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Abstract

Twenty percent of the world population depend on wildlife for income and food. We show how
exogenous variation in the wealth of marine wildlife shapes human and economic development.
For the period 1972–2018, we analyze half a million adult women and 1.5 million live births in 36
low- and middle-income countries. We document how short-run deteriorations near human
settlements cause diets to be poorer in nutrients, increasing malnutrition among the most
vulnerable population, pregnant women. These shocks have negative impacts on their children.
When deteriorations are experienced in utero, they increase mortality, worsen physical
development, and have long-lasting effects on economic well-being. Shocks operate in an
unobserved way as parents do not raise health investments. Effects are larger in areas that are
more dependent on marine resources and where overfishing depletes them. 
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One in five people relies on wildlife for income and food (UN-IPBES, 2019). However,

there exists no evidence quantifying the effect of an abundant wildlife on human and

economic development. This paper focuses on the ocean. Marine wildlife provides

essential nutrients to more than 3 billion people, and sustains the marine capture sector,

which employs 1% of the world’s population (FAO, 2022).1

We study the consequences of short-run exogenous changes in the wealth of marine

wildlife, which we label as the ocean’s resource wealth. We proxy resource wealth

using spatial and temporal variation in the pH of ocean’s waters near human settle-

ments. Lower values of pH, which indicate water acidity, impact the quantity, quality

and composition of marine wildlife that is available locally to harvest and consume.2

This impact is crucial in light of climate change, since the global average of pH is

decreasing. This process is known as ocean acidification (IPCC, 2022).

We estimate short- and long-run effects on mortality, human capital, and economic

well-being using a unique historical and geographical coverage. For the period 1972–

2018, we analyze half a million adult women and 1.5 million live births in the coastal

areas of 36 low- and middle-income countries (L&MICs) across Africa, Asia, and Latin

America. These communities are the most dependent on marine wildlife for income

and food, and also the most reliant on local resources. L&MICs host 97% percent of

all workers employed in marine capture; more than 90% of them work in small-scale

and artisanal fisheries servicing local consumption (The World Bank, 2012). Seafood

provides 26% of all the animal proteins that are consumed in L&MICs, which exceeds

the global average of 17% (FAO, 2022). Countries like Bangladesh, Cambodia, the

Gambia, Ghana, Indonesia, Sierra Leone, and Sri Lanka reach peaks of, at least, 50%.

For identification, we exploit the natural variation of the ocean’s pH. In a specific month,

pH near a human settlement can deviate exogenously from its long-run level and be
1A large literature studies the land productivity in agricultural and subsoil extractive activities. The

ocean’s productivity is not comparable due to the open-access essence of its resources (Collier, 2010).
2Effects are heterogeneous across species, allowing for some species to potentially benefit from more

acidic habitats. Doney et al. (2020) provides a literature review of the effect of water acidity on marine
life. Acidity impacts the physiology of species, including their physical development, chance of survival,
nutritional content, and toxicity. In addition, acidity degrades marine habitats like coral reefs, disrupting
food chains. Appendix B.2 discusses other variables that have a more direct effect on the quantity.
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relatively more (or less) acidic. This short-run variation is similar to the one of weather,

which is widely used in the literature to identify exogenous short-run shocks to climate.3

We exploit data on pH at a high spatial and temporal resolution and define shocks as

short-run deviations in pH levels from the spatially-specific (and seasonally-adjusted)

long-run trend. Deviations are obtained by absorbing residual unobserved heterogeneity

with multi-way fixed effects (FEs). This approach makes relatively few identifying

assumptions and allows for unusually strong causal interpretation (Dell et al., 2014).

Identifying assumptions are supported by several checks described in Sections 2 and 3.

The causal pathway from resource wealth to economic development operates through a

nutritional channel. We document that negative shocks reduces the probability to con-

sume seafood, a source of nutrients that are essential during pregnancy (FAO, 2020).

This decrease is not fully compensated by increases in the consumption of alterna-

tive sources of nutrients. Importantly, we show that these shocks are likely driven by

changes in the supply of seafood that have limited effects on aggregate income.4 We

show that coastal areas’ night-time luminosity, a proxy for human and economic devel-

opment (Henderson et al., 2012; Bruederle and Hodler, 2018), is unaffected by short-run

shocks to the ocean’s resource wealth. In comparison, a shock to agricultural income

like a drought significantly reduces luminosity in the same area.

The shift towards a less-nutrient diet results in an increase in malnutrition that is specific

to the most vulnerable population, pregnant women. Motivated by maternal malnutri-

tion being a critical risk factor for children’s health (Black et al., 2013; Victora et al.,

2021), we study the effect of early-in-life exposure to resource wealth by exploiting

information on individuals’ geolocation and date of birth. We show a significant effect

on mortality early in life. This effect is specific to larger deviations in acidity (negative

shocks) that are experienced in utero and gradually converges to zero by the first year of

life. A negative one standard deviation shock raises neonatal mortality–the probability
3Globally and locally, the ocean’s pH is affected by winds, temperature, sea ice, precipitation, runoff,

and ocean circulation (Feely et al., 2008). Appendix B.2 provides a comparison between pH and weather
variables. To avoid the confounding effects of pollution on acidity, we measure pH in open rather than
coastal waters (Section 1). In addition, we report estimates controlling for coastal pollution and excluding
areas near estuaries–the main source of coastal pollution (Section 3).

4Fisheries absorb shocks by diversifying catch, compensating a reduced availability of commonly-
consumed species with other abundant species (see, eg., Anderson et al., 2017).
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of dying during the first month of life–by approximately 0.5 deaths per 1,000 live births

in communities located near the ocean’s shore.

The largest impacts on mortality are recorded where dependence on seafood is larger.

Further, consistent with income being unaffected, we show that impacts are not driven

by a reduction in the total local supply of seafood that is available for consumption, and

thus by changes in the average seafood price. Restricting the sample to one of the most

fish-dependent country in the world, the Philippines, we match children with in-utero

exposure to both the average seafood price in the local market and to resource wealth.5

We show that experiencing higher average prices contributes significantly to mortality,

but shocks to resource wealth operate independently. Therefore, this result highlights

that effects are likely driven by the composition, rather than the total supply of seafood.

A change in composition can reduce nutrient intake (see Section 3.1). Trade can only

amplify this channel as L&MICs tend to export high-quality fish caught in their waters

and supplement local demand with imports of low-quality fish (Pauly and Zeller, 2016).

Early-in-life exposure operates in absence of adaptation that is contemporaneous to the

shock. Parental investments on child health are unaffected, and the effect on neonatal

mortality is homogeneous along households’ wealth and education. Results exclude

important correlates of neonatal death, such as differential access to medical care and

nutrient supplementation (Black et al., 2013), behavioral changes that can occur after

observing a child’s health, and maternal stress. These results also confirm the absence

of income shocks at household level, as investments should adjust (see, e.g., Baird

et al., 2011). It is therefore likely that parents do not observe shocks or are unaware of

their effects. Micronutrient deficiency is the most plausible mechanism. Shortfalls can

occur without deficits in caloric intake, making them difficult to detect without proper

healthcare or knowledge (McGovern et al., 2017). This issue, known as hidden hunger,

affects over two billion people worldwide, particularly in L&MICs (Lowe, 2021).

Early-in-life exposure not only impact mortality rates, but also physical development,

and long-term economic outcomes. Anthropometric measurements show that, on aver-
5Due to data limitations, we cannot perform an analysis on prices at our temporal and geographical

scale (Section 1).
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age, children who live past their first month of life have slightly better health. Therefore,

mortality has higher incidence among the frailer children. Among female children, we

observe instead a significant increase in stunting, which prevails over mortality selec-

tion. The negative consequences among female children persist into adulthood, accom-

panied by a worsening of economic well-being. These results highlight the long-run

consequences of maternal malnutrition.

Our findings contribute to different strands of the literature. First, they provide new

evidence on the roots of child development by studying a shock with unique features. A

large number of studies cover shocks that are either observable or have direct effects on

health.6 The ocean’s pH is not directly observed or felt by individuals, it has no direct

effect on health, and public awareness about its changing nature is highly limited (Gel-

cich et al., 2014). In light of the centrality of parental investments for early childhood

development (Attanasio et al., 2020), lack of adaptation to this type of shock contradicts

available evidence. Adaptation is observed in the case of undernutrition occurring dur-

ing events such as famines and prolonged fasting (Razzaque et al., 1990; Almond and

Mazumder, 2011; Majid, 2015), or when malnutrition is addressed with nutrient sup-

plementation (Adhvaryu and Nyshadham, 2016). We further supplement this literature

by providing novel evidence on the long-run impacts of maternal malnutrition.

Second, the study provides new evidence on the importance of wildlife for economic

development. There is a body of evidence showing how wildlife shaped institutions

(Bowles and Choi, 2019; Mayshar et al., 2022) and long-run economic development

(Michalopoulos and Papaioannou, 2013; Dalgaard et al., 2020). Our findings focuses

on the short-run effects of wildlife, complementing the nascent literature on biodiversity

and poverty (see, e.g., Dasgupta, 2021).

We also provide novel evidence on the role of overexploitative practices like defor-

estation (Burgess et al., 2012; Jayachandran, 2013), overfishing (Stavins, 2011), and

poaching (Kremer and Morcom, 2000). In the territorial waters of L&MICs, half of
6Almond et al. (2018) provides a review of this literature. Studies related to our setting cover the

effect of atmospheric events (Maccini and Yang, 2009; Heft-Neal et al., 2018; Geruso and Spears, 2018a;
Adhvaryu et al., 2020), and environmental contamination or degradation (Chay and Greenstone, 2003;
Arceo et al., 2016; Isen et al., 2017; Geruso and Spears, 2018b; Black et al., 2019; Berazneva and Byker,
2022).
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total catch is obtained through extractive forms of fishing, almost entirely by vessels

flagged to higher-income countries (Golden et al., 2016; McCauley et al., 2018). These

forms of fishing not only deplete marine biodiversity, but also generate no economic

benefit for local communities. In an analysis of heterogeneous effects, we show how

negative resource shocks are amplified only in areas with higher intensity of extractive

fishing. In areas with more inclusive forms of fishing, shocks are instead compensated.

Thus, our results show how overexploitation limits nature’s ability to act as insurance

against short-run shocks.

Finally, because climate change affects pH in the long run, these results further our

understanding of its effects. Our counterfactual analysis shows that short-run shocks

to ocean’s pH can translate into large aggregate effects on mortality in the long run.

This evidence adds to a nascent literature on the predicted economic impacts of ocean

acidification (Colt and Knapp, 2016), and, more generally, to the literature measuring

the impacts of climate change (Auffhammer et al., 2013; Auffhammer, 2018).

1 Data

We collate a wide variety of data sources that we describe in this section. Appendix

A.1 provides further details of the variables used and data sources. Appendix Table A4

presents descriptive statistics for these variables.

Mortality, human capital and adaptive behavior. We collate and homogenize 95

household surveys from 36 countries collected by the Demographic and Health Surveys

(DHS) Program between 1990–2018. Individual surveys provide nationally represen-

tative data on health and population in L&MICs, with a particular focus on maternal

and child health, and have been widely used to build mortality rates among children

thanks to its detailed and accurate birth histories. The dataset is supplemented with

objective measurements of human development and nutrition, such as height, weight

and hemoglobin concentration in blood samples. The program surveys women aged

15–49 and includes information about their demographics, including wealth and human

capital accumulation. Each surveyed woman’s birth history is recorded and includes
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information on children’s year and month of birth, sex, birth order, whether they are

twins, and the date of death when it applies.7

The primary sampling unit is a community (or cluster), which represents a village or a

neighborhood. Our dataset includes all available surveys with geocoordinates and only

considers countries with direct access to the ocean. We use all available surveys and

re-weight observations to correct for oversampling of countries with multiple surveys.8

We restrict the sample to coastal areas. Using geolocation of communities, we follow

United Nations (2003) and define a coastal area as the buffer extending landward from

the ocean’s shore up to a distance of 100 km. Distances from the shore are computed

as the minimum straight distance from the community to the shoreline. Figure 1 shows

the geographical coverage of the study area. While individual characteristics tend to be

comparable in magnitude between communities in the coastal and inland areas, house-

holds in proximity with the ocean are slightly richer and present lower mortality rates

(Appendix Table A4). Appendix A.2 details the procedure used to compute distances,

while Appendix B.1 discusses alternative definitions of coastal areas.

Resource wealth. Because marine wildlife presence is not directly observable, we ex-

ploit variations in their natural habitat, measured by the ocean’s chemical composition.

We focus on water pH at the surface, i.e., a logarithmic scale indicating at lower (higher)

values the acidity (basicity) of an aqueous solution. Chemical features of the ocean in

open waters are obtained from the HadGEM2 - Earth System dataset provided by the

European Space Agency (ESA) Pathfinders-OA project (Sabia et al., 2015).9 Data are

provided as monthly global raster data at the 1°×1° resolution for the period 1972–

2018. Each community in the DHS is matched with a data point in the ocean using the

shortest straight-line distance.
7Stillbirths are not recorded. We assume measurement error is minimal because the death of a child

is a tragic event. Appendix B.7 shows evidence against recall bias.
8Appendix A.1 provides the full list of countries and surveys. Results are robust to different selection

criteria. For questions that are omitted in specific survey rounds, we re-compute weights to account for
this selection.

9The produced series from the model matches available information from observational data (Totter-
dell, 2019). Any measurement error is uncorrelated with unobservable determinants of local develop-
ment because the model is exclusively determined on climatology. For the use of re-analysis climatology
datasets in economics, refer to Dell et al. (2014).
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In our sample, variation in pH originates from both the time and geographic dimensions

with comparable contributions of its between and within components (Appendix B.4).

Summary statistics for matched raster points confirm its similarity with weather sys-

tems. The peak in average pH is reached in January (8.10) and the minimum is around

September (8.09), with a median within-year variation of 0.01 units of pH.

We supplement data with other variables that could affect resource wealth in the ocean

and inland in the coastal area. First, we gather information about other chemical features

of the ocean from using the HadGEM2 - Earth System dataset. Second, using the ERA5

database, we supplement data with other meteorological features in the same location

in the ocean where pH is measured, including temperature and wind speed. Third, to

control for weather characteristics inland, we include yearly rainfall and temperature

data at the community level from the PRIO-GRID database. Appendix B.2 provides

descriptive statistics for these variables.

Aggregate income. We complement data with the average night-time light emission

from the calibrated DMSP-OLS Night-time Lights Time Series 4. Yearly data are avail-

able for the period 1992–2012. We normalize luminosity by population in the grid cell

using the PRIO-GRID database, performing the analysis using night-time luminosity

per 100,000 inhabitants in a gridded dataset at the 0.5°×0.5° resolution, selecting only

grid cells where DHS clusters used in the main analysis are present.

Ocean’s exploitation. We use geographically-granular data about the intensity and the

type of exploitation. First, we consider a form of extractive fishing by focusing on in-

dustrial fishing. We use the Global Fishing Watch dataset, which provides data on the

hours industrial fishing vessels spend at specific geolocations. Because data are avail-

able only for the period 2012–2016, we build a global grid at the 1°×1° resolution sum-

ming fishing hours within each cell over the available period. Because industrial fishing

patterns have low sensitivity to economic and environmental variation (Kroodsma et al.,

2018), time-invariant heterogeneity is likely capturing suitability for industrial fishing,

rather than short-run responses to changes in the ocean’s health. Dependency on fish

for nutrition is also highly stable over time (Appendix B.3).
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Second, we define night-time fishing using the Automatic Boat Identification System for

VIIRS Low Light Imaging Data (Elvidge et al., 2015). It provides the time and geolo-

cation of boats using nightlight as measured from satellite imaging. Because only 16%

of fishing detected with this algorithm is also captured by industrial fishing (Kroodsma

et al., 2018), night-time fishing tends to capture boats operating on a smaller and lo-

cal scale, thus potentially contributing to the local economy. Similar to the measure of

extractive fishing, we build a global grid at the 1°×1° resolution with the sum of all

detected boats for the period in which data are available (2017–2019).

We normalize intensity from both activities to be between 0 (no presence) and 1 (high

intensity). Appendix Table B13 shows that fishing patterns are primarily driven by

differences in geography, while individual characteristics are comparable in areas with

high versus low intensities of both types of fishing. The intensity of night-time fishing

is highly comparable in areas with high versus low intensities of extractive fishing.

Appendix Figure B14 shows an example of the geographical distribution.

Seafood prices. Local variation in seafood prices at the geographical and temporal

scale of our analysis is not available. We gather prices for the Philippines, a unique

setting in our context: its coastline is the 5th largest in the world, it is home to 9% of

global coral reefs, and depends highly on fish. We gather monthly retail seafood prices

at the province level for the period 1990–2018 from the Philippine Statistics Authority.

Prices are spatially heterogeneous and their pattern over time is in line with the global

trend (Appendix Figure B15).

2 Empirical strategy

Temporal and geographical variation in pH is similar to the one of weather. Short-run

variation in pH occurs around a global trend with within-year seasonality, just like air

temperature or rainfall. We thus follow a standard approach in the literature on the

effects of weather shocks (see, e.g., Dell et al., 2014). We define a shock as the short-

run deviation in water pH levels from the spatially-specific long-run trend (corrected

for seasonality). We denote as Rvc,mt the open water’s pH of the ocean in the nearest
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point from the community v of macro-region c measured in the month m of year t.

We multiply Rvc,mt by 100 to relate coefficients to an increase of 0.01 units in pH

(approximately three standard deviations in the main identifying sample).

Contemporaneous exposure is computed by matching Rvc,mt with individual informa-

tion about children and women using the location of interview and the date of the in-

terview. The early-in-life exposure is computed by matching Rvc,mt with individual

information using the location and the date of birth. 10 When exposure is computed

over multiple months, we average pH over that period. For instance, exposure in utero

is the average Rvc,mt during the 9 months preceding the date of birth. The exogeneity

of the shock is supported by balance on observable characteristics in areas affected by

different shocks (Appendix B.5).

For both contemporaneous and early-in-life exposures to the shock, we estimate the

causal effect of a shock, β, with the following specification:

yivc,mt = βRvc,mt +Xivc,mtγ + Ωvc,mt + εivc,mt (1)

where yivc,mt is the outcome of interest for individual i in month m of year t in com-

munity v of macro-region c, Xivc,mt is a vector of demographic and weather control

variables, Ωvc,mt is a set of FEs, and εivc,mt are idiosyncratic errors assumed to be clus-

tered at the ocean raster data point.11

The set of FEs define the shock in terms of deviations and capture unobserved hetero-

geneity in both the ocean’s pH and the outcome variable once controlling for the follow-

ing FEs. First, time effects remove unobserved characteristics of the date of interview

or birth by controlling for year by month FEs. Second, because we exploit within-year

variation, we remove spatially-specific seasonality by including macro-region by (in-
10As standard in the literature, we assume that the location of surveying corresponds to the location of

birth. We do not highlight potential issues associated with selective migration (Appendix B.7).
11When the outcome variable refers to children, demographic controls include the child’s gender and

birth order, the number of twins born with the child, mother’s age at birth and at the time of the inter-
view (including square terms), mother’s years of education, the household head’s gender and age, and
household size. When the outcome variable refers to adult women, these controls are limited to mother
and household head’s characteristics. Weather controls include the community’s average temperature and
rainfall (and their interaction) in the year of birth, and another chemical feature of the ocean that relates
with ocean temperature, oxygen concentration (Appendix B.2 provides further details).
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terview or birth) month FEs. Third, we remove spatially-specific trends by including

location FEs, which capture time-invariant (observed or unobserved) spatial character-

istics, and macro-region by (interview or birth) year FEs, which capture unobserved

variation in trends. Controlling for seasonality and trends is important for identifica-

tion because climate change impacts pH with spatially-heterogeneous effects, such that

some regions exhibit faster or slower acidification and/or more amplified or compressed

within-year variation than others.12

For location FEs, we use different alternatives depending on whether we are focusing on

contemporaneous or early-in-life exposure. For contemporaneous impacts, we cannot

exploit within-community variation because every individual in the community is in-

terviewed at the same time. In this case, the benchmark specification includes location

FEs corresponding to the grid cells in which the communities lie. For early-in-life ex-

posure, the benchmark specification includes instead community FEs thanks to thanks

to the within-community temporal variation originating from birth dates. When we can

also exploit within-family variation, we estimate a within-sibling specification includ-

ing mother-specific FEs. The latter strategy restricts the analysis to siblings and allows

controlling for mothers and households’ time-invariant characteristics. Appendix Fig-

ure B4 shows the evolution of the average shock in the sample of children over time,

reinforcing the nature of abnormal deviation in pH of our main independent variable.

We support the validity of the identifying assumption with a variety of tests. In partic-

ular, we address issues related to non-random selection driven by FEs. This can occur

from the loss of groups with only one observation and can lead estimates to differ from

the population-wise average effect if impacts are heterogeneous (Cameron et al., 2011).

For example, the within-sibling identifying assumptions restrict the sample to mothers

with at least two live births, who are generally older, have fewer years of education,

were younger at the time of their first birth, and live in poorer households and com-

munities (Appendix B.4). Threats from this form of selection are limited by a shock
12To guarantee sufficient variation in the ocean’s pH, which varies at the 1°×1° resolution, we define

macro-regions using administrative indicators, such as the country or the district of the community or
global grids at different resolutions. Administrative boundaries are the standard in the literature, while
grids dissuade concerns about the potential endogeneity of administrative boundaries.
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being not only continuous, but also presenting a high degree of variation (the within-

community variance in the identifying sample used by the benchmark specification is

always positive). Nevertheless, in all results tables, we report the number of observa-

tions used in the estimation (identifying observations), and the number of observations

that are dropped due to the identifying restrictions (singleton observations). In addition,

Appendix B.4 provides estimates using the Miller et al. (2021) re-weighting procedure,

and estimating the main specification with the within-sibling identifying sample (see,

e.g., Alesina et al., 2021).

3 Results

Section 3.1 discusses the causal pathway of the effect of resource wealth by focusing

on exposure to the shock that is contemporaneous to the time of measurement. Section

3.2 focuses on the effect of early-in-life exposure on mortality, parental adaptation,

human capital, and economic well-being. Section 3.3 analyzes how these effects vary

according to the prevalent method of marine resource exploitation near the community.

3.1 Defining the causal pathway of nature’s wealth

We begin by testing whether nature’s wealth operates through nutrition and health, two

important correlates of economic development (Strauss and Thomas, 1998). We look at

whether a shock induces changes in nutrition by estimating the contemporaneous effect

of a resource wealth on malnutrition among women. We use micronutrient deficiency

as a direct measure of malnutrition. We proxy deficiency using objective measurements

of anemia, performed by the enumerators on a random subset of women in the sample.

Anemia captures the presence of low levels of hemoglobin, a protein in red blood cells

that carry oxygen in the blood. Columns (1)–(2) in Table 1 show that lower resource

wealth leads to a higher prevalence of anemia, but only among pregnant women. An

effect specific to this vulnerable population is not surprising because, during pregnancy,

the human body requires more iron to supply the growing fetus (Luke, 1991). A 0.01
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decrease in pH at the time of the interview leads to an increase in anemia prevalence of

1.7 percentage points among pregnant women (3.7% over the sample mean of 45.4%).

Anemia is often caused by a lack of iron. We therefore look at the propensity to con-

sume an iron-rich diet. The DHS program asks, in a limited number of surveys and

respondents (see Appendix A.1), whether a mother consumed different kinds of food

in the 24 hours previous to the interview. We first focus on whether women consumed

seafood, a naturally-available source of iron and other micronutrients that are crucial

during pregnancy (FAO, 2020).13 Second, we focus on whether women consume other

iron-rich food (poultry, red meat, liver, beans, legumes, nuts and dark leafy greens).

Columns (3)–(4) in Table 1 shows that a lower resource wealth leads to reduced con-

sumption of seafood among all women. The reduction is larger among pregnant women,

at 6.2 percentage points (18.6% over the sample mean of 33.4%). This decrease is com-

pensated by a not-statistically-significant increase in the consumption of other iron-rich

foods of 4.5 percentage point (5.3% over the sample mean of 85.1%).14

A deterioration of income associated with fishing can explain these changes in diet and

the resulting maternal malnutrition. Because fishing is a primary economic activity

in coastal areas, a reduced household income would push individuals towards cheaper

calories. To test this channel, we look at satellite-based night-time luminosity. For this

analysis, we build a gridded dataset at the 0.5°×0.5° spatial resolution and construct a

yearly panel of night-time luminosity in the coastal area covered by DHS. We estimate

equation (1) at the level of the grid cell, matching data about night-time luminosity with

two resource shocks: one to agricultural productivity, as captured by the presence of a

drought, and one to the ocean’s resource wealth. The first surely captures an income

shock given the importance of rainfall on agriculture and the reliance of L&MICs on

this economic activity (see, e.g., Barrios et al., 2010). We define drought using an

indicator variable taking value one when annual rainfall in the grid cell is below the
13Iron and iodine support brain development and growth in children, and help prevent stillbirth; zinc

and vitamin A support childhood survival and promote growth; calcium and vitamin D prevent preterm
delivery; vitamin B12 contributes to a healthy nervous system and brain development; and essential fatty
acids prevent preeclampsia, preterm delivery, and low birth weight.

14Estimating equation (1) defining contemporaneous exposure as the average pH in multiple months
close to the interview leads to similar conclusions.
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15th percentile of the grid cell’s historical rainfall distribution (see, e.g., Corno et al.,

2020 for this approach). We follow the same approach to define a shock affecting

the ocean’s resources and we define an acidity shock with an indicator variable taking

value one when the yearly average pH in the nearest open ocean’s point is below the

15th percentile of the grid cell’s historical distribution. Shocks are comparable in our

sample, but are not simultaneous: the acidity shock affects 14.6% of observations, and

droughts affect 12.9%, but their correlation coefficient is -0.05.

Table 2 presents the results. Estimates of the effect of an acidity shock are never sig-

nificantly different from zero, and are unaffected by controlling for the presence of

droughts (Appendix Table 2). As expected, droughts have a significant negative effect

on night-time luminosity in coastal areas. The magnitude is about ten times as large as

a comparable shock in the ocean’s waters. Section 3.2 provides further evidence against

income shocks at the household level. While we cannot exclude that ocean acidification

may influence aggregate income in the long run, we conclude that short-run variation

in the ocean’s resource wealth operates primarily through nutritional deprivation.

In absence of any impact on income, changes in diets are likely driven by a change in

the composition of marine wildlife that is available for consumption. Recent scientific

evidence highlights how commonly-consumed species are less resilient to acidification

and overfishing (Jones and Cheung, 2018), but they also have better nutritional content

as compared to more resilient species (Falkenberg et al., 2020; Maire et al., 2021). If

commonly-consumed species are preferred over more resilient species, then increases

in the (relative) price of commonly-consumed species would increase consumption of

more resilient species, but reduce the consumption of commonly-consumed species and

the overall consumption of seafood. Malnutrition can therefore arise from short-run

variation in resource wealth in absence of any income effect.

3.2 The effect of early-in-life exposure

Mortality. Table 3 presents estimates of the effect on the Neonatal Mortality Rate

(NMR)–the number of deaths in the first month of life per 1,000 live births. To isolate a
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channel operating through maternal health, we begin by studying exposure to resource

wealth while in utero. Panel A uses the benchmark specification, while Panel B uses the

within-sibling specification. Columns (1)–(3) remove seasonality at the country level,

while columns (3)–(6) remove seasonality at the grid cell level. Columns (1) and (4)

do not include any control variables, columns (2) and (5) add weather controls, and

columns (3) and (6) further add demographic controls. Figure 2 shows estimates using

alternative specifications, including alternative sets of control variables, different time

FEs,and different definitions of macro-regions.

Shocks experienced in utero have a substantial impact. A 0.01 decrease in pH sig-

nificantly increases NMR by 1.42–2.12 deaths per 1,000 live births in our benchmark

specification (Panel A). Estimates using the within-sibling specification are not dissim-

ilar (Panel B of Table 3). In terms of standardized effects, a one-standard-deviation

negative shock leads to an increase in NMR by 0.53–0.60 deaths per 1,000 live births

in the benchmark specification and 0.53-0.67 deaths per 1,000 live births in the within-

sibling specification (Appendix Table B2). Adding control variables has a limited effect

on the estimates of the effect, providing further evidence in support of the exogeneity of

a shock. Significant effects are also found when varying the definition of coastal area.15

These estimates are robust to a wide variety of checks. First, while changing the set

of FEs alters our identifying assumptions and our measure of a shock, estimates are

highly stable (Figure 2). At standard confidence levels, estimates are always negative

and significantly different from zero. Second, results are not driven by selection into

identification (Appendix B.4). Third, statistical inference is robust to alternative as-

sumptions about standard errors in equation (1) and to permutation-based inference,

which artificially varies the exposure in both space and time to the shock. The latter

allows rejecting the null hypothesis of a nil effect at the 5% significance level for all

estimates in Table 3 (Appendix B.6).

The effect on NMR is driven by exposure to lower levels of pH during the gestation.

Figure 3 presents an analysis based on bin variation of pH rather than continuous, as in
15The most affected communities live within 40 km from the shore. Restricting coastal areas to alti-

tudes below 100 meters or excluding estuaries have limited effect on estimates (Appendix B.1). Estimates
are also robust to potential sources of measurement error associated with distances (Appendix B.5).
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Deschênes and Greenstone (2011). Panel A shows estimates of equation (1) replacing

the ocean’s pH while in utero with the share of time children were exposed to values

of the ocean’s pH within a specific range during their gestation period. We highlight

that the effect is driven by negative (or acidity) shocks, suggesting an important role of

ocean acidification. In addition, to understand whether exposure of shocks in periods in

proximity to gestation can also explain mortality, Panel B shows estimates of equation

(1) by adding exposure one month before conception (10 months before birth), the

month of birth, and 1–4 months after birth (a placebo period posterior to the period

considered for the death). These results reinforce the role of maternal malnutrition and

how it impacts children.

The effect on mortality is prevalent in the neonatal period. We estimate how resource

wealth experienced in utero impacts the probability of death at age x (in months) using

equation (1) and restricting the sample to children who, at the time of the interview,

are born at least x months before (independently from being alive).16 We repeat the

same specification for x ranging from 1 month to 60 months. The dependent variable,

updated in every iteration, is an indicator variable equal to one if the child is not alive

at time x from birth, and 0 otherwise, and is multiplied by 1,000 to relate coefficients

to changes in deaths per 1,000 live births.

Figure 4 plots the coefficients. The effect peaks in the first month of life, which cor-

responds to the effect on neonatal mortality, and remains significant for the very first

months of life. A smaller net effect is observed beyond the first month of life, with con-

vergence to zero within the first year of life. Because, short-run effects slowly disappear

as the initial increase in mortality is offset by later decreases, the pattern is consistent

with a displacement of mortality that is hastened by experiencing worse conditions.17

Heterogeneity in neonatal mortality. Impacts are concentrated in communities that

rely more heavily on the ocean’s resources. Figure 5 shows estimates of the effect of

resource wealth on NMR allowing estimates to vary flexibly with distance from the
16 We select the sample based on time from birth to avoid selecting children who are alive and younger

than x. The heaping of deaths at 1 year is common, while mortality rates at ages 2, 3, 4 and 5 are hardly
affected by heaping (Croft et al., 2018). We do not observe any effect on the estimates due to these
potential issues. Appendix B.8 presents estimates of the effect on mortality rates at standard times.

17This mechanism is known in the literature as death harvesting (see, e.g., Heutel et al., 2021).
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ocean’s shore (Panel A), and from other water bodies (Panel B).18 The largest effect

on NMR is observed at the shore, while the estimate converges to zero as distance

increases. On the contrary, the effect is homogeneous with respect to distance from

other water bodies.

Effects are also larger where seafood represents a higher share of total animal pro-

teins consumed, in countries with a positive trade balance for fish products (Appendix

B.3), and where artisanal fisheries are a central activity, such as in proximity to reefs

(Appendix B.3). Coral reefs are essential for subsistence and artisanal fisheries, with

approximately 500 million people deriving food or income from them, and are paying

a high cost from ocean acidification (Doney et al., 2020).

To verify whether neonatal mortality is driven by reductions in the overall supply of

seafood or by the composition of supply, we also look at seafood markets. Drops in

the overall supply of seafood available for local consumption should reflect in increases

in the average price of seafood. We thus compare the effect of in-utero exposure to

resource wealth and to the average price of seafood in the local market. Due to data

limitations, we restrict our analysis to the Philippines (see Section 1). We compute

exposure to the average seafood price while in utero matching retail prices with in-

dividual information using the date and the province of birth. For identification, we

rely on deviations in average retail seafood (log-)prices from the spatially-specific (and

seasonally-adjusted) long-run trend by adding this variable in equation (1).

Table 4 shows that the effect of resource wealth on NMR is significant for the Philip-

pines: a one-standard-deviation negative shock results in approximately 0.75 deaths per

1,000 live births. At the same time, a 1% increase in the average seafood price leads

to an increase in NMR of 0.07 per 1,000 live births. As higher prices capture the ca-

pacity of households to purchase and consume fish, a positive estimate highlights the

link between seafood consumption and maternal health. However, the two channels

operate independently on mortality. In line, for the full sample, we cannot identify any
18Other water bodies include lakes, ponds in islands within lakes, and all rivers. Freshwater ecosystems

are also acidifying, but proximity to these is negatively correlated with proximity to the ocean’s shore.
Estimates are robust to excluding areas near estuaries (Appendix B1).
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heterogeneous effect with respect to the ability to purchase more nutritious food.19

Adaptation. Table 5 examines parental adaptation. Columns (1)–(2) examine adapta-

tion at the time of the shock using birth-level information on parental health investments

on antenatal investments (attendance to health visits during pregnancy and presence of

health professionals during these visits), and delivery investments (presence of health

professionals during delivery and whether delivery was performed in a health center).

Both variables range from 0 (no) to 2 (high investment). Appendix B12 shows esti-

mates for the individual indicators composing these variables. Columns (3)–(5) focus

on investments after birth: postnatal healthcare, the completion of the cycle of basic

vaccinations, and whether the child has ever been breastfed.

For both antenatal and delivery investments, we do not observe any significant effect.

The effect is also homogeneous in the birth order and gender of the child, two predic-

tors of differential parental investments in the presence of adverse shocks (Baird et al.,

2011). Because antenatal care is also a strong predictor of nutrient supplementation

plans during pregnancy, we also exclude this channel. We do not observe any effect

on postnatal care, which indicates that parental adaptation following the observation of

child health is limited. We also do not observe any significant effect on morbidity and

anemia prevalence among children at the time of the measurement (Appendix B.9).

Human capital accumulation. Table 6 shows the effects of resource wealth experi-

enced in utero on physical development built upon anthropometry. Panels A and B fo-

cus on short-run effects by analyzing measurements for children, while Panel C presents

long-run effects among adult women.

In column (1), we define physical development as the average z-score of available an-

thropometric measures. We include weight-for-height (w/h), which captures insuffi-

cient food intake or a high incidence of infectious diseases in temporal proximity with

the measurement, and height-for-age (h/a), which captures past or cumulative effects of
19The effect is homogeneous across a wide array of individual characteristics (Appendix B.10). The

effect is also independent from other shocks that have more direct effects on fish stocks, and robust to
adding (potentially-endogenous) controls for income processes contemporaneous to the shock (Appendix
B.2). We consider the presence of human activity using a measure of pollution in coastal waters; the
presence of conflict (see, e.g., Axbard, 2016); and adverse weather events (see, e.g., Hsiang and Jina,
2014; Gröger and Zylberberg, 2016).
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under-nutrition and infectious diseases since conception.20 Estimates of the effect on

these individual indicators are reported in columns (2)–(3). Estimates in columns (4)–

(5) focus instead on indicator variables for abnormally low values of weight-for-height

(wasting), and of height-for-age (stunting). All measures rely on objective measure-

ments performed by the enumerators on a random subset of children and adults. These

measures are conditional on the individual being alive at the time of the interview, and

therefore need to be interpreted in light of the results on mortality.

Panel A highlights that a negative shock induces mortality selection among children.

Living children that experienced a negative shock tend to have slightly better indicators

(Panel A). A 0.01 decrease in pH increases physical development by 1.8 percentage

points, mainly driven by an increase in weight-for-height and a reduction in wasting.

These differences are not associated with contemporaneous nutrition.21 Neonatal mor-

tality is primarily affecting the frailer children, in line with mortality selection prevail-

ing over a scarring effect (see, e.g., Deaton, 2007).

Mortality selection is driven primarily by male children. Male children experience only

a slightly larger and not statistically different mortality as compared to female children

(Appendix B.10). However, when looking at physical development among female chil-

dren, we highlight the prevalence of a scarring effect (Panel B). We do not observe any

significant effect on variables associated with weight, but we record a significant effect

on stunting. A 0.01 negative shock increases the probability of a girl to be stunted by

1.3 percentage points (5.7% relative to the sample mean).

The scarring effect on girls is persistent in the long-run. Panel C shows a significant

effect on physical development among adult women. A 0.01 negative shock decreases

significantly physical development by 0.9 percentage points, driven primarily by in-

creases in height-for-age and stunting. Adaptation at later ages could play a role as

the magnitude of the effect–an impact of 2.3% relative to the sample mean–is smaller

among adults as compared to children.
20For adults older than 18 years old, z-scores refer to standard reference curves at age 18, when phys-

ical development is assumed to be complete.
21A negative shock leads to a reduction in the probability of being underweight the first months of life,

indicating differences in birth weight (Appendix Figure B12).
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Table 7 focuses on long-run impacts on the economic well-being of women. In column

(1), we proxy economic well-being in adult life with a measure of wealth, computed

as an asset-based index and known to be capturing households’ longer-run economic

well-being (Jean et al., 2016). Columns (2)–(6) focus on correlates of well-being, such

as fertility (number of births), years of schooling, cognitive skills (determined by the

ability to read a sentence), and labor supply. Columns (1) and (6) select only women

that are either a household head or their partner (labeled as main), while Columns (2)–

(5) refer to the full sample of women aged 15–49.

Resource wealth experience in utero has long-run consequences that are not limited

to anthropometrics. A 0.01 decrease in pH experienced in utero decreases adulthood

wealth by 1.6 percentage points, an effect that corresponds to 0.5% relative to the sam-

ple mean. This impact is accompanied by statistically significant decreases in the num-

ber of births per woman and the probability to work in the sample of main women by

0.01 children and 1.6 percentage points, respectively. We do not observe any effect

on schooling and cognitive skills. The effects on economic well-being are small in

magnitude, but statistically detectable even in the long-run.

3.3 Heterogeneity by resource exploitation

To understand how the availability of wildlife interacts with its exploitation, we turn

our attention to heterogeneity of the effects discussed in Section 3.2 with respect to the

type and intensity of fishing activities (see Section 1 for definitions). For comparability,

we quantify the effect of a one-standard-deviation decrease in pH experienced while in

utero (labeled as a scarcity shock), and report estimates in terms of percentage change

with respect to the sample mean. Figure 6 plots estimated effects of such shock at

different intensities of night-time fishing (left-hand-side figures), and extractive fishing

(right-hand-side figures).

Panel A focuses on short-run effects, showing impacts on NMR and on physical devel-

opment among children. The effect on both NMR and the effect on physical develop-

ment are homogeneous along the intensity of night-time fishing. We observe instead
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heterogeneous effects by intensity of extractive fishing. Areas characterized by high

intensity present a significantly larger effect on NMR as compared to areas where ex-

tractive fishing is absent. A scarcity shock leads to a 1.4% increase in NMR in areas

where extractive fishing is absent and a 5.0% increase in areas where extractive fishing

is largest. The mortality selection induced by these effects is captured in the heterogene-

ity of the impact on physical development. A scarcity shock leads to an improvement in

physical development by 0.7% in areas where extractive fishing is absent and by 4.3%

in areas where extractive fishing is largest.

Panel B of Figure 6 focuses on long-run impacts on economic well-being and physi-

cal development among adult women. Impacts on economic well-being are homoge-

neous with respect to night-time fishing, while their magnitude decreases significantly

at higher intensities of extractive fishing. The effect varies between -0.2% and -0.1%

depending on the intensity of night-time fishing, and it decreases from -0.1% at low lev-

els of extractive fishing to -1.5% in areas where extractive fishing is highest. In terms of

physical development, we observe a negative effect only at low intensities of night-time

fishing, while the effect converges to zero at higher levels, indicating that higher inten-

sities can compensate for the negative consequences of a shock experienced in utero. In

presence of higher intensities of extractive fishing, shocks are significantly amplified.

In absence of extractive fishing, a scarcity shock leads to a decrease of 0.3% in devel-

opment, while in areas where extractive exploitation is highest, the reduction reaches

1.8% over the sample mean.

Extractive fishing reduces significantly the ability to counteract short-run shocks. In

fact, it amplifies their impacts. Night-time fishing tends to compensate these effects in

the long run, but has no effect in the short run, in line with limited adaptation (Section

3.2). Formal tests of heterogeneous impacts confirm these results (Appendix B.11).

4 The aggregate effect of ocean acidification

Resource wealth in the ocean is also affected in the long-run by climate change, in par-

ticular through ocean acidification. While we cannot identify the causal effect of ocean
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acidification directly, Appendix C provides evidence using counterfactual estimates and

focusing on long-run adaptation. We summarize the results in this section.

We produce counterfactual estimates of NMR under the assumption that children in our

sample were exposed in utero to the ocean’s conditions in 1975. NMR attributed to the

change in the ocean’s chemical composition is computed as the community-level aver-

age difference between the predicted NMR under real conditions and its counterfactual

prediction. In the coastal area of all selected countries, acidification is responsible for

an increase in neonatal deaths. NMR attributed to acidification ranges, in aggregate

terms, from 3.0 deaths per 1,000 births in the DR of Congo to 9.0 in the Philippines

and 11.9 in the Comoros Islands. These results highlight considerable heterogeneity,

as the average NMR in the corresponding period is 49.4 in the coastal area of the DR

of Congo, 14.8 in the Philippines and 26.8 in the Comoros Islands. Contributions of

acidification are larger in countries that are more dependent on the ocean’s resources.

To capture long-run adaptation, we follow Dell et al. (2014) and estimate equation (1)

interacting the ocean’s pH while in utero with the spatially-specific initial conditions,

proxied by the 1972–1975 (standardized) average pH in the correspondent ocean’s

point. The effect of resource wealth on NMR is systematically larger in locations that

have been historically exposed to more acidic waters. Because it is exactly these ar-

eas that would have had more time to adjust to acidification shocks, these differences

further support lack of adaptation in the long-run.

5 Conclusions

Animal species are under severe pressure from human overexploitation and climate

change. We show that the nature’s wealth is an important source of insurance for hu-

man development, highlighting the need to prioritize the conservation of wildlife and

biodiversity. Our results show that this is particularly important for communities that

are more dependent on renewable natural resources for survival. For marine wildlife,

the United Nations (2012) highlight as priorities to “regulate the industrial fishing sector

to protect the access rights of traditional fishing communities” and “introduce exclusive
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artisanal fishing zones and user rights for small-scale and subsistence fisheries.”

In the future, we should be wary of large effects of ocean acidification, even in the face

of improved mitigation capacity. In absence of a strong natural resource governance

and of effective mechanisms to incentivize conservation, policymakers need to channel

resources efficiently to the communities that need mitigation support the most. By

showing that negative shocks to nature’s wealth behave as exogenous reductions in

the availability of nutrients that can be consumed, our results provide a rationale for

investing in targeted nutritional interventions early in life. These interventions have

shown to mitigate both short- and long-run consequences of malnutrition (Hoddinott

et al., 2013; Gertler et al., 2014). Their implementation is particularly important for

children in L&MICs, who are predicted to suffer the heaviest consequences of climate

change (Hanna and Oliva, 2016).
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Figure 1: Area covered by the study

Note. Geographical distribution of selected communities in coastal areas. The shaded area represents all countries surveyed
by the DHS with access to the ocean (the full list is reported in Appendix A.1). Communities in coastal area are villages and
neighborhoods within 100 km from the ocean’s shore. Inland communities are villages and neighborhoods further than 100 km
from the ocean’s shore. Appendix A.2 details the procedure followed to compute distance from shore.

Figure 2: Early-in-life exposure and neonatal mortality – alternative specifications
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Note. Marginal effect of resource wealth under alternative sets of FEs in the benchmark specification (Panel A), and in the within-
sibling specification (Panel B). The dependent variable is a dummy variable equal to 1 if the child died within the first month of
life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a factor of 100) in
the ocean’s cell closest to the child’s community during the 9 months before birth. Marginal effects are estimated using equation
(1) with the set of FEs and controls reported in the bottom panel. Main specifications are the ones used in Table 3. The sample
is restricted to coastal areas (see Section 1). Standard errors are clustered at the ocean raster data point. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures. Main controls are the weather and demographic
controls (see Section 2). Interactions are interaction terms between the birth month and indicator variables for different oceans.
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Figure 3: Resource wealth and neonatal mortality: type and timing of exposure

A. Scarcity vs abundance B. Timing of exposure to resource wealth
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Note. Marginal effects of resource wealth by type of shock (Panel A), and by timing of exposure (Panel B). In Panel A, estimates
are based on equation (1) where resource wealth is substituted by the share of time children were exposed in utero to different
levels of the ocean’s pH. We classify values in four bins, with the third including the historical median and mean of pH in
sampled areas. The lowest and highest values in the range are the historical minimum and maximum in the sample. For each
bin, the right vertical axis presents the average share of pregnancy in the corresponding bin. In Panel B, estimates are based on
equation (1), in which resource wealth at different points in time, is the pH (multiplied by a factor of 100) in the ocean’s cell
closest to the individual’s community in the corresponding period relative to birth; when the period refers to multiple months,
the value is averaged. In both panels, the dependent variable is NMR, a dummy variable equal to 1 if the child died within
the first month of life and 0 if the child survived, multiplied by 1,000. Estimates are based on the benchmark specification
(see Section 2). The sample is restricted to the coastal area (see Section 1). Confidence intervals at 90% level. Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures.

Figure 4: Early-in-life exposure and mortality
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Note. Marginal effect of resource wealth experienced in utero on the probability to die. The dependent variable is a dummy variable
equal to one if the child is dead at time x from birth, and zero if the child is alive, and it is multiplied by 1,000. The 90% confidence
interval is indicated by dotted lines, beyond which the intervals are progressively shaded up to the 99% level. Within confidence
bounds, darker colors indicate a larger number of observations (see Appendix A.3). Estimates are based on equation (1) including
community FEs, birth month by birth year FEs, country by birth year FEs, country by birth month FEs, and control variables (see
Section 2). Standard errors are clustered at the ocean raster data point. Appendix A.1 provides further information on the variables
and for the list of surveys included in the study.
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Figure 5: Early-in-life exposure and neonatal mortality, by distance from water bodies
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Note. Marginal effect of resource wealth on NMR as a function of distance from the shore (Panel A), and of distance from another
water body (Panel B). The dependent variable is a dummy variable equal to 1 if the child died within the first month of life and 0
if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s
cell closest to the child’s community during the 9 months before birth. Estimates are based on equation (1) introducing interactions
between the shock and a cubic polynomial in distance. The specification includes community FEs, birth month by birth year FEs,
country by birth year FEs, country by birth month FEs, and control variables (see Section 2). The sample is restricted to the coastal
area (see Section 1). Standard errors are clustered at the ocean raster data point. The 90% confidence interval is indicated by dotted
lines, beyond which the intervals are progressively shaded up to the 99% level. Within confidence bounds, darker colors indicate
a larger number of observations (see Appendix A.3). Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.
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Figure 6: Scarcity shocks and resource exploitation

A. Short-run effects (all children)

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

%
 c

ha
ng

e 
fro

m
 s

am
pl

e 
m

ea
n

0 .25 .5 .75 1
Intensity of night-time fishing

Heterogeneity by night-time fishing

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

%
 c

ha
ng

e 
fro

m
 s

am
pl

e 
m

ea
n

0 .25 .5 .75 1
Intensity of extractive fishing

Heterogeneity by extractive fishing

Neonatal mortality Physical development

B. Long-run effects (female)
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Note. Estimated impacts of a one-standard-deviation increase in acidity (scarcity shock) on short-run indicators (Panel A), and on
long-run indicators (Panel B) as a function of intensity of fishing. Intensities range between 0 (no presence) and 1 (high). Estimates
based on equation (1) introducing interaction terms between resource wealth and a quadratic polynomial in the corresponding
intensity. Panel A includes the sample of all children, while Panel B includes the sample of women. Neonatal mortality is a
dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. Physical
development is the average z-score of available anthropometric measures. Economic well-being is a household-level asset-based
index which ranges from 1 (poorest) to 5 (richest). A scarcity shock, i.e., a one-standard-deviation decrease in resource wealth
experienced while in utero. In-utero resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest
to the individual’s community during the 9 months before birth. The sample is restricted to coastal areas (see Section 1). Standard
errors are clustered at the ocean raster data point. Confidence intervals at 90% level. All specifications include community FEs,
birth year by birth month FEs, country by birth year FEs, country by birth month FEs, and control variables (see Section 2).
Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures. We exclude surveys for
Peru as information for the intensity of night-time fishing is not available (see Appendix A.1).
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Table 1: Contemporaneous exposure and malnutrition
Dependent variable: Prevalence of Food consumption

anemia Seafood Other iron-rich food
Women in the sample: All Pregnant Mothers Pregnant Mothers Pregnant

(1) (2) (3) (4) (5) (6)
Current resource wealth 0.001 -0.017 0.026 0.062 0.005 -0.045

(0.005) (0.007) (0.012) (0.028) (0.008) (0.034)
[0.840] [0.013] [0.028] [0.030] [0.548] [0.180]

Mean (dep.var.) 0.427 0.454 0.296 0.334 0.870 0.851

Identifying observations 272,545 14,672 49,045 3,411 50,084 3,482
Singleton observations 2 36 2 42 2 46
Grid cells 473 416 239 172 246 175
Communities 17,370 8,993 5,952 2,191 6,083 2,237
Countries 26 26 14 13 14 14
Interview year range 2000–2018 2000–2018 2005–2016 2005–2016 2005–2016 2005–2016

Note. Estimates based on equation (1). Current resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell
closest to the female respondent’s community in the month of the interview. The sample is restricted to coastal areas (see Section 1)
(Croft et al., 2018). All specifications include location FEs using grid cells at the 1°×1° resolution, interview month FEs, interview
year FEs, country by interview month FEs, country by interview year FEs, and control variables (see Section 2, weather controls
are measured at the time of interview). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are
reported in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Table 2: Contemporaneous exposure and night-time luminosity
Dependent variable: Night-time luminosity in the coastal area (per 100,000 inhabitants)

(1) (2) (3) (4) (5) (6)
Acidity shock -0.001 -0.002 -0.001 -0.002

(0.002) (0.003) (0.002) (0.003)
[0.765] [0.468] [0.780] [0.447]

Drought -0.019 -0.021 -0.019 -0.021
(0.010) (0.010) (0.010) (0.010)
[0.055] [0.040] [0.055] [0.040]

Mean (dep.var.) 0.080 0.080 0.081 0.081 0.081 0.081

Identifying observations 30,864 30,864 30,570 30,570 30,570 30,570
Singleton observations 229 229 229 229 229 229
Grid cells 1,470 1,470 1,456 1,456 1,456 1,456
Year range 1992–2012 1992–2012 1992–2012 1992–2012 1992–2012 1992–2012

Controls - Yes - Yes - Yes

Note. Estimates based on equation (1). The dependent variable is the satellite-based night-time luminosity at year t in the corre-
sponding grid cell i. Luminosity ranges between 0 (lowest) and 1 (highest), and is normalized by population in the cell. Acidity
shock is an indicator variable taking value one when the yearly average pH in the nearest open ocean’s waters is below the 15th

percentile of the grid cell i’s historical distribution. Drought is an indicator variable taking value 1 when annual rainfall in the
grid cell is below the 15th percentile of the grid cell i’s historical rainfall distribution. All specifications include grid cell FEs and
5°×5° cell by year FEs. Controls include the levels of rainfall and temperature, oxygen concentration in the nearest coastal waters,
population size and its square value. The sample includes only grid cells in coastal areas where at least one DHS community is
found (see Section 1). Appendix A.1 provides further information on the variables, and the list of surveys included in the study.
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Table 3: Early-in-life exposure and neonatal mortality
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)

A. Benchmark specification
In-utero resource wealth -1.417 -1.419 -1.491 -2.117 -2.094 -2.083

(0.691) (0.683) (0.664) (0.754) (0.761) (0.738)
[0.041] [0.038] [0.025] [0.005] [0.006] [0.005]

Mean (dep.var.) 30.473 30.473 30.474 30.474 30.474 30.475

Identifying observations 1,583,706 1,583,706 1,581,815 1,583,703 1,583,703 1,581,812
Singleton observations 25 25 25 28 28 28
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018

B. Within-sibling specification
In-utero resource wealth -2.065 -2.126 -2.232 -2.459 -2.502 -2.612

(0.874) (0.855) (0.838) (0.953) (0.951) (0.935)
[0.019] [0.013] [0.008] [0.010] [0.009] [0.005]

Mean (dep.var.) 31.476 31.476 31.476 31.476 31.476 31.476

Identifying observations 1,474,945 1,474,945 1,474,945 1,474,941 1,474,941 1,474,941
Singleton observations 108,786 108,786 108,786 108,790 108,790 108,790
Communities 31,356 31,356 31,356 31,356 31,356 31,356
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All
specifications include community FEs, birth year by birth month FEs, country by birth year FEs. Seasonality is captured by either
country by birth month FEs or 5°×5° cell by birth month FEs. The full list of controls is presented in Section 2. Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures.
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Table 4: Early-in-life exposure, market prices and neonatal mortality
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5)
In-utero resource wealth -4.887 -4.997 -4.643 -4.728

(2.620) (2.630) (2.629) (2.685)
[0.064] [0.059] [0.079] [0.080]

Average seafood price (in utero) 7.274 7.361 7.243 7.580
(3.445) (3.443) (3.436) (3.368)
[0.036] [0.034] [0.036] [0.026]

Mean (dep.var.) 15.410 15.410 15.410 15.410 15.412

Identifying observations 82,739 82,739 82,739 82,739 82,730
Singleton observations 9 9 9 9 9
Communities 2,751 2,751 2,751 2,751 2,751
Countries 1 1 1 1 1
Birth year range 1990–2017 1990–2017 1990–2017 1990–2017 1990–2017

Weather controls - - - Yes Yes
Demographic controls - - - - Yes

Note. Estimates based on equation (1) using the benchmark specification. The dependent variable is an indicator variable equal to 1
if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average
pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Average
seafood price (in utero) is the average fish price (including all available prices and reported in logarithms) in the province of birth
of the child during the 9 months before birth. The sample is restricted to communities in the coastal area of the Philippines (see
Section 1) and to the period 1990–2018 (due to data availability; see Appendix B.11). Standard errors are reported in parenthesis
and clustered at the district by ocean raster data point, p-values are reported in brackets. All specifications include community FEs,
birth year by birth month FEs, district by birth year FEs, and district by birth month FEs. The full list of controls is presented in
Section 2. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Table 5: Early-in-life exposure and parental adaptation
Dependent variables: Antenatal

investment
Delivery

investment
Postnatal investment

Healthcare Breastfed Vaccinated
(1) (2) (3) (4) (5)

In-utero resource shock 0.004 -0.004 0.004 0.001 -0.005
(0.007) (0.004) (0.009) (0.003) (0.005)
[0.590] [0.374] [0.630] [0.691] [0.318]

Mean (dep.var.) 1.698 1.299 0.441 0.972 0.293

Identifying observations 263,697 256,548 101,075 206,350 210,372
Singleton observations 1,100 1,191 3,078 2,336 2,212
Communities 29,942 29,822 18,445 28,029 27,964
Countries 36 36 34 36 36
Birth year range 1985–2018 1985–2018 2002–2018 1987–2018 1987–2018

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Antenatal investment and
delivery investment range from 0 (no investment) to 2 (larger investment). For postnatal investment, healthcare is an indicator
variable equal to 1 if the mother or the child younger than 2 years old received postnatal care within 2 days of birth. Breastfed is an
indicator variable equal to 1 if the mother reports ever breastfeeding the child, and 0 otherwise. Vaccinated is an indicator variable
equal to 1 if the mother reports or the vaccination card shows the completion of the basic cycle of vaccinations according to the
World Health Organization (WHO), and 0 otherwise. For cross-survey comparability, the sample for variables relative to antenatal
and delivery investments and to postnatal healthcare is restricted to the last birth, independently from the child being alive at the
time of the interview. For the remaining variables, the sample is restricted to living children under three years old and can therefore
be affected by mortality selection. In-utero resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell
closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas (see Section 1). Standard
errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. For cross-survey comparability,
the sample in columns (1)–(3) is restricted to the last birth, independently from the child being alive, while in columns (4)–(5) is
restricted to living children under three years old. All specifications include community FEs, birth year by birth month FEs, country
by birth year FEs, country by birth month FEs, and control variables (see Section 2). Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures. Column (3) excludes the survey(s) for Indonesia and Morocco because
information is not available in the corresponding surveys.
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Table 6: Early-in-life exposure and physical development
Dependent variables: Physical development Z-scores Indicators

W/h H/a Wasted Stunted
(1) (2) (3) (4) (5)

A. Short-run effects
In-utero resource wealth -0.018 -0.021 -0.012 0.006 0.004

(0.010) (0.016) (0.015) (0.003) (0.004)
[0.090] [0.191] [0.407] [0.091] [0.285]

Mean (dep.var.) -0.650 -0.309 -0.984 0.080 0.234

Identifying observations 234,877 232,339 232,575 232,339 232,575
Singleton observations 1,111 1,106 1,124 1,106 1,124
Communities 25,126 24,824 25,110 24,824 25,110
Countries 33 33 33 33 33
Birth year range 1985–2018 1985–2018 1985–2018 1985–2018 1985–2018

B. Short-run effects (female)
In-utero resource wealth 0.006 -0.014 0.024 -0.004 -0.013

(0.014) (0.019) (0.020) (0.007) (0.006)
[0.688] [0.446] [0.227] [0.595] [0.037]

Mean (dep.var.) -0.616 -0.285 -0.942 0.076 0.227

Identifying observations 112,312 111,095 111,157 111,095 111,157
Singleton observations 3,541 3,508 3,577 3,508 3,577
Communities 21,111 20,843 21,052 20,843 21,052
Countries 33 33 33 33 33
Birth year range 1985–2018 1985–2018 1985–2018 1985–2018 1985–2018

C. Long-run effects (female)
In-utero resource wealth 0.009 0.011 0.010 0.000 -0.007

(0.004) (0.007) (0.005) (0.001) (0.003)
[0.036] [0.133] [0.069] [0.988] [0.022]

Mean (dep.var.) -0.860 -0.310 -1.386 0.082 0.301

Identifying observations 327,145 324,160 327,124 324,160 327,124
Singleton observations 683 554 683 554 683
Communities 22,848 22,635 22,848 22,635 22,848
Countries 32 32 32 32 32
Birth year range 1972–2003 1972–2003 1972–2003 1972–2003 1972–2003

Note. Estimates based on equation (1). Dependent variables are reported in the column’s header. Physical development is the aver-
age z-score of available anthropometric measures. W/h (weight-for-height) and h/w (height-for-age) are z-scores from a reference
scale. Wasted is an indicator variable equal to 1 for an for an abnormally low weight-for-height. Wasted is an indicator variable
equal to 1 for an for an abnormally low weight-for-height. Stunted is an indicator variable equal to 1 for an abnormally low height-
for-age, and 0 otherwise. In-utero resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to
the individual’s community during the 9 months before the birth of the child (Panels A and B) or the woman (Panel C). The sample
is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values
are reported in brackets. In Panels A and B, specifications include community FEs, birth year by birth month FEs, country by birth
year FEs, country by birth month FEs, and control variables. In Panel C, specifications include community FEs, woman’s birth
year by woman’s birth month FEs, country by woman’s birth year FEs, country by mother’s birth month FEs, and control variables
(see Section 2). Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures. All panels
exclude the survey(s) for Indonesia, Pakistan, and the Philippines because information is not available in the correspondent surveys.
Panel C further excludes the survey for Angola for the same reasons.
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Table 7: Early-in-life exposure and long-run economic well-being
Dependent variables: Economic

well-being
Correlates of economic well-being

Fertility Schooling Cognitive
skills

Labor supply

(1) (2) (3) (4) (5) (6)
In-utero resource wealth 0.016 -0.008 0.030 0.000 0.006 0.014

(0.009) (0.004) (0.034) (0.002) (0.004) (0.007)
[0.062] [0.049] [0.389] [0.951] [0.130] [0.036]

Mean (dep.var.) 3.096 1.552 7.183 0.771 0.425 0.513

Identifying observations 212,741 497,982 433,480 414,000 429,173 190,665
Singleton observations 1,161 536 538 794 549 2,256
Communities 25,432 30,429 27,878 26,824 27,859 24,720
Countries 36 36 36 36 36 36
Birth year range 1972–2003 1972–2003 1972–2003 1972–2003 1972–2003 1972–2003

Women in the household (sample) Main All All All All Main

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Economic well-being is
a household-level asset-based index which ranges from 1 (poorest) to 5 (richest). Fertility is the number of births per woman.
Schooling is the number of completed years of education. Cognitive skills is an indicator variable equal to 1 if the respondent is
able to read a whole sentence in her native language or has completed at least secondary schooling, and 0 otherwise. Labor supply
is an indicator variable equal to 1 if the respondent is working at the time of the interview, and 0 otherwise. In-utero resource
wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the woman’s community during the 9 months
before her birth. The sample is restricted to coastal areas (see Section 1), and in columns (5)–(6) to women in the household that are
household head or their partner. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in
brackets. All specifications include community FEs, woman’s birth year by woman’s birth month FEs, country by woman’s birth
year FEs, country by woman’s birth month FEs, and control variables (see Section 2). Column (2)–(4) have a reduced number
of observations because, for comparability of estimates, we include only the random sub-sample of women that completed both
the education and the work modules. Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures.
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A Data and methodological procedures

A.1 Variables, data sources, and the selection of DHS surveys

Variable Description
Adaptation Information is based on parental health investments obtained from the DHS Program (ICF, 2019).

We homogenize information across surveys and make use of the following variables:
Antenatal investment is equal to 0 if no antenatal visit is completed, 1 if at least one visit is completed
but without a health professional, and 2 if at least one visit is completed with a health professional. In
Appendix B.9, this indicator is split into individual variables. Any visit is an indicator variable equal
to 1 if the mother attended any visit during pregnancy for antenatal care, and 0 otherwise. Number of
antenatal care visits is the number of visits attended during pregnancy for antenatal care (reported in
logarithms, adding one unit to allow for zero values). With health professional is an indicator variable
equal to 1 if the mother was attended by a health professional (doctor, nurse or other professional)
during pregnancy, and 0 otherwise.
Delivery investment is equal to 0 if delivery is performed outside a health center without a health
professional, 1 if performed outside a health center with a health professional, and 2 if delivery is
performed in a health center with a health professional. In Appendix B.9, this indicator is split into
individual variables. In health center is an indicator variable equal to 1 if the mother gave birth in a
health center, and 0 otherwise. With health professional is an indicator variable equal to 1 if delivery
was attended by a health professional (doctor, nurse or other professional), and 0 otherwise.
For postnatal investment, healthcare is an indicator variable equal to 1 if the mother or the child
younger than 2 years old received postnatal care within 2 days of birth. Breastfed is an indicator
variable equal to 1 if the mother reports ever breastfeeding the child, and 0 if the mother reports to
have never breastfed the child. For cross-survey comparability, the sample is restricted to children
who live with their mother and are alive, and are less than 3 years old. Vaccinated is an indicator
variable equal to 1 if the mother reports or shows a vaccination card for the following doses: BCG, 3
doses of DPT-containing vaccines, 3 doses of polio vaccine (excluding polio vaccine given at birth),
and 1 dose of MCV. It is 0 otherwise. The sample is restricted to children under 3 years old for
comparability (Croft et al., 2018).

Altitude Communities’ elevation in meters from the SRTM–Digital Elevation Model for the specified coordi-
nate location. The variable is available in the DHS surveys (ICF, 2019).

Basemaps Basemaps were created using ArcGIS® software by Esri®. Basemaps are used in line with the Esri
Master License Agreement, specifically for the inclusion of screen captures in academic publications.
We use the World Topographic Map.

Child mortality Information is based on the DHS Program surveys (ICF, 2019). DHS surveys collect respondents’
full birth history and includes information on all children’s year and month of birth, sex, birth order,
whether they are twins, and the date of death when it applies. Note that only live births are recorded.
This information is also used to create age at first delivery, and fertility (the number of live births at
the time of the interview). We build mortality rates by multiplying the following indicators by 1,000
(the variables are set to missing if the date of the interview is before the end of the period considered
for defining mortality):
Neonatal (NMR): indicator equal to 1 if the child died before their first month of life, and 0 otherwise.
Note that the DHS Program reports two ages of death. The first is self-reported, while the second
gives a calculated age from reported information. When dates of birth are not disclosed, these are
imputed by the DHS Program (Croft et al., 2018). We also use 67 special cases of self-reported age
of death (198 and 199, which indicate that age at death was reported as a number of days and that
the exact number is unknown), but results are robust to dropping these cases.
Post-neonatal (PMR): indicator equal to 1 if the child died between the ages of 1–11 months, and 0
otherwise.
Child (CMR): indicator equal to 1 if the child died between the ages of 12–59 months, and 0 other-
wise.
Infant (IMR): indicator equal to 1 if the child died between the ages of 0–11 months, and 0 otherwise.
Under-5 (U5MR): indicator to 1 if the child died between the ages of 0–59 months, and 0 otherwise.

Chlorophyll Chlorophyll concentration in coastal waters is measured in mg/m3 (AWV weights). We use data from
the GlobColour project (d’Andon et al., 2009), which provides monthly global rasters for the period
1997–2018 at the 25-meter resolution by merging satellite imaging from five different sources made
available by the European Space Agency and NASA.

Conflict Number of violent events (and fatalities) in each cell for a specific year. The data are obtained from
the Uppsala Conflict Data Program (UCDP) (Sundberg and Melander, 2013).

(continued on next page)
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Variable Description
Distances For shorelines, distance (in a straight line) between the DHS cluster and the closest shoreline. Water

bodies are identified from the GSHHG database (Wessel and Smith, 1996). We use the following two
bodies. For the ocean’s shoreline, we consider level 1 (continental land masses and ocean islands,
except Antarctica). For other water bodies, we consider levels 2, 3 and 4 (lakes, islands in lakes,
and ponds in islands within lakes and all levels included in the river database). See Appendix A.2
for details about the procedure. For coral reefs, distance (in a straight line) between the DHS cluster
and the closest coral reef. Geographical distribution of warm-water coral reefs is obtained from
UNEP-WCMC (2018).

Drought Drought is an indicator variable taking value 1 when annual rainfall in the grid cell is below the 15th

percentile of the grid cell’s rainfall distribution between 1992–2012 (Corno et al., 2020).
Economic well-being The DHS records information on asset ownership and provide an asset-based wealth index ranging

from 1 (poorest) to 5 (richest).
Extractive fishing Total number of hours from industrial fishing activities in the cell built using data from the Global

Fishing Watch (Kroodsma et al., 2018), which tracks more than 70,000 industrial fishing vessels from
2012 to 2016. Because variation is available only for the period 2012–2016, we first compute total
fishing hours in a global grid at 1°×1° resolution and then average each cell over the available period.

Fish dependency Average fish protein supply as proportion of all animal protein supply. The data are obtained from
the FAOSTAT database (FAO, 2019).

Food intake Information is based on the DHS Program surveys (ICF, 2019). DHS surveys collect respondents’
food consumption for a variety of items. This information is available only for a restricted number
of surveys: Cambodia (2005), Dominican Republic (2007), Egypt (2008), Ghana (2008), Guatemala
(2015), Guyana (2009), Haiti (2006), Liberia (2007), Madagascar (2008), Namibia (2006), Nigeria
(2008), Philippines (2008), Sierra Leone (2008), and Timor-Leste (2009 and 2016). We focus on two
indicator variables: seafood is an indicator variable that equals 1 if the female respondent ate fresh or
dried fish or shellfish, or foods containing those ingredients, during the day previous to the interview,
and 0 otherwise; other iron-rich food is an indicator variable that equals 1 if the female respondent
ate any poultry, red meat, liver, beans, legumes, nuts and dark leafy greens during the day previous
to the interview, and 0 otherwise. We include these food items following the recommendations of the
Harvard T.H. Chan School of Public Health.

Human capital We make use of schooling, i.e., the number of completed years of education based on the respondent’s
self-reported highest level of education (comparable across countries), and of cognitive skills, i.e., an
indicator variable of whether the respondent is able to read a whole sentence in her native language
(as observed by enumerators) or has, at least, completed secondary schooling.

Marriage DHS surveys collect respondents’ civil status, date of birth and, when available, their partner’s age
in years. We make use of the following variables. Married is an indicator variable equal to 1 if the
respondent is currently married or living in an union, and 0 otherwise. Age difference with partner is
the difference in years between the respondent and her partner.

Night-time luminosity Average night-time light emission from the 0.5°×0.5° DMSP-OLS Night-time Lights Time Series
Version 4 calibrated (Elvidge et al., 2014). Values range between 0 (lowest luminosity) and 1 (high-
est observed value). The time series are available from 1992–2012 and are downloaded from the
PRIO-GRID database (Tollefsen et al., 2012). Data are spatially merged to DHS clusters using their
geolocation.

Night-time fishing We use Automatic Boat Identification System for VIIRS Low Light Imaging Data (Elvidge et al.,
2015) to identify detections. The algorithm detects boats using nightlight captured from satellite
imaging (Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band). Using individual daily
detections (which include geolocation), we build a 1°×1° global grid with the sum of detections for
the period 2017–2019. We classify as boats only the strongest detections (quality flag rating equal
to 1). Data are not available over the South Atlantic Anomaly. To avoid false positives, we set to
missing DHS surveys for Peru.

Nutrition The DHS records objective measurements performed by the DHS data collection team. Standardized
distributions are the CDC Standard Deviation-derived Growth Reference Curves (Croft et al., 2018).
The following indicators are used:
Anemia is an indicator variable equal to 1 if the woman has hemoglobin levels below 110 g/L, and 0
otherwise.
Underweight is, for children, an indicator variable equal to 1 if the weight-for-age z-score is smaller
than 2 or, for adults, if the BMI is lower than 18.5, and 0 otherwise.
W/h (weight-for-height) is the z-score from the reference curve, while wasted is an indicator variable
equal to 1 if the weight-for-height z-score is smaller than 2, and 0 otherwise.
H/a (height-for-age) is the z-score from the reference curve, while stunted is an indicator variable
equal to 1 if the height-for-age z-score is smaller than 2, and 0 otherwise.
Physical development is the average between height-for-age and weight-for-height z-scores from the
reference curves.

Ocean chemistry Data are obtained from the Hadley Global Environment Model 2 - Earth System model (Jones et al.,
2011), provided by the European Space Agency’s Pathfinders-OA project (Sabia et al., 2015). Data
are provided as monthly global rasters at the 1°×1° resolution for a series of chemical features of the
ocean in open waters. We use two variables: pH at surface and dissolved O2 concentration.

(continued on next page)
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Variable Description
Ocean’s features We obtain sea surface temperature (SST), wind speed, total precipitations and air (2-meter) tempera-

ture in areas covered by the ocean using the ERA5 dataset (C3S, 2017). ERA5 provides hourly and
monthly estimates of several atmospheric, land, and oceanic climate variables combining model data
with observations from across the world. It provides a 0.25º x 0.25º hourly gridded dataset. For all
variables, we average daily values to monthly data and spatially merge it to DHS clusters using their
geolocation and each child’s birth date.

Population It measures population size as the number of persons in 1990, 1995, 2000, and 2005 within the
PRIO-GRID grid cell. Information is obtained from the Gridded Population of the World version 3.
The data are downloaded from the PRIO-GRID version 2.0 database (Tollefsen et al., 2012), a vector
grid network with a resolution of 0.5°×0.5° covering all terrestrial areas of the world, and spatially
merged to DHS clusters using their geolocation.

Seafood prices Monthly retail price for seafood at the province level from 1990 to nowadays. The series is provided
by the Philippine Statistics Authority (2020) provides. See Appendix B.11 for details.

Trade balance Sum of exports and re-exports of fish products, minus the sum of imports of fish products. The data
are obtained from the FAOSTAT database (FAO, 2019). In the analysis of heterogeneity of the effect
of the ocean’s acidity, we opt for a time-invariant version for the period 1976-2017.

Weather Yearly total amount of precipitation (in millimeters) in the cell is based on monthly meteorological
statistics from the GPCP v.2.2 Combined Precipitation Data Set, which is available for the years
1979–2014. Yearly mean temperature (°C) in the cell is based on monthly meteorological statistics
from GHCN/CAMS, which is available for the period 1948–2014. Data are downloaded from the
PRIO-GRID version 2.0 database (Tollefsen et al., 2012), a vector grid network with a resolution of
0.5°×0.5° covering all terrestrial areas of the world, and spatially merged to DHS clusters using their
geolocation.

Work Indicator variable equal to 1 if the respondent is working, and 0 otherwise. DHS surveys record the
employment status of respondents at the time of the interview.

Note. For time-varying variables, missing values are linearly interpolated.

Table A2 presents the Demographic and Health Surveys (DHS) included in the analysis.

The availability of multiple surveys for some countries can lead to issues related to

survey selection. Table A3 presents estimates of equation (1) assuming different rules

for the selection of surveys. When including multiple surveys for the same country, each

observation is weighted by the product of the DHS sampling weight with a re-weighting

factor, i.e., the ratio between the sum of the DHS sampling weights at the country-

survey level and the sum of the DHS sampling weights at the country level. For adult-

level estimates, we re-weight observations following the same procedure, repeating the

computation of weights for different variables because the inclusion in each survey is

variable-dependent. For adult outcomes relative to schooling and work, we include only

observations that completed both the education and work module. This selection affects

only the India 2015–2016 survey, for which we select only the women that completed

the state module), and we use the weights corresponding to this sample (IIPS and ICF,

2017).
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Table A2: Sampled countries
Country DHS surveys available Birth years matched Number of births
Angola 2015 1978-2016 42002
Bangladesh 2000, 2004, 2007, 2011, 2014 1972-2014 183734
Benin 1996, 2001, 2012 1972-2012 84351
Cambodia 2000, 2005, 2010, 2014 1972-2014 150872
Cameroon 1991, 2004, 2011 1972-2011 81516
Colombia 2010 1973-2010 89317
Comoros 2012 1975-2012 10957
DR Congo 2007, 2013 1972-2014 83313
Côte d’Ivoire 1994, 1998, 2012 1972-2012 57785
Dominican Republic 2007, 2013 1972-2013 76051
Egypt 1992, 1995, 2000, 2005, 2008, 2014 1972-2014 303549
Gabon 2012 1974-2012 22908
Ghana 1993, 1998, 2003, 2008, 2014 1972-2014 74319
Guatemala 2015 1978-2015 54993
Guinea 1999, 2005, 2012, 2018 1972-2018 104910
Guyana 2009 1974-2009 10538
Haiti 2000, 2006, 2012, 2016 1972-2017 106348
Honduras 2011 1974-2012 48315
India 2015 1975-2016 1308794
Indonesia 2003 1972-2003 75228
Kenya 2003, 2008, 2014 1972-2014 127484
Liberia 2007, 2013 1972-2013 52464
Madagascar 1997, 2008 1972-2009 68446
Morocco 2003 1972-2004 32256
Mozambique 2011 1974-2011 37946
Myanmar 2016 1980-2016 22989
Namibia 2000, 2006, 2013 1972-2013 51966
Nigeria 1990, 2003, 2008, 2013, 2018 1972-2018 394614
Pakistan 2006 1972-2007 38542
Peru 2000, 2004, 2005, 2006, 2007, 2008, 2009 1972-2009 182648
Philippines 2003, 2008, 2017 1972-2017 104246
Senegal 1993, 1997, 2005, 2010, 2012, 2014, 2015, 2016 1972-2016 216204
Sierra Leone 2008, 2013 1972-2013 68370
Tanzania 1999, 2010, 2015 1972-2016 77212
Timor-Leste 2009, 2016 1974-2016 64620
Togo 1998, 2013 1972-2014 51612

Note. From all DHS surveys available on May 2020, we include only surveys for countries with direct access to the ocean and
surveys with available geocoding of primary sampling units. The number of births is computed as the total number of observations
in the birth histories (DHS birth recode).

Table A3: Robustness to selection of surveys
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

DHS surveys: All Latest Largest Random
(1) (2) (3) (4)

In-utero resource wealth -1.491 -1.420 -1.803 -1.609
(0.664) (0.701) (0.654) (0.675)
[0.025] [0.043] [0.006] [0.018]

Mean (dep.var.) 30.474 26.601 27.328 29.036

Identifying observations 1,581,815 794,713 861,938 757,132
Singleton observations 25 32 35 30
Communities 31,380 17,389 18,476 16,416
Countries 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. All specifications include community
FEs, birth year by birth month FEs, country x birth year FEs, country x birth month FEs, and controls (see Section 2). In column
(1), observations are re-weighted to correct for oversampling of countries surveyed multiple times (see Appendix A.1). Standard
errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. “Latest” indicates that only the
latest survey is selected, “Largest” indicates that the survey with the largest number of observations is selected, “Random” indicates
that one random survey is selected among the available ones. Appendix A.1 provides further information on the variables and the
list of surveys included in the study.
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A.2 Distances
The computation of distances are based on the geocoding of DHS clusters. For each

household, distance is the minimum straight distance to the coast and closest alterna-

tive water source computed using v.distance function in GRASS. Table A4 presents

descriptive statistics for households living within and beyond 100 km from the shore.

Figure A1 presents an example of the procedure for West Africa. We discuss robustness

of main findings to measurement error in the geolocation in Appendix B.5.

Table A4: Descriptive statistics for coastal and inland areas
Coastal area Inland area

Mean Std. dev. Mean Std. dev. Observations
(1) (2) (3) (4) (5)

A. Children
Child is alive 0.92 0.27 0.91 0.29 4555492
Child is female 0.48 0.50 0.48 0.50 4555492
Birth order 2.54 1.81 2.66 1.84 4555492
Number of twins born with the child 0.03 0.23 0.03 0.22 4555492
Years since birth 12.28 7.87 12.09 7.76 4555492
Mother’s age at birth 24.43 5.77 24.16 5.54 4555492
Ocean’s pH (in utero) 8.05 0.03 8.06 0.03 4555492

B. Adult women
Age at first delivery 20.88 4.23 20.45 3.82 1385467
Current age 30.65 9.80 29.97 9.76 1951250
Years of schooling 7.25 4.84 6.04 4.90 1376076
Ocean’s pH (in utero) 8.06 0.03 8.07 0.03 977187
Primary education or less 0.41 0.49 0.49 0.50 1951201
Married 0.67 0.47 0.70 0.46 1950104
Working 0.54 0.50 0.55 0.50 1304776
Household head is female 0.22 0.41 0.17 0.38 1951247
Household head’s age 46.10 13.11 46.37 13.17 1949918
Household members 5.62 3.03 6.06 3.11 1951250
Household wealth 3.72 1.28 3.22 1.39 1776572
Living in urban area 0.53 0.50 0.34 0.47 1951250
Distance from shore 31.26 30.21 462.44 289.57 1951250
Distance from another water body 47.32 102.12 24.87 23.98 1951250
Altitude 190.22 408.72 489.97 613.08 1951244
Temperature (° C) 26.09 3.21 24.92 3.70 1951250
Precipitations (mm) 1557.41 674.18 1298.33 673.22 1951250
Intensity of extractive fishing 0.06 0.20 0.05 0.13 1951250
Intensity of night-time fishing 0.09 0.20 0.08 0.16 1951250

C. Mortality rates
Neonatal 27.51 163.55 37.24 189.34 4545390
Postneonatal 23.67 152.02 24.28 153.90 4200570
Child 21.69 145.68 27.67 164.02 3265547
Infant 50.66 219.30 60.78 238.93 4355601
Under-five 74.22 262.12 89.55 285.54 3504461

Note. Descriptive statistics by proximity to the ocean for all communities in selected countries with access to ocean. Coastal area
includes all communities within 100 km from the ocean’s shore (see Section 1). Inland area includes all communities that are
farther away than 100 km from the ocean’s shore. Means are reported in columns (1) and (3), standard deviations are reported
in columns (2) and (4). Column (5) presents the total number of observations. Years since birth is measured at the time of the
interview and is independent from the child being alive. Mortality rates are relative to 1,000 live births. Ocean’s pH (in utero)
is the average pH in the ocean’s cell closest to an individual’s community during the 9 months before birth; it refers to the date
of birth of the child in Panel A and to the date of birth of the woman in Panel B. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.
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Figure A1: Distance to ocean and other water sources: an example

A. All DHS communities B. Distance from shore

Note. Geolocation of DHS communities (Panel A) and closest points to the ocean’s shore (Panel B). Lines represent straight
distance from a community to the closest point on the coast’s shoreline or on the shoreline of another water body. Basemap
source: Esri. See Appendix A.1 for data sources and attributions.

A.3 Coloring of shaded graphs
For Figures 4 and B8, the color intensity is the ratio between the difference between

the (smoothed) density of the distribution of the number of observations in a specific

iteration and 0.7 × the lower bound of the same distribution for all iterations, and the

difference between the 99th percentile of the distribution of the number of observations

in all iterations and 0.7 × the lower bound of the same distribution for all iterations.

For Figures 5 and B1, the color intensity is defined as the ratio between the square root

of the (smoothed) density of the distribution of the number of observations by distance

from shore and the square root of the 90th percentile in the same distribution. Parameters

are chosen to guarantee visibility.

B Supplementary results

B.1 Robustness to alternative definitions of coastal area

Table B1 shows how estimates of the effect of resource wealth on NMR vary under

different criteria for defining coastal areas. In terms of proximity, we define coastal

area using a proximity criteria based on 100km from the ocean’s shore. Panel A of

Figure B1 shows that the total number of live births considered is clearly affected by

the distance bound. Panel B shows estimates of the effect of resource wealth on neonatal

mortality by varying the distance bound from 20 to 250 km. The largest magnitude is
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observed when distance is at most 40 km. In terms of altitude and estuaries, Figure

B2 shows communities in coastal areas highlighting the ones selected according to the

criteria of Christian and Mazzilli (2007), who select the land margin within 100 km

of the coastline or less than 100 meters above the mean low tide. In addition, we can

include or exclude areas with higher human contamination, such as estuaries.

Table B1: The effect on neonatal mortality: varying sample selection criteria
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Altitude criteria: ≤ 100m ≤ 100m - - ≤ 100m ≤ 100m
Distance restriction: - - ≤ 40km ≤ 40km ≤ 40km ≤ 40km

Exclusion of estuaries: - Yes - Yes - Yes
(1) (2) (3) (4) (5) (6)

In-utero resource wealth -1.627 -1.593 -2.923 -3.072 -2.942 -3.071
(0.776) (0.759) (0.797) (0.944) (0.836) (0.996)
[0.037] [0.036] [0.000] [0.001] [0.000] [0.002]

Mean (dep.var.) 31.116 31.431 29.489 29.631 29.938 30.113

Identifying observations 1,137,356 978,016 1,061,342 893,056 845,155 685,815
Singleton observations 19 15 25 21 22 18
Communities 22,612 18,801 21,682 17,616 17,600 13,789
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 1) and according to the criteria reported in column’s header. Estuaries are defined as communities that are at a distance
of 10 km or less from the ocean’s shore and at a distance of 10 km or less from another water source. All specifications include
community FEs, birth year by birth month FEs, country by birth year FEs, country by birth month FEs, and control variables (the
full list of controls in Section 2). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported
in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Figure B1: Sample selection by distance from shore

A. Number of live births B. Effect of in-utero resource wealth
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Note. Number of live births (decomposed by region) included in the dataset by distance from the shore (Panel A), and marginal
effects of in-utero resource wealth on NMR by sample selection according to proximity to the shore (Panel B). Estimates are
based on equation (1) when the sample is selected according to bounds (reported in the horizontal axis). Appendix A.2 details the
procedure for computing distances. Each specification includes community FEs, birth year by birth month FEs, country by birth
year FEs, country by birth month FEs, and control variables (see Section 2). The 90% confidence interval is indicated by dotted
lines, beyond which the intervals are progressively shaded up to the 99% level. Within confidence bounds, darker colors indicate
a larger number of observations (see Appendix A.3). Appendix A.1 provides detailed information on variables, selected surveys,
and weighting procedures.
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Figure B2: Sample selection using proximity and altitude criteria

Note. Communities in coastal areas distinguished by altitude (Panel A), and an example (Panel B). The full list of countries
and surveys included in the study is reported in Appendix A.1. See Section 1 for a definition of coastal area.

B.2 Coastal features and income processes
Figure B3 shows descriptive statistics of pH at surface averaged at global level. Figure

B4 shows the evolution of the average resource shock in the sample over time, com-

puted as residual variation in pH, after conditioning on the set of FEs of the benchmark

specification. Table B2 shows descriptive statistics of the measure of shock under the

different specifications presented in Table 3, and the correspondent standardized effect.

We focus next on other features in the ocean and in coastal areas that could influence

income processes in sampled communities. In terms of other ocean’s characteris-

tics, Columns (1)–(7) in Table B3 presents estimates of the effect of resource wealth

on NMR using equation (1) and controlling for a variety of ocean’s characteristics ob-

tained from the ERA5 dataset. Column (7) further controls for weather characteristics

inland including yearly rainfall and temperature at the community level, using data

from the PRIO-GRID database. Panels A–D in Figure B5 presents the time series and

the seasonality component for these variables. In terms of pollution and other chemi-

cal features of the ocean, Columns (8)–(9) in Table B3 presents estimates controlling

for pollution in coastal waters. Higher contamination favors algae abundance, which

negatively impacts the chance of survival of marine wildlife. We proxy pollution us-

ing a satellite-based measure of algae abundance (chlorophyll concentration) obtained

from the GlobColour project from 1997–2018.2 The presence of pollution also impacts

the availability of another input to marine life that is more closely related to fish sur-

vival, i.e., oxygen. At low levels of concentration (hypoxic conditions), marine wildlife
2We do not use this variable as control in the main text due to the potential endogeneity of chlorophyll

concentration with idiosyncratic shocks related to child mortality.
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changes behavior to reach areas with higher oxygen levels, while at extremely low lev-

els (dead-zones), mortality prevails. It is important to note that oxygen concentration

is also affected by climate change because higher temperatures lead to reduced oxy-

gen concentration (Free et al., 2019). In column (7) we also control for this variable

obtained from the HadGEM2-ES model. Because pH and oxygen concentration are

chemical properties determined by common factors, to isolate the effect of the ocean’s

pH in equation (1), we always include as control the residual variation in oxygen con-

centration, rather than its levels. Residual variation is computed as residuals of a linear

regression of oxygen concentration in grid cell i at time t on the contemporaneous pH

in the same grid cell. Controlling for other chemical features does not affect these esti-

mates. Panels E–F in Figure B5 presents the time series and the seasonality component

for these variables.

Finally, in terms of conflict, using information about conflict events from the Uppsala

Conflict Data Program (UCDP) database at the 5°×5° resolution, we estimate equation

(1) adding controls for the presence and the intensity of conflict while in utero. Table

B4 presents estimates of the effect on NMR. Due to data availability, the birth year

range is reduced to children born after 1984. For comparability, columns (3) and (6) are

therefore restricted to the sample included in column (1) and (4), respectively.

Figure B3: Variation in the ocean’s acidity for communities in the coastal area
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Note. Yearly average pH at surface in the period 1972–2018 (Panel A), and monthly comparison between mean pH for each
year in the left axis, and median pH for the whole period in the right axis (Panel B). Variation is restricted to cells matched
to the sample’s communities. In Panel A, the solid red line shows the quadratic trend in the series.
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Figure B4: Evolution over time of shocks in in-utero resource wealth
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Note. Evolution over time of the average deviation in acidity levels from spatially-specific (and seasonally-adjusted) long-run
trends. In-utero resource wealth is defined in Section 2 and is computed using the benchmark specification. Variation is restricted
to cells matched to the sample. The solid red line shows the quadratic trend over the period.

Table B2: In-utero resource wealth and standardized effects
Benchmark specification Within-sibling specification

Mean Std.
dev.

Effect Std.
effect

Mean Std.
dev.

Effect Std.
effect

(1) (2) (3) (4) (5) (6) (7) (8)
Shock (specification 1) -0.00 0.38 -1.42 -0.54 0.00 0.30 -2.06 -0.63
Shock (specification 2) -0.00 0.37 -1.42 -0.53 0.00 0.30 -2.13 -0.64
Shock (specification 3) -0.00 0.37 -1.49 -0.56 0.00 0.30 -2.23 -0.67
Shock (specification 4) -0.00 0.26 -2.12 -0.55 -0.00 0.22 -2.46 -0.53
Shock (specification 5) -0.00 0.25 -2.09 -0.53 -0.00 0.21 -2.50 -0.53
Shock (specification 6) -0.00 0.25 -2.08 -0.53 -0.00 0.21 -2.61 -0.55

Note. Descriptive statistics of shocks in resource wealth under the benchmark and the within-sibling specifications. Columns (3)
and (7) refer to the point estimates in Table 3. The standardized effect is rescaling point estimates in terms of standard deviations in
the residual variation of resource wealth. Residual variation is obtained from the residuals of a linear regression using the ocean’s
pH experienced in utero as dependent variable and the set of FEs used in equation (1) as independent variables.

11



Figure B5: Additional weather characteristics in the ocean’s matched areas
A. Sea surface temperature B. 2-meter temperature
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C. Precipitations D. Wind speed
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E. Dissolved oxygen concentration F. Chlorophyll concentration
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Note. Descriptive statistics of weather characteristics measured in the same point where ocean’s acidity is measured. The figures
on the left present yearly averages, with the solid red line showing the quadratic trends in the series. The figures on the right show
the monthly averages for each year in the sample, with the darker line representing the median in the whole period. Variation is
restricted to cells matched to the sample’s communities. Each community is assigned with a value using the nearest cell in the
ocean. Appendix A.1 provides further information on the variables.
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Table B3: Neonatal mortality and shocks to income processes
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Closest point in the ocean
In-utero resource wealth -2.034 -2.192 -2.140 -2.084 -3.284

(0.745) (0.744) (0.741) (0.743) (1.513)
[0.007] [0.003] [0.004] [0.005] [0.031]

In-utero sea surface temperature 1.467 1.695 1.549
(0.925) (0.918) (1.064)
[0.113] [0.066] [0.146]

In-utero wind speed 1.752 1.596 2.159
(1.510) (1.505) (1.547)
[0.247] [0.290] [0.164]

In-utero total precipitations 0.008 0.007 0.009
(0.008) (0.008) (0.008)
[0.289] [0.351] [0.265]

In-utero 2-meter temperature 0.674 0.902 0.040
(0.898) (0.892) (1.039)
[0.453] [0.312] [0.969]

In-utero chlorophyll concentration 0.295 0.301
(0.583) (0.584)
[0.614] [0.606]

In-utero oxygen concentration -0.069
(0.306)
[0.822]

Location of birth
In-utero temperature -0.121

(0.427)
[0.778]

In-utero total precipitations -0.003
(0.002)
[0.126]

Mean (dep.var.) 29.645 29.645 29.645 29.645 29.645 29.645 29.645 24.937 24.937

Identifying observations 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 1,518,357 451,212 451,212
Singleton observations 23 23 23 23 23 23 23 247 247
Communities 31,380 31,380 31,380 31,380 31,380 31,380 31,380 16,409 16,409
Countries 36 36 36 36 36 36 36 36 36
Birth year range 1979–2018 1979–2018 1979–2018 1979–2018 1979–2018 1979–2018 1979–2018 1998–2018 1998–2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. In-utero resource
wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the woman’s community during the 9 months before her birth. In utero indicates that the variable is the average value in
the ocean’s cell closest to the child’s community during the 9 months before birth. Year of birth indicates that the variable is the average value in the child’s community’s grid cell in the year of birth. The
sample is restricted to coastal areas (see Section 1). In columns (8)–(9), the sample is further restricted to births between 1997–2018 due to data availability (observations are reweighted to account for dropped
surveys), and to areas away from estuaries to alleviate endogeneity concerns. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All specifications
include community FEs, birth year by birth month FEs, country by birth year FEs, 5°×5° grid cell by birth month FEs, and demographic controls (see Section 2). Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.
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Table B4: Comparing the effect size of resource wealth and conflict
Dependent variable: NMR (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)
In-utero resource wealth -1.006 -1.014 -1.010 -1.603 -1.614 -1.612

(0.629) (0.632) (0.629) (0.799) (0.796) (0.799)
[0.110] [0.109] [0.109] [0.045] [0.043] [0.044]

At least 1 violent event (in utero) 1.702 1.715
(1.107) (1.128)
[0.125] [0.129]

In-utero fatalities 1.591 1.616
(0.848) (0.840)
[0.061] [0.055]

Mean (dep.var.) 27.657 27.657 27.657 27.657 27.657 27.657

Identifying observations 1,257,991 1,257,991 1,257,991 1,257,984 1,257,984 1,257,984
Singleton observations 82 82 0 89 89 0
Communities 31,284 31,284 31,284 31,284 31,284 31,284
Countries 36 36 36 36 36 36
Birth year range 1984–2018 1984–2018 1984–2018 1984–2018 1984–2018 1984–2018
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to coastal areas
(see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All
specifications include community FEs, birth year by birth month FEs, country by birth year FEs, and control variables (see Section
2). Controls for local seasonality are either country by birth month FEs or 5°×5° cell by birth month FEs. Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.

B.3 Seafood dependency

Figure B6 presents descriptive statistics for seafood dependency, defined as the share

of total proteins of animal origin coming from seafood. Figure B7 presents the es-

timates of the heterogeneous effect of resource wealth on NMR distinguishing by a

country’s fish dependency in Panel A, and by the trade balance for fish products from

the FAOSTAT database (FAO, 2019) in Panel B. As a separate measure of dependency

on artisanal fishing, we focus on proximity to coral reefs. Figure B8 shows marginal

effects of resource wealth on NMR as a function of distance from the closest coral

reef as obtained from UNEP-WCMC (2018). Distance is computed as a straight line

between the community and the closest coral reef, subtracting the distance from the

ocean’s shore.
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Figure B6: Seafood dependency and trade balance for fish products
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Note. Average value of seafood proteins as share of total animal proteins by selected area (Panel A) or by country (Panel B). In
Panel A, aggregate measures are computed by averaging the value of seafood dependency in each country included in the group,
weighted by population. In Panel B, vertical lines indicate the world’s average (solid) and the average among the selected countries
(dashed).

Figure B7: The effect of in-utero resource wealth on NMR, by fish dependency
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Note. Heterogeneous effect by dependency on fish proteins as a % of total animal proteins, and by trade balance for fish products.
Marginal effects are estimated using equation (1) restricting the sample to the corresponding group. Dependency as a % of total
animal proteins is high if the country is in the top tercile of the sample distribution of the 1960–2013 average fish dependency.
Dependency by trade balance is high if the country is in the top tercile of the sample distribution of the 1976–2017 average trade
balance for fish products. The sample is restricted to the coastal area (see Section 1). Standard errors are clustered at the ocean
raster data point. Confidence intervals at 90% level. All specifications include community FEs, birth year by birth month FEs,
5°×5° grid cell by birth year FEs, 5°×5° grid cell by birth month FEs, and control variables (see Section 2). Appendix A.1
provides detailed information on variables, selected surveys, and weighting procedures.
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Figure B8: In-utero resource wealth and neonatal mortality, by distance to coral reefs
A. At the shore B. At 40km from the shore
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Note. Marginal effect of in-utero resource wealth on NMR as a function of shortest distance from a coral reef and assuming 0
distance from the ocean’s shore (Panel A), or a distance of 40 km (Panel B). The dependent variable is a dummy variable equal to 1
if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average
pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Estimates
are based on equation (1) introducing interactions between the shock and a cubic polynomial in distance. The specification includes
community FEs, birth month by birth year FEs, country by birth year FEs, country by birth month FEs, and control variables (see
Section 2). The sample is restricted to the coastal area (see Section 1). Standard errors are clustered at the ocean raster data point.
The 90% confidence interval is indicated by dotted lines, beyond which the intervals are progressively shaded up to the 99% level.
Within confidence bounds, darker colors indicate a larger number of observations (see Appendix A.3). Appendix A.1 provides
detailed information on variables, selected surveys, and weighting procedures.
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B.4 Issues related to identification
Figure B9 presents the between and within decomposition of the overall variation of the

ocean’s pH while in utero (Panel A) and NMR (Panel B) in the sample. The identifying

assumptions of the within-sibling specification can lead to non-random sample selec-

tion (Miller et al., 2021). Table B5 shows the observable differences between mothers

with a single child (excluded in the within-sibling specification) and mothers with mul-

tiple children. To verify the validity of our estimates of the effect of resource wealth on

neonatal mortality to the inclusion of mother-specific FEs, columns (1)–(3) in Table B6

estimate the benchmark specification restricting the sample to the identifying observa-

tions of the within-sibling specification. Columns (4)–(6) provide estimates of the effect

using the identifying sample of the within-sibling specification and re-weighting as in

Miller et al. (2021) to recover the overall effect on the population of interest (mothers

with at least one birth). The re-weighting procedure is based on observable characteris-

tics. To estimate the probability of being in the identifying sample of the within-sibling

specification, we use a probit model and include mother and weather characteristics.

Figure B9: Between and within variation decomposition
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Note. Decomposition of the sample standard deviation of the ocean’s pH experienced in utero (Panel A), and of NMR (Panel
B). The sample is restricted to the coastal area (see Section 1). Geographical and time variables for which the decomposition is
computed are reported at the bottom of each figure. Appendix A.1 provides further information on the variables and the list of
surveys included in the study.
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Table B5: Comparison of mothers with a single child versus multiple children
One child Multiple children

Mean Std. dev. Mean Std. dev. Observations
(1) (2) (3) (4) (5)

A. Children
Child is alive 0.97 0.16 0.92 0.27 1587285
Child is female 0.47 0.50 0.49 0.50 1587285
Birth order 1.00 0.00 2.68 1.82 1587285
Number of twins born with the child 0.00 0.00 0.04 0.24 1587285
Years since birth 6.04 6.55 12.86 7.73 1587285
Mother’s age at birth 22.51 4.71 24.61 5.82 1587285

B. Adult women
Age at first delivery 22.51 4.71 20.37 3.94 495310
Current age 28.54 7.99 36.19 7.66 495310
Years of schooling 8.39 4.62 5.99 4.82 441192
Primary education or less 0.31 0.46 0.55 0.50 495286
Married 0.81 0.40 0.89 0.31 495309
Working 0.54 0.50 0.60 0.49 425306
Household head is female 0.23 0.42 0.19 0.39 495310
Household head’s age 45.04 15.18 44.62 11.97 494936
Household members 5.13 3.08 5.72 2.89 495310
Household wealth 3.82 1.25 3.58 1.32 434418
Living in urban area 0.57 0.49 0.49 0.50 495310
Distance from shore 31.14 30.00 32.47 30.23 495310
Distance from another water body 39.07 81.02 46.61 100.49 495310
Altitude 179.28 396.98 187.48 401.10 495310
Temperature (° C) 26.17 3.12 26.19 3.06 495310
Precipitations (mm) 1609.01 659.60 1549.09 683.53 495310
Intensity of extractive fishing 0.06 0.20 0.06 0.19 495310
Intensity of night-time fishing 0.09 0.19 0.09 0.20 495310

Note. Descriptive statistics by the number of children of the mother (reported in column’s header). Means are reported in columns
(1) and (3), standard deviations in columns (2) and (4). Column (5) presents the total number of observations. Years since birth is
measured at the time of the interview and is independent from the child being alive. Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.

Table B6: The effect on neonatal mortality: identification checks
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Check: Benchmark specification with Re-weighting procedure
within-sibling identifying sample
(1) (2) (3) (4) (5) (6)

In-utero resource wealth -1.939 -1.950 -2.000 -2.740 -2.785 -2.883
(0.792) (0.790) (0.776) (0.996) (1.001) (0.990)
[0.015] [0.014] [0.010] [0.006] [0.006] [0.004]

Mean (dep.var.) 31.476 31.476 31.476 31.478 31.478 31.478

Identifying observations 1,474,941 1,474,941 1,474,941 1,474,349 1,474,349 1,474,349
Singleton observations 0 0 0 108,741 108,741 108,741
Communities 31,356 31,356 31,356 31,356 31,356 31,356
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes

Note. In columns (1)–(3), estimates are based on equation (1) using the benchmark specification and restricting the sample to the
identifying sample of the within-sibling specification. In columns (4)–(6), estimates are based on equation (1) using the within-
sibling specification and the re-weighting procedure of Miller et al. (2021). The dependent variable is a dummy variable equal to 1
if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average
pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample
is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values
are reported in brackets. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, and
5°×5° cell by birth month FEs. The full list of controls is presented in Section 2. Appendix A.1 provides detailed information on
variables, selected surveys, and weighting procedures.
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B.5 Falsification and placebo tests
Balance across mother characteristics. Table B7 presents estimates of equation (1)

without control variables where the dependent variable is replaced by demographic con-

trols. None of the estimates is statistically significant, supporting the exogeneity of the

shock with respect to observable characteristics.

Table B7: Placebo test: balance on observable characteristics
Dependent variable: Age at

first
delivery

Age at
delivery

Age at
inter-
view

Schooling Primary
educ. or

less

Married Working Wealth

(1) (2) (3) (4) (5) (6) (7) (8)
In-utero resource wealth 0.009 0.002 0.002 0.014 0.000 -0.000 -0.001 0.002

(0.016) (0.021) (0.021) (0.016) (0.002) (0.001) (0.002) (0.003)
[0.558] [0.934] [0.935] [0.382] [0.981] [0.787] [0.654] [0.396]

Mean (dep.var.) 20.094 25.086 36.682 4.916 0.669 0.887 0.558 3.120

Identifying observations 1,583,706 1,583,706 1,583,706 1,583,065 1,583,630 1,583,705 1,454,950 1,339,312
Singleton observations 25 25 25 25 25 25 28 31
Communities 31,380 31,380 31,380 31,380 31,380 31,380 28,828 27,039
Countries 36 36 36 36 36 36 36 36
Birth year range 1972–

2018
1972–
2018

1972–
2018

1972–
2018

1972–
2018

1972–
2018

1972–
2018

1972–
2018

Note. Estimates based on equation (1) without control variables. The dependent variable is a dummy variable equal to 1 if the
child died within the first month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH
(multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is
restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are
reported in brackets. The full set of controls is reported in the bottom panel of the table, control variables are excluded. Appendix
A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Measurement error in the distance from the ocean. To ensure respondents’ confiden-

tiality, GPS coordinates for all DHS surveys are randomly displaced within a maximum

of 2 km for urban neighborhoods, and 10 km for rural villages. We simulate a random

error in the measurement of the distance of ± 10 km, ± 30 km, and ± 50 km. We iter-

ate the simulation 1,000 times, each time generating a new distance from the ocean and

estimating (1) for households that were left within 100 km from the shoreline. Figure

B10 shows the distribution of the coefficients in all iterations.
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Figure B10: The effect on neonatal mortality, by magnitude of measurement error
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Note. Distribution of the marginal effect of resource wealth on NMR, estimated using (1) and introducing measurement error in
the distance from the ocean. The procedure performs 1,000 iterations. The vertical line represents our benchmark point estimate
(column 3 in Table 3). The distribution fits are estimated non-parametrically using kernel density estimation and assuming an
Epanechnikov kernel function. Bandwidths are estimated by Silverman’s rule of thumb. The sample is restricted to the coastal
area (see Section 1). Appendix A.1 provides further information on the variables and the full list of surveys included in the study.

B.6 Supplementary results on inference
Table B8 shows estimates of equation (1) for NMR using different assumptions for the

clustering of standard errors (reported in column). In addition, focusing on Table 3, we

implement three different permutation-based inference tests. In the birth dates within

communities test, birth dates are randomly reassigned within each community. In the

birth dates within countries test, birth dates are randomly reassigned within each coun-

try, independently from the community and the survey. In the across communities test,

mothers (and their children) are randomly allocated to different communities, indepen-

dently from the country and the survey. Figure B11 shows the distribution of estimates

using 5,000 iterations in each test and the empirical p-values.
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Table B8: Robustness to assumptions about standard errors
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

Level of clustering: None 1°x1° grid
cell

Matched
ocean cell

5°x5° grid
cell

Country x
survey year

Community

(1) (2) (3) (4) (5) (6)
In-utero resource wealth -1.491 -1.491 -1.491 -1.491 -1.491 -1.491

(0.664) (0.625) (0.359) (0.667) (0.645) (0.610)
[0.025] [0.017] [0.000] [0.026] [0.023] [0.015]

Mean (dep.var.) 30.474 30.474 30.474 30.474 30.474 30.474

Identifying observations 1,581,815 1,581,815 1,581,815 1,581,815 1,581,815 1,581,815
Singleton observations 25 25 25 25 25 25
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the first
month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a factor of
100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample is restricted to the coastal
area (Section 1). All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country
by birth month FEs, and control variables (see Section 2). Standard errors are reported in parenthesis, p-values are reported in
brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

Figure B11: The effect on neonatal mortality: permutation-based inference
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Coefficients in Empirical p-values
Table 3 A B C

Benchmark specification
Specification 1 -1.417 0.012 0.012 0.014
Specification 2 -1.419 0.012 0.012 0.016
Specification 3 -1.491 0.009 0.009 0.010
Specification 4 -2.117 0.006 0.006 0.005
Specification 5 -2.094 0.008 0.008 0.006
Specification 6 -2.083 0.008 0.008 0.005

Within-sibling specification
Specification 1 -2.065 0.007 0.007 0.005
Specification 2 -2.126 0.006 0.006 0.005
Specification 3 -2.232 0.005 0.005 0.005
Specification 4 -2.459 0.007 0.007 0.006
Specification 5 -2.502 0.009 0.009 0.007
Specification 6 -2.612 0.007 0.007 0.005
Note. Distributions of marginal effects of resource wealth on NMR when birth dates are randomly reassigned. Tests are described
in Appendix B.6, and are based on 5,000 iterations. In each iteration, in-utero resource wealth is the average pH (multiplied by
a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Each graph depicts the
empirical distribution of estimates using the specification in each of the columns in Table 3. In each iteration, marginal effects
are estimated using equation (1). The sample is restricted to the coastal area (see Section 1). Appendix A.1 provides detailed
information on variables, selected surveys, and weighting procedures.
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B.7 Recall bias and selective migration
Table B9 replicates Table 3 by restricting the sample to recent births (at most 10 years

prior to the interview). Estimates are robust to restricting the sample to more recent

births, such as within the time period considered for under-5 mortality. Table B10 shows

estimates of the effect of resource wealth on the probability that the mother migrated to

the community of the interview within the first five years following delivery.

Table B9: The effect on neonatal mortality: restricting the sample to recent births
Dependent variable: Neonatal Mortality Rate (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)
In-utero resource wealth -2.552 -2.418 -2.460 -2.059 -2.055 -2.142

(1.316) (1.331) (1.307) (1.143) (1.149) (1.133)
[0.053] [0.070] [0.060] [0.072] [0.074] [0.059]

Mean (dep.var.) 26.914 26.914 26.917 26.914 26.914 26.918

Identifying observations 746,982 746,982 745,962 746,960 746,960 745,940
Singleton observations 142 142 142 164 164 164
Communities 31,183 31,183 31,183 31,182 31,182 31,182
Countries 36 36 36 36 36 36
Birth year range 1980–2018 1980–2018 1980–2018 1980–2018 1980–2018 1980–2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1) restricting the sample to births within 10 years of the interview. The dependent variable is a
dummy variable equal to 1 if the child died within the first month of life and 0 if the child survived, multiplied by 1,000. In-utero
resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9
months before birth. The sample is restricted to the coastal area (see Section 1). All specifications include community FEs, birth
year by birth month FEs, country by birth year FEs, and control variables (see Section 2). Controls for local seasonality are either
country by birth month FEs or 5°×5° cell by birth month FEs. Standard errors (in parenthesis) are clustered at the ocean raster data
point, p-values are reported in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures.

Table B10: Post-delivery selective migration
Dependent variable: Mother migrated to community 0-4 years after delivery of child

(1) (2) (3) (4) (5) (6)
In-utero resource wealth -0.000 -0.000 -0.000 0.001 0.002 0.002

(0.002) (0.002) (0.002) (0.003) (0.003) (0.004)
[0.958] [0.908] [0.988] [0.840] [0.612] [0.627]

Mean (dep.var.) 0.112 0.112 0.112 0.112 0.112 0.112

Identifying observations 1,016,246 1,016,246 1,015,068 1,016,242 1,016,242 1,015,064
Singleton observations 15 15 15 19 19 19
Communities 21,884 21,884 21,884 21,884 21,884 21,884
Countries 28 28 28 28 28 28
Birth year range 1972–

2018
1972–
2018

1972–
2018

1972–
2018

1972–
2018

1972–
2018

Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the mother of the child migrated
to the community of the interview in the first 5 years of life of the child, and 0 otherwise. In-utero resource wealth is the average
pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. The sample
is restricted to the coastal area (see Section 1). All specifications include community FEs, birth year by birth month FEs, country
by birth year FEs, and control variables (see Section 2). Controls for local seasonality are either country by birth month FEs or
5°×5° cell by birth month FEs. Standard errors (in parenthesis) are clustered at the ocean raster data point, p-values are reported
in brackets. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.
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B.8 Early-life mortality rates
Table B11 presents estimates of the effect of resource wealth on early-life mortality.

Table B11: The effect on early-life mortality rates (per 1,000 live births)
Dependent variables: Post-neonatal (PMR) Child (CMR) Infant (IMR) Under-5 (U5MR)

(1) (2) (3) (4) (5) (6) (7) (8)
In-utero resource wealth 1.169 1.076 -0.104 -0.044 -0.275 -0.407 -0.370 -0.435

(0.479) (0.490) (0.320) (0.330) (0.707) (0.666) (0.821) (0.795)
[0.015] [0.028] [0.746] [0.895] [0.698] [0.542] [0.652] [0.585]

Mean (dep.var.) 27.927 27.919 26.950 26.932 57.550 57.543 82.949 82.925

Identifying observations 1,535,443 1,533,608 1,492,560 1,490,789 1,583,706 1,581,815 1,583,706 1,581,815
Singleton observations 25 25 26 26 25 25 25 25
Communities 31,378 31,378 31,377 31,377 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36 36 36
Birth year range 1972–

2018
1972–
2018

1972–
2018

1972–
2018

1972–
2018

1972–
2018

1972–
2018

1972–
2018

Controls - Yes - Yes - Yes - Yes

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. In-utero resource wealth
is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before
birth. The sample is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at the ocean raster
data point, p-values are reported in brackets. All specifications include community FEs, birth year by birth month FEs, country by
birth year FEs, country by birth month FEs. The full list of controls is presented in Section 2 and refer to weather and demographic
covariates. Appendix A.1 provides detailed information on variables, selected surveys, and weighting procedures.

B.9 Parental investments
Table B12 shows estimates of the effect of resource wealth on parental health invest-

ments and on health outcomes associated with poor contemporaneous nutrition. To

provide further evidence about the nutritional channel, Figure shows instead the effect

of the resource shock on the probability of being underweight, distinguishing by the

age of the child at the time of the measurement. The dependent variable is an indicator

variable equal to 1 if the child has a weight-for-age z-score below negative 2 standard

deviations, and 0 otherwise.
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Table B12: Parental investments and postnatal nutritional outcomes
ANTENATAL DELIVERY NUTRITION

Dependent variables: Number of
visits

w/ health
professional

In health
center

w/ health
professional

Morbidity Anemia

(1) (2) (3) (4) (5) (6)

In-utero resource shock -0.001 0.004 0.003 -0.003 -0.002 0.002
(0.009) (0.002) (0.002) (0.003) (0.004) (0.006)
[0.940] [0.025] [0.063] [0.221] [0.677] [0.765]

Mean (dep.var.) 1.643 0.442 0.354 0.638 0.391 0.558

Identifying observations 263,819 494,305 491,838 267,900 339,407 114,370
Singleton observations 1,099 131 131 1,032 871 1,437
Communities 29,943 31,304 31,163 30,031 29,932 15,844
Countries 36 36 36 36 36 27
Birth year range 1985–2018 1972–2018 1972–2018 1985–2018 1985–2018 1995–2018

Note. Estimates based on equation (1). The dependent variables are reported in the column’s header. Morbidity is an indicator
variable equal to 1 if the child has experienced fever, cough or diarrhea in the weeks previous to the interview, and 0 otherwise.
In-utero resource wealth is the average pH (multiplied by a factor of 100) in the ocean’s cell closest to the child’s community during
the 9 months before birth. The sample is restricted to coastal areas (see Section 1). Standard errors (in parenthesis) are clustered at
the ocean raster data point, p-values are reported in brackets. For cross-survey comparability, the samples are restricted to the last
birth, independently from the child being alive. All specifications include community FEs, birth year by birth month FEs, country
by birth year FEs, country by birth month FEs, and control variables (see Section 2). Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.

Figure B12: Effect on the probability of being underweight
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Note. Marginal effect of in-utero resource wealth on the probability of the child to be underweight. The dependent variable is
an indicator variable equal to 1 if the child has a weight-for-age z-score below negative 2 standard deviations, and 0 otherwise.
Confidence intervals at 90% level. Estimates are based on equation (1) including community FEs, birth month by birth year FEs,
country by birth year FEs, country by birth month FEs, and control variables (see Section 2). Standard errors are clustered at the
ocean raster data point. Appendix A.1 provides further information on the variables and for the list of surveys included in the study.
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B.10 Heterogeneous effects
Figure B13 presents estimates of heterogeneous effects for children and mothers’ de-

mographics (Panel A) and for location characteristics (Panel B).

Figure B13: Heterogeneous effect of in-utero resource wealth on NMR
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Note. Heterogeneous effects of ocean’s pH while in utero on NMR by child and mother’s demographics (Panel A), and by location’s
characteristics (Panel B). Marginal effects are estimated using equation (1) restricting the sample to the corresponding group. For
mother’s age at birth, wealth index, agricultural land, population, fish as a % of animal proteins, and fishing hours, we create a
dummy variable indicating whether an observation is above or below the full sample’s median of the variable of interest. Agricul-
tural land and population are set at the 1970 level. Standard errors are clustered at the ocean raster data point. Confidence intervals
at 90% level. All specifications include community FEs, birth year by birth month FEs, country by birth year FEs, country by birth
month FEs, and control variables (see Section 2). Appendix A.1 provides detailed information on variables, selected surveys, and
weighting procedures.

B.11 Fishing and seafood prices
For night-time and extractive fishing, Figure B14 shows an example of the geograph-

ical variation, while Table B13 shows descriptive statistics comparing areas with low

versus high intensity of both types of fishing. To test whether we observe heteroge-

neous effects by intensity of extractive and night-time fishing, we estimate equation (1)

on the set of outcomes presented in Figure 6 by adding interaction terms between the
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ocean’s pH while in utero and each of these variables. We perform two tests assuming

a linear or a quadratic functions, and computing p-values for the joint tests of equal-

ity to 0 of the coefficients on the interaction term(s). Table B.11 reports F-statistics

and p-values for a joint-test of equality to zero of the interaction terms. A rejection of

the test indicates heterogeneous effects. We highlight significant heterogeneous effects

by extractive fishing on neonatal mortality, economic well-being and long-run physical

development. For seafood prices, the Philippine Statistics Authority (2020) provides

monthly retail prices at the province-species level. Figure B15 shows the evolution of

prices and the spatial distribution of the median seafood price for the period 1990 –

2018.

Figure B14: Geographical distribution of fishing: an example
A. Night-time fishing B. Extractive fishing

Note. Example of the geographical distribution of the intensity of night-time fishing (Panel A), and extractive fishing (Panel B).
The resolution is 0.1°×0.1° in Panel A, and 0.25°×0.25° in Panel B. Color scales are based on quantiles. Appendix A.1 provides
further details about the variables.
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Table B13: Descriptive statistics by degree of extractive and night-time fishing
Extractive fishing Nighttime fishing

High intensity Low intensity High intensity Low intensity
Mean SD Mean SD Mean SD Mean SD N

(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. Children
Child is alive 0.91 0.28 0.93 0.26 0.93 0.26 0.92 0.27 1,587,285
Child is female 0.48 0.50 0.48 0.50 0.48 0.50 0.49 0.50 1,587,285
Birth order 2.53 1.79 2.55 1.81 2.49 1.75 2.59 1.86 1,587,285
Number of twins born with the child 0.04 0.25 0.03 0.22 0.03 0.24 0.03 0.23 1,587,285
Years since birth 12.11 7.87 12.36 7.87 12.36 7.86 12.21 7.88 1,587,285
Mother’s age at birth 24.34 5.78 24.47 5.76 24.38 5.65 24.47 5.88 1,587,285
Ocean’s pH (in utero) 8.05 0.03 8.05 0.03 8.06 0.03 8.05 0.03 1,587,285
Antenatal care with health professional 0.28 0.45 0.26 0.44 0.26 0.44 0.28 0.45 706,086
Delivery care with health professional 0.25 0.43 0.24 0.42 0.24 0.43 0.24 0.43 706,156
Delivery care in health center 0.79 0.41 0.71 0.45 0.75 0.43 0.72 0.45 269,314

B. Adult women
Age at first delivery 20.87 4.28 20.89 4.21 20.98 4.22 20.78 4.25 495,310
Current age 30.35 9.73 30.79 9.84 30.82 9.72 30.47 9.89 706,381
Years of schooling 6.54 5.03 7.54 4.73 7.33 4.89 7.18 4.79 629,359
Ocean’s pH (in utero) 8.06 0.03 8.07 0.03 8.07 0.03 8.06 0.03 434,621
Primary education or less 0.42 0.49 0.40 0.49 0.40 0.49 0.42 0.49 706,351
Married 0.65 0.48 0.68 0.47 0.69 0.46 0.65 0.48 705,238
Working 0.59 0.49 0.51 0.50 0.51 0.50 0.56 0.50 606,687
Household head is female 0.21 0.41 0.22 0.41 0.19 0.39 0.25 0.43 706,381
Household head’s age 46.49 13.14 45.91 13.09 46.55 13.10 45.64 13.11 705,813
Household members 5.88 3.38 5.50 2.84 5.76 3.24 5.48 2.79 706,381
Household wealth 3.78 1.30 3.69 1.28 3.77 1.25 3.66 1.32 624,057
Living in urban area 0.64 0.48 0.49 0.50 0.56 0.50 0.50 0.50 706,381
Distance from shore 28.56 30.88 32.53 29.80 31.39 30.03 31.13 30.39 706,381
Distance from another water body 33.34 30.96 53.89 121.41 28.71 34.67 66.05 137.88 706,381
Altitude 189.37 479.06 190.63 371.10 99.23 206.89 281.77 524.73 706,381
Latitude 8.78 13.34 11.38 11.38 14.05 11.35 7.03 11.82 706,381
Longitude 24.97 58.04 34.16 74.98 45.87 59.94 16.49 76.32 706,381
Temperature (° C) 25.80 3.93 26.22 2.79 26.49 2.54 25.68 3.72 706,381
Precipitations (mm) 1344.55 591.54 1657.39 687.29 1608.57 722.23 1505.94 617.84 706,381
Nightlight 0.17 0.12 0.15 0.11 0.19 0.14 0.13 0.08 706,381
Intensity of extractive fishing 0.20 0.31 0.00 0.00 0.11 0.26 0.02 0.06 706,381
Intensity of night-time fishing 0.08 0.10 0.09 0.23 0.17 0.25 0.00 0.00 706,381

C. Mortality rates
Neonatal 29.41 168.95 26.65 161.05 28.28 165.76 26.74 161.33 1,583,731
Postneonatal 25.13 156.53 23.01 149.94 21.67 145.60 25.66 158.11 1,470,093
Child 26.56 160.78 19.54 138.41 20.57 141.94 22.82 149.33 1,141,371
Infant 54.00 226.01 49.16 216.20 49.44 216.79 51.87 221.77 1,516,640
Under-five 81.81 274.08 70.84 256.55 71.72 258.02 76.72 266.15 1,217,000

Note. Descriptive statistics of coastal areas by degree of extractive and night-time fishing. We define areas with above-median
extractive or nighttime fishing intensity as High intensity. Conversely, we define areas with below-median extractive or nighttime
fishing intensity as Low intensity. Coastal area includes all communities within 100 km from the ocean’s shore (see Section 1).
Means are reported in columns (1), (3), (5), and (7); standard deviations are reported in columns (2), (4), (6), and (8). Column
(9) presents the total number of observations. Years since birth is measured at the time of the interview and is independent from
the child being alive. Mortality rates are relative to 1,000 live births. Ocean’s pH (in utero) is the average pH in the ocean’s cell
closest to an individual’s community during the 9 months before birth; it refers to the date of birth of the child in Panel A and to the
date of birth of the woman in Panel B. Appendix A.1 provides detailed information on variables, selected surveys, and weighting
procedures.
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Table B14: Test of heterogeneous effects of resource wealth
Type of interaction Linear Linear+quadratic

F p-value F p-value
(1) (2) (3) (4)

Panel A. Short-run effects (all children)
NMR

Intensity of extractive fishing 32.111 0.000 16.769 0.000
Intensity of night-time fishing 0.165 0.685 0.260 0.771

Physical development
Intensity of extractive fishing 2.009 0.157 1.253 0.287
Intensity of night-time fishing 0.447 0.504 1.403 0.248

Panel B. Long-run effects (female)
Economic well-being

Intensity of extractive fishing 16.334 0.000 8.204 0.000
Intensity of night-time fishing 0.042 0.838 0.086 0.917

Physical development
Intensity of extractive fishing 13.497 0.000 10.608 0.000
Intensity of night-time fishing 1.032 0.311 1.623 0.199

Note. The table reports F-statistics and p-values for joint tests of equality to zero of the estimates on the interaction term(s).
Estimates are based on equation (1) adding interaction terms between the ocean’s pH while in utero and the variables presented in
the left column. The sample is restricted to coastal areas (see Section 1). Standard errors are clustered at the ocean raster data point.
All specifications include cluster fixed effects, birth year by birth month fixed effects, country by birth year fixed effects (local
trend), country by birth month fixed effects (local seasonality), and time-varying controls (climatic/weather and demographic).
The full list of controls is presented in Section 1. Observations are re-weighted to correct for oversampling of countries surveyed
multiple times (see Appendix A.1). In-utero resource wealth is the average value in the cell closest to the child’s cluster during the
9 months before birth, and is multiplied by a factor of 100. Appendix A.1 provides further information on the variables and the
list of surveys included in the study. We exclude DHS surveys for Peru as information for the intensity of night-time fishing is not
available (see Appendix A.1).

Figure B15: Time series and spatial distribution of the average seafood retail price
A. Time series B. Spatial distribution of the median price
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Note. Evolution over time of the province-level average seafood price (Panel A) and spatial distribution of the 1990 – 2018
median seafood price (Panel B). Prices are obtained for the following species: indian mackerel, milkfish, threadfin bream,
blue crab, caesio, anchovies, frigate tuna, tilapia, tiger prawn, slipmouth, and roundscad. Prices in Philippine Peso per kg
are converted in constant US$ (base 2010) using exchange rates and CPI from the IMF (2020). In Panel A, each price is the
(unweighted) average of all available prices. Missing data are imputed using linear interpolation for each province and species.
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C Aggregate effects of ocean acidification
Counterfactual estimates. We predict birth-level NMR (N̂MRikmtvc) using equation

(1) allowing for a flexible form in the distance from shore. The counterfactual predic-

tion (N̂MR
1975

ikmtvc) is obtained by imposing in utero exposure to the ocean’s chemical

composition at the 1975 level (allowing for seasonal variation) keeping other variables

constant. NMR attributed to acidification (∆ikmtvc) is computed as the community-level

average of N̂MRikmtvc − N̂MR
1975

ikmtvc. Figure C1 presents summary statistics.

Figure C1: Counterfactual estimates of NMR attributed to acidification
A
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Note. Panel A presetns the country-level average NMR in the coastal area (left bar) and average NMR attributed to acidification
(right bar). Panel B shows the relationship between NMR attributed to acidification and distance from shore is estimated using a
local polynomial regression. Panel C shows the distributions are estimated using a kernel density estimator. Estimators in Panels
B–C assume an Epanechnikov function and a width of the smoothing window around each point determined using a rule-of-thumb.

Acidification shocks and adaptation. To test for adaptation, Table C1 re-estimates

Table 3 interacting the ocean’s ph while in utero with a location’s initial conditions,
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namely the (standardized) average ocean’s pH from 1972–1975.

Table C1: The effect on neonatal mortality: initial conditions
Dependent variable: NMR (deaths per 1,000 births)

(1) (2) (3) (4) (5) (6)

In-utero resource wealth -1.970 -2.017 -2.195 -2.273 -2.302 -2.329
(0.717) (0.697) (0.685) (0.783) (0.785) (0.771)
[0.006] [0.004] [0.001] [0.004] [0.004] [0.003]

× initial conditions 1.110 1.106 1.303 1.119 1.095 1.299
(0.322) (0.325) (0.319) (0.329) (0.329) (0.315)
[0.001] [0.001] [0.000] [0.001] [0.001] [0.000]

Mean (dep.var.) 30.473 30.473 30.474 30.474 30.474 30.475

Identifying observations 1,583,706 1,583,706 1,581,815 1,583,703 1,583,703 1,581,812
Singleton observations 25 25 25 28 28 28
Communities 31,380 31,380 31,380 31,380 31,380 31,380
Countries 36 36 36 36 36 36
Birth year range 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018 1972–2018
Weather controls - Yes Yes - Yes Yes
Demographic controls - - Yes - - Yes
Seasonality Country Country Country Cell Cell Cell

Note. Estimates based on equation (1). The dependent variable is a dummy variable equal to 1 if the child died within the
first month of life and 0 if the child survived, multiplied by 1,000. In-utero resource wealth is the average pH (multiplied by a
factor of 100) in the ocean’s cell closest to the child’s community during the 9 months before birth. Initial conditions refer to a
location’s (standardized) average between 1972–1975. The sample is restricted to coastal areas (see Section 1). Standard errors
(in parenthesis) are clustered at the ocean raster data point, p-values are reported in brackets. All specifications include community
FEs, birth year by birth month FEs, country by birth year FEs. Controls for local seasonality are either country by birth month FEs
or 5°×5° cell by birth month FEs. The full list of controls is presented in Section 2. Appendix A.1 provides detailed information
on variables, selected surveys, and weighting procedures.
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