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1 Introduction

Many central banks and policymaking institutions, such as the Bank of Canada, the Bank
of England, the Bank for International Settlements, the ECB, the IMF, the People’s Bank
of China, the Sveriges Riksbank, and the G30, are openly debating the introduction of
a central bank digital currency, or CBDC (Barrdear and Kumhof, 2016; Bech and Garratt,
2017; Chapman et al., 2017; Lagarde, 2018; Ingves, 2018; Kahn et al., 2019; Davoodalhosseini
et al., 2020; Auer and Böhme, 2020; Auer et al., 2020; Group of 30, 2020).

The introduction and adoption of CBDCs have the potential to be a watershed for the
monetary and financial systems of advanced economies. Since at least the classic formulation
of Bagehot (1873), central banks have viewed their primary tasks as maintaining stable
prices and ensuring financial stability through their role as lenders of last resort. With a
CBDC, two additional and significant aspects come into play. First, a CBDC may become
an attractive alternative to traditional demand deposits in private banks for all households
and firms. Second, and as a result, the central bank may be transformed into a financial
intermediary that needs to confront classic issues of banking such as maturity transformation
and the exposure to a demand for liquidity induced by “spending” shocks (runs) of its private
customers.1

In this paper, we seek to model the interplay of these new and traditional roles to evaluate
the advantages and drawbacks of introducing a CBDC concerning the subsequent reorga-
nization of the banking system and its consequences for monetary policy, allocations, and
welfare. To do so, we build on the classical model by Diamond and Dybvig (1983), which
emphasizes a bank’s role in maturity transformation: banks pool resources and finance long-
term projects with demand deposits that can be withdrawn at a short time horizon to meet
liquidity shocks. By offering risk-sharing, banks enable allocations that are not attainable
under autarky. Yet, the optimal amount of risk-sharing requires banks to be prone to runs.
Can maturity transformation still occur at the socially optimal level with a CBDC? Can a
central bank do better and, for instance, avoid runs? Do new trade-offs arise?

1While both deposit-making and lending to the public by a central bank can be accomplished without a
CBDC (as has often happened in the past; see Fernández-Villaverde et al., 2020, for historical examples),
the operational logistics without digital means are too cumbersome in a large, modern economy to represent
a likely policy option. Also, from the perspective of our paper, it is mainly irrelevant whether the deposits
and loans in the CBDC are run directly by the central bank or by financial institutions that implement the
directives of the central bank.
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We depart from the original formulation of the Diamond and Dybvig model in a crucial
aspect. While Diamond and Dybvig (1983) consider intermediation with private banks, a
CBDC implies central bank intermediation. This difference is consequential because a central
bank can control the price level. For example, a central bank can issue additional units of a
CBDC to cover losses in its loan portfolio, implicitly diffusing the costs of the credit losses
among all holders of the currency. To allow for this feedback mechanism between the loan
portfolio and the price level, we modify the basic Diamond and Dybvig (1983) model by
imposing the condition that all contracts are nominal. We assume that real goods can only
be traded against money, implicitly setting a form of a cash-in-advance constraint in the
tradition of Svensson (1985) and Lucas and Stokey (1987), but suited to the digital world.
In fact, a cash-in-advance constraint is more relevant in a CBDC world because other means
of payment, such as the transfer of private deposits, might have disappeared.

In our model, classic bank runs may still occur due to a rationing problem, when liqui-
dating illiquid real assets at a given price level. But since the central bank controls the price
level and contracts are nominal, it can avoid rationing if it prefers. By issuing more currency,
the monetary authority can always deliver on its obligation. But a simple “quantity theory
of money intuition” implies that avoiding excess liquidation of real assets by issuing more
currency implies sacrificing inflation targeting. Thus, our model illustrates how runs on a
central bank can manifest themselves in two ways: either as a classic run, caused by the
rationing of real assets, or as a run on the price level.

This dual nature of bank runs is part of a more general phenomenon. Imagine that the
central bank has three goals: efficiency, financial stability (i.e., absence of runs), and price
stability. We demonstrate an impossibility result that we call the CBDC trilemma: of its
three goals, the central bank can achieve at most two; see Figure 1. As the first part of
the trilemma, we prove that the central bank can always implement the socially optimal
allocation in dominant strategies while deterring runs by credibly threatening high inflation
whenever nominal spending is excessive. This threat is implemented by limiting the real asset
liquidation in the case of a run, thereby rendering spending by patient agents suboptimal
ex-post. Since depositors are rational, the central bank’s inflation threat deters runs ex-ante
such that high inflation only occurs off the equilibrium path. This result contrasts with the
Diamond and Dybvig model, where banks do not have the option of changing the aggregate
price level in response to a run. Therefore, there, runs can occur as equilibrium phenomena,
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in which case the social optimum does not obtain.

Optimal 
risk-sharing

Price 
stability

Run-proof
contract

Figure 1: CBDC Trilemma: For the central bank, it is impossible to attain all three objectives
at a time. When prioritizing one objective, at least one other objective has to be sacrificed.

On the second part of the trilemma, the threat of inflation may not be credible for
modern central banks given their commitment to price stability, which is often reinforced in
their governing charters or imposed by the political process. Would a central bank challenge
its commitment to price stability should a run occur? When taking the central bank’s
commitment to price stability seriously, and enforcing it as the primary objective in all
subgames, we find ourselves in the classic Diamond-Dybvig dilemma: either the allocation
is suboptimal or classic bank runs can no longer be ruled out.

For the purpose of simplicity, our benchmark model is extreme in that there are no
private banks: the central bank operates all real technology and provides all of the economy’s
deposit functionality. In an extension, we analyze how our results extend to the case where
the central bank shares the deposit market with private banks. We show that, if the central
bank and private banks coordinate their real asset liquidations, then runs can be deterred
as before. If coordination is not possible, potentially due to the regulation of private banks,
then the central bank can deter runs as long as it controls a sufficiently large share of the
deposit market.

To address the concern that the central bank “takes over” the production side of the
economy, one can suitably enrich the model as in Skeie (2008) or Allen et al. (2014), where
the “real” side is arising from the interplay between workers and entrepreneurs (and their
consumers), leaving the nominal side to the banking system and the central bank. The co-
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existence of a central bank and private banks and the consequential competition for deposits
raises a host of additional and intriguing issues that are, for instance, analyzed in Chiu et al.
(2019) and Fernández-Villaverde et al. (2020). The features and analysis in these papers
could be imported here, but they would not appear to substantially change the key insights.
Hence, we chose to focus entirely on the novel aspects arising from the interplay between the
nominal features and price stability goals.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 introduces our model. Section 4 presents the main analysis of the model, defines an
equilibrium, and describes some of its fundamental properties. Section 5 discusses how the
social optimum can be implemented. Section 6 deals with price stability and how it relates
to the implementation of the social optimum. In Section 7, we discuss what may appear to
be a natural resolution: the adjustment of the money supply in a state-contingent manner.
Issues arising out of private-sector competition such as private investment or a competing
private banking sector are taken up in Section 8. In Section 9, we analyze a token-based
system and hybrid systems. Section 10 concludes.

2 Related literature

Our paper contributes to several strands of the literature. The three papers closest to
ours are Diamond and Dybvig (1983), Skeie (2008), and Allen et al. (2014). First, we
contribute to the literature of financial intermediation and bank fragility. Building on the
seminal Diamond and Dybvig (1983) model, we stress the central bank’s role in liquidity
transformation when issuing a CBDC that allows depositors to share idiosyncratic liquidity
risk. Similar to Diamond and Dybvig (1983), we study the microincentives of depositors
to withdraw (“spend”) from the bank. But unlike them, we employ nominal instead of real
demand-deposit contracts, giving “the bank” an additional tool –the price level– to prevent
runs.

Nominal demand-deposit contracts have previously been considered by Allen and Gale
(1998), Skeie (2008), Allen et al. (2014), Leiva and Mendizábal (2019), and Andolfatto et al.
(2020), among others. In Skeie (2008), large withdrawals of nominal deposits can lead to an
increase in the price level, reducing the real allocation and deterring runs. In a similar model,
Allen et al. (2014) show that optimal risk-sharing can be achieved via nominal contracts, but
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their setting cannot exclude runs. In particular, compare their Section 4.4 to our Lemma
5.2. In their case, the price level reacts passively and cannot be fine-tuned to the agent’s
spending decisions. As we mentioned above, in both Skeie (2008) and Allen et al. (2014),
the “real” side is arising from the interplay between workers and entrepreneurs (and their
customers), leaving the nominal side to the banking system and the central bank. Finally,
Andolfatto et al. (2020) incorporate Diamond-Dybvig financial intermediation into the new
monetarist model of Lagos and Wright (2005).

Unlike in all these papers, in our framework, the central bank is a strategic player that
observes withdrawals and, as a response, determines the real goods supply to alter either the
depositors’ incentives to withdraw or the price level according to its objectives. Therefore,
we can show that the central bank can always implement the efficient allocation in dominant
strategies, and runs no longer occur. Since implementation in dominant strategies requires
giving up price stability, we can also discuss the flip side of this result. We further differ from
the literature above by considering a more stylized model, abstracting from private banks
and firms. In our framework, the central bank takes over the activity of real investment,
financial intermediation, and the management of the money supply.

Second, we contribute to a growing literature on the macroeconomic implications of
introducing a CBDC. Berentsen (1998) is perhaps the first analysis of the monetary policy
implications of digital money. Chiu et al. (2019) discuss issues regarding the competition
with and support of private banks. Keister and Sanches (2019) explore how the presence
of a CBDC affects the liquidity premium on bank deposits and, through it, investment.
Böser and Gersbach (2019a) gauge the implications of CBDCs for banking panics. Böser
and Gersbach (2019b) show that the introduction of a CBDC transfers default risk to the
central bank when a CBDC competes with private deposits. Fernández-Villaverde et al.
(2020) demonstrate that competition for deposits between private banks and the central
bank can lead to a deposit monopoly at the central bank when commercial banks cannot
commit. Skeie (2019) analyzes inflation-driven digital currency runs in a nominal model
where a private digital currency competes with a CBDC. In contrast to this strand of the
literature, our analysis abstracts from competition between a CBDC and deposits at private
banks, respectively a CBDC and private digital currency, by modeling the central bank as
the monopolistic provider of demand deposits. Brunnermeier and Niepelt (2019) derive an
equivalence result of allocations when introducing a CBDC if the central bank commits to
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redepositing CBDC funds in private banks. In comparison, we are more explicit about the
micro incentives of agents to run on the central bank. Ferrari et al. (2020) discuss monetary
policy transmission in a two-country DSGE model when introducing a CBDC. In our model,
we focus on one country and do not feature firms, other financial agents, or assets. Instead,
we focus on the depositors’ microincentives to (not) run on the central bank.

Lastly, we contribute to the growing literature on cryptoeconomics that analyzes the price
and exchange rate implications of crypto mining (Choi and Rocheteau, 2020; Garratt and van
Oordt, 2019; Huberman et al., 2017; Prat and Walter, 2018), the micro and macroeconomics
of blockchain (Amoussou-Guenou et al., 2019; Biais et al., 2019a,b; Ebrahimi et al., 2019;
Leshno and Strack, 2020; Saleh, 2020) and token issuance (Cong et al., 2020; Li and Mann,
2020; Prat et al., 2019), and the macroeconomic implications of cryptocurrencies via currency
competition (Benigno, 2019; Benigno et al., 2019; Fernández-Villaverde and Sanches, 2019;
Schilling and Uhlig, 2019). Our paper abstracts from the existence of competing digital
currencies and assumes full functionality of the CBDC account and ledger system.

3 The basic framework

Our framework builds on the classical Diamond and Dybvig (1983) model of banking. Time
is discrete with three periods t = 0, 1, 2. There is a [0, 1]-continuum of agents, each endowed
with 1 unit of a real consumption good in period t = 0. Agents are symmetric in the initial
period, but can be of two types in period 1: patient and impatient. Impatient agents value
consumption only in period 1. In contrast, patient agents value consumption in period t = 2.
An agent is impatient with likelihood λ ∈ (0, 1) and otherwise is patient. The agent’s type
is randomly drawn at the beginning of period 1 and types are private information. Since we
have a continuum of agents, there is no aggregate uncertainty about the measure of patient
and impatient types in the economy. Thus, λ also denotes the share of impatient agents.
Preferences are represented by a strictly increasing, strictly concave, and continuously dif-
ferentiable utility function over consumption u(·) ∈ R. We further assume a relative risk
aversion, −x · u′′(x)/u′(x) > 1, for all consumption levels x ≥ 0.

There exists a long-term production technology in the economy. For each unit of the
good invested in t = 0, the technology yields either 1 unit at t = 1 or R > 1 units at t = 2.
Additionally, there is a storage technology between periods 1 and 2, yielding 1 unit of the
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good in t = 2 for each unit invested in t = 1. All agents can access both technologies. Let
x1 ≥ 0 denote the agent’s real consumption when deciding to spend (or “withdraw”) at t = 1,
and let x2 ≥ 0 denote the agent’s consumption when spending at t = 2.

3.1 Optimal risk-sharing

Following Diamond and Dybvig (1983), we derive, first, the optimal allocation. The social
planner collects and invests the aggregate endowment in the long technology. Given that all
agents behave according to their type, the social planner maximizes ex-ante welfare

W = λu(x1) + (1− λ)u(x2) (1)

by choosing (x1, x2), subject to the feasibility constraint λx1 ≤ 1, and the resource constraint
(1− λ)x2 ≤ R(1− λx1). The interior first-order condition for this problem implies that the
optimal allocation (x∗1, x

∗
2) satisfies:

u′(x∗1) = Ru′(x∗2). (2)

Given our assumptions, the resource constraint binds in the optimum

R(1− λx∗1) = (1− λ)x∗2. (3)

This condition, together with equation (2), uniquely pins down (x∗1, x
∗
2) and delivers the

familiar optimal deposit contract in Diamond and Dybvig (1983). Together with R > 1 and
the concavity of u(·), equation (2) implies that the optimal consumption of patient agents is
higher than the consumption of impatient ones: x∗1 < x∗2.

Moreover, the depositors’ relative risk-aversion exceeding unity and the resource con-
straint yield x∗1 > 1 and x∗2 < R.2

Diamond and Dybvig (1983) show that a demand-deposit contract can implement the
2Following the proof in Diamond and Dybvig (1983),

Ru′(R) = u′(1) +

∫ R

1

∂

∂x
(x · u′(x)) dx = u′(1) +

∫ R

1

(x · u′′(x) + u′(x)) dx < u′(1) (4)

by −x · u′′(x)/u′(x) > 1 for all x.
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efficient allocation. A key feature of their analysis is the use of a “real” demand deposit
contract (i.e., a contract that promises to pay out goods in future periods). Due to a maturity
mismatch between real long-term investment and real deposit liabilities, the Diamond and
Dybvig (1983) environment, however, also features a bank run equilibrium under which
the social optimum is not implemented. Our main contribution is to show that a nominal
contract can lead to the implementation of the efficient allocation in dominant strategies.
In other words, runs do not occur along the equilibrium path. The key mechanism is that
the central bank can set the price level, thereby controlling the wedge between real long-
term investment and nominal deposit liabilities. The implementation in dominant strategies
comes at a price, requiring flexibility of the price level.

4 A nominal economy

Consider now an economy with a social planner that uses nominal contracts to implement
the efficient allocation.

Nominal contracts. The planner offers contracts in a unit of account for which it is
the sole issuer. Because central banks have a monopoly on currency, the planner in our
analysis can be equated with the central bank or any other monetary authority with the
ability to issue currency. In this paper, we refer to the unit of account as a central bank
digital currency (CBDC) or digital euros. Agents who sign a contract with the central bank
hand over their real goods endowment and receive CBDC balances in return. The most
straightforward interpretation of our environment is to think of a CBDC as an account-
based electronic currency in the sense of Barrdear and Kumhof (2016) and Bordo and Levin
(2017), i.e., to think of a CBDC as being akin to a deposit account at the central bank. In
Section 9, we show that the results of our paper largely carry over to a token-based system
or hybrid systems. Agents can spend their CBDC balances by transferring them to other
agents in exchange for goods. As with physical euros, we impose the constraint that agents
cannot hold negative amounts of a CBDC. v Timing. At t = 0, the central bank creates
an empty account, i.e., a zero-balance CBDC account, for each agent in the economy. Then,
each agent agrees to invest her unit endowment of the good in exchange for M > 0 units of
digital euros, credited to that agent’s account. Next, the central bank invests all goods in
the long-term technology.
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In t = 1, agents learn their type and decide whether to spend their CBDC balances M ,
that is, either to withdraw them or to roll them over. The central bank contract imposes the
constraint that an agent either spends all her balances or no balance at all. Because types are
unobservable, the central bank cannot discriminate between patient and impatient agents to
deny a patient agent access to her balances. Let n ∈ [0, 1] denote the share and measure of
agents who decide to spend in t = 1. The central bank observes n and then decides on the
fraction y = y(n) of technology to liquidate, selling that amount in the goods market at the
unit price P1. Notice that through the resource constraint, early liquidation of technology
reduces the remaining investment and, hence, the supply of goods in t = 2. That is, there
is a real payoff externality, and the central bank’s liquidation choice in t = 1 determines the
real supply of goods for both of the periods t = 1 and t = 2. Given n, the central bank
also chooses a nominal interest rate i = i(n) to be paid in period 2 on the remaining CBDC
balances. Each digital euro held at the end of t = 1 turns into 1 + i(n) digital euros at the
beginning of t = 2. Notice that i(n) ≥ −1, given that agents cannot hold negative amounts
of digital euros.

In t = 2, the remaining 1 − n depositors each have (1 + i)M digital euros to spend on
goods in the market at a price P2. The remaining investment in the technology matures so
that the central bank supplies R (1− y (n)) units of goods in exchange for money balances.
Figure 2 summarizes this timing.

Definition 1. A central bank policy is a triple (M, y(·), i(·)), where y : [0, 1]→ [0, 1] specifies
the central bank’s liquidation policy and i : [0, 1] → [−1,∞) is the interest rate policy for
every possible spending level n ∈ [0, 1].

Notice that M itself is not state-contingent. The logic here is that, traditionally, 1 dollar
today is 1 dollar tomorrow: we maintain that tradition with that assumption here. In
Section 7, we discuss an extension where we allow M to be state-contingent as well.

Market clearing. In periods 1 and 2, agents spend their money balances for goods in
a Walrasian market. The market-clearing conditions are:

nM = P1y(n) (5)

(1− n)(1 + i(n))M = P2R(1− y(n)), (6)

which take the form of the quantity theory equation in each period. Given aggregate spending
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Figure 2: Nominal and real investment and contracts

n in t = 1 and the central bank’s policy, these conditions determine the price level, P1 = P1(n)

and P2 = P2(n), in each period:

P1(n) =
nM

y(n)
(7)

P2(n) =
(1− n)(1 + i(n))M

R(1− y(n))
. (8)
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The central bank chooses the initial money supply before learning the measure of with-
drawals in the intermediate period. The central bank, however, controls the goods supply
in the Walrasian market, which is chosen conditional on the measure of withdrawals. As a
result, the central bank can control the price level in period 1.3 The nominal interest rate
allows the central bank to control the price level in period 2 independently of the price level
in period 1. Because the intermediary is the central bank with a monopoly on the unit of
account in which contracts are denominated, the liquidation policy is flexible and becomes
a monetary policy tool.

Implied real contract. The real value when spending CBDC balances in t = 1 equals

x1 =
M

P1

, (9)

while the real value when spending balances in t = 2 equals

x2 =
(1 + i (n))M

P2

. (10)

Aggregate spending n and the liquidation policy y (n) jointly determine the allocation of
goods via the market-clearing conditions. The real allocations when spending in t = 1

versus t = 2 can therefore be rewritten as

x1(n) =
y(n)

n
(11)

x2(n) =
1− y(n)

1− n
R. (12)

Because all agents that spend CBDC in the same period have the same nominal income, the
real goods supply y(n) is equally distributed across all spending agents in period 1, and the
supply R(1− y(n)) is equally allocated to all spending agents in period 2.4

To summarize: in t = 0, the central bank announces and commits to a policy (M, y(·), i(·)),
pinning down a spending-contingent real goods supply and an offer to a nominal contract
(M,M(1 + i(·))) in exchange for 1 unit of the good. All consumers accept the contract and

3A private bank, in contrast, would need to take P1, P2 as given, which together with the observation n
implies a unique liquidation y(n, P1).

4These equations remain intuitive even if y(n) = 0 or y(n) = 1. Therefore, we assume that they continue
to hold, despite one of the price levels being potentially ill-defined or infinite.
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the policy, meaning they have the option to spend either M digital euros in period 1 or
M(1+ i(n)) digital euros in period 2, for every possible level of aggregate spending n ∈ [0, 1].
We discuss voluntary participation in contracts in Section 8.

In t = 1, the aggregate spending level n is realized. Finally, the central bank’s pol-
icy, together with the market-clearing conditions, results in the real consumption amounts
(x1(n), x2(n)) = (M

P1
, M(1+i(n))

P2
) =

(
y(n)
n
, 1−y(n)

1−n R
)
. Notice that the central bank is fully

committed to carry through with its policy (M, y, i), regardless of which n obtains and
independently of the implications for the price levels (P1, P2). We, therefore, define

Definition 2. A commitment equilibrium consists of a central bank policy (M, y(·), i(·)),
aggregate spending behavior n ∈ [0, 1] and price levels (P1, P2) such that:

(i) The spending decision of each individual consumer is optimal given aggregate spending
decisions n, the announced policy (M, y(·), i(·)), and price levels (P1, P2).

(ii) Given aggregate spending n, the central bank provides y(n) goods and sets the nominal
interest rate i(n).

(iii) Given (n, y(n),M), the price level P1 clears the market in t = 1.
Given (n, y(n), i(n),M), the price level P2 clears the market in t = 2.

As a particular consequence of this equilibrium concept, the price levels (P1, P2) flexibly
adjust to the aggregate spending realization and the announced central bank policy.

5 Implementation of the social optimum

In our model, the implementation of the social optimum (x∗1, x
∗
2) is of particular interest

to the central bank. Given the preferences and technology that we postulated above, only
the real allocation of goods matters to the two types of agents. There is, consequently, no
additional motive for the monetary authority to keep prices stable.

However, focusing only on real allocations is a narrow perspective. There is a vast lit-
erature arguing in favor of central banks keeping prices stable or setting a goal of low and
stable inflation for reasons that are absent from our model. For instance, stable prices mini-
mize the misallocations created by nominal rigidities as in Woodford (2003). And having to
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hold cash to accomplish transactions, such as in cash-in-advance or money-in-utility models,
creates a whole range of distortions that can be minimized by deft management of the price
level (think about the logic behind the Friedman rule). Rather than extending the model to
include these considerations, which would complicate the analysis for an uncertain benefit,
we shall proceed by discussing the tradeoffs between achieving the optimal real allocation of
consumption and the implications of such an effort for the stability of prices.

Runs on the central bank. The first important property of the equilibrium defined
above is that a nominal contract, per se, does not rule out the possibility of a run on the
central bank. Since impatient agents only care for consumption in t = 1, every equilibrium
will exhibit aggregate spending behavior of at least λ, implying n ≥ λ.5 Patient agents, on
the other hand, spend their CBDC balances strategically in t = 1 or t = 2. They spend
in t = 1 if they believe that the central bank policy implies x1 > x2. In that case, patient
agents will use the storage technology to consume x1 in period 2. Otherwise, patient agents
will find it optimal to wait until the final period. We say,

Definition 3 (Central Bank Run). A run on the central bank occurs if patient agents also
spend in t = 1, n > λ.

In a bank run, the central bank is not running out of the item that it can produce freely
(i.e., it is not running out of digital money). This feature will distinguish the run equilibrium
here from the bank run equilibrium in Diamond and Dybvig (1983), in which a commercial
bank prematurely liquidates all of its assets to satisfy the demand for withdrawals in period
1, therefore, ultimately running out of resources. If n > λ, the central bank is confronted
with a run on deposits. As we will see, the real consequences of a run on the central bank
with nominal contracts can be similar to its counterpart in the model with real contracts.
However, we shall demonstrate that the central bank’s ability to avert a run is necessarily
tied to its monopoly on currency and the implementation of a nominal contract. Importantly,
by equations (11) and (12), a patient agent’s optimal decision whether to run on the central
bank, to spend or not, depends on the central bank’s choices only through the liquidation
policy y(·) and not via the nominal elements M and i(n). By our equilibrium definition, the
aggregate spending behavior n has to be consistent with optimal individual choices. These
considerations imply the following lemma.

5When y(n) = 0, impatient agents are indifferent between spending and not spending. To break ties, we
assume that they spend their CBDC balances in t = 1.
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Lemma 5.1. Given the central bank policy (M, y(·), i(·)),

(i) The absence of a run, n = λ, is an equilibrium only if x1(λ) ≤ x2(λ).

(ii) A central bank run, n = 1, is an equilibrium if and only if x1(1) ≥ x2(1).

(iii) A partial run, n ∈ (λ, 1), occurs in equilibrium if and only if patient agents are indif-
ferent between either action, requiring x1(n) = x2(n).

This lemma fully characterizes the range of equilibria, given the implied real allocation
of a central bank policy. But how can policy attain the first-best allocation?

5.1 Implementation of the optimum via liquidation policy

By (x∗1, x
∗
2) =

(
y∗

λ
, R(1−y∗)

1−λ

)
, the feasibility constraint y ∈ [0, 1], and the optimality conditions

in Section 3.1, the implementation of the socially optimal allocation requires a liquidation
policy

y∗(λ) = x∗1λ ∈ (λ, 1] (13)

given that only impatient types spend. Similarly to Diamond and Dybvig (1983), the resource
constraint y ∈ [0, 1] and x∗1 > 1 imply that the socially optimal allocation is not feasible
when all agents spend. The implied price level when n agents spend equals P ∗1 (n) = nM

λx∗1
.

These results confirm our assertion at the start of this section that the social optimum is
independent of price level stability. Combining the previous derivation with Lemma 5.1, we
arrive at the following lemma.

Lemma 5.2. The central bank policy (M, y(·), i(·)) implements the social optimum (x∗1, x
∗
2)

in dominant strategies if the central bank

(i) sets y(λ) = y∗ for any n ≤ λ.

(ii) sets a liquidation policy that implies x1(n) < x2(n) for all n > λ.

The real allocation to agents and, thus, their incentives to spend or not depend on the
central bank policy (M, y(·), i(·)) only through the liquidation policy y(·). Given that only
impatient agents are spending (i.e., n = λ), then a policy choice with y(λ) = y∗ implements
the social optimum. That is, there is a multiplicity of monetary policies that implement the
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first-best since the pair (M, i(·)) is not uniquely pinned down. While the pair (M, i(·)) does
not affect depositors’ incentives, it has an impact on prices via equations (7) and (8).

Second, thanks to the existence of the storage technology, patient agents can –but do not
have to– spend their CBDC balances at time two. Spending at time two is dominant only if
for every possible spending level n the real allocation at time two exceeds the allocation at
t = 1.

The central bank internalizes depositors’ decision making. Since it observes aggregate
spending behavior n before it liquidates any asset, the central bank is not committed to
liquidating y∗ if patient agents are also spending. Condition (ii) of this lemma corresponds
to the classic incentive-compatibility constraint in the bank run literature: since expectations
are rational, in t = 1, depositors correctly anticipate the central bank policy that follows
spending behavior n. To deter patient agents from spending, the central bank can threaten
to implement a liquidation policy y(·) that makes spending non-optimal ex-post, i.e., so that
x1 (n) < x2 (n) for n ∈ (λ, 1]. If the monetary authority can credibly threaten patient agents
by setting such a liquidation policy, it deters them from spending ex-ante, and a central
bank run does not occur in equilibrium. Therefore, in the unique equilibrium, only impatient
agents spend, all patient agents roll over, and the social optimum is always attained.

The central bank implements “spending late” as the dominant equilibrium strategy for
patient agents by fine-tuning the real goods supply via its liquidation policy, i.e., by making
real asset liquidation spending-contingent.

Definition 4. We call a liquidation policy y(·) “run-deterring” if it satisfies

yd(n) <
nR

1 + n(R− 1)
, for all n ∈ (λ, 1]. (14)

Such a liquidation policy implies that “roll over” is ex-post optimal x1(n) < x2(n) even though
patient agents are withdrawing n ∈ (λ, 1].

The implementation of a run-deterring policy is only possible because the contracts be-
tween the central bank and the agents are nominal. The liquidation of investments in the real
technology is at the central bank’s discretion, thereby controlling the real goods supply and,
for a given spending level, the real allocation in either time period. A spending-contingent
liquidation policy implies a spending-contingent price level. In the case of real contracts
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between a private bank and depositors such as in Diamond and Dybvig (1983), in contrast,
the real claims of the agents are fixed already in t = 0, thus pinning down a liquidation policy
for every measure of aggregate spending n. In the case of large withdrawals, rationing must
occur. Similarly, in the case of nominal contracts between a private bank and depositors, the
private bank has to take the price level as given, which then again pins down the liquidation
policy. Alternatively, the price level adjusts via market clearing to high aggregate nominal
spending (Skeie, 2008), while here it can serve as a strategic control variable.

As the main result of this paper,

Corollary 5 (Trilemma part I - No price stability). Every policy choice (M, y(·), i(·)), n ∈
[0, 1] with

y(λ) = y∗ and yd(n) <
nR

1 + n(R− 1)
, for all n ∈ (λ, 1], (15)

deters central bank runs and implements the social optimum in dominant strategies. Such
a deterence policy choice requires the interim price level P1(n) to exceed the withdrawal-
dependent bound:

P1(n) >
M

R
(1 + n(R− 1)), for all n ∈ (λ, 1]. (16)

Under a credible liquidation policy (15) all agents have a dominant strategy to spend if
and only if the agent is impatient; otherwise they wait. Thus, under rational behavior, runs
do not occur, and by y(λ) = y∗ the social optimum always obtains. That is, a strategic real
supply shock enforced by the central bank causes a demand shock to CBDC spending that
deters runs.

The implementation, however, comes at a price. To attain feasibility of a run-deterring
policy y(·), the central bank has to sacrifice price stability. By condition (16), the more
agents spend, the larger the required price level threat to deter runs. The threat has to be
credible to deter runs ex-ante. Agents have to believe that ex-post the central bank will give
up price stability if realized spending behavior is excessive. Only then do runs and inflation
not occur on the equilibrium path.

In Diamond and Dybvig (1983), we learned the dilemma that offering the optimal amount
of risk-sharing via demand-deposit contracts requires private banks to be prone to runs.
Thus, a bad bank run equilibrium also exists. Our result brings this dilemma to the next
level. If the bank is a central bank equipped with the power to set price levels and control
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the real goods supply, then optimal risk-sharing can be implemented in dominant strategies
such that a bank run never occurs, but only at the expense of price stability.

Observe that by the optimality conditions and the resource constraint, y∗ < λR
1+λ(R−1)

holds and that the upper bound for yd(n) is increasing in n. Therefore, the constant liqui-
dation policy

y(n) ≡ y∗ (17)

implements the socially optimal equilibrium in dominant strategies. However, there exist
other liquidation policies that can accomplish the same result. The policy (17) delivers the
same result as does the classic suspension-of-convertibility option, which is known to exclude
bank runs in the Diamond-Dybvig world.

There is a subtle but essential difference, though, between suspension and our liquidation
policy. Suspension of convertibility requires the bank to stop paying customers who arrive
after the fraction λ of agents have withdrawn. By contrast, in our environment, there is
no restriction on agents to spend their digital euros in period 1, and there is no suspension
of accounts. Instead, it is the supply of goods offered for trade against those digital euros
and the resulting change in the price level that generate the incentives for patient agents to
prefer to wait. This reasoning also implies that, in our model, (nominal) deposit insurance
will not deter agents from running on the central bank.

More concretely, low liquidation and thus supply implies that the price level P1 is pushed
above an upper bound that is increasing in the aggregate spending.6 The low liquidation
policy, on the other hand, deters large spending ex-ante, such that the high price level (16)
is a threat that is realized only off-equilibrium. But each time we have an off-equilibrium
threat, we should worry about the possibility of time inconsistency. In comparison with the
classical treatment of time inconsistency in Kydland and Prescott (1977), the concern here is
not that the central bank will be tempted to inflate too much, but that it would be tempted
to inflate too little. The central bank can avoid suboptimal allocations by committing to let
inflation grow whenever necessary. A similar concern appears in models with a zero lower
bound on nominal interest rates. Eggertsson and Woodford (2003) have shown that a central

6Our result resembles Theorem 4 in Allen and Gale (1998) and has a similar intuition. In Allen and Gale
(1998), a central bank lends to a representative bank an interest-free line of credit to dilute the claims of
the early consumers so that they bear a share of the low returns to the risky asset. In their environment,
private bank runs are required to achieve the first-best risk allocation.
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bank then wants to commit to keeping interest rates sufficiently low for sufficiently long, even
after the economy is out of recession, to get the economy off the zero lower bound (see also
Krugman, 1998, for an early version of this idea). But once the economy is away from the
zero lower bound, there is an incentive to renege on the commitment to lower interest rates
and avoid an increase in the price level.

In our model, we assume that the central bank fully commits such that the threat is
credible. But what if the central bank is concerned with price stability and, therefore,
refuses to induce a high price level?

6 The classic policy goal: Price level targeting

There are many possible reasons why central banks view the stabilization of price levels or,
more generally, inflation rates as one of their prime objectives. The model here should be
viewed as part of a larger macroeconomic environment, where price stability must be taken
into account. The task at hand, then, is to examine how price stability imposes constraints on
central bank policy. In particular, we will document the existence of deep tensions between
the three objectives of attaining the first-best outcome, deterring central bank runs, and
maintaining price stability.

Addressing the time-inconsistency problem above requires the introduction of an ob-
jective function for the central bank. Given an objective function for the central bank, a
time-consistent equilibrium is a commitment equilibrium such that the central bank policy
(M, y(n), i(n)) and the resulting price levels (P1(n), P2(n)) maximize the central bank’s ob-
jective function for every value n ∈ [0, 1]. A particular objective is that the central bank
pursues price stability above everything else. We shall distinguish between two versions of
the objective of price stability: full price stability and partial price stability. Let us start by
analyzing the former.

6.1 Full price stability

Definition 6. We call a central bank policy

(i) P1-stable at level P , if it achieves P1(n) ≡ P for the price level target P , for all
spending behavior n ∈ [λ, 1].
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(ii) price-stable at level P , if it achieves P1(n) = P2(n) ≡ P for the price level target
P , for all spending behavior n ∈ [λ, 1].

In our definition, price stability here is treated as a mandate and commitment to the
price level P even for off-equilibrium realizations of n. From the definition, price stability at
some level P implies P1 stability at P . Hence, the second price stability criterion is stronger.

Definition 7. Given a price goal P , we call a commitment equilibrium a

• P1-price-commitment equilibrium, if the central bank policy is P1-stable at level P

• price-commitment equilibrium, if the central bank policy is price-stable at level P

What constraints does the price stability objective impose on central bank policy?

Proposition 8 (Policy under Full Price Stability). A central bank policy is:

(i) P1-stable at level P , if and only if its liquidation policy satisfies:

y(n) =
M

P
n, for all n ∈ [0, 1] (18)

implying a real interim allocation:

x1(n) ≡ x1 =
M

P
≤ 1. (19)

(ii) A central bank policy is price-stable at level P , if and only if its liquidation policy
satisfies equation (18), its price level satisfies (19), and its interest policy satisfies:

i(n) =
P
M
− n

1− n
R− 1. (20)

A price-stable liquidation policy (18) requires asset liquidation in constant proportion to
aggregate spending for all n ∈ [0, 1]; see the green line in Figure 3, where we plot y(n) for
partial versus full price-stable liquidation policies. As a consequence, individual real con-
sumption x1 is constant regardless of aggregate spending behavior, and cuts below 1 since,
due to the resource constraint, the central bank cannot liquidate more than the entire invest-
ment. Hence, a price-stable liquidation policy excludes rationing or all kinds of suspension
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policies. By equation (19) and again due to the resource constraint, for a given money supply
M , only price levels P̄ ≥ M can be P1- stable or price-stable. The slope of the liquidation
policy is, thus, equal or below 1. In other words, the rationing problem shows up indirectly
through a lower bound on all possible price-stable central bank policies.

1 nλ

1
y(n)

λ
λ

nc

x1
*

y(n) for full 
price stability

y(n) for partial
price stability

λ x1

Figure 3: Partial vs. full price-stable liquidation policies

There is a caveat here. Should agents be able to operate the savings technology on their
own, then they can always assure themselves a payoff of 1 in period t = 1 for every good
stored in period t = 0. Thus, the only CBDC contract acceptable to these agents would be a
“green line” coinciding with the 45-degree line and a slope of 1. Slopes below 1 are agreeable,
however, if the central bank is the only entity capable of operating this technology or the
only entity capable of intermediation with operators of that technology.

Recall from Section 5, that the socially optimal allocation satisfies x∗1 > 1, while from
Proposition 8 a P1 price-stable policy requires x1 ≤ 1. Therefore, we can show the second
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part of our trilemma:

Corollary 9 (Trilemma part II - No optimal Risk-sharing). If the central bank commits to
a P1-stable policy, then:

(i) The socially optimal allocation is never implemented.

(ii) The no-run equilibrium is implemented in dominant strategies, i.e., there is a unique
equilibrium in which only impatient agents spend, n∗ = λ, and there are no central
bank run equilibria.

(iii) If the central bank commits to a price-stable central bank policy, then the nominal
interest rate is increasing in n and non-negative i(n) ≥ 0 for all n ∈ [λ, 1].

Intuitively, no runs take place under a P1-stable policy since the real allocation in t = 1

is too low, causing all patient agents to prefer to spend late.

6.2 Partial price stability

While price stability and the absence of central bank runs may be desirable, the constraint
(19), i.e., the failure to implement the socially optimal real allocation, is not. In particular,
the implementation of the social optimum is impossible under complete price stability. Recall
that optimal risk-sharing at x∗1 > 1 triggers potential bank runs in models of the Diamond-
Dybvig variety: thus, part (ii) of the proposition above should not be a surprise. Demanding
price stability for all possible spending realizations of n is thus too stringent: for sufficiently
high spending levels of n, equation (18) exhausts the liquidation possibilities available to a
central bank, as y(n) cannot exceed 1. We therefore examine a more modest goal: a central
bank may still wish to assure price stability, but may deviate from its goal in times of crises.
We capture this with the following definition.

Definition 10. A central bank policy is

(i) partially P1-stable at level P , if for all spending behavior n ∈ [λ, 1], either the policy
achieves P1(n) = P for some price level target P , or aggregate spending satisfies
n > P̄/M . In the latter case, we require full liquidation, y(n) = 1.
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(ii) partially price-stable at level P , if for all spending behavior n ∈ [λ, 1], either the
policy achieves P1(n) = P2(n) = P for some price level target P , or aggregate
spending satisfies n > P̄/M . In the latter case, we require y(n) = 1.

For a graphical illustration, see the blue line in Figure 3. Obviously, P1-stable central
bank policies are also partially P1-stable, and price-stable central bank policies are also
partially price-stable.

Definition 11. Given a price goal P , we call a commitment equilibrium a

• partial P1-price-commitment equilibrium, if the central bank policy is partially
P1-stable at level P

• partial price-commitment equilibrium, if the central bank policy is partially price-
stable at level P

Recall that only price levels above the money supply P ≥M can attain full price stability.
We therefore now concentrate on lower price levelsM > P , since attaining optimality requires
1 < x∗1 = M/P̄ . Nevertheless, we also encounter a (weaker) feasibility constraint for partially
price-stable policies. Since the central bank cannot liquidate more than the entire asset,
y(n) = x1n ∈ [0, 1] for all n ∈ [λ, 1], it faces the constraint λx1 ≤ 1. Feasibility, therefore,
implies a lower bound on all possible partially stable price levels, P ≥ λM . Furthermore,
partial price stability restricts central bank policies:

Proposition 12 (Policy under Partial Price-Stability). Suppose that M > P ≥ λM .

(i) A central bank policy is partially P1-stable at level P , if and only if its liquidation policy
satisfies:

y(n) = min

{
M

P
n, 1

}
. (21)

(ii) For every partially P1-stable central bank policy at level P , there exists a critical aggre-
gate spending level nc ≡ P

M
∈ (0, 1) such that

(ii.a) For all n ≤ nc, the price level is stable at P1(n) = P and the real goods purchased
per agent in period t = 1 equal x1(n) = x1 = M

P
> 1 while real goods purchased

per agent in period t = 2 equal x2(n) = R(1− x1n)/(1− n).
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(ii.b) For spending n > nc, the real goods purchased per agent in period t = 1 equal
x1(n) = 1/n while x2(n) = 0 and the price level P1(n) proportionally increases
with total spending n: P1(n) = Mn

(iii) A central bank policy is partially price-stable at P , if and only if its liquidation policy
satisfies equation (21) and its interest policy satisfies:

i(n) =
P
M
− n

1− n
R− 1, for all n ≤ nc. (22)

For n > nc, there is no supply of real goods in t = 2. Thus, P2 and i(n) are irrelevant.

(iv) For a partially price-stable central bank policy at P , there exists a spending level

n0 =
R P
M
− 1

R− 1
=
Rnc − 1

R− 1
∈ [0, nc), (23)

such that the nominal interest rate turns negative for all n ∈ (n0, nc). For R < M/P ,
the nominal interest rate is negative for all n ∈ [0, nc).

Proposition 12 reflects the central bank’s capacity to keep the price level and the real
interim allocation x1 stable as long as spending remains below the critical level nc. The
stabilization of the price level requires liquidation of real investment proportionally to aggre-
gate spending by factor M/P . At the critical spending level nc, the central bank is forced to
liquidate the entire asset to maintain the price level P1. Since the central bank cannot liq-
uidate more than its entire investment, as spending exceeds the critical level nc, price level
stabilization via liquidation of real assets becomes impossible. For all spending behavior
n > nc, the real allocation to late spending agents is thus zero. The rationing of real goods
implies that the price level has to rise and the real allocation declines in aggregate spending.

The spending level n0 < nc is the level at which the real allocation to early and late
spenders is just equal

x1(n0) = x2(n0) = x̄1. (24)

Notice that x2(n) declines in n for n ∈ [0, nc]. Thus, if fewer than measure n0 of agents
spend, not spending is optimal for patient agents. But for all spending realizations n > n0,
the allocation at t = 2 undercuts the allocation at t = 1: x2(n) < x1(n), turning the real

23



interest rate on the CBDC negative, and causing “spend early” to be a patient agent’s optimal
response to an aggregate spending behavior in excess of n0. Consequently, self-fulfilling runs
are possible as in Diamond and Dybvig (1983), and we obtain the following result as a
corollary of Proposition 12:

Corollary 13 (Trilemma part III- Runs on the Central Bank (Fragility)). Under every
partially P1-stable central bank policy with M > P ≥ λM , there is a multiplicity of equilibria:

(i) There exists a good equilibrium in which only impatient agents spend, n∗ = λ. In that
case, there is no run on the central bank, the social optimum is attained and the price
level is stable at level P .

(ii) There also exists a bad equilibrium in which a central bank run occurs, n∗ = 1, the
social optimum is not attained, and the price level is unstable.

Proposition 12 is in marked contrast to Proposition 8. One could argue that when banking
is interesting, i.e., x∗1 > 1, then the goal of price stability induces the possibility of runs on
the central bank, the necessity for negative nominal interest rates, and the abolishment of
the price stability goal, if a run indeed occurs.

7 Money supply policy or suspension of spending

It is natural to ask why the central bank cannot resort to a much more classical monetary
policy to resolve the trilemma and attain price stability: expansion or reduction of the money
supply. In this section, let us then allow for the possibility that M is state-contingent, i.e.,
M is chosen as a function of aggregate spending M = M(n) at t = 1. Therefore, a central
bank policy consists of three functions (M(·), y(·), i(·)).

The analysis is now straightforward and easiest to explain for the case where the liqui-
dation policy is not state-contingent, y(n) ≡ y∗. To maintain price stability at some level
P , market clearing demands

nM(n) = Py∗. (25)

As a result, the total money balances spent in t = 1 stay constant in n, implying

nM(n) ≡ λM(λ), for all n ∈ [λ, 1]. (26)
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But spending per agent alters, as does the total money supply M(n). That is, the central
bank would have to commit itself to reduce the quantity of money in circulation in response
to a demand shock encapsulated in n: the more people go shopping, the lower are individual
money balances. With the policy (25), y(n) ≡ y∗ and i(n) ≡ i∗ chosen so that P2 = P ,
the central bank can now achieve full price stability, efficiency and financial stability. The
CBDC trilemma appears to be resolved. There are several ways of thinking about this.

State-contingent money supply. A first approach is to make the amount of CBDC
balances available for shopping in t = 1 state-contingent. Having such CBDC accounts with
random balances is an intriguing possibility: it is quite impossible with paper money but
fairly straightforward with electronic forms of currency. A different interpretation of this
approach is to think in terms of a state-contingent nominal interest rate paid on CBDC
accounts between t = 0 and t = 1. One should recognize that both of these routes are
a bit odd, and contrary to how we usually treat money and interest rates. As for money,
a dollar today is a dollar tomorrow: changing that amount in a state-contingent fashion
probably risks severely undermining the trust in the monetary system, and trust is key for
maintaining a fiat currency. As for interest rates, it is commonly understood that interest
rates are agreed upon before events are realized in the future. A state-contingent interest
rate turns accounts into risky and equity-like contracts, likewise undermining trust in the
safety of the system.

Helicopter drops. A third way to think about the state-contingent nature of M corre-
sponds to a classic monetary injection in the form of state-contingent lump-sum payments
(“helicopter drops”) M(n) − M̄ (or taxes, if negative), compared to some original baseline
M̄ . If one wishes to insist that M(n)− M̄ ≥ 0, i.e., only allowing helicopter drops, then the
central bank would choose M̄ ≤M(1) as payment for goods in period t = 0 and thus always
distribute additional helicopter money in the “normal” case n = λ in period 1. Notice that
distributional issues would arise in richer models, where agents are not coordinating on the
same action, thereby distorting savings incentives.

Suspension of spending. With an account-based CBDC, there is an additional and
rather drastic policy tool at the disposal of the central bank: the central bank can simply
disallow agents to spend (i.e., transfer to others) more than a certain amount on their
account. In other words, the bank can impose a “corralito” and suspend spending. This policy
is different from the standard suspension of liquidation, as the amount of goods to-be-made
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available is a policy-induced choice that still exists separately from the suspension of spending
policy. Notice also that “suspension of spending” should perhaps not be called “suspension
of withdrawal.” Since there are only CBDC accounts and they cannot be converted into
something else, the amounts can only be transferred to another account. With the suspension
of spending policy, the central bank could arrange matters in such a way that not more than
the initially intended amount of money λM(λ) will be spent in period 1; see equation (26).
In practice, the central bank would then either take all spending requests at once and, if
the total spending requests exceeded the overall threshold, impose a pro-rata spending limit.
Alternatively, it could arrange and work through the spending requests in some sequence
(first-come-first-served), thereby possibly imposing different limits depending on the position
of a request in that queue.

Monetary neutrality. Last but not least, a state-contingent money supply cannot
replace the central bank’s liquidation policy as the active policy variable. Not only price-
targeting but also the deterrence of runs is an objective of the central bank for attaining the
socially optimal allocation.

A state-contingent money supply, however, does not impact the agent’s spending behav-
ior: the individual agents exclusively care for their individual real allocation at t = 1, y/n,
versus t = 2, R(1 − y)/(1 − n). These allocations are independent of nominal quantities
(M,P1). That is, money is neutral. Given a realization of an individual real allocation y/n,
the identity:

y

n
=
M(n)

P1

(27)

pins down a relationship that needs to hold between the money supply and the price level that
clears the market. The central bank can implement all money supplies and price level pairs
(M,P1) that satisfy equation (27). And as soon as the price level goal P1 is pinned down,
contingent on the realization y

n
, the money supply that solves equation (27) is unique. But

in equation (27) the classic dichotomy holds, and the choice of the right-hand side (M,P1)

cannot alter the left-hand side, i.e., cannot alter incentives to run. Consequently, if the
central bank wants to impact consumers’ behavior to run on the central bank to implement
the social optimum, it can only do so by altering the real goods supply y through adjustment
of its liquidation policy.

In summary. Given the previous discussion, a state-contingent money supply strikes us
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as odd monetary policy. First, the usual inclination for central banks is to accommodate an
increase in demand with a rise, rather than a decline in the money supply. A central bank
that reacts to an increase in demand by making money scarce may undermine trust in the
monetary system. In particular, and needless to say, a spending suspension might create
considerable havoc; the experience in Argentina at the end of 2001 provides ample proof.
Even if this was not the case, monetary neutrality implies that adjusting the money supply
does not affect the run decisions of agents. Therefore, we think that this particular escape
route from the CBDC trilemma needs to be treated with considerable caution.

8 Voluntary participation in CBDC and competition by

private banks

The main model assumes that all consumers invest in a CBDC. It remains to clarify whether
agents may be better off using the investment technology on their own, rather than relying on
the central bank. This is an important question: if agents were to decide to stay in autarky
and invest in the investment technology directly, they may have incentives to supply goods
at the interim stage, thus, potentially undermining the central bank’s liquidation policy.
Similarly, if the outside option is not autarky but investing in deposits with a different, private
bank, then the liquidation policy of that private bank has implications for the aggregate real
goods supply at the interim stage, again impairing the effectiveness of the central bank’s
policy. We now discuss both.

8.1 Autarky and voluntary participation in a CBDC

Assume all but one agent invest in a CBDC. Assume that this single agent invests in the
real technology at t = 0, yielding storage between t = 0 and t = 1, and yielding R > 1

when held between tt = 0 and t = 2. Then, at t = 1, she would learn her type. If she is
impatient, she will liquidate the technology, yielding 1 unit of the real good, and she would
consume her good. She would not sell the good against nominal CBDC deposits, since she
only cares about consumption at t = 1. In the case where she is impatient, she is worse off
in comparison to an agent who invested in CBDCs with the central bank if the central bank
offers the socially optimal allocation and manages to implement a run-deterring policy. This
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is so, since under the latter, an individual impatient agent gets x∗1 > 1 real goods.
If the individual agent is patient, she will stay invested in the technology until time two.

There, the technology yields R > 1 units of the good. The agent will, thus, be better off
than under investment in a CBDC since x∗2 < R; see Section 3.1. But, in particular, also in
the patient case, the individual agent will not offer goods for sale in the interim period, since
liquidation and selling against a CBDC will only yield x∗2 in t = 2. Thus, in any case, patient
or impatient, the agent who invests in autarky will not have an incentive to undermine the
central bank’s policy by increasing the goods supply in the interim period.

Does the agent prefer to remain in autarky rather than participating in the CBDC? Ex-
ante, the risk-averse agent cannot know whether she will turn out to be patient or impatient.
Diamond and Dybvig (1983) show that pooling of resources via banking can attain the social
optimum under an absence of runs, while investment under autarky cannot. That is, the
single agent is always better off investing in the CBDC account if the central bank offers
optimal risk-sharing and implements a run-deterring policy. Thus, participation in the CBDC
account is individually rational.

What if the central bank runs a policy of full price stability at goal P̄? In that case,
our second main result, Corollary 9, shows that runs on the central bank do not occur but
x1 ≤ 1. Thus, for all x1 < 1, investing in a CBDC is dominated by investing in autarky.
Voluntary participation thus requires x1 = 1 or M = P̄ , implying x2 = R. The agent is
then indifferent between investing in a CBDC and staying in autarky. Yet, if she stayed in
autarky, she will not undermine the central bank’s liquidation policy for the reasons above.

In the case of a partial price-stable policy, the situation is as in Diamond and Dybvig
(1983). Ex-ante, the agent cannot know whether a run occurs or not. Conditional on the
no-run equilibrium, we implement the social optimum and the agent is better off investing
in a CBDC. But conditional on the run equilibrium, she was better off in autarky. From
within the model, it is not possible to attach likelihoods for each equilibrium.

8.2 Can private banks undermine the central bank’s policy?

The question of under what circumstances consumers prefer investing in a CBDC account
with the central bank rather than investing in demand deposits with private banks, with
implications for how both types of banks can coexist is addressed in Fernández-Villaverde
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et al. (2020). In this section, we will analyze the private banks’ incentives to provide goods
at the interim stage, conditional on the coexistence of private banks with the central bank.

Goods supply. If the central bank coexists with private banks, it controls the market
of goods only partially, with the remainder of the real goods being supplied by commercial
banks. As before, the measure of agents is normalized to one, divided between a share
α ∈ (0, 1) of agents who are CBDC customers at the central bank and a share 1 − α who
are customers at private banks. Assume that all agents invest their 1 unit endowment in
their corresponding bank and that the private banks invest in the same asset as the central
bank does. Then, at t = 1, the central bank can supply up to α goods via liquidation, while
private banks can supply up to 1− α goods.

Assume that there is one centralized goods market to which customers and banks have
access. That is, CBDC depositors can spend CBDC balances on goods supplied by private
banks and private bank customers can spend their private deposit balances on goods supplied
by the central bank. Let n denote the total measure of spending agents across both customer
groups at the central bank and private banks, given by

n = αnCB + (1− α)nP , (28)

where nCB is the total share of consumers at the central bank who spend, while nP is the
total share of consumers at the private bank who spend. Given total spending n in period
t = 1, let yP (n) be the share of assets liquidated by private banks. In contrast, let yCB(n) be
the central bank’s liquidation policy, i.e., the share of assets liquidated by the central bank.
The total goods supply y in the centralized market at the interim stage is then:

y(n) = α yCB(n) + (1− α) yP (n). (29)

Private deposit making. To collect investment in t = 0, the private banks offer a
nominal demand-deposit account in return for 1 unit of the real good. The private nominal
accounts are denominated in units of the CBDC. Due to competition with the central bank,
the private contract also offers M units of the CBDC in t = 1 or M(1 + i(n)) units in t = 2.

To service withdrawals in terms of CBDC, private banks first observe their customers’
CBDC withdrawal needs nP , and borrow the required amount (1 − α)nPM of the CBDC
from the central bank at the beginning of period t = 1. The central bank creates the CBDC
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quantity (1 − α)nPM on demand for the private banks. Private banks observe CBDC
spending at the central bank nCB, yielding aggregate spending n. During period one, the
private banks sell the share yP (n) of their real goods investment at price P1 at the centralized
market to all consumers, thus receiving proceeds of P1yP (n)(1 − α) units of the CBDC in
return, where P1 satisfies market clearing:

M
(

(1− α)nP + αnCB

)
= P1

(
yP (n)(1− α) + yCB(n)α

)
. (30)

The private banks use these CBDC proceeds to (partially) repay their loan to the central
bank at zero interest within period one. Since the central bank retains only partial control
over the goods market, it generically no longer holds nCBM = P1yCB(n). As a consequence,
the private banks can hold positive or negative CBDC balances (1 − α)(P1yP (n) − nPM)

with the central bank between t = 1 and t = 2.
We seek to examine a range of possibilities for the private bank withdrawals nP as well

as liquidation choices yP . Thus, it is useful to impose the condition that private banks make
zero profits, regardless of the “circumstances” nP or their choice for yP . This requires some
careful calculation, which we provide in Appendix 12, and only summarized here.

We assume that the central bank charges or pays the nominal interest rate z = (RP2/P1)−
1 on the excess or deficit CBDC balances of private banks, to be settled at the end of t = 2.
Note that z > i, if x1 > 1 and equals the internal nominal shadow interest rate regarding
private bank liquidation choices. Moreover, we impose a market share tax at the end of
period t = 2 in order to compensate for profits or losses due to circumstances nP .

At t = 2, the remaining private customers spend the quantity (1−α)(1−nP )M(1+i(n)) of
private CBDC accounts that the private banks borrow from the central bank at the beginning
of t = 2. The private banks sell their returns on the remaining investment R(1−yP (n))(1−α)

at price P2, where P2 satisfies market clearing

M(1 + i(n))
(

(1− α)(1− nP ) + α(1− nCB)
)

=

P2R
(

(1− yP (n))(1− α) + (1− yCB(n))α
)
. (31)

At the end of t = 2, the private banks settle their accounts with the central bank,
taking into account the remaining balances at t = 1 adjusted for interest, the end-of-period
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tax compensating for circumstances nP , the loan at the beginning of t = 2 and the sales
proceeds at t = 2.

Joint liquidation policies. The actions of private banks and the central bank may not
be perfectly aligned when it comes to the liquidation of assets and the supply of goods at
the interim stage. Private banks can have various objectives depending on their ownership
structure and may be subject to regulation of their liquidation policy, both shaping yP .
Independently of whether private banks maximize depositor welfare as in Diamond and
Dybvig (1983), or pursue some other objective, the prevention of runs is key. We have seen
above that runs occur if the provision of real goods at the interim stage is high. Since the
market is centralized, for the spending incentives of bank customers it is irrelevant whether
these goods are provided by the central bank’s or the private bank’s liquidation of assets.

Hence, as before, a run-deterring liquidation policy y(·) is a function of aggregate spending
n such that the real allocation at t = 1 undercuts the real allocation at t = 2:

y(n)

n
< R

(1− y(n))

1− n
, for all n ∈ [λ, 1]. (32)

Thus, again, a run-deterring policy satisfies

y(n) <
nR

1 + n(R− 1)
, for all n ∈ [λ, 1]. (33)

Perfect coordination. If the central bank and the private banks coordinate perfectly,
i.e., act as one entity, and have full control over the asset liquidation, then all run-deterring
policies are possible, as in the case where the central bank is a monopolist. But why would
they coordinate perfectly? By the market’s centralization, the destiny of the central bank is
intertwined with the destiny of the private banks and both types of banks have an interest
in deterring runs. In particular, the private bank will, therefore, not undermine a central
bank’s run-deterring policy by supplying additional goods when, for instance, prices are
high, since this might cause a run not only on the central bank but also on the private bank.
Coordination is therefore among the equilibrium outcomes.

Runs under imperfect coordination. For general liquidation policies yP of private
banks, runs can occur, as the following example shows. Assume that the private bank for
some reason follows a liquidation rule yP (n) ∈ [0, 1] where yP (nb) = 1 for all n ≥ nb where
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nb ∈ (0, 1). For instance, nb = 1− α, i.e., the private bank is subject to regulation and has
to liquidate all assets if a fraction of its customers equal to its market share spends. In that
case, as we show next, the central bank’s capacity to deter runs depends on the size of the
private banking sector, i.e., its market power α. Since the central bank can only control the
liquidation of its own investment yCP , via (32) and (29), a run-deterring policy yCB needs
to satisfy

yCB(n) <
Rn− (1− α)yP (n)(Rn+ 1− n)

α(Rn+ 1− n)
, for all n ∈ [λ, 1]. (34)

Now assume n > nb, such that yP (n) = 1. If in addition the central bank has a small
market share α→ 0, then the numerator converges to −(1−n), while the denominator goes
to zero, α(1 + (R − 1)n) → 0. That is, for nb < n < 1, the right-hand side in (34) goes to
minus infinity such that (34) cannot hold. This implies that the run equilibrium exists.

A sufficient condition: Run-deterrence under imperfect coordination. The
example above makes clear that the central bank’s share in the deposit market needs to be
large enough in order to prevent runs. The following proposition provides the appropriate
bound under which the central bank can ensure the absence of a run, regardless of the private
bank’s liquidation schedule yP : [λ, 1]→ [0, 1].

Proposition 14. Suppose that the central bank’s share in the deposit market satisfies

α >
1− λ

(1− λ+Rλ)
. (35)

Then the central bank can always find a run-deterring liquidation policy yCB : [λ, 1]→ [0, 1],
regardless of the private bank’s liquidation policy yP : [λ, 1]→ [0, 1].

Such an α ∈ (0, 1) exists since 1−λ
(1−λ+Rλ)

∈ (0, 1). Thus, the right-hand side 1−λ
(1−λ+Rλ)

of equation (35) imposes a lower bound on the balance-sheet size of the central bank as
a percentage of the total demand deposit market, such that run-deterring policies remain
possible despite coexisting private banks that are subject to liquidation restrictions.

Proof. [Proposition 14] We need to show that for any private bank liquidation policy yP :

[λ, 1] → [0, 1], there is a central bank liquidation policy yCB : [λ, 1] → [0, 1] so that (34) is
satisfied. To derive a sufficient condition on the central bank’s market share α under which
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it can nevertheless implement a run-deterring policy, note that by R > 1, the right-hand
side in (34) declines in the value yp for all α ∈ (0, 1). Thus, if a central bank policy yCP is
run-deterring for yP = 1 for all n ∈ [0, 1], then yCP is also run-deterring for a private bank
policy yP (n) ≤ 1 for all n ∈ [0, 1]. Thus, assume yP = 1 for all n ∈ [0, 1]. Then, a sufficient
condition for a run-deterring policy against all private bank policies yP is:

yCB(n) <
Rn− (1− α)(Rn+ (1− n))

α(1 + (R− 1)n)
= 1− 1− n

α(1 + (R− 1)n)
, for all n ∈ [λ, 1]. (36)

The right-hand side is increasing in n and yCB(n) cannot undercut zero. Thus, an n α
such that:

0 < 1− 1− λ
α(1 + (R− 1)λ)

(37)

is a sufficient condition for the existence of a policy yCB ∈ [0, 1] that satisfies (36).

9 Extensions

9.1 Token-based CBDC

With a token-based CBDC, a central bank issues anonymous electronic tokens to agents in
period 1, rather than accounts.7 These electronic tokens are more akin to traditional ban-
knotes than to deposit accounts. Trading with tokens only requires trust in the authenticity
of the token rather than knowledge of the identity of the token holder. Thus, token-based
transactions can be made without the knowlegde of the central bank.

Technically, and with appropriate software, digital tokens can be designed in such a way
that each unit of a token in t = 1 turns into a quantity 1 + i of tokens in t = 2, with i to be
determined by the central bank at the beginning of period t = 2: even a negative nominal
interest rate is possible.8

7This can be done with or without a blockchain. In the second case, a centralized ledger to record
transactions can be kept by a third-party that is separate from the central bank. That third party could also
potentially pay interest or impose a suspension of spending. For the purpose of this paper, we do not need
to worry about the operational details of such a third party or to specify which walls should exist between
it and the central bank to guarantee the anonymity of tokens.

8Historically, we have examples of banknotes bearing positive interest (for instance, during the U.S. Civil
War, the U.S. Treasury issued notes with coupons that could be clipped at regular intervals) and negative
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With that, the analysis in the previous sections still holds, since nothing of essence
depends on the identity of the spending agents other than total CBDC tokens spent in the
goods market. With a token-based CBDC, agents obtain M tokens in period t = 0, and
decide how much to spend in periods t = 1 and t = 2. Thus, the same allocations can
be implemented except for those that require the suspension of spending, as discussed in
Subsection 7.

For the latter, the degree of implementability depends on technical details outside the
scope of this paper. Note that even with a token-based system, the transfer of tokens usually
needs to be registered somewhere, e.g., on a blockchain. It is technically feasible to limit the
total quantity of tokens that can be transferred on-chain in any given period. A pro-rata
arrangement can be imposed by taking all the pending transactions waiting to be encoded
in the blockchain, taking the sum of all the spending requests, and accordingly dividing
each token into a portion that can be transferred and a portion that cannot. It may be that
off-chain solutions arise circumventing some of these measures, but their availability depends
on the precise technical protocol of the CBDC token-based system. In the case where the
token-based CBDC is operated by a centralized third party, such an implementation is even
easier.

9.2 Synthetic CBDC and retail banking

With a synthetic CBDC, agents do not hold the central bank’s digital money directly. Rather,
agents hold accounts at their own retail bank, which in turn holds a CBDC not much different
from current central bank reserves. This may be due to tight regulation by the monetary
authority. The retail banks undertake the real investments envisioned for the central bank
in our analysis above. A synthetic CBDC, therefore, corresponds to the model sketched in
Section 8.2 with α = 0.

The key difference from the current cash-and-deposit-banking system is that cash does not
exist as a separate central bank currency or means of payment. That is, in a synthetic CBDC
system, agents can transfer amounts from one account to another, but these transactions are
always observable to the banking system and, thereby, the central bank. Likewise, agents
(and banks) cannot circumvent negative nominal interest, while they could do so in a classic

interest (demurrage-charged currency, such as the prosperity certificates in Alberta, Canada, during 1936).
Thus, an interest-bearing electronic token is only novel in its incarnation, but not in its essence.

34



cash-and-deposit banking system by withdrawing cash and storing it.
For the purpose of our analysis, observability is key. Our analysis is relevant in the case

of a systemic bank run, i.e., if the economy-wide fraction of spending agents exceeds the
equilibrium outcome. Much then depends on the interplay between the central bank and
the system of private banks. For example, if the liquidation of long-term real projects is up
to the retail banks, and these retail banks decide to make the same quantity of real goods
available in each period, regardless of the nominal spending requests by their depositors,
then the aggregate price level will have to adjust. The central bank may seek to prevent this
either by imposing a suspension of spending at retail banks or by forcing banks into higher
liquidation of real projects: both would require considerable authority for the central bank.
Proposition 14, for instance, says that with α = 0, the central bank alone cannot implement
a run-deterring policy when offering a synthetic CBDC. Run deterrence then requires retail
banks to control liquidation in a particular way.

9.3 Cash

The key difference to a fully cash-based system is that spending decisions can only be ob-
served in the goods market, rather than by also tracing accounts or transactions on the
blockchain. In principle, the payment of nominal interest rates on cash is feasible, but is
demanding in practice. Excluding nominal interest rates on cash, due to these practical
considerations, implies the cash-and-deposit banking system discussed in Section 9.2 and
the restrictions discussed there. The tools available to a central bank are now considerably
more limited. These limitations may be a good thing, as they may impose a commitment
technology and may thus lead to the prevention of an equilibrium systemic bank run in the
first place, but the restricted tool set may be viewed as a burden ex-post, should such a bank
run occur.

10 Conclusion

Diamond and Dybvig (1983) have taught us that the implementation of the social optimum
via the financial intermediation of banks comes at the cost of making these banks prone to
runs. We have argued that this dilemma becomes a trilemma when the central bank acts as
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the intermediary offering a CBDC because central banks are additionally concerned about
price stability. As summarized in Figure 1, a central bank that wishes to simultaneously
achieve a socially efficient solution, price stability, and financial stability (i.e., absence of
runs) will see its desires frustrated. We have shown that a central bank can only realize two
of these three goals at a time.

In its role as the intermediary, the central bank collects and invests the real goods en-
dowments of the agents in a real production technology, offering a nominal CBDC contract
in return. At an interim period, the agents learn whether they enjoy late (patient agent) or
early (impatient agent) consumption and, then, make their nominal spending decisions. A
central bank run occurs if patient agents also decide to spend their CBDC balances early.
Patient agents do spend early when the real value from early spending exceeds the real value
from late spending. But real values depend on the central bank’s liquidation policy of real
investment. The central bank observes aggregate nominal spending and then decides how
much of its real investment to liquidate in order to supply goods to the agents spending
their balances. The price level for real goods then adjusts such that nominal CBDC spend-
ing clears the real goods market. In contrast, a private intermediary would need to take the
price level as given such that the price level jointly with aggregate nominal spending pins
down the necessary liquidation of its real investment.

As our main result, we have demonstrated that the central bank can always implement the
socially optimal allocation in dominant strategies and deter central bank runs at the price of
threatening inflation off-equilibrium. If price-stability objectives for the central bank imply
that the central bank would not follow through with that threat, then allocations either have
to be suboptimal or prone to runs.

We hope to extend our analysis in several important directions. For instance, we can have
a richer “real” side of the economy, including analyzing how a CBDC can affect heterogeneous
agents. We can also study how a CBDC will affect a wider range of financial assets beyond
demand deposits. These are vital considerations to judge the desirability of moving toward
a CBDC world.
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11 Appendix A: Proofs

Proof. [Proposition 8] Proof (i): Via the market clearing condition (7), setting P1(n) ≡ P̄ for
all n requires y(n) = M

P
n, for all n ∈ [0, 1]. Thus, via (11), x1(n) = y(n)/n = M

P
is constant

for all n. Last, since the central bank cannot liquidate more than the entire investment in
the real technology, y(n) ∈ [0, 1] for all n, together with x1 constant requires, in particular,
M
P

= x1 = x1(1) = y(1) ≤ 1. Thus, M ≤ P̄ . Proof (ii): When additionally requiring price
stability, P1(n) = P2(n) ≡ P̄ , the market clearing condition (8) together with (18) yields
(20).

Proof. [Corollary 9] Proof (i): We know that price stability demands x1 ≤ 1 but the social
optimum satisfies x∗1 > 1. Proof (ii): x1 ≤ 1 implies x2(n) = 1−y(n)

1−n R = 1−nx1
1−n R ≥ R > 1 ≥ x.

Since the real value of the allocation at t = 2 always exceeds the real value of the time one
allocation at t = 1, patient agents never spend at t = 1; thus, there are no runs. Proof (iii):

By equation (19), P
M
≥ 1, implies i(n) =

P
M
−n

1−n R− 1 ≥ R− 1 > 0 for all n ∈ [λ, 1] by R > 1.
Further, P

M
≥ 1 implies that i(n) increases in n.

Proof. [Proposition 12] Proof (i): Equation (21) follows immediately from (7) and the con-
straint y(n) ≤ 1. Proof (ii): In n = nc, we have M

P̄
n = 1. Therefore, nc > 0. By assumption

P̄ < M , thus nc < 1, with nc ∈ (0, 1). Equation (21) implies that x1(n) = y(n)/n is constant
at the level x = M/P , as long as y(n) < 1: this is the case for n < nc. For n ≥ nc, y(n) ≡ 1.
All goods are liquidated, so x1(n) = 1/n. Equation P1(n) = Mn follows from equation
(7). Proof (iii): Equation (22) follows from (8) combined with (21). Proof (iv): This is
straightforward, when plugging in (21) into P2(n) and observing that n0 is positive only for
R > M/P .

12 Appendix B: Private bank accounting

Consider the collective of private banks with market share (1− α) ∈ (0, 1). For the sake of
brevity, we refer to the collective as “the private bank.” A fraction nP of the private bank’s
customers spend in t = 1, while a fraction nCB of the central bank’s customers do so, for a
total fraction n of all agents n = (1 − α)nP + αnCB. Agents are promised M units of the
CBDC, when spending in t = 1, or M(1 + i) units, when spending in t = 2. The central
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bank liquidates yCB goods in period t = 1, while the private bank liquidates yP , for total
liquidation y = (1−α)yP +αyCB. For accounting, we introduce some notation. The private
bank borrows CBDC L1 from the central bank to meet withdrawals at the beginning of each
period, repaying the loan at the end of the period with the sales proceeds S1 from selling
real goods. No interest is charged for the within-period loan.

The difference D1 at the end of period t = 1 is kept on account at the central bank,
earning or paying the nominal interest rate z, to be settled at the end of period t = 2.
Further, the bank has to pay a tax τ(1 − α) denoted in CBDC at the end of period 2 (or
receive this as a subsidy, if τ < 0). The interest rate z and the tax τ are chosen by the
central bank (CB in the accounting below), and may depend on nP and choices yP of the
private bank. We seek to calculate x and τ so that the private bank makes zero profits, i.e.,
is left with zero CBDC balances D2 at the end of period 2, after having liquidated and sold
all its remaining goods at the end of period 2. Accounting requires

Accounting in period t = 1:

Loan from CB: L1 = (1− α)nPM

Sales proceeds: S1 = (1− α)P1yP

Difference: D1 = S1 − L1 = (1− α)(P1yP − nPM)

Accounting in period t = 2:

Loan from CB: L2 = (1− α)(1− nP )(1 + i)M

Sales proceeds: S2 = (1− α)P2R(1− yP )

CB account: A2 = (1 + z)D1 − τ(1− α)

Difference: D2 = A2 + S2 − L2

= (1− α)
(
P2R + ((1 + z)P1 − P2R)yP − (1 + i)M − (z − i)nPM − τ

)
Market clearing:

In t = 1: P1y = nM

In t = 2: P2R(1− y) = (1− n)(1 + i)M
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Sum (1 + i) times the market clearing equation for P1 with the equation for P2 to obtain
P2R + ((1 + i)P1 − P2R)y = (1 + i)M . Use the latter equation to replace (1 + i)M in the
last expression for D2 to find

D2

P1(1− α)
= (i− s)(yP − y) + (z − i)(yP − nPx1)− τ

P1

(38)

where, as usual, x1 = M
P1

is the amount of real goods acquired by agents in period t = 1 and
where we introduce:

s =
P2

P1

R− 1 (39)

to denote the “shadow” nominal interest rate for private banks, equating liquidating a unit of
the good in t = 1, selling at P1 and investing at the shadow nominal return 1 + s to keeping
the unit of good and thus selling R units at price P2. Notice that y = nx1 and the market
clearing equations imply

1 + s = (1 + i)
1− n

1− x1n
x1 (40)

and, thus, s > i, whenever x1 > 1. In particular, this is the case at the efficient outcome.
We note that s = i, if and only if x1 = 1, which is the maximal full price-stable solution as
well as the market allocation, when agents engage in self-storage.

Suppose now that the private bank sells exactly as many goods as purchased by their
withdrawing customers, i.e., yP = nPx1. Absent τ , equation (38) reveals that the private
bank will make a loss or profit, if x1 6= 1 and if yP 6= y, i.e., nP 6= n. For example, if the
share of private-bank customers who go shopping in t = 1 is larger than the average share
of customers who shops economy-wide, nP > n, and if the allocation achieves x1 > 1 and
thus s > i, then the private bank incurs a loss D2 < 0, absent τ , as the opportunity costs
for servicing agents in t = 1 are high. We shall use these observations to fix the tax τ to
compensate for these losses or profits, and assume that

τ = P1(i− s)(nP − n)x1 (41)

from here onward. This τ depends on the specifics of the bank only via the “circumstances”
nP and does not depend on the choice yP . To take care of the case where yP 6= nPx1, we
use the central bank-account interest rate z. Solving for z per setting D2 = 0 in (38) and
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imposing (41) yields the following result, which we formulate as a proposition.

Proposition 15. Suppose τ satisfies (41). Then

{D2 = 0} ⇔
(
{yP = nPx1} or {z = s}

)
. (42)

In sum, taxing the “circumstance” profits per (41) and paying an internal interest rate z
on central bank balances equal to the shadow nominal interest rate s achieves the objective
that private banks make zero profits, regardless of their circumstances nP and regardless of
their liquidation choice yP .

Lemma 16. If the private bank sets yP ≡ yCB, then the interest rate for which the private
bank’s balances with the central bank are zero equals z = i and τ = 0.

That is, if the private bank liquidates the same share of assets as does the central bank,
then the interest rate on CBDC balances z = i sets bank profits to zero.

Proof. [Lemma 16] With τ = 0, the CBDC balance at the end of t = 2 equals

D2 = (1− α) (P2R(1− yp)− (1− np)(1 + i)M + (1 + z)(P1yp − npM))

= (1− α)M ∗

 (1 + i)
(

(1−yp)(1−n)

1−y − (1− np)
)

+(1 + z)
(
nyp
y
− np

)  (43)

where, at the last equality, we have plugged in P1 and P2. Then,

(1− yp)(1− n)

1− y
− (1− np) = −

(
nyp
y
− np

)
(44)

if and only if
y(1− yp)− n(y − yp)

y(1− y)
= 1 (45)

For α ∈ (0, 1), yP ≡ yCB implies yp = y. If y = yp, then equations (45) and (44) are true.
Thus, for y = yp the choice z = i puts D2 = 0.

40



References

Allen, F., E. Carletti, and D. Gale (2014): “Money, Financial Stability and Effi-
ciency,” Journal of Economic Theory, 149, 100–127.

Allen, F. and D. Gale (1998): “Optimal Financial Crises,” Journal of Finance, 53,
1245–1284.

Amoussou-Guenou, Y., B. Biais, M. Potop-Butucaru, and S. Tucci-

Piergiovanni (2019): “Rationals vs. Byzantines in consensus-based blockchains,” arXiv
preprint arXiv:1902.07895.

Andolfatto, D., A. Berentsen, and F. M. Martin (2020): “Money, Banking, and
Financial Markets,” Review of Economic Studies, 87, 2049–2086.

Auer, R. and R. Böhme (2020): “The Technology of Retail Central Bank Digital Cur-
rency,” BIS Quarterly Review, March, pp 85-100, March, 85–100.

Auer, R., G. Cornelli, J. Frost, et al. (2020): “Rise of the central bank digital curren-
cies: drivers, approaches and technologies,” Tech. rep., Bank for International Settlements.

Bagehot, W. (1873): Lombard Street: A Description of the Money Market, Scribner,
Armstong & Co.

Barrdear, J. and M. Kumhof (2016): “The Macroeconomics of Central Bank Issued
Digital Currencies,” Bank of England Working Paper 605, Bank of England.

Bech, M. L. and R. Garratt (2017): “Central bank cryptocurrencies,” BIS Quarterly
Review September.

Benigno, P. (2019): “Monetary Policy in a World of Cryptocurrencies,” CEPR discussion
paper no. DP13517, CEPR.

Benigno, P., L. M. Schilling, and H. Uhlig (2019): “Cryptocurrencies, Currency Com-
petition, and the Impossible Trinity,” Working Paper 26214, National Bureau of Economic
Research.

41



Berentsen, A. (1998): “Monetary Policy Implications of Digital Money,” Kyklos, 51, 89–
117.

Biais, B., C. Bisiere, M. Bouvard, and C. Casamatta (2019a): “The blockchain folk
theorem,” The Review of Financial Studies, 32, 1662–1715.

Biais, B., C. Bisière, M. Bouvard, and C. Casamatta (2019b): “Blockchains, Coor-
dination, and Forks,” in AEA Papers and Proceedings, vol. 109, 88–92.

Bordo, M. D. and A. T. Levin (2017): “Central Bank Digital Currency and the Future
of Monetary Policy,” Working Paper 23711, National Bureau of Economic Research.

Böser, F. and H. Gersbach (2019a): “A Central Bank Digital Currency in Our Monetary
System?” Mimeo, Center of Economic Research at ETH Zurich.

——— (2019b): “Do CBDCs Make a Difference?” Working paper.

Brunnermeier, M. K. and D. Niepelt (2019): “On the Equivalence of Private and
Public Money,” Journal of Monetary Economics, 106, 27–41.

Chapman, J., R. Garratt, S. Hendry, A. McCormack, and W. McMahon (2017):
“Project Jasper: Are distributed wholesale payment systems feasible yet?” Financial
System, 59.

Chiu, J., M. Davoodalhosseini, J. Hua Jiang, and Y. Zhu (2019): “Bank Market
Power and Central Bank Digital Currency: Theory and Quantitative Assessment,” Bank
of Canada Staff Working Paper.

Choi, M. and G. Rocheteau (2020): “Money mining and price dynamics,” American
Economic Journal: Macroeconomics.

Cong, L. W., Y. Li, and N. Wang (2020): “Tokenomics: dynamic adoption and valua-
tion,” Working Paper 27222, National Bureau of Economic Research.

Davoodalhosseini, M., F. Rivadeneyra, and Y. Zhu (2020): “CBDC and Monetary
Policy,” Staff Analytical Notes 2020-4, Bank of Canada.

42



Diamond, D. W. and P. H. Dybvig (1983): “Bank Runs, Deposit Insurance, and Liq-
uidity,” Journal of Political Economy, 91, 401–419.

Ebrahimi, Z., B. Routledge, and A. Zetlin-Jones (2019): “Getting Blockchain In-
centives Right,” Tech. rep., Carnegie Mellon University Working Paper.

Eggertsson, G. B. and M. Woodford (2003): “The Zero Bound on Interest Rates and
Optimal Monetary Policy,” Brookings Papers on Economic Activity, 1, 139–233.

Fernández-Villaverde, J. and D. Sanches (2019): “Can currency competition work?”
Journal of Monetary Economics, 106, 1–15.

Fernández-Villaverde, J., D. Sanches, L. Schilling, and H. Uhlig (2020): “Cen-
tral Bank Digital Currency: Central Banking For All?” Working Paper 26753, National
Bureau of Economic Research.

Ferrari, M. M., A. Mehl, and L. Stracca (2020): “Central bank digital currency in
an open economy,” Discussion Paper 15335, CEPR.

Garratt, R. and M. R. van Oordt (2019): “Why Fixed Costs Matter for Proof-of-Work
Based Cryptocurrencies,” Available at SSRN.

Group of 30, T. (2020): “Digital Currencies and Stablecoins: Risks, Opportunities, and
Challenges Ahead,” Tech. rep., G30.

Huberman, G., J. Leshno, and C. C. Moallemi (2017): “Monopoly without a monop-
olist: An economic analysis of the bitcoin payment system,” Bank of Finland Research
Discussion Paper.

Ingves, S. (2018): “Do We Need an E-krona?” Swedish House of Finance.

Kahn, C. M., F. Rivadeneyra, and T.-N. Wong (2019): “Should the central bank issue
e-money?” Money, 01–18.

Keister, T. and D. R. Sanches (2019): “Should Central Banks Issue Digital Currency?”
Working Paper 19-26, Federal Reserve Bank of Philadelphia.

43



Krugman, P. R. (1998): “It’s Baaack: Japan’s Slump and the Return of the Liquidity
Trap,” Brookings Papers on Economic Activity, 29, 137–206.

Kydland, F. E. and E. C. Prescott (1977): “Rules Rather Than Discretion: The
Inconsistency of Optimal Plans,” Journal of Political Economy, 85, 473–491.

Lagarde, C. (2018): “Winds of Change: The Case for New Digital Currency,” Singapore
Fintech Festival.

Lagos, R. and R. Wright (2005): “A unified framework for monetary theory and policy
analysis,” Journal of Political Economy, 113, 463–484.

Leiva, D. R. and H. R. Mendizábal (2019): “Self-fulfilling runs and endogenous liquidity
creation,” Journal of Financial Stability, 45, 1–15.

Leshno, J. D. and P. Strack (2020): “Bitcoin: An Axiomatic Approach and an Impos-
sibility Theorem,” American Economic Review: Insights, 2, 269–86.

Li, J. and W. Mann (2020): “Digital tokens and platform building,” Unpublished working
paper.

Lucas, R. E. and N. L. Stokey (1987): “Money and Interest in a Cash-in-Advance
Economy,” Econometrica, 55, 491–513.

Prat, J., V. Danos, and S. Marcassa (2019): “Fundamental pricing of utility tokens,”
THEMA Working Papers 2019-11, THEMA.

Prat, J. and B. Walter (2018): “An equilibrium model of the market for bitcoin mining,”
CESifo Working Paper Series 6865, CESifo.

Saleh, F. (2020): “Blockchain without waste: Proof-of-stake,” Available at SSRN 3183935.

Schilling, L. and H. Uhlig (2019): “Some simple bitcoin economics,” Journal of Mone-
tary Economics, 106, 16–26.

Skeie, D. R. (2008): “Banking with Nominal Deposits and Inside Money,” Journal of
Financial Intermediation, 17, 562–584.

44



——— (2019): “Digital Currency Runs,” Draft, Warwick Business School.

Svensson, L. E. O. (1985): “Money and Asset Prices in a Cash-in-Advance Economy,”
Journal of Political Economy, 93, 919–944.

Woodford, M. (2003): Interest and Prices: Foundations of a Theory of Monetary Policy,
Princeton University Press.

45


