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mogenous goods such as treasury securities and commodities. We prove the uniqueness

of its pure-strategy Bayesian Nash equilibrium and establish a tractable representation

of equilibrium bids. Building on these results we analyze the optimal design of pay-as-

bid auctions, as well as uniform-price auctions (the main alternative auction format),

allowing for asymmetric information. We show that supply transparency and full dis-

closure are optimal in pay-as-bid, though not necessarily in uniform-price; pay-as-bid is
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1 Introduction

Each year, securities and commodities worth trillions of dollars are allocated through multi-

unit auctions. The two primary auction formats for these sales are pay-as-bid and uniform-

price. Pay-as-bid is the more popular of the two auction formats for selling treasury securities,

and it is frequently implemented to distribute electricity generation. It is also used in other

government operations, including recent large-scale asset purchases in the U.S. (quantitative

easing), and is implicitly run in financial markets when limit orders are followed by a market

order.1 Despite their economic importance, relatively little is known about equilibrium

behavior in pay-as-bid auctions. Accordingly, little is known about the design problem faced

by the pay-as-bid auctioneer: for instance, what is the optimal reserve price, and how does

transparency about supply affect the seller’s revenue? Furthermore, empirical studies find

rough revenue equivalence of pay-as-bid and uniform-price auctions, posing an intriguing

puzzle for theoretical research.2

This paper addresses these open questions. We derive an equilibrium in bidding strate-

gies, conditional on the auction’s design, then we solve the auctioneer’s problem, taking

subsequent bidding equilibria as given. Our first contribution lies in expanding the bounds

within which bidding behavior in the pay-as-bid auction is tractable: we allow an arbitrary

number of bidders and general demands. We derive bounds on the market-clearing price

allowing any asymmetric and asymmetrically-informed bidders. In analyzing further partic-

ulars of the bidding equilibrium we initially focus on the case where bidders are symmetrically

informed, and we leverage these results to obtain insights that are valid in the presence of

informational asymmetries.3

1Pay-as-bid auctions are also referred to as discriminatory, or multiple-price auctions. Brenner et al.
[2009] find that 33 of 48 countries surveyed allocate securities via pay-as-bid auction; Del Ŕıo [2017] finds
that 27 of 31 markets surveyed distribute electricity generation via pay-as-bid auction (see also Maurer and
Barroso [2011]). In both settings, most of the remaining markets are cleared by uniform-price auction. For
financial markets, see, e.g., Glosten [1994].

2Pay-as-bid auction equilibria have been constructed in parameterized environments; see our discussion
below. The empirical literature on multi-unit auctions provides no definitive result on which auction format
raises more revenue; Hortaçsu et al. [2018] show that this is potentially because bidders retain little surplus.

3Our results are tightest when informational asymmetries among bidders are small, a property satisfied
in some important environments. For instance, any issue of treasury securities has both close substitutes
whose prices are known, and the forward contracts based on the issue are traded ahead of the auction in
the forward markets, thus providing bidders with substantial information about each others’ valuations. In
empirical analyses, Hortaçsu et al. [2018] argue that bidders in U.S. Treasury auctions of short-term securities
are nearly symmetrically informed, and Armantier and Lafhel [2009] show that bidders in Bank of Canada
auctions are essentially symmetric. The tightness of our results is not affected by the extent of informational
asymmetry between the seller and the bidders; the difference between seller’s and bidders’ information is
typical of the problem we study because the seller designs the auction before (usually substantially before)
the bidders submit their bids. We allow for uncertainty of the total supply available for auction; exogenous
supply uncertainty is a feature of some securities auctions.
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Our theory of equilibrium bidding in pay-as-bid auctions focuses on pure-strategy equilib-

ria; our design insights are valid whether or not we allow mixed strategy-equilibria. For the

case with symmetric bidder information, we prove that pure-strategy equilibrium is unique

and that bids have an unexpectedly tractable closed-form representation. We also establish

a sufficient condition for the existence of equilibrium; our condition is satisfied when, e.g.,

there are sufficiently many bidders. Going beyond symmetric information, we show that the

seller’s revenue in an optimally designed pay-as-bid auction with asymmetric information

is approximately bounded below by the revenue in the benchmark symmetric-information

case.4

Our main design result establishes the revenue-optimality of transparently setting supply

in pay-as-bid auctions: when bidders have symmetric information, revenue in the unique

pure-strategy equilibrium is maximized when supply is deterministic; and, when bidders

have small informational asymmetries, revenue is approximately maximized when supply is

deterministic. Thus determining the optimal supply distribution is equivalent to solving a

standard monopoly problem.5 Moreover, we show that the seller who cannot design the

supply distribution wants to commit to reveal the realization of supply before bids are

submitted. That is, it is optimal for the seller to inform bidders of the supply available,

regardless of her ability to influence its distribution; this is in sharp contrast with the uniform-

price auction, where (we show) deterministic supply is not necessarily revenue-optimal.6

We leverage our results on equilibrium bidding and supply transparency in the pay-as-bid

auction to compare revenues and welfare in optimally-designed pay-as-bid and uniform-price

4We obtain this bound even though it is not clear—nor do we resolve—whether in the limit, as asymmet-
ric information vanishes, asymmetric-information equilibria converge to a pure-strategy equilibrium in the
symmetric-information game. The subtlety is not only that different subsequences might in principle con-
verge to different strategy profiles but also that a convergent subsequence might converge to a mixed-strategy
profile that is different from the unique pure-strategy equilibrium.

5Because the seller in our model can set both a limiting quantity and limiting price, this monopoly
problem is not entirely “standard.” Nonetheless, it is straightforward to envision a monopolist setting both
a limiting price and a limiting quantity. While in this discussion we focus on the seller setting reserve price
and distribution of supply, in Appendix A we show that our insights also extend to the case when the seller
can set a distribution over elastic supply curves; this extension relies on a Myerson-like regularity assumption
imposed on bidders’ values.

6The reason for this failure is the multiplicity of equilibria in uniform-price auctions. Although there
is a uniform-price auction with deterministic supply admitting a revenue-optimal equilibrium, these auc-
tions also admit low- and zero-revenue equilibria (see, e.g., Kremer and Nyborg [2004], LiCalzi and Pavan
[2005], McAdams [2007], Burkett and Woodward [2020b], and Marszalec et al. [2020]). Depending on the
auctioneer’s concern about equilibrium selection, anticipated revenue may improve with some randomization
(see also Klemperer and Meyer [1989], as well as our companion analysis of robust uniform-price bidding in
Pycia and Woodward [2020]). In practice, in many treasury auctions the distribution of supply is partially
determined by the demand from non-competitive bidders, and revenue maximization may not be auctioneer’s
only objective. However, treasuries and central banks have the ability to influence supply distributions, as
well as to release data on non-competitive bids to competitive bidders.
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auctions. We prove that the pay-as-bid format always raises weakly higher revenue, while

the welfare comparison depends on equilibrium selection in uniform-price auction, which in

general allows for multiple equilibria. Approximate revenue dominance and the ambiguity of

the welfare comparison remain valid under small asymmetries in bidder information. Major

empirical studies comparing revenues between pay-as-bid and uniform-price auctions consider

strategy profiles in which bidders in uniform-price bid truthfully for the marginal unit.7

We show that truthful bidding is one equilibrium of an optimally-designed uniform-price

auction and, under this equilibrium selection, we prove that both revenue and welfare are

the same across the pay-as-bid and uniform-price auction formats. Thus our results provide

a theoretical explanation for the approximate revenue equivalence found by empirical work

(see our discussion below).

Before situating our results in the rich related literature, we describe how the pay-as-bid

auction operates. First, the bidders submit bids for each infinitesimal unit of the good. Then,

the supply is realized, and the auctioneer (or, the seller) allocates the first infinitesimal unit

to the bidder who submitted the highest bid, then the second infinitesimal unit to the bidder

who submitted the second-highest bid, etc.8 Each bidder pays her bid for each unit she

obtains. The monotonic nature of how units are allocated implies that a collection of bids a

bidder submitted can be equivalently described as a reported demand curve that is weakly-

decreasing in quantity, but not necessarily continuous; the ultimate allocation resembles that

of a classical Walrasian market, in which supply equals demand at a market-clearing price.

We study pure-strategy Bayesian Nash equilibria of this auction.9

We establish a bound on the equilibrium market clearing price in terms of bidders’

marginal values. The special cases of our bound are implicit in the equilibrium constructions

in the parametric examples of pay-as-bid we discuss below, but ours is the first bound on

all pure-strategy equilibria, the first bound which obtains in environments with asymmetric

information, and the first bound that allows for mixed-strategy equilibria.10 The bound

7See e.g. Hortaçsu and McAdams [2010] and Marszalec [2017], and our discussion below. An exception is
the constrained strategic equilibrium approach developed by Armantier et al. [2008] and applied by Armantier
and Sbäı [2006], among others.

8To fully-specify the auction we need to specify a tie-breaking rule; we adopt the standard tie-breaking
rule, pro-rata on the margin, but our theory of equilibrium bidding does not hinge on this choice. This is in
contrast to uniform-price auction, where tie-breaking matters; see Kremer and Nyborg [2004].

9In equilibrium, each bidder responds to the stochastic residual supply (that is, the supply given the
bids of the remaining bidders). Effectively, the bidder is picking a point on each residual supply curve. In
determining her best response, a bidder needs to keep in mind that: (i) the bid that is marginal if a particular
residual supply curve is realized is paid not only when it is marginal, but also in any other state of nature
that results in a larger allocation, and hence the bidder faces tradeoffs across these different states of nature;
and (ii) bid curves need to be weakly monotonic in quantity, potentially a binding constraint.

10A different bound, in terms of competitive markets, was obtained by Swinkels [1999] for large economies.
Our bound applies is valid in all finite markets.
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plays a crucial role in our analysis of equilibria and in our asymmetric-information revenue

comparisons.

We provide two sufficient conditions for equilibrium existence: a complex condition that

is more general but difficult to analyze, and a simple condition that is less general but

straightforward. Our simple condition reduces the existence question to checking optimiza-

tion properties pointwise. It is satisfied, for instance, in the linear-Pareto settings analyzed

by the prior literature discussed above, as well as for convex marginal values and for any

distribution of supply provided there are sufficiently many bidders.11 There is a large lit-

erature on equilibrium existence in pay-as-bid auctions. In symmetric-information settings,

in addition to the contributions discussed above, Holmberg [2009] proves the existence of

equilibrium when the distribution of supply has a decreasing hazard rate, and recognizes

the possibility that (pure-strategy) equilibrium may not exist.12 Our sufficient condition

for existence encompasses the prior conditions and is substantially milder. In asymmetric

information settings, Athey [2001], McAdams [2003], and Reny [2011] have shown that equi-

librium exists in multi-unit (discrete) pay-as-bid auctions, and Woodward [2019a] established

existence in the divisible-good context that we study.13 A key difference between the results

in these papers and ours is that the presence of private information allows the purification

of mixed-strategy equilibria; such purification is not possible in the symmetric-information

instances of our setting. Our existence conditions are consequences of our uniqueness and

representation theorems, and (unlike general existence results) are not independent of the

form of equilibrium.14

Our theorems establishing the existence and uniqueness of pure-strategy Bayesian Nash

equilibrium in pay-as-bid auctions are reassuring for sellers using the pay-as-bid format; in-

deed, there are well-known problems posed by multiplicity of equilibria in other multi-unit

auction formats.15 Uniqueness is also important for the empirical study of pay-as-bid auc-

tions. Estimation strategies based on the first-order conditions, or the Euler equation, rely

on agents playing comparable equilibria across auctions in the data (Février et al. [2002],

11For many distributions of interest our condition is also satisfied with relatively few bidders; we provide
examples in Section 3.

12See also Fabra et al. [2006], Genc [2009], and Anderson et al. [2013] for discussions of potential problems
with equilibrium existence.

13For equilibrium existence in multi-unit auctions, see also Břeský [1999], Jackson et al. [2002], Reny and
Zamir [2004], Jackson and Swinkels [2005], McAdams [2006], Břeský [2008], and Kastl [2012]. Milgrom and
Weber [1985] show existence of mixed-strategy equilibria.

14In our design analysis, we show that transparency is optimal for the pay-as-bid auctioneer. Thus optimal
pay-as-bid auctions always admit a unique equilibrium, which is in pure strategies.

15We establish the uniqueness of bids for relevant quantities—that is, for quantities a bidder wins with
positive probability. Bids for quantities never obtained play no role in equilibrium outcomes. Our uniqueness
result does not apply to these irrelevant bids.
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Hortaçsu and McAdams [2010], Hortaçsu and Kastl [2012], and Cassola et al. [2013]).16 Equi-

librium uniqueness plays an even larger role in the study of counterfactuals (see Armantier

and Sbäı [2006]).17

Uniqueness was studied by Wang and Zender [2002] who prove the uniqueness of “nice”

equilibria under strong parametric assumptions on utilities and distributions. Assuming that

marginal values are linear and that supply is drawn from an unbounded Pareto distribution,

they analyzed symmetric equilibria in which bids are piecewise continuously-differentiable

functions of quantities and supply is invertible from equilibrium prices; they showed the

uniqueness of such equilibria. Holmberg [2009] restricted attention to symmetric equilibria

in which bid functions are twice differentiable, and—assuming that the maximum supply

strictly exceeds the maximum total quantity the bidders are willing to buy—proved the

uniqueness of such smooth and symmetric equilibria.18 Ewerhart et al. [2010] and Ausubel

et al. [2014] independently expand these analyses to Pareto supply with bounded support and

linear marginal values. Restricting attention to equilibria in which bids are linear functions

of quantities, they showed the uniqueness of such linear equilibria. In contrast, we look at

all Bayesian Nash equilibria of our model, we impose no parametric assumptions (not even

continuity) and we do not require that some part of the supply is not wanted by any bidder.19

Our uniqueness result is also related to Klemperer and Meyer [1989] who established

uniqueness in a duopoly model closely related to uniform-price auctions: when two symmetric

and uninformed firms face random demand with unbounded support, then there is a unique

equilibrium in their model.20 The main difference between the two papers is, of course, that

Klemperer and Meyer analyze the uniform-price format, while we look at pay-as-bid.21

16Maximum likelihood-based estimation strategies (e.g. Donald and Paarsch [1992]) also rely on agents
playing comparable equilibria across auctions in the data. Chapman et al. [2005] discuss the requirement of
comparability of data across auctions.

17See also, in a related context, Cantillon and Pesendorfer [2006].
18Holmberg’s assumption that bidders do not want to buy part of the supply represents a physical con-

straint in the reverse pay-as-bid electricity auction he studies: in his paper bidders supply electricity and
face capacity constraints—beyond a certain level they cannot produce more. This low-capacity assumption
drives the analysis and it precludes directly applying the same model in the context of securities auctions in
which bidders are always willing to buy more (provided the price is sufficiently low).

19As a consequence of this generality, we need to develop a methodological approach which differs from
that of the prior literature. McAdams [2002] and Ausubel et al. [2014] have also established the uniqueness
of equilibrium in their respective parametric examples with two bidders and two goods.

20The analogue of their unbounded support assumption is our assumption that the support of supply
extends all the way to no supply. While the two assumptions look analogous they have very different
practical implications. In a treasury auction, for example, a seller can guarantee that with some tiny
probability the supply will be lower than the target; in fact, in practice the supply is often random and
our support assumption is satisfied. On the other hand, it is substantially more difficult, and practically
impossible, for the seller to guarantee the risk of arbitrarily-large supplies. Note also that we have known
since Wilson [1979] that the uniform-price auction may admit multiple equilibria. No similar multiplicity
constructions exist for pay-as-bid auctions.

21The proof of our uniqueness result follows a differential analysis familiar from uniqueness results for
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Our bid representation theorem may be seen as a finite-market counterpart of Swinkels

[2001], who studies pay-as-bid and uniform-price auctions in large markets, and in the limit,

as the number of bidders goes to infinity, our representations are equivalent. He restricts

attention equilibria that are asymptotically environmentally similar, an assumption we do

not need. Our contribution also lies in establishing the representation of bids as averages

of marginal values in all finite markets and not only in the limit. Holmberg [2009] derives

a closed-form representation for symmetric and smooth equilibria subject to constraints on

supply. We make no such assumptions, and instead prove that equilibria are symmetric

and smooth; our results therefore provide support for his analysis and our finite-market

representation of bids as weighted averages of marginal values is new.

Our bid representation result is surprising in the context of prior finite-market literature,

which can be naturally read as suggesting that pay-as-bid equilibria are complex in the envi-

ronments we study.22 Prior constructions of finite-market equilibria focused on the setting in

which bidders’ marginal values are linear in quantity and the distribution of supply is (a spe-

cial case of) the generalized Pareto distribution; see Wang and Zender [2002], Federico and

Rahman [2003], Hästö and Holmberg [2006], Holmberg [2009], Ewerhart et al. [2010], and

Ausubel et al. [2014]. This literature expressed equilibrium bids in terms of the intercept and

slope of the linear demand and the parameters of the generalized Pareto distribution. Our

treatment is not only more general but it also avoids the complexity inherent in expressing

bids in terms of parameters of the functional forms studied in the earlier literature.

Our transparency result—that deterministic selling strategies are optimal—may appear

familiar from the no-haggling theorem of Riley and Zeckhauser [1983]. However, in multi-

object settings the reverse has been shown by Pycia [2006] and Manelli and Vincent [2006];

and, as mentioned above, nondeterministic supply may have a role in uniform-price auctions.

Furthermore, there is a subtlety specific to pay-as-bid that might suggest a role for random-

ization: by randomizing supply below the monopoly quantity, the seller forces bidders to

compete and bid more for these quantities, and in pay-as-bid the seller collects the raised

bids even when the realized supply is near the monopoly quantity. We show that, despite

these considerations, committing to deterministic supply is indeed optimal.23

first-price auctions (see, e.g., Maskin and Riley [2003], Lizzeri and Persico [2000], and Lebrun [2006]), but
our analysis establishing the initial condition for the differential analysis is distinct.

22We focus our discussion on settings with decreasing marginal utilities; for constant marginal utilities see
Back and Zender [1993], and Ausubel et al. [2014] among others.

23We further establish that the seller sets deterministic supply in all perfect Bayesian equilibria of the
game in which the seller first designs a pay-as-bid auction and then the bidders bid; this is in contrast to
uniform-price auction design games for which we construct equilibria in which the seller sets random supply
(even though we show that the revenue-maximal equilibrium has deterministic supply in the uniform-price
auction, as in the pay-as-bid auction). Note that Chen et al. [2019] show that individual outcomes of a
given random mechanism can be replicated by a deterministic mechanism when there are multiple privately
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We also establish a disclosure result: independent of the parameterization of the auction,

the seller prefers to commit to announce the realization of supply prior to bid submission.

Whether to reveal supply is an important question in treasury auctions, where the seller

has pertinent information on supply prior to the auction.24 The reason for this disclosure

result (as well as the preceding transparency result) is a novel bound on revenues in pay-

as-bid auctions with random supply, rather than Milgrom and Weber’s [1982] celebrated

linkage principle; the linkage principle is known to fail in the multi-unit auction context, cf.

Perry and Reny [1999] and Vives [2010]. Furthermore, while our setting is one of Bayesian

persuasion and information design, the full disclosure we establish stands in stark contrast

to Kamenica and Gentzkow’s [2011] paradigmatic insight that in information design and

Bayesian persuasion the sender wants to withhold—or obfuscate—information. Related

to information design, Bergemann et al. [2017] and Bergemann et al. [2019] also find the

optimality of withholding information in single-unit auctions. The reason why there is no

contradiction between these results and our finding the optimality of full disclosure is that

their sender possesses information about bidders’ valuations while in our analysis the bidders

(receivers) are fully informed of their own value functions and the seller (sender) has and

can release information about the quantity supplied, which is a key element of the bidders’

strategic interaction.25 Our disclosure results also contribute to the literature on dynamic

mechanism design (cf., e.g., Pavan et al. [2014]).

While we are not aware of prior literature on optimal design of supply and reserve prices

in pay-as-bid, the general mechanism design question was addressed by Maskin and Riley

[1989]: what is the revenue-maximizing mechanism to sell divisible goods? The optimal

informed participants, while we show that not only can the maximal revenue generated by any random
pay-as-bid auction be obtained by some deterministic mechanism, but also that this is possible without
fundamentally changing the auction mechanism.

24The empirical impact of transparency has been extensively studied in the context of over-the-counter
markets, for a recent review of this literature see e.g. Garratt et al. [2019]. The impact of transparency in
uniform-price auctions has been experimentally studied by Hefti et al. [2019].

25In single-unit auctions bidders necessarily have full information regarding the quantity supplied, and the
auctioneer’s role in information design is inherently limited. Fang and Parreiras [2003] and Board [2009]
study the limits of the linkage principle and the resulting benefits of information withdrawal or obfuscation.
The optimality of obfuscation generally obtains in setting in which the participation constraints are interim
and the seller cannot charge for information (cf. Bergemann and Pesendorfer [2007]). Even if the seller can
charge for information, obfuscation is shown to be optimal by Li and Shi [2017] except under orthogonality
assumptions of Eső and Szentes [2007]. Obfuscation is also established in other settings in which—like in our
auction setting—the sender’s interest (more revenue) is fundamentally misaligned with the bidders’ interests
(reducing payment); in a global games context see, e.g., Li et al. [2020]. For analysis of bidders’ investment
in information acquisition in auctions see e.g. Persico [2000] who finds that bidders in first-price auctions
acquire more value-relevant information than bidders in second-price auctions. Finally, while we study a
seller/sender who is able to commit to a disclosure strategy, our disclosure result immediately implies that
a sender unable to commit would also fully reveal supply information. For information disclosure under no
commitment see e.g. Grossman and Hart [1980] and Milgrom [1981].
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mechanism they described is complex and in practice the choice seems to be between the

much simpler auction mechanisms: pay-as-bid and uniform-price.26 On the other hand, de-

sign issues have been addressed in the context of uniform-price auction. The design analysis

of uniform-price focused on preventing collusive equilibria: Klemperer and Meyer [1989] point

out that the auctioneer can induce competition in a uniform-price auction by introducing

slight randomness in supply, Kremer and Nyborg [2004] look at the role of tie-breaking rules,

LiCalzi and Pavan [2005] and Burkett and Woodward [2020b] at elastic supply, McAdams

[2007] at commitment, and Burkett and Woodward [2020a] at the role of price selection.

By proving equilibrium uniqueness for pay-as-bid we show its resilience to equilibrium col-

lusion, thus providing a pay-as-bid counterpart for this literature. We also contribute to

this uniform-price literature directly by showing that not only the seller but also the bidders

might be made worse off by the possibility of tacit collusion; the reason is that the seller who

expects a collusive equilibrium in uniform-price auction might optimally respond by setting

a high reserve price, thus recovering some of the revenue at the cost of bidders’ surplus.

Our revenue and welfare comparisons between pay-as-bid and uniform-price auctions con-

tribute to the rich discussion of the pros and cons of these two formats. Swinkels [2001] fo-

cused on equilibria satisfying an asymptotic environmental similarity assumption and showed

that pay-as-bid and uniform-price are revenue- and welfare-equivalent in large markets; Jack-

son and Kremer [2006] find revenue- and welfare- equivalence in large market limit under

the assumption that the proportion of supply to the number of bidders vanishes to zero;

our equivalence result does not rely on the size of the market, nor on an environmental

similarity assumption, nor on extreme competition among bidders. Wang and Zender [2002]

find pay-as-bid revenue superior in the equilibria of the complete-information linear-Pareto

model their consider, and Woodward [2019b] extends this dominance to mixed-price com-

binations of pay-as-bid and uniform-price auctions. Ausubel et al. [2014] show that—with

ex-ante asymmetric bidders with flat demands—either format can be revenue superior.27 Our

results on approximate revenue equivalence with small informational asymmetries comple-

ment this ambiguity: for uniform-price to raise significantly more revenue than pay-as-bid,

bidders must be significantly asymmetric. In aggregate, prior theoretical work on the pay-

as-bid versus uniform-price question has focused on revenue comparisons for fixed supply

26Furthermore, in the environments we focus on, the bidders’ private information is correlated and hence
the seller can nearly extract their full surplus using Crémer-McLean-type mechanisms [Crémer and McLean,
1988]; cf. footnote 58.

27When bidders have symmetric or non-flat demands, pay-as-bid is revenue superior in all examples they
consider. The special supply distributions these papers consider are not revenue-maximizing, hence there is
no conflict between their strict rankings and our revenue equivalence. See also Jackson and Kremer [2006]
who find that—with non-optimized supply—either format can be revenue superior, and Anwar [1999] and
Engelbrecht-Wiggans and Kahn [2002] for revenue comparisons with flat demands.
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distributions and has allowed for neither reserve price nor supply optimization; indeed, the

previous studies of pay-as-bid auctions with decreasing marginal values employed paramet-

ric specifications that did not support the analysis of design questions. Thus these results

cannot address whether a well-designed pay-as-bid auction is preferable to a well-designed

uniform-price auction. We go beyond these earlier papers both by allowing for the seller’s

optimization and by imposing no assumptions on the seller’s information about the bidders.

Our divisible-good optimal revenue equivalence result provides a benchmark for the long-

standing empirical debate whether pay-as-bid or uniform-price auctions raise higher expected

revenues. This debate has attracted substantial empirical attention, with Hortaçsu and

McAdams [2010] and Barbosa et al. [2020] finding no statistically significant differences

in revenues, Février et al. [2002], Kang and Puller [2008], Armantier and Lafhel [2009],

Marszalec [2017], and Mariño and Marszalec [2020] finding slightly higher revenues in pay-

as-bid, and Castellanos and Oviedo [2008], Armantier and Sbäı [2006], and Armantier and

Sbäı [2009] finding slightly higher revenues in uniform-price. Hortaçsu et al. [2018] argue

that the revenues are similar.28 As noted above, several of these papers conduct a counterfac-

tual estimation of uniform-price revenues assuming truthful bidding, which is precisely the

equilibrium selection under which our theoretical revenue and welfare equivalence obtains.29

Our results regarding the selection of auction format have other empirical implications.

We show in our analysis of the auction design game that the auctioneer either strictly prefers

a pay-as-bid auction or is indifferent between the pay-as-bid and uniform-price formats.

All else equal, our model suggests that pay-as-bid auctions should be more prevalent than

uniform-price auctions. This claim is supported by the multi-country analysis of security

auction implementation in Brenner et al. [2009], which finds that pay-as-bid auctions are

implemented by more than twice as many nations as implement uniform-price auctions, as

well as the analysis of electricity markets in Del Ŕıo [2017], which finds that pay-as-bid

auctions represent nearly 90% of electricity auctions. Additionally, counterfactual analysis

of uniform-price auctions assumes truthful reporting of values to obtain an upper bound

28They note that bids in U.S. Treasury auctions are typically “flat” and infer that not much surplus is
retained by bidders; an alternative explanation highlighted by our analysis is that the bidders are close to
being completely informed. Note also that while flatness implies that there is not much difference between
the revenues generated by the pay-as-bid and uniform-price auctions, the uniform-price auction brings large
downside potential in the form of collusive-seeming behavior. Our uniqueness theorem shows that the pay-
as-bid format mitigates this risk. Of note in this context is Häfner [2020], who empirically demonstrates
that bidders overbid in pay-as-bid auctions.

29We show that revenue is maximized in the uniform price auction when the seller offers a deterministic
quantity for sale, and bidders bid their true marginal values for the quantity they obtain. Whether they
bid their true marginal values for quantities they do not obtain is irrelevant in equilibrium, thus we re-
fer to truthful bidding at the received quantity as truthful bidding. This assumption is satisfied in some
counterfactual approaches, where a bid curve is truthful if it matches the bidder’s marginal value curve.
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on unobserved revenue. Our results can be taken to show that this bound is tight only

if bidders are playing a seller-optimal equilibrium; otherwise there may be a significant

divergence between observed revenue and counterfactual predictions. Additionally, since

revenue-dominance of the pay-as-bid auction implies that a seller should implement the

uniform-price format only if she expects this favorable equilibrium to be played, we should

expect counterfactual analysis from witnessed uniform-price auctions to find approximate

revenue equivalence.

In our supplementary note [Pycia and Woodward, 2020] we provide additional results and

applications that complement the present paper. Complementing the equilibrium uniqueness

for pay-as-bid, in the supplementary note we analyze equilibrium multiplicity in uniform-

price auctions. We also apply our transparency result to study the relationship of the pay-

as-bid auctioneer to a classical monopolist. We show that the auctioneer’s design problem

is separable, and that the decisions of optimal supply and optimal reserve may be analyzed

independently and show that this implies that increased variance of bidder values is good

for the seller.

Finally, let us note that our analysis of pay-as-bid auctions can be reinterpreted as a model

of dynamic oligopolistic competition among sellers who at each moment of time compete à

la Bertrand for sales and who are uncertain how many more buyers are yet to arrive. Prior

sales determine the production costs for subsequent sales, thus the sellers need to balance

current profits with the change in production costs in the future. This methodological link

between pay-as-bid auctions and dynamic oligopolistic competition is new, and we develop

it in follow up work.30

2 Model and a Market Price Bound

There are n ≥ 2 bidders, i ∈ {1, ..., n}. Bidder i’s marginal valuation for quantity q is

denoted vi(q; si), where si is a signal privately known to bidder i. Without loss of generality,

we decompose the signals as si = (s, θi), where s is common to all bidders and θi is private

to bidder i. We assume that each vi(·; si) is strictly decreasing where it is strictly positive,

Lipschitz continuous, and almost-everywhere differentiable in q, and, with the exception of

Theorem 1, we study the symmetric case vi(q; si) = v(q; si). We allow arbitrary dimen-

30The oligopolistic sellers uncertain of future demands correspond to bidders in the pay-as-bid auction,
and sellers’ costs correspond to bidders’ values. For prior studies of dynamic competition see e.g. Deneckere
and Peck [2012]; while they study competition among a continuum of sellers, the pay-as-bid-based approach
allows for the strategic interaction between a finite number of sellers. The other canonical multi-unit auction
format, the uniform-price auction, was earlier interpreted in terms of static oligopolistic competition by
Klemperer and Meyer [1989].
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sionality of si, and an arbitrary integrable v(q; ·). The seller is uninformed and we study

environments in which si are highly correlated across bidders: in Sections 3–5 we analyze

the case when the correlation is perfect, s1 = ... = sn = (s, 0), without imposing any further

assumptions on the distribution of s; in Section 6 we relax the perfect correlation assump-

tion and show that the insights of Sections 3–5 are robust to this relaxation. Under perfect

correlation, signal s has no strategic importance for bidders participating in an auction, and

thus when studying the equilibrium among such bidders in Section 3, we fix s and denote

the bidders’ marginal valuation by vi(q; si) = v(q). Bidders’ information plays an important

role in the analysis of the seller’s problem in Sections 4, 5, and 6.31

To simplify the exposition of the design problem, we normalize the seller’s cost to 0. Our

insights do not hinge on this normalization, and remain valid for any convex increasing cost

function.32 Our design analysis builds on the existence, uniqueness, and bid representation

results for pure-strategy Bayesian Nash equilibria of the pay-as-bid auction. We thus start

by analyzing such equilibria. In the equilibrium analysis we study supply Q drawn from

distribution F with density f > 0 and support [0, Q]; we also allow F with full mass con-

centrated at one point. Q is independent of the bidders’ signal s.33 Otherwise we impose no

global assumptions on F . In our analysis of auction design, the seller is free to choose any

such distribution F as long as Q ≤ Qmax, where Qmax is the maximum supply available to

the seller.34

The seller implements a reserve price R. We denote by Q
R

= QR(Q, s, θ) the effective

maximum quantity allocated, equal to the Q if the reserve is not binding and equal to the

amount demanded at price R by bidders with signals s and θ = (θ1, ..., θn) when the reserve

is binding. More formally, and allowing any Q ≤ Q, we define QR (Q, s, θ) = Q if R = 0,

and QR (Q, s, θ) = min
{
Q,
∑

i=1,..,n v
−1 (R; s, θi)

}
if R > 0 (note that the inverse v−1 is well

defined for R > 0).

In the pay-as-bid auction, each bidder submits a weakly decreasing bid function bi(q) :

[0, Q] → R+. Without loss of generality we may assume that the bid functions are right-

31The seller may not know the bidders’ information if, for example, the seller needs to commit to the
auction mechanism before this information is revealed. Alternatively, the seller may want to fix a single
design for multiple auctions.

32The reason why more general cost functions do not substantively change the analysis is that the Trans-
parency Theorem (Theorem 6), on which the analysis of design builds, is valid irrespective of seller’s cost
function. We provide more detailed discussion in Section 4.

33This last assumption is not needed in our analysis of elastic supply (see Appendix A). Q might be an
on-path or off-path supply in seller’s design problem or it might represent e.g. supply net of non-competitive
bids as discussed in Back and Zender [1993], Wang and Zender [2002], and subsequent literature.

34We could allow for infinite Qmax as long as the optimal monopoly quantity remains finite. This would
be so if, e.g., the seller faces increasing and convex marginal costs of supply, or there is no heavy tail of
marginal values.
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continuous.35 The auctioneer then sets the market price p? (also known as the stop-out

price),

p? = max
{
R, sup

{
p′ : q1 + ...+ qn ≥ Q for all q1, . . . , qn such that b1 (q1) , ..., bn (qn) ≤ p′

}}
.

If the set over which the supremum is taken is empty, then the stop-out price is set to the

reserve price R. Agents are awarded a quantity associated with their demand at the stop-out

price,

qi = max
{
q′ : bi (q′) ≥ p?

}
,

as long as there is no need to ration them. When necessary, we ration pro-rata on the margin,

the standard tie-breaking rule in divisible-good auctions. The details of the rationing rule

have no impact on the analysis of equilibrium bidding we pursue in Section 3.36 The demand

function (the mapping from p to qi) is denoted by ϕi(·).37 Agents pay their bid for each unit

received, and utility is quasilinear in monetary transfers; hence,

ui
(
bi
)

=

∫ qi(p?)

0

v (x)− bi (x) dx.

2.1 A Bound on Market Price

Our analysis of optimal bidding relies on the following key theorem proven in Supplementary

Appendix B; in this theorem we impose no restrictions on bidders’ information and we allow

mixed-strategy equilibria.

Theorem 1. [A Bound on Market Price] In any mixed-strategy equilibrium of the pay-

as-bid auction, for any signal profile (s, (θ1, . . . , θn)) all realizations of the market clearing

price for the effective maximum quantity Q
R

are bounded between the smallest and largest

35This assumption is without loss because we study a perfectly-divisible good and we ration quantities
pro-rata on the margin. Indeed, we could alternatively consider an equilibrium in strategies that are not
necessarily right-continuous. By assumption, the equilibrium bid function of a bidder is weakly decreasing,
hence by changing it on measure zero of quantities we can assure the bid function is right continuous. Such a
change has no impact on this bidder’s profit, or on the profits of any of the other bidders, because rationing
pro-rata on the margin is monotonic in the sense of footnote 36. In fact, there is no impact on bidders’
profits even conditional on any realization of Q.

36The only place when we rely on rationing rule is the analysis of reserve prices but even in this part of
the analysis all we need is that rationing rule is monotonic: that is, the quantity assigned to each bidder
increases when the stop-out price decreases; rationing pro-rata on the margin satisfies this property.

37Where bi(·) is constant, ϕi is not well-defined. Where important, we will use ϕi and ϕi to denote the right-

and left-continuous (respectively) inverses of b, ϕi (p) = sup
{
q : bi (q) > p

}
and ϕi (p) = sup

{
q : bi (q) ≥ p

}
.
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marginal value at the per-capita effective maximum quantity,

min
i

ess inf
θ̃i

vi
(

1

n
Q
R

; s, θ̃i

)
≤ p

(
Q
R

; s, θ
)
≤ max

i
ess sup

θ̃i

vi
(

1

n
Q
R

; s, θ̃i

)
.

The proof of Theorem 1 shows a slightly stronger claim: for any realization of (s, θ), the

equilibrium bid for the maximum quantity bidder i, with type si = (s, θi), can obtain equals

the bidder’s marginal value for this quantity; or, bids equal values at the maximum feasible

quantity. The intuition for this claim is that if a bidder has strictly positive margin at the

maximum feasible quantity, they can slightly increase their bid and obtain a non-negligible

additional quantity at minimally higher price, which is a profitable deviation; the proof of

Theorem 1 formalizes this intuition and takes care of technical complications related to tie-

breaking, flat bids, and binding monotonicity constraints. Note that this intuition applies

only to the maximum quantity at which the increased bid is paid only when it is marginal;

at any lower quantity the increased bid would need to be paid also when inframarginal.

Because bids are decreasing in quantity, the equilibrium market-clearing price is mini-

mized when realized quantity is maximized, Q = Q
R

. Thus, the theorem provides bounds

on the minimum market price. Furthermore, when bidders are symmetric and have only

common and no idiosyncratic information, then

min
i

ess inf
θ̃i

vi
(

1

n
Q
R

; s, θ̃i

)
= v

(
1

n
Q
R

; s

)
= max

i
ess sup

θ̃i

vi
(

1

n
Q
R

; s, θ̃i

)
That is, the market price at the maximum quantity is exactly equal to each bidder’s marginal

value at the last unit they receive; this equality is illustrated in Figure 1 in Section 3 below.

Because bids equal values at bidders’ maximum feasible quantities, and these quantities

are sold at the maximum realized supply, the equality of market price and bidders’ marginal

values obtains at the maximum realized supply. The market-clearing price is minimized at

this supply, but the lower bound of Theorem 1 remains valid irrespective of the realization

of supply. The market-clearing price at supply lower than Q
R

can (and frequently does) rise

above maxi ess supθ̃i v
i(Q

R
/n; s, θ̃i).

Theorem 1 plays a crucial role in our equilibrium uniqueness result for symmetrically

informed bidders, and hence in many of our subsequent results. Theorem 1 also plays a key

role in our bounds on pay-as-bid revenues beyond the symmetrically-informed bidders case

as well as in our revenue comparison of pay-as-bid and uniform-price auctions.
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3 Pay-as-Bid Equilibrium

We start our analysis by establishing novel and general results for the benchmark case when

bidders are symmetrically informed, θ1 = ... = θn. We relax this assumption in Section 6.

When analyzing an equilibrium of the pay-as-bid auction, signals s and θ have no strategic

importance for bidders and thus we hold them fixed, and denote the bidders’ symmetric

marginal valuation by vi(q; si) = v(q).

3.1 Existence, Uniqueness, and Bid Representation

We first show that equilibrium is unique and tractable. The existence of equilibrium can then

be analyzed in terms of what equilibrium strategies must be, if an equilibrium exists. We

therefore defer discussion of existence until after our uniqueness and representation results,

and for expositional simplicity our uniqueness and representation results are formulated con-

ditional on the existence of Bayesian Nash equilibrium. Furthermore, these results constrain

attention to relevant quantities at which bids can possibly affect utility; bids for quantities

which the bidder never receives must be weakly decreasing and sufficiently competitive, but

are not typically uniquely determined.38 Proofs of all results may be found in Supplementary

Appendix C.

Theorem 2. [Uniqueness] The Bayesian Nash equilibrium is unique.

For an intuitive approach to this theorem, notice that if we restricted attention to sym-

metric and smooth equilibria (which we do not), then uniqueness would follow from Theorem

1. Indeed, in a symmetric smooth equilibrium bidders’ first-order conditions give us an or-

dinary differential equation and Theorem 1 provides us with a unique initial condition for

this equation by uniquely determining the price p(Q
R

) at the maximum supply and hence,

in a symmetric equilibrium, the bids for quantity Q
R
/n. The proof, provided in Supple-

mentary Appendix C, builds on this idea and addresses the difficulties raised by potential

asymmetries, non-differentiabilities, and discontinuities.

Equilibrium uniqueness leads us to the bid representation theorem, expressed in terms of

weighting distributions. For any quantity Q ∈ [0, Q), the n-bidder weighting distribution of

F has c.d.f. FQ,n that increases from 0 when x = Q to 1 when x = Q. This c.d.f. is given

38The reason a bidder’s bids on never-won quantities need to be sufficiently competitive is to ensure that
other bidders do not want decrease their bids on relevant quantities. With a binding reserve price, the bids
on never-won quantities may not need to be competitive and hence these bids are even less determined,
but the equilibrium bids on the relevant quantities—those which are sometimes marginal—remain uniquely
determined. Importantly, these bids being insufficiently competitive does not induce alternate equilibria:
there are no equilibria in which these bids are lower than required to support the unique equilibrium we find.
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by

FQ,n (x) = 1−
(

1− F (x)

1− F (Q)

)n−1
n

.

The auxiliary c.d.f.s FQ,n play a central role in our bid representation theorem below. These

distributions depend only the number of bidders and the distribution of supply, and not on

any bidder’s true demand. As the number of bidders increases the weighting distributions

put more weight on lower quantities.

Theorem 3. [Bid Representation] The unique equilibrium is symmetric. For any quantity

q ∈ [0, Q
R
/n], the bid bi of each bidder i is given by

bi (q) =

∫ Q

nq

v

min
{
x,Q

R
}

n

 dF nq,n (x) . (1)

For any quantity Q ∈ [0, Q] the resulting market-clearing price function is given by

p (Q) =

∫ Q

Q

v

min
{
x,Q

R
}

n

 dFQ,n (x) . (2)

When the reserve price does not bind, formulas (1) and (2) simplify, as Q
R

= Q and

min
{
x,Q

R
}

= x.39

Recall that we impose no assumptions on symmetry of equilibrium bids, their strict

monotonicity, nor continuity or differentiability; we derive all these properties. Furthermore,

the equilibrium bids bi are appropriately-weighted averages of bidders’ marginal values v,

and in this they resemble the bids in first-price auctions with privately-informed bidders.

Because marginal values are decreasing in quantity, bids are below values—that is, bidders

are shading their bids—except for the bid on the effective maximum quantity where limit

equality obtains, an equality consistent with Theorem 1. Because the unique equilibrium is

symmetric, the market price p (Q) given supply Q and the bid functions bi are related in a

natural way, bi (q) = p (nq) .

Consider three examples. Substitution into our bid representation shows that when

marginal values v are linear and the supply distribution F is generalized Pareto, F (x) =

39Because min{x,QR} is constant for x > Q
R

, the equilibrium bid equation can be rewritten as

bi (q) =

∫ Q
R

min
{
nq,Q

R
} v (x

n

)
dFnq,n (x) + v

(
Q
R

n

)(
1− Fnq,n

(
Q
R
))

.

The equilibrium market price equation can be expressed similarly.
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Figure 1: Equilibrium bids when values are linear and the distribution of supply Q is trun-
cated normal.

1 −
(

1− x
Q

)α
for some α > 0, the equilibrium bids are linear in quantity. This case of our

general setting has been analyzed by Ewerhart et al. [2010], and Ausubel et al. [2014].40 Our

bid representation remains valid when F has a mass point at Q, and this insight is crucial

to our analysis of reserve prices. This is true even when the distribution is degenerate and

puts all its mass on Q : taking the limit of continuous probability distributions which place

increasingly more probability near Q, the representation implies that equilibrium bids are

flat, as they should be (see Corollary 1). Finally, Figure 1 illustrates the equilibrium bids for

ten bidders with linear marginal values who face a distribution of supply that is truncated

normal. This and the subsequent figures represent bids, marginal values, and the c.d.f. of

supply; it is easy to distinguish between the three curves since bids and the marginal values

are decreasing (and bids are below marginal values) while the c.d.f. is increasing.41

Theorem 4. [Existence] There exists a pure-strategy Bayesian Nash equilibrium whenever

for any q ∈ [0, 1
n
Q
R

], (v(q)− b)(1− F (q + (n− 1)ϕ(b)) is single-peaked on b ∈ [p(Q
R

), v(q)].

The algebraic expression in Theorem 4 is the bidder’s pointwise first-order condition

for optimal bidding (this expression is derived in Appendix C). Then Theorem 4 states

that equilibrium exists if at each relevant quantity q the bid bi (q) satisfies the standard

40They calculate bid functions in terms of the parameters of their model (linear marginal values and Pareto
distribution of supply) and do not rely on or recognize the representation of bids as weighted averages that
is crucial to our subsequent analysis.

41In all figures, we check our equilibrium existence condition and calculate bids numerically using R. In
Figure 1 we use a normal distribution with mean 3 and standard deviation 1, truncated to the interval [0, 6].
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second order condition of bidder i’s quantity-by-quantity (pointwise) utility optimization.

The result follows from familiar arguments in single-dimensional contexts. Ignoring the

constraint that bids must be weakly decreasing in quantity, if a bid function solves the

bidder’s optimization pointwise then it is a global maximum and a best response. Given a

quantity q, if the pointwise objective is single-peaked on the range of feasible prices there

is at most one bid at which the best response first-order condition is satisfied. Since bids

in the symmetric equilibrium given in Theorem 3 solve these first-order conditions, they

are best responses. Note that Theorem 3 implies that the inverse bid ϕ is expressible in

terms of model fundamentals, so Theorem 4 is not conditioning equilibrium existence on an

equilibrium object. We provide a proof and additional comments on our existence condition

in Supplementary Appendix C.3.

Consider some examples. Our sufficient condition is satisfied when marginal values v

are linear and F is a uniform distribution or a generalized Pareto distribution, F (x) =

1−
(

1− x
Q

)α
where α > 0.42 When marginal values have slope bounded away from zero, this

condition is also satisfied for any twice-differentiable c.d.f. F provided there are sufficiently

many bidders.43 And, the sufficient condition is satisfied whenever the inverse hazard rate H

is increasing—hence when the hazard rate is decreasing—irrespective of the marginal value

function v.44 This follows since the left- and right-hand terms of the objective are decreasing

in b (ϕ is decreasing in b). In the sequel we illustrate our other results with additional

examples in which a pure-strategy equilibrium exists.45

While our sufficient condition shows that equilibrium exists in many cases of interest,

there are situations in which the equilibrium does not exist; see our discussion in the intro-

duction.46

42The existence of equilibrium in the linear/generalized Pareto example was independently established by
Ewerhart et al. [2010] and Ausubel et al. [2014] for bounded generalized Pareto distributions and Wang and
Zender [2002], Federico and Rahman [2003], and Holmberg [2009] for unbounded Pareto distributions.

43This is easiest to see in the weaker but more technical condition preceding the proof of Theorem 4 in
Supplementary Appendix C.3. Holding F constant, if there is a (Q, p) at which the implication is violated
then if there are n′ < n bidders there is a (Q′, p′) such that the condition is also violated, since p(·) is
increasing in n. Holding per-capita supply constant, Yq → 0 for almost every Q, so when vq > ε > 0 the
implication will be satisfied. In the limit where per-capita supply goes to zero, equilibrium existence was
recognized by Swinkels [1999] and Jackson and Kremer [2006].

44The sufficiency of decreasing hazard rate for equilibrium existence was established by Holmberg [2009].
45The first of these examples features a normal distribution, the second one features strictly concave

marginal values, and the last one features reserve prices. In general, our existence condition is closed with
respect to several changes of the environment: adding a bidder preserves existence, making the marginal
values less concave (or more convex) preserves existence, and raising the reserve price preserves existence.

46The construction of a tighter existence condition is complicated by the possibility of monotonicity-
constrained deviations from the symmetric solution to the market clearing equation provided in Theorem
3. A global best response might exist which is the aggregation of nonoptimal local behavior. Our sufficient
condition implies that the optimization problem is single-peaked in bid, and there is a unique global optimum.
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Figure 2: Bids are flatter for more concentrated distributions of supply.

The rest of our paper builds upon the above results to establish qualitative properties of

the unique equilibrium, and to provide guidance as to how to design divisible good auctions

including for environments in which bidders’ information is not perfectly correlated.

3.2 Equilibrium Properties and Comparative Statics

The bid representation of Theorem 3 has many natural implications. We discuss them in

this subsection and provide a related link between revenue and the distribution of private

information in Section 6.

A case of particular interest arises when the distribution of supply is concentrated near

some target quantity. We say that a distribution is δ-concentrated near quantity Q∗ if 1− δ
of the mass of supply is within δ of quantity Q∗. Our bid representation theorem implies

that the bids on initial quantities are nearly flat for concentrated distributions.

Corollary 1. [Flat Bids] For any ε > 0 and quantity Q∗ there exists δ > 0 such that, if

supply is δ-concentrated near Q∗ ≤ Q
R

, then the equilibrium bids for all quantities lower

than Q∗

n
− ε are within ε of v

(
Q∗

n

)
.

Figure 2 depicts the flattening of equilibrium bids predicted by Corollary 1; in the three

sub-figures ten bidders face supply distributions that are increasingly concentrated around

the total supply of 6 (per capita supply of 0.6).

Remark 1. To illustrate the value of Corollary 1, let us consider the analysis of U.S. Treasury

auctions for short-term securities in Hortaçsu et al. [2018]. In these auctions supply ran-

domness is low, and empirically-observed uniform-price bids are nearly flat. Because supply

randomness is low, Corollary 1 implies that counterfactual pay-as-bid bids would also be

nearly flat, and changing the auction format would yield little additional revenue.47

47Hortaçsu et al. [2018] take a different approach, and use inferred marginal values to show that bidders
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Our representation theorem has also implications for bidders’ margins. In the corollary

below we refer to the supremum of quantities the bidder wins with positive probability as

the highest quantity a bidder can win in equilibrium.

Corollary 2. [Low Margins] The highest quantity a bidder can win in equilibrium is 1
n
Q
R

,

and the bid at this quantity equals the marginal value, b
(

1
n
Q
R
)

= v
(

1
n
Q
R
)

. Furthermore,

for any ε > 0 and quantity Q∗ ≤ Q
R

there exists δ > 0 such that, if supply is δ-concentrated

near Q∗, then each bidder’s equilibrium margin v
(

1
n
Q∗ − δ

)
− b

(
1
n
Q∗ − δ

)
on the 1

n
Q∗ − δ

unit is lower than ε.

Thus, each bidder’s margin on the last unit they could win is zero; this result follows from

our bid representation theorem, as well as Theorem 1. Additionally, if supply is concentrated

around some quantity Q∗, then the margin on units just below 1
n
Q∗ is close to zero.

Finally, bidders’ equilibrium margins are lower and the seller’s revenue is larger when

there are more bidders:

Corollary 3. [More Bidders] Bidders submit higher bids and the seller’s revenue is larger

and each bidder’s profits smaller when there are more bidders—both when the supply distri-

bution is held constant, and when the per-capita supply distribution is held constant.

The corollary follows because as the number of bidders increases, 1−FQ,n (x) =
(

1−F (x)
1−F (Q)

)n−1
n

decreases, and hence FQ,n (x) increases, thus mass in the weighting distribution is shifted

towards lower x, where marginal values are higher. At the same time, the marginal value at

x either increases in n (if we keep the distribution of supply constant) or stays constant (if

we keep the distribution of per-capita supply constant).

While bidders raise their bids when facing more bidders even if the per-capita distribution

stays constant, our bid representation theorem implies that the changes are small.48 This

is illustrated in Figure 3 in which increasing the number of bidders from 5 bidders to 10

bidders has only a small impact on the bids, as does the further increase from 10 bidders to

5 million bidders.

do not obtain much surplus; thus changing in the auction format cannot yield much additional revenue. Our
result is sharper: given flat uniform-price bids and relatively certain supply, changing the auction format
also cannot cost much revenue.

48In the limit, and absent a reserve price, bids take the simple form b (q) =∫maxSuppF

q
v (x) dF (x) /

(
1− F (q)

)
where F is distribution of per-capita supply. Notice that if we

keep the supply distribution fixed while more and more bidders participate in the auction, then in the large
market limit revenue converges to average supply times the value on the initial unit. See Swinkels [2001] for
limit results with fixed per-capita supply and Jackson and Kremer [2006] for limit results with fixed supply.
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Figure 3: Bids go up when more bidders arrive (and per capita quantity is kept constant)
but not by much: 5 bidders on the left, 10 bidders in the middle, and 5 million bidders on
the right. Note that all axis scales are identical.

4 Designing Pay-as-Bid Auctions: Transparency and

Disclosure

In this section we maintain the assumption that the pay-as-bid format is run and analyze

the design of such auctions. We focus on the reserve price and the distribution of supply, the

two natural elements of pay-as-bid auction that the seller can select.49 For now, we consider

the case in which the bidders observe the same signal s, while the seller does not know the

bidders’ signal and has only a belief about it, s ∼ σ. In Section 6 we show that our insights

are robust to the introduction of small informational asymmetries among bidders. As design

decisions are taken from the seller’s perspective, our terminology in this and the subsequent

sections now explicitly keeps track of the bidders’ information. We impose no assumptions

on the distribution σ other than v(q; ·) being integrable.

4.1 Transparency

The key insight that underlies our design analysis is that—in contrast to typical multidimen-

sional mechanism design problems discussed in the introduction—in an optimized pay-as-bid

auction deterministic—and, hence, transparent—supply is optimal. Furthermore, if supply

is exogenously random, then it is optimal for the seller set a deterministic supply cap; and,

independent of whether a supply cap is feasible, it is optimal to announce the realized supply

to the bidders prior to the auction.

First, suppose that the seller has some deterministic quantity Q of the good; we relax

49In Appendix A, we show that our design insights extend to the environment in which the seller is not
restricted to setting a reserve price and supply distribution and instead the seller can set a joint distribution
over both. We simultaneously extend our analysis to allow for mixed-strategy equilibria.
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this assumption below. For any fixed reserve price, we consider the problem of designing a

supply distribution F that maximizes the seller’s revenue. The seller has the option to offer

a stochastic distribution over multiple quantities, and it is plausible that such randomization

could increase his expected revenue. For instance, offering quantities lower than the optimal

monopoly quantity, Q?, results in a tradeoff: the seller sometimes sells less than Q?, with

a direct and negative revenue impact, but when he sells quantity above Q? he will receive

higher payments due to the pay-as-bid nature of the auction. This tradeoff is illustrated in

Figure 2, in which concentrating supply lowers the bids.50

We show that selling the deterministic supply Q? is in fact revenue-maximizing across

all pure-strategy equilibria; for this reason in the sequel we refer to Q? as optimal supply.

In this section, we restrict attention to pure-strategy equilibria and, relatedly, maintain our

global restrictions on the support of supply. In Appendix A, we relax these and other re-

strictions—e.g., allowing elastic supply—and prove that the pure-strategy equilibrium under

transparent and deterministic supply revenue dominates any mixed-strategy equilibrium at

any random supply.51

Theorem 5. [Transparency of Optimal Supply] In pure-strategy equilibria, the seller’s

revenue under non-deterministic supply is strictly lower than under optimal deterministic

supply. Optimal deterministic supply is given by the solution to the monopolist’s problem

when facing uncertain demand.

As the following proof sketch indicates, Theorem 5 remains valid if the reserve price is

arbitrary rather than optimized. The transparency result also remains valid for sellers who

maximize profits equal to revenue net of costs, provided the marginal cost curve is weakly

increasing.52 Such sellers optimally choose the deterministic quantity (or quantity cap) that

maximizes the expected revenue minus cost rather than the quantity that maximizes the

expected revenue. Taking the cost into account affects what quantity is optimal, but it does

not change the result that optimal supply is deterministic.

50A priori such trade-offs can go either way; see Pycia [2006] and the introduction.
51The restriction to pure-strategy equilibria can be also straightforwardly relaxed in the special case in

which bidders have no private information. Furthermore, as pay-as-bid is largely employed by central banks
and governments, the efficiency of allocations may be an important concern and a reason a seller may want
to ensure that a pure-strategy equilibrium is being played. The symmetry of equilibrium strategies we
prove in Theorem 3 implies that in pure-strategy equilibrium the marginal value for any unit received is
higher than the marginal value for any unit not received. In a pure-strategy equilibrium, there are thus no
efficiency improving re-allocations of units among bidders; this property trivially fails in any mixed-strategy
equilibrium that is not essentially in pure strategies.

52In the absence of the increasing marginal cost assumption, an analogue of Theorem 5 would need to be
modified to take account of resulting ironing. See also our remark at the end of the proof of the theorem in
Supplementary Appendix E.
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Remark 2. Equilibrium multiplicity in uniform-price auctions implies that the the optimality

of transparent supply in pay-as-bid auctions does not extend to uniform-price auctions. The

reason is that the bidding equilibrium may have an irregular dependence on the reserve price

and supply distribution in the uniform-price auction. We discuss the issue in the ensuing

analysis of the auction design game; cf. our discussion of Lemma 2.

To prove Theorem 5, we start with an arbitrary reserve price and supply distribution

and the induced pure-strategy equilibrium bids. Holding equilibrium bids fixed, we use our

bid representation from Theorem 3 to bound expected revenue by the standard monopoly

revenue given the supply distribution.53 In effect we obtain the following bound on the

expected revenue,

Es,Q
[
πF (Q; s)

]
≤
∫ Q

R

0

Es
[
πδ (Q; s)

]
dF (Q) , (3)

where πF (Q; s) is the seller’s revenue when bidders’ signal is s, the realization of supply

is Q, and bidders bid against the distribution of supply F , while πδ (Q; s) is the seller’s

revenue when bidders’ signal is s, the realization of supply is Q, and bidders bid against the

distribution of supply that puts probability 1 on supply quantity Q.54 Note that πδ(Q; s) is

a monopolist’s profit from selling quantity Q to buyers with common signal s. This upper

bound implies that the seller’s revenue is maximized when the seller sets the supply to be

always equal to the revenue-maximizing deterministic supply. We provide the details of the

proof in Supplementary Appendix E (bound (3) above restates inequality (10) in the proof).

The structure of the proof of Theorem 5 has two important implications. First, under

the additional restriction that QEs[v−1(Q; s)] is single-peaked in Q, the proof is applicable to

environments in which the seller’s underlying supply is random and the seller can lower the

supply but cannot increase it above the underlying supply realization. In this more general

environment we assume that the distribution of underlying supply is exogenously given by

F with a compact support.55 Our proof then shows that the revenue maximizing-supply

reduction by the seller reduces supply to Q? whenever the exogenous supply is higher than

Q?, and otherwise leaves the supply unchanged.

53This argument hinges on re-assigning the revenue across supply realizations; in particular, the actual
revenue conditional on a supply realization is not necessarily bounded by the revenue the seller would obtain
by setting the deterministic supply fixed at the conditioning supply realization.

54In a working version of this paper, we provide a tighter bound on expected revenue, in which we average
πδ (Q; s) over the auxiliary distribution J ≡ 1 − (1 − F )(n−1)/n. The bound presented in equation (3) is
simpler to derive, and is sufficient for all our results.

55We can replace the assumption that the support of F is compact with other assumptions that guarantee
that the optimal solution exists, such as for instance that there is a finite q > 0 such that for all s, v(q; s) = 0.
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4.2 Full Disclosure

Our analysis also shows that the seller would like to fully reveal the realized supply: the seller

thus finds transparency optimal both in the sense of setting a deterministic supply (or supply

cap) and in the sense of revealing the seller’s information about supply. To formalize this

full-disclosure insight we enrich our base model as follows. We assume that the distribution of

supply is exogenously given and commonly known. Before learning the realization of supply,

the seller can publicly commit to an auction design (reserve price and supply restriction)

and a disclosure policy; a disclosure policy maps the realization of supply to a distribution of

public announcements (messages) from an arbitrary space of messages.56 After committing

to a disclosure policy and an auction design, the seller learns the realization of supply and

publicly announces the message prescribed by the disclosure policy. Then, the bidders learn

their value and bid in the auction.

Theorem 6. [Optimality of Information Disclosure] The seller’s expected revenue is

maximized when the seller commits to fully reveal the realization of supply.

Before presenting a surprisingly simple argument deriving this theorem from our preced-

ing results, let us observe that Theorem 6 remains valid even if the seller does not optimize

the reserve price and supply cap in the auction and these parameters of the auction are ar-

bitrarily set, with no change in the proof. In addition, because we prove Theorem 6 for the

environment in which the seller can commit to a disclosure strategy, the same full disclosure

insights a fortiori holds true for environments where the seller cannot commit.

Proof. Suppose that the seller commits to a disclosure strategy and this strategy leads to a

message that induces the bidders to believe that the (conditional) distribution of supply is

F̂ with upper bound of support Q̂. The revenue bound obtained in the proof of Theorem

(5) gives

E
[
πF (Q; s)

]
≤
∫ Q̂R

0

Es
[
πδ (x; s)

]
dF̂ (x) ,

and thus expected revenue is bounded above by the expected revenue obtained by the seller

fully revealing to the bidders the realization of supply. In consequence, the seller’s expected

revenue is maximized when the seller ex ante commits to fully reveal the realization of

supply.

56We maintain the global assumption of this section that all induced auction equilibria are in pure strate-
gies; in Appendix A we show that the full disclosure insight remains valid without this assumption .
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4.3 Discussion

The bound on revenue obtained in Theorems 5 and 6 applies ex ante, and that optimal (ex

ante) supply or transparency may result in ex post revenue reduction. This is straightforward

to see. When there is a high realization of random supply, bids for inframarginal units are

above the market-clearing price (Theorem 3), and thus per-unit revenue is above the market-

clearing price; at the unique realization of deterministic supply, bids for all units are equal

to the market-clearing price. Then optimal pay-as-bid auctions reduce the revenue obtained

when large supply is realized, while at the same time increasing expected revenue. An

implication is that optimal pay-as-bid auctions improve expected revenue while decreasing

the variance of revenue.

The transparency result substantially simplifies the seller’s optimization problem. The

problem becomes one of setting reserve price R and deterministic supply Q so as to maximize

Es [π] = Pr

(
v

(
Q

n
; s

)
≥ R

)
E
[
v

(
Q

n
; s

)∣∣∣∣v(Qn ; s

)
≥ R

]
Q

+ Pr

(
v

(
Q

n
; s

)
< R

)
RE

[
nv−1 (R; s)

∣∣∣∣v(Qn ; s

)
< R

]
.

When signal s comes from an atomless distribution on a subset of R and the bidders’

marginal values are increasing in the signal, the seller can separately maximize the reserve

R? conditional on low signals s < ŝ and supply Q? conditional on high signals s ≥ ŝ

where ŝ = inf {s : v (Q?/n; ŝ) ≥ R?}. The separability allows us to solve for optimal auc-

tions. For example, suppose that the common signal s is distributed uniformly on (s, s) and

v (q; s) = s−ρq for some constants ρ, s, s > 0 such that s > s ≥ ρQ/n. Then bidding strate-

gies are linear, the optimal reserve price is R? = s+3s
8

, optimal supply is Q? =
(

3s+s
8ρ

)
n, and

the resulting expected revenue is n
2ρ

(
m2

2
+ 3V

8

)
where m = s+s

2
is the mean and V = (s−s)2

12

the variance of the signal distribution. In particular, the seller revenue is increased by a

mean-preserving spread of the distribution of bidders’ values, a property that obtains be-

yond the example.57

57The monotonicity of revenue in mean-preserving spreads does not hinge on the value distribution being
uniform. We provide details and related results in our supplementary note [Pycia and Woodward, 2020].
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5 The Auction Design Game: Pay-as-Bid Dominates

Uniform-Price

Sellers of homogenous goods are not restricted to running pay-as-bid auctions, and the

uniform-price auction is the other of the two most-commonly implemented formats for of

auctions of homogenous goods. From a practical perspective, which of these two formats is

preferred is a an important question that has been studied both in the theoretical and empir-

ical literature on mutli-unit auctions; see the introduction.58 Unlike this literature—which

compares the formats without taking the seller’s endogenous choices into account—we ex-

plicitly model the seller’s choice between the pay-as-bid and uniform-price formats, as well

as among supply distributions and reserve prices, as an extensive-form game.

This auction design game has two stages. In the first stage, the seller commits to a

reserve price, a distribution of supply, and the auction format (pay-as-bid or uniform-price).

We also consider constrained design games in which the auction format is fixed; we refer

to these as pay-as-bid design game and uniform-price design game. In the second stage,

bidders participate in the specified auction.59 We consider perfect Bayesian equilibria of

these games. This structure allows us to compare outcomes of optimally designed pay-as-bid

and uniform-price auctions, and to discuss the economic implications of mechanism selection.

Our main insight is that choosing pay-as-bid is weakly dominant for the seller.

5.1 Revenue

We start our analysis of revenue-maximizing design with the case of uninformed seller and

symmetrically informed bidders; in Section 6 we relax this assumption, allowing for asym-

metrically informed bidders. For the pay-as-bid auction, Theorem 2 states that equilibrium

bids are essentially unique conditional on the distribution of supply, and Theorem 5 states

that optimal supply is deterministic. Together these immediately imply that equilibrium

revenue is unique in the pay-as-bid design game.

Corollary 4. [Revenue in Pay-as-Bid Design Game] In the pay-as-bid design game

58From a theoretical perspective, we might be also interested in the question what general selling mech-
anism is optimal, but in the environments we focus on the bidders’ private information is correlated and
hence the seller can nearly extract their full surplus using Crémer-McLean-type mechanisms (cf. Crémer
and McLean [1988] and Myerson [1981]). In the benchmark case of the current section, in which bidders’
information is symmetric, full extraction of bidders’ surplus is possible: e.g. the seller can ask all bidders
to report their private information and set each bidder’s allocation and payment in a way that fully extract
the surplus of that among announced types that maximizes the seller’s revenue.

59The bid functions bi (·; s,R, F ) depend on the bidders’ signal as well as the auction format and the
reserve prices R and supply distributions F chosen by the seller. When there is no risk of confusion, when
referring to the bids on the equilibrium path we sometimes suppress the seller’s choices.
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with symmetrically informed bidders, the perfect Bayesian equilibrium revenue is uniquely

determined and the seller can achieve it by setting optimal deterministic supply.

As noted in the discussion preceding Theorem 2, in the pay-as-bid auction equilibrium

outcomes are unique but bids for never-realized quantities may not be uniquely defined. The

perfect Bayesian equilibrium is thus essentially unique, and with slight abuse of terminology

we also refer to it as the unique equilibrium of the pay-as-bid design game, ignoring (as in

Section 3) potential multiplicity for infeasible quantities that have no impact on the observed

outcomes. In this unique equilibrium bids are flat, and equal to the maximum of the reserve

price R and the marginal value for the per-capita maximum, v(Q/n; s).

In the uniform-price design game the analysis is more complicated. With symmetrically-

informed bidders, equilibrium bids in the uniform-price auction are optimal for every real-

ization of supply, a point first made by Klemperer and Meyer [1989]: for a given bidder,

every realization of supply determines a residual supply curve corresponding to the demands

of the other bidders, and the given bidder’s bid effectively serves to select the price-quantity

pair from this residual supply curve; this choice does not depend on choices at other realiza-

tions of supply as long as the resulting bid curve is downward-sloping. In effect, two supply

distributions with the same support admit the same set of equilibria, and if one supply dis-

tribution has a smaller support than another, its set of equilibrium bids is a weak superset of

the other. This implies that the revenue-maximizing equilibrium for deterministic supply is

also revenue-maximizing among all possible supply distributions. In this sense, deterministic

supply is also optimal in uniform-price auctions:

Lemma 1. [Deterministic Dominance in Uniform-Price Design Game] With symmetrically-

informed bidders, for any equilibrium of the uniform-price design game ((R,F ), b), there is a

deterministic-supply equilibrium ((R?, F ?), b?(·; s, R?, F ?)) that generates weakly higher seller

revenue and has the same bids.

Lemma 1 does not imply that all equilibria of the uniform-price design game have deter-

ministic supply. Because bidders’ strategies can depend on the chosen distribution of supply,

it is possible that choosing deterministic supply will yield lower revenue than random supply.

Consider bidders who bid the reserve price when supply is deterministic, but submit rela-

tively aggressive bids otherwise. Then the seller could concentrate the supply distribution

around the deterministic optimum, but retain some randomness to ensure that bidders sub-

mit aggressive bids. This will revenue-dominate deterministic supply, where bidders submit

relatively weak bids. We develop this observation in Lemma 2 below.

The equilibria of the uniform-price game generate weakly less seller revenue than the

unique equilibrium of the pay-as-bid design game, hence the pay-as-bid design game yields
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greater revenue than the uniform-price design game in general.

Theorem 7. [Revenue Comparison of Design Games] With symmetrically-informed

bidders, the unique equilibrium of the pay-as-bid design game generates weakly greater rev-

enue than all equilibria of the uniform-price design game, and there is an equilibrium of the

uniform-price design game that generates the same expected revenue as the unique equilibrium

of the pay-as-bid design game.

The revenue comparison is strict for all uniform-price equilibria in which bids b?(·; s, R?, F ?)

are strictly below the realized marginal value v(Q?/n; s). Such equilibria are typical in the

sense that in the uniform-price auction, for any Q and s, any price p ∈ [R?, v(Q/n; s)] is

supportable in equilibrium (see our supplementary note [Pycia and Woodward, 2020]). The

proof of Theorem 7 leverages the optimality of deterministic supply established in Corollary

4 and Lemma 1 above. This major endogenous simplification allows us to show that for

any signal s, the equilibrium market clearing price p?PAB(s) in pay-as-bid design game is

weakly higher than the equilibrium market clearing price p?UP(s) in any equilibrium of the

uniform-price design game, regardless of the level of deterministic supply. The full proof is

provided in Supplementary Appendix E.

Finally, consider the unconstrained auction design game in which the designer first com-

mits to implement a pay-as-bid or uniform-price auction, and then the selected auction

format is run. Theorem 7 implies that in the auction design game, the seller either imple-

ments a pay-as-bid auction or is indifferent between the two formats because bidders bid

aggressively in the uniform-price design game.

Corollary 5. [Revenue Equivalence Across Perfect Bayesian Equilibria] All perfect

Bayesian equilibria of the auction design game are revenue equivalent. Furthermore, the

seller either implements a pay-as-bid auction or is indifferent between the pay-as-bid and

uniform-price auctions.

5.2 Welfare

Pay-as-bid not only generates weakly greater revenue than the uniform-price: we now show

that it can generate strictly higher revenue and strictly higher payoffs for all bidder types. At

the same time, the comparison of outcomes other than revenue—e.g., quantity sold, optimal

reserve price, bidders’ payoffs, and expected surplus—depends on the perfect Bayesian equi-

librium played. The underlying reason for this dependence is the multiplicity of equilibria

in uniform-price auctions. In effect, in a perfect Bayesian equilibrium of the uniform-price

design game the seller can be rewarded with relatively high bids on equilibrium path and
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punished by lower bids off-path.60 The argument hinges the value space being sufficiently

rich in the following sense: there is no pair of optimal reserve and supply that maximizes

ex post revenue irrespective of the bidders’ signal (this assumption rules out the complete

information case; for the complete information case see our supplementary note [Pycia and

Woodward, 2020]).

Lemma 2. [Quantity and Reserve in Uniform Price] Suppose the value space is rich

and let R?PAB and Q?PAB be optimal reserve and supply in the pay-as-bid design game. There

is ε > 0 such that for all R?, Q? with |R?PAB − R?| < ε and |Q?PAB − Q?| < ε, there is an

equilibrium of the uniform-price design game in which the designer selects reserve R? and

deterministic quantity Q?.

The proof builds on the construction of low-price robust equilibrium in our supplementary

note [Pycia and Woodward, 2020], which extends the insights of Klemperer and Meyer [1989].

Two properties of this construction are important. First, bids in these robust equilibria are

continuous in reserve price and do not depend on the supply distribution and thus the

expected revenues are continuous in reserve prices and supply distribution (continuity in the

distribution is with respect to the supremum norm on the c.d.f. representation). Second, for

any deterministic R? and Q?, the richness of values implies that the expected revenue from

the low-price robust equilibrium is strictly lower than from the truthful bidding equilibrium.

The perfect Bayesian equilibrium implementing deterministic reserve R? and quantity

Q? is then constructed as follows. If the seller sets R? and Q? then, in the continuation

game, the bidders bid truthfully. If the seller sets different reserve or different distribution of

supply then, in the continuation game, the bidders play the robust equilibrium constructed

in our supplementary note Pycia and Woodward [2020]. In light of the discussion above, for

small ε this continuation play incentivizes the seller to set R? and Q? in the first stage of

the auction design game.61

Theorem 8. [Ambiguous Bidder Welfare Comparison] If the value space is rich then

the uniform-price design game admits perfect Bayesian equilibria in which the payoff of all

bidder types is strictly higher and pefect Bayesian equilibria in which the payoff of all bidder

types is strictly lower than in the unique equilibrium of the pay-as-bid design game.

60In our supplementary note [Pycia and Woodward, 2020] we show that a natural equilibrium selection
in the uniform-price auction provides strictly lower revenue than the optimal pay-as-bid auction. If in the
dynamic game bidders employ such a low-revenue bid profile whenever a particular reserve price and quantity
is not selected the designer can be induced to implement a particular quantity distribution and reserve price.

61Because truthful bids do not depend on the reserve price or the supply distribution, the expected revenue
conditional on truthful bidding is continuous in reserve price and supply distribution. As expected revenue
is continuous given both truthful and robust strategy profiles, and the difference between them is bounded
away from zero following seller’s choice of R?PAB and Q?PAB, for all R? and Q? within small ε of R?PAB and
Q?PAB (respectively) the difference is uniformly bounded away from zero.
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Lemma 2 implies that there are equilibria of the uniform-price design game in which

R?UP < R?PAB and Q?UP > Q?PAB, as well as equilibria in which R?UP > R?PAB and Q?UP <

Q?PAB. The former generate higher payoff for all bidder types than the pay-as-bid design

game, and the latter generate lower payoff for all bidder types than the pay-as-bid design

game.62

Lemma 2 further implies that there are equilibria of the uniform-price design that are

worse for all market participants: revenue, bidder surplus, and aggregate surplus may all be

strictly lower in the uniform-price auction than in the unique equilibrium of the pay-as-bid

design game.63

Theorem 9. [Pay-as-bid Preferred by All] If the value space is rich then the uniform-

price design game admits equilibria in which both the seller’s revenue and the payoff of all

bidder types is strictly lower than in the unique equilibrium of the pay-as-bid design game.

6 Asymmetric Information among Bidders

In this final section, we relax the assumption that bidders are symmetrically informed and

allow for heterogeneous signals si.

Recall that si = (s, θi) where s is a common signal known to all bidders and θi is

idiosyncratic and privately known only to bidder i; notice that we do not require that θi

and θj are independent nor do we require that they are identically distributed.64 For the

sake of expositional simplicity we normalize the signals so that each idiosyncratic signal θi

has identical support containing 0, and we treat the case of all idiosyncratic signals taking

value 0 as the benchmark common signal case.65 Letting Ss = Supp s and Sθ = Supp θi, we

assume that bidder information has full support, so that Supp θi|s,θ−i = Sθ, but otherwise

62[Ausubel et al., 2014] show that both revenue and efficiency cannot be generically compared between the
pay-as-bid and uniform-price auction formats, and that the comparison may vary with model specification.
As they assume that the reserve price is zero and supply is unoptimized, there is neither a contradiction
between the ambiguity they report and our revenue dominance, nor are our welfare comparisons implicit in
theirs. Furthermore, the ambiguity we uncover is driven by equilibrium selection and Theorem 8 states that
the welfare comparison is ambiguous in every model with rich values. In contrast, they provide examples of
ambiguity that hinge on comparing equilibria between different model specifications and that rely on ex-ante
asymmetries between bidders.

63Note that the uniform-price design game does not admit equilibrium in which both the seller’s revenue
and bidders’ payoffs are higher than in the unique equilibrium of the pay-as-bid design game; see Theorem
7.

64The separation of signals into common and idiosyncratic components is convenient but inessential; signals
can always be separated in this way and the separation simplifies the definition of bounded informational
asymmetry as well as comparisons to the benchmark model with only a common signal.

65Our results (and the definition of bounded asymmetry) allow heterogenous vi(·; ·, ·), provided vi(·; ·, 0)
does not depend on i.
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there are no distributional assumptions on s, θi, or their interrelation.

Definition 1. For δ ≥ 0, we say that informational asymmetry is δ-bounded if, for all

(s, θ) ∈ Ss × Sθ, supq |v(q; s, 0)− v(q; s, θ)| ≤ δ.

When marginal values v are bounded above by δ ≥ 0, informational asymmetries are

δ-bounded. Thus δ-bounded informational asymmetry is a relatively weak restriction if δ is

large; at the same time our results become tight only as δ becomes small.

For bounded asymmetries, we show that the expected revenue in any equilibrium of an

optimal pay-as-bid auction—that is, pay-as-bid with optimal supply and reserve price—with

asymmetric private information is nearly above the expected revenue in the unique equilib-

rium of the optimized auction when bidders’ information is symmetric: expected revenue is

above the revenue in the uniform price auction, decreased by δQ?, where Q? is the optimal

supply in the symmetric information environment (with θi = 0). We analogously define

nearly below and nearly indifferent.

Theorem 10. [A Bound on Revenue Loss from Informational Asymmetry] Suppose

that asymmetry is δ-bounded. Then, the expected revenue in any equilibrium of the optimal

pay-as-bid auction is nearly above the expected revenue in the unique equilibrium of the

optimal pay-as-bid auction with symmetric bidder information (in which θi = 0).

This theorem implies that small informational asymmetries do not dramatically reduce

the seller’s revenue below the symmetric-information benchmark. This implication of our

theorem is not a simple limit result. First, in environments for which purification results

have been proven, a limit of equilibria as we decrease the import of idiosyncratic signals is

a mixed-strategy equilibrium in the limit environment, but in Theorem 10 we bound the

revenue from below by a pure-strategy equilibrium in the limit environment. Second, there

are so far no purification results for such infinitely-dimensional discontinuous games as pay-

as-bid auctions. We are able to establish the above theorem because of our earlier results

showing that when bidders’ information is symmetric then optimal supply is deterministic.

The following result plays a key role in its proof.

Lemma 3. In a pay-as-bid auction with deterministic supply and reserve R, the expected

revenue in any equilibrium with δ-bounded asymmetric private information is nearly above

the expected revenue of pay-as-bid with same supply and reserve max {R− δ, 0} in the unique

equilibrium when bidders’ information is symmetric.

The lemma follows from Theorem 1, in which we establish that the market clearing price

is bounded below by the lowest marginal value v (·; ·, ·) of per capita supply. When v (·; ·, ·)
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is within δ of v (·; ·, 0), this lowest marginal value of per capita supply is weakly above

v
(
Q
n

; ·, 0
)
− δ. By setting the deterministic quantity Q at optimal value at symmetric infor-

mation and lowering the reserve price by δ with respect to optimal reserve R at symmetric

information, the seller can sell at least the same quantity of the good. When bidders are

asymmetrically informed, the per-unit price is bounded below by max{v
(
Q
n

; s, 0
)
−δ, R−δ},

while max{v
(
Q
n

; s, 0
)
, R} is the per-unit revenue in the unique equilibrium when bidders’

information is symmetric and equals (s, 0). Thus Lemma 3 obtains.

Theorem 10 then follows from Lemma 3 because our transparency results guarantee

that deterministic supply is optimal in the symmetric information benchmark, and because

allowing the seller to re-optimize supply in the presence of informational asymmetries weakly

improves revenue.

6.1 Pay-as-Bid vs. Uniform-Price

We now show that the revenue comparison results of Section 5 continue to hold for asymmetrically-

informed bidders when the informational asymmetry is small. The comparison requires

understanding the behavior of asymetrically-informed bidders in pay-as-bid auctions and

uniform-price auctions as well as the design response of the seller. The logic developed

above, giving an approximate revenue bound in the pay-as-bid auction when the informa-

tional asymmetry is δ-bounded, also applies to the uniform-price auction, with the exception

that equilibrium may be nonunique. In the uniform-price auction with private informa-

tion, every equilibrium generates revenue that is weakly below quantity times the maximum

marginal value for per capita supply.

Lemma 4. Fix a reserve price and supply distribution. In a uniform-price auction, the

expected revenue in an equilibrium with asymmetrically-informed bidders is nearly below the

expected revenue under truthful bidding with symmetrically-informed bidders.

Note that revenue under truthful bidding is an upper bound on equilibrium revenue.

Proof. In the uniform-price auction, the parts of bids that determine the equilibrium market-

clearing price are bounded above by truthful reporting. Let Q be a realization of supply;

notice that Q is bounded above by the maximum supply Q̄. Conditional on this supply

realization, for any fixed δ > 0, the expected revenue under asymmetric information that

is within δ of v(·; s, 0) is bounded above by Q
[
v
(
Q
n

; s, 0
)

+ δ
]
≤ Qv

(
Q
n

; s, 0
)

+ δQ̄. The

result follows because Qv
(
Q
n

; s, 0
)

is the revenue under truthful bidding, conditional on the

common signal being s when bidders are symmetrically informed.
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The above two lemmas establish an approximate version of pay-as-bid revenue dominance.

With slight abuse of terminology, in the following theorem we say that the pay-as-bid ex-

pected revenue is nearly above uniform-price expected revenue when the difference between

the two is bounded from below by −2δQ? (rather than −δQ? as before), where Q? is the

optimal supply in the symmetric information environment.

Theorem 11. [Approximate Revenue Dominance of Optimal Pay-as-Bid] With

optimal reserve price and supply, the expected revenue in the pay-as-bid auction is nearly

above expected revenue in the uniform-price auction.

In particular, for any ε > 0, if the informational asymmetry is ε
2Q∗

-small, where Q∗ is the

optimal supply in the symmetric information environment, then E
[
πPAB

]
≥ E

[
πUP

]
− ε.

We show below that deterministic supply is nearly optimal, but the optimal supply does

not need to be deterministic. Still, an analogue of the above theorem obtains for potentially

suboptimally-designed auctions as long as they are deterministic.

Theorem 12. [Approximate Revenue Dominance of Pay-as-Bid with Determinis-

tic Supply] Given any deterministic supply Q and reserve price R, expected revenue in the

pay-as-bid auction is nearly above expected revenue in the uniform-price auction. Moreover,

the seller is nearly indifferent between any equilibrium of the pay-as-bid auction and any

revenue-maximizing equilibrium of the uniform-price auction.

Remark 3. The analogue of this theorem continues to hold if there is small uncertainty

over supply. Without the asymmetry of information, this point follows from the continuity

of optimal bidding strategies in pay-as-bid with respect to supply because our bound on

uniform-price revenue is in terms of truthful bidding. The asymmetry of information does

not affect the uniform-price bound, and we can control the change in the lower bound on

pay-as-bid revenue via the price bound of Theorem 1.

The above two theorems tell us that, while the uniform-price auction might generate

greater revenue than a pay-as-bid auction, this difference will not be large without a signifi-

cant informational asymmetry among bidders or significant randomness in supply. Thus, a

version of Corollary 5 holds in the presence of informational asymmetries: the seller either

strictly prefers a pay-as-bid auction or is approximately indifferent between the pay-as-bid

and uniform-price auctions.

6.2 Approximate Optimality of Transparency

Our analysis of elastic supply and mixed-strategy equilibria in Appendix A shows that if

buyers’ values are regular, a deterministic supply curve maximizes the seller’s revenue. In
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this subsection we apply this analysis to the design of optimal pay-as-bid auctions in the

presence of small informational asymmetries.

Definition 2. [Regular Demand] Let S = {(p?, q?) : ∃s, p? ∈ arg maxp pv
−1(p; s), q? =

v−1(p; s)} be the set of optimal monopoly price-quantity pairs. Bidder values are regular if,

for any (p, q), (p′, q′) ∈ S, the inequality p′ < p implies q′ < q.

Values are regular if the monopolist’s optimal price and quantity are in monotone cor-

respondence.66 When values are increasing in signal s and v−1 is differentiable, demand is

regular when p + v−1(p; s)/v−1
p (p; s) is increasing in s.67 Thus our regularity condition is

similar to the regularity condition in [Myerson, 1981]. When values are regular, the auction-

eer can use an elastic supply curve to screen for bidder signal s, and a deterministic elastic

supply curve maximizes the seller’s revenue.

Theorem 13. [Approximate Optimality of Transparency] Suppose buyers’ values are

regular. For any ε > 0, there is δ > 0 such that if informational asymmetry is δ-small

then there is a deterministic elastic supply curve S that is approximately optimal: E
[
πS
]
≥

E
[
πK
]
− ε for any, potentially stochastic, elastic supply K.

In Appendix A, we show that when the bidder’s private information si = (s, θi) is known

to the seller, the seller’s revenue is strictly higher when a deterministic quantity is sold than

when the buyer faces any randomness in residual supply. Then revenue with asymmetric

information is bounded above by the revenue the seller would obtain with optimal monopoly

supply targeted to each bidder’s private information si.

Monopoly revenue is strictly increasing in marginal value. Then when asymmetric infor-

mation is δ-small,

max
q
q · [v (q; s, 0)− δ] ≤ max

q
q · v (q; s, θi) ≤ max

q
q · [v (q; s, 0) + δ] .

Furthermore, if the seller knows s but not θi, we may bound optimal expected monopoly

profits below by

max
q
q · [v (q; s, 0)− δ] ≤ max

q
E [q · v (q; s, θi)] .

When demand is regular, it follows that expected revenue under deterministic elastic supply

66Recall that we do not make any assumptions on the bidders’ type space, and in particular we do not
require that demand increases with type.

67To maximize profits, d[pv−1(p; s)]/dp = 0, implying p + v−1(p; s)/v−1p (p; s) = 0. If the left-hand side is
increasing in s, then p? is increasing in s. To have quantity also increasing in s, we need d[qv(q; s)]dq = 0, or
qvq(q; s) + v(q; s) = 0. Under monopoly, q = v−1(p; s) and p = v(q; s), and the conditions for monotonicity
in price and in quantity are equivalent.
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cannot be significantly worse than expected revenue under optimal elastic supply, where the

difference is no greater than 2δQmax.

6.3 Relationship to Empirical Findings

Cross-country comparisons find that pay-as-bid auctions are more than twice as prevalent

as uniform-price auctions (see Brenner et al. [2009] for treasury securities; see Del Ŕıo [2017]

for electricity auctions), and our results provide a theoretical explanation for the popularity

of the pay-as-bid format. If revenue-interested sellers are at worst nearly indifferent between

pay-as-bid and uniform-price auctions, it is natural to suspect that pay-as-bid auction should

be implemented more frequently.

Corollary 5 and Theorem 11 provide an explanation of the empirical finding that rev-

enues in pay-as-bid are close to the counterfactual revenues in uniform-price as discussed

in the Introduction. The explanation is two-fold. First, by Corollary 5, the auction format

is selected by the seller and a revenue-maximizing seller weakly prefers the uniform-price

format only if this format is nearly equivalent to pay as bid. The South Korean Treasury

auctions studied by Kang and Puller [2008] and U.S. Treasury auctions studied by Hortaçsu,

Kastl, and Zhang [2018] run the uniform-price format and hence Corollary 5 provides a po-

tential explanation of the revenue equivalence they find. Second, the optimal pay-as-bid and

uniform-price auctions generate the same revenue only in the seller-optimal equilibrium of

the uniform-price auction and this is precisely the equilibrium in which bids are equal to

marginal values at realized quantities. The latter equality is imposed in counterfactual rev-

enue estimation of uniform-price auctions in Hortaçsu and McAdams [2010] and Marszalec

[2017] which assume truthful reporting in the uniform-price auction. Our results thus sug-

gest that the empirical ambiguity of cross-mechanism revenue comparison is strongly tied to

sellers’ endogenous selection of auction format and to equilibrium selection in the empirical

literature.

7 Conclusion

We have studied multi-unit auctions in an environment in which there is only limited asym-

metry of information between bidders, but the seller (or auction designer) is potentially much

less informed. For the limit case in which bidders’ information is symmetric, we have estab-

lished a mild condition for equilibrium existence as well as established equilibrium uniqueness
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Paper Data Method σ/µ Conclusion

Marszalec [2017] Poland PAB → CF UP 0.00% PAB > UP

Barbosa et al. [2020] China Controlled exp. 0.00% PAB ≈ UP

Février et al. [2002] France PAB → CF UP 1.27% PAB > UP

Armantier and Sbäı [2006] France PAB → CF UP 3.78% UP > PAB

Umlauf [1993] Mexico Natural exp. 11.16% UP > PAB

Mariño and Marszalec [2020] Philippines Natural exp. 17.60% PAB > UP

Table 1: Revenue comparisons between auction formats, in comparison to the standard
deviation of noncompetitive demand scaled by mean aggregate supply (Q); “CF” is “coun-
terfactual.”

and provided a tractable representation of bids.68 We also proved that the limit equilibrium,

without informational asymmetries among bidders, provides a lower bound on revenues in

the presence of informational asymmetries.

We have used these results to analyze the design problem of the seller, allowing for bidders’

private information. In particular, we established that revenue-maximizing pay-as-bid auc-

tions generate more revenue than uniform-price auctions, and strictly more revenue in most

cases, but welfare comparisons are inherently ambiguous. In particular, it is possible that

revenue-maximizing pay-as-bid auctions are not only revenue—but also welfare—superior to

uniform-price auctions.

As part of our analysis we established revenue equivalence between revenue-maximizing

pay-as-bid auctions and the revenue-maximizing equilibrium of uniform-price auctions. Our

revenue equivalence benchmark—which we prove both for optimally-designed auctions and

for deterministic supply—provides an explanation for the empirical findings of approximate

revenue equivalence between the two formats by imposing that the revenue maximizing

equilibrium obtains in uniform-price auctions; this is precisely the assumption that we show

leads to theoretical revenue equivalence.

Our revenue comparison and equivalence results are consistent with the second-order

details of empirical findings regarding multi-unit auction revenue; Table 1 relates revenue

comparisons from the literature to normalized randomness in aggregate supply, and as ex-

pected given our results its shows that for small randomness pay-as-bid and uniform price

are equivalent or pay-as-bid is revenue dominant, while for larger randomness either format

can be revenue dominant.69

68We hope that the tractability of our representation will stimulate future work on this important auction
format. Wittwer [2017] discusses the intuition behind our representation.

69Table 1 summarizes all empirical studies for which we have the data allowing us to calculate the relative
randomness of a single run of an auction. The randomness measures σ/µ are taken from either published work
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Philippe Février, Raphaële Préget, and Michael Visser. Econometrics of share auctions. INSEE,

2002.

Rodney J. Garratt, Michael Junho Lee, Antoine Martin, and Robert M. Townsend. Who sees the

trades? the effect of information on liquidity in inter-dealer markets. Federal Reserve Bank of

New York. Staff Report No. 892, 2019.

TS Genc. Discriminatory versus uniform-price electricity auctions with supply function equilibrium.

Journal of optimization theory and applications, 140(1):9–31, 2009.

Lawrence R Glosten. Is the electronic open limit order book inevitable? The Journal of Finance,

49(4):1127–1161, 1994.

S. Grossman and O. Hart. Disclosure laws and takeover bids. Journal of Finance, 35(2):323–34,

1980.
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A Elastic Supply

In the main text we (mostly) focus on pure strategy-equilibria and on designing a poten-

tially stochastic supply distribution allowing for a separately set reserve price. Our essential

insights remain valid if we allow mixed-strategy equilibria and potentially stochastic elastic

supply curves.70

We study the seller who selects a distribution over reserve prices, possibly correlated

with the distribution of quantity. Let K(Q;R) be a supply-reserve distribution, giving the

probability that realized quantity is Q̃ ≤ Q or the realized reserve price is R̃ > R,71

K (Q;R) = Pr
(
Q̃ ≤ Q

)
+ Pr

(
Q̃ > Q, R̃ > R

)
.

Note that conditional on aggregate demand p(·), K(Q; p(Q)) is the probability that realized

aggregate supply is below Q: either realized supply is Q̃ ≤ Q, or realized reserve is R̃ >

p(Q) and quantity is constrained. The following special cases illustrate the supply-reserve

distribution K:

• If K is equivalent to a random supply distribution F then K(Q,R) = F (Q);

• If K is equivalent to a random reserve distribution FR then K(Q,R) = 1− FR(R);

• If K is equivalent to deterministic supply curve S then K(Q,R) = 1[S(R) < Q].

We allow an arbitrary distribution of the bidders’ common signal s. The idiosyncratic signals

θi are assumed to be 0 and dropped from notation.72

70As discussed in footnote 58, in the special case of our model with perfectly correlated types, (s, θi) =
(s, 0), the seller can fully extract the bidders’ rents. Furthermore, in our model of asymmetrically informed
bidders with demand curves coming from δ support around commonly known (among bidders) demand, the
seller could come within order-δ of full extraction: even if idiosyncratic information is i.i.d., the seller can
extract from the bidders the common part of the demand curve.

71In general, K(Q;R) = 1 − Pr(Q̃ > Q, R̃ < R), and K is not a cumulative distribution function. In the
absence of mass points, however, Pr(Q̃ ≤ Q, R̃ ≤ R) = K(Q;R)−K(0;R), and the cumulative distribution
function is in one-to-one correspondence with K.

72Most of the auxiliary analysis in the accompanying Appendix G does not hinge on this assumption.
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To key to extending our results to this environment—and hence to environment with

idiosyncratic signals, see Section 6—is establishing the analogues of our uniqueness and

optimality of deterministic supply results. Equilibrium uniqueness obtains when the elastic

supply curve is deterministic because an analogue of Theorem 1 obtains (see Appendix G

for details of this and other proofs).

Theorem 14. [Unique Pay-as-Bid Equilibrium] If the elastic supply is deterministic

then the pay-as-bid auction admits an essentially unique mixed-strategy equilibrium.

In this essentially unique mixed-strategy equilibrium, all bidders bid their marginal value

on the last allocated unit for all units they receive; they can randomize over their bids on

units the do not receive with no impact on equilibrium outcome.

Perhaps paradoxically, the main difficulty in proving the optimality of deterministic elas-

tic supply lies in establishing this result for the case when the bidders’ common signal, s, is

known to the seller—that is when it takes a constant value with probability 1.

Lemma 5. Suppose bidders are symmetric and their information is known to the seller.

Given any supply-reserve distribution K, there is a deterministic quantity Q? such that the

pay-as-bid auction with fixed supply Q? raises greater revenue than the pay-as-bid auction

with supply-reserve distribution K.

We prove this auxiliary complete-information result by studying an auxiliary problem in

which a bidder’s bid satisfies a best-response first order condition but is not necessarily a

best response to the random elastic supply and other bidders’ mixed strategies. We show

that if—counterfactually—the seller was able to set the random supply-reserve distribution

separately for this focal bidder, holding the other bidders’ behavior fixed, then the seller

would optimize this part of the revenue by keeping the quantity allocated to the focal bidder

constant and randomizing only over reserve prices.73 That is, analyzing constant supply and

random reserve decouples the focal bidder’s best response from strategies of other bidders.

Thus—given the symmetry of the problem—the seller is able to implement such a revenue

maximizing scheme via a pay-as-bid auction with fixed supply and the same random supply

distribution for all bidders. Leveraging the simplification brought by being able to restrict

attention on random reserve only, we bound the maximum revenue of the seller by the revenue

from a deterministic supply and reserve pay-as-bid (and uniform-price with identical supply

and reserve).

Having shown that if the seller knew bidders’ common information, then she can do no

better than set deterministic elastic supply so as to maximize the revenue, it remains to

73We also show a further technical property that—with arbitrarily small revenue loss—the reserve distri-
bution can be so chosen that the focal bidder submits a strictly decreasing bid.
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observe that regularity (defined in Section 6) allows the seller to implement such an optimal

reserve and quantity by an elastic supply function even though the seller does not know the

bidders’ information.

Theorem 15. [Deterministic Auctions Are Optimal] When bidder values are regular

then revenue in the pay-as-bid auction is maximized by implementing a deterministic supply

curve. Any mixed-strategy equilibrium of the pay-as-bid auction with any random elastic

supply raises weakly lower revenue than the unique equilibrium of pay-as-bid with optimal

deterministic supply.

Because deterministic elastic supply is not only optimal in pay-as-bid, but also extracts

the same revenue as if the seller knew bidders’ values, we can also conclude the following:

Theorem 16. [Pay-as-Bid Revenue Dominance] If bidder values are regular then the

unique equilibrium of the optimal pay-as-bid auction raises weakly more revenue than any

equilibrium in uniform-price auction with any supply-reserve distribution.

Furthermore, for a generic distribution of values there are multiple equilibria in uniform-

price, and the revenue in a generic uniform-price equilibrium is strictly lower than the revenue

in optimal pay-as-bid. This last point follows from the underpricing equilibrium construc-

tions in, e.g.. Back and Zender [1993] and LiCalzi and Pavan [2005].

Finally, our analysis of optimal elastic supply implies that an analogue of the information

disclosure Theorem 6 remains true in under random elastic supply. Recall that in this

theorem the quantity is exogenously realized and the seller has the ability to communicate

this cap to the bidders. Because the optimal elastic supply is constructed point-by-point

and hence does not depend on the quantity cap other than in the inelastic part of the supply

when the cap is binding, in the current elastic supply setting the seller still wants to set the

elastic supply (where possible) and fully reveal their private information.

Theorem 17. [Optimality of Information Disclosure with Elastic Supply] If the

bidders’ values are regular then the seller’s expected revenue is maximized when the seller

commits to fully reveal the realization of the elastic supply curve.
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Supplementary Appendix (For Online

Publication): Proofs

B Proof of Theorem 1 and Auxiliary Lemmas

In what follows, we denote the inverse hazard rate of aggregate supply by H = 1−F
f

.

B.1 Proof of Theorem 1 (Bound on Market Price)

Our equilibrium analysis relies on the identification of the minimum equilibrium market

clearing price. In this appendix we prove Theorem 1, which bounds this price. The arguments

do not depend on the presence (or absence) of idiosyncratic private information or mixed

strategies. We consolidate all bidder-known uncertainty into ζi = (s, θi, ξi), where s is

the signal observed by all bidders, θi is bidder i’s idiosyncratic private information, and

ξi is a term parameterizing bidder i’s potentially-mixed strategy; thus bidder i’s bid bi :

[0, Q] × Supp ζi → R+.74 Where useful, we consider ζi|s to hold fixed the common signal s

while letting θi and ξi vary.

We also introduce notation for the (essential) minimum market clearing price p and

(essential) maximum receivable quantity qi, conditional on strategy profile (bj)nj=1,

p (s) = ess inf
Q,ζ|s

p
(
Q;
(
bj (·; ζj)

)n
j=1

)
;

qi (ζi) = ess sup
Q,ζ−i|s

qi
(
Q; bi (·; ζi) , b−i (·, ζ−i)

)
.

Thus, when the bidding strategy profile is (bj)nj=1, the market clearing price is almost never

below p(s) when the common signal is s, and bidder i’s allocation is almost never above

qi(ζi) when her type is ζi.

Lemma 6. In any equilibrium, conditional on common signal s, at least n− 1 bidders, with

probability 1, bid their true value for their maximum receivable quantity. That is,

#
{
i : Pr

(
bi
(
qi (ζ) ; ζ

)
= v

(
qi (ζ) ; ζ

)∣∣s) = 1
∣∣s} ≥ n− 1.

Proof. For a given agent i, common signal s, and λ > 0, consider an alternative bidding

74For compactness we also write v(·; ζi) = v(·; s, θi), but we do not imply that a bidder’s marginal value
may vary with her action selection from a mixed strategy.
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strategy bλ defined by

bλ (q; ζi) =

bi (q; ζi) if bi (q; ζi) ≥ bi
(
qi (ζi) ; ζi

)
+ λ,

min
{
bi
(
qi (ζi) ; ζi

)
+ λ, v (q; ζi)

}
otherwise.

Since bi(·; ζi) is left-continuous, for small λ this deviation will award the agent all excess

quantity above
∑

j 6=i ϕ
j(bi(qi(ζi); ζi) + λ; ζj). Let q?(λ; ζ) be the quantity obtained under

this deviation when, under the original strategy, qi(ζ) units would be obtained. Explicitly,

q? (λ; ζ) = Q−
∑
j 6=i

ϕi
(
bi
(
qi (ζi) ; ζi

)
+ λ; ζj

)
= Q−

∑
j 6=i

qji (λ; ζ) ,

where qji(λ; ζ) = ϕj(bi(qi(ζi); ζi)+λ; ζj) is the quantity bidder j receives when the aggregate

signal profile is ζ and bidder i implements bid bλ; note that qii(λ; ζ) is the maximum quantity

for which bidder i bids above bi(q(ζi); ζi) +λ, which does not depend on ζ−i, and denote this

quantity by qi
λ
(ζi). We will use the quantity q?(λ; ζ) to analyze the additional quantity the

deviation yields above baseline,

∆i
L (λ; ζ) = qi (ζ)− qii (λ; ζ) , ∆i

R (λ; ζ) == q? (λ; ζ)− qi (ζ) ,

∆i (λ; ζ) = ∆i
L (λ; ζ) + ∆i

R (λ; ζ) .

Incentive compatibility requires that this deviation cannot be profitable, hence the additional

costs must outweigh the additional benefits,

EQ,ζ|s

[∫ qi(ζ)

qi
λ

(ζi)

bλ (x; ζi)− bi (x; ζi) dx

∣∣∣∣∣qi ≥ qi
λ

(ζi)

]

≥ EQ,ζ|s

[∫ q?(λ;ζ)

qi(ζ)

v (x; ζi)− bλ (x; ζi) dx

∣∣∣∣∣qi ≥ qi
λ

(ζi)

]
.

Importantly, this inequality must hold both ex ante and interim, unconditional on θi. Because

bids are weakly decreasing, the left-hand expectation is bounded above by

EQ,ζ|s

[∫ qi(ζ)

qi
λ

(ζi)

bλ (x; ζi)− bi (x; ζi) dx

∣∣∣∣∣qi ≥ qi
λ

(ζ)

]

≤ EQ,ζ|s

[∫ qi(ζ)

qi
λ

(ζi)

bi
(
qi (ζi) ; ζi

)
+ λ− bi

(
qi (ζi) ; ζi

)∣∣∣∣∣qi ≥ qi
λ

(ζi)

]
= λEQ,ζ−i|s

[
∆i
L (λ; ζ)

∣∣∣qi ≥ qi
λ

(ζi)
]
.
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As marginal values are Lipschitz in quantity and bi(qi(ζi); ζi) < vi(qi(ζi); ζi) by assumption,

the right-hand expectation is bounded above by (M is the Lipschitz modulus of v)

EQ,ζ|s

[∫ q?(λ;ζ)

qi(ζ)

v (x; ζi)− bλ (x; ζi) dx

∣∣∣∣∣qi ≥ qi
λ

(ζi)

]

≥ EQ,ζ|s

[∫ q?(λ,ζ)

qi(ζ)

(
vi
(
qi (ζi) ; ζi

)
−
(
x− qi (ζ)

)
M −

(
bi
(
qi (ζi) ; ζi

)
+ λ
))

+
dx

∣∣∣∣∣qi ≥ qi
λ

(ζi)

]

≥ EQ,ζ|s
[

1

2
(µ (ζi)− λ) min

{
∆i
R (λ; ζ) ,

µ (ζi)− λ
M

}∣∣∣∣qi ≥ qi
λ

(ζi)

]
,

where µ(ζi) = vi(qi(ζi); ζi) − bi(qi(ζi); ζi). If it is the case that (µ(ζi) − λ)/M ≤ ∆i
R(λ; ζ)

for all λ, then it is impossible that the overall inequality is satisfied for all λ (its left-hand

side converges to zero in λ, while the right-hand side converges to a strictly positive value)

and incentive compatibility is violated. Therefore we assume that the min{·, ·} resolves to

∆i
R(λ; ζ). Then the overall inequality implies

λEQ,ζ|s
[
∆i
L (λ; ζ)

∣∣∣qi ≥ qi
λ

(ζi)
]
≥ EQ,ζ|s

[
1

2
(µ (ζi)− λ) ∆i

R (λ; ζ)

∣∣∣∣qi ≥ qi
λ

(ζi)

]
.

Since ∆i
R(λ; ζ) is bounded, there is mi(λ) such that

λEQ,ζ|s
[
∆i
L (λ; ζ)

∣∣∣qi ≥ qi
λ

(ζi)
]
≥ 1

2

(
mi (λ)− λ

)
EQ,ζ|s

[
∆i
R (λ; ζ)

∣∣∣qi ≥ qi
λ

(ζi)
]
.

For any i, any λ, and any κ > 0, there is Λi(λ, κ) > 0 such that

Λi (λ, κ) <
1

2

(
mi (λ)− λ

)
κ.

The term mi(λ) can be specified so that mi(λ)−λ is decreasing in λ, so if Λi(λ;κ) < (mi(λ)−
λ)κ/2, then Λi(λ, κ) < (mi(λ′)−λ′)κ/2 for all λ′ > λ. Then let Λ = min{Λi(λ, κ) : Prζi(b

i(qi(ζi); ζi) >

vi(qi(ζi); ζi)|s) > 0}. For any such κ, Λ, it must be that

κEQ,ζ|s
[
∆i
L

(
Λ; ζ

)∣∣∣qi ≥ qi
λ

(ζi)
]
≥ EQ,ζ|s

[
∆i
R

(
Λ; ζ

)∣∣∣qi ≥ qi
λ

(ζi)
]
.

Define bidder j with type ζj to be relevant given price p (and common signal s) if

bj(qj(ζj); ζj) ≤ p < vj(qj(ζj); ζj). Fixing price p and summing the above incentive inequality
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over all relevant agents gives

κ
∑

j relevant

EQ,ζ|s
[
∆j
L

(
Λ; ζ

)∣∣∣qj ≥ qj
λ

(ζj)
]

≥
∑

j relevant

EQ,ζ|s
[
∆j
R

(
Λ; ζ

)∣∣∣qj ≥ qj
λ

(ζj)
]

=
∑

j relevant

EQ,ζ|s
[
∆j
(
Λ; ζ

)∣∣∣qj ≥ qj
λ

(ζj)
]
− EQ,ζ|s

[
∆j
L

(
Λ; ζ

)∣∣∣qj ≥ qj
λ

(ζj)
]
.

Thus,

(κ+ 1)
∑

j relevant

EQ,ζ|s
[
∆j
L

(
Λ; ζ

)∣∣∣qj ≥ qj
λ

(ζj)
]
≥

∑
j relevant

EQ,ζ|s
[
∆j
(
Λ; ζ

)∣∣∣qj ≥ qj
λ

(ζj)
]
.

By definition, ∆j(Λ; ζ) = Q − qj
λ
(ζj) −

∑
k 6=j q

kj(Λ; ζ) ≡ Q − Qj(Λ; ζ) and ∆j
L(Λ; ζ) =

qj(ζ)− qj
λ
(Λ; ζ). Furthermore,∑

j relevant

qj (ζ)− qj
λ

(ζj) ≤
∑
j

qj (ζ)− qj
λ

(ζj) = Q−Q
(
p+ δ

)
.

Then it follows that

κ+ 1 ≥ # {j relevant} .

Since κ > 0 may be arbitrarily small, it follows that there is at most one relevant bidder;

i.e., there is at most a single bidder i such that Pr(bi(qi(ζ); ζ) < v(qi(ζ); ζ)) < 1.

Lemma 7. For all bidders i and all bidder-common signals s,

Pr
(
bi
(
qi (ζi) ; ζi

)
= v

(
qi (ζi) ; ζi

)∣∣s) = 1.

Proof. Fix a common signal s. Lemma 6 shows that at least n − 1 bidders j are such that

bj(qj(ζj); ζj) = v(qj(ζj); ζj) with probability 1. If all n bidders’ bids satisfy this condition,

the desired result follows immediately from market clearing. Otherwise, there is some bidder

i such that bi(qi(ζi); ζi) < v(qi(ζi); ζi) with ζi|s-strictly positive probability. We show that

(i) this bidder’s bid must be constant in a neighborhood of qi(ζi), (ii) with ζ−i|s-positive

probability, opposing bidders’ bids are asymptotically flat near qj(ζj), and (iii) this implies

that bidder i has a strict incentive to increase her (flat) bid near qi(ζi).

Let bidder i and parameter ζi be such that bi(qi(ζi); ζi) = p < v(qi(ζi); ζi), and assume

that bi is strictly decreasing in a neighborhood to the left of qi(ζi). For λ > 0, define an
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alternate bid bλ,

bλ (q) =

bi (q; ζi) if bi (q; ζi) ≥ p+ λ,

p+ λ otherwise.

Since bi(qi(ζi); ζi) < v(qi(ζi); ζi) and we analyze small λ > 0, we may assume that λ is small

enough that for any feasible quantity q, bλ(q) ≤ v(q; ζi). Then whenever the market clearing

price would be p < p+ λ if bidder i submitted bid bi, the market clearing price will be p+ λ

if she submits bid bλ instead. Further, bidder i receives the full residual supply,

qλi = Q−
∑
j 6=i

ϕj
(
p+ λ; ζj

)
.

The utility gain associated with bid bλ versus bid bi is bounded below by

EQ,ζ−i


∫ Q−

∑
j 6=i ϕ

j(p+λ;ζj)

q

v (x; ζi)−
(
p+ λ

)
dx

−
∫ q

ϕi(p+λ;ζi)

(
p+ λ

)
− bi (x; ζi) dx

∣∣∣∣∣∣∣∣∣q ≥ ϕi
(
p+ λ; ζi

)
 . (4)

Because bidder i’s opponents all have Pr(bj(qj(ζj); ζj) = v(qj(ζj); ζj)) = 1, and bids are below

values and values are Lipschitz continuous, there is M > 0 such that qj(ζj)−ϕj(p+λ; ζj) >

Mλ with probability 1 for all j 6= i. Then, letting λ < v(qi(ζi); ζi)− bi(qi(ζi); ζi), the bound

in 4 is in turn bounded below by

EQ,ζ−i|s

[∫ (Q−
∑
j 6=i q

j(ζj))+(n−1)Mλ

q

v (x)−
(
p+ λ

)
dx−

(
q − ϕi

(
p+ λ; ζi

))
λ

∣∣∣∣∣q ≥ ϕi
(
p+ λ; ζi

)]

≥ EQ,ζ−i|s

[([(
Q−

∑
j 6=i

qj (ζj)

)
+ (n− 1)Mλ

]
− q

)
λ−

([
Q−Q

]
+ (n− 1)Mλ

)
λ

∣∣∣∣∣q ≥ ϕi
(
p+ λ; ζi

)]

= EQ,ζ−i|s

[
Q−

∑
j 6=i

qj (ζj)− q

∣∣∣∣∣q ≥ ϕi
(
p+ λ; ζi

)]
λ > 0.

In the above we rely on the fact that the minimum market clearing price is obtained when

aggregate supply is maximized. Since bλ yields higher expected utility than bi when λ > 0

is small, bi is not a best response, and therefore any best response bi must be constant in a

neighborhood of qi(ζi), if bi(qi(ζi); ζi) < v(qi(ζi); ζi).

Define q̌i(ζi) = ϕi(p; ζi) to be the left endpoint of the flat interval of bidder i’s bid,

containing qi(ζi). Without loss of generality, we may assume that bi(q; ζi) = p for all q >
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q̌i(ζi) whenever bi(qi(ζi); ζi) < v(qi(ζi); ζi): extending the flat portion of the bid function

either does not affect allocation, or (by market clearing) increases allocation to some q such

that v(q; ζi) > p. Since Pr(bi(qi(ζi); ζi) < v(qi(ζi); ζi)|s) > 0 and q̌i(ζi) < qi(ζi) for all ζi with

bi(qi(ζi); ζi) < v(qi(ζi); ζi), it follows that Pr(p(Q, ζ) = p|s) > 0. Consider a bidder j 6= i

and type ζj such that bj(qj(ζj); ζj) = v(qj(ζj); ζj) = p; since Pr(p(Q, ζ) = p|s) > 0, it must

be that Pr(qj = qj(ζj)|s) > 0. If the bid bj(·; ζj) is optimal, it must not be utility-improving

to decrease the bid to bλµ, where75

bλµ (q) =

bj (q; ζj) if q < qj (ζj)− λ,

p+ µ otherwise.

The bid bλµ saves payment
∫ qj(ζj)
qj(ζj)−λ

bj(q; ζj)− (p+µ)dq whenever qj = qj(ζj), but potentially

reduces quantity when qj ∈ (qj(ζj)−λ, qj(ζj)). The change in utility from implementing bid

bλµ instead of bid bj(·; ζj) is bounded below by

∫ qj(ζj)

qj(ζj)−λ
bj (q; ζj)−

(
p+ µ

)
dq Pr

(
qj = qj (ζj)

∣∣s)
−
∫ qj(ζj)

qj(ζj)−λ

∫ q

qj(ζj)−λ
v (x; ζj)− bj (x; ζj) dxdG

i
(
q; bj

)
.

The derivative of this expression with respect to λ must be weakly negative,

(
bj
(
qj (ζj)− λ; ζj

)
−
(
p+ µ

))
Pr
(
qj = qj (ζj)

∣∣s)
−
(
v
(
qj (ζj)− λ; ζj

)
− bj

(
qj (ζj)− λ; ζj

))
Pr
(
qj ∈

(
qj (ζj)− λ, qj (ζj)

)∣∣s) ≤ 0.

This inequality holds for all µ > 0. Letting M be the Lipschitz modulus of v, substituting

in for bj(qj(ζj); ζj) = p means that the previous inequality implies

(
bj
(
qj (ζj)− λ; ζj

)
− p
)

Pr
(
qj = qj (ζj)

∣∣s)−MλPr
(
qj ∈

(
qj (ζj)− λ, qj (ζj)

)∣∣s) ≤ 0

⇐⇒ −
bj
(
qj (ζj) ; ζj

)
− bj

(
qj (ζj)− λ; ζj

)
λ

≤
M Pr

(
qj ∈

(
qj (ζj)− λ, qj (ζj)

)∣∣s)
Pr
(
qj = qj (ζj)

∣∣s) .

Taking the limit as λ ↘ 0, we obtain that bjq(q
j(ζj); ζj) = 0. Thus any bidder j 6= i

with type ζj such that bj(qj(ζj); ζj) = v(qj(ζj); ζj) and Pr(qj = qj(ζj)|s) > 0 is such that

bjq(q
j(ζj); ζj) = 0.

75The µ term ensures that bidder j wins ties against the flat portion of bidder i’s bid; this term will be
taken to zero and thus will have no marginal effect on utility.
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Now return to bidder i with type ζi such that bi(qi(ζi); ζi) < v(qi(ζi); ζi) and q̌i(ζi) <

qi(ζi), and consider the alternate bid function bλ defined in the first portion of this proof.

We now place a slightly different bound on the utility gained by implementing bid bλ versus

bid bi(·; ζi). Payments increase by at most Qλ, with at most probability 1; and, whenever

qi > q̌i(ζi) under bi(·; ζi), bidder i receives the full residual quantity Q−
∑

j 6=i ϕ
j(p+ λ; ζj).

Then a lower bound on the utility improvement generated by the alternate bid bλ (versus

bi(·; ζi)) is

EQ,ζ−i

[∫ Q−
∑
j 6=i ϕ

j(p+λ;ζj)

q

v (x; ζi)− pdx−Qλ

∣∣∣∣∣q ≥ q̌i (ζi)

]
.

For bλ to not be utility-improving, this expectation must be weakly negative. Dividing

through by λ and taking the limit at λ↘ 0 gives

EQ,ζ−i

[
−

(
v

(
Q−

∑
j 6=i

qj (ζj) ; ζi

)
− p

)∑
j 6=i

ϕjp
(
p; ζj

)
−Q

∣∣∣∣∣q ≥ q̌i (ζi)

]
≤ 0.

By assumption, v(Q −
∑

j 6=i q
j(ζj); ζj) > p, and from the previous paragraph we have that

ϕjp(p; ζj) = −∞ with strictly positive probability. Then the above inequality cannot be

satisfied. It follows that there is no bidder i such that Pr(bi(qi(ζi); ζi) < v(qi(ζi); ζi)|s) >
0.

Lemma 7 states that, for all bidders i, at the maximum quantity received with positive

probability, the equilibrium bid must exactly equal the bidder’s true marginal value. The

inequality in Theorem 1, is

min
i

ess inf
θ̃i

vi
(

1

n
Q
R

; s, θ̃i

)
≤ p

(
Q
R

; s, θ
)
≤ max

i
ess sup

θ̃i

vi
(

1

n
Q
R

; s, θ̃i

)
.

On the left-hand side, there is some bidder for whom the maximum feasible quantity is no

more than Q
R
/n. Since values are decreasing in bids, this bidder’s value for Q

R
/n is weakly

below their value for their maximum feasible quantity, and therefore this is a lower bound

for the market clearing price. The same argument applies with regard to a bidder whose

maximum feasible quantity is at least Q
R
/n, establishing the right-hand inequality.

When bidders are symmetric and symmetrically-informed, Theorem 1 immediately im-

plies the following result, which we use in the subsequent proofs.

Corollary 6. When bidders have symmetric information, (s, θi) = (s, 0) for all bidders i,

the equilibrium minimum market clearing price equals the marginal value for the per-capita

52



maximum quantity,

p (s) = v̂
(
Q
R

; s
)
.

B.2 Pure strategy equilibrium derivation with symmetric bidder

information

In this section we present the lemmas for our results on existence, uniqueness, and bid

representation of pure strategy equilibria under symmetric bidder information. To simplify

notation we will thus write v(q) in lieu of v(q; s, θi) and bi (q) in lieu of bi(q; s, θi).

Let us fix a pure-strategy candidate equilibrium (bi)ni=1. Recall that bid functions are

weakly decreasing and (where useful) we may assume that they are right-continuous. Given

equilibrium bids the market price (that is, the stop-out price) p (Q) is a function of realized

supply Q. In line with Appendix A, denote Gi(q; bi) = Pr(qi ≤ q|bi); that is, Gi (q; bi) is the

probability that agent i receives at most quantity q when submitting bid bi in the equilibrium

considered. The monotonicity of bid functions implies that as long as bi is an equilibrium

bid, and given other equilibrium bids, the probability Gi (q; bi) depends on bi only through

the value of bi (q).

Our statements in the following results are generally about relevant quantities, such that

Gi(q; bi) < 1. For each bidder we ignore quantities larger than the maximum quantity this

bidder can obtain in equilibrium; for instance, in the following lemmas, all bidders could

submit identical flat bids above their values for units they never obtain. Accordingly, we

restrict attention to relevant price levels p, such that Pr(p? < p) > 0.

Lemma 8. For no relevant price level p are there two or more bidders who, in equilibrium,

bid constant value p flat on some non-trivial intervals of quantities.

Proof. The proof resembles similar proofs in other auction contexts. Suppose agent i bids

p on (qi`, q
i
r) and bidder j bids p on (qj` , q

j
r). Since the support of supply is

[
0, Q

]
, it must

be that Gi(qir; b
i) > Gi(qi`; b

i) and Gj(qjr ; b
j) > Gj(qj` ; b

j). Let q̄i = EQ[qi|p(Q) = b(qir)];

without loss of generality, we may assume that agent i is such that q̄i < qir. If vi(q̄i) < bi(qir),

the agent has a profitable downward deviation. The agent also has a profitable deviation if

vi(q̄i) ≥ bi(qir): she can increase her bid slightly by λ > 0 on [qi`, q
i
r) (enforcing monotonicity

constraints as necessary to the left of qi`), keeping her bid below value if necessary.76

Lemma 9. Bids are below values: bi(q) ≤ vi(q) for all relevant quantities, and bi(q) < vi(q)

for q < ϕi(p(Q)).

76Because we are conditioning on her expected quantity, we do not need to directly consider whether
quantities are relevant.
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Proof. Suppose that there exists q with bi(q) > vi(q); because bi is monotonic and vi is

continuous, there must exist a range (q`, qr) of relevant quantities such that bi(q) > vi(q)

for all q ∈ (q`, qr). The agent wins quantities from this range with positive probability, and

hence the agent could profitably deviate to

b̂i (q) = min
{
bi (q) , vi (q)

}
.

Such a deviation never affects how she might be rationed, by the first part of this proof;

hence it is necessarily utility-improving.

Now consider q < ϕi
(
p
(
Q
))

. If bi(q) = vi(q) then monotonicity of bi and Lipschitz-

continuity of vi imply that for small ε > 0 winning units [q − ε, q] brings per unit profit

lower than Mε, where M is the Lipschitz modulus of v. By lowering the bid for quantities

q′ ∈ [q − ε, q + ε] to b̂i (q′) = min{vi(q) − ε, bi(q′)}, the utility loss from losing the relevant

quantities is at most 2Mε2 (Gi (q + ε; bi)−Gi (q − ε; bi)). Notice that the right-hand proba-

bility difference goes to zero as ε goes to zero. At the same time the cost savings from paying

lower bids at quantities higher than q + ε is (at least) of order ε2. Hence this deviation is

profitable, and it cannot be that bi(q) = vi(q).

Lemma 10. The market clearing price p(Q) is strictly decreasing in supply Q, for all Q ≤
Q
R

.

Proof. We show first that the market clearing price is strictly decreasing in supply for all

Q such that p(Q) > infQ′ p(Q
′) = p. We then show that p is strictly decreasing at Q

R
as

long as for any bidder i residual supply
∑

j 6=i ϕ
j(·) has nonzero slope at p. Since Corollary 6

shows that bi(qi) = p, Lemma 9 shows that bids are below values, and values are Lipschitz

continuous, it follows that residual supply has nonzero slope at p, and therefore the market

clearing price is strictly decreasing in Q.

Since bids are weakly decreasing in quantity, the market price is weakly decreasing as

a direct consequence of the market-clearing equation. If price is not weakly decreasing in

quantity at some Q, then a small increase in Q will not only increase the price, but will

weakly decrease the quantity allocated to each agent. This implies that total demand is no

greater than Q, contradicting market clearing.

Lemma 8 is sufficient to imply that the market price must be strictly decreasing for all

Q such that p(Q) > p: at every price level at which at least two bidders pay with positive

probability for some quantity, at most one of the submitted bid functions is flat. Furthermore,

for no price level p > p that with positive probability a bidder pays for some quantity, we

can have exactly one bidder, i, submitting a flat bid at price p on an interval of relevant
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quantities.77 Indeed, in equilibrium bidder i cannot benefit by slightly reducing the bid on

this entire interval; thus it must be that there is some other agent j whose bid function is

right-continuous at price p. If p = 0, all opponents j 6= i have a profitable deviation.78 If

p > 0, we appeal to Lemma 9. Given that i submits a flat bid and the bids of bidder j are

strictly below her values for some non-trivial subset of quantities at which her bid is near p,

bidder j can then profit by slightly raising her bid; this reasoning is similar to that given in

the proof of Lemma 8.

We now show that p(·) is strictly decreasing for all Q. Otherwise, following Lemma 8,

there is a bidder i who is submitting a flat bid at p. Denote the left end of this bidder’s flat

by q
i

= inf{q : bi(q) = p}; by assumption, q
i
< qi.

79 Let ε, λ > 0 and define a deviation

b̂ελ (q) =


bi (q) if bi (q) > p+ λ,

p+ λ if bi (q) ≤ p+ λ and q ≤ q
i
+ ε,

p otherwise.

That is, b̂ελ is bi, with λ added for length ε at q
i
, and adjusting for the fact that bids must

be monotone decreasing. Note that this deviation increases costs by at most (ε + (q
i
−

ϕi(p + λ)))λ, with at most probability one. When qi ∈ [q
i
, q
i
+ ε], it increases the quantity

allocation to (approximately) max{q
i
+ ε, q + λM}, where M is the slope of residual supply

at the minimum price, M =
∑

j 6=i ϕ
j
p(p).

80 Let µ ≡ vi(q
i
+ ε)− (p+ λ); since bids are below

values and values are strictly decreasing, µ > 0 when ε and λ are sufficiently small. Then

for the deviation to be nonoptimal, it must be that(
ε+

(
q
i
− ϕi

(
p+ λ

)))
λ ≥ E

[(
max

{
ε, q +

λ

M

}
− q
)
µ

∣∣∣∣q ∈ [qi, qi + ε
]]

= E
[(

max

{
ε− q, λ

M

})
µ

∣∣∣∣q ∈ [qi, qi + ε
]]
.

77We refer to any price level p that with positive probability a bidder pays for some quantity, as a relevant
price level.

78Here we work in a model in which marginal utilities on all possible units is strictly positive. We could
dispense with the strict positivity assumption by allowing negative bids.

79Because bidders are symmetric, it is not possible that qi = 0: in this case, bidder i almost surely receives
0 utility ex post, which is not optimal.

80Because we are ultimately letting ε and λ go to zero, this approximation is sufficient. Formally, we may
consider M ′ < M and allow δ to be small enough that the slope of residual supply never falls below M ′.
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Letting Q−i =
∑

j 6=i qj, this can be rewritten as

(
ε+

(
q
i
− ϕi

(
p+ λ

)))
λ

∫ q
i
+ε

q
i

dF
(
q +Q−i

)
≥
∫ q

i
+ε

q
i

max

{
ε+ q

i
− q, λ

M

}
µdF

(
q +Q−i

)
≥
∫ q

i
+ε− λ

M

q
i

µλ

M
dF
(
q +Q−i

)
.

The λ > 0 multipliers cancel; integrating through gives(
ε+

(
q
i
− ϕi

(
p+ λ

))) (
F
(
ε+Q−i

)
− F

(
Q−i

))
≥ µ

M

(
F

(
ε− λ

M
+Q−i

)
− F

(
Q−i

))
.

From here the argument is standard. For any ε > 0 there is λ > 0 such that ε− λ/M ≥ ε/2

and q
i
− ϕi(p+ λ) < ε/2. Thus it must be that

3

2
ε
(
F
(
ε+Q−i

)
− F

(
Q−i

))
≥ µ

M

(
F

(
1

2
ε−Q−i

)
− F

(
Q−i

))
⇐⇒ F

(
ε+Q−i

)
− F

(
Q−i

)
≥ µ

3M

[
F
(

1
2
ε−Q−i

)
− F

(
Q−i

)
1
2
ε

]
.

This must hold for all ε > 0. Taking the limit as ε↘ 0 gives

0 ≥
µf
(
Q−i

)
3M

.

Since f(·) > 0, this is a contradiction whenM is nonzero. In this case, bidder i has a

profitable deviation.

Corollary 7. In any pure-strategy equilibrium, bid functions are strictly decreasing.

We define the derivative of Gi with respect to b as follows. For any q and bi, the mapping

t 7→ Gi(q; bi + t) is weakly decreasing in t, and hence differentiable almost everywhere. With

some abuse of notation, whenever it exists we denote the derivative of this mapping with

respect to t by Gi
b(q; b

i).

Lemma 11. For each agent i and almost every q we have:

Gi
b

(
q; bi

)
= f

(
q +

∑
j 6=i

ϕj
(
bi (q)

))∑
j 6=i

ϕjp
(
bi (q)

)
.
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Proof. By definition, Gi(q; bi) = Pr(qi ≤ q|bi). From market clearing, this is

Gi
(
q; bi

)
= Pr

(
Q ≤ q +

∑
j 6=i

ϕj
(
bi (q)

))

=F

(
q +

∑
j 6=i

ϕj
(
bi (q)

))
.

Where the demands ϕj of agents j 6= i are differentiable, we have

Gi
b

(
q; bi

)
= f

(
q +

∑
j 6=i

ϕj
(
bi (q)

))∑
j 6=i

ϕjp
(
bi (q)

)
.

Since for all j, the demand function ϕj must be differentiable almost everywhere, the result

follows.

Lemma 12. At points where Gi
b (q; bi) is well-defined, the first-order conditions of the pay-

as-bid auction are given by

−
(
v (q)− bi (q)

)
Gi
b

(
q; bi

)
= 1−Gi

(
q; bi

)
.

In the case of pure strategies under symmetric bidder information,81 the first-order condition

can be written as

−
(
v (q)− bi (q)

)( d

db
Q
(
bi (q)

)
− ϕip

(
bi (q)

))
= H

(
Q
(
bi (q)

))
,

where Q (p) is the inverse of p (Q).

Proof. The agent’s maximization problem is given by

max
b

∫ Q

0

∫ q

0

v (x)− b (x) dxdGi (q; b) .

Integrating by parts, we have

max
b
−
[(

1−Gi (q; b)
) ∫ q

0

v (x)− b (x) dx

]
|Qq=0 +

∫ Q

0

(v (q)− b (q))
(
1−Gi (q; b)

)
dq.

81The definition of the derivative of bidder i’s distribution of supply, Gib, obtained in Lemma 11, assumes
pure strategies under symmetric bidder information. The first order condition derived here is invariant to
the source of randomness in the bidder’s allocation, but the statement in terms of aggregate demand holds
only for pure strategies under symmetric bidder information.
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In the first square bracket term, both multiplicands are bounded for q ∈ [0, Q], hence the

fact that 1−Gi(Q; b) = 0 for all b and
∫ 0

0
v(x)− b(x)dx = 0 for all b allows us to reduce the

agent’s optimization problem to

max
b

∫ Q

0

(v (q)− b (q))
(
1−Gi (q; b)

)
dq.

The calculus of variations gives us the necessary condition

−
(
1−Gi

(
q; bi

))
−
(
v (q)− bi (q)

)
Gi
b

(
q; bi

)
= 0.

This holds at almost all points at which Gi
b is well-defined. Rearrangement yields the first

expression for the first-order condition.

To derive the second expression, let us substitute into the above formula for Gi and Gi
b

from the Lemma 11. We obtain

−
(
v (q)− bi (q)

)
f

(
q +

∑
j 6=i

ϕj
(
bi (q)

))(∑
j 6=i

ϕjp
(
bi (q)

))
= 1− F

(
q +

∑
j 6=i

ϕj
(
bi (q)

))
,

Now, Q (p) is well-defined since we have shown that p is strictly monotone. By Corollary 7

bids are strictly monotone in quantities and hence q +
∑

j 6=i ϕ
j (bi (q)) = Q (bi (q)), and

−
(
v (q)− bi (q)

)(∑
j 6=i

ϕjp
(
bi (q)

))
= H

(
Q
(
bi (q)

))
.

Since
∑

j 6=i ϕ
j
p (bi (q)) = d

db
Q (bi (q)) − ϕip (bi (q)), the second expression for the first order

condition obtains.

Lemma 13. When bidders have symmetric information, equilibrium bidding strategies must

be symmetric in all pure strategy equilibria: bi = b for all i.

Proof. The proof proceeds by establishing an ordering of asymmetric bid functions. We use

this ordering to show that equilibrium is symmetric in the n = 2 bidder case, and the result

from the n = 2 bidder case provides tools for the general analysis. Intuitively, these results

show that agents do not like receiving zero quantity when it is possible to receive a positive

quantity; because this is a necessary feature of asymmetric putative equilibria, these bids

are not best responses.

Note that for any agent i,
∑

j 6=i ϕ
j
p(p) = Qp(p) − ϕip(p). Then we can write the agent’s
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first-order condition as

bi (q) = v (q) +

(
1− F (Q (p))

f (Q (p))

)(
1

Qp (p)− ϕip (p)

)
.

Now suppose that two agents i, j have bid functions which differ on a set of positive measure;

without loss, assume that bi > bj. Then there is a price p such that ϕi(p) > ϕj(p), and

v(ϕi(p)) < v(ϕj(p)). Substituting into the agents’ first-order conditions, this gives

(
1− F (Q (p))

f (Q (p))

)(
1

Qp (p)− ϕip (p)

)
>

(
1− F (Q (p))

f (Q (p))

)(
1

Qp (p)− ϕjp (p)

)
.

Standard rearrangement gives

ϕjp (p) < ϕip (p) .

Thus whenever ϕi(p) > ϕj(p), we have ϕip(p) > ϕjp(p). Recalling from Corollary 6 that bids

must equal values at q = Q/n, this implies that if there is any p such that ϕi(p) > ϕj(p),

then ϕi > ϕj.

Now consider the implications for the n = 2 bidder case, and let j 6= i. Assume that

there is p with ϕi(p) > ϕj(p) > 0. Then there is some p̌ such that ϕj(p̌) = 0 and ϕi(p̌) > 0.

Basic auction logic dictates that bidder i can never outbid the maximum bid of bidder j

(i.e., it must be that bi(0) = bj(0)) thus it must be that bidder i’s first-order condition does

not apply for initial units, and she is submitting a flat bid. That is, bi(q)|q≤ϕi(p̌) = p̌. Now

let ε, λ > 0, and define a deviation b̂ελ for bidder 2,

b̂ελ (q) =

bj (0) + λ if q ≤ ε,

bj (q) otherwise.

Then for all q ∈ (0, ε], b̂ελ(q) > bi(q), and when the realized quantity is Q ∈ (0, ε] bidder j

wins the entire supply. To bound the additional utility, we see that for small ε > 0 bidder j

gains at least ∫ ε

0

(
v (x)− bj (x)

)
dx
(
F
(
ϕi (p̌)

)
− F (ε)

)
.

There is an extra cost paid as well; to bound this cost we will assume that it is paid with

probability 1, and this cost is (bj(0) +λ)ε−
∫ ε

0
bj(x)dx. The deviation b̂ελ is profitable if the
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ratio of benefits to costs is greater than 1, hence we look at

lim
λ↘0,ε↘0

∫ ε
0

(v (x)− bj (x)) dx (F (ϕi (p̌))− F (ε))

(bj (0) + λ) ε−
∫ ε

0
bj (x) dx

= lim
ε↘0

∫ ε
0

(v (x)− bj (x)) dx (F (ϕi (p̌))− F (ε))

bj (0) ε−
∫ ε

0
bj (x) dx

.

The numerator and denominator both go to zero as ε ↘ 0; application of l’Hôpital’s rule

gives

= lim
ε↘0

v (0)− bj (0)

0
= +∞.

Then either the deviation to b̂ελ is profitable for bidder j (when |bjq(0)| < ∞), or bidder i

may (essentially) costlessly reduce the initial flat of her bid function (when |bjq(0)| =∞).82

Now consider the case of n ≥ 3 agents. By the previous arguments we know that for

small quantities submitted bid functions can be ranked (as can their inverses), and that at

least two agents submit the highest possible bid function. Thus we focus attention on two

selected bid functions,

ϕH (p) ≡max
{
ϕi (p)

}
,

ϕL (p) ≡max
{
ϕi (p) : ϕi (p) < ϕH (p)

}
.

Note that where submitted bid functions are symmetric ϕL will not be well-defined, but

because we are attempting to prove that equilibrium bids are symmetric we need only pay

attention to the asymmetric case. Lastly, let mH ≡ #{i : ϕi = ϕH} and mL = #{i : ϕi = ϕL}
be the numbers of agents submitting each bid. As mentioned mH ≥ 2, and trivially mL ≥ 1;

additionally, mH + mL ≤ n. As before, there is p̌ such that ϕL(p̌) = 0, ϕH(p̌) > 0, and

ϕL(p) > 0 for all p < p̌. Corollary 7 shows that ϕH must be continuous, hence the equilibrium

first order conditions imply

lim
p↘p̌

(mH − 1)ϕHp (p) = lim
p↗p̌

(mH − 1)ϕHp (p) +mLϕ
L
p (p) .

One obvious solution is limp↗p̌ ϕ
L
p (p) = 0; but since ϕLp ≤ ϕHp ≤ 0 this would imply that bids

82Implicit here is that v(0) > bj(0) = bi(0), which follows from Lemma 9 but in this particular case is
trivial: since bidder i is bidding flat to ϕi(p̌), if v(0) = bi(0) she is obtaining zero surplus on a positive
measure of initial units. She would rather cut her bid and lose all of these units with some probability,
saving payment for higher units and gaining probable gross utility.

60



are unboundedly negative, violating monotonicity constraints. Then we have

lim
p↘p̌

ϕHp (p) = lim
p↗p̌

ϕHp (p) +
mL

mH − 1
ϕLp (p) < 0.

Intuitively, the bid function bH is steeper below ϕH(p̌) than above, and there is a kink at

this point. This implies a discontinuity in a bidder L’s first-order condition near q = 0. For

p close to but less than p̌, the first-order condition is

−
(
v
(
ϕL (p)

)
− p
)
f (Q (p))

(
mHϕ

H
p (p) + (mL − 1)ϕLp (p)

)
− (1− F (Q (p))) = 0,

=⇒ −
(
v
(
ϕL (p)

)
− p
)
f (Q (p))

(
(mH − 1)ϕHp (p) +mLϕ

L
p (p)

)
− (1− F (Q (p))) > 0.

Letting p↗ p̌, we know that the term [(mH−1)ϕHp (p)+mLϕ
L
p (p)] smoothly83 approaches

limp↘p̌(mH−1)ϕHp (p), proportional to the marginal probability gained by a slight increase in

bid from bL near p̌ to b̃L > p̌. Thus, the L bidder’s second-order conditions are not satisfied

near q = 0, and this is not an equilibrium.

C Proofs for Section 3 (Pay-as-Bid Equilibrium)

For our proofs of Theorems 2, 3, and 4, we assume that the reserve price is R = 0. In

this case, the maximum realizable quantity is Q
R

= Q. In Supplementary Appendix C.5 we

detail how these proofs must change to account for binding reserve prices.

C.1 Proof of Theorem 2 (Uniqueness)

Proof. From Lemma 12 and market clearing, we know that for all bidders

(p (Q)− v (q))Gi
b

(
q; bi

)
= 1−Gi

(
q; bi

)
.

Since Lemma 13 tells us that agents’ strategies are symmetric, Lemma 11 allows us to write

this as (
p (Q)− v

(
1

n
Q

))
(n− 1)ϕp (p (Q)) = H (Q) .

From market clearing, we know that p(Q) = b(Q/n); hence pQ(Q) = bq(Q/n)/n. Addition-

ally, standard rules of inverse functions give ϕp(p(Q)) = 1/bq(Q/n) almost everywhere. Thus

83Both ϕH and ϕL are continuous, hence [(mH−1)ϕHp +mLϕ
L
p ] and [mHϕ

H
p +(mL−1)ϕLp ] are continuous.

This additionally implies that ϕLp and ϕHp are continuous.
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we have (
p (Q)− v

(
1

n
Q

))
n− 1

n
= H (Q) pQ (Q) .

Now suppose that there are two solutions, p and p̂. From Corollary 6 we know that p(Q) =

p̂(Q). Suppose that there is a Q such that p̂(Q) > p(Q); taking Q near the supremum of

Q for which this strict inequality obtains we conclude that p̂Q(Q) < pQ(Q).84 But then we

have

p̂ (Q) > p (Q) = v

(
1

n
Q

)
+

(
n

n− 1

)
H (Q) pQ (Q) > v

(
1

n
Q

)
+

(
n

n− 1

)
H (Q) p̂Q (Q) .

The presumed right-continuity of bids, and hence of p, allows us to conclude that if p solves

the first-order conditions, p̂ cannot.

C.2 Proof of Theorem 3 (Bid Representation)

From the first order condition established in the proof of uniqueness, the equilibrium price

satisfies

pQ = pH̃ − v̂H̃,

where v̂(x) = v(x/n), and H̃(x) = [1/H(x)][(n − 1)/n]. The solution to this equation has

general form

p (Q) = Ce
∫Q
0 H̃(x)dx − e

∫Q
0 H̃(x)dx

∫ Q

0

e−
∫ x
0 H̃(y)dyH̃ (x) v̂ (x) dx,

parametrized by C ∈ R. Define ρ = n−1
n
∈ [1

2
, 1). We can see that H̃ = −ρ d

dQ
ln(1 − F ).

Thus we have

e
∫ t
0 H̃(x)dx = e−ρ

∫ t
0
d
dx

ln(1−F (x))dx = e−ρ(ln(1−F (t))−ln 1) = (1− F (t))−ρ .

Substituting and canceling, we have for Q < Q:

p (Q) =

(
C − ρ

∫ Q

0

f (x) (1− F (x))ρ−1 v̂ (x) dx

)
(1− F (Q))−ρ . (5)

84The inequality inversion here from usual derivative-based approaches reflects the fact that we are “work-
ing backward” from Q, while any solution must be weakly decreasing: thus a small reduction in Q should
yield p̂(Q) = p(Q) ≤ p < p̂.
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Since 1 − F (Q) = 0, this implies that C = ρ
∫ Q

0
f (x) (1− F (x))ρ−1 v̂ (x) dx. The market

clearing price is then given by

p (Q) = ρ

∫ Q

Q

f (x) (1− F (x))ρ−1 v̂ (x) dx (1− F (Q))−ρ .

Since d/dy[FQ,n(y)] = ρf(y)(1−F (y))ρ−1(1−F (Q))−ρ, our formula for market price obtains,

and since we have proven earlier that the equilibrium bids are symmetric, the formula for

bids obtains as well.

C.3 Proof of Theorem 4 (Existence) and an Alternative Form of

the Existence Condition

Given an inverse bid function ϕ, define the local inverse hazard rate of residual supply Y (q; b)

by

Y (q; b) =
1− F (q + (n− 1)ϕ (b))

f (q + (n− 1)ϕ (b))
= H (q + (n− 1)ϕ (b)) .

Y is the inverse hazard rate H evaluated at the total quantity demanded at a price of b if

one agent demands q units and all others submit the (inverse) bid function ϕ.

The equilibrium existence condition in Theorem 4 can be weakened to the following:

there exists a pure-strategy Bayesian Nash equilibrium whenever, for all p ∈ (p(Q), p(0))

and all Q < Q− (n− 1)ϕ(p),

E

(
1

n
Q

)
= (n− 1)

(
v

(
1

n
Q

)
− p
)
ϕp (p) + Y

(
1

n
Q; p

)
= 0

=⇒ Eq

(
1

n
Q

)
=
vq
(

1
n
Q
)
Y (ϕ (p) ; p)

p− v (ϕ (p))
+ Yq

(
1

n
Q; p

)
> 0.

The function E represents the equilibrium (negative) first-order conditions in the pay-as-bid

auction; Eq is the cross-partial derivative of bidder utility with respect to bid and quantity.85

Since, by Lemma 9, v(ϕ(p)) − p > 0 whenever p > p(Q) the implication in Theorem 4 is

equivalent to

Y (ϕ (p) ; p) vq

(
1

n
Q

)
− Yq

(
1

n
Q; p

)
(v (ϕ (p))− p) < 0.

This resembles a standard second-order condition: the marginal gains to increasing the

85The cross-partial derivative in this context fills the role of a second derivative in a classical context.
If whenever the first-order condition is satisfied—whenever E(Q/n) = 0—the derivative of the first-order
condition with respect to its parameter (q) is strictly negative, there can be only one q at which the first-order
condition is satisfied for any b. Then there is at most one b at which the first-order condition is satisfied for
any q.
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quantity demanded at a particular price are strictly decreasing.

Proof. We want to prove that the candidate equilibrium constructed in Theorem 3 is in fact

an equilibrium. Let us this fix a bidder i whose incentives we will analyze, and assume

that other bidders follow the strategies of Theorem 3 when bidding on quantities q ≤ Q/n

and that they bid v(Q/n) for quantities they never win.86 Since bids and values are weakly

decreasing, in equilibrium there is no incentive for bidder i to obtain any quantity q > Q/n

and we only need to check that bidder i finds it optimal to submit bids prescribed by Theorem

3 for quantities q < Q/n. Thus, agent i maximizes

∫ Q
n

0

(v (q)− b (q)) (1−G (q; b)) dq

over weakly decreasing functions b (·).
We need to show that the maximizing function b (·) is given by Theorem 3, and because

the bid function in Theorem 3 is strictly monotone, we can ignore the monotonicity con-

straint.87 The problem can then be analyzed by pointwise maximization: for each quantity

q ∈ [0, Q/n] the agent finds b (q) that maximizes (v (q)− b (q)) (1−G (q; b)). Therefore, we

can rely on one-dimensional optimization strategies to assert the sufficiency conditions for a

maximum. As given in Lemma 12, the agent’s first-order condition is

−
(
1−Gi (q; b)

)
− (v (q)− b)Gi

b (q; b) = 0.

Recall that from any symmetric inverse bid of agent i’s opponents, Gi
b(q; b) = (n− 1)f(q +

(n− 1)ϕ(b))ϕp(b). Then the first-order condition can be expressed as

(n− 1) (v (q)− b)ϕp (b) + Y (q; b) = 0..

Suppose that there is b̂ that also solves the first-order conditions for the bid for quantity

q,88

(n− 1)
(
v (q)− b̂

)
ϕp

(
b̂
)

+ Y
(
q; b̂
)

= 0.

Then since b(·) is continuous and any profitable deviation is such that b̂ ∈ [b(Q/n), b(0)]

86When proving the analogue of Theorem 4 in the context of reserve prices, Q becomes nv−1(R), the
aggregate quantity demanded at the reserve price R. The remainder of the argument does not change.

87In this regard, Theorem 4 is too strong: the conditions given are sufficient for no bid function—decreasing
or otherwise—to generate more utility than the symmetric equilibrium given in Theorem 3.

88By the assumption of sufficient demand, bidding b̂ = 0 is never utility-improving. Further, bidding
b̂ > b(0) is also not utility-improving, so any solution to the first order conditions can be assumed to be
internal.
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there is some q̂ such that b̂ = b(q̂). At this point,

E
(
q̂; b̂
)
≡ (n− 1)

(
v (q̂)− b̂

)
ϕp

(
b̂
)

+ Y
(
q̂; b̂
)

= 0.

If ∂E/∂q > 0 (recall that E is the negative of the first-order condition) whenever E(q; b) = 0

then E(·; b) has a unique zero (if it has any). Then there is at most one solution to the

first-order conditions; since the bid representation formula in Theorem 3 gives a closed-form

solution for bids and the first-order conditions have a unique solution, the bids given in the

representation theorem are an equilibrium. Calculation gives

∂E

∂q
= (n− 1) vq (q)ϕp (b) + Yq (q; b) > 0.

In the symmetric solution to the market clearing equation we have already seen that (n −
1)ϕp(b) = Y (ϕ(b))/(b− v(ϕ(b))). Substituting this in gives the desired result.

C.4 Verification of an Existence Example

Linear marginal values with generalized Pareto distribution of supply. For generalized Pareto

distributions with parameter α > 0,

1− F (x) =

(
1− x

Q

)α
, f (x) =

α

Q

(
1− x

Q

)α−1

;

H (x) =
1

α

(
Q− x

)
, Hq (x) =− 1

α
.

Then with linear market values v(q) = β0 − qβq,

− 1

α

(
Q− nϕ (p)

)
βq +

1

α
(β0 − ϕ (p) βq − p) ∝ β0 −

(
Q− (n− 1)ϕ (p)

)
βq − p.

For all Q < Q, p(Q) > p(Q) and Q > nϕ(p(Q)); hence for all Q < Q,

β0 −
(
Q− (n− 1)ϕ (p)

)
βq − p < β0 −

1

n
Qβq − p

(
Q
)

= 0.

Then the existence condition is satisfied for all Q ∈ [0, Q).

C.5 Modifying the Proofs to Allow for Reserve Prices

The bound on market price established in Theorem 1 implies that a binding reserve price is

equivalent to creating an atom in the supply distribution at the quantity at which marginal
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value equals the reserve price. In order to extend the previous proofs to the setting that

allows reserve prices (as the results are stated in the main text), we therefore need to extend

them to distributions in which there might be an atom at the upper bound of support Q.89

All our results remain true, and the proofs go through without much change except for the

end of the proof of Theorem 3, where more care is needed.

The proof of Theorem 3 goes through until the claim that 1−F (Q) = 0; in the presence

of an atom at Q this claim is no longer valid. We thus proceed as follows. We multiply both

sides of equation (5) by (1− F (Q))ρ and conclude that

p (Q) (1− F (Q))ρ = C − ρ
∫ Q

0

f (x) (1− F (x))ρ−1 v̂ (x) dx.

Now, let
⇀

F (Q) ≡ limQ′↗Q F (Q′). Because the market price and the right-hand integral

are continuous as Q↗ Q, we have

p
(
Q
) (

1−
⇀

F
(
Q
))

= C − ρ
∫ Q

0

f (x) (1− F (x))ρ−1 v̂ (x) dx.

The parameter C is determined by this equation. The market price function is then

p (Q) =

1−
⇀

F
(
Q
)

1− F (Q)

ρ

p
(
Q
)

+ ρ

∫ Q

Q

f (x) (1− F (x))ρ−1 v̂ (x) dx (1− F (Q))−ρ . (6)

Recall from Corollary 6 that p(Q) = v(Q/n). Extending our notation to the auxiliary

distribution FQ,n, we also have

FQ,n(Q)−
⇀

F
Q,n

(Q) = 1−
⇀

F
Q,n

(Q) =

1−
⇀

F
(
Q
)

1− F (Q)

ρ

.

Since d/dy[FQ,n(y)] = ρf(y)(1− F (y))ρ−1(1− F (Q))−ρ for all Q, y < Q, we have

p (Q) =

(
FQ,n(Q)−

⇀

F
Q,n (

Q
))

v̂
(
Q
)

+

∫ Q

Q

v̂ (x)
d

dy

[
FQ,n (y)

]
y=x

dx

=

∫ Q

Q

v̂ (x) dFQ,n (x) ,

89Starting with a given supply distribution F with support [0, Q] and moving all probability from [Q
R
, Q]

to an atom at Q
R

results in a new distribution F̃ with support [0, Q
R

], with an atom at Q
R

. All results
apply to this new distribution, thus it is without loss of generality to assume that the mass point is at Q.
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proving our formula for equilibrium stop-out price in the presence of an atom at Q. Noting

that Q
R
< Q implies an atom in the realized allocation distribution at Q

R
, equation 2 in

Theorem 3 follows. Since equilibrium is symmetric, equation 1 is an immediate corollary. �

D Proofs for Section 4 (Designing Pay-as-Bid Auc-

tions): Proof of Theorem 5

Theorem 5 shows that, when the designer is constrained to a reserve price R and a distribu-

tion over supply F , the optimal mechanism is deterministic. This is distinct and does not

follow from the analysis in Appendix A, which shows that (under regularity conditions on

demand) a seller who can implement stochastic elastic supply prefers to implement a de-

terministic elastic supply curve. In general, fixed supply Q? and reserve R? is insufficiently

elastic to obtain monopoly rents from all bidder signals s, and a seller who can implement

an elastic supply curve will strictly prefer to do so.

Proof of Theorem 5. Consider a pure-strategy equilibrium in a pay-as-bid auction with re-

serve price R and supply distribution F . In Section 3 we proved that the equilibrium is

essentially unique and symmetric. Furthermore, in equilibrium, for any relevant quantity q,

each bidder’s bid equals the resulting market-clearing price when quantity Q = nq is sold; we

denote this market clearing price p(Q;R, s), suppressing in the notation the price’s depen-

dence on F as it is constant. We denote the resulting equilibrium revenue by π(Q;R, s) and

we write v̂(y; s) = v(y/n; s) for a bidder’s marginal value from his or her share of quantity

sold y.

Proof. The seller maximizes the expected revenue E
[
πF
]

= Es
∫ Q

0
π (Q;R, s) dF (Q), where

πF denotes the seller’s profits when bidders bid against distribution of supply F . When

bidders’ values are low relative to the reserve price, and the realized quantity is high, the

reserve price is binding and the bidders receive only a partial allocation. Expected revenue

is

E
[
πF
]

= Es
∫ Q

0

∫ QR(y,s)

0

p (x;R, s) dxdF (y) . (7)

Integrating by parts gives

E
[
πF
]

=Es
{[
− (1− F (y))

∫ QR(y,s)

0

p (x;R, s) dx

] ∣∣∣∣Q
y=0

+

∫ Q

0

(1− F (y)) p
(
QR (y, s) ; s

)
dQR (y, s)

}
,
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where the first addend is zero. Recognizing that Q is continuous in y and that QR
y (y, s) = 1

for v(y/n; s) > R and QR
y (y, s) = 0 for v(y/n; s) < R, we can thus express the expected

revenue as

E
[
πF
]

= Es
∫ Q

R
(s)

0

(1− F (y)) p
(
QR (y, s) ; s

)
dy.

Applying our Theorem 3 gives

E
[
πF
]

= Es
∫ Q

R
(s)

0

(1− F (y))

[(
1− F y,n

(
Q
R

(s)
))

v̂
(
Q
R

(s) ; s
)

+

∫ Q
R

(s)

y

v̂ (x; s) dF y,n (x)

]
dy,

(8)

where F y,n (x) = 1 −
(

1−F (x)
1−F (y)

)n−1
n

is the c.d.f. of the weighting distribution from the theo-

rem.90

Applying integration by parts to the inner integral and substituting in for F y,n gives

E
[
πF
]

= Es
∫ Q

R
(s)

0

(1− F (y)) v̂ (y; s) + (1− F (y))
1
n

∫ Q
R

(s)

y

v̂q (x; s) (1− F (x))
n−1
n dxdy.

(9)

We may change the order of integration of the right-hand double integral to obtain

∫ Q
R

(s)

0

(1− F (y))
1
n

∫ Q
R

(s)

y

v̂q (x; s) (1− F (x))
n−1
n dxdy =

∫ Q
R

(s)

0

∫ x

0

(1− F (y))
1
n dyv̂q (x; s) (1− F (x))

n−1
n dx.

≤
∫ Q

R
(s)

0

xv̂q (x; s) (1− F (x)) dx,

where the inequality follows from the facts that v̂q ≤ 0, and 1− F (y) ≥ 1− F (x) for y ≤ x.

Substituting y for x and plugging this bound in the above expression for expected profits,

we have

E
[
πF
]
≤ Es

∫ Q
R

(s)

0

(1− F (y)) (v̂ (y; s) + yv̂q (y; s)) dy.

Notice that xv̂q(x; s)+ v̂(x; s) = πδq(x; s), where πδ(x; s) = xv̂(x; s) is the revenue from selling

90The outer integral in equation (8) is bounded to [0, Q∗(s)], thus y ≤ Q∗(s) for all y and F y,n(Q∗(s))
is well-defined. The left-hand addend in the integral results from the fact that, when Q∗(s) < Q—that is,
when signal-s bidders have low values for the maximum quantity, v̂(Q; s) < R—there is a mass point in the
resulting distribution of realized aggregate allocation at Q∗(s); this same expression is seen in equation (6)
in Appendix (C.5).
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quantity x at price v̂(x; s). Integrating by parts gives

E
[
πF
]
≤ Es

[∫ Q
R

(s)

0

πδq (x; s) (1− F (x)) dx

]

= Es

[
πδ
(
Q
R

(s) ; s
)(

1− F
(
Q
R

(s)
))

+

∫ Q
R

(s)

0

πδ (x; s) dF (x)

]

= Es

[∫ Q

0

πδ
(
QR (x, s) ; s

)
dF (x)

]
. (10)

Thus,

E
[
πF
]
≤

∫ Q

0

Es
[
πδ
(
QR (x, s) ; s

)]
dF (x) .

Since there are no cross-terms in this integral, the right-hand side is maximized at a degen-

erate distribution which maximizes Es[πδ(QR(x, s); s)]. But this is exactly the problem of

choosing optimal feasible deterministic supply given the reserve price R. It follows that ex-

pected revenue is weakly dominated by expected revenue with optimal deterministic supply,

hence optimal supply is deterministic.

Remark 4. The proof of Theorem 5 remains valid for the profit maximization problem of a

seller facing increasing marginal costs. Let C(Q) be the seller’s cost of supplying quantity

Q, and assume that c(Q) = dC(Q)/dQ is positive and weakly increasing. Equation (7) for

expected profits in the proof of Theorem 5 must be adjusted to

E
[
πF
]

= Es
∫ Q

0

∫ QR(y,s)

0

p (x;R, s)− c (x) dxdF (y) .

Subsequent integration by parts remains valid, and equation (9) becomes

E
[
πF
]

= Es
∫ Q

R
(s)

0

(1− F (y)) (v̂ (y; s)− c (y))+(1− F (y))
1
n

∫ Q
R

(s)

y

v̂q (x; s) (1− F (x))
n−1
n dxdy.

As before, letting πδ(q; s, c) be monopoly profits when quantity q is sold to type s given

marginal cost curve c, we obtain

E
[
πF
]
≤ Es

[∫ Q

0

πδ
(
QR (x, s) ; s, c

)
dF (x)

]
.

The remainder of the proof is immediate.
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E Proofs for Section 5 (The Auction Design Game):

Proof of Theorem 7

In the proof below we decorate market outcome functions with superscripts denoting the

relevant mechanism, where helpful. For example, p?UP is the market-clearing price in the

uniform-price auction and p?PAB is the market-clearing price in the pay-as-bid auction.

Proof of Theorem 7. As discussed in Theorem 5 and Lemma 1, we may restrict attention to

optimal deterministic supply distributions in both the pay-as-bid and uniform-price auctions.

Revenue maximization may then be expressed as a per-agent quantity q? and market price

p?; for signals s such that v(q?; s) ≥ p? it is without loss to assume that the total allocation is

nq?—there is sufficient demand for the total quantity at the reserve price—while for signals

s such that v(q?; s) < p? it is clear that some total quantity nq′ < nq? will be allocated. The

seller’s expected revenue is then an expectation over bidder signals,

Es [π] = Es [nq (q?, p?; s) · p (q?, p?; s)] .

The quantity allocated under the uniform-price auction equals the quantity allocated under

the pay-as-bid auction, qUP(q?, p?; s) = qPAB(q?, p?; s), whenever v(·; s) is strictly decreasing

at this quantity, or when v(·; s) > p? at this quantity.91 Since we have assumed that v(·; s) is

strictly decreasing, the quantity allocation depends only on q? and p? and not on the mech-

anism employed. Additionally, it is the case that p?UP(q?, p?; s) = p?PAB(q?, p?; s) whenever

v(q?; s) < p?. Let S be the set of such s,

S = S (nq?, p?) = {s′ : v (q?; s) < p?} .

Then we have

Es [π] = p? Pr (s ∈ S)Es [nq (q?, p?; s)|s ∈ S] + nq? Pr (s /∈ S)Es [p (q?, p?; s)|s /∈ S] .

The left-hand term is independent of the mechanism employed, while the right-hand term

depends on the mechanism only via the expected market-clearing price. In the pay-as-

bid auction, we have seen that p(q?, p?; s) = v(q?; s) for all s /∈ S, while in the uniform-

price auction any price p ∈ [p?, v(q?; s)] is supportable in equilibrium. It follows that the

91In the latter case there is excess demand, so all units will be allocated. In the former case all units are
allocated at the reserve price; there is a possible difference in allocation when bidders’ marginal values are
flat over an interval of quantities at the reserve price, since bidders are indifferent between receiving and not
receiving these quantities.
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pay-as-bid auction weakly revenue dominates the uniform-price auction, and generally will

strictly do so. That the seller-optimal equilibrium of the uniform-price auction is revenue-

equivalent to the unique equilibrium of the pay-as-bid auction arises from the selection of

p?UP(q?, p?; s) = v(q?; s) for all s /∈ S.

F Proofs for Section 6 (Asymmetric Information among

Bidders): Proof of Theorem 12

Proof. The analogue of Lemma 3 obtains for (not necessarily optimal) supply and reserve as

long as they are deterministic; the proof follows the same steps. The first statement follows

then from this deterministic analogue of Lemma 3 and from Lemma 4. To prove the second

statement, consider a uniform-price auction where bids, conditional on common signal s,

are bounded below by b(s) = max{R, ess infζ|s v(Q/n; ζ)}: bidding below b(s) cannot yield

additional quantity, and by construction, when b ≥ b(s) the marginal value for all units

obtained is weakly positive. It follows that there is an equilibrium in which bids are at least

b(s), and the second claim follows.

G Proofs for Appendix A (Elastic Supply)

G.1 Proof of Theorem 14 (Uniqueness with Elastic Supply)

Proof. The analysis from the proof of Theorem 1 allows us to conclude that on the maximum

unit each bidder might receive, the bidder pays her marginal value. Letting Q̂(s) be the

aggregate quantity awarded in equilibrium under supply curve Q?(s), it cannot be that

p?(Q̂(s); s) > v̂(Q̂(s); s), since bids are below values. If, instead, p?(Q̂(s); s) < v̂(Q̂(s); s),

the arguments from the proof of Theorem 1 apply; indeed, they are strengthened by the fact

that a small increase in bid increases allocation not only by beating opponent bids, but also

by increasing the market price and moving up the supply curve.

Because each bidder bids b?(Q̂(s)/n; s) = v(Q̂(s)/n; s) in any equilibrium, each bidder’s

allocation is Q̂(s)/n. This allocation is deterministic, conditional on the bidder-common

signal s. Then any bid curve b such that b(q) > v(Q̂(s)/n; s) for some q > 0 is wasteful:

it does not affect the resulting allocation, and
∫ Q̂(s)/n

0
b(q)dq >

∫ Q̂(s)/n

0
b?(q; s)dq. It follows

that b?(q) = v(Q̂(s)/n; s) for all q ≤ Q̂(s)/n, and equilibrium bids are unique for all relevant

quantities.
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G.2 Proof of Lemma 5

As we consider the special case of the seller who knows the bidders’ values, we simplify

notation and suppress the signal while writing value and bid functions.

G.2.1 Preliminary Definitions

Recall that we defined the supply reserve distribution K (Q;R) in Appendix A. For sim-

plicity, we carry out the analysis under the assumption that supply-reserve distribution K

is continuously differentiable. We show that this assumption may be dropped in Remark 5.

Holding the supply-reserve distribution K fixed, fix a bidder i and consider the ag-

gregate demand of her opponents. Allowing for mixed strategies and asymmetric and

asymmetrically-informed bidders, we denote the aggregate demand of bidder i’s opponents by

Q(·; ξ), where ξ indexes the joint distribution of her opponents’ potentially mixed strategies.

As with supply-reserve distribution K, we assume that aggregate demand Q is continuously

differentiable, and drop this assumption in Remark 5. Although we separately specify the

supply-reserve distribution K and the mixed strategy index ξ because the former is con-

trolled by the seller while the latter is not, the set of bidder’s best responses does not depend

on the source of randomness in a bidder’s residual supply. Bidders’ ex post utility is deter-

mined by realized quantity and payment, and thus the dependence of interim utility on the

joint distribution of quantity and payment is unaffected by the introduction of a random

reserve price, asymmetry and asymmetric information among bidders, and the possibility of

mixed strategies. Thus, the bidder’s first order condition is unchanged from the analysis in

Lemma 12 (in Supplementary Appendix B), and random reserve affects only the distribution

of realized quantity. In the language of Lemma 12,

Gi (q; b) = Eξ [K (q +Q (b; ξ) ; b)] ,

and Gi
b (q; b) = Eξ [KQ (q +Q (b; ξ) ; b)Qp (b; ξ) +KR (q +Q (b; ξ) ; b)] .

(11)

E.g. when the reserve price is fixed, KR = 0 for all relevant prices, and (11) is identical to

what we find in equation (11).

We aim to show that the seller can induce the same bidder behavior by implementing

a random reserve without constraining supply, in which case KQ = 0, and the bidder’s

pointwise first order condition is

(v (q)− b (q))Eξ [KR (q +Q (b (q) ; ξ) ; b)] = Eξ [K (q +Q (b (q) ; ξ) ; b)] .

As KQ = 0 implies that K is independent of q (and thus Q is independent of ξ), we write
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this in terms of only the distribution of reserve prices FR,

(v (ϕ (p))− p)FR
p (p) = FR (p) .

Thus a key simplification associated with random reserve and unconstrained supply is that

the optimal bid is determined by the reserve distribution FR and does not depend on oppo-

nent bids. Furthermore, for each quantity the optimal bid is either pointwise optimal, or this

quantity is part of an interval on which the first order conditions are ironed, cf. Woodward

[2016]. We capture these optimality conditions in the concept of first-order optimal bids

defined as follow.

Definition 3. Given a distribution of reserve prices FR, we say that b is first-order optimal

with respect to FR if:

1. If b is strictly decreasing at q, then it solves the pointwise first order condition: (v(q)−
b(q))FR

p (b(q)) = FR(b(q)).

2. If b is constant in a neighborhood of q then b(q) is a mass point of FR and it solves

the ironed first order condition:

(
FR (b (q))− FR (b)

)
(v (ϕ (p))− b) = (b (q)− b)FR

(
p
)
, where b = lim

q′↘ϕ(p)
b (q′) .

Intuitively, the ironing conditions state that the marginal gain from slightly extending the

constant interval (marginal additional quantity with probability FR(b(q)) − FR(b)) must

equal the marginal cost from the same (marginal additional payment with probability FR(b)).

As b is weakly decreasing, any quantity q belongs to either an interval on which b is flat or

to an interval on which b is strictly decreasing (and it might be an endpoint of both types of

intervals simultaneously). The structure of these intervals can be complex, but there is at

most a countable number of them.

Although optimal bids are first-order optimal the converse need not be true: first-order

optimality only implies that a bid satisfies pointwise first order conditions where applicable,

and ironing conditions elsewhere. In deriving the revenue bounds below, we assume only

that the first-order conditions are satisfied, not that bids are optimal. Because any (glob-

ally) optimal bid function satisfies the first-order optimality conditions above, the bound on

revenues applies to optimal bids.

Let GK(·; b,Q) be the distribution of realized quantity given stochastic-elastic supply K,

bid function b, and, potentially random, residual supplyQ, and letGR(·; b) be the distribution

of realized quantity given reserve distribution FR and bid function b. As mentioned above,
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GR does not depend on Q because, under random reserve, supply does not depend on

opponent bids. Letting ξ represent randomness in residual supply (e.g., mixed strategies for

a bidder’s opponents)92 we have

GR (q; b) = 1− FR (b (q)) ,

d

dq
GR (q; b) = −FR

p (b (q)) bq (q) ;

GK (q; b,Q) = Eξ [K (q +Q (b (q) ; ξ) , b (q))] ,

d

db
GK (q; b,Q) = Eξ [Kq (q +Q (b (q) ; ξ))Qp (b (q) ; ξ) +Kp (q +Q (b (q) ; ξ) , b (q))] ,

d

dq
GK (q; b,Q) =

d

db
GK (q; b,Q) bq (q) + Eξ [Kq (q +Q (b (q) ; ξ))] . (12)

The expected revenue from bidder i when the bidder bids b and the bid leads to quantity

distribution G· is given by π (b;G·) =
∫ Q

0

∫ q
0
b (x) dxdG·(q).

G.2.2 The Optimality of Random Reserve with Known Values

We begin with a bid function b which is a best response to residual supply distribution

Gi(·; b) and construct a reserve price distribution and bidder’s best response to this new

distribution that raise more revenue.

Lemma 14. Let b be a best response bid curve under residual supply distribution Gi, gener-

ated by supply-reserve distribution K and stochastic aggregate demand Q. There is a reserve

distribution FR and a first order best response bR to FR such that π
(
bR;GR

)
≥ π (b;Gi).

While the bound on revenue in Lemma 14 might depend on the equilibrium selected, the

subsequent analysis will show that this bound is weakly lower than the revenue in a unique

equilibrium under deterministic elastic supply.

Proof. For clarity, we proceed under the assumption that supply-reserve distribution studied

K and aggregate residual demand Q are continuously differentiable. Following the derivation

of the result for smooth K and Q, we comment on extending the argument to potentially

discontinuous K and Q.

Any distribution of reserve FR and the first-order optimal response bR induce a distri-

bution (c.d.f.) G̃R of quantities sold to bidder i. As a step in constructing bR and FR,

we first construct an auxiliary distribution GR which is not necessarily equal to G̃R. As a

92In the main text we focus on pure strategies. In this analysis we allow for mixed strategies, allowing us
to show that all randomness—exogenous or otherwise—is detrimental to the seller’s revenue.
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preparatory step to construct the latter distribution, recall that the discussion of the previ-

ous subsection shows that under a random reserve price that induces differentiable quantity

distribution GR, in any interval in which b is strictly decreasing. We will define GR so that

the pointwise first order conditions of an agent bidding b are satisfied; that is,

− (v (q)− b (q))GR
q (q) =

(
1−GR (q)

)
bq (q) ,

and thus
d

dq
ln
[
1−GR (q)

]
=

bq (q)

v (q)− b (q)
.

Given any initial value of GR(q) (initial condition of the ODE), we can solve this differential

equation for any differentiable b < v (q). In particular, for any quantity q̃ such that b is

strictly decreasing on (q̃, q), we obtain

GR (q̃) = 1− exp

(∫ q̃

q

bq (x)

v (x)− b (x)
dx

)[
1−GR (q)

]
. (13)

We now construct GR and we show that GR �FOSD GK ; in particular, GR puts more

weight on larger quantities than GK does. To start, let GR(0) = GK(0). At the left endpoint

of any maximal interval (q̃`, q̃r) on which b is strictly decreasing, we define GR so that

GR(q̃`) = GK(q̃`), and we define GR on the interior of (q̃`, q̃r) so that b satisfies the first-

order ODE given the initial condition GR(q̃`).
93 In particular, the first-order ODE determines

the value at the right endpoint of the strictly decreasing b interval, GR(q̃r). For any maximal

open interval (q`, qr) on which b is constant, let the value at the right endpoint be GR(qr) =

GK(qr).
94 Notice that for any maximal interval (q`, qr) on which b is constant, q` is either 0 or

equal to a limit of a sequence of the right end points of maximal intervals.95 We will see below

that the values of GR on this sequence are monotonic. Since they are also bounded below

(they are nonnegative), the sequence of values of GR at these right endpoints converges, and

we define GR(q`) as its limit, and also set GR(q) = GR(q`) for q in in the interior of any

maximal open interval (q`, qr) on which b is constant. This concludes the construction of GR

for all quantities strictly lower than the maximum possible quantity; at this quantity we set

GR to equal 1. Thus GR is a c.d.f. iff it is monotonic.

To establish monotonicity, suppose that q`, qr are such that q` < qr, G
R(q`) ≤ GK(q`), and

93An interval is maximal with respect to a given property if there is no larger, inclusive interval that also
satisfies the property.

94Note that GR is well defined if it so happens that qr = q̃`.
95Notice that the limit might be over right end-points of both strictly decreasing b and constant b intervals.

We of course allow for a constant sequence, that is the case where q` is the right end point of an adjacent
interval.
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that b is strictly decreasing on (q`, qr). Then on (q`, qr), the pointwise first-order optimality

conditions obtain, and we have

− (v (q)− b (q))GR
q (q) =

(
1−GR (q)

)
bq (q) , and − (v (q)− b (q))GK

b (q) = 1−GK (q) ;

in particular, GR and GK are continuous on (q`, qr). The left-hand equation holds by con-

struction of GR and the right-hand equation follows from the fact that b is a best response to

supply-reserve distribution K and opponent demand Q. By construction, the −(v(q)− b(q))
terms are equal, and so for any q ∈ (q`, qr) it must be that

GR
q (q)

1−GR (q)
=
GK
b (q) bq (q)

1−GK (q)
. (14)

Suppose that there is q ∈ (q`, qr) such that GR(q) > GK(q). Then there is q̂ ∈ (q`, q)

such that GR(q̂) = GK(q̂), because the c.d.fs GR and GK are continuous on (q`, qr) and

GR(q`) ≤ GK(q`). At this q̂, equation 14 becomes GR
q (q̂) = GK

b (q̂)bq(q̂), and substituting in

for equations 12 gives

GR
q (q̂) = GK

b (q̂) bq (q̂) = GK
q (q̂)− Eξ [Kq (q +Q (b (q) ; ξ))] ≤ GK

q (q̂) .

We conclude that GK(q̂) = GR(q̂) implies GK
q (q̂) > GR

q (q̂), contradicting GR(q) > GK(q).

From this it follows that if b is strictly decreasing on [q`, qr] and GR(q`) ≤ GK(qr), then

GR|q∈[q`,qr] �FOSD GK |q∈[q`,qr], and, in particular, GR(qr) ≤ GK(qr). This inequality allows

us to conclude that if qr is the limit of left endpoints q̃` > qr of maximal intervals, then

GR(qr) is weakly below the limit of G (q̃`) on this sequence. We can conclude that that GR

is monotonic and hence a cumulative distribution function such that GR �FOSD GK .

We now define the random reserve distribution FR as follows: for any q, let FR(b(q)) =

1−GR(q). We construct bR that is first-order optimal bid function with respect to FR and

such that bR ≥ b. Our construction is iterative: we begin with bR0 = b, then show how to

compute bR[t+1] from bRt for any t ≥ 0. Let Ωt be the set of maximal constant intervals of

bRt. For an interval (q`, qr) ∈ Ωt, let q̃r solve the ironed first-order optimality condition at

bid level bRt(qr),
96

(
FR
(
bRt (qr)

)
− lim

q↘qr
FR
(
bRt (q)

)) (
v (q̃r)− bRt (qr)

)
=
(
bRt (qr)− bRt (q̃r)

)
FR
(
bRt (q̃r)

)
.

Since p = bRt(qr) is a level at which b is constant, there is a mass point in FR at bRt(qr),

96Measure-zero changes in bid do not affect utility. Therefore we assume, without loss of generality, that
bRt is left continuous.
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and the first-order ironing equation cannot be solved at q̃r < qr. It follows that q̃r ≥ qr, and

moreover that bRt(q̃r) ≤ v(q̃r). Then let Ω̃t be the set of intervals (q`, q̃r), where (q`, qr) ∈ Ωt

and q̃r is derived from qr as above. We now define bR[t+1],

bR[t+1] (q) =

sup
{
bRt (qr) : q ∈ (q`, q̃r) ∈ Ω̃t

}
if ∃ (q`, q̃r) ∈ Ω̃t with q ∈ (q`, q̃r) ,

bRt (q) otherwise.

By construction, bRt ≤ bR[t+1] ≤ v, and thus bRt → bR for some bR.97 Where the limit bR

is strictly decreasing, it is equal to b and therefore satisfies the first-order conditions for

optimality. When the limit bR is constant, it satisfies the ironed first-order conditions for

optimality by construction. It follows that bR is first-order optimal. Finally, since b = bR0

and bRt ≤ bR[t+1] for all t, it must be that b ≤ bR.

Being weakly higher than b, the bid function bR induces a realized quantity distribu-

tion G̃R that is weakly stronger than GR (the distribution of realized quantity with reserve

distribution FR and bid b), which is in turn weakly stronger than GK , and it follows that

π(bR; G̃R) ≥ π(b;GK). Since FR implements bR as a first-order optimal bid function, the

lemma follows.

Remark 5. When supply-reserve distribution K and aggregate supply Q are discontinuous,

we adjust the first condition of the definition of a bidder’s first-order optimality at points at

which GK is not differentiable and require at these points that the the left derivative in b

(which always exists, since GK is decreasing in b) satisfies98

− (v (q)− b (q))Gi
b− (q; b)−

(
1−GK (q; b)

)
≥ 0.

This is the only adjustment in the definition; the old definition is unchanged at points of

differentiability and where bids are flat. We follow the construction of GR in the proof of

Lemma 14 with two adjustments: (i) we substitute the left derivative Gi
b− for derivative

Gi
b, and (ii) the differential part of the construction is separately conducted for maximal

intervals (q`, qr) on which b is strictly decreasing and continuous (as opposed to merely

strictly decreasing). In this way, we are able to construct GR for all relevant quantity and

price pairs, subject to verifying monotonicity like in the above proof of Lemma 14.

97Note that in the simple case where the original bid function b is strictly decreasing, it is the case that
bR = b. The iterative process applied here handles the possible need to extend to the right the constant
intervals from the original bid function b, as well as the possibility that one constant interval “overtakes”
another in the iterative process. Note that in the latter case bR(q) > b(q) for q in the overtaken constant
interval of b.

98The left derivative of a function h at x is defined as hx−(x) = limε↘0(h(x)− h(x− ε))/ε. Similarly the
right derivative equals hx+(x) = limε↘0(h(x+ ε)− h(x))/ε.
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The monotonicity continues to hold because GK is monotonic and whenever b is strictly

decreasing and continuous, we have

0 = − (v (q)− b (q))
GR
q (q)

bq+ (q)
−
(
1−GR (q)

)
≤ − (v (q)− b (q))GK

b− (q; b,Q)−
(
1−GK (q; b,Q)

)
.

(15)

For any maximal interval (q`, qr) on which b is continuous and strictly decreasing we prove

monotonicity by contradiction, as before. If there is q ∈ (q`, qr) such that GR(q) > GK(q),

there is q̂ ∈ [q`, qr] such that GR(q̂) = GK(q̂): even though GK is potentially discontinuous,

GR is guaranteed to be continuous on the maximal interval in question (it is the solution to

a differential equation) and GK is monotone. At this q̂, plugging equations 12 into inequality

15 gives

GK
b− (q̂) ≤

GR
q (q̂)

bq+ (q̂)
.

Since b is decreasing in q, this gives

GR
q (q̂) ≤ GK

b− (q̂) bq+ (q̂)

= GK
q+ (q̂)− Eξ [Kq+ (q +Q (b (q) ; ξ))] ≤ GK

q+ (q̂) .

The final inequality follows from the fact that the exogenous supply-reserve distribution

K satisfies Kq+ ≥ 0. Then dGR(q; b,Q)/dq ≤ dGK(q; b,Q)/dq+ at q = q̂, contradicting

GR(q) > GK(q) for some q > q̂. The remainder of the proof follows the same steps as the

original proof of Lemma 14.

G.2.3 Approximation by Strictly-Decreasing Bid Functions

We now show that we can arbitrarily approximate the first-order optimal bid bR associated

with random reserve FR with a strictly decreasing bid function b̃R, associated with some

random reserve distribution F̃R, and that the distribution of realized quantity under this

approximation approximates the distribution of quantity under bR. Then since bR ≥ b and

b̃R ≈ bR, it follows that b̃R approximates the revenue generated by b under reserve distribution

FR arbitrarily closely, or yields higher revenue.

Lemma 15. Given a reserve distribution FR with first-order optimal bid bR and any λ > 0,

there is a reserve distribution F̃R with a strictly decreasing first-order optimal bid b̃Rsuch

that π(b̃R; G̃R) > π(bR, GR)− λ.

Proof. If bR is strictly decreasing the claim is trivially satisfied. Therefore, assume that bR is

constant on the (maximal) interval (q`, qr). Let b̃R ≤ bR be strictly decreasing on (q`, qr) and
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such that b̃R|q /∈(q`,qr] = bR|q /∈(q`,qr] and b̃R(qr) = limq′↘qr b
R(q′). Let F̃R|p≥bR(q`) = FR|p≥bR(q`).

Then b̃R is a first order best response for all p ≥ bR(q`) because the definition of first order

optimality is point-wise.

We now show that b̃R can be specified on (q`, qr] so that (i) the probability that q ∈
(q`, qr] is lower under b̃R than under bR (thus the probability that q > qr is higher under b̃R

than under bR), (ii) b̃R is relatively close to bR, and (iii) the conditional revenue under b̃R,

given q ∈ (q`, qr], is not significantly below the conditional revenue under bR. First, for a

distribution F let ∆F ≡ F (b̃R(q`))−F (b̃R(qr)); since b̃R is first-order optimal and is strictly

decreasing on [q`, qr],

∆F̃R =

[
exp

(∫ b̃R(q`)

b̃R(qr)

1

v (ϕ̃R (y))− y
dy

)
− 1

]
F̃R
(
b̃R (qr)

)
<
[
exp

(
ln
[
v (qr)− b̃R (qr)

]
− ln

[
v (qr)− b̃R (q`)

])
− 1
]
F̃R
(
b̃R (qr)

)
=

(
b̃R (q`)− b̃R (qr)

v (qr)− b̃R (q`)

)
F̃R
(
b̃R (qr)

)
=

 F̃R
(
b̃R (qr)

)
FR
(
b̃R (qr)

)
∆FR. (16)

The first inequality follows from the fact that v and ϕ̃R are strictly decreasing, and the final

equality follows from the fact that bR is first-order optimal with respect to FR and is flat

on [q`, qr]. Now suppose that F̃R(b̃R(qr)) < FR(b̃R(qr)); by inequality (16) it must be that

∆F̃R < ∆FR, and since F̃R(b̃R(q`)) = FR(b̃R(q`)) it follows that F̃R(b̃R(qr)) > FR(b̃R(qr)),

a contradiction. Then F̃R(b̃R(qr)) ≥ FR(b̃R(qr)), implying directly that ∆F̃R ≤ ∆FR. Thus

point (i) holds for any b̃R.

Points (ii) and (iii) are shown by construction. For δ > 0 sufficiently small, let b̃R(qr−δ) >
b̃R(q`)− δ. Since F̃R|p>b̃R(q`)

= FR|p>b̃R(q`)
, the expected revenue generated by bid b̃R under

distribution F̃R, conditional on p > b̃R(q`), is identical to the expected revenue generates by

bid bR under distribution FR, conditional on p > b̃R(q`). Letting b̃R|p<b̃R(qr)
= bR|p<b̃R(qr)

,

we have ||b̃R − bR|| < (qr − q`)δ + (b̃R(q`) − b̃R(qr))δ by construction. By point (i) and

the analysis in the proof of Lemma 14, F̃R|p<b̃R(qr)
�FOSD FR|p<b̃R(qr)

, and so the expected

revenue generated by bid b̃R under distribution F̃R, conditional on p < b̃R(qr), is O(δ)

lower than the expected revenue generated by bid bR under distribution FR, conditional on

p < b̃R(qr). Finally, the utility lost when p ∈ [b̃R(qr), b̃
R(q`)] may be bounded in the following

way. When p ∈ [b̃R(qr), b̃
R(qr)− δ] at most quantity δ is lost (versus bid bR), with marginal

utility at most v; this loss is incurred with at most probability 1, so this loss is bounded

above by vδ. When p ∈ [b̃R(q`) − δ, b̃R(q`)], the quantity lost (versus bid bR) is at most

(qr − q`) < Q, with marginal utility at most v. However, the probability that this quantity
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is lost is bounded by

F̃R
(
b̃R (q`)

)
− F̃R

(
b̃R (q`)− δ

)
=

[
exp

(∫ b̃R(q`)

b̃R(q`)−δ

1

v (ϕ̃R (y))− y
dy

)
− 1

]
F̃R
(
b̃R (q`)− δ

)
≤

[
exp

(∫ b̃R(q`)

b̃R(q`)−δ

1

v (qr)− y
dy

)
− 1

]
F̃R
(
b̃R (q`)

)
=
[
exp

(
ln
[
v (qr)−

(
b̃R (q`)− δ

)]
− ln

[
v (qr)− b̃R (q`)

])
− 1
]
F̃R
(
b̃R (q`)

)
=

(
δ

v (qr)− b̃R (q`)

)
F̃R
(
b̃R (q`)

)
.

Then this probability is also bounded above by a term linear in δ.99 Then for any λ > 0 there

is δ > 0 such that the revenue generated by the first-order optimal bid function b̃R under

reserve distribution F̃R is no more than λ below the revenue generated by the first-order

optimal bid function bR under reserve distribution FR.

The above two lemmas imply the following approximation result:

Lemma 16. Given any best response bid curve b(·) and any λ > 0, there is a massless

reserve distribution F̃R with strictly decreasing first-order best response b̃R such that such

that the first order best response to FR generates no more than λ less revenue than b(·).

G.2.4 An Auxiliary Uniform-Price Auction with Known Values

We maintain the auxiliary assumption that the bidder whose response we analyze has no

private information. Having shown that we can restrict attention to random reserve, we con-

tinue the analysis by showing that any strictly decreasing first-order optimal bid b̃Rgenerates

strictly less revenue than some uniform-price auction (Theorem 17), which we then bound

by pay-as-bid revenue in the next and final subsection, where we also drop the no-private-

information assumption.

Lemma 17. [Uniform-Price Revenue Implementation] Given a massless distribution

of reserve prices FR and a strictly decreasing first-order optimal bid bR, there is a distribu-

tion of reserve prices F̂R such that the uniform-price auction under reserve distribution F̂R

generates the same expected revenue as the pay-as-bid auction with first-order optimal bid bR

and reserve distribution FR.

99Since b(·) < v(·) for all units which are received with strictly positive probability (Lemma 9), v(qr) −
bR(qr) = v(qr)− b̃R(q`) > 0.
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While the above lemma shows that uniform-price can match the revenue of pay-as-bid,

we need to bear in mind that it is an auxiliary result in which we assumed that the bidder

analyzed has no private information.

Proof. We may assume that the support of the distribution FR is contained in the support

of marginal values on units the bidder can win. Indeed, our assumptions on the utility imply

that this support is convex and thus reserves outside of support are either above or below

it. The mass of reserve prices above the support can be arbitrarily shifted to reserves in the

support, increasing expected revenue. The mass of reserves below the support can be shifted

to the minimum of the support, again weakly increasing the revenue. The latter operation

might create an atom at the bottom of the support, but as we have seen in the proofs for

Section 3 (cf. Appendix C.5), this atom does not affect the bidder’s best response behavior.

Under these assumptions, truthful reporting, b ≡ v, is the essentially unique equilibrium

in a uniform-price auction with random reserve drawn from FR. Under a random reserve

distribution, each bidder’s problem is a single-person decision problem. Because demand

at a particular price does not affect outcomes at other prices, at each price bidders should

demand a utility-maximizing quantity. Thus at each p, v(ϕ̂R(p)) = p.100

Revenue in the pay-as-bid auction under reserve distribution FR is

E [π] =

∫ b

b

(
pϕR (p) +

∫ b

p

ϕR (x) dx

)
fR (p) dp.

Define F̂R so that

F̂R
(
v
(
ϕR (p)

))
= FR (p; s) .

By construction, F̂R
p (v(ϕR(p)))vq(ϕ

R(p))ϕRp (p) = FR
p (p). Additionally, Supp F̂R = [p, v],

and in a uniform-price auction with reserve distribution F̂R, it is weakly optimal for the

bidder to submit truthful bids for all quantities q such that v(q) ∈ [b, v]. The revenue in this

auction is

E [π̂] =

∫ v

b

pv−1 (p) F̂R
p (p) dp.

Apply a change of variables, so that p = v̂(ϕR(p′)). Then dp = vq(ϕ
R(p′))ϕRp (p′)dp′. Since

100Since b is strictly decreasing and first-order optimal, ϕ and ϕp are well-defined for all feasible prices p.
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ϕR(p) = 0, this gives

E [π̂] =

∫ b

b

v
(
ϕR (p′)

)
v−1

(
v
(
ϕR (p′)

))
F̂R
p

(
v
(
ϕR (p′)

))
vq
(
ϕR (p′)

)
ϕRp (p′) dp′

=

∫ b

b

v
(
ϕR (p′)

)
ϕR (p′)FR

p (p′) dp′.

Then compare,

E [π]− E [π̂] =

∫ b

b

(
pϕR (p) +

∫ b

p

ϕR (x) dx

)
FR
p (p)− v

(
ϕR (p)

)
ϕR (p)FR (p) dp

=

∫ b

b

(
−
(
v
(
ϕR (p)

)
− p
)
ϕR (p) +

∫ b

p

ϕR (x) dx

)
FR
p (p) dp

=

∫ b

b

(
−
[
FR (p)

FR
p (p)

]
ϕR (p) +

∫ b

p

ϕR (x) dx

)
FR
p (p) dp

= −
∫ b

b

ϕR (p)FR (p) dp+

∫ b

b

∫ b

p

ϕR (x) dxFR
p (p) dp

= −
∫ b

b

ϕR (p)FR (p) dp+

[∫ b

p

ϕR (x) dxFR (p)

]∣∣∣∣∣
b

p=b

+

∫ b

b

qR (p)FR (p) dp = 0.

The transition from the second line to the third comes from the bidder’s first-order condition

under random reserve. Then the uniform-price auction with reserve distribution F̂R gener-

ates the same revenue as the pay-as-bid auction with reserve distribution FR and first-order

optimal bid bR.

G.2.5 Revenue Dominance of Deterministic Mechanisms with Known Values

Our previous lemmas imply that, when a bidder has no private information, the seller can

weakly improve the revenue obtained from this bidder by implementing a uniform price

auction with a random reserve price. These results are independent of opponent strategies

in the pay-as-bid auction. Furthermore, we argued above that when the bidder participates

in an auction with a random reserve price (and sufficiently large fixed supply) her best

response is independent of her opponents’ strategies. Thus, if the seller knew each bidder’s

private information, he could improve his revenue by implementing a bidder-specific uniform

price auction with a random reserve price.

We are now ready to conclude the proof of Lemma 5 by showing that the above uniform

price auction generates less revenue than a deterministic pay-as-bid auction, still in the
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auxiliary environment in which bidders have no private information, or as we may also

express it, when their information is known to the seller.

Proof. Focusing on one bidder and putting together Lemmas 14, 15, and 17 we can conclude

that for any λ > 0 and any random elastic supply in a pay-as-bid auction, there is a uniform-

price auction with random reserve that raises from the bidder we focus on at least the pay-as-

bid auction revenue minus λ. As we have seen in the first paragraph of the proof of Lemma

17, in this uniform-price auction we may assume that the bidder bids his or her marginal

values (at all prices in the support of the random reserve distribution), and ex post revenue is

always weakly below monopoly revenue. It follows that the uniform-price auction’s revenue is

maximized by selling the deterministic monopoly quantity with an appropriate reserve price.

By Theorem 5, this revenue is equivalent to what the seller would obtain by implementing

a pay-as-bid auction for the (deterministic) monopoly quantity, with or without a reserve

price. Thus, to maximize the revenue obtained from a single bidder whose information is

known to the seller, it is optimal to deterministically sell the bidder the monopoly quantity.

Because bidders are symmetric, it follows that it is optimal to deterministically sell them

the aggregate monopoly quantity (note that the equilibrium price will be the monopoly price

as long as the seller sets the reserves weakly below it).

G.3 Proof of Theorem 15 (Optimality of Deterministic Mecha-

nisms)

Proof. If the seller knows the bidders’ common signal s, the optimal quantity in a pay-

as-bid auction is Q?(s) ∈ arg maxQ≤Qmax Qv̂(Q; s), and in the unique equilibrium of this

pay-as-bid auction, p?(Q?(s); s) = v̂(Q?(s); s).101 Let Q : R+ → R+ be a supply curve,

where Q(p) = inf{Q?(s) : p?(s) > p}. Bidder values are regular, so Q is increasing. Then

equilibrium in the pay-as-bid auction with supply curve Q is such that for any bidder signal

s, p(Q?(s); s) = v̂(Q?(s); s), and revenue is maximized for each type independently.

G.4 Proof of Theorem 16 (Revenue Dominance of Pay-as-Bid)

Proof. Consider the (deterministic) optimal supply curve derived in Theorem 15. Given

this supply curve, there is an equilibrium of the uniform-price auction in which bidders

submit truthful bids. As in the pay-as-bid auction, for any realization of the bidder-common

signal s the market clearing price and quantity corresponds to the monopoly solution, and

revenue in this equilibrium of the uniform-price auction is equivalent to revenue in the unique

101Equilibrium uniqueness is established in Theorem 14.
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equilibrium of the optimal pay-as-bid auction. No higher revenue is feasible in the uniform-

price auction—even with different distribution over supply-reserve—because for known s the

revenue is bounded above by monopoly revenue.
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