BAA-GS10 63.3 77.7 69.5 68.8

Uncertainty 99.6 88.2 68.2 67.5

Identification III

h = 0 h = 4 h = 16 h = 40

Per Capita GDP 0.0 11.0 9.8 5.7

Unemployment rate 0.0 27.4 35.9 26.7

CPI inflation 0.0 0.4 1.9 2.4

Federal Funds Rate 0.0 3.2 9.4 8.5

S&P500 27.9 29.9 17.2 9.6

E1Y 47.7 38.6 29.4 27.6

spread BAA-GS10 54.0 65.2 58.1 55.9

Uncertainty 80.1 72.9 53.8 52.1

Table 3: Variance decomposition. Identification I: uncertainty innovation. Identification

II: orthogonal to long run shock. Identification III: zero contemporaneous effects on GDO,

unemployment rate, CPI and federal funds rate.
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Figures

Figure 1: US estimated uncertainties. Top: GDP uncertainty. Middle: unemployment

uncertainty. Bottom: stock prices uncertainty. Gray vertical bands are US recessions.
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Figure 2: US estimated uncertainties. Top: inflation uncertainty. Bottom: interest rate

uncertainty. Gray vertical bands are oil crisis periods (upper graph) and monetary policy

periods (lower graph).
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Figure 3: Impulse response functions of the unemployment rate uncertainty shock, 4

quarters. The shock is identified as the residual of the projection of the uncertainty

innovation onto a long-run shock (Identification I). The latter shock is identified as the

only one shock having effect on GDP at the 40 quarter horizon. Solid line: point estimate.

Light grey area: 90% confidence bands. Dark grey area: 68% confidence bands.
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Figure 4: Impulse response functions of the unemployment rate uncertainty shock, 4

quarters. The shock is identified as the residual of the projection of the uncertainty

innovation onto a long-run shock (Identification II). The latter shock is identified as the

only one shock having effect on GDP at the 40 quarter horizon. Solid line: point estimate.

Light grey area: 90% confidence bands. Dark grey area: 68% confidence bands.
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Figure 5: Impulse response functions of the unemployment rate uncertainty shock, 4 quar-

ters. The shock is identified as the residual of the projection of the uncertainty innovation

onto the long-run shock, the GDP innovation, the unemployment rate innovation, the

CPI innovation and the federal funds rate innovation (Identification III). Solid line: point

estimate. Light grey area: 90% confidence bands. Dark grey area: 68% confidence bands.

28



Figure 6: Comparison between the benchmark impulse response functions of Identification

I (solid black lines), obtained with unemployment rate uncertainty 4 quarters, and the

corresponding impulse response functions for unemployment rate uncertainty 1 quarter

(dotted blue lines) and unemployment rate uncertainty 8 quarter (dashed-dotted magenta

lines).
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Figure 7: Comparison between the benchmark impulse response functions of Identification

I (solid black lines) and the corresponding impulse response functions for GDP uncertainty

4 quarters (dotted blue lines) and S&P500 uncertainty 1 quarter (dashed-dotted magenta

lines).
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Figure 8: Comparison between the benchmark impulse response functions of Identification

I (solid black lines), obtained with 1 lag in the VAR and the corresponding impulse

response functions obtained with 2 lags (dotted blue lines) and 4 lags (dashed-dotted

magenta lines).
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Figure 9: Comparison between the benchmark VAR impulse response functions, Identi-

fication I (solid black lines), and the impulse response function obtained with a different

VAR specification, including E5Y (a component of the Michigan University Consumer

Confidence Index) and the ISM New Order Index in place of S&P500 and the spread

BAA-GS10 (dotted blue lines).
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Figure 10: Comparison between the benchmark VAR impulse response functions, Identi-

fication I (solid black lines), and the impulse response function obtained when using the

squared predictions error in place of the log of the squared prediction error to compute

uncertainty (dotted blue lines).
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Figure 11: Comparison between the benchmark VAR impulse response functions, Identi-

fication I (solid black lines), and the impulse response function obtained when using 1 lag

of the variables, in addition to the current values, to compute uncertainty (dotted blue

lines).
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