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Abstract

 Agents compete for the same resources and are only aware of their direct neighbors in a network.
We propose a new equilibrium concept, referred to as peer-consistent equilibrium (PCE). In a
PCE, each agent chooses an effort level that maximizes her subjective perceived utility and the
effort levels of all individuals in the network need to be consistent. We develop an algorithm that
breaks the network into communities. We use this decomposition to completely characterize peer-
consistent equilibria by identifying which sets of agents can be active in equilibrium. An agent is
active if she either belongs to a strong community or if few agents are aware of her existence. We
show that there is a unique stable PCE. We provide a microfoundation of eigenvector centrality,
since, in any stable PCE, agents' effort levels are proportional to their eigenvector centrality in the
network.  
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Abstract

Agents compete for the same resources and are only aware of their direct neighbors
in a network. We propose a new equilibrium concept, referred to as peer-consistent
equilibrium (PCE). In a PCE, each agent chooses an effort level that maximizes her
subjective perceived utility and the effort levels of all individuals in the network need
to be consistent. We develop an algorithm that breaks the network into communities.
We use this decomposition to completely characterize peer-consistent equilibria by
identifying which sets of agents can be active in equilibrium. An agent is active if
she either belongs to a strong community or if few agents are aware of her existence.
We show that there is a unique stable PCE. We provide a behavioral foundation of
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1 Introduction
Competition in economics is usually viewed as “reciprocal.” That is, if firm i considers
firm j as a competitor, then firm j will also consider firm i as a competitor. However,
in the real world, firms may perceive other firms as competitors when the reverse is not
necessarily true. Furthermore, even though competition is global, in many cases firms
only care about their local competitors. For example, when estimating demand and thus
deciding on investment, bars or restaurants may only account for their perceived local
competitiors, even though, in reality, they are competing with a larger set of bars or
restaurants.

In this paper, we model this idea of “perceived” competition using a network in which
agents are only aware of the activity of their direct neighbors; a directed link from agent
i to agent j means that the former perceives the latter as a competitor while the reverse
is not necessarily true.1 We study a standard contest game in which agents compete in
terms of efforts to capture a given resource available in the economy. However, because
agents are locally sighted, they are only aware of the resources in their neighborhood, i.e.,
the resources shared with their direct neighbors.

We propose a new equilibrium concept, referred to as peer-consistent equilibrium (PCE),
which captures both the agents’ local sightedness—each agent chooses an effort level that
maximizes her perceived utility—and the fact that the effort levels of all individuals in
the network are consistent in equilibrium. Indeed, at a PCE, individual i’s perceived
subjective utility is equal to her objective payoff. Therefore, although individuals initially
start with a wrong perception of the resource attainable in their neighborhood, this wrong
perception induces an interaction pattern that eventually leads to a correct perception of
the resource at equilibrium. That is, their wrong perception is peer-consistent. This is our
first contribution.

We then explore the role of the network’s architecture in determining which agent is
active (i.e., exerts strictly positive effort) and which agent is not, at peer-consistent equi-
libria. Our second contribution is to give an exact prediction by providing an endogenous
and unique partitioning of the agents in a network. Agents within a given layer-k perfect
sub-network2 are strongly connected to each other and are either all active or inactive

1In many situations involving networks, information is “local” in the sense that agents only know the
activity of their direct neighbors but do not know anything about the activity of the other agents in the
network. For instance, using network data among several departments at the University of Chicago and
Columbia University, Friedkin (1983) showed that a respondent i was less likely to know about another
faculty member j’s current research if the respondent was further from j in the network. Similarly, Alatas
et al. (2016) found that subjects are much less likely to know about the wealth status of individuals in
their village who were further apart in the network. In a recent study using network data from 75 villages,
Breza et al. (2018) asked 4,554 individuals to assess whether five randomly chosen pairs of households
in their village were linked through financial, social, and informational relationships. They found that
network knowledge was low and highly localized, declining steeply with the pair’s network distance to
the respondent. They conclude that the assumption of full network knowledge may serve as a poor
approximation of the real world.

2A perfect sub-network is a sub-network that (i) contains at least two agents, (ii) is strongly connected
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at a PCE.3 We develop an algorithm called the Network Layer Decomposition (NLD) to
fully characterize the equilibrium partitions using the network topology. We show that
the lower is the layer k, i.e., the smaller k is, the less other agents are aware of agents
belonging to these perfect sub-networks. In particular, agents belonging to a layer-1 per-
fect sub-network are “hiding” from the other agents in the network, since there is no path
from a strongly connected community that can reach them. However, these agents may be
aware of all other agents in the network. This gives them a sizable advantage in terms of
competition and they are thus more likely to grab the resources available in the economy.
We show that, to be a “root” of a PCE, that is, the highest layer perfect sub-network of
all agents with positive efforts, the spectral radius of the adjacency matrix of the layer-k
perfect sub-network has to be larger than that of the maximum of all the communities
(or lower-layer perfect sub-networks) that can reach this sub-network. This condition is
automatically satisfied for the layer-1 perfect sub-network but less likely to be true the
higher the layer. There are typically multiple peer-consistent equilibria. In some of them
only some agents are active, while in others all agents are active.

The multiplicity of peer-consistent equilibria is interesting as it underlines the behav-
ioral richness of our equilibrium concept. Yet, one may want to make more precise pre-
dictions for any given network. To address this question, we study the stability of the
peer-consistent equilibria. Our third contribution is to provide a very simple and intuitive
characterization of the stable PCE. We show that a layer-k perfect sub-network is at the
root of a stable PCE if the spectral radius of its adjacency matrix is the largest one in
the network (i.e., larger than any other perfect sub-network) and thus equal to that of the
whole network. This implies that there is always a unique stable PCE. In this PCE, all
agents can be active or not. For example, if the spectral radius of the adjacency matrix
of a layer-1 perfect sub-network is the largest one in the network, then this is the unique
stable PCE for which only agents belonging to this sub-network are active. Hence, it is
possible to have a unique stable peer-consistent equilibrium in which only some agents are
active, but not all.

The last contribution of our paper is to show that peer-consistent equilibria provide a
behavioral foundation of the eigenvector centrality measure.4 More precisely, we prove that
the effort level of agents at the stable PCE is proportional to their eigenvector centrality
in the whole network. This result is very general and holds beyond strongly connected
networks, for which eigenvector centrality is usually defined. This property is based on
the consistency requirement of a PCE: the agents’ local perception of resources has to be
correct in equilibrium, i.e., their local share of the total resources has to be consistent with
that of all other agents. There are other papers that have provided a microfoundation of
eigenvector centrality. For example, Golub and Jackson (2010, 2012) develop models on

and (iii) is such that there is no path from any agent belonging to another strongly connected sub-network
that can reach it. The layer k indicates at which step the algorithm defines a sub-network as perfect.

3It is, however, important to point out that, in a given layer-k perfect sub-network, all agents being
active at a peer-consistent equilibrium does not imply that they all exert the same equilibrium effort.

4Some papers have also provided an axiomatic foundation of eigenvector centrality; see e.g., Palacios-
Huerta and Volij (2004); Dequiedt and Zenou (2017); Bloch et al. (2019).
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DeGroot updating in which eigenvector centrality is the right way to characterize an agent’s
influence. However, this arises from a heuristic learning process; it’s not about behavior
in a game. Banerjee et al. (2013) provide a microfoundation of eigenvector centrality by
showing that it is the limit of diffusion centrality. In Sadler (2020), there is a theorem that
shows that there exists a network game of strategic complements with an equilibrium in
which actions are ordered according to eigenvector centrality. Our model is different in the
sense that it provides a behavioral foundation for eigenvector centrality measure based on
a contest network game and PCE. Moreover, in all these models, in equilibrium, all agents
exert strictly positive effort; this means that the eigenvector centrality is well defined by
the Perron-Frobenius theorem and that the network is assumed to be strongly connected.
Our model solves for a more general framework in which the network is directed and weakly
connected.5 In our unique stable equilibrium, some agents may exert zero effort and still
the eigenvector centrality is well defined. So, basically we provide a behavioral foundation
of eigenvector centrality for any weakly connected directed network.

More generally, in order to determine which agents grab the most resources, our model
puts forward the tension between the size and density of strongly connected communities
and other agents’ “awareness” of these communities, i.e., how many agents perceive them as
competitors. The less agents are aware of certain communities and the tighter and denser
these communities are, the more likely they will grab most of the resources in the economy.
For example, if we think about conflicts in Africa between different local ethnicities (König
et al., 2017; Amarasinghe et al., 2020), then clearly those that (i) are of large size, (ii)
are very dense and connected, but (iii) are also difficult to “reach”, will have a significant
advantage over the others in terms of seizing the available resources.

In the last part of the paper, we study the policy implications of our model. We first
examine the impact of adding a directed link between two agents. We show that, when
a link is added, the sender becomes more central and more aware of others’ activities,
while the reverse is not true. This creates a new path in the network that makes others
more likely to be reached by this agent, which, in turn, may lower their status in terms
of layer perfect sub-network. As a result, adding a link may have the counter-intuitive
result that it decreases the number of active agents in the network. We then study the
key-player policy (Ballester et al., 2010) and highlight another counter-intuitive result. By
removing an agent in the network, we may make several inactive agents (for example, in
terms of criminal effort) active. Finally, we show that, by merging two different connected
networks (i.e., social mixing), the total activity is higher than the sum of total activity in
each disconnected network.

Contribution to the literature

Our paper contributes to the games-on-network literature.6 First, Ballester et al. (2006)
have demonstrated a direct relationship between Nash equilibrium effort in any network
and Katz-Bonacich centrality. Here, we provide another direct link between PCE in any

5Clearly, a strongly connected network is a particular case.
6For overviews, see Jackson (2008), Jackson and Zenou (2015), Bramoullé et al. (2016), Jackson et al.

(2017). Two prominent papers from this literature are Ballester et al. (2006) and Bramoullé et al. (2014).
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network and eigenvector centrality, which complements the findings of Ballester et al.
(2006).

Second, this literature has mostly focused on models with perfect information about
the network and linear best-reply functions. As in our model, there are some recent works
with non-linear best-reply functions7 but the network is always assumed to be perfectly
observed. Sundararajan (2007), Galeotti et al. (2010), Fainmesser and Galeotti (2016),
Belhaj and Deroian (2019), and Jackson (2019) are exceptions; as in our model, they
assume that agents only observe the actions of their neighbors. However, their models
differ in that they use a standard concept of equilibrium (Bayesian-Nash equilibrium) and
do not provide a general characterization of all equilibria.

There are also network games with imperfect information about the network that in-
troduce new equilibrium concepts related to our PCE. In particular, McBride (2006),
Lipnowski and Sadler (2019), and Battigalli et al. (2020) consider self-confirming and peer-
confirming equilibria. However, their concept of equilibrium is very different from ours. The
closest is that of Lipnowski and Sadler (2019), who apply self-confirming equilibria (SCE)
and rationalizable SCE to games where feedback about the actions of others is described
by a network topology: agents observe only the actions of their peers (i.e., neighbors),
but their payoffs may depend on everybody’s actions and are not observed ex-post. The
main difference to our PCE is that Lipnowski and Sadler (2019) allow agents to make
conjecture on agents who are not their neighbors;8 in our model, we assume that agents
do not even know the existence of these agents. The peer-confirming equilbrium concept
of Lipnowski and Sadler (2019) is such that adding links in the network restricts the set
of permissible profiles/conjectures and thus the set of equilibria.9 This is not true in our
model. Moreover, none of these papers provide a complete characterization of all equilibria
for any network structure as we do here.

More generally, we believe that there is a trade-off between obtaining general results in
terms of the characterization of equilibria and using specific utility function and network
games. Indeed, our PCE is specific to our utility function, which is based on the Tullock
contest function; in the network-game literature with imperfect network knowledge, the
results are more general and can be applied to many more network games. However, we
are able to provide more general results in terms of equilibrium characterization. Thus, we
view our work as complementary to this literature.

Our equilibrium characterization in terms of layer perfect sub-networks is also related to
other network models, which also partition agents into endogenous community structures,
including risk sharing (Ambrus et al., 2014), interaction between market and community

7See, in particular, Baetz (2015), Allouch (2015), Melo (2019), Parise and Ozdaglar (2019), Zenou and
Zhou (2020).

8Indeed, a strong assumption that is implicit in the definition of peer-confirming equilibrium in Lip-
nowski and Sadler (2019) is that players know the network structure.

9When the network is complete, the set of peer-confirming equilibria coincides with the set of Nash
equilibria. For the empty network, peer-confirming equilibria coincide with rationalizable equilibria. In-
creasing the number of links reduces the number of equilibria. In contrast, the set of PCE may very well
increase when links are added.
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(Gagnon and Goyal, 2017), behavioral communities (Jackson and Storms, 2019), infor-
mation resale and intermediation (Manea, 2020), and technology adoption (Leister et al.,
2020). However, the driving forces and policy implications are very different. In particular,
all these papers assume a perfect knowledge of the network and use standard equilibrium
concepts.

Our paper also contributes to the conflict literature,10 especially the more recent lit-
erature on conflicts in networks.11 In this literature, the structure of local conflicts is
modeled as a network where rivals invest in conflict-specific technology to attack their
respective neighbors. This literature assumes that the network is undirected (which is a
particular case of our network) and that agents know the network, and solves the model
using standard Nash equilibrium concept. Further, they usually do not provide a general
characterization of all possible equilibria.

The rest of the paper unfolds as follows. In the next section, we describe our model and
introduce our new concept of equilibrium. In Section 3.2, we focus on strongly connected
networks and determine the unique equilibrium of this game. Section 3 provides a general
characterization of all peer-consistent equilibria (PCEs) for any network by first introducing
our NLD algorithm, then by providing the exact condition under which each equilibrium
exists, and, finally, by determining the unique stable PCE. In Section 4, we study the policy
implications of our model, while in Section 5 we investigate the economic implication of
our results. Finally, Section 6 offers concluding remarks.

In Appendix A, we provide some useful results on nonnegative matrices and propose a
definition of eigenvector centrality in weakly connected (directed) networks. All the proofs
of the results in the main text can be found in Appendix B. We provide additional results
in Appendix C and additional examples in Appendix D. Finally, Appendix E deals with
the case when the network is not layer-generic.

2 The model

2.1 Underlying contest game

Consider a finite set of agents, denoted by N = {1, 2, · · · , n}. There is a given resource,
available in a fixed amount V ∈ R+ = [0,∞) to be shared between the n agents. The
agents play a contest game, described as follows. Each agent i ∈ N exerts some action
(effort) xi ∈ R+ before the resource V is distributed. An action profile x = (x1, x2, · · · , xn)
determines, for each agent i, her share of the resource V using the following proportional
rule:

vi(x) =

{
xi∑

j∈N xj
V if

∑
i∈N xi > 0,

1
n
V if

∑
i∈N xi = 0.

(1)

10See Corchón (2007), Konrad (2009), and Jensen (2016) for overviews.
11See e.g., Goyal and Vigier (2014), Franke and Öztürk (2015), Hiller (2017), König et al. (2017),

Kovenock and Roberson (2018), Xu et al. (2019). For overviews, see Kovenock and Roberson (2012) and
Dziubiński et al. (2016).
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Equation (1) corresponds to the well-known “Tullock contest function” from the contest
literature (Skaperdas, 1996; Kovenock and Roberson, 2012).12 One important difference
is that we do not interpret xi∑

j∈N xj
as the probability of agent i getting V , but as the

percentage of resource V that agent i can obtain, given her and the other agents’ effort
choices. We assume that the resource V is exogenously given and that the sharing rule (1)
is symmetric and takes a proportional form.

For each agent i, the total cost of exerting effort xi is equal to cxi, where c > 0 is the
(constant) marginal cost of effort. Let πi : Rn

+ → R be agent i’s payoff function, which is
given by:

πi(x) = vi(x)− cxi (2)

2.2 Networks: Locally-sighted individuals

We embed the contest played by agents into a network, by assuming that agents are locally-
sighted in the sense that they are only aware of people to whom they are directly linked,
but do not know anything else about the network. In other words, local-sightedness implies
that each individual only perceives resources and interactions of her local environment, i.e.,
her direct links.

Formally, given the set of agents N , a (directed) network is a pair (N,G) where G is
an n×n adjacency matrix, with entry gij ∈ {0, 1}. For each pair i, j ∈ N , agent i is linked
to j if and only if gij = 1. Since the perception of a link is not necessarily reciprocal, it
is possible that gji = 0, i.e., the network is directed. That is, we allow for the situation
in which an individual is considered as a neighbor (contender) of another, but not vice
versa.13 To be precise, for each i ∈ N , let Ni = {j ∈ N : gij = 1} be the (directed)
neighborhood of agent i. This will be clearer when we introduce the notion of “perceived
competition.”

There is a (directed) path from individual i to individual j in the network if there is
a sequence {j1, j2, · · · , jm} ⊆ N with j1 = i, jm = j and such that gj`j`+1

= 1 for each
` ∈ {1, ...,m − 1}. In this case, agent i is said to be connected to j through a path. In
order to indicate that such a path exists between i and j, we use the notation i ⇒ j. A
(directed) cycle is a (directed) path from some agent i ∈ N to herself.

Definition 1. Let (N,G) be a directed network.

• (N,G) is weakly connected if the underlying undirected graph (i.e., ignoring the
directions of edges) is connected. Accordingly, a directed network is disconnected if
it is not weakly connected.

12The theoretical foundations of the Tullock contest function are well established. In particular, the
Tullock contest function can be derived using a stochastic, axiomatic, optimally-derived, and microfounded
approach (Skaperdas, 1996; Jia, 2008; Jia et al., 2013).

13A network is undirected if for each pair i, j ∈ N , gij = gji. Note that undirected networks are special
cases of directed networks.
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• (N,G) is semi-connected if, for any pair of agent i, j ∈ N , there is a path from i
to j (i.e., i ⇒ j) or a path from j to i (i.e., j ⇒ i).

• (N,G) is strongly connected if each node can reach every other node by a path,
that is, for any pair of agents i, j ∈ N , there is a path from i to j (i.e., i ⇒ j).

• (N,G) satisfies no-isolation if, for each i ∈ N , Ni 6= ∅.
Throughout the paper, we consider directed networks (N,G) that are (at least) weakly

connected and satisfy no-isolation. Note that strongly connected networks are semi-
connected and also satisfy no-isolation. In turn, semi-connected networks are weakly con-
nected. Note also that a weakly connected network that satisfies no-isolation necessarily
contains at least one directed cycle.

Given the exogenous resource V , let Wi be the resource perceived to be “owned” by
the local environment of agent i, i.e., by agent i as well as her neighbors. Each individual
i ∈ N competes for Wi, with agents in Ni (i.e., her neighbors). Indeed, given an effort
profile x ∈ Rn

+, for each i ∈ N , let x−i be the effort sub-profile of agents j ∈ Ni. Given
Wi, the perceived utility of agent i is then equal to

ui(xi,x−i;Wi) =

{
xi

xi+
∑

j∈Ni
xj
Wi − cxi if xi +

∑
j∈Ni

xj > 0,

1
1+|Ni|Wi if xi +

∑
j∈Ni

xj = 0.
(3)

Remark 1. Apart from their position in the network, all agents are identical.
The aim of our paper is to study how the individual’s network position affects the effort

and outcome of each agent. This is why we assume that all agents are ex-ante identical,
i.e., ci = c for all i ∈ N . In other words, the only source of heterogeneity stems from
the agents’ network position and, thus, the set of agents they perceive as competitors.
Differences in perceived competition are therefore the main source of heterogeneity.

2.3 Peer-consistent equilibrium

The critical assumption of our model is that, in order to choose an effort level, each
individual i considers the resource attainable in her neighborhood {i} ∪Ni as given, while
in reality, it is determined by the fraction of effort exerted in this neighborhood with respect
to the whole network. The following equilibrium concept captures this idea.
Definition 2. A Peer-Consistent Equilibrium (PCE) is a vector x∗ ∈ Rn

+ such that,
(i) for each i ∈ N and each xi ∈ R+,

ui(x
∗
i ,x

∗
−i;Wi) ≥ ui(xi,x

∗
−i;Wi),

(ii) for each i ∈ N ,

Wi =
x∗i +

∑
j∈Ni

x∗j∑
j∈N x

∗
j

V, 14

14this quantity being equal to V (1 + |Ni|)/n when x∗ = 0, by convention.
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Condition (i) states that, given her perception of the total resource share in her neigh-
borhood, Wi, and her neighbors’ effort levels, x∗−i, each individual i chooses an effort that
maximizes her preceived utility. In other words, each agent i takesWi as given, and chooses
the effort level xi that maximizes ui(xi,x−i,Wi).

Condition (ii) states that the effort levels of all individuals in the network will, in turn,
determine the share of each individual (and the share of each neighborhood), according to
the sharing rule (1). This is a consistency requirement imposed in equilibrium. Indeed,
at equilibrium, the vector {Wi}i of local resources and the vector of efforts x∗ have to be
consistent with each other, and this has to be true for each neighborhood.15

Moreover, note that, in equilibrium, we have

ui
(
x∗i ,x

∗
−i;Wi

)
=

x∗i
x∗i +

∑
j∈Ni

x∗j
Wi − cx∗i =

x∗i∑
j∈N x

∗
j

− cx∗i = πi(x∗).

Indeed, at a peer-consistent equilibrium, individual i’s perceived subjective utility is equal
to her objective payoff, i.e., her payoff function in the underlying contest game. Therefore,
although individuals initially start with a “wrong” perception of the resource attainable in
their neighborhood, this wrong perception induces an interaction pattern that eventually
leads to a correct perception of the resource at equilibrium.16 This is why we call it a
“peer-consistent equilibrium.”

Remark 2. Peer-consistent equilibria and Nash equilibria coincide if and only if the net-
work is complete, in which case the unique PCE is the Nash equilibrium of the contest
game.

Indeed, a peer-consistent equilibrium of our contest game on a complete network is
simply a Nash equilibrium on a contest game, since all agents observe the whole network
and the notion of local sightedness disappears. As soon as at least one link is missing,
the coincidence disappears: at least one agent is not aware of the existence of some other
agents. Observe that the PCE is neither a refinement of the concept of Nash equilibrium,
nor a superset (such as correlated equilibrium or peer-confirming equilibria). Rather, it is
the outcome of a decentralized optimization problem where each agent must play the effort
that maximizes their perceived utility, and where each perceived utility must be ex-post
consistent with the realized outcome.

15Condition (ii) is similar to the condition imposed for a Walrasian equilibrium in which aggregate
supply equals aggregate demand. Here, aggregate supply is V and aggregate demand is the sum of the
local resources Wi.

16The equality of subject utility and objective payoff derives from the fact that the proportional sharing
function of the contest is consistent, a property extensively studied in the literature of fair division (Moulin,
2003). A sharing function is consistent if, after a share allocation is chosen, some individuals are left with
their shares and, in the reduced problem with the remaining individuals and the remaining resource,
each of the remaining individuals is assigned the same amount as initially. As implied by this argument,
consistency of the sharing function is required in order to make sense of the equilibrium.
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2.4 Peer-consistent equilibrium: An illustration

To understand our peer-consistent equilibrium concept (Definition 2) and the role played
by the consistency requirement, let us consider the following two-part example in which
we compare the set of peer-consistent equilibria in two closely related networks. This will
be part of our leading examples in this paper.

Example 1. Consider the two networks displayed in Figure 1. In order to illustrate our
definition of a peer-consistent equilibrium (PCE), let us focus on agents 1 and 6.

5

4

6 1

2 3

(a) A dense 2-layer network

5

4

6 1

2 3

(b) A less dense 2-layer network

Figure 1: Two similar networks with different densities

Same local competitors, same perceived utility: First, as in Definition 2(i), each
agent i maximizes her utility (3) by taking Wi as given. Clearly, in both networks dis-
played in Figures 1(a) and 1(b), agent 6 has the same perceived utility function, namely

x6
x4+x5+x6

W6 − cx6. Indeed, agent 6’s perception of her own environment does not change
across the two networks. On the other hand, agent 1’s perceived utility function switches
from x1

x1+x2+x3+x6
W1−cx1 to x1

x1+x3+x6
W1−cx1, which implies that agent 1 will decrease her

effort when the link from 1 to 2 is removed. At the same time, one may think that agent
6’s equilibrium level of effort would be unchanged, since the perception of her environment
is unchanged across the two networks. This intuition is wrong, as we show next.
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Same perceived utility, different equilibrium efforts: Now, by imposing the consis-
tency requirement of Definition 2(ii), we can show that agent 6 will produce more effort in
the network of Figure 1(b) compared to that of Figure 1(a), even though she faces exactly
the same competitors (and thus the same perceived utility), namely 4 and 5. This is due
to the fact that agent 1’s perceived competitors reduce from three (agents 2, 3, 6) to two
(agents 3, 6), triggering a decrease in agent 1’s effort. This decrease, in turn, implies that,
in the network of Figure 1(b), there are more resources left to grab for agent 6, as a side
effect of the consistency requirement of the PCE. �

3 General analysis: Peer-consistent equilibria
This section aims to present a complete analysis of peer-consistent equilibria in weakly
connected networks. We first provide a general algebraic characterization in Section 3.1.
Then, in Section 3.2, we focus on strongly connected networks, for which we show that PCE
provides a microfoundation of eigenvector centrality. The characterization provided so far
being implicit, Sections 3.3 and 3.4 are devoted to providing an alternative characterization,
by constructing a decomposition algorithm that allows the easy identification of all PCEs
in any network. Finally, we show in Section 3.5 that the set of PCEs can be refined
to a unique stable PCE. Importantly, this particular PCE provides a microfoundation of
eigenvector centrality in the case where the network is no longer strongly connected.

3.1 General characterization of peer-consistent equilibria

To begin with, we show that an effort profile is a peer-consistent equilibrium if and only if
it is a (properly normalized) nonnegative eigenvector of G. For each effort vector x ∈ Rn

+,
let X =

∑
j∈N xj be the sum of efforts of all agents in the whole network.

Theorem 1. Let (N,G) be a weakly connected network. Then x∗ is a peer-consistent
equilibrium if and only if

Gx∗ =
cX∗

V − cX∗
x∗, and x∗ ∈ Rn

+ \ {0}.

There always exists at least one PCE, because a nonnegative matrix always admits a
nonnegative eigenvector (see Lemma A2 in Appendix A.1). However, there might be more
than one PCE. It is also worth mentioning that, since we only assume that the network
is weakly connected, there might exist peer-consistent equilibria where some components
are equal to zero.17 Let us distinguish between agents who are active and inactive in
equilibrium. Given (N,G) and a peer-consistent equilibrium x∗, let N+(x∗) be the set of
agents who are active at equilibrium x∗. That is, N+(x∗) = {i ∈ N : x∗i > 0}. Observe
that, if x∗ is a PCE, then its set of active agents is closed,18 which means that

i⇒j and j ∈ N+(x∗) =⇒ i ∈ N+(x∗). (4)
17It can even be the case that there is no PCE where every agent is active.
18We prove this formally in Lemma B6 in Appendix B.
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In other words, if there is a path from i to j and j is active at the PCE x∗, then i is also
necessarily active. We also prove a stronger statement below (Proposition 2), after showing
how a network can be decomposed in a convenient manner in order to find equilibria.

For any network (N,G) and any subset of agentsM ⊆ N , let GM denote the restriction
of matrix G toM . If Ni = ∅, then agent i is irrelevant to the equilibrium analysis. Indeed,
agent i’s effort is zero in any PCE and x∗ is a PCE for network (N,G) if and only if x∗−i is
a PCE for the network (N \ {i},GN\{i}). Consequently, in the rest of this paper, we will
always assume that the network satisfies the no-isolation property (Definition 1).

3.2 Strongly connected networks

First, let us focus on strongly connected networks (see Definition 1).19 Let ρ(G) be the
spectral radius of the matrix G. That is, ρ(G) = max{|λ1|, . . . , |λn|}, where λ1, · · · , λn are
the eigenvalues of G. By the Perron-Frobenius theorem (see Lemma A1 in Appendix A.1),
ρ(G) is an eigenvalue of G, associated to a positive eigenvector, uniquely defined up to
multiplication by a positive constant.

Proposition 1 (Existence and uniqueness of PCE in strongly connected networks.). Let
(N,G) be a strongly connected network. Then, there exists a unique peer-consistent equi-
librium x∗ in which

Gx∗ = ρ(G)x∗ and X∗ =
V ρ(G)

c [1 + ρ(G)]
. (5)

That is, x∗ is a positive eigenvector of G associated with ρ(G).

Proposition 1 provides a microfoundation of eigenvector centrality in such networks. It
shows that, for any strongly connected network, at the unique PCE, the effort of each
agent is proportional to her eigenvector centrality.20 This characterization relies on both
requirements in Definition 2. First, given Wi, each agent i chooses her effort x∗i that
maximizes her perceived utility (3). This leads to:∑

j∈Ni
x∗j(

x∗i +
∑

j∈Ni
x∗j

)2Wi = c. (6)

19A special case of a network that is strongly connected is the complete network. A contest on a complete
network is identical to the standard contest game (Skaperdas, 1996). In particular, a peer-consistent
equilibrium of the contest game on a complete network is simply a Nash equilibrium on a contest game,
since all agents observe the whole network (Remark 2).

20In strongly connected networks, eigenvector centrality is a well-defined measure of centrality captured
by the Perron-Frobenius vector associated to the adjacency matrix (Jackson, 2008). In Section A.2 of
Appendix A, we provide a more general definition of eigenvector centrality for networks that are not
necessarily strongly connected.
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Second, Definition 2(ii) requires that all efforts are consistent at the PCE by imposing that

Wi =
x∗i +

∑
j∈Ni

x∗j∑
j∈N x

∗
j

V.

By plugging this value into (6), we obtain:∑
j∈Ni

x∗j

x∗i +
∑

j∈Ni
x∗j

V

X∗
= c,

where X∗ =
∑

j∈N x
∗
j is the equilibrium aggregate effort. By solving this equation, we get:

Gx∗ =
cX∗

V − cX∗
x∗, (7)

which is equal to (5). Either equation (5) or (7) show that, for any PCE, the effort of each
agent is determined by her eigenvector centrality. This is mainly due to the consistency
requirement (ii) of Definition 2 (and also to the Tullock contest utility function), since (6)
by itself does not deliver this result. This is a new result, complementing that of Ballester
et al. (2006), who show that, for any network, in a game with strategic complementarities,
for each agent who chooses effort that maximizes a linear-quadratic utility function, her
equilibrium effort is equal to her Katz-Bonacich centrality. Here, we show that, if each
agent chooses her effort that maximizes a utility based on the Tullock contest function,
then, at any PCE, her effort will be proportional to her eigenvector centrality. Example
D1 in Appendix D.1, in which the network displayed in Figure D1 is strongly connected,
illustrates this result.

Below, we show that this characterization in terms of eigenvector centrality carries over
to any weakly connected network, after refining the set of peer-consistent equilibria in a
meaningful way.

Observe that the peer-consistent equilibrium x∗ of any strongly connected network
(N,G) exhibits the so-called “neighborhood effect.” That is, individuals whose neighbors
have a higher share of the resources obtain themselves a higher share of the resources.
Indeed, for each agent i,

∑
k∈Ni

x∗k = ρ(G)x∗i . Thus, we have, for any i, j:

x∗i +
∑
k∈Ni

x∗k > x∗j +
∑
k∈Nj

x∗k ⇐⇒
∑
k∈Ni

x∗k >
∑
k∈Nj

x∗k ⇐⇒ x∗i > x∗j

The emergence of a neighborhood effect obtained at the peer-consistent equilibrium
is, in fact, not obvious. Indeed, there are two opposite effects of having connections to
neighbors who are expected to obtain a higher share of the resources. On the one hand,
the expectation of a higher share of resources by her neighbors encourages an individual to
exert higher effort (resource effect). On the other hand, the expectation of a higher effort
exerted by neighbors discourages an individual to exert higher efforts (competition effect).
Proposition 1 shows that, in equilibrium, the resource effect dominates the competition
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effect. Hence, we observe a neighborhood effect in equilibrium, that is, individuals con-
nected to high-effort neighbors also exert high effort. The reason for this effect is traced
back to the proportionality of agents’ efforts to their eigenvector centrality (Proposition
1). Indeed, a node is more (eigenvector) central the more it is connected to (eigenvector)
central nodes (Jackson, 2008; Jackson et al., 2017).

3.3 General network decomposition: An algorithm approach

3.3.1 General results

Let us start with some important definitions.

Definition 3. Let M ⊂ N . (M,GM) is a strongly connected component of (N,G) if:

(i) it is strongly connected

(ii) it is maximal in the sense that, for each i ∈ N \M , (M ∪ {i},GM∪{i}) is not a
strongly connected network.

To illustrate this definition, consider the (weakly connected) network in Figure 1(a) with
N = {1, 2, 3, 4, 5, 6} and the sub-networks (M1,GM1) and (M2,GM2) with M1 = {1, 2, 3}
andM2 = {4, 5, 6}. We can see that both (M1,GM1) and (M2,GM2) are strongly connected
components: each is a strongly connected sub-network, and it is not possible to enlarge
any of these two sub-networks to form a larger strongly connected network. The analysis
prevails for the network in Figure 1(b). Consider, now, the network displayed in Figure D1
in Appendix D.1 with N = {1, 2, 3, 4}. There is no strongly connected component other
than the whole network itself. Indeed, consider the sub-network {1, 2, 3}. We can always
add agent 4 and obtain a larger strongly connected network, which is N = {1, 2, 3, 4}. The
same applies for the sub-network {2, 3, 4}. Using the same argument, {1, 2} and {3, 4} are
not strongly connected components.

Definition 4. Let M ⊂ N . Agent i ∈ N\M is an adjunct to the sub-network (M,GM)
of (N,G) if i is connected to some agent j ∈ M through a path. The adjunct set of M ,
denoted by M̄ ,21 is therefore defined as the set of all agents that are adjuncts to M , that is

M̄ = {i ∈ N \M : ∃j ∈M with i ⇒ j}.

The sub-network (M,GM) is adjunct cycle-free if the adjunct sub-network (M̄,GM̄) has
no cycle.

Note that it is possible to have M̄l = ∅. In Figure 1(a), agents 1, 2 and 3 are adjuncts
to the sub-network {4, 5, 6}, while agents 4, 5 and 6 are not adjunct to the sub-network
{1, 2, 3}. Thus, the adjunct set of M1 = {1, 2, 3} is M̄1 = ∅, while that of M2 = {4, 5, 6} is

21Note that M̄ is defined with respect to N ; hence N should appear in the notation. However, to ease
presentation, we omit it here.
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M̄2 = {1, 2, 3}. Therefore, M2 ∪ M̄2 = N . Observe that the sub-network M1 = {1, 2, 3} is
adjunct cycle-free, whereas M2 = {4, 5, 6} is not. Clearly, the exact same analysis applies
for Figure 1(b).

Definition 5. Let M ⊂ N . Then, (M,GM) is a perfect sub-network of (N,G) if it is:
(i) a strongly connected component of (N,G); (ii) adjunct cycle-free; and (iii) |M | ≥ 2.

Observe that the adjunct set of a perfect sub-network is acyclic. The sub-network
{1, 2, 3} in Figures 1(a) and (b) is a perfect sub-network, while {4, 5, 6} is not. The only
perfect sub-network of the network (N,G) in Figure D1 in Appendix D is (N,G) itself.

As it turns out, perfect sub-networks play a key role in determining the sets of active
individuals at a peer-consistent equilibrium. Such sub-networks are the focus of the de-
composition algorithm that we introduce next. The algorithm has different steps. Each
step is denoted by a superscript k = 1, 2, 3, · · · ; thus, a sub-network found at step k will be
denoted by Mk

l . At each step k, the algorithm finds the perfect sub-networks, but in the
new network that has been netted out of all the previously identified perfect subnetworks,
as well as the subnetworks of all their respective adjunct sets.

We prove in Appendix B (see Lemma B7) that any weakly connected network admits
a perfect sub-network. This enables us to initiate the following procedure.

Algorithm 1 (Network Layer Decomposition, NLD).
Step 1. Let {M1

l }l=1,...,m1 be the collection of perfect sub-networks of network (N,G).
Denote M1 := ∪n1

l=1

(
M1

l ∪ M̄1
l

)
. If N1 := N\M1 = ∅, the algorithm stops; otherwise, go

to step 2.

Step k (k ≥ 2). Consider the network
(
Nk−1,GNk−1

)
, where Nk−1 := N\Mk and Mk :=

∪mk

l=1

(
Mk

l ∪ M̄k
l

)
.22 Let {Mk

l }l=1,...,mk be the collection of perfect sub-networks of network(
Nk−1,GNk−1

)
. If Nk := N\Mk = ∅, the algorithm stops; otherwise, go to step k + 1.

Definition 6. Suppose that the NLD algorithm stops at step T . We call the network
(N,G) a T -layer network. Moreover, for each k ≤ T and each l ≤ mk, we call (Mk

l ,GMk
l
)

a layer-k perfect sub-network of (N,G).

The Network Layer Decomposition algorithm partitions the network into communities
or sub-networks called layer-k perfect sub-networks, where, within each community, all
agents have the same propensity to exert positive effort. Indeed, the NLD algorithm will
first search for the perfect sub-networks M1

l or layer-1 perfect sub-networks. These are
sub-networks or communities, which have at least two members, are strongly connected,
and cannot be reached by other strongly connected communities (Definition 5). In other
words, few agents are “aware” of these communities, which can therefore grab a large share
of resources within their neighborhood. After knowing M1, i.e., all the layer-1 perfect
sub-networks and their adjuncts, the algorithm will remove them from the network as well

22Note that the adjunct set M̄k
l is defined relative to network

(
Nk−1,GNk−1

)
. Hence, M̄k

l = {i ∈
Nk \Mk

l : ∃j ∈Mk
l with i⇒ j}.
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as their links. In Step 2, the algorithm will search for the communities that become perfect
sub-networks after the removal of M1. These are the layer-2 perfect sub-networks. The
NLD algorithm then continues until (finite) Step T is reached, at which point all agents in
the network have been selected at some step, and all the perfect sub-networks have been
identified.

Remark 3. The NLD algorithm ends in finite time T and the decomposition

{M1
l }l=1,...,m1 , {M2

l }l=1,...,m2 , ..., {Mk
l }l=1,...,mk

is unique up to re-labelling.

In Lemma B8 in Appendix B, we derive a series of properties of the decomposition
obtained through the application of the NLD algorithm. These implications are useful in
understanding the topology of the many layer perfect sub-networks that typical networks
contain, and the connections that exist between these different layers.

Example D2 in Appendix D.2 explains how the adjacency matrixG of a network (N,G)
is affected by the NLD algorithm. We consider a network that has three layer-1 perfect
sub-networks, two layer-2 perfect sub-networks, and two layer-3 perfect sub-networks. The
matrix G of this network is decomposed in three steps, as displayed in Figure D2. We show
how each step of the NLD algorithm affects the adjacency matrix by removing the set of
all agents and their adjuncts belonging to the corresponding layer-k perfect sub-networks.

3.3.2 Examples

Let us illustrate the network decomposition using simple examples, one for two 2-layer
networks and one for a 3-layer network.

Example 1: A 2-layer network I
Consider the network (N,G) in Figure 1(a) with N = {1, 2, 3, 4, 5, 6}. In Step 1 of the
NLD algorithm, the sub-network (M1

1 ,GM1
1
) with M1

1 = {1, 2, 3} is the only perfect sub-
network (Definition 5) of network (N,G) with adjunct set M̄1

1 = ∅, so that M1 = M1
1 ∪

M̄1
1 = {1, 2, 3}. Therefore, the sub-network M1

1 = {1, 2, 3} is a layer-1 perfect sub-network
(Definition 6). Let us remove M1 = {1, 2, 3} and its links. We end up with the network
(N1,GN1), with N1 = N\M1 = {4, 5, 6}. We are now in Step 2. In N1, we can see that the
sub-network M2

1 = {4, 5, 6} is now a perfect sub-network or a layer-2 perfect sub-network
with adjunct set M̄2

1 = ∅, so that M2 = M2
1 ∪ M̄2

1 = {4, 5, 6}. Since N2 = N1\M2 = ∅,
the NLD algorithm stops at Step 2.

Example 1: A 2-layer network II
Consider now the network (N,G) displayed in Figure 1(b) with N = {1, 2, 3, 4, 5, 6}, a
variation of Figure 1(a) in which we deleted the directed edges between agents 1 and 2.
It is easily verified that the NLD algorithm proceeds in exactly the same way as in the
network of Figure 1(a) and stops at Step 2 with M1

1 = {1, 2, 3} being a layer-1 perfect
sub-network and M2

1 = {4, 5, 6} a layer-2 perfect sub-network.
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Figure 2: Network structure in Example 2

Example 2. A 3-layer network
Consider now the network (N,G) displayed in Figure 2 with N = {1, 2, · · · , 10}. Let us
run the NLD algorithm. In Step 1, we can see that only the sub-network M1

1 = {2, 3, 4} is
a perfect sub-network with adjunct set M̄1

1 = {1}, so that M1 = M1
1 ∪ M̄1

1 = {1, 2, 3, 4}.
Thus, M1

1 = {2, 3, 4} is a layer-1 perfect sub-network. Indeed, {5, 6} is not a perfect sub-
network in Step 1 because it is not adjunct-cycle free, since its adjunct set is {1, 2, 3, 4}
and contains cycles. Similarly, {7, 8, 9, 10} is not adjunct-cycle free, since its adjunct set is
{1, 2, 3, 4, 5, 6} and contains cycles. Let us remove M1 = {1, 2, 3, 4} and its links. We end
up with the network (N1,GN1), with N1 = N\M1 = {5, 6, 7, 8, 9, 10}.
We are now in Step 2. In N1, we can see that the sub-network M2

1 = {5, 6} is now a
perfect sub-network with adjunct set M̄2

1 = ∅, so that M2 = M2
1 ∪ M̄2

1 = {5, 6}. Thus, M2
1

is a layer-2 perfect sub-network. It is easily verified that, at Step 2, {7, 8, 9, 10} cannot
be a perfect sub-network because its adjunct set is {5, 6}, which contains a cycle. Let
us remove M2 = {5, 6} and its links. We end up with the network (N2,GN2), with
N2 = N1\M2 = {7, 8, 9, 10}.
We are now in Step 3. In N2, the sub-network M3

1 = {7, 8, 9, 10} is a perfect sub-network.
It is therefore a layer-3 perfect sub-network, with adjunct set M̄3

1 = ∅. Hence, M3 =
M3

1 ∪ M̄3
1 = {7, 8, 9, 10}. Then N3 = N2\M3 = ∅, and the NLD algorithm stops.

3.4 Layer-based characterization of peer-consistent equilibria

So far, we have shown that any weakly connected network (N,G) can be decomposed into
multiple layer perfect sub-networks. In each layer k, several layer-k perfect sub-networks
may exist. With the help of a new definition, we will be ready to provide a characterization
of the set of peer-consistent equilibria.

17



Definition 7. Let (N,G) be a T−layer network. For each layer-k perfect sub-network
(Mk

l ,GMk
l
), l ≤ mk, denote by Qk

l the adjunct set of Mk
l in N . That is,

Qk
l = {i ∈ N\Mk

l : ∃j ∈Mk
l , with i ⇒ j}.

Let Dk
l := Mk

l ∪Qk
l . We call Dk

l a candidate set with root Mk
l .

A candidate set is a set of agents that could naturally be the set of active players
at equilibrium. Indeed, if there is one agent i who is active in Mk

l , then all agents in
Mk

l as well as those belonging to the adjunct set Qk
l will be active. This is because all

agents who are path-connected to i are necessarily active, since the set of active agents at
a peer-consistent equilibrium is closed (see (4)).

Note the difference between the definition of the adjunct sets M̄k
l and Qk

l , in which the
latter is defined with respect to N , irrespective of the Step k at which Mk

l is computed.
Note also that, in Step 1 of the NLD algorithm, M̄1

l = Q1
l . For each step k of the NLD

algorithm, there may be several layer-k perfect sub-networks. Consider Example 2 with the
network displayed in Figure 2. Then M1

1 = {2, 3, 4}, M2
1 = {5, 6}, and M3

1 = {7, 8, 9, 10}.
In Step 1, the adjunct set M̄1

1 = Q1
1 = {1}. In Sep 2, we have M̄2

1 = ∅ while Q2
1 =

{1, 2, 3, 4}. In Step 3, M̄3
1 = ∅ while Q3

1 = {1, 2, 3, 4, 5, 6}. Thus, D1
1 = M1 = {1, 2, 3, 4},

D2
1 = M2

1 ∪Q2
1 = {1, 2, 3, 4, 5, 6}, and D3

1 = M3
1 ∪Q3

1 = N .

Definition 8. Let (N,G) be a T -layer network. For each layer-k perfect sub-network
(Mk

l ,GMk
l
), k ≤ t, l ≤ mk, let Dk

l be the associated candidate set. A peer-consistent
equilibrium x∗ of (N,G) such that N+(x∗) = Dk

l for some k ≤ t and l ≤ mk is called an
equilibrium with root Mk

l . We refer to any equilibrium that admits a root as a simple
equilibrium.

We have the following key result:

Proposition 2. Let (N,G) be a T -layer network. There is at most one peer-consistent
equilibrium x∗ with root Mk

l . It exists if and only if ρ(GMk
l
) > ρ(GQk

l
). In particular, there

always exists an equilibrium with root M1
l , for any l = 1, ...,m1.

This proposition is simple but very powerful in terms of characterizing the equilibrium
for each perfect sub-network.23 The NLD algorithm determines the different layers of the
perfect sub-networks. Proposition 2 states that, for each layer, there can be at most one
PCE with rootMk

l . This provides a necessary and sufficient condition in terms of the largest
eigenvalues comparisons for this equilibrium to exist. This condition is automatically
satisfied for layer-1 perfect sub-networks, because ρ(GQ1

l
) = ρ(GM̄1

1
) = 0 (by construction,

M̄1
1 is acyclic). For k ≥ 2, however, finding out if a PCE with root Mk

l exists requires
checking the non-trivial24 inequality ρ(GMk

l
) > ρ(GQk

l
).

23To ease presentation, we refer to any layer-k perfect sub-network as a perfect sub-network.
24For k ≥ 2, Qk

l necessarily contains cycles, by construction, and thus ρ(GQk
l
) > 0.
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We proceed in the same way for k > 2 until the last layer T of perfect sub-networks is
determined by the NLD algorithm. In summary, we need to check the eigenvalue condition
for each layer k = 1, 2, · · · , T and each l = 1, ...,mk

l . For a given k and mk
l , if ρ(GMk

l
) >

ρ(GQk
l
) holds, then there exists a peer-consistent equilibrium x∗ with root Mk

l .

Remark 4 (Equilibrium payoffs). Pick any peer-consistent equilibrium x∗ with root Mk
l

for some k ≤ T and l ≤ mk
l . Then, the payoff of each active agent i is given by

ui(x
∗
i ) =

c

ρ(GMk
l
)
x∗i (8)

where ui(x
∗
i ) := ui(x

∗
i ,x

∗
−i;Wi). Moreover, the sum of utilities of active agents at x∗ is

given by: ∑
i

ui(x
∗
i ) =

V

1 + ρ(GMk
l
)

This remark shows that the equilibrium utility of each active agent is proportional
to her equilibrium effort. It also shows that the equilibrium payoff (8) is decreasing in
ρ(GMk

l
). Therefore, in denser perfect sub-networks, agents obtain relatively lower utility.

Further, the more agents are active and the denser the network is, the lower the aggregate
utility.

Let us now illustrate Proposition 2 with the following examples.25

Example 1: Peer-consistent equilibria
A 2-layer network: I
Consider the network (N,G) in Figure 1(a) with N = {1, 2, · · · , 6}. In Step 1 of the NLD
algorithm, the sub-network (M1

1 ,GM1
1
) withM1

1 = {1, 2, 3} is the only perfect sub-network
with adjunct set M̄1

1 = ∅. In Step 2, (M2
1 ,GM2

1
), with M2

1 = {4, 5, 6}, is the only perfect
sub-network of (N1,GN1), with M̄2

1 = ∅ and Q2
1 = {1, 2, 3}. Thus, we have two candidate

sets: D1
1 = {1, 2, 3} and D2

1 = {1, 2, 3, 4, 5, 6} = N .

(a) Equilibrium with root M1
1 : Since ρ(GM1

1
) = 2 > ρ(GQ1

1
) = 0, there is an equilib-

rium with root M1
1 = {1, 2, 3}, where only agents 1, 2 and 3 are active.

(b) Equilibrium with root M2
1 : Since ρ(GM2

1
) = 2 and it is not strictly greater than

ρ(GQ2
1
) = ρ(GM1

1
) = 2, there is no equilibrium with root M2

1 .
As a result, there is a unique peer-consistent equilibrium such that x∗1 = x∗2 = x∗3 = 2V

9c

and x∗4 = x∗5 = x∗6 = 0.

A 2-layer network: II
Consider now the network (N,G) displayed in Figure 1(b) with N = {1, 2, · · · , 6}, a
variation of Figure 1(a) in which we deleted the directed edges between agents 1 and 2,
so that the layer-1 perfect sub-network M1

1 is now less dense and, thus, its spectral radius
25We also illustrate Proposition 2 with an additional example, i.e., Example D3 in Appendix D.3. In

this example, there is no peer-consistent equilibrium in which all agents are active.
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is smaller. The NLD algorithm proceeds in the same way as in Figure 1(a), and thus we
have two candidate sets: D1

1 = {1, 2, 3} and D2
1 = {1, 2, 3, 4, 5, 6} = N .

(a) Equilibrium with root M1
1 : Since ρ(GM1

1
) =

√
2 > ρ(GQ1

1
) = 0, there is an

equilibrium with root M1
1 = {1, 2, 3}, where only agents 1, 2 and 3 are active.

(b) Equilibrium with root M2
1 : Since ρ(GM2

1
) = 2 >

√
2 = ρ(GQ2

1
) = ρ(GM1

1
), there

is an equilibrium with root M2
1 , where all agents in the network are active. At such an

equilibrium, note that efforts are not symmetric. Indeed, x∗1 = V
9c
, x∗2 = 7V

45c
, x∗3 = 2V

15c
, and

x∗i = 4V
45c

for each i ∈ {4, 5, 6}.
There are now two peer-consistent equilibria. Therefore, by removing the links between

agents 1 and 2, we enlarged the set of peer-consistent equilibria from a unique equilibrium
to two PCE. �

Example 2: Peer-consistent equilibria
Consider now the 3-layer network displayed in Figure 2 with M1

1 = {2, 3, 4}, M2
1 = {5, 6},

and M3
1 = {7, 8, 9, 10}. Despite the existence of three perfect sub-networks, let us use

Proposition 2 to show that there are ‘only’ two peer-consistent equilibria. The sub-matrices
of each perfect sub-network are given by

GM1
1

=

 0 1 1
1 0 1
1 1 0

 GM2
1

=

(
0 1
1 0

)
GM3

1
=


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


We can verify that the spectral radius are such that: ρ(GM2

1
) = 1 < ρ(GM1

1
) = 2 <

ρ(GM3
1
) = 3. Let us now apply Proposition 2 to find all the simple peer-consistent equilibria.

(a) Equilibrium with root M1
1 : Since ρ(GM1

1
) > ρ(GQ1

1
) = 0, there is an equilibrium

with root M1
1 = {2, 3, 4}, which, using Theorem 1, is given by:

x∗1 =
2V

21c
, x∗i =

4V

21c
for i ∈ {2, 3, 4}, x∗j = 0 for j ∈ {5, 6, 7, 8, 9, 10}.

The equilibrium payoffs are u(x∗1) = 1
21
V, u(x∗i ) = 2

21
for i = 2, 3, 4.

(b) No equilibrium with root M2
1 : Since ρ(GM2

1
) < ρ(GQ2

1
) = ρ(GM1

1
), there is

no equilibrium with root M2
1 such that the active individual set is D2

1 = M1
1 ∪ M2

1 =
{1, 2, 3, 4, 5}.
(c) Equilibrium with root M3

1 : Since ρ(GM3
1
) > ρ(GQ3

1
) = max{ρ(GM1

1
), ρ(GM2

1
)},

there is an equilibrium with root M3
1 such that the set of active individuals is D3

1 =
M1

1 ∪M2
1 ∪M3

1 = N . This equilibrium is given by

x∗1 =
21V

364c
, x∗i =

18V

364c
for i ∈ {2, 5, 6}, x∗j =

27V

364c
for j ∈ {3, 4}, and x∗k =

36V

364c
, for k ≥ 7.
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The equilibrium payoffs are

u(x∗1) =
7V

364
, u(x∗i ) =

6V

364
, for i ∈ {2, 5, 6}, u(x∗j ) =

9V

364
for j ∈ {3, 4}, u(x∗k) =

12V

364
for k ≥ 7.

In summary, in the network in Figure 2, there are two PCE: one in which only agents
1, 2 and 3 are active, and one in which all agents are active. �

More generally, Proposition 2 provides us with some simple principles to assess whether
a given agent i is active in equilibrium. Indeed, an agent i is active at a PCE if either:
(i) she belongs to a layer-1 perfect sub-network, since few agents are aware of individuals
from this sub-network; or
(ii) she belongs to higher-layer perfect sub-networks in which agents are strongly connected
to each other, and can be reached by agents from lower-level perfect sub-networks who are
not strongly-connected to each other.

Our notion of peer-consistent equilibrium is key to understanding this result because
agents are locally-sighted and are only aware of the activity of their direct neighbors. As a
result, links and paths in a network reflect our idea of “perceived competition” and affect
the effort of the agents in the network. Consider the two networks in Figures 1(a) and
(b) (Example 1). Nobody is aware of the community M1

1 = {1, 2, 3}, i.e., nobody in the
network perceives them as competitors. Thus, in both cases, there is a PCE in which only
agents 1, 2 and 3 are active. However, agents inM1

1 = {1, 2, 3} are aware of the community
M2

1 = {4, 5, 6}, since agent 1 perceives agent 6 as a competitor, while agent 2 perceives
both agents 4 and 6 as competitors. Moreover, the community M1

1 = {1, 2, 3} is less dense
than M2

1 = {4, 5, 6} in Figure 1(b) than in Figure 1(a). As a result, there is an additional
PCE in which all agents are active in Figure 1(b). Importantly, this additional PCE (in
which all agents are active) is not a symmetric equilibrium: while agents 4, 5 and 6 all
exert the same effort, the differences in perceived competition of agents in the community
M1 = {1, 2, 3} lead agent 1 and 2 to exert different levels of effort.

Consider now the network displayed in Figure 2 (Example 2). Aside from the adjunct
agent 1, no agent is aware of the community {2, 3, 4}, i.e., no direct link or path can reach
M1

1 = {2, 3, 4} except the singleton {1}. In other words, only agent 1 perceives agents 2,
3 and 4 as her competitor; nobody else in the network does. Thus, there is an equilibrium
where the only active agents in the network are those belonging to M1

1 ∪ M̄1
1 . On the

contrary, all agents in the network can reach community M3
1 = {7, 8, 9, 10}, either directly

or through a path; thus, there cannot be an equilibrium where only agents inM3
1 are active.

Proposition 2 demonstrates that there is a direct link between the network topology
(who can reach whom, i.e., the direction of the links between agents), how close-knit
communities are, i.e., the spectral radius of perfect sub-networks, and any Peer-Consistent
Equilibrium (PCE).

In order to complete our characterization of peer-consistent equilibria, let us now con-
sider an interesting superset of the set of semi-connected networks.
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Definition 9. A weakly connected network G is a layer-generic network if ρ(GMk
l
) =

ρ(GMk′
l′

) = ρ implies that max
{
ρ(GQk

l
), ρ(GQk′

l′
)
}
≥ ρ.26

Hence, layer-generic networks are such that, for any two perfect sub-networks that have
the same spectral radius, there must exist a perfect sub-network in one of their adjunct sets
with a greater or equal spectral radius. In other words, (i) we exclude weakly connected
networks for which two PCE with different roots have the same spectral radius, but (ii) we
allow two perfect sub-networks with the same spectral radius if one of them is not part of a
PCE. In particular, we exclude a network for which two layer-1 perfect sub-networks have
the same spectral radius. For example, the network displayed in Figure E6 in Appendix
E.2 is not layer-generic because the two layer-1 perfect sub-networks M1

1 = {2, 3} and
M1

2 = {4, 5} have the same spectral radius (i.e., ρ(GM1
1
) = ρ(GM1

2
) = 1) and the same

adjunct set M̄1
1 = M̄1

2 = {1}. On the contrary, the networks in Figures 1(a) and (b)
(Example 1) and in Figure 2 (Example 2) are layer-generic. Observe, in particular, that,
in the network displayed in Figure 1(a), the perfect sub-networks M1

1 = {1, 2, 3} and
M2

1 = {4, 5, 6} have the same spectral radius (i.e., ρ(GM1
1
) = ρ(GM2

1
) = 2) but, because

M2
1 = {4, 5, 6} is not a PCE, this network is layer-generic.
The following inclusions summarize the relative strength of all four notions of connected-

ness we consider here (Definitions 1 and 9): Strongly Connected (StrCN), Semi-Connected
(SemiCN), Layer-Generic (LGN) and Weakly Connected (WCN):

StrCN ⊂ SemiCN ⊂ LGN ⊂WCN.

If G is a semi-connected network, then there is at most one element per layer. Hence, the
layer decomposition writes (Mk

1 )k=1,...,t, which implies that SemiCN ⊂ LGN.27

Corollary 1. Let (N,G) be a layer-generic network, and let x∗ be a peer-consistent equi-
librium of (N,G). Then x∗ is a simple equilibrium. Moreover, equilibrium efforts are
proportional to eigenvector centrality in the sub-network of active players.

The last statement of Corollary 1 must be understood as follows: if x∗ is a PCE, then
the effort of active agents are proportional to their eigenvector centrality, in the sub-network
to which they belong. It is important to understand that this result does not say anything
about the eigenvector centrality of agents in the whole network, since inactive agents are
not taken into account. A direct consequence of Corollary 1 is that there is a finite number
of equilibria, because, for any k, l, there is at most one PCE with root Mk

l . Indeed, the set
of peer-consistent equilibria is actually finite if and only if the network is layer-generic.

When the network is not layer-generic, there may exist non-simple equilibria, i.e., equi-
libria such that the set of active agents is not a candidate set, but instead a union of
candidate sets. In this case, the set of peer-consistent equilibria is infinite. In Section E of

26In other terms, ρ ≤ maxMt
s :M

t
s⊂Qk

l ∪Q
k′
l′
ρ(GMt

s
).

27In Section C.1 of the Appendix, we show that if the network is a semi-connected T -layer network, then
there are at most T peer-consistent equilibria (Corollary C2).
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the Appendix, we deal with this case and show that we can still describe the set of peer-
consistent equilibria in a simple way. Indeed, for each layer k, the set of PCE is always
a finite union of convex sets, where each set is a simple unique PCE with root Mk

l (see
Proposition E8).

Proposition 3. Let (N,G) be a weakly connected network. The following are equivalent:

(i) The set of peer-consistent equilibria is finite.

(ii) For any pair (x1∗,x2∗) of peer-consistent equilibria, ρ
(
GN+(x1∗)

)
6= ρ

(
GN+(x2∗)

)
.

(iii) (N,G) is a layer-generic network.

In this section, we have first introduced a novel and intuitive decomposition algorithm
that breaks down the network into communities, which we refer to as layer-k perfect sub-
networks. We were then able to pin down all peer-consistent equilibria in layer-generic
networks by comparing the spectral radius of these perfect sub-networks and that of their
adjunct set in the whole network. In several of our examples, we have seen that there were
multiple peer-consistent equilibria (e.g., the networks in Figure 1(b) and in Figure 2 had
two PCEs while the network in Figure D3 had three PCEs). Multiplicity of peer-consistent
equilibria is a salient feature of our model. Further, and most importantly, in many such
equilibria, some agents end up being inactive.28

Remark 5. Our results are not qualitatively affected if we consider weighted networks,
i.e., gij ∈ [0, 1], instead of networks in which gij = {0, 1}.

Indeed, suppose that G is a n× n matrix, where entry gij ∈ [0, 1] represents the intensity
(or strength) of the directed link from i to j. Then, the results of this section still hold.
Note that layer-generic networks are actually generic in the space of weighted networks.

3.5 Stability and eigenvector centrality

This section is devoted to refining the set of equilibria by characterizing those peer-
consistent equilibria that are stable, in a way that will be explicated below. Such an
approach has two fundamental objectives. First, it allows us to identify which equilibria
are robust to perturbations and it provides a dynamic microfoundation to the concept of
peer-consistent equilibrium. Second, refining the set of equilibria is necessary if one wants
to extend the eigenvector centrality microfoundation to general networks. Indeed, as noted

28Observe that we have assumed that all agents were ex ante identical and their only heterogeneity
stemmed from their network position. If we relax this assumption and allow for agents to have different
costs of effort, i.e., c = ci for agent i, the NLD algorithm decomposition will be exactly the same but the
link between spectral radius and PCE (Proposition 2) will no longer hold true. There will be a trade-off
between belonging to a densely connected community and the cost of effort. Similarly, if we assume a
more general sharing rule than the one defined in (1), the NLD algorithm will deliver the same result but
Proposition 2 will be affected. This is because the NLD algorithm does not rely on any parameter of the
model, only on the network topology.
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above, efforts of active agents are proportional to their eigenvector centrality in the sub-
graph of active players. However, this raises a natural question: is there a link between
the eigenvector centrality in the whole network and PCE? The answer is positive and we
show that, in any layer-generic network, exactly one PCE is proportional to the eigenvector
centrality of the whole network, and it is precisely the PCE we identify as the stable one.

As usual, stability of equilibria is defined through a meaningful dynamical system, the
rest point of which is the equilibria we want to consider. A stable equilibrium is then defined
as a stable rest point of the dynamics, i.e., a rest point to which, starting from conditions
close enough to it, the system asymptotically stabilizes back to it. For this purpose, we
introduce perceived best-response dynamics. This captures the idea that agents smoothly
adapt their actions in the direction of their best possible action, given the information
available to them.

3.5.1 The perceived best-response dynamics

We now present the continuous-time dynamics with respect to which we characterize sta-
bility. Even though it is very close—in terms of interpretation—of the classical continuous-
time best-response dynamics,29 we explain how it is related to a simple discrete-time model.
Consider a discrete-time sequence of effort profiles, in which, after observing their neigh-
bors’ effort level as well as the local resources in the previous period, agents adapt their
effort levels at each period of time. Specifically, before choosing her effort level at period t,
agent i observes the effort of her neighbors xt−1

−i as well as the realized local resource W t−1
i

at period t − 1. She can then compute her optimal effort level with respect to quantity
W t−1
i by maximizing the map30

bi ∈ [0,+∞[7→ bi
bi + (Gxt−1)i

W t−1
i − cbi.

Since W t−1
i =

xt−1
i +(Gxt−1)i

Xt−1 V , the maximizer is equal31 to Bri(xt), where Bri(·) is defined
by

Bri(x) = max

{
−(Gx)i +

(
V

cX
(Gx)i (xi + (Gx)i)

)1/2

, 0

}
. (9)

Then, agent i chooses an effort level equal to a convex combination of her last effort level
and the perceived best response with respect to what she observed at the last time period:

xti = (1− ε)xt−1
i + εBri(x

t−1) (10)

When ε is small, the sequence generated by (10) is related to the solution curves of the
continuous-time system

ẋ(t) = B(x(t)), (11)
29See Fisher (1961), Gilboa and Matsui (1991), Matsui (1992) and, more recently, Bramoullé et al.

(2014), Bervoets and Faure (2019).
30Observe that (Gx)i =

∑
j∈Ni

x∗j . We use this more compact notation whenever it is convenient.
31This holds if and only if the action profile x is such that (Gx)i = 0 ⇒ xi = 0.
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where Bi(x) = −xi +Bri(x), i = 1, ..., N . Indeed, system (10) is a so-called Cauchy-Euler
scheme, designed to approximate the solutions of (11), by choosing a small ε. In other
words, system (11) can be interpreted as a smooth limit version of (10).

Choosing the appropriate state space, the stationary points of this ordinary differential
equation are precisely the peer-consistent equilibria of our problem. We now consider the
stability notion to be naturally associated to the dynamics (11). Stability for a given PCE
x∗ means that the solutions of (11) starting from initial conditions close enough to x∗

converge back to x∗. Formally,

Definition 10. A peer-consistent equilibrium x∗ is said to be asymptotically stable for
(11) if there exists an open neighborhood U of x∗ such that

lim
t→+∞

sup
x0∈U∩S

‖φ(x0, t)− x∗‖ = 0,

where S, defined in (B.6) in Section B.1.5 of the Appendix, contains all the relevant states
of the problem we consider, and (φ(x, t))x∈S,t≥0 is the semi-flow associated to (11) on S.
Specifically, φ(x, t) is equal to the position of the (unique) solution of (11) starting at x.

Definition 10 states that a PCE x∗ is asymptotically stable if it uniformly attracts all
solutions starting in an open neighborhood of itself. This is a standard concept of stability
used in economics (Benaïm and Hirsch, 1999; Weibull, 2003), and in network games in
particular (Bramoullé et al., 2016; Bervoets and Faure, 2019).

3.5.2 Stable PCE: A simple characterization

We now characterize the PCEs that are asymptotically stable with respect to the best-
response dynamics (11). It turns out that being asymptotically stable depends entirely on
the sub-network of active players in this PCE, in a very simple and intuitive way.

Let (N,G) be a layer-generic network.32 Given a PCE x∗, we call ρ(x∗) the largest
eigenvalue of the subnetwork (N+(x∗),GN+(x∗)).

Theorem 2. Let (N,G) be a layer-generic network. Then, there is a unique asymptotically
stable equilibrium x∗. It is such that ρ(x∗) = ρ(G). Moreover, agents’ effort levels at a
stable PCE are proportional to their eigenvector centrality in the network (N,G).

The intuition behind the characterization in terms of largest eigenvalues is as follows.
Since the network is layer-generic, there is exactly one PCE for which the largest eigenvalue
of the set of active players is equal to ρ(G). We must show that it is the only asymptotically
stable equilibrium. Suppose that x∗ is a PCE such that ρ(x∗) is strictly smaller than
ρ(G). Then, one can find a perfect sub-network Mk

l in which agents are inactive at x∗,
while having ρ(GMk

l
) = ρ(G). Now, suppose that we slightly perturb x∗ so that, instead

of playing zero, agents in Mk
l play εui, where u is the normalized positive eigenvector

32Our main result (Theorem 2) holds under the less restrictive assumption that (N,G) has a unique
dominant component, as properly defined in condition (UDC) in Section A.2 of Appendix A. In fact,
eigenvector centrality is well defined if and only if the network satisfies the condition (UDC).

25



associated to ρ(G). Since, for agents in Mk
l , this initial condition is associated to an

eigenvalue that is strictly larger than the eigenvalue associated to x∗, the agents inMk
l will

want to increase their effort, and not come back to zero. Thus, it is clear that x∗ cannot be
stable.33 We conclude the proof by showing that the (unique) PCE for which ρ(x∗) = ρ(G)
is stable using standard methods. The last part of the theorem directly follows from the
definition of eigenvector centrality.

Theorem 2 provides a simple and efficient analytic method for checking which PCEs
are stable. It suffices to check which perfect sub-network has the highest spectral radius
in the network.

First, consider Example 1 with the two 2-layer networks displayed in Figure 1(a) and
Figure 1(b) with N = {1, 2, · · · , 6}. In both networks, there is one layer-1 network M1

1 =
{1, 2, 3} and one layer-2 network M2

1 = {4, 5, 6}. The only difference between these two
networks is that the one in Figure 1(a) has two extra links between agents 1 and 2 compared
to the network in Figure 1(b). This is an important difference because the largest eigenvalue
of the layer-1 perfect subnetwork changes: it is equal to 2 in Figure 1(a), whereas it is equal
to
√

2 in Figure 1(b). In Figure 1(a), there is a unique equilibriumc that is clearly stable,
in which only agents 1, 2 and 3 are active. In Figure 1(b), we have seen that there
were two PCEs, one with root M1

1 = {1, 2, 3} and one with root M2
1 = {4, 5, 6}. Since

ρ(GM1
1
) =
√

2 < ρ(GM2
1
) = 2 = ρ(G), there is a unique stable PCE for which all agents

are active. Thus, disconnecting agents 1 and 2 has a dramatic impact on the stable peer-
consistent equilibria. The fact that the layer-1 perfect sub-network in Figure 1(b) is less
dense than in Figure 1(a) prevents agents 1, 2 and 3 from capturing the entire resource V
and thus obliges them to share V with the other players in the PCE.

Second, consider Example 2 with the 3-layer network depicted in Figure 2. We have
seen that there were two PCE with rootsM1

1 = {1, 2, 3} andM3
1 = {6, 7, 8, 9}, respectively.

Since ρ(GM1
1
) = 2 < ρ(GM3

1
) = 3 = ρ(G), the only stable PCE is the equilibrium with

root M3
1 , where all agents are active. Note that in both examples where there exists a

peer-consistent equilibrium x∗ with N+(x∗) = N , then x∗ must be the stable equilibrium.
This is actually always true:

Corollary 2. Pick a layer-generic network. If there exists a peer-consistent equilibrium
x∗ with N+(x∗) = N , then x∗ is the asymptotically stable PCE.

In summary, for any (layer-generic) network, we can determine the unique stable peer-
consistent equilibrium. First, we run the NLD algorithm that defines the different layer
perfect sub-networks (Algorithm 1). Second, we determine the different peer-consistent
equilibria by checking, for each PCE, that the spectral radius of the corresponding perfect
sub-network is strictly greater than that of its adjunct set in the whole network (Propo-
sition 2). For each PCE, we can ascertain the effort of each agent, which is equal to her
eigenvector centrality (Theorem 1). Finally, the unique stable peer-consistent equilibrium
in the network is the PCE for which the corresponding perfect sub-network has the same
largest eigenvalue as the whole network (Theorem 2).

33For ease of presentation, asymptotically stable PCEs are referred to as stable PCEs.
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4 Policy interventions

4.1 Adding links

We now consider the policy implications of our model. We start with the simplest inter-
vention: given a network and its unique stable peer-consistent equilibrium, what would
happen if we added a link between two agents?

In Appendix C.2.1, we consider the case when the network is strongly connected. Propo-
sition C2 shows that, by adding a link from individual i (the “sender”) to individual j (the
“receiver”), the sender’s effort as well as her resource share always increase. However, the
effect on the receiver is ambiguous. Proposition C2 also shows that the effort increase of
the sender is sufficiently large to compensate for the ambiguous effect of the receiver, so
that total effort increases. Indeed, by adding a link between i and j, the sender i increases
her eigenvector centrality (Theorem 1) and, as a result, increases her effort.

Next, we consider layer-generic networks. We only focus on stable peer-consistent
equilibria, i.e., equilibria for which the largest eigenvalue of the corresponding perfect sub-
network is equal to that of the whole network (Theorem 2). This is equivalent to considering
PCEs for which the corresponding perfect sub-network has the largest total effort in the
network.

Compared to the strongly connected networks, the situation is more complicated due
to the possible change in layer perfect sub-network. However, we are able to show that
adding a link from an active individual i (the “sender”) to another active individual j (the
“receiver”) has the same effect as in strongly connected networks.

Proposition 4. Pick a layer-generic network (N,G) with x∗ the (unique) asymptotically
stable peer-consistent equilibrium for which i, j ∈ N+(x), and gij = 0. Let Ĝ be the network
obtained from G by adding a link from i to j. Then Ĝ admits an asymptotically stable
peer-consistent equilibrium x̂∗ that has the following properties:

(i) N+(x̂∗) ⊆ N+(x∗),

(ii) X̂∗ ≥ X∗,

(iii) x̂∗i > x∗i .

Indeed, by adding a link between i and j, the sender i becomes more central in terms
of eigenvector centrality and thus increases her effort, i.e., x̂∗i > x∗i . This increases the
spectral radius in the network, i.e. ρ(Ĝ) ≥ ρ(G). Since total effort is increasing in ρ(G)

(see (5)), it raises total effort, i.e., X̂∗ ≥ X∗. Result (i) is more complex. Indeed, when a
link is added, the sender becomes more central and more aware of others’ activities, while
the reverse is not true: nobody is more aware about i’s activity. This creates a new path
in the network that makes others more likely to be reached by i and thus i is more likely
to become part of the adjunct set of j and her neighbors. This, in turn, may lower their
status in terms of layer perfect sub-network, since they are more likely to go down the

27



ladder in terms of layers. On the contary, i is only positively affected by the added link
since there is no new link pointing in her direction and thus she will stay in the same layer.
This is why, when a link is added between agents i and j, the number of active agents is
either the same or lower, i.e., N+(x̂∗) ⊆ N+(x∗).

In Proposition C3 in Appendix C.2.1, we investigate the effect of adding a link pointing
to an agent in the root. We show that, if we add a link from an i0 agent in the adjunct
set of the root Mk

l of x∗ to an agent in the root of x∗, then any agent k who is unaware
of i0 is negatively impacted (because x̂∗k < x∗k). On the contrary, i0 unsurprisingly benefits
from this new link. The outcome is ambiguous for other agents. It may be the case that
agents in lower layers see their payoff drop. We illustrate this possibility in Example D5
in Appendix D.4, where the network is displayed in Figure D5. We can see that agent 1 is
connected through a path to agent 3, who benefits from the addition of a link to agent 4.
Nevertheless, agent 1 is harmed by the addition of this link.

4.2 Key players

We consider another possible intervention, that is, removing one agent as well as all links
from the network. This is known as the key-player policy (Zenou, 2016) and it is particu-
larly relevant in the crime application (Ballester et al., 2006, 2010) but also in the conflict
application (König et al., 2017; Amarasinghe et al., 2020) because governments want to
target these individuals (the key players) in order to reduce total activity X (total crime
or total conflict).

Proposition C4 in Appendix C.2.2 shows that, when removing a player, total effort will
never increase. This is because the largest eigenvalue either stays the same or is reduced;
the latter decreases total effort. However, the distribution of efforts may be greatly altered,
as shown in the following example.

Example 3. Key players and the spread of efforts across local neighborhoods
Consider the network displayed in Figure 1(a) (Example 1). We have shown that there
is a unique stable peer-consistent equilibrium where the only active agents belong to the
layer-1 perfect sub-network M1

1 = {1, 2, 3} with x∗1 = x∗2 = x∗3 = 2V
9c

and thus the total
effort is X∗ = 2V

3c
.

Let us now remove the active agent 1 from the network as well as all of her links. It is
easily verified that the unique stable PCE x[−1]∗ is such that now {2, 3, 4, 5, 6} ⊆ N+(x∗)
even though the total effort remains the same at 2V

3c
. Indeed, by removing agent 1, the

spectral radius of M1
1 = {1, 2, 3} decreases from 2 to 1 and becomes strictly smaller than

the spectral radius of M2
1 = {4, 5, 6}, which is equal to 2. As a result, the only stable PCE

is now such that agents 2, 3, 4, 5 and 6 are active. Thus, removing an agent can have
the counter-productive effect of making inactive agents active. In the standard key-player
policy (Zenou, 2016), this is not possible since total effort always decreases as all agents
reduce their individual effort. �

28



4.3 Social mixing

We conclude this section with a brief look at the issue of social mixing. To address this
issue, we need to depart slightly from our initial model in which there was one (layer-
generic) network. Suppose, instead, that we start with two disconnected (layer-generic)
networks (N1,G1) and (N2,G2), each of which has a unique stable PCE. We can think of
this situation as two fully segregated neighborhoods, each endowed with their own resources
V 1 and V 2, respectively. An important question for the planner is whether merging these
two neighborhoods (social mixing) into a connected network (N,G), with N = N1 + N2,
V = V 1 + V 2, leads to an increase in total activity and resources.

Proposition C5 in Appendix C.2.3 shows that the total effort in any new stable PCE of
the connected network (N,G) is higher than the sum of total efforts in each disconnected
neighborhood. Hence, linking the two neighborhoods is beneficial to aggregate effort. On
the other hand, the distribution of resources between agents in N1 and N2 is less clear.
Indeed, the distribution in the new equilibrium depends on the specific connections that
are formed between the two groups. It is therefore possible to have some agents who are
worse-off following the mixing of the two neighborhoods.

5 Economic implications of our model

5.1 The concept of perceived competition

We would now like to illustrate our results and to highlight our concept of “perceived”
competition. Understanding how layer decomposition works is crucial to discovering who
is active and who is not in a network, as well as to determining how much effort agents
exert when they are active. However, these two questions need to be answered separately.

Let us first focus on the question: Who is active in a network? For a given agent, being
active or not in equilibrium will be determined by a combination of the two following
elements: (i) the layer of the perfect sub-network to which she belongs (indeed, agents
belonging to lower layers are more aware of others’ activities in the network, while fewer
people are aware of them; this gives them an advantage in terms of competition); and (ii)
the spectral radius of this perfect sub-network. Agents belonging to more connected and
denser sub-networks have more “power” in terms of competition over others.

Indeed, according to Proposition 2, in order to be active in equilibrium, the perfect
sub-network to which a given agent belongs must satisfy (at least) one of the two following
conditions:

(a) it must exhibit the largest spectral radius among all perfect sub-networks and be
“hidden” from all other perfect sub-networks that have the same property;34

34This means that a path must not exist from another perfect sub-network having the same spectral
radius.
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(b) it must be aware of the sub-networks with the largest spectral radius.35

For obvious reasons, being “denser” makes it more likely for a perfect sub-network to satisfy
condition (a), while belonging to a lower layer makes condition (b) more likely because,
by construction, perfect sub-networks in lower layers are aware of a larger region of the
network.

Once the set of active players is established, we can turn to the second question: How
active is an agent among the set of active agents? Here, the answer is simpler, since the
effort level of an active player is determined by her relative position in the sub-network
of active players, which is fully captured by her eigenvector centrality. Consequently, the
more aware of other active players an agent is, the more active she is. Also, the more
“hidden” from other active agents she is, the more active she is. However, this does not
mean that removing links from other active agents will necessarily increase her effort level
because, by doing so, it might be that the perfect sub-network to which she belongs is not
dense enough, rendering this perfect sub-network inactive in equilibrium.

In summary, our algorithm breaks down a network of agents into communities or layer
perfect sub-networks. Agents belonging to lower layers are “hiding” from other agents in
the network and this gives them an advantage in terms of competition; they are thus more
likely to be active. Indeed, when each agent decides how much effort to exert, they consider
their “perceived” competitors as this will determine how many resources they will have to
share with other agents in the network. Agents then need to belong to large and dense
communities to be able to grab resources. If the lowest layers have the largest and most
dense communities, then they will be the only active agents in the whole network. On the
contrary, if the highest layers contain the most dense communities, then the number of
active agents will increase. In equilibrium, the activity level of each agent will depend on
her position in the network, i.e., on her eigenvector centrality.

5.2 Applications

Our model uses a standard proportional rule (see (1)), which corresponds to the well-known
Tullock contest function from the contest literature (Skaperdas, 1996; Kovenock and Rober-
son, 2012). This is a standard contest game in which a price (here V ) is allocated among
the contestants. Each contestant exerts effort. These efforts determine which contestant
will receive which prize. As pointed out by Corchón (2007) and Konrad (2009), this model
can be applied to many situations. The most obvious one is the tournament theory (Rosen,
1988), with applications such as examinations, college admission, elections, auctions, R&D
races, etc. Other applications are advertising and other types of promotional competition,
rent seeking, and appropriation conflict (e.g., civil wars) in which players compete for the
allocation of property rights.

Our model adds two aspects to this literature. First, we embed players into a network,
where links capture with whom each agent is in direct conflict or competition. Second,

35This means that there exists a path from this perfect sub-network to the sub-networks having the
largest spectral radius.
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we assume that agents have limited information about the network and are only aware of
their direct competitors. Let us now provide two applications that are well suited to our
model.

Application 1: Static competition

Consider a model of popularity competition within a friendship network. Assume that the
perception of friends is not necessarily reciprocal,36 so it differs between every agent. The
network is the school each student attends and V is the total benefit level of popularity in
the school given its ranking. Given her perception of her number of friends, each student
exerts socialization effort xi to increase her popularity among her friends. The ranking of
popularity for i with her friends leads to a benefit ofWi. We have local sightedness because,
in terms of popularity, each agent only cares about her relative ranking with respect to her
perceived friends.

Our model predicts the following. First, the higher the number of perceived friends,
i.e., the number of competitors for popularity, the higher the effort xi of each agent i (since
effort is equal to eigenvector centrality). Second, belonging to dense and large communities
of friends implies that an agent is more likely to be active because she perceives more
competitors for popularity. Third, belonging to lower layers implies that an agent is more
likely to be active (i.e., exerts positive effort) because few connected individuals perceive
this agent as a friend and, thus, as a competitor for popularity.

Consider, for example, the network displayed in Figure 1(a) (Example 1). Agents 1, 2
and 3 form a close-knit community and compete against each other to be the most popular.
However, while agent 3 only perceives 1 and 2 as her friends and thus competitors for
popularity, agent 1 perceives not only 2 and 3 as friends but also 6, while agent 2 perceives
{1, 3, 4, 6} as her set of competitors. This induces agents 1 and 2 to exert the highest
effort in the network because of the many competitors they face for popularity. Agent 3
also exerts effort because she is linked to the high-effort agents, 1 and 2. On the contrary,
agents 4, 5 and 6 “ignore” agents 1 and 2 and only perceive as friends those in their own
community. Thus, in the unique stable PCE, only agents 1, 2 and 3 will be active and
exert positive effort. The other agents do not require effort to be popular because what
matters to them is to be popular among themselves. However, when the links between
1 and 2 are removed (Figure 1(b)), agents 1 and 2 perceive fewer individuals as friends
and competitors because they form a less connected community. The other community,
which includes agents 4, 5 and 6 now becomes relatively more connected compared to the
community {1, 2, 3}. Agents 4, 5 and 6 therefore have an incentive to become active in
order to improve their popularity within their community.

More generally, our model predicts that the agents belonging to lower layer sub-networks
need to channel more effort because they are initially less popular since few agents perceive

36There is plenty of evidence that links are not always reciprocal, especially for friendships. For example,
using AddHealth data, Calvó-Armengol et al. (2009) have shown that 14% of (self-reported) friendship
relationships are not reciprocal. Using data from college students in France, Algan et al. (2020) found that
only about half of the nominated friends reciprocate; while Leider et al. (2009), using an online experiment
of Harvard undergraduate students, found an even smaller proportion of reciprocal friendships.
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them as friends. Further, the relative density and size of a community is important to de-
termine who will become active at a PCE. If unpopular agents form a strong and large
connected community, then they will be the only ones to exert effort to become more pop-
ular. In this interpretation of the model, the “jocks” belong to higher layer sub-networks,
while the “nerds” belong to lower layer sub-networks. To become popular, the latter group
needs to put in much more (socialization) effort than the former. The “jocks” do not nec-
essarily need to make an effort to be popular since they do not compare themselves with
the “nerds”. However, if their community is large enough, then they need to make more of
an effort because the competition between them is fierce.

Application 2: Dynamic Competition

The previous application to popularity competition was static. We now provide another
application that is more dynamic and thus in accordance with Section 3.5 on stability.

Consider a university that has a budget of V to allocate between the departments of
physics and chemistry. To resolve the situation, consider the network displayed in Figure
1(a) (Example 1) in which the department of physics has three researchers, i.e., agents
1, 2 and 3, whereas the department of chemistry also has three researchers, i.e., agents
4, 5 and 6. In other words, we assume that chemists 4, 5 and 6 are not aware that they
are in competition with physicists 1, 2 and 3, but physicists 1 and 2 are aware that they
are in competition with chemist 6. The budget V will be distributed according to the
sharing rule (1) (Tullock contest function), i.e., it is proportional to the (research) effort
of each researcher. At the end of the year, the budget V is allocated according to this rule
and everybody observes the (research) efforts. In other words, the university allocates a
budget of V/2 to each department. From the viewpoint of the chemists M2

1 = {4, 5, 6},
they perceive a revenue of V/2, which they will share between them; thus, each chemist
perceives that she will obtain V/6. On the contrary, the physicists M1

1 = {1, 2, 3} believe
that they are in competition with both the other physicists and the chemists. In particular,
since physicists 1 and 2 perceive that they are in competition with 3 agents (two physicists
and chemist 6), both perceive that her resources are equal to 4V/6, since they know that
each agent has received V/6. Since 4V/6 > 3V/6, compared to the chemists, physicists
1 and 2 will exert more effort the following year to obtain a larger share of V . This
pattern continues and reinforces itself over time, so that physicists 1 and 2 make more and
more effort, which induces physicist 3 (who has no information about the chemists) to also
increase her effort. On the contrary, the chemists who only observe the other chemists
see their share of V decreasing over time without knowing why. Indeed, they believe that
there is less and less budget in the university over time. After some time, the chemists will
end up exerting no effort and all the budget will go to the physicists. This is the unique
stable PCE.

Consider, now, the network displayed in Figure 1(b) where the links between physicists
1 and 2 have been removed. Now, in the first period, agents 1 and 2 perceive that they
are in competition with (i) only 2 agents for agent 1, and (ii) only 3 agents for agent
2. The perceived resources of agent 1 are equal to V/2, which is different from those of
the chemists who also perceive, like agent 1, that they have two competitors. Indeed,
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the chemists perceive that their resources are equal to 2V/5. Thus, in the following year,
the physicists and the chemists will exert different levels of effort but these efforts are all
positive. This will persist over time, so the only stable PCE is such that all six researchers
(both physicists and chemists) will be active even though they exert different research
efforts.

More generally, any other story that involves a dynamic adjustment with different
perceived competitors will fit our model. For example, consider different restaurants; each
must decide how much effort (or investment) to exert in order to attract customers. Each
restaurant only cares about the local competition and thus her perceived competitors and
perceived demand. However, because competition is global, their “local” perception is wrong
at the outset. They make investments (efforts) and then discover that their perceived
demand (or resource) is not correct. In the next period, they change their beliefs about
their demand and adjust their investments. This pattern continues until we reach a stable
peer-consistent equilibrium. What we show in this paper is that the key determinant of
effort of each agent is her position in the network and whether or not she belongs to a large
and dense community.

6 Conclusion
In this paper, we consider a contest game of resource competition in which agents have
an imperfect knowledge of the network, i.e., they only have information on the activities
of their direct neighbors. Thus, their perceived resources and perceived competition are
based on this limited knowledge. We develop a new concept of equilibrium, which we refer
to as peer-consistent equilibrium (PCE). Each agent chooses an effort level that maximizes
her perceived utility. However, at the PCE, effort levels of all agents have to be consistent,
i.e., for each agent, her perceived subjective utility and resource has to be equal to her
objective payoff and resource.

We first show that, at any PCE, the effort of an active agent is proportional to her
eigenvector centrality. This is true for any network. We believe that this is the first model
that provides a microfoundation of network eigenvector centrality.

Then, we develop an algorithm (the Network Layer Decomposition or NLD) that par-
titions the network into communities or sub-networks called layer-k perfect sub-networks,
where, within each community, all agents have the same propensity to exert positive effort.
The lower layer perfect sub-networks are selected first because few agents are “aware” of
them and agents in these communities can therefore grab a significant amount of resources
within their neighborhood. The NLD algorithm stops when all agents in the network have
been selected and all perfect sub-networks have been identified. Then, we determine all
peer-consistent equilibria by comparing the spectral radius of these perfect sub-networks
and that of their adjunct set (i.e., agents that can reach them through a path) in the whole
network. We show that, to be active in equilibrium, one needs to belong either to a layer-1
perfect sub-network because few agents are aware of these individuals or to higher-level
perfect sub-networks of large size in which agents are strongly connected to each other.

33



Finally, we demonstrate that there is a unique stable PCE in each network. This PCE
corresponds to the perfect sub-network that has the largest spectral radius in the network.
Depending on the network structure, at the unique stable PCE, either all agents are active
or only a subset of them are.

Lastly, we study the policy implications of our model. We show that adding a link can
reduce the number of active agents in the network because it creates a new path that makes
some agents more likely to be reached; in turn, this may lower their status in terms of layer
perfect sub-network. We also study the key-player policy and show that, by removing an
agent from the network, we may make several inactive agents active. Further, we examine
social mixing by merging two different disconnected networks and show that total activity
is higher than the sum of total activity in each network.
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Appendix

A Non-negative matrices and eigenvector centrality

A.1 The Frobenius normal form

A matrix is called nonnegative if all its elements are nonnegative. Here we consider only
nonnegative square matrices of order n, i.e., matrices that have n rows and n columns.
A nonnegative matrix A is called irreducible if the associated directed graph is strongly
connected. For convenience any one-by-one matrix is regarded as irreducible.

Lemma A1. (Perron-Frobenius Theorem) Let A be an irreducible matrix. Then

(i) A has a positive eigenvalue ρ(A) such that the value of ρ(A) is not less than the
absolute value of any other eigenvalue of A;

(ii) the eigenvalue ρ(A)is simple, and corresponds to a positive eigenvector x(A);

(iii) any non-negative eigenvector is a multiple of x(A).

The vector x(A) and the number ρ(A) that appear in this lemma are called the Perron-
Frobenius vector and the Perron-Frobenius eigenvalue of A, respectively.

The following lemma extends some conclusions of the Perron-Frobenius Theorem to non-
negative matrices (not necessarily irreducible).

Lemma A2. Let A be a nonnegative matrix; then

a) A has a nonnegative eigenvalue ρ(A) such that the value of ρ(A) is not less than the
absolute value of any other eigenvalue of A.

b) To eigenvalue ρ(A) corresponds a nonnegative eigenvector x(A).

c) If there exists a positive eigenvector, then it is necessarily associated to eigenvalue
ρ(A).

Note that if x is a non-negative eigenvector of A, x is not necessarily associated with
ρ(A). Also there could exist eigenvectors with both negative and positive entries, associated
to ρ(A).
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Lemma A3. Any nonnegative matrix A can be put in an upper-triangular block form as
follows:1

A =



A1 A12 ... ... ... ... ... A1r

0 A2 A23 ... ... ... ... A2r

... ... ... ... ... ... ... ...
0 ... 0 As Ass+1 ... ... Asr
0 ... ... 0 As+1 0 ... 0
... ... ... ... ... ... ... ...
0 ... ... ... ... 0 Ar−1 0
0 ... ... ... ... ... 0 Ar


(A.1)

such that:

(i) each block matrix Ai is square and irreducible;

(ii) for any i = 1, ...s, there exists j ∈ {i + 1, ..., r} such that the block matrix Aij is not
zero.

This upper triangular block form is known as the Frobenius normal form. It is unique
up to a permutation. We have ρ(A) = maxi=1...r ρ(Ar). We call Vi the set of nodes
corresponding to the block matrix Ai.

Definition A1. A nonnegative matrix A is strongly nonnegative if we have

ρ(Ar) = ρ(Ar−1) = ... = ρ(As+1) > max
i=1,...,s

{ρ(Ai)}

Obviously, any irreducible matrix is strictly nonegative because the Frobenius normal form
then consists of one block. The next results can be found in Rothblum (2014) or Hu and
Qi (2016).

Lemma A4. A nonnegative matrix A admits a positive eigenvector if and only if A is
strongly nonnegative.

Note that, if A is an irreducible nonnegative matrix, then the conclusion of Lemma A4
directly implies point (ii) of Lemma A1, i.e., the Perron Frobenius Theorem.

We illustrate the Frobenius normal form for the 3-layer network (N,G) displayed in
Figure 2 (Example 2) withN = {1, 2, · · · , 10} and with three sub-networks: M1

1 = {2, 3, 4},
M2

1 = {5, 6}, and M3
1 = {7, 8, 9, 10}, which are all strongly connected components of

(N,G).
1Up to a permutation of indices.
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Let C(m) be the adjacency matrix of the complete m-agents network.2 Keeping the
indexing of agents as it is, we have

G =



0 0 0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 0
0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 1 1 0


=


A1 A12 0 A14

0 A2 A23 A24

0 0 A3 A34

0 0 0 A4

 ,

where A1 captures the links of group 1, i.e., player 1, A2 the links of group 2, i.e., {2, 3, 4},
A3 the links of group 3, i.e., {5, 6}, and A4 the links of group 4, i.e., {7, 8, 9, 10}, that is,

A1 = C(1) = 0, A2 = C(3), A3 = C(2), A4 = C(4),

while Aij captures the link between group i and j; for example, A12 = [0 0 1], A13 = [0 0],
A14 = [1 0 0 0], etc. In particular, Aij is distinct from the null matrix, except for A13 (there
is no link from group 1, i.e., agent 1, to group 3, i.e., agents {5, 6}). Consequently we have
s = 3 and r = 4 and ρ(A4) = 3 while ρ(A1) = 0, ρ(A2) = 2 and ρ(A3) = 1. Hence, G is
strongly nonnegative and thus admits a positive eigenvector.

Now, remove agent 9 from this network. Then, the Frobenius normal form has the
same structure, except that ρ(A4) = 2 = maxi=1,...,3 ρ(Ai). Hence, the matrix is no longer
strictly nonnegative and, thus, there is no positive eigenvector.

Consider, now, the 2-layer network with 10 agents displayed in Figure D3 (Example
D3). Then

G =


A1 A12 A13 0
0 A2 0 A24

0 0 A3 0
0 0 0 A4

 , with A1 = C(1), A2 = C(2), A3 = C(4) and A4 = C(3).

We have r = 4 and s = 2. Since ρ(A3) 6= ρ(A4), the matrix is not strictly nonnegative.
and there is therefore no positive eigenvector.

It might be useful to clarify the relationship between the Frobenius normal form and our
NLD algorithm. In the Frobenius normal form of G, any Ai corresponds to the submatrix
of either a layer-k perfect sub-network, or to a singleton. Note that, by the no-isolation
assumption, Ai cannot be a size one matrix for i = s+1, ..., r; it then necessarily corresponds
to a perfect sub-network for these indexes. If Mk

l is contained in the adjunct set of Mk′

l′ ,
2That is, C(m)ii = 0, C(m)ij = 1 for i 6= j
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then there exists some i, i′ such that i′ > i, GMk
l

= Ai and GMk′
l′

= Ai′ . Carefully note
that there is nevertheless no precise relationship between the index of the layer of a perfect
sub-network and its index in the Frobenius normal form. Indeed, it might be the case that
Ai corresponds to a higher layer perfect sub-network than Ai+1. The Frobenius normal
form does not help us to characterize the peer-consistent equilibria (i.e., which agents are
active and which are not) but will be very useful for some of our proofs because of Lemma
A4, which can be applied to any perfect sub-network.

A.2 Eigenvector centrality in weakly connected networks

Eigenvector centrality has been informally introduced by Bonacich (1972) to measure popu-
larity in friendship networks. Given a weighted network (N,G), it was originally defined as
any non-negative vector e having the property that the centrality of agent i is proportional
to the average centrality of her neighbors:

λei =
∑
j

Gijej, ∀i. (A.2)

In the particular case of strongly connected networks, this vector is well-defined because
there is a unique solution to the system (A.2), given by the eigenvector associated to the
largest eigenvalue λ ofG. More generally, there is a consensus consisting in regarding eigen-
vector centrality as being the normalized3 eigenvector associated to the largest eigenvalue
of the network (see e.g., Jackson (2008)).

In weakly connected networks, however, eigenvector centrality cannot be defined in the
same way because the largest eigenvalue of a weakly connected network is not always simple.
For instance, consider the network in Figure E6 in Appendix E, where ρ(G) = 1. The
eigenspace associated to ρ(G) is generated by normalized vectors (1/3, 1/3, 1/3, 0, 0) and
(1/3, 0, 0, 1/3, 1/3). Hence, any convex combination of these two vectors is a non-negative
eigenvector, which means that eigenvector centrality is not defined for this network.

Consequently, we focus on an (arguably large) subset of weakly connected graphs, in
which the notion of eigenvector centrality can be naturally extended. A weakly connected
network has a unique dominant component if

ρ(GMk
l
) = ρ(GMk′

l′
) = ρ(G)⇒Mk

l ⊂ Qk′

l′ or Mk′

l′ ⊂ Qk
l . (UDC)

Obviously any layer-generic network has a unique dominant component. A simple adap-
tation of the proof of Proposition 3 shows that a weakly connected network admits a
unique normalized eigenvector associated to ρ(G) if and only if it has a unique dominant
component.

Definition A2 (Eigenvector centrality). Suppose that (N,G) has a unique dominant com-
ponent. Then, the eigenvector centrality of agent i is the i-th component of the normalized
eigenvector associated to ρ(G).

3meaning the eigenvector whose components sum to one.
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In some networks, it may be the case that some agents in the network exhibit a null
eigenvector centrality, and one may wonder what it means, and whether or not this defini-
tion makes sense when this happens. As we show now, this definition is indeed meaningful,
because our definition of eigenvector centrality is robust to any small perturbations of the
network, in the following sense:

Lemma A5. Suppose that (N,G) has a unique dominant component and call e the nor-
malized eigenvector associated to ρ(G). Let (Gn)n be a sequence of irreducible matrices
such that limn→+∞Gn

ij = Gij. Then en → e, where en is the normalized eigenvector
associated to ρ(Gn).

In other words, the sequence of centrality measures always converge to the same vector,
regardless of how Gn converges toG. The implication of this observation is that eigenvector
centrality is unambiguously defined in networks having a unique dominant component.

Observe that the network (N,G) depicted in Figure E6 in Appendix E does not exhibit
such a property; thus, defining an eigenvector centrality for such a network would imply
making an arbitrary choice. Indeed, it can be shown that, for any λ ∈ [0, 1], one can find
a sequence of strongly connected weighted networks (N,Gn) such that en converges to
1
3
(1, λ, λ, 1− λ, 1− λ).
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B Proofs of all results in the main text

B.1 Proof of results in Section 3

B.1.1 Proof of results in Section 3.1

Proof of Theorem 1. We first prove the “only if” part. Let x∗ ∈ Rn
+ be an equilibrium

effort vector of (N,G). We first show that X∗ > 0. Assume, by contradiction, that X∗ = 0,
i.e. x∗ = 0. Then for each i ∈ N , agent i’s subjective utility is equal to

1

1 + |Ni|
Wi =

V

n
.

Now consider the situation where some agent i deviates and exerts some effort ε > 0, for
ε small, while the others j 6= i exert xj = 0. Then agent i’s new subjective utility is equal
to Wi − c · ε = (1 + |Ni|)Vn − cε. Since 1 + |Ni| ≥ 2, for small enough ε, this is a favorable
deviation. Therefore, x∗ is not an equilibrium effort vector. We conclude that X∗ > 0.

We now show that Gx∗ = cX∗

V−cX∗x. To do so, we consider the following two cases in which
agent i’s neighbors either exhibit collective positive level of effort (Case 1) or no effort at
all (Case 2):

Case 1. Agent i ∈ N is such that (Gx∗)i > 0.
We consider agent i’s optimization problem,

max
xi≥0

xi
xi + (Gx∗)i

Wi − cxi.

Since x∗i is an optimal interior solution, we have that x∗i satisfies the first order condition,

(Gx∗)i
(x∗i + (Gx∗)i)2

Wi = c. (B.1)

Note that in equilibrium, Wi =
x∗i +(Gx∗)i

X∗
V , hence we have that,

(Gx∗)i
x∗i + (Gx∗)i

V

X
= c.

Therefore,

x∗i =

(
V

cX∗
− 1

)
(Gx∗)i.

Case 2: Agent i ∈ N is such that (Gx∗)i = 0.
We show that x∗i = 0. Assume, by contradiction, that x∗i > 0. Then Wi > 0. Since
(Gx∗)i = 0, we have that ui(xi,x∗−i;Wi) = Wi − cxi for any xi > 0, contradicting the fact
that x∗i maximizes xi 7→ ui(xi,x−i,Wi). Hence

x∗i = 0 =

(
V

cX∗
− 1

)
(Gx∗)i.
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Combining Cases 1 and 2, we obtain that a peer-consistent equilibrium effort level x∗
satisfies the condition

Gx∗ =
cX∗

V − cX∗
x∗.

Suppose now that that x∗ satisfies this identity. For each agent i for whom (Gx∗)i > 0, the
first order condition (B.1) solves the optimization problem of agent i, for Wi =

x∗i +(Gx∗)i
X∗

V .
Meanwhile, for each agent i for whom (Gx∗)i = 0, x∗i = 0 solves the optimization problem
with Wi = 0. This proves the reverse implication. �

Lemma B6. If x is a peer-consistent equilibrium then N+(x) is a closed set of (N,G).

Proof. Let j ∈ N+(x) and i be connected to j through a path: there exists p ∈ N∗ such
that Gp

ij > 0. By Theorem 1 there exists ρ > 0 such that Gx = ρx. We then have

xi =
1

ρp
(Gpx)i ≥

1

ρp
Gp
ijxj > 0.

This concludes the proof. �

B.1.2 Proof of results in Section 3.2

Proof of Proposition 1. Since Proposition 1 is a special case of Theorem 1, we will
prove Proposition 1 as the following corollary of Theorem 1.

Corollary B1. Let (N,G) be a strongly connected network. Then, there exists a unique
peer-consistent equilibrium.

Proof. Suppose that (N,G) is a strongly connected network. Then G is irreducible and,
by Perron-Frobenius Theorem, there exists a positive eigenvector y associated to ρ(G).
Moreover any non-negative eigenvector of G is a multiple of y. By Theorem 1, x∗ is a
PCE if and only if it is a non-negative eigenvector of G, associated to eigenvalue cX∗

V−cX∗ .
Hence x∗ is a PCE if and only if x∗ is a multiple of y and ρ(G) = cX∗

V−cX∗ . Such a vector
exists and is uniquely defined.

B.1.3 Proof of results in Section 3.3

We start with the following lemma.

Lemma B7. Any network (N,G) that satisfies no-isolation has at least one perfect sub-
network.

Proof of Lemma B7. Consider the Frobenius normal form (A.1) associated to G. Since
G satisfies the no-isolation assumption, the matrix Ar is of size at least two, so that the
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set {i ≥ 1 : |Vi| ≥ 2}4 is not empty. Now let i0 := min{i ≥ 1 : |Vi| ≥ 2}. The matrix
Ai0 is irreducible and therefore (Vi0 , Ai0) is a strongly connected component of (N,G). For
p = 1, ..., i0 − 1 we have Vp = {ip}. The adjunct set of (Vi0 , Ai0) is therefore contained in
the set of nodes {i1, ..., i0 − 1}, in which there can be no cycle.

Proof of Remark 3. At step 1, by Lemma B7, a perfect sub-network of (N,G) exists.
Hence N1 is uniquely defined as N1 = N \ M1, and |N1| < |N |. Now let k ≥ 2 be
such that Nk−1 is not empty. The network (Nk−1,GNk−1) satisfies no isolation: pick any
i ∈ Nk−1. By construction i cannot be connected to any j ∈ ∪k−1

l=1 M
l. Thus there must

exist j ∈ N \∪k−1
l=1 M

l = Nk−1 such that i is connected to j. Hence, by Lemma B7, a perfect
sub-network of (Nk−1,GNk−1) exists. Again Nk is uniquely defined as Nk = Nk−1 \Mk

and |Nk| < |Nk−1|. The processus stops after a uniquely defined finite number of steps. �

The following lemma provides some useful properties about the NLD algorithm.

Lemma B8. The following statements about the NLD algorithm are true:5
(i) For any k ≤ T , any l, l′ ≤ mk, if we have that Mk

l ⇒Mk
l′ , then l = l′.

(ii) For any k, t ≤ T , any i ∈Mk, and j ∈M t, if we have that i ⇒ j, then k ≤ t.
(iii) For any k, 2 ≤ k ≤ T , any l ≤ mk and any k′ < k, there exists l′ ≤ mk′ such that
Mk′

l′ ⇒Mk
l .

Proof of Lemma B8. (i) Suppose that l′ 6= l. If Mk
l ⇒ Mk

l′ then Mk
l ⊂ M̄k

l′ . This
contradicts the fact that Mk

l′ is adjunct cycle-free. Hence l = s.
(ii) By construction, the adjunct set of M t is M1 ∪ ... ∪M t−1, which gives (ii).
(iii) Fix k, 2 ≤ k ≤ T . Let l ≤ mk. Note that Mk

l ⊆ Nk−1. Suppose for the sake
of contradiction that for any j ∈ Mk

m, there is no s ≤ mk−1 and i ∈ Mk−1
s such that

i is connected to j through a path. Then Mk
l is a layer-(k − 1) perfect sub-network, a

contradiction. �

B.1.4 Proof of results in Section 3.4

In the following, we suppose that (N,G) is a T -layer network, and for each k ≤ T , it has
mk layer-k perfect sub-networks. We start by providing some insights on the relationship
between the layer decomposition and the Frobenius normal form.

Lemma B9. Let (N,G) be a network satisfying no isolation. Consider its Frobenius
normal form (A.1). For any i = 1, ..., r either |Vi| = 1 or (Vi, Ai) is a layer-k perfect
sub-network of (N,G), for some k. As a consequence

ρ(G) = max
i=1,...,r

ρ(Ai) = max
k≤T

max
l≤mk

ρ
(
GMk

l

)
(B.2)

4Recall that Vi is the set of nodes corresponding to matrix Ai in Frobenius normal form.
5Since (Mk

l ,GMk
l

) is strongly connected, either there is no path from an element of Mk
l to an element

Mk′

l′ or there is a path from any element of Mk
l to any element of Mk′

l′ . In the latter case we write
Mk

l ⇒Mk′

l′ .

A8



Proof. Suppose that |Vi| > 1. By construction of the Frobenius normal form, (Vi, Ai) is
a strongly connected component of (N,G). Since (Mk)k=1,...,T is a partition of N and by
point (ii) of Proposition B8, there exists k ∈ {1, ..., T} such that Vi ⊂Mk. Since |Vi| ≥ 2,
the set Vi cannot intersect any of the M̄k

l , because it would contradict the fact that the
Mk

l are layer-k perfect subgraphs of (N,G). Hence Vi ⊂ ∪m
k

l=1M
k
l . This cannot happen

because two strongly connected components of (N,G) cannot intersect. Since ρ(Ai) = 0 if
|Vi| = 1 this concludes the proof of (B.2). �

For any closed set N ′ ⊂ N and any k, l, either Mk
l is contained in N ′, or Mk

l does not
intersect N ′. Hence the layer decomposition of (N′,GN ′) coincides with the intersection
of the layer decomposition of (N,G) and N ′. As a consequence we have

ρ(GN ′) = max
t≤T,s≤mt:Mt

s⊆N ′
ρ(GMt

s
) (B.3)

Lemma B10. For any k ≤ T and l ≤ mk we have ρ(GQk
l
) = max{t,s:Mt

s⊆Qk
l }
ρ(GMt

s
);

Proof. The network (Qk
l ,GQk

l
) is closed, so that we can apply (B.3). �

Lemma B11. Given any collection of pairwise disconnected perfect sub-networks {Mki
li
}i=1,...,n,

the matrix G∪ni=1D
ki
li

admits a Frobenius normal form as follows

G∪ni=1D
ki
li

=



A1 A12 ... ... ... ... ... A1s+n

0 A2 A23 ... ... ... ... A2s+n

... ... ... ... ... ... ... ...
0 ... 0 As Ass+1 ... ... Ass+n
0 ... ... 0 G

M
k1
l1

0 ... 0

0 ... ... .... ... ... ... ...
0 ... ... ... ... 0 G

M
kn−1
ln−1

0

0 ... ... ... ... ... 0 GMkn
ln


. (B.4)

and we have
max
i=1,...,s

ρ(Ai) = max
i=1,...,n

ρ(G
Q

ki
li

);

Proof. The decomposition (B.4) comes from the fact that all the only strongly connected
components that are connected to no (other) nodes in ∪ni=1D

ki
li

are the elements of the
family {Mki

li
}i=1,...,n. Now for the second statement, note that ∪ni=1Q

ki
li

is a closed set and
thus

max
i=1,...,n

ρ(G
Q

ki
li

) = max
i=1,...,n

max
{t,s:Mt

s⊆Q
ki
li
}
ρ(GMt

s
) = max

{t,s:Mt
s⊆∪ni=1Q

ki
li
}
ρ(GMt

s
) = max

i=1,...,s
ρ(Ai),

where the second equality comes from the fact that M t
s is either included in Qki

li
or does

not intersect it; and the last equality follows from the fact that the Frobenius normal from
associated to G∪ni=1Q

ki
li

is simply the s× s upper left blocks of (B.4). �
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Lemma B12. Suppose that A is a nonnegative matrix that admits a Frobenius normal
form (A.1) with r = s + 1 and ρ(As+1) > maxi=1,...,s {ρ(Ai)}. Then A admits a unique
positive eigenvector.6

Proof. We only need to show that, if x and y are two positive eigenvector of A then
x = αy for some α > 0. We can write A as follows:

A =

[
A′ B
0 As+1

]
, where A′ =


A1 A12 ... ... A1s

0 A2 A23 ... A2s

... ... ... ... ...

... ... ... ... ...
0 ... ... 0 As

 and B =


A1s+1

A2s+1

...

...
Ass+1

 .
Let us write x as (x′,x[s+1]), according to the decomposition of A we just wrote and let
ρ := ρ(As+1) = ρ(A). We have[

x′

x[s+1]

]
= ρ−1

[
A′ · x′ + B · x[s+1]

As+1 · x[s+1]

]
,

so that, in particular, (I− ρ−1A′)x′ = ρ−1Bx[s+1]. Since ρ(A′) < ρ by construction, the
matrix I− ρ−1A′ is invertible and we have

x′ = ρ−1
(
I− ρ−1A′

)−1
Bx[s+1] (B.5)

Now the matrix As+1 being irreducible and x[s+1],y[s+1] both being positive eigenvectors of
As+1 we must have x[s+1] = αy[s+1] Since identity (B.5) holds for both x and y, we obtain
that x′ = αy′, concluding the proof. �

Proof of Proposition 2. First note that if x is a PCE with root Mk
l then its restriction

to Dk
l is a positive eigenvector of GDk

l
. By definition of Dk

l , the matrix GDk
l
admits a

Frobenius normal form of the form

GDk
l

=


A1 A12 ... ... A1s+1

0 A2 A23 ... A2s+1

... ... ... ... ...
0 ... 0 As Ass+1

0 ... ... 0 As+1

 , with As+1 = GMk
l
.

If ρ(GMk
l
) > ρ(GQk

l
) then

ρ(As+1) = ρ(GMk
l
) > ρ(GQk

l
) = max

i=1,...,s
ρ(Ai),

and we are in the conditions of Lemma B12. Thus GDk
l
then admits a unique positive

eigenvector y = (yi)i∈Dk
l
, such that

∑
i∈Dk

l
yi = V

c
ρ

1+ρ
. Let then x be defined as xi = yi if

6Uniqueness is up to multiplication by a constant.
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i ∈ Dk
l and xi = 0 if i ∈ N \Dk

l . By construction, x is a PCE with root Mk
l and there can

be no other one.
Now suppose that ρ(GMk

l
) ≤ ρ(GQk

l
). Then

ρ(As+1) = ρ(GMk
l
) ≤ ρ(GQk

l
) = max

i=1,...,s
ρ(Ai),

meaning that GDk
l
admits no positive eigenvector, by Lemma A4. This concludes the

proof. �

Proof of Corollary 1. Suppose that x is a PCE withN+(x) = ∪ni=1D
ki
li
, with {Mki

li
}i=1,...,n

pairwise disconnected, and n ≥ 2. Then, by Proposition E7, we have

ρ

(
G
M

ki
li

)
= ρ > ρ

(
G
Q

ki
li

)
, ∀i = 1, ..., n,

which contradicts the fact that G is layer-generic. �

Proof of Proposition 3. (i)⇒ (ii) : suppose that (ii) does not hold. Then there exists
two PCE x1,x2 such that ρ(x1) = ρ(x2) =: ρ. For λ ∈ [0, 1] and define xλ := λx1+(1−λ)x2.
Then Xλ = X1 = X2. Hence

Gxλ = λGx1 + (1− λ)Gx2 = λρx1 + (1− λ)ρx2 =
cX

V − cX
xλ,

and xλ is a PCE. Thus there is a continuum of PCE, contradicting (i).
(ii) ⇒ (i) : this implication follows from the fact that the set of eigenvalues of subgraphs
of G is finite.
(ii) ⇒ (iii) : Suppose that (iii) does not hold. Then there exists k, l, k′, l′ such that
ρ(GMk

l
) = ρ(GMk′

l′
), ρ(GQk

l
) < ρ(GMk

l
) and ρ(GQk′

l′
) < ρ(GMk′

l′
). The last two strict

inequalities mean that there exists a PCE with root Mk
l , and a PCE with root Mk′

l′ ,
contradicting (ii).
(iii)⇒ (ii) : Assume that (ii) does not hold, and letMk

l (resp. Mk′

l′ ) be the root of x1 (resp.
x2). Being both PCE, it follows that we have ρ(GQk

l
) < ρ(GMk

l
) and ρ(GQk′

l′
) < ρ(GMk′

l′
),

contradicting (iii).
Finally we obtain (i)⇔ (ii)⇔ (iii) and the proof is complete. �

B.1.5 Proof of the results in Section 3.5

Let us show that the system (11) is well-behaved on the set

S :=

{
x 6= 0 : xi ≥ 0 ∀i, X ≤ V

c

}
(B.6)

in the sense that, for any initial condition in S, there exists a unique solution (x(t))t≥0

which forever remains in S.
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Indeed, given a PCE x∗, we have X∗ = V
c

ρ
1+ρ

< V
c
, where ρ is a positive eigenvalue of

G. As a consequence S contains all the relevant states of the problem we consider. We
denote by (φ(x, t))x∈S,t≥0 the semi-flow associated to (11) on S. Namely φ(x, t) is equal to
the position of the (unique) solution of (11) starting in x.

We first give a short justification that system (11) induces a semi-flow on S.

Lemma B13. System (11) induces a semiflow on S :=
{
x 6= 0 : xi ≥ 0 ∀i, X ≤ V

c

}
. On

the positively invariant set S, system (11) writes

ẋi(t) = −xi(t)− (Gx)i(t) +

(
V

cX(t)
(Gx)i(t) (xi(t) + (Gx)i(t))

)1/2

for i = 1, ..., N.

Proof. First note that, if x ∈ S, then

−(Gx)i +

(
V

cX
(Gx)i (xi + (Gx)i)

)1/2

≥ 0,

meaning that Bi(x) = −xi − (Gx)i +
(
V
cX

(Gx)i (xi + (Gx)i)
)1/2 for x ∈ S.

We need to check that the vector field B points inward on the boundary of S. Suppose
that x ∈ S, with X = V

c
. Then

Ẋ = −X −
∑
i

(Gx)i +
∑
i

((Gx)i (xi + (Gx)i))
1/2

< −X −
∑
i

(Gx)i +
∑
i

(xi + (Gx)i) = 0

Moreover, if xi = 0 then

Bi(x) = −(Gx)i +

(
V

cX
(Gx)i (xi + (Gx)i)

)1/2

≥ 0.

This concludes the proof. �

The following result will be useful to prove that a point is not asymptotically stable. It
directly follows from the definition of asymptotic stability.

Lemma B14. Suppose that there exists an open neighborhood U0 of x∗ with the property
that, for any open neighborhood U of x∗ and any T > 0 , there exists x ∈ U such that
φ(x, t) /∈ U0, for any t ≥ T . Then x∗ is not asymptotically stable.

If B(.) in (11) is differentiable in an open neighborhood of a PCE, then a simple
sufficient condition for an interior equilibrium (i.e., all agents in the network are active) to
be asymptotically stable is the following:

Lemma B15. Suppose that x∗ is an interior equilibrium and that the eigenvalues of the Ja-
cobian matrix of B(.), evaluated at x∗, have negative real parts. Then, x∗ is asymptotically
stable.
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Unfortunately the map B is not differentiable at a non-interior PCE, and we then cannot
use this result. However we have the following:

Proposition B1. Let x∗ be a PCE, and let u 6= 0 be such that ui ≥ 0 ∀i. Then the
directional derivative of B in x∗ along u, namely the quantity

DuB(x∗) := lim
h→0,h>0

B(x∗ + hu)

h

exists and satisfies DuB(x∗) = 1
2

(
−IN + 1+ρ(x∗)

X∗
L(x∗) + 1

ρ(x∗)
G
)
· u, where L(x∗) is the

matrix where every column is equal to x∗.

Proof of Proposition B1. Let u 6= 0 be such that ui ≥ 0 for all i and h > 0. Then

Bi(x
∗+hu) = −(x∗i+hui+(G(x∗+hu))i)+

(
V

c(X∗ + hU)
(G(x∗ + hu))i)(x

∗
i + hui + (G(x∗ + hu))i)

)1/2

The term in the square root can be written

V

cX∗

(
1− h U

X∗

)
[(Gx∗)i(x

∗
i + (Gx∗)i) + h [(Gx∗)i(ui + (Gu)i) + (Gu)i(x

∗
i + (Gx∗)i)]] +O(h2)

=
V

cX∗
(Gx∗)i(x

∗
i + (Gx∗)i)

(
1− h U

X∗

)[
1 + h

[
ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

=
V

cX∗
(Gx∗)i(x

∗
i + (Gx∗)i)

[
1 + h

[
− U

X∗
+

ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

Observing that ( V
cX∗

(Gx∗)i(x
∗
i + (Gx∗)i))

1/2 = x∗i + (Gx∗)i, the square root of the above
quantity is equal to

(x∗i + (Gx∗)i)

[
1 +

h

2

[
−U
X∗

+
ui + (Gu)i
x∗i + (Gx∗)i

+
(Gu)i
(Gx∗)i

]]
+O(h2)

Hence, since (x∗i + (Gx∗)i) = V
V−cX∗x

∗
i , we obtain

Bi(x
∗ + hu) = −(hui + h(Gu)i) +

h

2

[
−UV

X∗(V − cX∗)
x∗i + (ui + (Gu)i) +

V

cX∗
(Gu)i

]
+O(h2)

=
h

2

[
−UV

X∗(V − cX∗)
x∗i − ui +

V − cX∗

cX∗
(Gu)i

]
+O(h2)

Consequently

lim
h→+∞,h>0

Bi(x
∗ + hu)

h
=

1

2

[
−UV

X∗(V − cX∗)
x∗i − ui +

V − cX∗

cX∗
(Gu)i

]
=

1

2
(DF (x∗)u)i ,

which proves the result. �
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Proof of Theorem 2. Recall that x∗ is an eigenvector of G, associated to eigenvalue
ρ(x∗), given by

ρ(x∗) =
cX∗

V − cX∗
.

In what follows, let ρ∗ := ρ(x∗) and ρ := ρ(G).
• Suppose first that ρ∗ < ρ, and letMk∗

l∗ be the root of x∗. For any l, k such thatMk
l ⊂ Qk∗

l∗

we necessarily have ρ(GMk
l
) < ρ∗. However, By Lemma B.2, ρ = maxk=1,...,T ;l=1,...,mk ρ(GMk

l
).

Hence there exists k0 ≤ T, l0 ≤ mk0 such that ρk0l0 = ρ. Let C := N \ Dk∗

l∗ . By construc-
tion, GC is a nonnegative matrix with largest eigenvalue ρ, and we call u an eigenvector
associated to ρ. Let g(·) be defined as

g(X) := (1 + ρ)

(
−1 +

(
V

cX

ρ

ρ+ 1

)1/2
)
.

Then

g(X∗) := (1 + ρ)

(
−1 +

(
V

cX∗
ρ

ρ+ 1

)1/2
)

= (1 + ρ)

(
−1 +

(
ρ∗ + 1

ρ∗
ρ

ρ+ 1

)1/2
)
> 0,

so that we can choose X0 > X∗ such that g(X0) > 0. Now let U0 be defined as

U0 := {x ∈ S : X < X0} .
Then U0 is an open neighborhood of x∗ by construction.
We now construct a family of solutions curves and use it to show that x∗ is not asymp-
totically stable by using Lemma B14. Let (xε(t))t≥0 be the solution of (11) with initial
condition aε defined as follows:

a(ε)i = εui ∀i ∈ C, and a(ε)i = x∗i ∀i ∈ Dk∗

l∗ ,

where ε is a positive number. Then we have, for any i /∈ Dk∗

l∗ ,

Bi(a(ε)) = ((G + I)a(ε))i

(
−1 +

(
V

c(X∗ + εU)

(Ga(ε))i
((G + I)a(ε))i

)1/2
)

By definition of C as the complementary of the candidate set with root Mk∗

l∗ , we have
gij = 0 for any i ∈ C and any j ∈ Dk∗

l∗ . Consequently

(Ga(ε))i =
∑
j∈C

gija(ε)j = (GCa(ε))i = ρεui.

Thus, for i ∈ C,

Bi(a(ε)) = (ρ+ 1)εui

(
−1 +

(
V

c(X∗ + εU)

ρ

ρ+ 1

)1/2
)

= (ρ+ 1)

(
−1 +

(
V

c(X∗ + εU)

ρ

ρ+ 1

)1/2
)
a(ε)i

= g(A(ε))a(ε)i,
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where A(ε) =
∑

i a(ε)i. Let Xε(t) :=
∑

i x
ε
i(t). Then the we have, for any i ∈ C,

xεi(t) = xεi(0) exp

(∫ t

0

g(Xε(s))ds

)
, ∀i ∈ C.

Suppose that the solution curve xε remains in U0 for any t ≥ 0 then

xεi(t) > xεi(0) exp (g(X0)t) , ∀t ≥ 0.

Since g(X0) > 0, the right-hand side of the last inequality goes to infinity with t. Hence
there exists some postive time T ε such that xε(t) /∈ U0, for any t ≥ T ε. This concludes the
proof that x∗ is not asymptotically stable for dynamics (11).

• Suppose now that ρ∗ = ρ. Let D(x∗) := 1
2

(
−IN + 1+ρ(x∗)

X∗
L(x∗) + 1

ρ(x∗)
G
)
. We first

show that all eigenvalues of D(x∗) have a negative real part.
Suppose that D(x∗) · u = λ · u, with u 6= 0. Call U :=

∑
i∈N ui. Then we have

−u− 1 + ρ

X∗
Ux∗ +

1

ρ
Gu = 2λu

which gives (
IN −

1

ρ(1 + 2λ)
G

)
u = − 1 + ρ

X∗(1 + 2λ)
Ux∗.

Suppose that Re(λ) > 0 or that λ is pure imaginary. Then |1 + λ| > 1 and the matrix
G/(ρ(1+2λ))’ spectral radius is strictly smaller than one. As a consequence IN− 1

ρ(1+2λ)
G

is invertible and (
IN −

1

ρ(1 + 2λ)
G

)−1

=
+∞∑
p=0

1

ρp(1 + 2λ)p
Gp.

Consequently

u = − 1 + ρ

X∗(1 + 2λ)
U

(
IN −

1

ρ(1 + 2λ)
G

)−1

x∗

= − 1 + ρ

X∗(1 + 2λ)
U

+∞∑
p=0

1

ρp(1 + 2λ)p
Gpx∗

= − 1 + ρ

X∗(1 + 2λ)
U

+∞∑
p=0

1

(1 + 2λ)p
x∗

= − 1 + ρ

2X∗λ
Ux∗

Since u 6= 0, this equality implies that U 6= 0 and summing the coordinates of u we obtain
that 2λ = −(1 + ρ) < 0, a contradiction.
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Suppose now that λ = 0. Then we have(
IN −

1

ρ
G

)
u = −1 + ρ

X∗
Ux∗.

Suppose that U 6= 0. Then, multiplying both sides of the equality by
∑K

k=0
1
ρk
Gk, we

obtain the identity(
IN −

1

ρK+1
GK+1

)
u = −1 + ρ

X∗
U

K∑
k=0

1

ρk
Gkx∗ = −1 + ρ

X∗
UKx∗

The modulus of the left-hand is bounded above by 2|u|, while the modulus of the right-
hand side term grows to infinity with K, which is a contradiction. Hence U = 0. This
means that

Gu = ρu,

i.e. that u is in fact an eigenvector associated to the largest eigenvalue of G. Since∑
i ui = 0, this contradicts the fact that (N,G) is a layer-generic network.

We proved that the real part of every eigenvalue of DF (x∗) is strictly negative.

Now by Proposition B1, for x ∈ X we have

B(x) = D(x∗) · (x− x∗) + ‖x− x∗‖2g(‖x− x∗‖)

Denote by (λ1, ..., λ1, λ2, ..., λ2, ..., λP , ..., λP ) the eigenvalues of D(x∗), and call np the mul-
tiplicity of eigenvalue λp. Let us first put D(x∗) in its Jordan form:

DF (x∗) = PJP−1,

where J is diagonal by blocks, i.e.

J = Diag (J1, ...,JP ) :=


J1 0 ... 0
0 J2 ... 0
... ... ... ...
0 ... 0 JP

 , with Jp =


λp 1 0 ... 0
0 λp 1 ... 0
... ... ... ...
0 ... 0 λp 1
0 ... ... 0 λp


Define now Q := Diag (Q1, ...,QP ), with Qp = Diag(1, ε, ..., εnp−1). We then have

Q−1
p JpQp =


λp ε 0 ... 0
0 λp ε ... 0
... ... ... ... ...
0 ... 0 λp ε
0 ... ... 0 λp


Thus, defining R := PQ we obtain

R−1D(x∗)R = Q−1JQ = D(λ) + εB,
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where D(λ) is the diagonal matrix filled with the eigenvalues of D(x∗).
Now define V : S→ R+ as follows:

V (x) :=
∣∣R−1(x− x∗)

∣∣2 =
〈
R−1(x− x∗) | R−1(x− x∗)

〉
We have

V̇ (x) =
〈
R−1ẋ | R−1(x− x∗)

〉
+
〈
R−1ẋ | R−1(x− x∗)

〉
=

〈
(D(λ) + εB)R−1(x− x∗) | R−1(x− x∗)

〉
+
〈

(D(λ) + εB)R−1(x− x∗) | R−1(x− x∗)
〉

+ ‖x− x∗‖2h(‖x− x∗‖),

where h(a)→a→0 0. Hence we have

V̇ (x) =
〈

(D(λ) + D(λ))R−1(x− x∗) | R−1(x− x∗)
〉

+ 2εRe
(〈

BR−1(x− x∗) | R−1(x− x∗)
〉)

+ ‖x− x∗‖2h(‖x− x∗‖)

Let α := maxp=1,...,P Re(λp) < 0. We have〈
(D(λ) + D(λ))R−1(x− x∗) | R−1(x− x∗)

〉
≤ 2α|R−1(x− x∗)|2 = 2αV (x).

As a consequence, choosing ε small enough and x close enough of x∗ we obtain that

V̇ (x) ≤ αV (x),

which proves that V (x(t)) goes to zero exponentially fast, as t goes to infinity, and this
concludes the proof. �

B.2 Proofs of results in Section 4

Proof of Proposition 4. We start by proving the more general following lemma:

Lemma B16. Suppose that x∗ is a simple equilibrium of (N,G), i, j ∈ N+(x∗) and gij = 0.
Let Ĝ be such that N̂i = Ni ∪{j}, and for each l 6= i, N̂l = Nl. Then there exists a unique
equilibrium x̂∗ of (N, Ĝ) such that

(i) N+(x̂∗) ⊆ N+(x∗)

(ii) X̂∗ ≥ X∗,

(iii) x̂∗i > x∗i .
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Proof of Lemma B16. Let Mk
l be the root of x∗, meaning that N+(x∗) = Dk

l . Denote
by (Dk

l , ĜDk
l
) the sub-network where i is now connected to j. Let ρ := ρ(GDk

l
) and

ρ∗ := ρ(ĜDk
l
). We have ρ∗ ≥ ρ.

Let {V1, ..., Vr} be a decomposition of Dk
l corresponding to Frobenius normal form (A.1).

Then r = s+ 1 and Vr = Mk
l . Moreover ρ(GDk

l
) = ρ(GMk

l
) > ρ(Ai) for i = 1, ..., s. When

adding a link from i to j, the decomposition either remains the same (if there is no path
from j to i), or the decomposition becomes

{
V̂ , {Vi}i∈I

}
, where I ⊂ {1, ..., r}. There are

three possibilities here:

(a) If ρ(GV̂ ) < ρ(GMk
l
), then r ∈ I and ρ∗ = ρ. There is then a PCE with root Mk

l in
ĜDk

l
. In particular N+(x̂∗) = N+(x∗).

(b) If r /∈ I then Mk
l ⊆ V̂ and there is a PCE with root V̂ . Again N+(x̂∗) = N+(x∗).

(c) ρ(ĜV̂ ) ≥ ρ and i ∈ I. Then ρ∗ ≥ ρ and there is a PCE with root V̂ . Then
N+(x̂∗) ( N+(x∗), because agents in Mk

l are inactive in PCE x̂∗.

In all three cases, there is a unique PCE x̂∗ in ĜDk
l
, associated to ρ∗. Points (i) and (ii) hold

by construction, using the fact that X̂∗ = ρ∗

ρ∗+1
V
c
≥ ρ

ρ+1
V
c

= X∗ . Also note that x̂∗ 6= x∗:
suppose by contradiction that x∗ = x̂∗. Let v 6= i. Then ρx∗v = (Gx∗)v = (Ĝx∗)v = ρ∗xv.
Hence ρ = ρ∗. Thus ρx∗i = (Gx∗)i = (Ĝx∗)i − x∗j = ρx∗i − x∗j , a contradiction.
We now prove that (iii) holds. Note that j ∈ N+(x̂∗). Consider the following subsets of
agents:

V+ :=

{
v ∈ Dk

l :
x̂∗v
x∗v
≥ x̂∗l
x∗l
∀l ∈ Dk

l

}
, V− :=

{
v ∈ Dk

l :
x̂∗v
x∗v
≤ x̂∗l
x∗l

l ∈ Dk
l

}
.

Note that if v 6= i and v ∈ V+ then x̂∗v
x∗v

=
∑

w∈Nv
x̂∗w∑

w∈Nv
x∗w

. Hence w ∈ V+ for all w ∈ Nv. By a
recursive argument this implies that, if v is connected to w through a path then w ∈ V+.
The same property also holds for V−. As a consequence i ∈ V+ ∪ V−. If this were not the
case there would exist two nodes v+ 6= i and v− 6= i such that v+ ∈ V+ and v− ∈ V−, which
would imply that elements of Mk

l belong to both V+ and V−, a contradiction.
Suppose first that we are in the case where ρ∗ > ρ, and let v 6= i. Suppose that v ∈ V+.
Then

1

ρ∗
=

x̂∗v

(Ĝx̂∗)v
=

x̂∗v∑
w∈Nv

x̂∗w
≥ x∗v∑

w∈Nv
x∗w

=
x∗v

(Gx∗)v
=

1

ρ
,

a contradiction. Hence V+ = {i}.
Suppose finally that ρ∗ = ρ. Showing that i ∈ V+ is equivalent to showing that i /∈ V−.
Suppose by contradiction that i ∈ V−. Then

1

ρ
=

x̂∗i

(Ĝx̂∗)i
=

x̂∗i∑
w∈Ni

x̂∗w + x̂∗j
<

x̂∗i∑
w∈Ni

x̂∗w
≤ x∗i∑

w∈Ni
x∗w

=
x∗i

(Gx∗)i
=

1

ρ
,
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a contradiction. Thus i ∈ V+ and this concludes the proof of point (iii). �

We now prove Proposition 4 by showing that x̂∗ is asymptotically stable. Obviously ρ(G) =
ρ∗. Hence we only need to prove that there is no other simple PCE associated to eigenvalue
ρ∗. Since x∗ is the only PCE associated to eigenvalue ρ, it means that, if k′, l′ are such
that ρ(GMk′

l′
) = ρ, then Mk

l ⊆ Dk′

l′ . Hence x̂∗ is the only PCE associated to ρ∗ in Ĝ. �
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C Additional results

C.1 Peer-confirming equilibria in semi-connected networks

Corollary C2. If the network (N,G) is a semi-connected T -layer network then there are
at most T peer-consistent equilibria.

Proof of Corollary C2. The number of PCE is equal to

Card

{
s = 1, ..., T : ρ(GMs

1
) > max

k=1,...,s−1
ρ(GMk

1
)

}
.

�

C.2 Policy interventions

C.2.1 Adding links

Let us consider strongly connected networks. We know from Proposition 1 that there is
a unique equilibrium, that every player is active in equilibrium, and that the individual
effort is proportional to her eigenvector centrality.

Proposition C2. Let (N,G) be a strongly connected network in which gij = 0 for some
i, j ∈ N , and x∗ is the unique peer-consistent equilibrium of (N,G). Let Ĝ be such that
N̂i = Ni ∪ {j}, where i is the “sender” and j is the “receiver”, and for each l 6= i, N̂l = Nl.
Then, in the unique equilibrium x̂∗ of (N, Ĝ), total effort strictly increases, i.e., X̂∗ > X∗,
and both the sender’s effort and her resource share increase, i.e., x̂∗i > x∗i .

Proof of Proposition C2. We show that X ′ > X. The rest of the statement is a
direct consequence of Lemma B16, which is stated and proved as part of the proof of
Proposition 4. By Proposition 1, X = V ρ(G)

c[1+ρ(G)]
and X ′ = V ρ(G′)

c[1+ρ(G′)]
. Hence X ′ > X,

because ρ(G) < ρ(G′). �

Let us now consider a weakly connected network.

Proposition C3 (Increasing unilateral knowledge). Let (N,G) be a weakly connected
network, x∗ a PCE with root Mk

l , (k ≥ 2), and (N, Ĝ) the network obtained by adding a
link from agent i0 ∈ Qk

l to agent j0 ∈Mk
l . Denote by x̂∗ the PCE with root Mk

l in (N, Ĝ).
Then,

x̂∗i
x̂∗j

>
x∗i
x∗j
, and hence

ui(x̂
∗
i )

uj(x̂∗j)
>
ui(x

∗
i )

uj(x∗j)
, for any i ∈ N−(i0), j /∈ N−(i0),

where N−(i0) := {i0} ∪ {v ∈ Dk
l : v ⇒ i0};
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Proof of Proposition C3. As in the proof of Lemma B16, define the set of nodes V+

and V−. Let us show that V− = {v ∈ Dk
l : v /∈ N−(i0)}. As stated above, i0 ∈ V+. Also,

if v 6= i0 belongs to V− and if v is connected to w through a path then w ∈ V−. Hence
elements of N−(i0) cannot belong to V−. This also implies that Mk

l ⊂ V−, because V−
cannot be empty. Now let v 6= i0. If Nv ⊂ V− then necessarily v ∈ V−. Thus, by a simple
recursive argument, any agent that is not connected to i0 through a path must belong to
V−. Hence {v ∈ Dk

l : v /∈ N−(i0)} = V−. �

C.2.2 Key players

Proposition C4. Let x∗ be the (unique) asymptotically stable equilibrium of the layer-
generic network (N,G) and x̂∗ the (unique) asymptotically stable equilibrium of the layer-
generic network (N\{i},GN\{i}). Then, X̂∗ ≤ X∗.

Proof of Proposition C4. We have X∗ = V ρ(G)
c[1+ρ(G)]

and X̂∗ ≤ V ρ(GN\{i})

c[1+ρ(GN\{i}]
. By standard

results, ρ(G) ≥ ρ(GN\{i}). Hence X̂∗ ≤ X∗. �

C.2.3 Social mixing

Proposition C5. Let (N1,G1) and (N2,G2) be two layer-generic networks endowed with
resources equal to V1 and V2, respectively. Let x1∗ (resp. x2∗) be the unique stable PCE
of (N1,G1) (resp. (N2,G2)), with root Mk1

l1 (resp. Mk2

l2 ).Let also (N,G) be the network
obtained from (N1,G1) and (N2,G2) in which N = N1 ∪N2, V = V 1 + V 2, with gij = 1
and gk` = 1 for some (i, `) ∈ Mk1

l1 , (j, k) ∈ Mk2

l2 . Then, there is a unique stable PCE x∗

of (N,G) satisfying ρ(x∗) = ρ(G), and X∗ > X1∗ +X2∗.

Proof of Proposition C5. We have

X1 =
V 1

c

ρ(G1)

ρ(G1) + 1
; X2 =

V 2

c

ρ(G2)

ρ(G2) + 1
; X =

V 1 + V 2

c

ρ(G)

ρ(G) + 1

We have ρ(G) = ρ(Mk1

l1 ∪Mk2

l2 ) > max {ρ(G1), ρ(G2)}. Hence

X1 +X2 =
V 1

c

ρ(G1)

ρ(G1) + 1
+
V 2

c

ρ(G2)

ρ(G2) + 1

V 1 + V 2

c
<

ρ(G)

ρ(G) + 1
= X.

�
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D Additional examples

D.1 Strongly connected networks

Example D1. Strongly connected networks and brokers
Let N = {1, 2, 3, 4}. Consider the strongly connected network displayed in Figure D1. The
network is composed of two groups N1 = {1, 2} and N2 = {3, 4}. Agents 2 and 3 are said
to be brokers as they connect the two groups.

1

2

4

3

Figure D1: A strongly connected network with brokers

If we solve the system of equations (5) for the strongly connected network displayed in
Figure D1, we obtain:

x?1 = x?4 =
ρ

2(ρ+ 1)2

V

c
≈ 0.118

V

c
u?1 = u?4 =

1

2(ρ+ 1)2
V ≈ 0.073V

x?2 = x?3 =
ρ2

2(ρ+ 1)2

V

c
≈ 0.191

V

c
u?2 = u?3 =

ρ

2(ρ+ 1)2
V ≈ 0.118V

where ρ =
√

5+1
2

is the spectral radius of G. Note that the brokers 2 and 3 have symmetric
efforts and payoffs in equilibrium –agents 1 and 4 both display a symmetric effort, but
lower than that of agents 2 and 3. A feature of the differences in terms of eigenvector
centrality between the brokers and agents 1 and 4 is that brokers exert higher efforts and
obtain higher utilities. Indeed, agents 2 and 3 have a higher eigenvector centrality than
the other two agents.

�

D.2 NLD algorithm

Example D2. Adjacency matrix decomposition and the NLD algorithm
Consider the matrix decomposition displayed in Figure D2. In this figure, the matrix G is
decomposed in three steps.

Indeed, (M1
1 ,GM1

1
), (M1

2 ,GM1
2
), and (M1

3 ,GM1
3
) are all the perfect sub-networks of

(N,G) in step 1, and M1 is the set of all agents and their adjunct belonging to these
perfect sub-networks. The adjacency sub-matrices GM1

1
, GM1

2
and GM1

3
are represented
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by the square sub-matrices in the upper-left part of the matrix G displayed in Figure
D2. Note that these three sub-matrices are “separated” in the sense that no player in one
sub-matrix is connected to any player in one of the other two sub-matrices. Observe that,
by definition of perfect sub-networks (Definition 5), the sub-network of M̄1

1 ∪ M̄1
2 ∪ M̄1

3 is
acyclic. The sub-matrix S1 represents links from the adjunct sets M̄1

1 , M̄1
2 , and M̄1

3 to the
sets M1

1 , M1
2 , and M1

3 . Hence S1 6= 0.
By removingM1 from the network, we start step 2 and find (M2

1 ,GM2
1
) and (M2

2 ,GM2
2
)

as perfect sub-networks of the remaining network. Again the two sub-matrices GM2
1
and

GM2
2
are “separated”, the sub-network of M̄2

1 ∪ M̄2
2 is acyclic, and S2 6= 0. The matrix

W1 represents the links from the sets M1
1 , M1

2 , and M1
3 to M2. Since M2

1 and M2
2 are not

included in M1, W1 6= 0.
Further removing M2, we start step 3 and find (M3

1 ,GM3
1
) and (M3

2 ,GM3
2
) as perfect

sub-networks of the remaining network. Again the two sub-matrices GM3
1
and GM3

2
are

“separated”, the sub-network of M̄3
1 ∪ M̄3

2 is acyclic, S3 6= 0, and W2 6= 0. �
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GM1
1

GM1
2

GM1
3

GM2
1

GM2
2

GM3
1

GM3
2

S1

S2

S3

W1

W2

0

0

0

0

0

0

0

M1

M2

M3

M1 M2 M3

M̄1
1 ∪ M̄1

2 ∪ M̄1
3

M̄2
1 ∪ M̄2

2

M̄3
1 ∪ M̄3

2

Figure D2: The structure of the adjacency matrixG. The blue sub-matrices are irreducible
matrices. The green and yellow sub-matrices are non-zero matrices. An element in the
grey area of the matrix can be zero or non-zero. All other elements are zero-elements.

D.3 Peer-consistent equilibria

Let us illustrate Proposition 2 with the following example.

Example D3. A 2−layer network
Consider the network (N,G) in Figure D3 with N = {1, 2, · · · , 10}.
Both (M1

1 ,GM1
1
) with M1

1 = {4, 5, 6, 7}, and (M1
2 ,GM1

2
) with M1

2 = {2, 3} are layer-1
perfect sub-networks of (N,G). Moreover, their adjunct sets coincide with M̄1

1 = M̄1
2 =

{1}. Note that the sub-network associated to {8, 9, 10} cannot be a layer-1 perfect sub-
network since {1, 2, 3} is not adjunct cycle-free. Hence there is a layer-2 perfect sub-network
with M2

1 = {8, 9, 10}, M̄2
1 = ∅, and Q2

1 = {5, 6, 7}. Observe that ρ(GM1
1
) = 3 > ρ(GM2

1
) =

2 > ρ(GM1
2
) = 1.

We have three candidate sets: D1
1 = {1, 4, 5, 6, 7}, D1

2 = {1, 2, 3} andD2
1 = {1, 2, 3, 8, 9, 10}.
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Figure D3: A 2-layer network

(a) Equilibrium with root M1
1 : Since ρ(GM1

1
) = 3 > ρ(GQ1

1
) = 0, there is an equilib-

rium with root M1
1 = {4, 5, 6, 7}, where only agents 1, 4, 5, 6, 7 are active.

(b) Equilibrium with root M1
2 : Since ρ(GM1

2
) = 1 > ρ(GQ1

2
) = 0, there is an equilib-

rium with root M1
2 = {2, 3}, where only agents 1, 2, 3 are active.

(c) Equilibrium with root M2
1 : We have ρ(GM2

1
) < ρ(GM1

1
). However this comparison

is not relevant here, because M1
1 is not contained in the adjunct set of M2

1 . According
again to Proposition 2, there exists a peer-consistent equilibrium x∗ with N+(x∗) = D2

1

if and only if ρ(GM2
1
) > ρ(GQ2

1
); where ρ(GQk

l
) ≡ max{Mt

s:Mt
s⊆Qk

l }
ρ(GMt

s
). This reads as

ρ(GM2
1
) > ρ(GM1

2
), which is obviously satisfied. Hence there is a third peer-consistent

equilibrium in which the set of active agents is {1, 2, 3, 8, 9, 10}.

In summary, in the network of Figure D3, there are three PCE. In all three, the effort of
each active agent is equal to her eigenvector centrality. Interestingly, there is no equilibrium
in which all agents are active, which agrees with the fact that the matrix G is not strictly
nonnegative. �

Thus, contrary to Example 2, there is no equilibrium in which all agents are active.
Indeed, in Example 2 (Figure 2), the lowest-layer perfect sub-network M3

1 has the highest
spectral radius and all agents in the other layer perfect sub-networks (i.e., layer-1 and
layer-2 perfect sub-networks) can reach M3

1 either directly or through a path. As a result,
an equilibrium with root M3

1 exists –ρ(GM3
1
) has the largest eigenvalue– and encompasses

all players in the network. On the contrary, in the network displayed in Figure D3, an
equilibrium with root M2

1 (the lowest layer perfect sub-network) exists because it can only
be reached by the perfect sub-network M1

2 = {2, 3}, which has a lower spectral radius. All
agents cannot be active in equilibrium because the lowest-level perfect sub-network (i.e.,
M1

1 ) cannot reach the highest-level perfect sub-network (i.e., M2
1 ). Observe that agent

1 has a key position in the network (i.e., middleman) and is active in any equilibrium.
This is because she is the only player that can reach anybody in the network. Agent 1 is
therefore part of the adjunct set of any candidate set and thus belongs to the set of active
agents at any equilibrium.
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D.4 Adding links

Example D4. Consider the network (N,G) in Figure D4. The network has two layers, and
one perfect subnetwork for each layer, which are M1

1 = {2, 3, 4} and M1
2 = {5, 6, 7}, with

D1
1 = {1, 2, 3, 4} and D1

2 = {1, 2, 3, 4, 5, 6, 7} = N . Since ρ(GM1
1
) ≈ 1.325 < ρ(GM2

1
) =√

2 = 1.414, there is a unique PCE in which the set of active agents is D2
1 = N :

2

1

4

3

5 6

7

Figure D4

We now consider three different link additions:

(a) First, we add a link from agent 1 to agent 4 and consider the modified network
(N, Ĝ). The layer structure does not change since nobody from the layer-1 perfect
sub-network, i.e., M̂1

1 = {2, 3, 4}, can reach agent 1. The layer-2 perfect sub-network
is also the same, i.e. M̂1

2 = {5, 6, 7}. Thus, since the largest eigenvalues of each
perfect subnetwork remains unchanged, the set of active players at the unique stable
equilibrium is still N .

(b) Second, we add a link from agent 5 to agent 4. The layer structure completely
changes, as there is, now, only one layer-1 perfect sub-network, which is given by
M̂1

1 = {2, 3, 4, 5, 6, 7}, with D̂1
1 = N . However, the unique stable PCE stays qualita-

tively the same as it involves the same set of active agents, that is, N .7

(c) Finally, we add a link from agent 2 to agent 1. There are still two layers but the
layer-1 perfect sub-network is slightly modified since it increases from M1

1 = {2, 3, 4}
to M̂1

1 = {1, 2, 3, 4} while the layer-2 perfect sub-network stays the same, i.e. M1
2 =

{5, 6, 7} = M̂1
2 = {5, 6, 7}. However, there is a substantial difference since, now,

ρ(ĜM̂1
1
) ≈ 1.521 >

√
2 = ρ(ĜM̂2

1
). As a result, the set of active players at the unique

stable PCE reduces from N = {1, 2, 3, 4, 5, 6, 7} to D̂1
1 = {1, 2, 3, 4}.

Example D5. Consider the network (N,G) in Figure D5, without the red link. The
network has two layers, and one perfect sub-network for each layer, which are M1

1 = {2, 3}
and M1

2 = {4, 5, 6}, with D1
1 = {1, 2, 3} and D1

2 = {1, 2, 3, 4, 5, 6} = N . Since ρ(GM1
1
) <

7Of course, the effort of each agent will change since their eigenvector centrality changes.
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ρ(GM2
1
), there is a unique PCE x∗, where all agents are active. Their efforts are given by:

x∗1 =
1

6

V

c
, x∗2 =

1

12

V

c
, x∗3 =

1

24

V

c
, x∗i =

1

8

V

c
for i = 4, 5, 6.

1

2

3

4

5

6

Figure D5

Now, let us illustrate Proposition C3. For that, consider the network which includes the
red link from agent 3 to agent 4. The unique PCE is then given by

x∗1 =
6

39

V

c
, x∗i =

4

39

V

c
, ∀i = 2, 3, 4, 5, 6.

Here N−(i0) = {1, 2, 3}. Denote u∗i := ui(x
∗
i ) and û∗i := ui(x̂

∗
i ). Then, the payoff ratios are

equal to

u∗1
u∗i

=
4

3
<

3

2
=
û∗1
û∗i
,
u∗2
u∗i

=
3

4
< 1 =

û∗2
û∗i
,
u∗3
u∗i

=
1

3
< 1 =

û∗3
û∗i
, for i = 4, 5, 6.

However, not everyone in N−(i0) = {1, 2, 3} beneficiate of an increase of their payoff when
adding the link from 3 to 4. If we compare the relative payoffs, we have

û∗1
u∗1

=
36

39
< 1,

û∗2
u∗2

=
48

39
> 1,

û∗3
u∗3

=
96

39
> 1,

û∗i
u∗i

=
32

39
< 1 for i = 4, 5, 6.
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E Beyond layer-generic graphs
In this section we assume that G is a weakly connected directed graph satisfying the no
isolation assumption. As mentioned in the text, the set of PCE can be infinite if we drop
the layer-genericity assumption.

E.1 Structure of the equilibrium set

We say that two perfect sub-networks are disconnected if there is no path from one to
the other.

Proposition E6. Let x∗ be a PCE. Then, there exists a family of pairwise disconnected
perfect sub-networks {Mki

li
}i=1,...,n such that

N+(x∗) = ∪ni=1D
ki
li
. (E.1)

Proof of Proposition E6. Since N+(x) is a closed set of G, we have that x is a positive
eigenvector of GN+(x), associated to eigenvalue ρ > 0. By Lemma A4, that implies that
GN+(x) is strongly nonnegative, and thus can be written

GN+(x) =



A1 A12 ... ... ... ... ... A1r

0 A2 A23 ... ... ... ... A2r

... ... ... ... ... ... ... ...
0 ... 0 As Ass+1 ... ... Asr
0 ... ... 0 As+1 0 ... 0
... ... ... ... ... ... ... ...
0 ... ... ... ... 0 Ar−1 0
0 ... ... ... ... ... 0 Ar


(E.2)

where r > s, ρ(Ar) = ... = ρ(As+1) = ρ, and ρ(Ai) < ρ for i = 1, ..., s. Each As+i
being such that |Vs+i| ≥ 2 for i = 1, ..., r − s, each Vs+i corresponds to a layer-ki perfect
sub-network of (N,G). Hence, taking n := r − s, there exists k1, ..., kn, l1, ..., ln such that
As+i = G

M
ki
li

for i = 1, ..., n.

We now show that N+(x) = ∪ni=1D
ki
li
. Since N+(x) is closed and Mki

li
⊂ N+(x) we have

Dki
li
⊂ N+(x). Hence ∪ni=1D

ki
li
⊂ N+(x). Now pick j ∈ N+(x). By property (ii) of

the Frobenius normal form (see Definition A3), there exists some i ∈ {1, ..., n} such that
j ⇒Mki

li
, meaning that j ∈ Dki

li
. This concludes the proof. �

Proposition E7. Let (N,G) be a T -layer network and {Mki
li
}i=1...n be pairwise discon-

nected perfect sub-networks. There exists a peer-consistent equilibrium (PCE) x∗ with
N+(x) = ∪ni=1D

ki
li

if and only if there exists ρ > 0 such that

ρ

(
G
M

ki
li

)
= ρ > ρ

(
G
Q

ki
li

)
, ∀i = 1, ..., n. (E.3)
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Proof of Proposition E7. Again we use the Frobenius normal form to prove this result.
Let D := ∪ni=1D

ki
li
The matrix G∪ni=1D

ki
li

can be written as (B.4). By Lemma A4, this matrix
hence admits a positive eigenvector if and only if

ρ(GMkn
ln

) = ... = ρ(G
M

k1
l1

) > max
i=1,...,s

ρ(Ai) = max
i=1,...n

max
i=1,...n

ρ

(
G
Q

ki
li

)
.

this concludes the proof. �

In full generality, although the set of peer-confirming equilibria is no longer finite, we
can still describe it in a simple way; it is always a finite union of convex sets. Recall that
the set of simple equilibria is finite: there is at most one PCE with rootMk

l , for k = 1, ..., T
and l = 1, ..., nk. Let {ρ1, ..., ρP} be the set of positive eigenvalues of G. The set of simple
equilibria can be written as

P⋃
p=1

Sp, where Sp :=
{
x∗ : x∗ is a simple PCE with root Mk

l such that ρ(GMk
l
) = ρp

}
,

Proposition E8. Given any network G the set of peer-consistent equilibria can be written
as

PCE =
P⋃
p=1

Λp,

where Λp is the convex polytope generated by Sp: Λp = Conv (Sp).

Proof of Proposition E8. We first show that
⋃P
p=1 Λp ⊂ PCE. It amounts to showing

that, if Sp = {x1, ...,xn}, and λ1, ..., λp are nonnegative numbers that sum to one then
x :=

∑
j=1 λjx

j is a PCE. We have

Gx =
n∑
j=1

λjGxj =

p∑
j=1

λjρpx
j = ρpx.

Moreover X =
∑

i xi =
∑

i

∑n
j=1 λjx

j
i =

∑n
j=1 λj

∑
i s
j
i =

∑n
j=1 λj

ρp
ρp+1

= ρp
ρp+1

. Hence
ρp = cX

V−cX and this concludes this implication.

We now turn to the other inculsion. Let x be a PCE. Then, by Proposition E7, there exists
p ∈ {1, ..., P} and a family of pairwise disconnected perfect sub-networks {Mki

li
}i=1,...,n such

thatN+(x) = ∪nj=1D
kj
lj
, and ρ

(
G
M

kj
lj

)
= ρp > ρ

(
G
Q

kj
lj

)
, ∀i = j, ..., n. Call xj the simple

equilibrium associated to candidate set Dkj
lj
, for j = 1, ..., n. We first define the following

objects:

M̃j := D
kj
lj
\
(
∪m6=jDkm

lm

)
; M̃ := ∪nj=1D

kj
lj
\
(
∪nj=1M̃j

)
; λj :=

∑
i∈M̃j

xi∑
i∈M̃j

xji
.
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Note that, by construction, the family
{
M̃, M̃1, ..., M̃n

}
constitutes a partition of ∪nj=1D

kj
lj
.

Call Aj := GM̃j
and A := GM̃ . Then we can write

G
∪nj=1D

kj
lj

=


A B1 ... ... Bn

0 A1 0 ... 0
... ... ... ... ...
0 ... 0 An−1 0
0 ... ... 0 An


Be aware that this is not a Frobenius normal form because matricesA andAj are in general
not irreducible. However we know the following: ρ(Aj) = ρp for j = 1, ..., n and ρ(A) < ρp.
Moreover, for j = 1, ..., p, xj|M̃j

is, by definition, a positive eigenvector of matrix Aj. This
is also true for x|M̃j

. The Frobenius normal form of Aj verifies the conditions of Lemma
B12, (As+1 corresponding here to Mkj

lj
). As a result x|M̃j

and xj|M̃j
are proportionnal:

x|M̃j
= αjx

j

|M̃j
. (E.4)

Since x
|∪nj=1D

kj
lj

is an eigenvector of G
∪nj=1D

kj
lj

associated to ρp we have

ρpx|M̃ = Ax|M̃ +
n∑
j=1

Bjx|M̃j
,

and thus, since I− ρ−1
p A is invertible,

ρpx|M̃ =
(
I− ρ−1

p A
)−1

n∑
j=1

Bjx|M̃j
=
(
I− ρ−1

p A
)−1

n∑
j=1

αjBjx
j

|M̃j
.

On the other hand xj|M̃∪M̃j
is an eigenvector of G|M̃∪M̃j

associated to ρp. hence

ρpx
j

|M̃ = Axj|M̃ + Bjx|M̃j
,

that is,
ρpx

j

|M̃ =
(
I− ρ−1

p A
)−1

Bjx|M̃j
.

Finally we get

ρpx|M̃ =
n∑
j=1

αjρpx
j

|M̃j
,

i.e. x|M̃ =
∑n

j=1 αjx
j

|M̃j
. Combining this equality with (E.4) and the fact that xm|M̃j

= 0

when j 6= m, we obtain that

x =
n∑
j=1

αjx
j

Now x and xj being all associated to the same eigenvalue ρp we necessarily have X = Xj =
ρp
ρp+1

for j = 1, ..., n. As a result
∑n

j=1 αj = 1 and this concludes the proof. �
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Remark E1. When G is a layer-generic network, then every component is degenerate, i.e.,
they reduce to a singleton. In full generality, in a given component, the largest eigenvalue
of the subgraph of active players is invariant.

E.2 Example

We illustrate this in the following example.

Example E6. Non-finiteness of equilibria

2

3

1

5

4

Figure E6: Infinite set of PCE in a 1-layer network

Consider the network (N,G) in Figure E6 with N = {1, 2, · · · , 5}. Both (M1
1 ,GM1

1
)

with M1
1 = {1, 2}, and (M1

2 ,GM1
2
) with M1

2 = {3, 4} are layer-1 perfect sub-networks of
(N,G). Moreover we have ρGM1

1
) = ρ(GM1

2
) = 1. Consequently, the set of peer-consistent

equilibria is not finite since the network is non layer-generic. More precisely:

PCE =

{
V

12c
(1, λ, λ, 1− λ, 1− λ) : λ ∈ [0, 1]

}
.

�
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