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THE MULTIPLE-VOLUNTEERS PRINCIPLE

Abstract

We consider mechanisms for assigning an unpleasant task among a group of agents with
heterogenous abilities. We emphasize threshold rules: every agent decides whether or not to
“volunteer"; if the number of volunteers exceeds a threshold number, the task is assigned to a
random volunteer; if the number is below the threshold, the task is assigned to a random non-
volunteer. We show that any non-extreme threshold rule allows for a symmetric equilibrium in
which every ability type is strictly better off than in a random assignment. This holds for arbitrarily
high costs of performing the task. Within the class of binary-action mechanisms, some threshold
rule is utilitarian optimal. The first-best can be approximated arbitrarily closely with a threshold rule
as the group size tends to infinity; that is, there exist threshold numbers such that with probability
arbitrarily close to 1 the task is performed by an agent with an ability arbitrarily close to the highest
possible ability. The optimal threshold number goes to infinity as the group size tends to infinity.
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1 Introduction

Volunteering, according to Wilson (2000), is “any activity in which time is given
freely to benefit another person, group or cause.” Implicit here is the assumption
that there is little or no remuneration for the activity. Volunteering plays an im-
portant role in many different areas of any modern economy. It concerns services
as diverse as chairing a university department, engaging in environmental activi-
ties such as bird counting, teaching the host country’s language to a refugee, and
providing company for terminally ill patients in hospices.! While many volunteer-
ing activities are informal, in the UK the economic value of formal volunteering
alone is estimated at £39 billion, according to the report by Low, Butt, Ellis, and
Davis Smith (2007).

For many tasks, it is crucial to not just find any volunteer, but to find a well-
qualified volunteer. As humans, we are heterogenous with respect to our abilities,
whether the task is to lead a department, to spot a specimen of a rare species in
the field, to work with a refugee, or to talk to a dying person. If a highly able
person volunteers, everybody benefits.

Our paper focusses on the economic problem of assigning a task to the most
able person in a given group. No remuneration is possible. The task cannot be
delayed or avoided: one of the group members must perform the task. Each agent
is privately informed about her ability, which is defined as the benefit that accrues
to everybody if she performs the task. There is a free-rider problem because
performing the task is costly.

A simple task-assignment rule that naturally comes to mind consists in asking
every agent whether or not she “volunteers”. We imagine all agents being asked
simultaneously; if at least one agent volunteers, the task is assigned randomly
among the volunteering agents; if no agent volunteers, the task is assigned ran-
domly among all agents. This any-volunteer rule can, however, lead to rather poor
volunteering incentives. In particular, if performing the task is sufficiently costly,
then the any-volunteer rule leads, in any symmetric equilibrium, to a purely-
random assignment because nobody will volunteer.

In this paper, we present alternative task-assignment rules. The seed for our
construction can be found in the writings of Thomas Schelling (Schelling, 2006).
As a proposal in passing, he casts the idea of “volunteering if 20 others do likewise”
(p- 95). We may call this idea the multiple-volunteers principle. Schelling’s
half-sentence immediately raises many questions. What happens if the threshold
number of 20 is not reached? Does the multiple-volunteers principle lead to a
welfare improvement relative to the any-volunteer rule? Can we use the multiple-
volunteers idea to construct a mechanism that is optimal in some sense? Which
threshold number should be set? Our paper elaborates on these questions.

We consider task assignment rules that are set by a social planner. Thus,

!The German association of hospices reports that most of the 120.000 individuals working un-
der their roof are volunteers who are not remunerated, see https://www.dhpv.de/themen_hospiz-
palliativ_ehrenamt.html.



Schelling’s advice to declare one’s conditional willingness to volunteer is recast
as follows. The rule allows each agent a choice between two actions that we
call “volunteering” and “not volunteering”. If at least i* (e.g., i* = 20) agents
volunteer, then all volunteers participate in a uniform lottery that determines the
service provider. However, because the task cannot be avoided, a fully specified
task-assignment rule must go beyond Schelling’s advice: it must also specify who
performs the task if the threshold number of ¢* volunteers is not reached. We
stipulate that the task is then assigned randomly among the non-volunteers by
a uniform lottery. We generalize this construction slightly: we allow that, if the
number of volunteers is equal to the threshold ¢*, then, rather than assigning the
task to a volunteer for sure, a lottery may be used to decide whether the task
is assigned to a volunteer or a non-volunteer. We call any such mechanism a
threshold rule.

Our main results advertise the class of threshold rules, by demonstrating three
properties. First, in any threshold rule that is non-extreme in a sense that will
be defined,? there exists an equilibrium such that every ability type, including
every non-volunteering type, is strictly better off than under a purely-random
assignment of the task. Thus, every type—even those with very low abilities and
those with very high abilities—has a strict incentive to participate if the default
is a purely-random assignment of the task. This property holds for arbitrarily
high costs of performing the task. Thus, the existence of an improvement over the
purely-random assignment is a detail-free conclusion.

Secondly, we show that, given the utilitarian welfare criterion, some threshold
rule is optimal among all binary-action rules. In other words, in order to out-
perform the class of threshold rules, more complicated mechanisms with at least
three actions would be needed.

Third, the first-best can be approximated arbitrarily closely via an appropriate
sequence of threshold numbers as the group size tends to infinity. That is, in a
large population a threshold rule (in particular, a binary-action rule) is always
good enough.

While the utilitarian-optimal threshold number tends to infinity as the popu-
lation size tends to infinity, considerable welfare improvements are often achieved
already with very small threshold numbers. Consider, for instance, a large popula-
tion in which the average ability is equal to 1, the highest possible ability is equal
to 5, and the individual cost of taking on the task is equal to 3. The following
equilibrium outcomes can be computed. In equilibrium, only agents with abilities
close to 5 will volunteer, implying that the expected ability of a volunteer is close
to 5, and the expected ability of a non-volunteer is close to 1. If a single volunteer
is required (i.e., the any-volunteer rule is used), then the task will be assigned to
a volunteer with probability 45%; if two volunteers are required, the task will be
assigned to a volunteer with probability 69%; if ten volunteers are required, the

2The set of non-extreme threshold rules includes any rule with a threshold number ¢* from 2
to n — 2, where n is the group size.



task will be assigned to a volunteer with probability 89%.

Related literature

The allocation problem considered in our paper is a (very) special case of a
social-choice setting with informational and allocative externalities (Jehiel and
Moldovanu, 2001). However, in contrast to the focus in that literature, we con-
sider here mechanisms without monetary transfers and with only two actions,
while maintaining a continuum of types. In the absence of these restrictions, that
is, with quasilinear preferences, arbitrary monetary transfers, and arbitrary action
spaces, the first best could be obtained in our setting by simply asking all agents
for their ability types, assigning the task to the highest type, and reimbursing the
cost of performing the task, which is identical across agents.?

The earlier game-theoretic literature on volunteering assumes that agents have
identical abilities, but are heterogenous with respect to the opportunity cost of
providing the public good (i.e., performing the task) or, equivalently, the personal
benefit from consuming the public good. Moreover, in the literature it is usually
allowed that the group of agents may fail to provide the public good (i.e., the
task can be avoided). Such a setting resembles the classic public-good provision
problem with private values (Clarke, 1971; Groves, 1973), except that no monetary
transfers are feasible. In a private-values setting, incentives for volunteering arise
from the threat that the public good is not provided at all rather than, as in our
setting, the threat that the public good is provided in low quality.

Rather than taking a mechanism-design approach, the volunteering literature
has focussed on two particular binary-action game rules. The coordinated volun-
teer’s game assigns the task randomly among the volunteers if at least one person
volunteers, and otherwise avoids the task altogether. The uncoordinated volun-
teer’s game is different in the sense that not just one, but all volunteers pay the
cost of performing the task. Olson (2009, first edition: 1965) conjectured that
if a volunteer’s game is played in a large population, then the probability that a
volunteer is found will be smaller than in a small population. The first equilibrium
analysis of the (uncoordinated) volunteer’s game is due to Diekmann (1985). The
subsequent literature has evaluated Olsen’s conjecture in various settings (Makris,
2009; Bergstrom, 2017; Noldeke and Pena, 2020).

In between our paper’s assumption that the public good must be provided
and the opposite assumption that it can be avoided lies the possibility that the
provision can be delayed, leading to discounted costs and benefits. The possibility
of delay naturally leads to a war-of-attrition game in which each agent waits, or
engages in some other costly search process, until someone agrees to provide the
service. Within the heterogenous-cost setting, such a game has been analyzed
by Bliss and Nalebuff (1984).* In equilibrium, it is often the “right” person who

3The fact that the efficient allocation can thus be implemented renders our setting “non-
generic” from the point of view of Jehiel and Moldovanu.
“See also Bilodeau and Slivinski (1996) for a related model with complete information. See



volunteers first, e.g., the one who has the lowest cost of providing the service, but
it can also be the one who has the highest cost of waiting, and substantial waiting
costs may have to be incurred before a volunteer is found.

2 Model

A task of public interest needs to be allocated among a group of agents 1,...,n,
where n > 2. Each agent is privately informed about her ability at performing
the task. Each agent’s ability type is independently distributed on an interval
[0, 0] according to some strictly increasing and continuous cumulative distribution
function F'.

In a binary mechanism, each player chooses between two actions, denoted by
“Y” and “N”. Assuming anonymity, a binary mechanism is characterized by a
list

P13 Pn-1.

For all j = 1,...,n — 1, the number p; denotes the probability that the task is
assigned to a randomly selected Y-player; with probability 1 — p;, it is assigned
to a randomly selected N-player. If the number of Y-players is 0 or n, the task
is assigned randomly among all agents, that is, each agent gets assigned the task
with probability 1/n.

The purely-random-assignment mechanism (p1,...,pn—1) is given by p; = j/n
for all j. These probabilities imply that the task is always assigned with equal
probability to any agent, independently of the agents’ strategies.

Given any mechanism (p1,...,pn—1), a symmetric strategy profile is charac-
terized by a function o that determines the strategy for each agent, where o(0)
denotes the probability that type 6 € [0, 0] chooses Y.

The expected utility U,(o,0) of any type 6 taking action a, who anticipates
that the other agents will use the strategy o, is denoted U,(o, 0).

The function o is an equilibrium if the following implications hold for all 6:

if 0(0) > 0 then Uy (o,0) — Un(0,0) > 0,
if 0(0) < 1 then Uy (o,0) — Un(0,0) < 0.

Mechanism-equilibrium combinations (p1,...,pn—1,0) and (p},...,p,_4,0') are
equivalent if each type obtains the same expected utility in both combinations.

Notation: selection-probability functions

Before continuing with the model description, we introduce four auxiliary func-
tions, hy, hy, qy and gy, and discuss their basic properties. These functions will
play a fundamental role throughout the paper. We call them selection-probability
functions.

Klemperer and Bulow (1999) for a general approach to war-or-attrition games, and see LaCasse,
Ponsati, and Barham (2002) and Sahuguet (2006) for more special extensions.



Taking the point of view of an agent who has chosen an action (Y or N),
the functions gy and gy describe the probability of personally getting assigned
the task, and the functions hy and hpy describe the probability that anyone in
the set of agents who take a particular action gets assigned the task. For the
most part, in our computations, binomial sums will remain hidden behind the
selection-probability functions.

The argument of the selection-probability functions is the ex-ante probability
that a given agent chooses Y,

e / o(6)AF(6). 1)

For any y € [0, 1], the probability that anyone of the Y-playing agents is selected,
conditional on the event that a given agent plays Y, is denoted

n—1

hy(y) = > By ' (pin- (2)

J=0

Here, y denotes every other (i.e., not the given) agent’s probability of playing
Y. Using the binomial distribution, B;}_l(j) = (”;1)(1 — )" 177y denotes® the
probability that, from the point of view of the given agent, j other agents choose
Y. We also use the notation p,, = 1.

The probability that anyone of the Y-playing agents is selected, conditional
on the event that the given agent plays NV, is denoted

n—1
hn(y) = > By '(i)pj (3)
=0

where we use the notation pg = 0.
The probability that the given agent is selected if she chooses action a =Y, N
is denoted ¢4(y); i.e.,

n—1 )
() = ;B§1<j>fﬁg (®)
and
n—1 1_]9'
avly) = B0 )
7=0

Often we will omit the argument y from hy, hy, gy and qy.

5We use the convention that 0° = 1.



For an illustration of the selection-probability functions in a special case, con-
sider the purely-random-assignment rule. Here, a computation that applies stan-
dard properties of the binomial distribution to the definitions (2)—(5) shows that

hy(y) = YO =Dy — =D (6)

n n
1 1
qy (y) = o an(y) = .

To understand the numerators in the formulas for hy and hy, note that, from the
point of view of a given agent, the expected number of other Y-players is equal to
y(n — 1); by playing Y, the agent adds in herself (14).

Next we establish several useful algebraic relations between the selection-
probability functions. These relations hold independently of the underlying mech-
anism.® A particularly simple formula is available for expressing gy and ¢y in
terms of hy and hpy. To see this, suppose that all agents play Y with probability
y. Then the probability that the task is assigned to a Y-player can be expressed in
the form yhy + (1 —y)hy. Alternatively, the same probability can be expressed in
the form nygy because every Y -playing agent is selected with the same probability:

nyqy = yhy +(1—y)hn. (7)

Similarly, the probability that an N-player is selected is given by

n(l=ylay = y(l—hy)+ 1 —y)(1-hy). (8)

Adding up the equations (7) and (8) confirms the ex-ante probability that any
given agent is selected:

yay + (1 —y)ay = % 9)

We state one other relation between the selection-probability functions; it refers
to the derivatives of qy and qn. The proof, which relies on standard properties of
Bernstein polynomials, is relegated to the Appendix.

Lemma 1. Consider any mechanism and any 0 < y < 1. Then

hy —hy —q

@ (y) = %, (10)
hy —hy +qn

an(y) = T ioy, (11)

®Note that the Bernstein polynomials y — By~ "'(j) (j = 0,1,...,n — 1) form a basis of the
vector space of polynomials of degree at most n — 1. Thus, from each of the four selection-
probability functions, the underlying mechanism (p1,...,pn—1) can be recovered, implying that
each of the four functions determines the other three functions.



To interpret (10), take the point of view of an agent who considers switching
from playing N to playing Y. Here, hy — hy — gy equals the change in the
probability that a Y-player other than herself gets assigned the task. As long as
this change is positive, it holds that ¢} (y) > 0, that is, an increase of y increases
the probability that the agent herself gets assigned the task if she plays Y'; similarly
if the change is negative. An analogous interpretation applies to (11).

Expected utilities

We assume the following preferences. Suppose the task is performed by an agent
of ability 8. Then every agent obtains the benefit 6. In addition, the performing
agent bears a cost ¢ > 0, where ¢ is commonly known and independent of the
identity of the agent. Agents are expected-utility maximizers.

Consider a strategy o and y defined via (1). Towards computing equilibria,
it is crucial to evaluate an agent’s expected-utility gain from playing Y versus
playing N, assuming that all other agents use the strategy o. We will estab-
lish a convenient expression for this utility gain. To this end, we express the
agents’ expected-utility functions in terms of the selection-probability functions
and conditional expected abilities. The conditional expected ability of an agent
who chooses Y is denoted

1
By — 1 /aw)edF(e) ity > 0.
Yy
In other words, Fy is the expected benefit that accrues to every agent if the task
is assigned to a Y-player.
The conditional expected ability of an agent who chooses N is denoted

1
Ex = 12 (1—-0(0))0dF(0) ify<1.
-y
That is, En is the expected benefit that accrues to every agent if the task is
assigned to an N-player.
Using this notation, the agents’ expected-utility functions are

Uy(o,0) = (hy —qv)Ey +qy - (0 —c)+ (1 - hy)EN, (12)
Un(o,0) = (1—hn—qn)EN+qn - (0 —¢)+hnEy. (13)

The interpretation of these expressions is straightforward. Consider the expected
utility (12) from playing Y: the first term captures the payoff that arises from the
event that the task is performed by a Y-player other than the agent herself, which
happens with probability hy — qy; the second term captures the event that the
agent is selected herself, which happens with probability ¢y, yielding the utility
0 — c; the third term captures the payoff that arises from the event that the task
is performed by an N-player. The interpretation of the expression (13) for the
expected utility from playing N is analogous.



Combining the expressions (12) and (13) and cancelling terms, the utility gain
from playing Y versus playing N is

Uy(0,0) —Un(0,0) = (qv —qn)(@ —¢) (14)
+ (hy —hn —qv)By + (hy — hy + qn)EN.

The three terms on the right-hand side reflect that an agent’s choice of action
affects three probabilities: to be selected herself (first term), the probability that
a Y-player other than herself is selected (second term), and the probability that
an N-player other than herself is selected (third term).

The purely-random assignment is a natural benchmark for our analysis. In
the purely-random-assignment rule, every strategy is an equilibrium. To see this
formally, note that, from (6), the right-hand side of (14) equals 0 for all o. More-
over, all equilibria are equivalent: using (12) and the law of iterated expectations
(that is, yEy + (1 —y)En = E[6)),

1 1
—)E[0]+ —(0 —c¢) forallo,all §,and a =Y, N.
n n

Ua(0,0) = (1—
(15)

These purely-random-assignment payoffs in fact obtain not only if the random-
assignment rule is used. These payoffs obtain whenever the mechanism and equi-
librium are such that an agent’s probability of getting selected is independent of
her action.”

Remark 1. Any mechanism-equilibrium combination (p1,...,Pn—1,0) such that
qv(y) = 1/n = qn(y) (where y is given by (1)) is equivalent to a purely-random
assignment.

Here is a sketch of the proof. The conclusion is straightforward if the mechanism-
equilibrium combination is such that all types prefer Y to IV or vice versa, or the
conditional expected quality of the task is the same across the two actions. Sup-
pose now that some type is indifferent between the actions N and Y, and the
conditional expected quality of the task is not the same across the two actions.
Consider an agent who changes her action from N to Y. By assumption, this
change has no impact on the probability of getting selected. Thus, the change
increases the probability that a Y-player other than herself is selected by the
same amount as it decreases the probability that an N-player other than herself
is selected. Then a type who is indifferent between the actions can exist only if
the change of the agent’s action does not actually increase (or decrease) the prob-
ability that Y-player other than herself is selected. Thus, any type’s expected
utility is as in a purely-random assignment. The formal proof is relegated to the
Appendix.

"The equilibrium assumption in Remark 1 is indispensible. If a (possibly non-equilibrium)
strategy leads to a y with the property ¢y (y) = % and gn(y) = %, it does not follow that hy (y)
and hy(y) are given as in the case of a purely-random assignment. For example, if n = 3,
(p1,p2) = (0,1), and y = 1/2, then ¢y (y) = £ = gn(y) and hy (y) = 3/4, whereas we would

obtain hy (y) = 2/3 from using the pure-random-assignment rule.



Threshold equilibria

We now introduce a special class of equilibria, threshold equilibria. Our analysis
will focus on this class. We show in Lemma 2 that this focus is without loss of
generality.

A strategy o has the threshold form if there exists 6 € [6, 8] such that () = 0
for all @ < § and o(0) =1 forall > 6. Ignoring probability-0 events, any strategy
in threshold form is characterized by the playing-Y-probability y = 1 — F(6).
Whenever we deal with a threshold strategy y, we will use the notation

Ey(y)=E[|60>F '(1-y)] and En(y)=E[f|6<F '(1-y)

for the expected ability of a Y-player and an N-player, respectively; we define the
continuous extensions Ey (0) = 6 and En(1) = 6.

Similarly, we will use the notation U,(y,8) for the expected payoff of type 6
from taking action a =Y, N if all others use the strategy y. Given any threshold
strategy v,

Ey(y) > En(y). (16)

The strategies y = 0 and y = 1 imply that one action is chosen with probability
1, so that the purely-random-assignment payoffs obtain. In any equilibrium y in
which both actions are chosen with positive probability (i.e., 0 <y < 1), the type
6 = F~Y(1 —y) is indifferent between the two actions, that is,

A(y) =0, where A(y)=Uy(y, F'(1—y) —Un(y, F'(1—y)). (17

Moreover, using (14) and the equilibrium condition, if 0 < y < 1 then an agent’s
switch from the action N to the action Y cannot reduce the probability that she
gets selected,

av(y) > qn(y). (18)

Lemma 2 shows that focussing on threshold equilibria is without loss of generality,
and the properties (17) and (18) can be maintained even if y =0 or y = 1.

Given the property (18), from now on we interpret the action Y as “volunteer-
ing” and the action N as “non-volunteering”.

Lemma 2. For any mechanism-equilibrium combination, there exists an equiva-
lent mechanism-threshold-equilibrium combination, (p1,...,Pn—1,Y), such that the
properties (17) and (18) hold.

The intuition is that we can construct an equivalent mechanism-equilibrium
combination by switching the labels of the actions Y and N. The formal proof is
relegated to the Appendix.



For later use, we establish a simple property of those threshold equilibria in
which volunteering actually increases the probability of getting selected: in such
an equilibrium it cannot be true that all types volunteer.®

Remark 2. Any threshold equilibrium y with qy (y) > qn(y) satisfies y < 1.

The intuition behind this result is simple: if an agent expects that with prob-
ability y = 1 somebody else will volunteer, then by volunteering herself she will
reduce the expected ability of the selected agent if she herself is endowed with the
lowest ability € or an ability close to that. The formal proof is relegated to the
Appendix.

Because the inequality (18) and its strict version will occur frequently in the
subsequent analysis, it is useful to note that these inequalities can be expressed in
an alternative form if the strategy is such that some types do not volunteer. The
proof is straightforward from (9).

Remark 3. Consider any threshold strategy y < 1. Then the inequality (18)
holds if and only if gy (y) > 1/n. The inequality qy (y) > qn(y) holds if and only
if v (y) > 1/n.

The planner’s (binary-second-best) problem

We consider the utilitarian welfare objective. Given our focus on symmetric equi-
libria, this objective is equivalent to maximizing any agent’s ex-ante expected
utility. Because the task cannot be avoided, each agent pays the cost ¢/n in any
mechanism-equilibrium combination. Thus, the planner’s objective boils down to
assigning the task such that the expected ability of the selected agent is maxi-
mized.

Without loss of generality, we restrict the allowed mechanism-equilibrium com-
binations in line with the result of Lemma 2. Given any strategy y, a volunteer
is selected with probability nyqy and a non-volunteer is selected with probability
n(l — y)gn. Thus, the expected ability of the selected agent is

& = nygvEy +n(l —y)gnEn. (19)
Hence, the planner’s (binary-second-best) problem is to

max &
P1esPn—1,Y

s.t. 0<p; <1 (j=1,...,n—-1),
0<y<1,
A(y) =0,
qv(y) —an(y) > 0.

8The assumption gy (y) > gn(y) in Remark 2 cannot be replaced by the weaker condition
(18); this condition would leave open the possibility of a purely-random-assignment rule in which
y = 1 is in fact an equilibrium.

10



Using (9), we can alternatively write the objective purely in terms of gy, as
& = nygy(BEy — En) + EN. (20)

We will solve this problem in Section 3.2.

The binary-first-best problem

In this section, we solve, as a benchmark, the problem of a planner who is not re-
stricted by equilibrium constraints. Secondly, we show how the cost of performing
the task creates a conflict between the solution to the first-best problem and the
equilibrium condition. Finally, we characterize the large-population limit of the
binary-first-best solution.

The planner’s binary-first-best problem is as follows:

max &
P1esPn—1,Y

s.t. 0<p;<1 (j=1,...,n—-1),
0<y<L

The interpretation is that, by setting any y, the planner has the power to make
the types in [F~(1 —y), 0] play Y and to make the types in [§, F~!(1 — y)] play
N.

The binary-first-best problem maintains the restriction to binary mechanisms
and threshold strategies. The standard first best, in contrast, is defined without
these restrictions. The solution to the standard first-best problem is to always
assign the task to the agent with the highest ability among all agents. Given that
a continuum of types exist, this solution can obviously not be reached exactly with
a binary mechanism.

The mechanism

is called the any-volunteer rule.

Proposition 1. The solution to the binary-first-best problem involves using the
any-volunteer rule. Denoting by y** the volunteering rate in a solution, we have
0 <y <1 and d€ [ dy|,—yp« = 0.

Proof. Given any 0 < y < 1, (16) together with (20) shows that the optimal
mechanism maximizes gy (y). Thus, from (4) the any-volunteer rule is the unique
optimal mechanism if 0 < y < 1. Moreover, the any-volunteer rule is an optimal
mechanism if y = 0 or y = 1. Consequently, a binary-first-best optimal y = 3** is
found by solving the problem

max€& s.t. 0 <y <1,
Yy

11



where £ is evaluated specifically for the case of the any-volunteer rule (p;...,

Pn-1) = (1,...,1).
In the case of the any-volunteer rule, (2) and (3) imply that, for all y,

hy(y) =1 and hy(y) =1-(1—y)" " (21)

Thus, (7) implies that
1 .
aly) = L 0= =y ify>0. (22)
Also, (5) implies that

) = CB0)= (- (23)

n
Thus, using (19), in the case of the any-volunteer mechanism,
& = (1-(1-y)")Ey +(1—-y)"En.

The first-order effect of increasing y is

d€ . dEy dEyN
= = n1l-y)"Y(Ey - E 1—(1—9)") —L 4+ (1 —g)"—2
i n(l—y)" ' (By —En)+(1—-(1-y)") a0 +(1—y) &y
where
6 101 _ .
dBy _ d (1 / oar()) - 1=y - By (24)
dy dy \y Jr-11-y) (0
and
1 F=1(1-y) — 1=
dEy _ 4 L / odr()| = Ev=F 1y (25)
dy dy \1—-y Jy -y

Clearly, any binary-first-best y®* satisfies 0 < y** < 1 because otherwise the
purely-random assignment would obtain. To confirm, one can verify that d€/dy|,—1
0 — E[0] <0 and d€/dy|y—o = (n — 1)(6 — E[f]) > 0. This completes the proof of
Proposition 1. [

In the proof above we have evaluated the welfare effect of marginally increasing
the volunteering rate y when the any-volunteer rule is used. If a general binary-
action rule is used, there is a surprisingly simple and useful formula that connects
this welfare effect to the marginal type’s utility gain from playing Y versus playing
N. This formula, stated in Lemma 3, captures how the conflict between the
planner’s welfare goal and an agent’s equilibrium condition depends on the cost
of performing the task.
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Lemma 3. Consider any mechanism and any (not necessarily equilibrium,) thresh-
old strategy y. Then

o= 0+ ey () - av()e
Proof. Applying the product differentiation rule to (19), we find
izj = qyvEy —gqnvEN + ydj;/EY + (1 - y)CZjVEN
+ yqy% +(1- y)qzvddEyN' (26)
Plugging (24), (25), (10), and (11) into (26), we get
ij‘; = (Ey — En)(hy —hn) +avEn —av By + F1(1—y)(qvy — qn)-

Using (14) and the definition of A(y) in (17), the claimed formula follows. O

An immediate implication of Lemma 3 is that, if the cost of performing is
positive (¢ > 0) and an agent’s task-assignment probability is not independent
of her action (i.e., gy (y) > ¢qn(y)), then at any equilibrium volunteering rate y
(i.e., A(y) = 0), the welfare is strictly increasing in the volunteering rate. This
free-rider problem vanishes if the volunteering cost is equal to 0.

Corollary 1. Assume ¢ = 0. Then the any-volunteer rule, together with any
binary-first-best volunteering probability, solves the planner’s binary-second-best
problem.

Proof. If ¢ = 0, then any binary-first-best volunteering probability y = y** is an
equilibrium in the any-volunteer rule. This is because %bzyb* = 0 by binary-
first-best optimality, so that Lemma 3 implies A(y%*) = 0. Moreover, as shown
above, any solution to the binary-first-best problem involves the any-volunteer
rule because 0 < y** < 1. O

The binary-first-best expected ability of the selected agent is

e = g, (") (By () — Ex(y™)) + En(y).

Remark 4 states that, in the binary first-best in a large population, the individual
volunteering probability tends to 0, the probability that at least one agent volun-
teers tends to 1, and the expected ability of the selected agent tends to the highest
possible ability. This follows from the fact that in a large population, an agent
with an ability close to the highest possible ability exists with a probability close
to 1. A detailed proof can be found in the Appendix.

Remark 4. Asn — oo, y** — 0, ny”qy (y**) — 1, and £ — 9.

An immediate implication of Remark 4 is that the standard first-best is ap-
proximated by the binary first best if the population is large.
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Threshold rules

A mechanism (p1,...,pn—1) is called a threshold rule if there exists a number ¢*
(1 <4* <n—1) such that p; = 1 for all j > ¢* and p; = 0 for all j < i*. Our
main results will concern threshold rules.

The any-volunteer rule is a threshold rule; set i* = 1 and p; = 1. More gen-
erally, a threshold rule captures the idea of what we call the multiple-volunteers
principle. Each agent anticipates that playing Y puts her in a lottery box together
with the other Y-playing agents if altogether more than ¢* players play Y, and
releases her from the task if altogether fewer than ¢* players play Y. If the thresh-
old number * is reached exactly, the decision whether or not she will be in the
lottery box may itself be randomized (via the probability p;«). Stipulations are
analogous if the agent plays N. If the number of other agents who play Y equals
1* — 1 or 7*, then the agent can be pivotal, that is, her own action choice can have
an impact on whether the task is assigned via a lottery among the Y-players or
via a lottery among the N-players.

From a given agent’s point of view, the pivotality of her action choice may be
measured in terms of the difference between the selection probabilities defined in
(2) and (3). When applied to a threshold rule, this difference simplifies to

hy(y) = hn(y) = By~ ()1 —pi) + By~ (i* = 1)pi-. (27)

This difference will play an important in our analysis. In particular, a very useful
property is its quasiconcavity: as the volunteering rate increases, the pivotality
first increases and then decreases. More precisely, the following holds.

Lemma 4. If n = 2, then the threshold rule with i* = 1 and p* = 1/2 satisfies
hy (y) — hn(y) = 1/2 for all y € [0,1].
For any other threshold rule if n = 2, and for any threshold rule if n > 3,

Jy*™ € 10,1] Vy € (0,1) : (28)
(hy —hn)'(y) >0 if y <y, and (hy — hy)'(y) <0 if y > y™™.

Note that formula (28) is immediate from standard properties of binomial
probabilities if p;« = 1 or p;+ = 0. The complete proof, in which we also consider
the “mixed” cases where 0 < p;+ < 1, and the special case n = 2, is relegated to
the Appendix.

For later reference, we restate the other two selection-probability functions as
specialized for a threshold rule:

n—1

n—1/. 1 n—1/ % 1
av(y) = Y By ') ——+By (" — Dpir— (29)
J=i* g+ !
and
. 1 1
av(y) = > By () -+ By (i) (1 — ppe) —— (30)
= n—3j n—1



3 Results

3.1 Improvement over the purely-random assignment

In this section, we define non-extreme threshold rules and show that any such
rule always has an equilibrium such that every type of agent is strictly better off
than in a purely-random assignment (Proposition 3). The any-volunteer rule, in
general, does not have this strict-improvement property (Proposition 4).

We begin by showing that any binary mechanism provides a weak improve-
ment compared to a purely-random assignment, and formulate conditions for a
strict improvement (Proposition 2). The weak-improvement property justifies our
formulation of the designer’s problem without a participation constraint: if upon
rejection of the planner’s rule a purely-random assignment obtains, all types find
it weakly optimal to participate in the rule.

Proposition 2. Consider any mechanism-threshold-equilibrium combination (p; .. .

Then all types are at least as well off as in the purely-random assignment. If
0 <y <1andqy(y) > 1/n, then all types are strictly better off than in the
purely-random assignment.

The proof of the “at-least-as-well” part follows from Remark 1. The proof of
the “strictly” part of Proposition 2 is as follows. Consider an equilibrium y and
consider any agent with a given type. Suppose that this type of the agent deviates
from the equilibrium by volunteering with probability ¥ and not volunteering with
probability 1 — y. Because the agent mimics the average behavior of any other
agent, she will be selected with probability 1/n; in this event, her payoff is the
same as in a purely-random assignment. In the complementing event that the
agent is not selected, her payoff is the same as her ex-ante expected payoff when
she follows the equilibrium strategy, conditioning on the same event. This payoff
equals the equilibrium expected ability of the selected agent, which is higher than
the expected ability in a random assignment if gy > qn. The formal proof can be
found in the Appendix.

Proposition 2 does not answer the question whether or not a strict improve-
ment over the purely-random assignment is possible at all. Proposition 3 gives an
affirmative answer for all group sizes n > 2.

A threshold rule is called non-extreme if the assignment probability to a vol-
unteer is below pure randomness if there is a single volunteer (i.e., p; < 1/n), and
the assignment probability to a non-volunteer is below pure randomness if there
is a single non-volunteer (i.e., p,—1 > 1 — 1/n). This condition is satisfied for all
threshold rules with 2 < ¢* < n — 2. A non-extreme threshold rule exists if and
only if n > 2.

Proposition 3 shows that any non-extreme threshold rule has an equilibrium
that satisfies the strict-improvement conditions stated in Proposition 2 and, thus,
is not equivalent to a purely-random assignment.? This conclusion holds no matter

9 Among the extreme threshold rules are the any-volunteer rule (where p1 = 1) and the all-
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Figure 1: An example of a task assignment problem. There are n = 5 agents. The
ability of each agent is uniformly distributed on [0, 1]. The performance cost is ¢ = 1. The
diagram shows several functions of the volunteering rate y, for the case of the threshold
rule that requires two volunteers (i.e., i* = 2 and p;+ = 1). The function hy (y) — hn(y)
captures the impact of an agent’s switch from non-volunteering to volunteering on the
probability (computed from the switching agent’s point of view) that the task gets assigned
to a volunteer. The function gy (y) captures the probability an agent assigns to the event
of being selected if she volunteers. The function A(y) captures an agent’s payoff gain
from volunteering. The volunteering rate ¢ is an equilibrium that satisfies the strict-
improvement conditions stated in Proposition 2.

how large the cost c is.

Proposition 3. For any non-extreme threshold rule, the set {y € [0, 1] | A(y) =0}
is non-empty and its maximal element, g, is an equilibrium with 0 < § < 1 and
qy () > 1/n.

The main step towards proving Proposition 3 is Lemma 5. This result concerns
the impact of an agent’s switch from non-volunteering to volunteering on the
probability hy — hy — gy that a volunteer other than herself gets assigned the
task. Suppose this impact is strictly positive if the volunteering rate is small, is
strictly negative if the volunteering rate is large, and the quasiconcavity condition
(28) is satisfied. The Lemma shows that there is only one volunteering rate such
that the impact equals 0, that is, the impact function changes its sign only once.

Lemma 5. Consider any binary mechanism such that (28) holds. Assume that

hy (y) — hn(y) — gy (y) > 0 for all y > 0 sufficiently close to 0, (31)
and hy (y) —hn(y) — qv(y) <0 for all y < 1 sufficiently close to 1. (32)

volunteer rule (where p,—1 = 0). These rules lead to fundamentally different incentives from the
non-extreme threshold rules. We discuss the any-volunteer rule at the end of this section. In
the all-volunteer rule, a threshold equilibrium with a positive level of volunteering does not exist
because gy (y) < 1/n for all y < 1.
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Then there exists a unique y™! € (0,1) such that

hy (y™) — hy(y™) — gy (y™) = 0.

The proof of Lemma 5 can be found in the appendix. Here is a sketch. We have
to show that the functions ¢y and hy — hy intersect only once (cf. Figure 1). By
assumption (32), gy lies above hy — hy at y = 1. Because gy lies below hy — hy
at small values of y, and lies above at large values, there is a maximal intersection
point y™!. What we have to show is that another, earlier, intersection point
cannot exist. We prove this in two steps. First, there exists no interval bounded
by intersection points y' and 7' such that at the points in the interior of the
interval gy lies above. Second, gy actually lies below hy —hy at all points smaller
than y™!. The crucial tool for both steps is (10).

As for the first step, by construction of the supposed interval, hy — hy is at
most as steep as gy at the left boundary point y', and is at least as steep as gy
at the right boundary point 7. Because both points are intersection points, the
function gy has a horizontal tangent at these points by (10). Therefore, hy — hy
must have a non-positive derivative at y' and a non-negative derivative at 7',
contradicting the quasilinearity assumption (28). Thus, the supposed interval
cannot exist, showing that hy — hy is at least as large as gy at all points to the
left of y™!.

As for the second step, suppose that there exists an intersection point smaller
than y™!. At this point, by the first step, the functions hy —hy and gy must have
the same slope, which by (10) equals 0. Now using the quasilinearity assumption
(28), this intersection point must be the point y*™. Again using (10), the function
qy is strictly increasing on the interval [y*™,y™!], contradicting the fact that on
this same interval the function hy — hy is strictly decreasing by the quasilinearity
assumption (28). This completes the proof of Lemma 5.

The proof of Proposition 3 begins by showing that every non-extreme threshold
rule satisfies the assumptions of Lemma 5. By Lemma 4, (28) holds. To get the
intuition for why (31) is satisfied, consider a threshold rule with p;+ = 1. Concern-
ing both functions, the pivotality hy (y) — hn(y) and the individual assignment
probability gy, the relevant event is that at least ¢* — 1 other agents choose to
volunteer. Conditioning on this event, and considering a small volunteering rate
1y, it is then extremely likely that the threshold ¢* is reached exactly, so that the
agent is almost certainly pivotal, but she herself gets assigned the task only with
probability 1/i*. Thus, for all i* > 2 the function hy (y) — hy(y) lies above the
function ¢y if y is small; in the case i* = 1 this argument breaks down and the
non-extremeness assumption becomes relevant.

To see why (32) is satisfied, consider any agent who believes that everybody
else volunteers (y = 1). Then switching her action from non-volunteering to
volunteering changes the probability that a volunteer is selected from p,_1 to 1.
Thus, hy (1) — hny(1) = 1 — p,—1, whereas the individual assignment probability
is gy (1) = 1/n, independently of the underlying rule. Hence, (32) is immediate
from the non-extremeness assumption.
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Given that the conditions of Lemma 5 are satisfied, the next observation is that
qy (y™%) > 1/n; this follows because gy (1) = 1/n and gy is strictly decreasing on
the interval [y™!,1] by (10). Lowering y further below y™!, we reach a point
7 < y™! where gy (§) = 1/n (because gy (0) < 1/n by non-extremeness). Note
that gy lies strictly above 1/n on the open interval (y,1). Using Remark 3,
gn(g) = 1/n. That is, at the point ¢, the agent’s action has no impact on the
probability that she gets assigned the task. On the other hand, Lemma 5 implies
that hy —hy lies above gy at the point §. That is, switching from non-volunteering
to volunteering increases the probability that the task gets assigned to a volunteer
other than herself. Thus, the payoff gain from switching is strictly positive at the
point g. Finally, the payoff gain is clearly strictly negative at the point where
everybody else volunteers (y = 1). Thus, the maximal point § where the payoff
gain equals 0, lies strictly between ¢ and 1, implying that the strict-improvement
conditions stated in Proposition 2 are satisfied at this equilibrium. The formal
proof of Proposition 3 is relegated to the Appendix.

The following result is immediate from Proposition 2 and Proposition 3.

Corollary 2. Suppose that there are n > 3 agents. Then the purely-random
assignment does not solve the binary second-best problem.

In the case n = 2, it is straightforward to verify that ¢y (y) — qn(y) = p1 — 1/2
for all y € [0, 1] and any mechanism p; € [0, 1], and (14) simplifies to Uy — Un =
(p1 — 1/2)(0 — ¢ — E[f]). Thus, a threshold equilibrium y with 0 < y < 1 and
qv (y) —gn (y) > 0 (or, equivalently, ¢y (y) > 1/2) exists if and only if p; > 1/2 and
c < 0 — E[f]. Thus, in the case n = 2 the purely-random assignment is optimal if
and only if ¢ > 6 — E[f].

We end this section with a discussion of the any-volunteer rule. We show that
there always exists an equilibrium in threshold form. If the cost is low, then a
strict improvement over the purely-random assignment is achieved in equilibrium;
if the cost is high, then the threshold will be such that nobody volunteers and the
purely-random assignment obtains. Thus, the incentives in the any-volunteer rule
differ fundamentally from the incentives in a non-extreme threshold rule: a non-
extreme threshold rule always allows for an improvement over the purely-random
assignment, while the any-volunteer rule does not.

Proposition 4. If ¢ < 6 — E[f], then the any-volunteer rule has a threshold
equilibrium y such that 0 <y <1 and qv(y) > qn(y).

If ¢ > 0 — E[6)], then the unique equilibrium of the any-volunteer rule is y = 0,
so that the purely-random allocation obtains. If ¢ < 6 — E[f)], then any equilibrium
y satisfies 0 < y < 1.

The reason the any-volunteer rule can lead to the breakdown of volunteering
can be understood if we consider an agent of highest ability who believes that
nobody else will volunteer. Switching her action from non-volunteering to volun-
teering raises the probability that she herself gets assigned the task by 1 — 1/n.
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At the same time, the switch reduces, by the same amount, the probability that
a non-volunteer other than herself is selected. Thus, the agent faces an equal-
probability tradeoff between the payoff from volunteering herself, § — ¢, and the
payoff from letting somebody else do the job, E[f]. Thus, she will not volunteer
if the cost is high. This argument shows that in case ¢ > § — E[f] there exists no
equilibrium y # 0 in the vicinity of 0. To provide a complete proof of Proposition
4, we must also exclude equilibria y arbitrarily far away from 0. All the remaining
steps can be found in the Appendix.

3.2 Optimality of a threshold rule

In this section, we show that the solution to the planner’s problem always involves
a threshold rule (Proposition 5). Towards proving this, it is useful to know that
the equilibrium condition can be relaxed so that it becomes an inequality.

Lemma 6. Any solution to the binary second-best problem also solves the relaxed
problem in which the constraint A(y) = 0 is replaced by the inequality A(y) > 0.

Proof. Let (p1,...,pn—1,y) be a solution to the relaxed problem. Suppose first
that gy (y) = qn(y). Then gy (y) = qn(y) = 1/n by (9), implying £ = E[f] by
the law of iterated expectations. Thus, the value at the optimum of the relaxed
problem equals the value at the optimum of the planner’s problem. This implies
the desired conclusion.

Now consider cases in which ¢y (y) > gn(y). Suppose that y = 1. Applying
the equation (45) at =0 = F~1(1 —y),
Aly) =Uy(y, F'(1—y)) = Un(y, F ' (1 —y)) = (% —1+pa-1) (@ —c— E[d]).

N———
<0

The right-hand side is < 0 because the constraint gy > ¢ implies %—1+pn_1 > 0,
yielding a contradiction to the relaxed inequality constraint.

We conclude that y < 1. Suppose that A(y) > 0. Applying Lemma 3, d€ /dy >
0. This is a contradiction to optimality because none of the constraints on y is
binding. O

Proposition 5. Any solution to the planner’s problem involves a threshold rule.

Proof of Proposition 5. Consider any solution (p; ..., pn—1,9).

If n = 2, then we have nothing to prove because any binary mechanism is a
threshold rule.

Assume that n > 3. Corollary 2 implies that 0 < y < 1 because otherwise
(p1...,Pn—1,y) would be equivalent to a purely-random assignment. Similarly,
qy (y) > qn(y) because otherwise gy (y) = 1/n = qn(y) from (9), implying purely-
random-assigment payoffs by Remark 1.

By Lemma 6, (p1...,pn—1,¥y) solves the relaxed problem.

19



Fixing y, the remaining relaxed maximization problem over (pi,...,pn—1) is
a linear problem. Hence the Lagrange conditions are necessary and sufficient,
without any qualification. Let A > 0 denote the Lagrange multiplier for the
constraint Uy (y, F~1(1 —y)) — Un(y, F~ (1 —y)) > 0. Due to gy (y) > qn(y), the
Lagrange multiplier for the constraint gy (y) — gn(y) > 0 equals 0.

Let 0 = F~'(1—y). Forall j =1,...,n— 1, consider

S0= <?> y'(L=y)" (By - En)
+<?:i)y;’_1(1 gy <A <JJ_1EY + ;(9 —c) - EN))
_(n;l)yj(l_y)n1j(A(Ey—n;iglEN_nij(é_C)>)'

The Lagrange conditions require:

if 5; > 0, then p; =1,

if 5; <0, then p; = 0. (33)
Moreover,
if Uy (y,0) > Un(y,6), then A = 0. (34)
The sign of 5; is preserved if instead of §; we consider the variable
5; ,
Sj = T — for all j.
(j)y] (1 - y) J
Thus,
j j-1. 1.
si = y(1-y)(By — En) + A (1-y) TEY + ;(9 —c)—En
—J —j—1 1 .
A ]y<Ey—n ) By - ,(9—c)>
n n—j n—j
1 _ A .
= y(1—y)(By — Bx) + =1 =) (( = DBy + (0 — ) - jEn)
1 . . A
A=y ((n=j)By = (n—j = DEy = (0—0)). (35)

Consider the case that A > 0.

1
s; = )\E (Ey — EN) j + [terms independent of j].

| e
>0

If s; < 0 for all j, then (33) implies that (p1...,pn—1) = (0,...,0), a threshold
rule.
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Otherwise let i* be the smallest integer such that s; > 0. Then (33) implies
that (p1...,pnp—1) is an i*-threshold rule.
It remains to consider the case A = 0. Then (35) implies

sj = y(1-y)(By — En).

That is, s; is independent of j and s; > 0, implying p; = 1 for all j, that is, the
solution entails the any-volunteer rule. O

The remaining question is which threshold mechanism and threshold equilib-
rium solves the planner’s problem. We have already seen (Corollary 1) that the
any-volunteer rule is uniquely optimal at ¢ = 0. We will show below that threshold
rules with arbitrarily large ¢* can be optimal as the group size n becomes large.

3.3 Volunteering in a large population

In this section, we characterize equilibrium volunteering levels of threshold rules
when the population is large (Proposition 6) and demonstrate how the first best
can be approximated in a large population (Proposition 7). To simplify the no-
tation, we only consider “pure” threshold rules, that is, we assume that p;» = 1,
where 7* > 1 is the threshold.

Proposition 6 considers sequences of equilibria that are indexed by the pop-
ulation size. We show that any pure ¢*-threshold rule with a sufficiently large
threshold i* has a sequence of equilibria along which the expected number of
volunteers remains bounded away from 0 as the population becomes arbitrarily
large; we derive a formula for the large-population limit of the expected number
of volunteers. Furthermore, we obtain a formula for the limit probability that
the task is assigned to a volunteer, which in turn yields a formula for the limit
expected-ability of the selected agent.

Proposition 6 considers thresholds i* so high that the inequality ¢/i* < 0 — E[f]
is satisfied.!? This inequality is crucial towards proving the existence of equilibria
with volunteering rates that stay bounded away from 0 as the population grows
large. To understand why, assume a large population and consider an agent who
believes that the marginally volunteering type among the other agents is close
to 0:; the expected ability among the other volunteers is then close to 6 as well.
Conditional on the event that the required number of other volunteers ¢* — 1 is not
reached, the agent is essentially indifferent between volunteering or not because

9Bergstrom and Leo (2015) obtain formulas similar to those in Proposition 6 in the case i* = 1,
in a setting without private information. They define the coordinated volunteer’s dilemma as
the game in which, similar to the any-volunteer mechanism, the task is performed by a randomly
selected volunteer if and only if at least one volunteer comes forward; if nobody volunteers, then
the task is not performed at all. The task has a commonly known benefit b to each agent; thus,
equilibria are in mixed strategies. Denoting by r* the large-population-limit probability that at
least one individual volunteers in equilibrium, formulas analogous to those in Proposition 6 hold
with i* = 1 and § — E[0] replaced by b.
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the population is large and most likely she will not be selected. Now consider the
event that the required number of other volunteers i* — 1 is reached. Then, for a
type close to @, the benefit from volunteering is approximately equal to the quality
change from the job being done at average quality (E[f]) to the job being done at
top quality (). On the other hand, if the number of other volunteers is exactly
equal to i* — 1, then the cost of volunteering is ¢/i* because the agent because will
be selected with probability 1/i*.

A central role is played by the Poisson distribution. For any z > 0, let
Pois(z)(i) = z'e~%/i! denote the probability of the realization i = 0, 1,... accord-
ing to the Poisson distribution with expectation z. The corresponding hazard-rate
function,!t
_ Pois(z)(i) 1

S Pois(2)(j) | ilye, 2

7!

hPois(Z) (Z)

(36)

will be used in the characterization of equilibrium volunteering.

Proposition 6. Consider the threshold rule with parameter i* > 1 and p;= = 1.
Assume that c/i* < 0 — E[0]. Given any sequence of threshold equilibria ({,)
defined for all population sizes n > i, let z, = ny, denote the corresponding
expected number of volunteers.

There exists a sequence of equilibria such that liminf,, z, > 0.

For any such sequence,

Zn — 2%, where K77 (%) =

Let (ry,) denote the sequence of equilibrium probabilities that the task is assigned
to a volunteer, that is, rn, = nynqy (Jn) for all n > i*. Then

oo
rn — 1" €(0,1), wherer® = Z Pois(2*)(j).

j=i*

The sequence of equilibrium levels of the expected ability of the selected agent con-
verges to r*0 + (1 — r*)E[6)].

The intuition behind Proposition 6 is as follows (for proof details see the Ap-
pendix). First, recall that the Poisson distribution is the limit of binomial distri-
butions as the number of draws grows large and the expected number of successes
stabilizes. For large n, the number of volunteers therefore approximately follows
a Poisson distribution. The intuition behind the formula for z* stated in Propo-
sition 6 is that for the marginally volunteering type (= # in a large population),

"1The denominator in this definition can also be written by using the upper incomplete gamma
function, which is given in terms of an integral instead of an infinite sum. The infinite sum is the
more useful representation for our analysis.
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the benefit of volunteering must be equal to the cost of volunteering. The benefit
converges to the limit probability of being pivotal,

6—2* (Z*)i*—l
(i* — 1)V’

times the induced change in the quality of the job done, which converges to §— E[f]
for the marginal type. The cost of volunteering equals ¢ times the probability of
being selected, assuming that other agents use the equilibrium strategy. With
a Poisson distributed number of volunteers with mean z*, the expected cost of

volunteering is
. .
e (z%)!
D D
T
Setting this equal to the above formula for the benefit of volunteering yields the
formula for z* that is stated in the proposition. The formula for r* is straight-
forward from the fact that the binomial distribution converges to the Poisson
distribution.
We remark that, because the function z — hP°(*)(;) is strictly decreasing, the
expected number of volunteers, z*, is strictly decreasing in the ratio ¢/ (0 — E[6)]).

Moreover, because the function z > hP‘)iS(z)(i) approaches the value 1 as z — 0,
z* is close to 0 if ¢/(0 — E[6)]) is close to i*.

The following result shows that the first-best optimal assignment can be ap-
proximated arbitrarily closely via an i*-threshold rule if * is chosen sufficiently
large and the population is sufficiently large. This result is important because it
shows that binary mechanisms, although being very simple with just two possi-
ble actions for each agent, are sufficient to approximate the first best in a large
population. The reason a binary mechanism may be good enough is that the infor-
mation to be extracted from the agents is binary as well: each agent is essentially
asked whether or not her type is close to the highest feasible type. The nonobvi-
ous feature of the ¢*-threshold rule with large ¢* is that in equilibrium it becomes
almost certain that at least * volunteers will come forward if the population is
sufficiently large.

Proposition 7. Consider r* as defined in Proposition 6. Then lim_, oo 7" = 1.

Because the proof is relatively short and is best understood in algebraic terms,
we present it here.

Proof of Proposition 7. From Proposition 6,

hPois(Z*)(Z‘*) — C/Z
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Using the shortcut k = ¢/(6 — E[f)]), the above equality can also be written as
oo
*Pois(z*)(i*) = kY Pois(z*)(j)
j=ir

or, using the definitions of Pois(z*)(:*) and of r*,

O G .

1 W = KRI . (37)
We will use the following (Chernoff) bounds for tail probabilities as applied to a
Poisson random variable with mean z:

ZPois(z)(j) < ﬂ for all i > 2, (38)
j=i '

L , e *(ez)" ,
ZPOIS(Z)(]) < — for all i < z. (39)
=0

To prove (38), let X denote a Poisson distributed random variable with mean z.

Then
s Y& (i et &,
(2) =2 2) =2 =

k=0

Thus, (38) follows from the Markov inequality:

E[X > i] = Pr[<i>x > (l>] CHET_ ()"

z

The proof of (39) is analogous.
We begin by showing that

z* > 4* for all sufficiently large i*. (40)

Suppose that z* < i*. Using (38) and the definition of r*,

* >k
e % (ez*)"

Using (37), we can substitute 7* and obtain

" e~ %" (Z*)z* ,{e_z* (ez*)i*
After cancelling terms,
i*i*—‘rl



By Stirling’s formula, the left-hand side tends to infinity as ¢* — oo, yielding a
contradiction. This shows (40).

In particular, v/i* — 1/2* — 0 as i* — oco. Because the right-hand side of (37)
is bounded by &, it also follows that

e () T NF =1

0.
(i = 1)!
By Stirling’s formula,
ez’*flfz* (Z*)i*fl
i = 1)@*-1) — 0.
Thus, using (39) with ¢ =i* — 1,
ez‘*—l—z* (Z*)i*—l
¥
1—r"< o 1)(i*_1) — 0,
implying lim;+ oo 7* = 1. O

Conclusion

If a task is to be assigned among a group of agents with heterogenous abilities,
the multiple-volunteers principle turns out to be a powerful tool for improving
welfare. Many possible extensions and variations of the model come to mind,
including heterogeneous costs, other preferences that may include altruism or be-
havioral elements like regret aversion, tasks that can be avoided, a task that is
pleasant instead of being costly, or more complex mechanisms (e.g., sequential
mechanisms). Moreover, volunteering for a lottery may be a way to signal to the
public that one’s own ability type is high. These extensions are left for future
research.

4 Appendix

Proof of Lemma 1. Using the definition (4),

n—l .
av(y) = Pj+1
; (n—G+1)
1 n—1
= 5 2B+ Dpin (41)
7=0

Applying the quotient rule,

, S (£B3G+ 1y - By +1)) pina
ay(y) = P .
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Thus, using the following standard identity about the derivative of a Bernstein
polynomial,

B = n(BTG-D-B70), (42)

and using again (41), we obtain

nY 0o (Br~1(j) — By~ (i + 1) pj+1y — nyay
. .
ny

Now (10) follows from the definitions (2) and (3). The proof of (11) is analogous.
O

Proof of Remark 1. Suppose first that Uy (0,0) — Un(o,6) > 0 for all § € [6,0].
Then the equilibrium condition implies that all agents always play Y, yielding a
purely-random assignment, as was to be shown. The same conclusion obtains if

Uy (0,0) — Un(0,0) < 0 for all 0 € [0, 0].
The remaining possibility is that Uy (o, 0) — U, N(O’, ) changes its sign, that is,

there exists 6 € [0,6] such that Uy (0,0) — Un(c,0) = 0. Now using (14) with
6 = 0 and recalling that ¢y = gy = 1/n, it follows that

0 = (hy —hy— %)(Ey By,

In the case Ey = Ep, the law of iterated expectations implies that Fy = Eny =
E[f]. Thus, equivalence holds because the right-hand sides of (12) and (13) are
equal to the right-hand side of (15).

In the case Ey # Ey, we conclude that hy — hy — % = 0. On the other hand,
(7) implies that y = yhy + (1 — y)hy. Solving the system of these two equations
leads to the formulas in (6). Plugging these into (12) yields that

Uy(0,0) = yn_lEy%—%'(0—c)+(1—y)n_1EN
= (- 2)EE+ 00,

by the law of iterated expectations. Thus, the payoff from playing Y is the same as
in the random-assignment rule. The analogous statement for the action N follows
from a similar computation. O

Proof of Lemma 2. Consider any mechanism-equilibrium combination
(plla s 7p’/I’L—17 O-,)'

Analogously to (1), let ¥/ = [o¢/(0)dF(6) denote the probability that an agent
plays Y.
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Any equilibrium with 3/ = 0 or 3y’ = 1 yields the random-assignment allocation.
Thus, an equivalent mechanism-equilibrium combination in threshold form is given
by the purely-random-assignment rule together with any threshold strategy y, that
is, we can set (p1,...,pn-1,y) = (1/n,...,1—=1/n,y). The desired conclusion holds
due to (6) and (15).

Suppose that 0 < 3’ < 1. Then there exists a type 6 € (8,0) such that
Uy (0’,0) = Un(c’,0). Thus, using (14),

Uy(o',0) = Un(o',0) = (av(y) —an(y)(0 ). (43)

W__”

There are three cases, (i) gy (y') > qn(v), (ii) “<”, and (iii)
In case (i), (43) implies that the strategy ¢’ is the threshold strategy y’. Thus,

we can set (p1,...,pn—1,9) = (P}, .., P _1,Y).
In case (ii), (43) implies that

o'(0) =1 for all 0 < 0,
o'(0) =0 for all § > 6.

We obtain an equivalent mechanism-equilibrium combination (p1,...,pn—1,0) by
setting p; = 1—pj,_; and 0(f) = 1—0'(#). Thus o has the threshold form, showing
that the desired conclusion holds with y =1 — ¢/.

In case (iii), (9) implies that qy(y') = 1/n = qn(y'). Thus, the conclusion
follows from Remark 1. O

Proof of Remark 2. Given any mechanism (p1,...,pn—1), the threshold strategy 1
leads to the following values of the conditional-expectation functions and probability-
selection functions:

1
Ey(1) = E[0], En(1) =0, hy(1) =1, hn(1) =pp-1, qv(1) = - gn(1) = 1=pp_1.
(44)
Plugging all of that into (14), we obtain

1
Uy (1L6) = UN(1,0) = (5 —1+pa1) (6—c—E[f) (45)
—_———
<0 forall @ ~46.

Suppose that y = 1. By equilibrium, Uy (1,0) — Ux(1,6) > 0 for all §. But
the assumption ¢y (1) > ¢n(1) implies that % — 14 pp—1 > 0. This yields a
contradiction with (45). O

Proof of Remark 4. There exists a sequence (y;,) such that y, — 0 and (1—y,)" —
0. For example, taking y, = 1/y/n, it holds that (1 — 1,)V™ — 1/e by definition
of the Euler number e, and (1/e)V™ — 0.

Using (22), we have nynqy (yn) — 1.

This together with Fy — 6 implies that & — 6. Because £ > £ by optimality,
we conclude that £ — 4.

This implies that y** — 0 and ny®*qy (y**) — 1 because otherwise lim inf,, By <
0 or liminf, ny®qy (y**) < 1, implying lim inf,, £ < 6. O
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Proof of Lemma 4. Assume first that n = 2. Then ¢* = 1, and (27) implies that
hy —hn =y(1—p" )+ (1 —y)p". Thus, (hy —hy)'(y) =1—2p". If p° =1/2,
then the difference hY — hY is constant and equal to 1/2. If p'" < 1/2, then
(hy — hy)'(y) > 0 for all y € [0, 1], so that we can set y*™ = 1. If pi" > 1/2, then
(hy —hn)'(y) <0 for all y € [0, 1], so that we can set y*™ = 0.

Now assume that n > 3. Suppose that ¢* = 1. Using (27), it is straightforward
to verify that

(hy —hn)'(y) = (1=y)"*(n—1)(y),

where we use the auxiliary function

W(y) = 1-2p" —y(n(l—p")—1),

which is linear in y. If pi" > 1 — 1/n, then I(0) = 1 —2p" < 0 and I(1) =
(n —2)(p"" — 1) < 0, implying that I(y) < 0 for all y € [0,1). Thus, (28) holds
with y*™ = 0. If p’" < 1 —1/n, then I(y) is strictly decreasing in y, implying (28).
The case i* = n — 1 is treated analogously to the case ¢* = 1.
Suppose that 1 < i* < n — 1. Using (27), it is straightforward to verify that

, n— 1) i*—2 1— n—2—1i*
I ]

where we use the auxiliary function

(y) = y(1—y)A—2p")i*(n i)
— A =p ) n—i")(n—i"—1) + (1—y)*p"i* (@ - 1).

Note that 1(0) = (i* — 1)i*p" > 0if p'" > 0, and I'(0) = i*(n — i*) > 0 if p'" = 0,
implying that

l(y) >0 for all y > 0 that are sufficiently close to 0.

Similarly, I(1) = —(n—i*)(n—i*—1)(1—-p"") < 0ifp" < 1,and I'(1) = i*(n—i*) > 0
if p'" = 1, implying that

l(y) <0 forall y <1 that are sufficiently close to 1.

Thus, by the mean-value theorem, [(y*™) = 0 for some y*™ € (0,1). Moreover,
y*™ is unique because [ is quadratic in y. Hence, for all y € (0, 1),

l(y) >0ify <y™, and l(y) < 0 if y > y*™,

showing (28). O
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Proof of Proposition 2. If y = 0 or y = 1, then the random assignment obviously
obtains. In the case ¢y (y) = 1/n, (9) implies that ¢gn(y) = 1/n, so that the
conclusion follows from Remark 1.

It remains to consider cases in which 0 < y < 1 and ¢y (y) > gn(y). Using
9), qv > % and qn < % Thus, nyqy >y and n(1 — y)gn < (1 —y). Hence, (19)
together with (16) implies

& > yEy +(1—-y)En = E[Y],

where the last equality relies on the law of iterated expectations.
Thus, using (12), (13), (7), and (8), and summarizing terms, for any type 6,

1 1

yUy (y,0) + (1 —y)Un(y,0) = (1— g)g + 5(9 —c)
> (1= B+ (0 o),

which is the agent’s payoff from random assignment. Therefore, also the equilib-
rium payoff max{Uy (y, 8),Un(y,0)} is strictly larger than the payoff from random
assignment.

O]

Proof of Lemma 5. Let

S = {ye(0,1) | av(y) = (hy — hn)(¥)}-

The set S is finite because qy and hy — hy are non-identical polynomials. From
(31), (32), and the intermediate-value theorem, the set S is non-empty. Define

y™ = maxS§.

In particular, using (32), (hy — hn)(y) < gy (y) for all y > y™!L.
Next we prove that

Vo<y<y™: (hy —hy)(y) > av(y). (46)

Suppose (46) fails, that is, (hy — hy)(y') < qy (y!) for some 0 < y' < y™!. From
(31), the set SN [0,y'] # 0. Also SN [y',1] # 0 because this set contains y™!.
Thus, we can define

y' =max (SN[0,y']), ¥ = (minSN[y',1]).

By construction,
vy e (yh,y'): (hy — hw)(y) < av(y)-

Moreover, using (10),
¢y(y') =0 and g¢y(y')=0.
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Using this together with the fact that (hy — hn)(y') = gy (y') from y' € S, we
obtain an upper bound for the derivative of hy — hy at yl, by taking the limit
from the right:

voay o (hy = h)(y) = (hy = hy)(y')
(hy —hn)'(y') = yh\ng‘l =
< lim M = ¢y = o

Nyt Yy — gl

Similarly, we obtain a lower bound for the derivative at 7! by taking the limit
from the left and using that (hy — hx)(@') = qv (7'):

(hy = hn)(y) = (hy — hn)(@")

((hy =p))@") = lim, s
> lim QY(y)_q (g1> — qgf(gl) — 0’

v/ y—7'
where the inequality was reversed because y — gl < 0.

Using (28), the above upper bound implies that yl > y*™ whereas the lower
bound implies that 7' < 4*™, contradicting the fact that yl <7t

Now we can improve upon (46) by showing that

Vo<y<y™: (hy —hn)(y) > av(v). (47)

Suppose (46) fails, that is, (hy — hy)(y') = gy (y') for some 0 < y! < y™. In
particular, ¢}-(y') = 0 from (10).
Taking the limit from the right and using (46), we find that

(hy = hn)(y) = (hy — hy)(y")

(=) 0") = Tim, =
> lim qY(y)_QY(yl) — qg/(yl) = 0.

! y—yt
Similarly, taking the limit from the left,

/ . hy —h —(hyv — h 1
((hy —hw)(y") = ;;121( Y ny;_ ;f V)Y
< i DWWy g,

vyt Y=yl
Thus, ((hy — hy))'(y') = 0, showing that y! = y*™ by (28).
However, from (46) and (10), the function gy is strictly increasing on [0, 3™!],
implying
(hy = hn) (™) = ay (y™) > av (y*™) = (by = hw) (™),

contradicting the fact that (hy — hy) is strictly decreasing on [y*™,y™!] by (28).
Thus, (47) is true. This completes the proof. O
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Proof of Proposition 3. We begin by verifying the assumptions of Lemma 5. We
have n > 3 because otherwise no non-extreme threshold rule exists. By Lemma 4,
(28) holds.

Let ¢* be minimal such that p;+ > 0. Using (27) and (29),

n_l i i* n_l i — ¥ ¥
)=o) = (7))o 06, avt) = (7)) o),

¥ — 1 —1

Thus, (31) holds if ¢* > 2. If i* = 1, then
hy (y) —hn(y) = p1+ =1yl —p1) — (n — Dyp1 + O(y?),
1
av(y) = pr+(n—1yz—(n—Lypi+ O(y?).

Thus, (31) follows from 1 —p; >1—1/n > 1/2.
Using (44) and the assumption p, 1 > 1 — %

1
hy(1) =hn(1) =y (1) =1 = pn1 — - <0

implying (32).
Thus, there exists y™! as stated in Lemma 5. Because gy (0) = p1 < 1/n, we
can define

y = max{y € (0,1]|gv(y) < 1/n}.

Using (44), ¢y (1) = 1/n. From (10) and Lemma 5, the function ¢y is strictly
increasing on [0, y™!] and is strictly decreasing on [y™!, 1]. Thus,

qv(y) > 1/n forall ye(g,1), (48)
implying < y™!, and Lemma 5 implies that
hy (§) = hn () —av () > 0. (49)

Define § = F~'(1 — ). From Remark 3, qn(9) = 1/n. Using (14) with y = § and
0=0,

A() = (hy () —hn(G) —av(§)) (By — En).
>0 by (49) >0 by (16)

On the other hand, a straightforward computation using (44) shows that
1
A1) = (po1 =14 )0 —c—Ef]) < 0.

Thus, ¢ as defined in the statement of the proposition satisfies § < § < 1. Com-
bining this with (48), all claims are proved. O

31



Proof of Proposition 4. Consider the any-volunteer rule (p1,...,pp—1) = (1,...,1).
For any volunteering rate y > 0, using (22) and (23),

av(y) —an(y) = nly (I-(1—y)"—yl—y" ") = nly (1-(1=y)" ") >0.

Moreover gy (0) = 1 and gn(0) = L. We conclude that gy (y) > qn(y) for all
0 <y < 1. Thus, the right-hand side in (14) is strictly increasing in 6, showing
that any equilibrium has the threshold form.

Suppose that ¢ < 8 — E[f]. If we had A(1) > 0, then y = 1 would be an
equilibrium, contradicting Remark 2. Thus, A(1) < 0.

Now consider the volunteering rate y = 0. Note that Ex(0) = E[f]. Using
(21), hy (0) — hn(0) = 1. Recall gy (0) = 1 and gy (0) = . Thus, (14) implies

A(0) = Uy (0,8) — Un(0,0) = (1_%)(5—C—E[9]) > 0.

Thus, by the intermediate-value theorem, there exists 0 < y < 1 such that A(y) =
0.

Finally, suppose that ¢ > 0— E[f] and that some 0 < y < 1 is an equilibrium.
Let 6§ < 6 be such that 1 — F(f) = y. We will derive a contradiction to the
equilibrium condition (17).

Using (14),

~ ~

A(y) = Uy(y,0) —Un(y,0)
= (hy —hn)(Ey — EN)
+ gy (—By +0) — qn(—En + ) — c(gy — qn)- (50)
>0

Thus, using the assumption ¢ > 0 — E[6],

A(y) < (hy —hn)(BEy — EN)
+ gy (E[0] — Ey +0 —0) — qn(E[0] — Ex + 0 — 0)
< (hy —hy)(By — Ex) + qv(E[0] — Ey) —qn(E[0] — EN).

Using the law of iterated expectations (E[0] = yEy + (1 — y)En), the inequality
derived above can also be written as

A(y) < (hy —hn)(By —En) + qv - (1 =y)(En — Ey) —qn - y(Ey — Ey)
= nlyg(y)(Ey — En),

where we use the auxiliary function

g(y) = (hy —hNn)yn —qy - (1 —y)yn — qn - y°n.
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Due to (16), the desired contradiction A(y) < 0 to the equilibrium condition (17)
is obtained once we show that g(y) < 0 for all y > 0.
Using (21), (22), and (23),

gly) = A=) " yn— 11—y (1 —y)—(1—y)" 'y

It is straightforward to verify that g(y) = 0 for all y if n = 2. Consider the
case n > 3. Then one can verify that g(0) = 0, g(1) = 0, ¢’(0) = 0, ¢'(1) = 1,
and ¢"(y) = (n — 2)(n — 1)(1 —y)"3(ny — 1). Thus, ¢"(y) < 0if y < 1/n and
¢"(y) > 0if y > 1/n. In particular, the function ¢’ is strictly decreasing on the
interval [0,1/n] and is strictly increasing on the interval [0,1/n]. This together
with ¢’(0) = 0 and ¢’(1) = 1 shows that there exists a threshold ¢ such that
d(y) <0ify <gand ¢'(y) > 0 if y > §. In other words, g is strictly decreasing
on the interval [0, g] and is strictly increasing on the interval [, 1]. This together
with the equations ¢g(0) = 0 and g(1) = 0 show that g(y) < Oforall0 <y <1. O

Proof of Proposition 6. Before presenting the proof, we provide a roadmap. Step
0 recalls the Poisson approximation of the binomial distribution.

Using the assumption c¢/i* < 6 — E[f], Step 1 shows that there exists a se-
quence of strategies along which the expected number of volunteers does not
vanish and the marginally volunteering type strictly prefers volunteering over non-
volunteering. Lowering the marginal type until she becomes indifferent then yields
a sequence of equilibria with non-vanishing expected numbers of volunteers z,, (this
is Step 2).

In Step 3 we show that z, is bounded. Suppose otherwise, that is, z, — 0o on
some subsequence. That is, the expected number of volunteers tends to infinity.
Given that only ¢* volunteers are needed, the probability that the task is assigned
to a non-volunteer falls to zero so fast along the subsequence that the probability
tends to 0 even if it is first telescoped by z,. On the other hand, an agent
expects that she is selected with a probability approximately equal to 1/z, if she
volunteers. Therefore, after telescoping payoffs by z, and defining the marginal
type 6,, = F~Y1 —g,), type 0,,’s limit payoff difference between volunteering and
non-volunteering is — £, + 6, —c < —c, contradicting equilibrium.

Step 4 considers any large-population limit point z* of the sequence z,, (exis-
tence of a limit point follows from Step 3). We show that z* satisfies the equation
that is stated in the proposition. The left-hand-side is strictly decreasing by (36),
showing that the limit point is unique. Elementary properties of the Poisson dis-
tribution are useful: the probability Pois(z*)(i* — 1) differs by a factor of z*/i*
from the probability that there are exactly ¢* volunteers; this probability differs
by a factor of z*/i* from the probability that there are at least i* volunteers.

Step 5 establishes the formula for r*.

Step 0. Consider any sequence of numbers (yn), yn € [0, 1] and a number z > 0
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such that z, — z, where we use the shortcuts z, = ny,. Then

limBZn_l(j) = —e 7 forj=0,1,...,n, (51)
n J:
and
n—1 1 00 Zj
li B 1(j = e~ : 2
DD D D ] (52

j=i*—1 j=i*—1

Formula (51) is the well-known Poisson limit theorem. To see (52), define
Bp—1(j) = 0 for all j >n —1 and note that

> i P w1
. (& = 1m
S G+ Pl ]+1
n—1
= hm Z By,- L = lim Z B;Ln_l(j)L
Pl J+1 nle J+1

This completes Step 0.

Now fix any number z such that

o<z<m<“hjmmﬁ). (53)

Cc

We will use the function A defined in (17), as applied to the threshold rule with
parameter ¢* and p;+ = 1.

Step 1. For all n, define y, = z/n. Then A(gn) > 0 for all sufficiently large
n.

We take the limit n — co in (17) withy =y .

Because y, —~0, only the type with the hlghest possible ability volunteers in
the large-population limit. Thus, Ey — § and Ey — EI[f)].

Applying (51) with j = ¢* — 1 to (27) with p;+ = 1,

. @t
117131 hy(gn) — hN(gn) = me =.
Applying (52) to (29) with p;+ = 1,
limgy(y,) = e~ -
j2;10+D‘
Using (30),
1
an(y,) < p— —0 asn — oo.



Thus, using (17) and cancelling terms,

limA(y ) = ﬁe_é(g— E[0]) +e = i 2y (—c). (54)
S, @ — 1)l L= G
Note that
— (2) - @7 @7
j:iz*:_l G+ Sj:iz*:_l R EE G

Thus, (54) implies

i ﬂefz a_ (2)" 1 e
P *—1 _ c
— i (@ me) - )
> 0,

where the last inequality follows from (53). This completes Step 1.

Step 2. For all sufficiently large n, there exists a threshold equilibrium ¥, such
that z, > z, where we define z, = ny,.

For all ¢* > 2, because A(1) < 0, the desired claim follows from Step 1 and
Proposition 3, using the Intermediate Value Theorem. Consider ¢* = 1. It is
straightforward to verify that A(1) < 0 and ¢y (y) > ¢n(y) for all y € (0,1).
Thus, the desired claim is immediate from Step 1, using the Intermediate Value
Theorem.

Now consider any sequence of equilibria (y,) such that liminf,, z, > 0.
Using (27), (29), and (30),

Aly) = (B ') (1 —pir) + By ' (i* = 1)ps+) (By — En)
1 1
n—1¢; n—1¢;x* -1
+ ;By (])m‘FBy (i —1)1%‘*2: (—By +F (1-y)—c¢)

1 1
— Y B + BN (L - pi)—— | (~En+ F Y1 —y) o).
i<i n—7 n—1
7<t*—1
Setting p;+ = 1, and multiplying the equilibrium condition A(y,) = 0 with z,, we
obtain

0 = zBp '(i*—1)(Ey — Ey)

1, 1 _
+ Zn Z B;nl(])-i(_EY"‘F 1(1—yn)—c)
j>ir—1 j+1

o Y B ——(—Bx+ F i1 —g) -0 (5%)

n—
j<i*—1 J
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Step 3. The sequence (z,) is bounded.
Suppose otherwise, that is, along some subsequence, z, — oco. Then, along
this subsequence,
By (j) =0 foralj=0,1,.... (56)

To see this, note that, due to elementary properties of the binomial distribution,
BZT/Ln (J) < nj(yn)j(l - yn>n_j = (nyn)j<1 - yn)n—j,
implying
In (By, (7)) < j(nyn) + (n —j)In(l — yy).
Hence, using the elementary inequalities In(1 — y,,) < —y,, and y, < 1,
In (B;‘n(j)) <jl(ny,) — (n—Jyn < jln(z,) — zn + j — —o0.

This implies (56).
From (56) it follows that

By () =0 forall j=0,1,.... (57)
To see this, note that, by elementary properties of the binomial distribution,
nyaBy 1 (7) = (G + 1By, (5 +1). (58)

From (57) it follows that

Zn Z By~(j) — 0. (59)

Now we consider the limit n — oo in (55). From (57) and (59), the first and third
terms vanish, and in the second term the range of the sum can be replaced by

S50~ Using (58),

n—1 n—1
. DU . . : (56)
1 _ _ 20
11711nzn g O By (j)m = hqgn g > By (j+1)=1- hyrInB;Ln(O) =" 1.
j= j=

Plugging this into (55) yields lim,, —Fy + F~1(1 — y,) — ¢ = 0, contradicting the
fact that the average volunteer’s type must be larger than the marginal volunteer’s
type, By > F~1(1 —y,). This completes Step 3.

Step 4. Consider any limit point z* of (z,). Then h***")(i*) = gi/g[e].

To see this, consider a subsequence z,, — z* as k — oco. A computation
analogous to that leading to (54) implies

lm A(y,,) = ﬁe_z*(g—E[e])—Fe_z* i (e (—c)
k Mt (i* —1)! P (+1)! '
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Applying the equilibrium condition A(yy,, ) =0,

o* i*—1 e > ¥ J o
0 ((Z )_ ¢ (6 — E0]) +j:;1 (].(+)1>'e (—c)

0 = (Zl), e FO-EO)+ Y “’;,3] (—c/i")
j'=i*

Thus,
0 = Pois(z*)(i*) Z Pois(z (—c/i™).

This implies the claimed formula, completing the proof of Step 4.

From (36) one sees that, for any 4, the function z — AF*()(7) is strictly
decreasing. Thus, the limit point z* established in Step & is unique, showing that
the sequence (z,) converges to z*.

Step 5. The formula for r*.
The probability that the task is assigned to a volunteer in equilibrium y,, is

n
. 58 Z
ra =Y By (j) § "B” 'G-1)
j=i*

Thus, using Step 0,

*\J

:FZ :

This completes the proof of the proposition. O
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