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Abstract

Does an employer benefit from inducing differential value distributions for a pro-

motion among his workers? Workers compete by exerting effort and higher effort

corresponds to higher profit for the employer. Introducing inequalities in valua-

tions makes workers’ value more easily recognisable, reducing their information rent,

which in turn increases effort. At the same time, inequalities lead to differences in

promotion attainment, even if realised values are identical. This corresponds to a

decrease in competition. We show that if value is re-distributed, the reduction in

information rent outweighs the loss in competition, making discrimination between

workers optimal.
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Work culture tells us what to wear, how to talk, what to talk about-in short, how to interact[. . . ]. And

yet, traditional employment anti-discrimination efforts have largely ignored the role that work culture

plays in perpetuating workplace discrimination [. . . ].

This is a mistake.

Green (2005) p. 625

1 Introduction

The design of corporate culture as a key tool to foster worker’s productivity has been

identified in the business literature in the early 1980s (Ouchi and Cuchi (1981), Deal

and Kennedy (1982), Peters and Waterman (1982)). It has since led employers to be-

come increasingly concerned with a worker’s fit. Employers determine features of the job

(hours worked, dress codes) and additionally, create expectations around payoff-irrelevant

characteristics, such as hobbies or language (dialects or accents).1 Such expectation are

especially important at the management level, where a worker may be seen as a represen-

tative of the firm, and in occupations that emphasise social relations, such as consulting,

law and finance. At the same time, the management level in these sectors has remained

fairly homogeneous, raising questions as to how employers define fit. Do employers pre-

fer a culture that makes rising through the ranks accessible and thus appealing for all

workers? Or do they instead choose to define fit more narrowly, giving some workers an

advantage over others?

Our findings point towards the latter: firms prefer to induce distinct values for the

promotion, which leads to differences in effort and ultimately a disparity in promotion at-

tainment.2 In our model, workers compete for a promotion by exerting effort. Their effort

choices depend on their valuation for the promotion, which is private information. The

employer only knows the distribution of the valuation, which is a priori identical for the

workers. While workers are identical in their payoff-relevant characteristics, they differ in

their label: this could be gender, race, background or simply name. The employer max-

imises the sum of workers’ effort, their total effort, by designing an optimal mechanism

and additionally, by influencing workers’ value distributions for the promotion. He can

influence these distributions by creating a work environment, an organisational culture

that is a better fit for one worker, but ignores or disadvantages the other. His goal is

to narrow distributions, making workers’ values more recognisable. A recognisable value

obviates incentivising the worker to reveal his value truthfully and thus the information

rent vanishes. At the same time, such a value adjustment may increase one worker’s prob-

1Examples of “fit” or rather of individuals not fitting in are women in an old boy’s club; African
Americans, who speak African American English, in a predominantly white company; black hairstyles
that are ruled out in the companies dress code; a Northern accent in a London office/ a Southern accent
in a New York office.

2In our setting, designing a worker’s value distribution maps into designing a cost distribution.
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ability of promotion, while disadvantaging the other, even if realised values are identical.

These disparities in promotion attainment correspond to a decrease in competition. We

show that as long as value is re-distributed the gain in information rent outweighs the loss

in competition, increasing total effort. Even though employers do not display differences

in beliefs or preferences, they still treat or reward workers distinctly, as it increases effort:

discrimination is profitable.

Our main contribution is to allow the employer to design the value distribution on top

of the optimal mechanism, so as to maximise total effort. Total effort is defined as the

sum of effort across workers, which we consider as a proxy for the firm’s profit, a natural

assumption in the context of finance, consulting and law– all known for their competitive

entry requirements, long hours and work hard mentality.

While it seems clear that firms impact worker’s valuations, it is less obvious how

workers’ valuations change as a response to culture. Therefore, to allow for generality, we

consider any value distribution and assume that the firm can induce it. We first analyse

the unconstrained maximisation problem as a benchmark, which highlights the incentives

of the employer to influence distributions. The employer aims to reduce the information

rent. This makes it optimal to assign all mass to one value. The employer then knows the

worker’s value for the promotion exactly, leading to an information rent of zero. Given

that higher values result in higher effort, the employer would like to set the value as high

as possible. However, some values may be prohibitively costly, which leads us to impose

an upper bound on the value for the promotion, denoted by ω. It is then optimal to assign

mass one to ω for at least one worker.

Creating such a high valuation for all workers, however, may not be feasible for the

employer, as it may impose certain costs. Supposing that the employer has limited possi-

bilities to increase all workers’ valuations, we ask whether creating a culture that affects

workers differentially can be beneficial. It turns out, that this is indeed the case, which

motivates the two classes of constraints we consider: value dispersion and value realloca-

tion.

Value dispersion focuses on value redistribution for a given worker, ignoring the other

worker. This is in line with a culture, where some workers naturally fit in, while others

receive pronounced attention to their payoff-irrelevant characteristics. The firm ignores

the former, but tailors their culture design to a specific group.3

We first consider the constraint where the employer does not increase the average

value for the promotion of the worker, but is otherwise unrestricted in his design. We

restrict attention to this setting as we have already established that a costless increase

3An example could be double-standards for different demographic groups, dress codes that focus on
the appearance of women or ethnic minorities.
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in the expected value for the promotion will be beneficial for the employer. Eventually,

such an increase in average value will no longer be costless, but the employer may still

benefit from a distribution adjustment. Therefore, both workers start out with the same

distribution–either because the employer has not yet influenced it or because it has been

influenced in the same manner. We refer to this distribution as the initial distribution.

We show that it is optimal to adjust the initial distribution with the effort maximising

distribution being binary, with mass at ω and zero, such that the mean of the distribution

equals that of the initial distribution. The employer prefers the highest possible expected

value. As this value is bounded above by the expected value of the initial distribution,

the expected value of the adjusted distribution is the same as that of the original one.

In order to extract the entire expected value, the employer creates a binary distribution

with positive mass at exactly one positive value – reducing the information rent to zero.

However, adjusting the distribution has also an impact on the effort choices of the other

worker. Workers exert higher effort the greater their probability of attaining the promo-

tion. Facing a co-worker with a high value with a high probability makes it less likely for

them to receive the promotion, diminishing their effort. Therefore, it is optimal for the

employer to set the value in the adjusted distribution as high as possible as this reduces

the probability for the other worker to face such a high value competitor and therefore,

their effort remains high.

The binary distribution with mass at zero and the maximal value, ω, is optimal for the

workers, if the firm can adjust the distribution for both of them – a result that may emerge

if workers are affected in the same manner by the culture they face. Such an adjustment

yields the same total effort as if the employer adjusted the distribution for one worker to

the described, binary distribution, while using the other worker as an “insurance”: there

can be a single worker whose distribution is degenerate with all mass at the average of

the original distribution. If the worker with the binary distribution turns out to have

zero valuation, the promotion is then given to the worker, whose valuation equals the

mean, with certainty. Such an adjustment may take place if the employer can, through

corporate culture, impose different expectations for distinct workers.

Note that the constraint of non-increasing average values encompasses a constraint

that restricts the employer to adjust to distributions that are second order stochastically

dominated by the original distribution. Choosing a riskier distribution is always beneficial

for the firm. However, if the employer can only adjust to distributions that are first order

stochastically dominated, then the employer will refrain from any adjustments. In order to

make the distribution sufficiently narrow so as to make the value of the worker sufficiently

precise, the employer is required to reduce the average value by so much as to make the

adjustment not worthwhile.
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Therefore, the employer only has an incentive to adjust values if it can make values

more extreme. This implies that employers favour cultures that induce an exceedingly

high valuation by a few, who become very dedicated to the job, while it alienates others.

This is typical of the culture observed in law, finance, or consulting, in which only few

thrive.

In contrast to the constraints covered by value dispersion, value reallocation allows for

redistribution of value across workers. Organisational culture may make one worker more

comfortable in a given environment, to the detriment of the other. Such an environment

can arise if employers define fit around worker’s labels and they reward those that fit in,

while punishing those who do not.

We assume that if the employer increases the valuation for one worker, he must de-

crease the valuation for the other worker by the same amount, a natural benchmark. This

is equivalent to an employer who is constrained to keep the overall density of each value

constant. The density of a worker’s original value distribution is denoted by g(v), with v

the value of the promotion and it is identical across workers. Therefore, the overall density

for two workers at valuation v is given by 2g(v) and this needs to be matched by the sum

of the densities of the new distributions. As we are allowing for any original distribution,

this boils down to matching an arbitrary measure with mass two, which we denote by

H(v). For two workers, it turns out to be optimal to create one worker whose values

lie below the median of H(v) and another one, whose values are above the median of

H(v), that is to create maximally distinct value distributions. By creating these distinct

distributions, the employer can again extract higher effort due to a reduced information

rent. The employer knows more precisely, what value the worker has compared to keeping

the distributions the same and thus has to leave less information rent on the table. This

reduction in information rent also offsets the reduced competition between workers. As

the reduction in information rent always leads to a greater increase in total effort, it is

then optimal to select a culture that induces the greatest distinction between workers.

This result highlights that employers have no incentive to treat their workers equally,

but rather benefit from providing advantages to one worker, to the detriment of the other.

Thus, another contribution is to introduce a novel and distinct notion of discrimina-

tion, based on corporate culture which prescribes fit. In our model, differences do not

reflect an employer’s preferences or beliefs– they are distinct from taste-based discrimina-

tion (Becker (1957)) as well as statistical discrimination (Phelps (1972), Arrow (1973)).

Rather, workers are treated distinctly, because it increases profits.

Related Literature We contribute to different strands of the literature, which we

discuss in turn.
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Information Design We relate to the literature on information design in mechanisms.

Condorelli and Szentes (2020), Roesler and Szentes (2017), and Bobkova (2019) focus

on a buyer and seller relationship.4 In these settings, the buyer (our worker) can make a

costly investment or an information choice, which the seller (our employer) takes as given.

In contrast, we focus on the choice of the employer to influence the valuation of several

workers, taking into account the effect on competition, subject to a constraint. In the

context of selling a good, this can be interpreted as designing the valuation of the good

through advertisement or more directly, the design of demand functions. The latter is

explicitly considered by Johnson and Myatt (2006), when selling occurs through a market.

While we focus on a work environment, our results are more broadly applicable: a seller

who wishes to sell a good to buyers through an optimal mechanism and can influence the

buyers’ value distributions through advertising, will choose to emphasise features of the

good that lead to the valuation becoming more easily recognisable.

Bergemann and Pesendorfer (2007) and Sorokin and Winter (2018) take a Bayesian

Persuasion angle on revealing information to buyers about their valuations, subject to

Bayes’ plausibility. In contrast, we allow for the employer to adjust the value distributions

directly and consider a larger class of constraints.

Inequality in Contests We contribute to the literature on inequalities in contests. Lazear

and Rosen (1981) show that it is optimal to handicap a more able contestant. Mealem and

Nitzan (2016) provide a survey of discrimination in contests, focusing on features of contest

success functions, documenting that it is never optimal to introduce discrimination, while

under some restrictive assumptions it may be beneficial to allow asymmetries to persist–

in contrast to our setting, where it is optimal to introduce differences to a priori identical

workers.

Specifically, Calsamiglia, Franke, and Rey-Biel (2013) show in an experiment that

inequalities between contestants are harmful, while affirmative action is optimal (see also

Franke (2012)). Li and Yu (2012) highlight that in a contest with two unequal participants,

the designer makes them equal in order to obtain the highest payoff, contrary to our

finding.

Organisational Incentives and Culture Our concept of discrimination relates to Win-

ter (2004)’s discrimination among workers. There, discrimination in payment schedules

emerges in order to induce workers, whose effort is complementary, to exert effort in a

team moral hazard problem. In contrast, we focus on inequalities in a setting with sub-

stitutable effort induced through organisational culture. Kreps (1990) first acknowlegded

its importance and the desirability to incorporate corporate culture into economic theory,

4Relatedly, Ali, Haghpanah, Lin, and Siegel (2020) look at designing a distribution when selling
through an intermediary.
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which has spawned a small and distinguished literature, for an overview see Hermalin

(1999, 2012). The focus of this literature is how culture ensures efficient operation.5

In contrast, we focus on the effects of culture on worker’s valuations for a promotion:

workers, who fit in more easily, possess a higher valuation for the promotion.

The remainder of the paper is organised as follows. In Section 2, we introduce the model.

We solve for the optimal mechanism and distribution subject to a constraint in Section 3.

We provide a benchmark result for the optimal distribution without constraints in Section

3.1. We analyse the case of value dispersion, where we keep the average valuation weakly

below the initial expected value in Section 3.2. In this context, we also characterise the

optimal distribution if the employer is required to restrict attention to a distribution that

is first-order and second-order stochastically dominated. We then turn to the setting in

which the employer can reallocate value across workers in Section 3.3. Section 4 provides

a discussion and concludes.

2 A Model of Discrimination in Promotion

We begin by introducing the worker’s problem, before turning to the problem of the

employer. The employer can influence workers’ distributions of values when implementing

an optimal mechanism. We first summarise classical contributions in independent private

value mechanism design which constitute a key building block for our results, before

focusing on the employer’s problem of how to design value distributions.

2.1 Workers’ Problem

Workers compete for a promotion by exerting effort. Every worker i, for i ∈ {A,B}, has a

value for the promotion vi which is private information and is independently distributed

according to a cumulative distribution Fi with support Vi = [αi, ωi]. While the realisation

is private, the distribution is common knowledge. In the baseline setting, workers are

initially identical in their value distribution and so Fi = G for all i. Workers are faced

with a direct mechanism, (x(v), e(v)), which for any profile of reported values v = (vA, vB)

specifies the likelihood that i gets promoted, xi(v), and the effort to exert, ei(v). Each

worker maximises his expected payoff when choosing to report their valuation which ex-

post amounts to

vixi(v)− ei(v). (1)

5See Crémer (1993), Lazear (1995), Hodgson (1996) and more recently Martinez, Beaulieu, Gibbons,
Pronovost, and Wang (2015), Gibbons and Kaplan (2015), Gibbons and Prusak (2020).
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2.2 Employer’s Problem

The employer maximises the sum of efforts across workers, which we call total effort, by

implementing an incentive compatible (all workers benefit by reporting their valuation

truthfully) and individually rational (all workers benefit by participating) mechanism,

while influencing the distribution of values for the promotion. We begin by revisiting the

mechanism design problem while keeping the distribution as given, before endogenising

the distributions of values.

Classical Mechanism Design We build on seminal results in Myerson (1981) to char-

acterise total effort in the employer optimal mechanism for given value distributions. By

the revelation principle, it is without loss for the employer to restrict attention to direct

mechanisms in which the employer asks workers for their values and workers have an

incentive to truthfully reveal these. Thus, the employer will set for all possible profiles of

values v an effort rule e(v) specifying the effort that each worker is expected to deliver and

an allocation rule x(v) pinning down the probability of promotion for any worker. The

employer sets these two rules to maximise total effort subject to incentive compatibility

and individual rationality. The solution concept is that of Bayesian Nash equilibrium. By

the revenue equivalence principle we know that the effort rule will be fully pinned down

by the allocation rule if the mechanism is incentive compatible. The characterisation of

the optimal mechanism is based on the virtual valuation, which specifies the marginal

contribution of worker i with value vi to total effort. Formally, when denoting by fi the

probability distribution for worker i, the virtual value is defined as

ψi(vi) = vi −
1− Fi(vi)
fi(vi)

. (2)

Taking expectations over the virtual valuations yields the virtual surplus,

∑
i ψi(vi)xi(v). (3)

Myerson (1981) establishes that total effort in an incentive compatible mechanism, in

which the lowest type of the worker is indifferent about participating, amounts to expected

virtual surplus,

TE (FA, FB) = Ev [
∑

i ei(v)] = Ev [
∑

i ψi(vi)xi(v)] . (4)

The optimal mechanism is therefore found by maximising expected virtual surplus subject

to incentive compatibility which requires that the probability of receiving the promotion

is increasing in worker’s valuation; that is, the virtual value is regular, ψ′i(vi) ≥ 0 for
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all i. If the virtual value is regular, then the optimal mechanism awards the promotion

with certainty to the worker with the highest non-negative virtual valuation. However,

for irregular distributions, more complicated allocation rules need to be devised to fulfil

incentive compatibility.

Quantile Space In order to characterise the optimal mechanism when regularity fails,

it is useful to move away from the traditional approach in the value – virtual value

space, and to instead translate the problem to the quantile space, see Hartline (2013).

For any distribution Fi, define the quantile associated with value vi ∈ Vi as qi(vi) =

1−Fi(vi). Similarly, define the value vi(q) associated to any quantile q ∈ [0, 1] as vi(q) =

sup {vi ∈ Vi|q ≥ 1− Fi(vi)}. This definition encompasses cases in which the cumulative

distribution is discontinuous. If Fi is continuous and strictly increasing, we obtain vi(q) =

F−1i (1− q). In the quantile setting, virtual values amount to

φi(q) = ψi(vi(q)) = vi(q) + v′i(q)q =
∂ (Φi(q))

∂q
, (5)

where Φi(q) ≡ vi(q)q. Further, the interim promotion probability in the quantile space is

denoted by yi(q) = Ev−i
[xi(vi(q),v−i)] and must be non-increasing by incentive compat-

ibility.

Value Design Problem Having found the optimal mechanism, conditional on the dis-

tribution, we can now focus on the employer’s problem of designing the distribution. The

employer can adjust the distribution of values, FA and FB, subject to some constraints,

which capture the ability to disperse or reallocate value between workers. We assume a

maximal value ω < ∞ for the promotion. The employer’s value design problem in the

quantile space amounts to

max
FA,FB

TE (FA, FB) = Eq [φA(q)yA(q)] + Eq [φB(q)yB(q)] (6)

s.t. constraints on distribution, IC, IR

Next we discuss the classes of constraints the analysis focuses on and provide some mo-

tivation.

Value Dispersion Value dispersion focuses on the adjustment of values for a given worker,

that is values can only be influenced within workers. As we analyse a benchmark case

where the employer can adjust the distributions without any constraint, a natural second

step is to assume that the employer cannot increase the average value for the promotion.
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Formally,

EFi
[v] ≤ EG[v], (7)

where we index the expectation operator with the distribution v follows. Our main focus

is on the case, where the employer can only adjust the distribution of one worker, keeping

that of the other worker fixed. However, we also analyse the setting where the employer

can adjust the distribution of both workers, without increasing the average promotion

value. Constraint (7) encompasses the set of distributions that are second order stochastic

dominated by the worker’s initial distribution. A further obvious constraint is that of first

order stochastic dominance,

Fi(v) ≥ G(v) for all v ∈ [0, ω]. (8)

Value Reallocation We also consider a setting in which value can be reallocated across

workers, through work cultures that lead to an increase in valuation of one worker, while

decreasing the valuation of the other worker. A natural constraint is for the employer to

match an arbitrary distribution H(v) which has mass two,

FA(v) + FB(v) = 2G(v) = H(v) for all v ∈ [0, ω]. (9)

Discussion of Modelling Assumptions We assume that both workers start out with

the same distribution–either because the employer has not yet influenced it or because it

has been influenced in the same manner. This serves as a benchmark to highlight that

even if workers start out with the same distribution the employer has an incentive to

adjust them. We first allow the employer to design valuations freely in our benchmark

case. However, it is natural to assume that influencing workers’ valuations comes at a cost.

These costs are captured by the constraints imposed by value dispersion and reallocation.6

Value dispersion captures an adjustment in culture, which focuses on changes in val-

uations within a worker, ignoring the other. This corresponds to a culture that focusses

on the fit of one worker more than the other. It may prescribe a certain code of conduct

or dress code that only affects one of the workers. Alternatively, the code of conduct may

affect workers differentially. We aim to capture the latter by allowing for changes in values

across workers. We will also briefly discuss a constraint that reallocates expected value

across workers. The solution to this problem is straightforward, and so such a constraint

did not seem to warrant a detailed discussion.

Given how arbitrary work place culture is, with varying dress codes, appropriate ways

6It is straightforward to map the constraints we consider to cost functions.
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of speaking and interacting, which are also country-specific, our modelling approach al-

lows for a general design of valuations, with natural and unrestrictive constraints that

encompass first order and second order stochastic dominance. It turns out that the value

distributions that emerge capture features of the corporate culture well, validating our

approach.

If the value for promotion is zero, then the worker exerts zero effort. This is a normal-

isation. We view effort as additional effort on top of a benchmark effort needed to retain

the job.

Further, we assume that workers’ effort is observable. Effort can be replaced by a

measurable output, such as billable hours, projects or profits generated that is related

to effort. It may be the case that effort does not map linearly into some measurable

output. However, even if costs of exerting effort are convex, our approach remains valid

(Greenwald, Oyakawa, and Syrgkanis (2017)).

3 Constrained Discrimination

We discuss in turn the optimal value distribution for the employer if he can disperse or

reallocate value, after highlighting the optimal distribution if the employer did not face

any constraints. All our proofs are collected in the Appendix.

3.1 Designing Value without Constraints

Suppose the employer maximises (6) with a bounded support, v ∈ [0, ω] the only con-

straint. If so, the employer designs a value distribution such that at least one worker

values the promotion at ω with certainty. Such a value design would necessarily be opti-

mal as the employer would generate the maximal surplus, which amounts to ω, and leave

no information rents to workers.

Proposition 1. If the employer can adjust the value distribution for both workers, then

it sets measure one to value ω for at least one worker. Formally, distribution

FNC(v) =

{
0 if v < ω

1 if v = ω
, (10)

assigned to at least one worker, maximises total effort.

This result highlights two forces at play in our model that emerge in all our results.

First, the employer would like for the value of the workers to be as precise as possible,

leading to an atom. Knowing precisely what the value of the worker is reduces the
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information rent that the employer has to pay to the worker in order to ensure incentive

compatibility. To see this, note that the information rent in the quantile space amounts

to vi(q)− φi(q) = v′i(q)q. If the distribution consists of a single atom, the value does not

change across the quantile space and therefore the information rent is reduced to zero.

Therefore, creating a more narrow distribution and making the value easily recognisable,

leads to a higher total effort for the employer. Second, the employer aims to increase the

value for the promotion as much as possible, because a higher value induces workers to

exert higher effort. Thus, the employer chooses to place all mass at the highest possible

value for promotion. In the unconstrained optimal value design, it suffices to increase

the value for one worker to ω, because the employer, knowing the value of that worker

with certainty, is able extract the full surplus from them without ever promoting the

other worker. If the employer adjusts the distribution of both workers, then one worker

obtains the promotion probability p ∈ [0, 1], while the other receives it with probability

1 − p. This reduces the effort of the worker, who previously obtained the promotion

with certainty, while simultaneously increasing the effort of the worker, who did not

receive the promotion, by the same amount. Thus, in expectation total effort is the same,

independently of whether the employer increases the value for one or both workers.

3.2 Value Dispersion

We now assume that the employer faces a constraint in how he can adjust the distribution.

We first consider constraint (7), which imposed weakly lower means, before turning to

the optimal mechanism if the new distribution is required to be first order stochastically

dominated.

Constraint: Lower Means We keep the distribution of worker A fixed and focus on

the adjustment of the value distribution of worker B, assuming that the workplace culture

affects only one worker.

The optimal distribution of values for worker B allocates mass at the highest possible

value of the distribution, ω, and mass at zero, such that the expected value remains

unchanged, compared to the initial distribution.7 This is formalised in Proposition 2,

which characterises the optimal distribution.

Proposition 2. Total effort is maximised among all distributions F with EF [v] ≤ EG[v]

7This result resembles the perfect information case in information design, where the posterior jumps
to either zero or one. Similarly, the constant mean translates to Bayes Plausibility, see Kamenica and
Gentzkow (2011).
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by

F ∗(v) =

{
1− EG[v]

ω
if v < ω

1 if v = ω
(11)

To see that the expected value remains constant, note that

EF ∗ [v] =
EG [v]

ω
ω +

(
1− EG [v]

ω
)

)
0 = EG[v] (12)

The employer chooses a maximal spread of valuations for one agent. As we already

demonstrated in the benchmark case, the firm would like to create as narrow a distribution

as possible as this makes the worker’s valuation easily identifiable. A worker’s valuation

is only identifiable without the firm having to pay information rent if there is mass at a

single positive value. This implies that there can be mass one at the original expected

value or alternatively, mass allocated to a single positive value and zero so as to match the

average value of the initial distribution. At zero the firm weakly prefers to not allocate the

promotion and therefore does not incentivise the worker to reveal his type. As for each

of these distributions he can extract the entire valuation, the employer selects the highest

possible average valuation, the expected value of the initial distribution, EG[v]. While

the effort associated with each of the adjustments is the same, a change in distribution

affects the probability of promotion for both workers.

For this reason, it is optimal to allocate a positive probability to the highest possible

value instead of some other v < ω. Allocating positive probability to the highest positive

value has an effect on worker A’s effort choice. As we keep the expected value of the

distribution fixed, a higher value implies a lower probability that the value is positive

and not zero. Therefore, a lower probability associated with B′s highest value leads to a

higher probability that B has zero valuation and in turn, a higher probability for A to

obtain the promotion. A’s effort decreases in B′s probability of having a high valuation

and therefore it is optimal to keep this probability as low as possible – by choosing ω.

The intuition behind Proposition 2 is summarised graphically in Figure 1. The ad-

justment in distribution allows to extract the entire expected value for the promotion as

the expected virtual valuation equals the expected value, see the shaded area in Figure

1a. This is more than what the employer can extract from worker A. A’s expected virtual

value is depicted by the striped area in Figure 1b, which is smaller than the expected

value which is given by the shaded area under vA(q) (and which is the same size as the

shaded area in 1a).

It is worth noting that Proposition 2 encompasses second order stochastic dominance,

where B′s distribution is second order stochastically dominated if and only if the following
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Figure 1: Value Dispersion for Worker B
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(a) B’s expected virtual value
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(b) A’s expected virtual value

Note: B’s expected virtual value is depicted by the shaded area in Figure 1a, which equals
EG[v], while A′s expected virtual value is given by the striped area in Figure 1b. As the
shaded area under vA(q) equals EG[v], it follows that A′s expected virtual value is smaller
than B′s. Example assumes that α = 0.

holds: ∫ v

0

G(t)dt ≤
∫ v

0

FB(t)dt for all v ∈ [0, ω]. (13)

As F ∗ is second order stochastically dominated by G, it is also the optimal distribution

among all FB to which definition (13) applies.

Corollary 2.1. Among all distributions that are second order stochastically dominated by

G, F ∗ maximises total effort.

This implies that the employer always prefers a “riskier” value distribution for worker

B. The result sheds light on an alternative interpretation of why the firm prefers to

adjust the distribution. The employer already has a worker with a more smooth value

distribution, worker A. For any realisation, worker A’s value for the promotion is relatively

similar. Therefore, the firm perceives this worker as a safety option in terms of promotion.

To the contrary, worker B either has a very high or zero valuation for the promotion. If

the employer discovers that B has a high valuation, then it can extract a high effort and

promote worker B. The firm does make a loss if worker B turns out to have zero valuation

for the promotion, but it still has worker A to fall back on.
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Our results show that it is never optimal to reduce the expected valuation for the

promotion. This raises the question of whether it can ever be optimal to adjust the value

of a worker if this necessarily comes with a reduction in the expected value. It turns out

this is indeed the case, as long as the expected value is not reduced by “too much”, which

is formalised in Corollary 2.2.

Corollary 2.2. For any m ≥ EG[max{ψ(v), 0}] the distribution

F+(v) =

{
1− m

ω
if v < ω

1 if v = ω
(14)

yields higher total effort compared to no adjustment.

The condition implies that spreading value is optimal for the employer as long as the

reduction in expected value, EG[v] − m, is more than compensated by the reduction in

information rent, EG[v] − EG[max{ψ(v), 0}]. Thus, even if the firm loses some value for

the promotion on average by adjusting the distribution, doing so still increases the total

effort for the firm.

Having discussed the case where the distribution of one worker can be adjusted, we now

allow for the values of both workers to be influenced, keeping expected values fixed. It is

still optimal to adjust the value of one worker to the distribution described in Proposition

2. For the second worker, there are then two optimal adjustments, as summarised in

Corollary 2.3.

Corollary 2.3. Assume EFi
[v] ≤ EG[v], ∀i ∈ {A,B}. Total effort is maximised by setting

for worker i, F ∗i (v) = F ∗(v) and for worker j either (i) F ∗j (v) = F ∗(v) or (ii)

F ∗j (v) =

{
0 if v < EG[v]

1 if v ≥ EG[v]
(15)

If the employer can adjust the distribution for both workers, he will do so. There are

two possible outcomes: the employer either creates only workers, who have with a fairly

small probability a very high value for the promotion. If they have a high valuation,

they also exert the highest possible effort. On the other hand, with a large probability,

a worker does not aim for promotion and exerts zero effort. This translates into a work

environment, with few superstars that work incredibly hard and a large set of workers that

do not strive for a promotion. Alternatively, the firm creates one value distribution which

assigns a small probability to the highest value and for the other worker a distribution

that assigns all mass to the expected value of the original distribution. The employer still

aims to create a worker, who either exerts the highest possible effort if he turns out to

have a high valuation, or zero effort, creating again a superstar environment. Such an
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environment comes at the cost of not having a worker with positive valuation with a high

probability and thus no one to be promoted. The firm can insure against this by creating

a worker, who serves as an insurance. If the worker with the stark difference in values

turns out to not value the promotion, then the firm can still allocate it to the worker with

the average valuation.

Interestingly, the latter adjustment yields the same total effort as creating two workers

with either high or zero valuation. However, there can never be more than one worker

with value at the mean, see again the proof of Proposition 2. With many workers, the

firm creates an environment where all workers (potentially with the exception of one) are

overachievers with a small probability.8 The small probability of being an overachiever

gives the illusion that once the worker has the high value, he obtains the promotion almost

certainly. This allows the firm to extract high effort from all such workers, that is the

firm can extract the expected value from every single worker.

Constraint: FOSD We keep again the value distribution of worker A fixed, and adjust

the distribution of worker B such that A′s distribution first order stochastically dominates

B′s distribution, G(v) = FA(vA) ≤ FB(vB). First order stochastic dominance implies a

ranking of quantiles qA(v) and qB(v):

qB(v) = 1− FB(v) ≤ 1− FA(v) = qA(v) (16)

It follows that for a given quantile, the value for A is higher than that for B, formally

vA(q) ≥ vB(q) for any q ∈ [0, 1]. This observation is summarised in Figure 2. For any

distribution B that is first order stochastically dominated by a distribution A, the value

of A is higher than that of B for every quantile. This allows us to work directly with the

values, instead of virtual values through integration by parts. This observation turns out

to be instrumental in proving Proposition 3.

Proposition 3. Total effort is maximised by having no discrimination and setting F ∗B(v) =

FA(v) = G(v) among all distributions FB(v) ≥ G(v) ∀v.

If the employer can only adjust the distribution such that it is first order stochastically

dominated by the original distribution, then he will never adjust the value. The firm

can still make the distribution more precise, which reduces the information rent, but this

comes at the cost of reducing the value for promotion dramatically. In this case, the gain

in information rent never outweighs the loss in value.

8The employer is indifferent between the nth worker having mass one at the mean or the same bimodal
distribution as all the other workers.
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Figure 2: A FOSD B
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To show this, we consider a distribution FB(v) that differs from and is first order

stochastically dominated by FA(v). This implies that there are some values for which

B’s CDF is strictly above that of A. We then construct an alternative CDF for B,

F̂B(v), which is first order stochastically dominated by FA(v), but first order stochastically

dominates FB(v), again with strict inequality for some v. We show that total effort is

higher under F̂B(v). Again, a change in distribution has two effects, (i) it affects the

virtual value and (ii) it affects the probability of promotion for both workers. To simplify

our proof, we fix the allocation rule to the one that is optimal if the distribution is FB(v)

and show that the optimal total effort increases due to the adjustment of virtual values

from FB(v) to F̂B(v). Formally, we show the second inequality in expression (17).

E[φ̂B(q)ŷB(q)]︸ ︷︷ ︸
Distribution:F̂B , Allocation:F̂B

≥ E[φ̂B(q)yB(q)]︸ ︷︷ ︸
Distribution:F̂B , Allocation:FB

> E[φB(q)yB(q)]︸ ︷︷ ︸
Distribution:FB , Allocation:FB

(17)

The first inequality holds as total effort under the old allocation rule, associated with

FB(v), and new virtual value derived from F̂B(v) is a lower bound on total effort, obtained

from the virtual value and allocation rule associated with F̂B(v). This follows as an

adjustment of the allocation rule must increase effort – otherwise the firm would not

select a new allocation rule. We then turn to a comparison of virtual values, to show that

E
[(
φ̂B(q)− φB(q)

)
yB(q)

]
> 0. Integrating by parts leads to a comparison of values as

φ(q) = ∂(v(q)q)
∂q

. We know that distribution F̂B(v), is associated with a higher value for each

quantile compared to distribution FB(v), as F̂B(v) first order stochastically dominates
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FB(v), see also Figure 2. As this holds for any F̂B(v), it follows that in optimum B′s

distribution must equal A′s distribution or rather, the original distribution G.

We have shown that if the employer can influence the worker’s distribution by dis-

persing value, he will do so, unless he is restricted to distributions which are first order

stochastically dominated. In particular, he will create a bimodal distribution, which leads

to workers valuing the promotion either very highly or not at all. This is in line with the

environment we see in consulting, law and finance: some workers value a promotion to full

professor, partner, manager a lot and are willing to work incredibly hard for it. Others

dislike this culture and opt out of the race, doing the minimum to keep their job. Even

if such a culture comes at a cost, it can still be beneficial to implement it, as long as the

cost is not too high.

3.3 Value Reallocation

We turn to a setting where the employer designs cultures that cater to one worker, while

disadvantaging the other. A natural assumption is that an increase in valuations for one

worker is compensated by a decrease in valuations for the other worker, that is value is

reallocated. This is equivalent to keeping the overall density of each value constant or

alternatively, FA(v) + FB(v) = 2G(v) = H(v), where H(v) is an arbitrary measure with

mass two. If workers’ distributions are identical, they are again denoted by G(v). How-

ever, it is not optimal to create identical distributions. Rather, the employer maximises

total effort by creating two maximally different value distributions. This is formalised in

Proposition 4, for which it is useful to define vM as the median of H(v),
∫ vM
α

dH(v) = 1.

Proposition 4. If FA(v) +FB(v) = H(v), total effort is maximised by choosing distribu-

tions

F ∗A(v) = H(v)− 1 if v ∈ [vM , ω], (18)

F ∗B(v) = H(v) if v ∈ [α, vM). (19)

Maximal discrimination, such that worker B′s values are below the median of H(v),

while worker A′s values are above the median of H(v), always yields a higher total effort

than any other two distributions. First, this adjustment narrows the distribution, by

reducing the values workers can have. Additionally, it increases the probability of receiving

the promotion for the worker with high values, inducing him to work harder, while lowering

the probability of receiving the promotion for the low value worker. This leads to lower

effort from worker B. As it turns out, the gain in information rent again outweighs the

loss in competition and maximal discrimination is optimal as it minimises the information

17



rent.

To show the optimality of maximal discrimination, we first compare maximal discrim-

ination to any two distributions that split the densities h(v) for all v before turning to

disjoint supports, which also encompass mass points. These comparisons are illustrated

in Figure 3, with an example of split densities illustrated in Figure 3a. The example splits

the densities in a smooth manner. However, in principle, each density can be split in an

arbitrary manner. Further, we require maximal discrimination to lead to a higher total

effort compared to any other distributions with disjoint support, see Figure 3b. It suffices

to show that these two classes of distributions do not lead to a higher total effort com-

pared to maximal discrimination, as any combination between split densities and disjoint

support leads to a linear combination of the effort of split densities and disjoint supports–

and we show that total effort is lower for each of these cases.

Figure 3: Alternative Distributions

vα ω

h(v)
F̂A(v)

F̂B(v)

(a) Splitting Densities

vα ω

h(v)

F̂A(v)F̂B(v)

(b) Disjoint Support

We turn to comparing the total effort with maximal discrimination to the total effort

with split densities. In order to capture that densities can be split arbitrarily, we assign

a share aA(v) ∈ (0, 1) of the density to F̂A, while the remainder, aB(v) = 1 − aB(v)

is allocated to F̂B. In order to compare total effort, we again need to keep track of

changes in virtual values and allocation probabilities. We therefore impose some structure

on the allocation probabilities. Namely, we construct for the distributions F̂ auxiliary

distributions that rank the allocation probabilities and are equivalent in total effort. More

precisely, we define by xA(v) the maximum of the allocation probabilities x̂A(v), x̂B(v)

if v ≥ vM and equivalently, by xB(v) the maximum of x̂A(v), x̂B(v) if v < vM . The

corresponding virtual values are denoted by ψi. We then compare

∫ ω

vM
ψ∗A(v)xA(v)h(v)dv +

∫ vM

α

ψ∗B(v)xB(v)h(v)dv

>

∫ ω

α

(
a(v)ψA(v)xA(v) + (1− a(v))ψB(v)xB(v)

)
h(v)dv. (20)

The LHS of (20) presents the lower bound of total effort with maximal discrimination,

given by the virtual values of distributions F ∗A and F ∗B combined with the allocation
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probabilities of the auxiliary distributions.9 The RHS of (20) equals total effort with split

densities. The problem can then be reframed as one of signing the following differences:

ψi(v)xi(v)− aA(v)ψA(v)xA(v)− aB(v)ψB(v)xB(v) (21)

>
(
ψi(v)− aA(v)ψA(v)− aB(v))ψB(v)

)
xi(v), i ∈ {A,B}, (22)

where the inequality follows from the definition of the allocation probabilities. We there-

fore have simplified the problem to a comparison of virtual values. If the difference in

virtual values is positive for A and B, for all v, then we have shown that total effort

is higher under maximal discrimination compared to any split. It turns out that this is

straightforward and we obtain that the difference in virtual values is zero for values above

the median vM , while it is equal to one for values below the median.

This implies that the gain in virtual valuation occurs in the lower half of the value

distribution. In the upper half of the value distribution, the information rent is always

low, and therefore the exact distributions covering H(v) are irrelevant. In the bottom

half, however, the information rent is high. Recall that the information rent amounts

to 1−F (v)
f(v)

, which is high if F (v) and f(v) are low. Therefore maximal discrimination

is optimal as it assigns the highest mass possible to low values, where it is particularly

valuable to minimise information rent.

Moreover, it is not optimal to divide the distributions into finer intervals, without

splitting densities. As with splitting densities, our proof amounts to a comparison of

virtual values. In contrast to splitting densities, the employer can now reduce the infor-

mation rent for values above the median, compared to maximal discrimination: there can

always be a distribution with sufficiently high mass up to some value v, such that the

information rent is lower at v. This is countered by a loss in information rent at some

other, lower values. However, the gain in information rent for higher values cannot make

up for the loss at lower values–as at lower values, the information rent is highest.

As was the case for previous constraints, competition is of secondary importance. It

is crucial for the employer to minimise the information rent and he achieves this through

maximal discrimination. In particular, he saves on information rent for those workers who

value the promotion little and thus discrimination disadvantages them not only as they

face lower values, but also as for these values the information rent is reduced.

Discrimination remains optimal if the employer instead reallocates expected valuations

across workers, 2EG[v] = EFA
[v] + EFB

[v]. Under this constraint, the firm allocates all

expected value to one worker, such that EF ∗
A

[v] = 2EG[v], while EF ∗
B

[v] = 0. The intuition

9As in the case of first order stochastic dominance assigning different allocation probabilities weakly
lowers total effort. Note that we verify that xA(v) and xB(v) constitute allocation probabilities for
distributions F ∗A and F ∗B when we check interim feasibility.
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is similar to the benchmark case: the firm only requires one worker with a positive valua-

tion and therefore selects worker A to receive all expected value, while the other worker’s

expected value is reduced to zero. Consequently, an employer who hires two identical

workers, will induce differences in how they value the promotion, through creating the

appropriate work place culture.

4 Discussion and Conclusion

Our analysis highlights that an employer can induce higher effort by introducing a culture

with a focus on one worker, creating a bi-modal value distribution for him, while ignoring

the other worker. Additionally, the employer finds it beneficial to reallocate value such

that one worker displays a high value for the promotion, while the other one ends up with

a lower valuation.

In practice, we would expect a mix of both features to emerge. This seems to be true

for law, banking and management consultancies, where culture is often described to be

cut-throat, a toxic environment with extremely long work hours. Such a culture is loved

by few and disliked by many and matches the bi-modal value distribution that emerges in

the value dispersion case. Additionally in these environments, fit is important. And for

some workers, fitting in is more challenging than others according to Padavic, Ely, and

Reid (2020): they argue that such an environment disproportionately excludes women, as

they face both an expectation to spend time with their family as well as to focus on work,

creating a lose-lose situation for them. The latter could be viewed as an example of value

reallocation. Our model therefore proposes a novel explanation for why some groups, such

as women, fail to raise through the ranks, in line with the empirical evidence.10

Our model also sheds light on why minorities and women are not as underrepresented

at entry level jobs. In our model, it is optimal to hire workers with the highest value

for promotion, independently of their gender or other characteristics. A higher average

value results in higher value extraction if the employer is bound by the expected value

of the initial distribution. If the employer is constrained by the initial distribution, he

prefers workers with distributions with low information rent, a narrow distribution. This

translates into screening individuals to select those with the highest expected value and

low variation. Such a hiring strategy is arguably followed by law firms, consultancies and

in finance, who prefer graduates from top programmes.

Nevertheless, the employer has an incentive to create certain cultures for their entry

10Our explanation for the underrepresentation of women in management positions is complementary
to those presented in Bertrand, Goldin, and Katz (2010), Gayle and Golan (2011), Gneezy, Niederle, and
Rustichini (2003), Niederle and Vesterlund (2007), Dohmen and Falk (2011), Erosa, Fuster, Kambourov,
and Rogerson (2017).
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level employees– a feature contrary to existing theories of discrimination. If there was a

distaste toward certain types of employees, they would not even be hired. Further, there

is less information about a worker’s ability available at the hiring stage, which should

lessen statistical discrimination at the promotion stage compared to the entry level. This

pattern indeed emerges in Bohren, Imas, and Rosenberg (2019)’s model of dynamic statis-

tical discrimination based on gender and is confirmed through an experiment: statistical

discrimination is less important at later career stages. This is in contrast to empirically

observed patterns of gender inequality (Bertrand et al. (2010)): the gender wage gap

increases across career time, which is related to workplace culture and women missing

out on promotions.11 Similarly Altonji and Pierret (2001) document that race matters

more further down the career path, less so at the entry level. Thus, we propose a novel

mechanism of why discrimination arises, which is supported by empirical regularities.

To conclude, we allow the employer to establish the optimal mechanism for the allo-

cation of a promotion and additionally, to design a value distribution for the promotion

by implementing a certain workplace culture subject to a constraint. We allow for a

large, natural set of constraints, including first and second order stochastic dominance

and obtain that introducing inequalities is generally profitable.

We focus throughout on two workers, although it is straightforward to extend the

value dispersion to multiple workers. Similarly, we speculate that an extension to multiple

workers in the value reallocation setting leads to a split support similar to what we find in

the case with two workers as it will still be optimal to minimise the information rent. While

we have focused here on independent values, we expect our insight that discrimination is

optimal to carry over to a setting with correlated values (Crémer and McLean (1985)).

In this case, the information rent is zero even when the employer is faced with a non-

degenerate distribution, but he still prefers a worker to have the highest valuation possible-

even if this is at the expense of the other worker. Further extensions could allow for (i)

multiple promotions, (ii) a sequence of promotions, and (iii) multiple employers that

compete among each other. The solutions for these extensions are involved, as evidenced

by the expansive literature on auctions. We therefore leave these extensions to future

research.

11Merluzzi and Dobrev (2015) highlight the importance of culture for women not performing better,
while Bronson and Thoursie (2019) relate the gender wage gap to (lack of) promotions.
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A Appendix

Proof of Proposition 1: No Constraints Note first that it is not possible to obtain

a total effort higher than ω:

E [φA(q)yA(q)] + E [φB(q)yB(q)] ≤ E [ωyA(q)] + E [ωyB(q)] ≤ ω, (23)

where the first inequality follows from φi(q) ≤ ω for all i ∈ A,B, and the second inequality

from E [yA(q)] + E [yB(q)] ≤ 1 for any allocation rule. Therefore, as long as at least one

worker has value ω with certainty, the firm extracts the highest possible total effort. �

Proof of Proposition 2: Value Dispersion We compare total effort under F ∗ to

total effort when setting some other distribution FB such that EFB
[v] = EG[v]. In a

quantile setting, for q = 1− F ∗(0), the virtual value for the distribution F ∗ amounts to

φ∗B(q) =

{
ω if q < q

0 if q > q
. (24)

Total effort under distribution F ∗ is given by

E [φA(q)y∗A(q)] + E [φ∗B(q)y∗B(q)] , (25)

while the effort under any alternative FB amounts to

E [φA(q)yA(q)] + E [φB(q)yB(q)] . (26)

The change from FB to F ∗ has two effects: (i) it affects the virtual valuation of worker

B; and (ii) it affects the optimal allocation rule for the promotion. We begin by keeping

the allocation rule fixed in the quantile space and show that a change from FB to F ∗

increases total effort under the optimal allocation rule for distribution FB. Such insight

then immediately delivers the result, since optimality implies that

E [φA(q)y∗A(q)] + E [φ∗B(q)y∗B(q)] ≥ E [φA(q)yA(q)] + E [φ∗B(q)yB(q)] . (27)

Note that fixing the allocation rule in the quantile space to y(q) = x(v(q)) implies

that interim allocation rules are also unchanged in the quantile space, since yi(qi) =∫ 1

0
yi(q)dqj, which was implicitly assumed in the previous expression.

Therefore, to prove the result, it suffices to establish that

E [φ∗B(q)yB(q)]− E [φB(q)yB(q)] ≥ 0. (28)
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For any q < q, it must be that φ∗B(q) = ω ≥ φB(q), since φB(q) = vi(q) + v′i(q)q ≤ vi(q) ≤
ω. Instead, for q ≥ q and yB(q) > 0, it must be that φB(q) ≥ φ∗B(q) = 0, since the

promotion will only be given to a worker with a non-negative virtual value. As incentive

compatibility requires yB(q) to be non-increasing, we have that if

E [φ∗B(q)−max{φB(q), 0}] ≥ 0 ⇒ E [(φ∗B(q)− φB(q))yB(q)] ≥ 0. (29)

Moreover, by construction, the expected virtual values satisfy

E [φ∗B(q)] = E [v∗B(q)] = qω = E [vA(q)] = E [vB(q)] . (30)

The result then obtains, because expected virtual value for FB satisfies

E [vB(q)] ≥ E [max {φB(q), 0}] , (31)

given that max {φB(q), 0} ≤ vB(q) for all q > 0 since vB(q) ≥ 0 and φB(q) − vB(q) =

qv′B(q) ≤ 0.

This establishes that it is never optimal to select a distribution for B with an expected

virtual value which is strictly smaller than the expected value. However, there are multi-

ple distribution that allow for the expected value to be equal to the expected virtual value,

E [vB(q)] = E [φB(q)]. Note that it is never optimal to allocate mass to more than two

values v > 0. Suppose to the contrary, the firm chose such a distribution. Then, the allo-

cation probability would need to differ across the different valuations for the mechanism

to be incentive compatible. Otherwise a worker with a higher valuation would pretend to

be a worker with a lower valuation and still obtain the promotion with the same probabil-

ity. It follows that with such a distribution it would not be feasible to extract the entire

valuation, yielding the contradiction.

To show that F ∗ is the unique optimum, consider any other distribution FB having

the same mean as G and a single atom on positive values at ωB, meaning that

FB(v) =

{
1 if v = ωB

1− EG[v]
ωB

if v < ωB
. (32)

Letting pB = EG[v]/ωB denote the probability of having value ωB, total effort can be
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rewritten as

E[φA(q)yA(q)] + E[φB(q)yB(q)] (33)

= (1− pB)

∫
VA

max{ψA(vA), 0}dFA(vA) + pB

∫
VA

max{ψA(vA), ωB}dFA(vA) (34)

= (1− pB)

∫
VA

max{ψA(vA), 0}dFA(vA) +

∫
VA

max{pBψA(vA),EG[v]}dFA(vA). (35)

The first equality follows as the optimal mechanism allocates the promotion to A when

their virtual valuation is positive and vB = 0, and when their virtual valuation exceeds

ωB if vB = ωB.12

The last expression is differentiable in pB. Next we differentiate such expression with

respect to pB and establish that total effort decreases in pB, meaning that the the optimal

distribution will set pB to be as small as possible, or equivalently ωB as large as possible.

Letting V+(k) = {vA ∈ [0, ω]|ψA(vA) ≥ k} for k ≥ 0 denote the set of values for which A’s

virtual valuation weakly exceeds k, we find that

∂E[φA(q)yA(q) + φB(q)yB(q)]

∂pB
= −

∫
V+(0)

ψA(vA)dFA(vA) +

∫
V+(ωB)

ψA(vA)dFA(vA) ≤ 0,

(36)

where the inequality holds, since V+(ωB) ⊆ V+(0). Moreover, the inequality is strict

whenever ψA(vA) ∈ (0, ωB) for some vA ∈ VA. Thus, it is optimal to minimize pB which

is accomplished by setting ωB = ω ≥ ωA. This establishes the result. �

Proof of Corollary 2.1: Second Order Stochastic Dominance We show that F ∗

is second order stochastically dominated by FA = G. If F ∗ = FA, then F ∗ is second

order stochastically dominated by FA trivially. If F ∗ 6= FA, it must be that for some

v ∈ [αA, ωA] and all v ∈ [0, v),

∆(v) = FA(v)− F ∗(v) < 0, (37)

since F ∗ places the maximal possible measure on v = 0 amongst all distributions with

mean equal to EG[v]. It follows that for any v ∈ [0, v), we have that∫ v

0

∆(t)dt =

∫ v

0

FA(t)− F ∗(t)dt < 0. (38)

12If G was not regular, the previous expression for revenues would still apply. In such scenarios, FA

would denote the ironed distribution of values yielding the same total effort, rather than G itself – see
Hartline (2013), Theorem 3.14, p.78.
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Moreover at ω, Riemann Stieltjes integration by parts yields∫ ω

0

∆(t)dt = [t (FA(t)− F ∗(t))]ω0 −
∫ ω

0

td (FA(t)− F ∗(t)) = 0. (39)

To establish second order stochastic dominance, it then suffices to show that ∆(v) is

non-decreasing, since that implies
∫ v
0

∆(t)dt < 0 for all v ∈ [0, ω). This holds as FA is

non-decreasing and F ∗ is constant up until ω. Therefore, FA second order stochastically

dominates F ∗. �

Proof of Proposition 3: First Order Stochastic Dominance Suppose by contra-

diction that the firm found it optimal to set FB 6= FA, which implies that FB(v) > FA(v)

for some v. We show that in this case, there exists a profitable deviation to a distribution

F̂B, such that FB(v) ≥ F̂B(v) with strict inequality for some v and F̂B(v) ≥ FA(v).

As in the proof for value dispersion, the change from FB to F̂B has two effects: (i)

it affects the virtual valuation of worker B and (ii) it affects the optimal allocation rule

for the promotion. We again begin by keeping the allocation rule fixed and show that a

change from FB to F̂B increases total effort under the same allocation rule. Recall that

optimal total effort is given by13

E[φA(q)yA(q)] + E[φB(q)yB(q)] =

∫ 1

0

φA(q)yA(q)dq +

∫ 1

0

φB(q)yB(q)dq. (40)

As the allocation rule is unchanged, E[φA(q)yA(q)] is not affected, and we only need to

establish that

E[φ̂B(q)yB(q)] ≥ E[φB(q)yB(q)] ⇔
∫ 1

0

(
φ̂B(q)− φB(q)

)
yB(q)dq ≥ 0. (41)

Denote by D ⊆ [0, 1] the set of points at which yB in non-differentiable, and by C =

[0, 1] \D. The interim allocation rule yB can be discontinuous, when the distribution FB

is not continuously differentiable and if there are gaps in the support. We first consider the

case where only the allocation rule is discontinuous, before turning to gaps in valuations.

Integration by parts using Riemann Stieltjes integrals implies that

E[φB(q)yB(q)] = αByB(1) +
∑
q∈D

qvB(q) (−J(q))−
∫
C

qvB(q)dyB(q), (42)

where J(q) = y+B(q)−y−B(q) ≡ limε→0[yB(q+ ε)−yB(q− ε)] < 0 and the inequality follows

13If there are gaps in the support, the following expression requires a slight amendment, which does
not affect results, but adds additional notation.
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from yB being decreasing. Exploiting the latter, we find that

E[(φ̂B(q)− φB(q))yB(q)] =

∫ 1

0

(φ̂B(q)− φB(q))yB(q)dq (43)

= (α̂B − αB)yB(1) +
∑
q∈D

q(v̂B(q)− vB(q)) (−J(q)) +

∫
C

(qv̂B(q)− qvB(q)) (−y′B(q)) dq.

(44)

As F̂B first order stochastically dominates FB, we know that α̂B ≥ αB and that v̂B(q) ≥
vB(q). Thus, since the allocation probability is decreasing in q by incentive compatibility,

y′B(q) ≤ 0, it follows that

E[φA(q)yA(q)] + E[φ̂B(q)yB(q)] ≥ E[φA(q)yA(q)] + E[φB(q)yB(q)]. (45)

Moreover, if the firm was allowed to set the allocation rule ŷ(q) optimally, total effort

would further increase

E[φA(q)ŷA(q)] + E[φ̂B(q)ŷB(q)] ≥ E[φA(q)yA(q)] + E[φ̂B(q)yB(q)], (46)

or else the employer would prefer to leave allocation rule unchanged.

Suppose now FB(v) has gaps in its support. Then, for each of these discontinuities in

D, we need to show that

v−B(q)y−B(q)− v+B(q)y+B(q) ≤ v̂−B(q)y−B(q)− v̂+B(q)y+B(q), (47)

where v−B(q) and v+B(q) are defined in line with the allocation probabilities. IfG(v) does not

have gaps in its support, there always exists a distribution F̂B that first order stochastically

dominates FB and has continuous support. In this case, v̂−B(q)y−B(q) − v̂+B(q)y+B(q) =

v̂−B(q) (−J(q)) and as values are decreasing in q, v̂−B(q) (−J(q)) > v−B(q)y−B(q)−v+B(q)y+B(q).

Thus, there exists once again a deviation that leads to a higher total effort.

Last, suppose the support of the initial distribution has gaps. In this case, for a given

q, there can be a jump for FB, a jump for F̂B or a jump for both. If there is a jump

for exactly one distribution, first order stochastic dominance implies that v̂ lies above v

(v̂+, v̂− > v or v+, v− < v̂). If there is a jump for both distributions at the same q with the

jump in values is larger under FB, then inequality (47) is violated. We therefore require

a more sophisticated approach. In this case, we need to amend expression (42) to

E[φB(q)yB(q)] = αByB(1) +
∑
q∈D

q
[
v−B(q)y−B(q)− v+B(q)y+B(q)

]
−
∫
C

qvB(q)dyB(q). (48)
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We compare distribution FB to distribution F̂B(v) = FB(v) for v /∈ [v+, v̂+], where v+ <

v̂+. This implies that F̂B(v̂+) = FB(v+). Such a FB yields a higher total effort than

another distribution that displays a gap between v+ and v̂+.

We can now flip this expression into the value-quantile-space, which yields

αBxB(1) +
∑
v∈D

vqB(v)
[
x+B(v)− x−B(v)

]
+

∫
VA\D

qB(v)vx′B(v)dv, (49)

Integrating over values allows to capture gaps in the support directly and thus a correction

term is no longer needed. Thus, comparing total effort under F̂B and FB amounts to

showing that

∫ v̂+

v+
q̂B(v)vx̂′B(v)dv ≥ 0, (50)

which always holds. Note that we keep here x̂′B(v) to emphasise that this is not the

allocation probability xB(v), but rather the allocation probability at the q associated

with vB, which differs from v̂B. �

Proof of Proposition 4: Reallocating Value, Fixed Distribution We want to

show that total effort is maximised by selecting distributions which maximise discrimina-

tion

F ∗B(v) = H(v) if v ∈ [α, vM) (51)

F ∗A(v) = H(v)− 1 if v ∈ [vM , ω]. (52)

To simplify notation, we drop the star to indicate the optimal adjustment and simply

refer to these two distributions by FA(v) and FB(v). We proceed as follows:

(i) We first assume that each value v admits a density and show that FA(v) and FB(v)

yield higher effort than any other two distributions, F̂A(v) and F̂B(v), that allocate strictly

positive density at each v ∈ [α, ω] – meaning that min{f̂A(v), f̂B(v)} > 0 for all v.

(ii) We prove that FA(v) and FB(v) lead to higher total effort than any other two distri-

butions with disjoint support. This allows to account for mass points.

(iii) We combine these insights to show that FA(v) and FB(v) yield a higher total effort

than any other two distributions.

Splitting Densities We want to compare total effort with maximal discrimination to

total effort with split densities, where min{f̂A(v), f̂B(v)} > 0 for all v ∈ [α, ω]. Denote by
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ai(v) the share of the density h(v) assigned to worker i ∈ {A,B}. We want to show that

∫ ω

vM
ψA(v)xA(v)h(v)dv +

∫ vM

α

ψB(v)xB(v)h(v)dv (53)

≥
∫ ω

α

ψ̂A(v)x̂A(v)aA(v)h(v)dv +

∫ ω

α

ψ̂B(v)x̂B(v)aB(v)h(v)dv. (54)

For convenience, define

xA(v) =

{
max{x̂A(v), x̂B(v)} if v ≥ vM

min{x̂A(v), x̂B(v)} if v < vM
, (55)

xB(v) = {x̂A(v), x̂B(v)} \ xA(v). (56)

Similarly, define for any i, j ∈ {A,B} such that i 6= j

ψi(v) =

{
ψ̂i(v) if x̂i(v) = xi(v)

ψ̂j(v) if x̂i(v) 6= xi(v)
, (57)

ai(v) =

{
ai(v) if x̂i(v) = xi(v)

aj(v) if x̂i(v) 6= xi(v)
. (58)

These definitions immediately imply that∫ ω

α

ψ̂A(v)x̂A(v)aA(v)h(v)dv +

∫ ω

α

ψ̂B(v)x̂B(v)aB(v)h(v)dv (59)

=

∫ ω

α

ψA(v)xA(v)aA(v)h(v)dv +

∫ ω

α

ψB(v)xB(v)aB(v)h(v)dv. (60)

As in previous proofs, we again compare total effort for distributions FA and FB with

virtual values ψA(v),ψB(v) and allocation probabilities xA, xB to total effort for any other

distribution. To do so, we need to establish that xA and xB satisfy interim feasibility for

distributions FA and FB.

Interim Feasibility Interim feasibility is satisfied if and only if

∫ ω

max{v,vM}
xA(v)h(v)dv +

∫ vM

min{v,vM}
xB(v)h(v)dv ≤ 1− FA(v)FB(v), (61)

see Border (1991). First, let v > vM . Then, FB(v) = 1 and the problem simplifies to∫ ω

v

xA(v)h(v)dv ≤ 2−H(v), (62)
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which trivially holds. Next, let v < vM . In this case,

∫ ω

vm
xA(v)h(v)dv +

∫ vM

v

xB(v)h(v)dv ≤ 1 (63)

as FA(v) = 0. Therefore, it suffices to show that

∫ ω

vm
xA(v)h(v)dv +

∫ vM

α

xB(v)h(v)dv ≤ 1 (64)

Inequality (64) corresponds to the following inequality in the quantile-probability space:∫
q

yA(q)dq +

∫
q

yB(q)dq ≤ 1 (65)

We can alternatively integrate over allocation probabilities, which transforms the inequal-

ity to

yA(1) +

∫
yA

qA(y)dy + yB(1) +

∫
yB

qB(y)dy ≤ 1 (66)

The allocation probability for A, yA, lies between 1 and the allocation probability at the

median value yA(1). Inequality (66) takes into account that yA(1) > 0. This is as if

the allocation probability displays a jump, in which case the quantile does not change.

Formally, if there is a jump at some q we define

y− ≡ lim
ε→0

y(q − ε) (67)

y+ ≡ lim
ε→0

y(q + ε) (68)

and for every y ∈ [y−, y+], q(y) remains constant. The probability of promotion for B at

the median is denoted by yB(0) and it goes down to yB(1).

We can express any qA = q̂A + q̂B and qB = q̂A + q̂B − 1. To see this note that

qA(v) = 1 − FA(v) = 2 −H(v), qB(v) = 1 − FB(v) = 1 −H(v) and q̂A(v) + q̂B(v) = 2 −
F̂A(v)+F̂B(v) = 2−H(v). Note that in general, it will not hold that qA(y) = q̂A(y)+q̂B(y).

However, there always exists a y′ such that qA(y) = q̂A(y) + q̂B(y′). As we integrate over

all y and thus all y′, we omit the dependence on y′. We can therefore replace qA and qB

by q̂A and q̂B as follows:

yA(1) +

∫
yA

(q̂A(y) + q̂B(y)) dy + yB(1) +

∫
yB

(q̂A(y) + q̂B(y)− 1) dy ≤ 1 (69)
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Note that
∫
yB
dy = yB(0)− yB(1). This implies

yA(1)− yB(0) + 2yB(1) +

∫
yA

(q̂A(y) + q̂B(y)) dy +

∫
yB

(q̂A(y) + q̂B(y)) dy ≤ 1 (70)

If yA(1) = yB(0), that is there is no jump at the median value, then we can rewrite

inequality (70) as

2yB(1) +

∫ yA(0)

yB(1)

q̂A(y)dy +

∫ yA(0)

yB(1)

q̂B(y)dy ≤ 1 (71)

⇔
∫
q

ŷA(q)dq +

∫
y

ŷB(q)dq ≤ 1, (72)

where the latter holds as ŷA and ŷB are the allocation probabilities for distributions F̂A

and F̂B. If yA(1) > yB(0), that is there is a jump at the median value, inequality (70)

can be expressed as

yA(1)− yB(0) + 2yB(1) +

∫ yB(0)

yB(1)

q̂A(y)dy +

∫ yA(0)

yA(1)

q̂A(y)dy

+

∫ yB(0)

yB(1)

q̂B(y)dy +

∫ yA(0)

yA(1)

q̂B(y)dy ≤ 1 (73)

Note that yA(1)−yB(0) =
∫ yA(1)

yB(0)
qdy, with q = 1 = q̂A(y)+q̂B(y), for all y ∈ [yB(0), yA(1)].

We can then amend inequality (73) to

2yB(1) +

∫ yA(0)

yB(1)

q̂A(y)dy +

∫ yA(0)

yB(1)

q̂B(y)dy ≤ 1 (74)

⇔
∫
q

ŷA(q)dq +

∫
y

ŷB(q)dq ≤ 1, (75)

where the latter holds once again as we fixed an interim feasible allocation for F̂A and

F̂B.

As xA, xB satisfy interim feasibility, it is sufficient to show that

∫ ω

vM
ψA(v)xA(v)h(v)dv +

∫ vM

α

ψB(v)xB(v)h(v)dv (76)

≥
∫ ω

α

ψA(v)xA(v)aA(v)h(v)dv +

∫ ω

α

ψB(v)xB(v)aB(v)h(v)dv. (77)
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This is equivalent to establishing that∫ ω

vM

((
ψA(v)− ψA(v)aA(v)

)
xA(v)− ψB(v)xB(v)aB(v)

)
h(v)dv︸ ︷︷ ︸

Part 1

(78)

+

∫ vM

α

((
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v)

)
h(v)dv︸ ︷︷ ︸

Part 2

≥ 0. (79)

We first focus on the case of virtual values being weakly positive, both under maximal

discrimination and for distributions that present a deviation, for all values and establish

the inequality by signing the two parts in turn.

Part 1 Note that since xA(v) ≥ xB(v) when v ≥ vM , we have that∫ ω

vM

((
ψA(v)− ψA(v)aA(v)

)
xA(v)− ψB(v)xB(v)aB(v)

)
h(v)dv (80)

≥
∫ ω

vM

(
ψA(v)− ψA(v)aA(v)− ψB(v)aB(v)

)
xA(v)h(v)dv = 0. (81)

The right hand side of the last inequality is equal to zero because

ψA(v)− ψA(v)aA(v)− ψB(v)aB(v) = ψA(v)− ψ̂A(v)âA(v)− ψ̂B(v)âB(v) (82)

= v − 1− FA(v)

h(v)
− âA(v)

(
v − 1− F̂A(v)

âA(v)h(v)

)
− âB(v)

(
v − 1− F̂B(v)

âB(v)h(v)

)
(83)

=
1

h(v)

(
1 + FA(v)− F̂A(v)− F̂B(v)

)
= 0, (84)

where the final equality follows from F̂A(v) + F̂B(v) = H(v) and FA(v) = H(v) − 1.

Therefore, the integral in Part 1 is necessarily non-negative as it is bounded below by

zero. Moreover, the integral is strictly positive provided that xA(v) 6= xB(v) for a positive

measure of v ≥ vM .

Part 2 As in Part 1, note that since xA(v) ≤ xB(v) when v < vM , we have that

∫ vM

α

((
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v)

)
h(v)dv (85)

≥
∫ vM

α

(
ψB(v)− ψA(v)aA(v)− ψB(v)aB(v)

)
xB(v)h(v)dv =

∫ vM

α

xB(v)dv ≥ 0. (86)

31



As in the previous part, the equality in the previous expression follows because

ψB(v)− ψA(v)aA(v)− ψB(v)aB(v) =
1

h(v)

(
1 + FB(v)− F̂A(v)− F̂B(v)

)
=

1

h(v)
, (87)

where the final equality follows from F̂A(v)+F̂B(v) = H(v) and FB(v) = H(v). Therefore,

the integral in Part 2 is also non-negative as it is bounded below by zero. Moreover, the

integral is strictly positive whenever either xA(v) 6= xB(v) or xB(v) > 0 for a positive

measure of v < vM .

The two parts establish that splitting densities is strictly worse than maximal discrim-

ination when xB(v) > 0 for some v < vM , since
∫ vM
α

xB(v)dv > 0 given that xB(v) is

increasing by incentive compatibility. However, splitting densities is strictly worse than

maximal discrimination even when xB(v) = 0 for all v < vM , because the optimal al-

location under maximal discrimination must differ from x given that worker B must be

promoted with positive probability when vB is smaller but close vM – meaning that for

such values vB we have that xB(vB) > xB(vB) = 0.

So far we assumed that all virtual values are weakly positive. We relax this assumption

and show that even with negative virtual values our result continues to hold.

Case 1 ψA(v), ψB(v) > 0 for all v, ψi(v) ≥ 0 for all v ≥ vM , ψi(v) < 0 for some v < vM

First, note that ψB(v) > ψi(v) for all v < vM . In this case, Part 1 remains un-

changed, while Part 2 needs to be amended. If both ψA(v), ψB(v) < 0 for some v,

the difference in virtual values for each v is trivially positive. If ψB(v) > 0 > ψA(v)

for some v, then for these values

(
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v) > 0, (88)

as ψB(v)−ψB(v)aB(v) > 0 and −ψA(v)xA(v)aA(v) ≥ 0. If for some v, ψA(v) > 0 >

ψB(v)

(
ψB(v)− ψB(v)aB(v)

)
xB(v)− ψA(v)xA(v)aA(v) (89)

>
(
ψB(v)− ψB(v)aB(v)− ψA(v)aA(v)

)
xB(v) > 0, (90)

where the last inequality holds as ψB(v) > ψA(v)aA(v).

Case 2 ψA(v), ψi(v) > 0 for v ≥ vM , ψB(v) < 0 for some v < vM

If the virtual value is negative under maximal discrimination for some v, it holds

that 0 > ψB(v) > ψi(v). Note that the allocation probability must not necessarily

be zero, as regularity is not assumed. Now instead of assigning xB to ψB(v), assign

xA for all values for which ψB(v) < 0. Given that xA(v) < xB interim feasibility
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continues to hold. Then, for these v

ψB(v)xA(v)− ψB(v)aB(v)xB(v)− ψA(v)xA(v)aA(v) (91)

≥ ψB(v)xA(v)− ψB(v)aB(v)xA(v)− ψA(v)xA(v)aA(v), (92)

which, by the same logic as in Part 2 is positive.

Case 3 ψA(v) ≥ 0 for all v ≥ vM , but ψi(v) < 0 for some v ≥ vM . Suppose first that

both ψA(v), ψB(v) < 0. In this case, Part 1 is trivially fulfilled. Assume next that

there exists some v such that ψA(v) < 0 < ψB(v). In this case, we construct a

profitable deviation, that coincides with FA, FB for all values below some threshold

v and maximal discrimination above v. We proceed with this approach until the

candidate for the profitable deviation does not contain negative virtual values above

the median anymore, in which case either Case 1 or Case 2 apply.

To construct such a deviation, note that ψA(ω) = ψB(ω) = ω, by assumption. This

implies that there exists a v, such that for all v > v, ψA(v), ψB(v) > 0. The mass

between v and ω is given by m = 2−H(v) > 0. Construct another cutoff v such that

H(v)−H(v) = m. Now consider a distribution F̃A(v), F̃B(v) which corresponds to

FA(v), FB(v) for v < v and

F̃A(v) =


FA(v) ∀ v ≤ v

FA(v) ∀ v < v ≤ v

H(v)− FA(v) ∀ v < v,

(93)

F̃B(v) =


FB(v) ∀ v ≤ v

H(v)− FB(v) ∀ v < v ≤ v

1 ∀ v < v,

(94)

As F̃ and F coincide for values below v, we focus on v > v. Applying the same

approach as in Part 1, for v > v it must hold that

1 + F̃A(v)− F̂A(v)− F̂B(v) = 1 +H(v)− FA(v)−H(v) > 0. (95)

Part 2 can be similarly amended. We have now a new candidate for a profitable

deviation F̃ . Repeating the same steps if virtual values are negative for some values

v > vM , ψ̃i(v) < 0 leads again to maximal discrimination being optimal.

Case 4 Last, suppose that ψA(v) < 0 for some v ≥ vM . In this case, ψi(v) < 0 for all i.
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Assign xB(v) to FA. Then, we obtain

ψA(v)xB(v)− ψA(v)aA(v)xA(v)− ψB(v)xB(v)aB(v) (96)

>
(
ψA(v)− ψA(v)aA(v)− ψB(v)aB(v)

)
xB(v) = 0, (97)

as before.

Disjoint Support This proof allows for distributions H(v) for which densities are not

defined. If the density is defined, we assign each density to one distribution. This implies

that the support of at least one distribution is disjoint. We restrict attention to alternative

distributions with v̂B ∈ [α, t1]∪ [t2, t3] and v̂A ∈ [t1, t2]∪ [t3, ω], with α < t1 < t2 < t3 ≤ ω.

If these distributions do not yield higher total effort than maximal discrimination, then

splitting the distribution further cannot be optimal either. Note that t1 < vM < t3.

Recall that total effort in the quantile space if given by∫
q

φA(q)yA(q)dq + φB(q)yB(q)dq (98)

Integrating each component by parts yields

vi(q)qyi(q)

∣∣∣∣1
0

+

∫
q

vi(q) (−y′i(q)) qdq (99)

= vi(1)yi(1) +

∫
C

vi(q) (−y′i(q)) qdq +
∑
q∈D

q
[
v−(q)y−(q)− v+(q)y+(q)

]
(100)

Flipping this to a v − q− space yields

αAxA(αA) +

∫
VA\D

vqA(v)x′A(v)dv (101)

+αBxB(αB) +

∫
VB\D

vqB(v)x′B(v)dv +
∑
v∈D

qA\B(v)v
[
x+A\B(v)− x−A\B(v)

]
, (102)

which allows us once more to directly account for gaps in the support. We use A\B to

signify that the variable may either belong to distribution A or B.

We consider three distinct cases:

1. both distributions with disjoint support, cutoff t2 below vM , t2 ≤ vM

2. both distributions with disjoint support, cutoff t2 above vM , t2 > vM

3. one distribution with disjoint support: v̂B ∈ [α, t1] ∪ [t2, ω] and v̂A ∈ [t1, t2]

We relabel x̂i(v), q̂i(v) as x̃A(v), q̃A(v) if v > vM and as x̃B(v), q̃B(v) if v < vM . Then, it
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is sufficient to show that

vM x̃A(vM) +

∫ ω

vM
qA(v)x̃′A(v)vdv +

∫ vM

α

qB(v)x̃′B(v)vdv +
∑
v∈D

qA\B(v)v
[
x+A\B(v)− x−A\B(v)

]
,

(103)

> t1x̃B(t1) +

∫ ω

vM
q̃A(v)x̃′A(v)vdv +

∫ vM

α

q̃B(v)x̃′B(v)vdv +
∑
v∈D

q̃(v)v
[
x̃+A\B(v)− x̃−A\B(v)

]
.

(104)

Disjoint Support for F̂A, F̂B: t2 ≤ vM In this case inequality (103) can be amended to

vM x̃A(vM) +

∫ t3

vM
qA(v)x̃′A(v)vdv +

∫ vM

t1

qB(v)x̃′B(v)vdv +
∑
v∈D

qA\B(v)v
[
x+A\B(v)− x−A\B(v)

]
,

(105)

> t1x̃B(t1) +

∫ t3

vM
q̃A(v)x̃′A(v)vdv +

∫ vM

t1

q̃B(v)x̃′B(v)vdv +
∑
v∈D

q̃A\B(v)v
[
x̃+A\B(v)− x̃−A\B(v)

]
,

(106)

as the distributions are identical below t1 and above t3. Note that q̃A(v) = q̂B(v) for

v ∈ [vM , t3]. Taking the difference yields∫ t3

vM
(qA(v)− q̂B(v)) x̃′A(v)vdv (107)

where

qA(v) = 2−H(v) (108)

while

q̂B(v) = 1− F̂B = 1− (H(v)−H(t2) +H(t1)) (109)

Then, for a given v ∈ [vM , t3]

qA(v)− q̂B(v) = 1−H(v) + (H(v)−H(t2) +H(t1)) = 1−H(t2) +H(t1) > 0 (110)

implying that the difference is constant. Expression (107) then becomes:

(1−H(t2) +H(t1))

∫ t3

vM
x̃′A(v)vdv (111)
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We then turn to ∫ vM

t1

(qB(v)− q̃B(v)) x̃′B(v)vdv (112)

Between t2 and vM , q̃B(v) = q̂B(v):

qB(v)− q̂B(v) = 1−H(v)− (1− (H(v)−H(t2) +H(t1))) (113)

= 1−H(v)− 1 + (H(v)−H(t2) +H(t1)) = − (H(t2)−H(t1)) < 0

(114)

which is again constant. For v ∈ [t1, t2], this difference is given by

qB(v)− q̂A(v) = 1−H(v)− (1− (H(v)−H(t1))) (115)

= −H(v) + (H(v)−H(t1)) = −H(t1) (116)

Expression (112) is then equivalent to

∫ vM

t1

(qB(v)− q̃B(v)) x̃′B(v)vdv = − (H(t2)−H(t1))

∫ vM

t2

x̃′B(v)vdv −H(t1)

∫ t2

t1

x̃′B(v)vdv

(117)

Collecting all terms leads to the following comparison

vM x̃A(vM) + (1−H(t2) +H(t1))

∫ t3

vM
x̃′A(v)vdv (118)

− (H(t2)−H(t1))

∫ vM

t2

x̃′B(v)vdv −H(t1)

∫ t2

t1

x̃′B(v)vdv (119)

+ (1−H(t2) +H(t1))
∑

v∈D∩[vM ,t3]

v
[
x̃+A(v)− x̃−A(v)

]
(120)

− (H(t2)−H(t1))
∑

v∈D∩[t2,vM ]

v
[
x̃+B(v)− x̃−B(v)

]
(121)

−H(t1)
∑

v∈D∩[t1,t2]

v
[
x̃+B(v)− x̃−B(v)

]
> t1x̃B(t1) (122)
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Rearranging yields

vM x̃A(vM) +

∫ t3

vM
x̃′A(v)vdv − (H(t2)−H(t1))

∫ t3

t2

x̃′A\B(v)vdv −H(t1)

∫ t2

t1

x̃′B(v)vdv

(123)

+
∑

v∈D∩[vM ,t3]

v
[
x̃+A(v)− x̃−A(v)

]
− (H(t2)−H(t1))

∑
v∈D∩[t2,t3]

v
[
x̃+A\B(v)− x̃−A\B(v)

]
(124)

−H(t1)
∑

v∈D∩[t1,t2]

v
[
x̃+B(v)− x̃−B(v)

]
> t1x̃B(t1) (125)

As H(t1), H(t2)−H(t1) < 1, it suffices to show that

t3x̃A(t3)−
∫ t3

vM
x̃A(v)dv − (t3x̃A(t3)− t1x̃B(t1)) +

∫ t3

t1

x̃(v)dv > x̃B(t1)t1 (126)

⇔
∫ vM

t1

x̃B(v)dv > 0, (127)

which always holds and establishes that any other disjoint distributions do not yield a

higher total effort. As we integrate over allocation probabilities, potential discontinuities

are then once again subsumed.

Disjoint Support for F̂A, F̂B: t2 > vM By the same logic as in the previous case, it is

sufficient to show

vM x̃A(vM) +

∫ t3

vM
qA(v)x̃′A(v)vdv +

∫ vM

t1

qB(v)x̃′B(v)vdv (128)

> t1x̃B(t1) +

∫ t3

vM
q̃A(v)x̃′A(v)vdv +

∫ vM

t1

q̃B(v)x̃′B(v)vdv (129)

We can ignore any potential discontinuities in allocation probabilities here, as we integrate

at the end, meaning the discontinuities will vanish once again. As before, with a different

integration bound below∫ t3

t2

qA(v)− q̂B(v)x̃′A(v)vdv = (1−H(t2) +H(t1))

∫ t3

t2

x̃′A(v)vdv (130)

We turn to ∫ t2

vM
(qA(v)− q̂A(v)) x̃′A(v)vdv (131)

qA(v)− q̂A(v) = 2−H(v)− (1− (H(v)−H(t1))) (132)

= 1−H(v) + (H(v)−H(t1)) = 1−H(t1) (133)
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Then, ∫ t2

vM
(qA(v)− q̂A(v)) x̃′A(v)vdv = (1−H(t1))

∫ t2

vM
x̃′A(v)vdv (134)

Last,

∫ vM

t1

(qB(v)− q̂A(v)) x̃′A(v)vdv = −H(t1)

∫ vM

t1

x̃′B(v)vdv (135)

Collecting terms yields

vM x̃A(vM) + (1−H(t2) +H(t1))

∫ t3

t2

x̃′A(v)vdv + (1−H(t1))

∫ t2

vM
x̃′A(v)vdv (136)

−H(t1)

∫ vM

t1

x̃′B(v)vdv > t1x̃B(t1) (137)

As before it is sufficient to show that

t3x̃A(t3)−
∫ t3

vM
x̃A(v)dv − (t3x̃A(t3)− t1x̃B(t1)) +

∫ t3

t1

x̃A\B(v)dv > x̃B(t1)t1

(138)

⇔
∫ vM

t1

x̃B(v)dv > 0 (139)

This establishes that also in this case, maximal discrimination yields the highest effort.

Disjoint Support for F̂B: t2 > vM Similar to the previous case, we can ignore discon-

tinuities in the allocation probabilities as they will once again vanish in the end. It is

sufficient to show

vM x̃A(vM) +

∫ t2

vM
qA(v)x̃′A(v)vdv +

∫ vM

t1

qB(v)x̃′B(v)vdv (140)

> t1x̃B(t1) +

∫ t2

vM
q̃A(v)x̃′A(v)vdv +

∫ vM

t1

q̃B(v)x̃′B(v)vdv (141)

As before, ∫ t2

vM
qA(v)− q̂A(v)x̃′A(v)vdv = (1−H(t1))

∫ t2

vM
x̃′A(v)vdv (142)∫ vM

t1

qB(v)− q̂A(v)x̃′A(v)vdv = −H(t1)

∫ vM

t1

x̃′A(v)vdv (143)

Following the same steps as before establishes that maximal discrimination yields higher

total effort than this candidate.
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Mixing Split Densities and Disjoint Supports It follows that there cannot be any

other two distributions that combine mixing split densities and disjoint supports that yield

higher total effort compared to maximal discrimination. We can always treat subsets of

the distribution as the entire distribution. This just requires an adjustment of the mass

in a certain subset. Then we can perform the same analysis as we did for a subset, which

yields lower total effort for this subset by the same logic as above.

Therefore, we have established that maximal discrimination is optimal and yields highest

total effort among all possible distributions.�
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