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How should successive generations insure each other when the enforcement of trans-

fers between them is limited? This paper examines transfers that maximize the

expected discounted utility of all generations subject to a participation constraint

for each generation. The resulting optimal intergenerational insurance is history

dependent even when the environment is stationary. Consequently, consumption

is heteroskedastic and autocorrelated across generations. The optimal intergen-

erational insurance arrangement is interpreted as a pay-as-you-go social security

scheme with means testing and a mixture of flat-rate and contributory-related el-
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Introduction

Countries face economic shocks that result in unequal exposure to risk across generations.

The Financial Crisis of 2008 and the Covid-19 pandemic are two recent and notable

examples.1 Confronted with such shocks, it is desirable to share risk across generations

through a social security scheme or another form of insurance. However, full risk sharing

is not sustainable if it commits future generations to transfers they would not wish to

make once they are born. The issue of the sustainability of social security insurance is

becoming increasingly relevant in many advanced economies as the relative standard of

living of the younger generation has worsened in recent decades.2 If this generational

shift persists, then future generations may be less willing to contribute to social security

arrangements than in the past. Therefore, a natural question to ask is, how should

an optimal intergenerational insurance arrangement be structured when there is limited

enforcement of risk-sharing transfers?

Despite its policy relevance, this question has not been fully addressed by the literature

on intergenerational insurance. The normative approach in the literature investigates the

optimal design of intergenerational insurance but neglects the limited enforcement of

risk-sharing transfers by assuming that transfers are mandatory. Meanwhile, the positive

approach highlights the political limits to intergenerational insurance, while considering

equilibrium allocations supported by a particular voting mechanism that are not neces-

sarily Pareto optimal.

In this paper, we examine optimal intergenerational insurance when the enforcement

of risk-sharing transfers is limited. Limited enforcement is modeled by assuming that

transfers satisfy a participation constraint for each generation. This can be interpreted

as requiring that the insurance arrangement be supported by each generation if put to

a vote. An arrangement of risk-sharing transfers is sustainable if it satisfies the partic-

ipation constraint of every generation. Optimal sustainable intergenerational insurance

is determined by a benevolent social planner who chooses transfers to maximize the ex-

pected discounted utility of all generations subject to the participation constraints.

1Andrew Glover, Jonathan Heathcote, Dirk Krueger and José-Vı́ctor Ŕıos-Rull (2020) find that the
Financial Crisis of 2008 had a greater negative impact on the older generation, while the young benefited
from the fall in asset prices. Andrew Glover, Jonathan Heathcote, Dirk Krueger and José-Vı́ctor Ŕıos-
Rull (2021) find that younger workers have been impacted to a greater extent by the response to the
Covid-19 pandemic because they disproportionately work in sectors that have been particularly adversely
affected, such as retail and hospitality.

2Part A of the Supplementary Appendix reports the changes in the relative standard of living of the
young and the old for six OECD countries using data from the Luxembourg Income Study Database.

2



The model is simple. There is a representative agent in each generation and a sin-

gle, non-storable consumption good. Agents live for two periods: young and old. The

endowments of both the young and the old are stochastic. The underlying economy is

stationary and the shock to endowments is identically and independently distributed over

time, though there may be aggregate as well as idiosyncratic risk. There is no population

growth, no production, no altruism, and no asymmetry of information. There are only

two frictions. First, risk may not be allocated efficiently, even if the economy is dynami-

cally efficient, because there is no market in which the young can share risk with previous

generations (see, for example, Peter Diamond, 1977). Second, the amount of risk that

can be shared is limited because transfers between generations cannot be enforced. In

particular, the old will not make a transfer to the young (since the old have no future)

and the young will only make a transfer to the old if the promise made to them for their

old age at least matches their expected lifetime utility from autarky and they anticipate

that the promise will be honored by the next generation.

It is well known (see, for example, S. Rao Aiyagari and Dan Peled, 1991) that if endow-

ments are such that the young wish to defer consumption to old age at a zero net interest

rate, then there are stationary transfers that improve upon autarky (Proposition 1). Un-

der this condition, and provided that the first-best transfers cannot be sustained, we find

that there is a trade-off between efficiency and providing incentives for the young to make

transfers to the old. This trade-off is resolved by linking the utility that the young are

promised for their old age to the promise made to the young of the previous generation.

The resulting optimal sustainable intergenerational insurance arrangement is history de-

pendent, even though the environment itself is stationary. Consequently, the risk from an

endowment shock is unevenly spread into the future, generating heteroskedasticity and

autocorrelation of consumption.

To understand why there is history dependence, suppose that the first-best transfers

would violate the participation constraint of the young in some endowment state. To

ensure that the current transfer made by the young is voluntary, either the current trans-

fer is reduced below the first-best level, or the promised transfers for their old age are

increased. Both changes are costly since a smaller current transfer reduces the amount of

risk shared today, while increasing the transfers promised to the current young for their

old age tightens the participation constraints of the next generation and reduces the risk

that can be shared tomorrow. Therefore, there is an optimal trade-off between reducing

the current transfer and increasing the future promised utility, which depends both on

the current endowment and the current promise. For example, consider some current

endowment and current promise such that the future promise is above the current one. If
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the same endowment state is repeated in the subsequent period, then the young in that

period are called upon to make a larger transfer, which in turn requires a higher promise

of future utility to them as well. Thus, the transfer depends not only on the current

endowment but also on the history of endowment shocks.

The optimal sustainable intergenerational insurance is found by solving a functional

equation derived from the planner’s maximization problem. The solution is character-

ized by policy functions for the current transfer made by the young (or equivalently, the

consumption of the young) and the future promised utility for their old age. Both policy

functions depend on the endowment state and the current promise and are weakly in-

creasing in the current promise for a given endowment state (Lemmas 2 and 3). There is

a unique fixed point for the future promise that depends on the first-best transfer in that

endowment state. For a given endowment state, the future promised utility is increased

when the current promise is less than the corresponding fixed point and it is decreased

when the current promise is greater than the fixed point. When the promised utility is

sufficiently low, there is some endowment state in which the participation constraint of

the young does not bind. In that case, the future promise is reset to the largest value

that maximizes the planner’s payoff.

The resetting property shows that the effect of a shock does not last forever. More-

over, it implies strong convergence to a unique and non-degenerate invariant distribution

of promised utilities (Proposition 4). Since the invariant distribution of promised utility

is non-degenerate and the optimal insurance arrangement is history dependent, consump-

tion fluctuates across states and over time, even in the long run. This is in stark contrast

to the situation with either full enforcement of transfers or no risk. In the former case,

the promised utility is constant over time, except possibly in the initial period (Proposi-

tion 2). In the latter case, the promised utility is constant in the long run, although there

may be a finite initial phase during which the promised utility falls (Proposition 3). In

either case, there is no inefficiency in the long run. Thus, both risk and limited enforce-

ment are necessary for the long-run distribution of promised utility to be non-degenerate

and for there to be inefficiency in the long run.

We use measures of entropy (see, for example, David Backus, Mikhail Chernov and

Stanley Zin, 2014) and the bound on the variability of the implied yields introduced by

Ian Martin and Stephen Ross (2019) to understand how risk is shared across generations.

These risk measures are derived from the state prices and implied yields that correspond

to the optimal sustainable intergenerational insurance. The implied yields increase with

the current promise, indicating that generations born in a period with a higher promise
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bear greater risk. Moreover, the yield on all very long bonds converges to a long-run yield

determined by the Perron root of the state price matrix, indicating that the exposure to

a shock dies out as the time horizon becomes long enough. For some parameter values,

the long-run yield is equal to the planner’s discount factor (Proposition 5). We present

an example with two endowment states, the solution to which can be computed using a

simple shooting algorithm without the need to solve a functional equation. We provide a

closed-form solution for the bound on the variability of the implied yields (Proposition 6)

and show that the invariant distribution of promised utility is a transformation of a

geometric distribution (Proposition 7).

In addition, we provide an interpretation of the optimal sustainable intergenerational

insurance in terms of a pay-as-you-go social security or state pension system. We show

how the pension received in old age depends on a measure of the contribution made when

young. In the case of logarithmic preferences, this measure is simply the contribution

rate. In this case, the pension is independent of the contribution rate paid when young if

that contribution rate is below a critical threshold. Otherwise, it is an increasing function

of the past contribution rate. For a given contribution rate, the pension also depends on

current endowments. If, for example, the aggregate endowment is fixed, then for each

given contribution rate paid when young, the pension the old receive is inversely related

to their own endowment. That is, the optimal pension scheme will have both means

testing and a mixture of flat-rate and contributory-related elements. All three of these

features are commonly found in national pension schemes.3 Absent enforcement issues,

the optimal pension scheme has only flat-rate and means-testing elements and therefore,

a key prediction is that the optimal pension scheme has a contributory-related element

whenever there is limited enforcement of transfers.

Literature The existing literature on risk sharing in overlapping generations models

has several strands. One strand considers public policies or other non-market mecha-

nisms that improve risk sharing through a social security scheme (see, for example, Wal-

ter Enders and Harvey Lapan, 1982; Robert J. Shiller, 1999; Antonio Rangel and Richard

Zeckhauser, 2000). In this strand of the literature, however, transfers are mandatory and

consideration is restricted to stationary transfers, in contrast to the voluntary and history-

dependent transfers considered here. Our result on history dependence is foreshadowed in

3José Ignacio Conde-Ruiz and Paola Profeta (2007) discuss how to classify pay-as-you-go state pen-
sion systems. They distinguish between Bismarckian systems, where there is a strong link between
pensions and contributions, and Beveridgean systems, where the link is weaker. Using observed corre-
lations between pension income and pre-retirement earnings, they find that Austria, France, Germany,
Greece, Italy and Spain are (to varying degrees) Bismarckian, whereas Belgium, Denmark, Ireland, the
United Kingdom and the United States are more Beveridgean. They also report that Austria, Belgium,
France, Ireland, Italy, the United Kingdom and the United States have means testing, whereas Denmark,
Germany, Greece and Spain do not.
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a mean-variance setting by Roger H. Gordon and Hal R. Varian (1988), who establish that

any time-consistent optimal intergenerational risk-sharing agreement is non-stationary.

Laurence Ball and N. Gregory Mankiw (2007) consider how risk is allocated across gen-

erations in a complete-markets equilibrium in which all generations can trade contingent

claims before they are born. They find that shocks are evenly spread across generations

in an optimal allocation and hence, consumption follows a random walk. This allocation

is not sustainable because it implies that the participation constraint of some future gen-

eration is violated almost surely. In contrast, we show that shocks are unevenly spread

across future generations to ensure that all participation constraints are met.4

A second strand of the literature provides simple necessary and sufficient criteria for

Pareto optimality. Aiyagari and Peled (1991) derive a dominant root condition for in-

terim optimality in an endowment economy with a finite state space. This approach

has been extended by several authors (see, for example, Rodolfo Manuelli, 1990; Subir

Chattopadhyay and Piero Gottardi, 1999; Gabrielle Demange and Guy Laroque, 1999;

Gaetano Bloise and Filippo L. Calciano, 2008). Pamela Labadie (2004) shows how to

interpret this characterization in terms of ex ante Pareto optimality. We provide a sim-

ilar characterization in which the Pareto weights are determined endogenously by the

participation constraints and the history of shocks.

A third strand of the literature examines political economy models of social security

in which agents vote on the tax and benefit rates for intergenerational transfers (see, for

example, Thomas Cooley and Jorge Soares, 1999; Michele Boldrin and Aldo Rustichini,

2000; Marco Bassetto, 2008; Mart́ın Gonzalez-Eiras and Dirk Niepelt, 2008). A social

security scheme corresponds to the sub-game (or Markov) perfect equilibria of a repeated

(or dynamic) game. Typically, it is assumed that voters in the working-age group are

pivotal. In equilibrium, a social security scheme is supported by current workers in

the expectation that future workers will do the same. The equilibria of these games

are not necessarily Pareto optimal. In contrast, the approach presented here identifies

constrained Pareto optimal intergenerational transfers that each generation unanimously

agrees to respect.

The paper is methodologically related to the literature on risk sharing and limited

commitment with infinitely-lived agents. This literature examines two polar cases: one

4Although not directly focused on risk sharing, two recent papers do study overlapping generations
models with limited commitment. Alessandro Dovis, Mikhail Golosov and Ali Shourideh (2016) study
fiscal policy in an open economy where an infinitely-lived government can default on external debt or
redistribute wealth through transfers once investment decisions have been made. Nobuhiro Kiyotaki and
Shengxing Zhang (2018) examine a firm’s investment in worker training when the worker cannot commit
to stay with the firm in the next period.
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with two infinitely-lived agents (see, for example, Jonathan P. Thomas and Tim Worrall,

1988; V. V. Chari and Patrick J. Kehoe, 1990; Narayana R. Kocherlakota, 1996) and the

other with a continuum of infinitely-lived agents (see, for example, Jonathan P. Thomas

and Tim Worrall, 2007; Dirk Krueger and Fabrizio Perri, 2011; Tobias Broer, 2013).

The overlapping generations model considered here has a continuum of agents but only

two agents are alive at any point in time. The model is not nested in either of the

two infinitely-lived agent models but fills an important gap by providing an analysis of

optimal intergenerational insurance with limited commitment.

The paper has the following structure. Section 1 sets out the model. Section 2 considers

two benchmarks: one with full enforcement of transfers from the young to the old and

the other without risk. Section 3 characterizes the optimal sustainable intergenerational

insurance and provides an interpretation of the solution as a pay-as-you-go social security

or state pension system. Section 4 establishes convergence to an invariant distribution

on a countable ergodic set. Section 5 considers how risk is allocated at the invariant

distribution. Section 6 studies a case with two endowment states. Section 7 considers

social security schemes that are easily implementable and compares the welfare and risk

properties relative to the optimum. Section 8 discusses the results and some extensions

of the basic model. Section 9 concludes. The Appendix contains the proofs of the

main results. Additional proofs and further details can be found in the Supplementary

Appendix.

1 The Model

Time is discrete and indexed by t = 0, 1, 2, . . . ,∞. The model consists of a pure exchange

economy with an overlapping generations demographic structure. At each time t, a new

generation is born and lives for two periods. Each generation is composed of a single

agent.5 The agent is young in the first period of life and old in the second. The economy

starts at t = 0 with an initial old agent and an initial young agent. Since time is infinite,

the initial old agent is the only agent that lives for just one period.

At each t, agents receive an endowment of a perishable consumption good. Endowments

are finite and strictly positive and depend on the state of the world st ∈ S := {1, 2, . . . , S}
with S ≥ 2. The endowments of the young and the old in state st are e

y(st) and e
o(st),

and the aggregate endowment is e(st) := ey(st) + eo(st). Denote the history of states

5The assumption that there is a representative agent in each generation makes it possible to focus
on intergenerational risk sharing. By doing so, however, we ignore questions about inequality within
generations and its evolution over time.
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up to and including time t by st := (s0, s1, ..., st) ∈ St and the probability of reaching

history st by π(st) = π(st−1)π(st | st−1). We assume that states are identically and

independently distributed (hereafter, i.i.d.). Hence, π(st) = π(s0) · . . . · π(st) where π(st)
is the probability of state st and π(st | st−1) = π(st). There is complete information: all

information about endowments and the probability distribution is public. Let cy(st) and

co(st) be the per-period consumption of the young and the old. There is no technology

for saving or investment and hence, cy(st) + co(st) = e(st). Endowments depend only on

the current state whereas consumption can, in principle, depend on the history of states.

In autarky, agents consume only their own endowments, that is, cy(st−1, st) = ey(st) and

co(st−1, st) = eo(st) for all t and (st−1, st).

Each generation is born after that period’s uncertainty is resolved when the current

endowments of the young and the old are known. Therefore, after birth, a generation

only faces uncertainty in old age and there is no insurance market in which the young can

insure against their endowment risk. The lifetime endowment utility of an agent born in

state st is:

v̂(st) := u(ey(st)) + β
∑

st+1

π(st+1)u(e
o(st+1)),

where β ∈ (0, 1] is the generational discount factor and u(·) is the utility function, common

to both the young and the old. Since endowments are positive and finite, v̂(st) is bounded.

Assumption 1. The utility function u:R+ → R ∪ {−∞} is strictly increasing, strictly

concave, thrice continuously differentiable, satisfies the Inada conditions and

u(0) < min
s

{
u(ey(s))− β

∑
s′
π(s′) (u(e(s′))− u(eo(s′)))

}
,

where s′ is the endowment state at the next date.

The latter part of Assumption 1 is sufficient to guarantee that young agents have pos-

itive consumption at the optimal sustainable intergenerational insurance. Assumption 1

is satisfied when limc→0 u(c) = −∞, as is the case when the utility function is logarithmic

or has constant coefficient of relative risk aversion greater than one.

Let λ(s) := uc(e
y(s))/uc(e

o(s)) denote the ratio of marginal utilities of the young and

the old in autarky in state s. If λ(s) > 1, then it follows from the assumption that the

utility of consumption is independent of age that ey(s) < eo(s) and the old are wealthier

than the young in that state. Order states such that λ(S) ≥ λ(S−1) ≥ · · · ≥ λ(1). Then,
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the relative endowment of the old, compared to the young, increases with the state.6 Since

λ(s) varies across states, it is desirable to share risk across generations. In the absence

of a storage technology and because the young are born after uncertainty is resolved, the

only possibility for intergenerational insurance is through transfers between the young

and the old. However, we require that all transfers must be voluntary. That is, agents

make a transfer only if it is in their interest to do so. We assume that any generation

that does not make a transfer when called upon to do so receive no transfer when they

reach old age. Therefore, for every history of shocks, intergenerational insurance must

provide all generations with at least the same lifetime utility they derive from consuming

their endowments.

Benevolent Social Planner Consider the problem of a benevolent social planner who

chooses an intergenerational insurance rule, that is, a function τ(st) that specifies the

transfer between the young and the old for each history st. Since the aggregate endowment

is consumed, τ(st) = ey(st)− cy(st) and co(st) = e(st)− cy(st). The planner must respect

the constraint that neither the old nor the young would be better off in autarky than

adhering to the specified transfers. Therefore, the transfer from the young to the old is

always non-negative because the old would default if they were ever called upon to make

a transfer. The non-negativity constraint is subsumed by requiring cy(st) ∈ Y(st) :=

[0, ey(st)] for every history st. The analogous participation constraint for the young

requires that transfers received in old age sufficiently compensate a transfer made when

young so that the agent is no worse off than reneging on the transfer today and receiving

the corresponding autarkic utility. That is,

u(cy(st)) + β
∑

st+1

π(st+1)u(e(st+1)− cy(st, st+1)) ≥ v̂(st) ∀ st. (1)

Then, Λ := {{cy(st) ∈ Y(st)}∞t=0 | (1)} is the planner’s constraint set. Since utility is

strictly concave and the constraints in (1) are linear in utility, Λ is convex and compact.

Definition 1. An Intergenerational Insurance rule is sustainable if the history-dependent

sequence {cy(st)}∞t=0 ∈ Λ.

The planner seeks to address the conflict between generations by choosing a sustainable

intergenerational insurance rule that maximizes a weighted sum of the expected utilities

of all generations. We suppose that the planner discounts the expected utility of future

6When two states have the same value of λ(·), we use the convention that the states are ordered by
the aggregate endowment, that is, higher states are associated with a higher aggregate endowment. A
special case is where states can be ordered so that the endowment of the old is increasing in s, while the
endowment of the young is decreasing in s.
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generations by a factor δ ∈ (0, 1) and weighs the utility of the initial old by β/δ.7 We

allow the planner’s discount factor, δ, to differ from the generational discount factor, β.

Definition 2. A Sustainable Intergenerational Insurance rule is optimal if it maximizes

the weighted sum of the expected utilities of all generations given by:

β
δ

∑
s0

π(s0)u(e(s0)−cy(s0))+E0

[∑
t

δt

(
u(cy(st))+β

∑
st+1

π(st+1)u(e(st+1)−cy(st,st+1))

)]
, (2)

where E0 is the expectation over all histories of endowment states, subject to the constraint

that the initial old receive an expected utility of at least ω:∑
s0
π(s0)u(e(s0)− cy(s0)) ≥ ω. (3)

Let V (ω) denote the value function corresponding to a solution of the optimization

problem in Definition 2. The function V (ω) traces out the Pareto frontier between the

expected utility of the initial old and the expected discounted utility of all future gener-

ations.8 It is defined on a set Ω := [ωmin, ωmax] where ωmin :=
∑

st
π(st)u(e

o(st)) is the

expected autarkic utility of the old and ωmax is the highest feasible value of expected

utility of the old consistent with the participation constraints (ωmax is discussed in more

detail below). Let

ω0 :=
∑

s0
π(s0)u(e(s0)− c̃y(s0)), (4)

where the notation c̃y(s0) is adopted to emphasize that it is part of the optimal solution.

Clearly, for ω ≤ ω0, constraint (3) does not bind and V (ω) = V (ω0); whereas for ω > ω0,

constraint (3) binds and V (ω) < V (ω0).

Preliminaries The existence of a non-autarkic sustainable allocation can be addressed

by considering small stationary transfers (that is, transfers depending only on the cur-

rent endowment state). Denote the intertemporal marginal rate of substitution between

consumption when young in state s and consumption when old in state s′, evaluated at

autarky, by m̂(s, s′) := βuc(e
o(s′))/uc(e

y(s)) and let q̂(s, s′) := π(s′)m̂(s, s′). The terms

m̂(s, s′) and q̂(s, s′) correspond to the stochastic discount factor and the state prices in an

equilibrium model. Denote the matrix of terms q̂(s, s′) by Q̂. A non-autarkic sustainable

7The assumption of geometric discounting for the planner is common (see, for example, Emmanuel
Farhi and Iván Werning, 2007). Using a weight of β/δ for the initial old preserves the same relative
weights on the young and the old in every period.

8More precisely, the function Ṽ (ω) := V (ω)−ω can be viewed as a Pareto frontier that trades off the
expected utility of the initial old against the planner’s valuation of the expected discounted utility of all
other generations.
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allocation exhausting the aggregate endowment and satisfying cy(st) ∈ Y(st) and the

participation constraints in (1) exists whenever the Perron root (the leading eigenvalue)

of Q̂ is greater than one (see, for example, Aiyagari and Peled, 1991; Chattopadhyay and

Gottardi, 1999). In this case, there is a vector of strictly positive stationary transfers

that improve the lifetime utility of the young in each state. Since the endowment states

are transitory, the matrix Q̂ has rank one and the Perron root is equal to the trace of the

matrix. We assume that this trace is larger than one.

Assumption 2. β
∑

s π(s)λ(s)
−1 > 1.

If there is just one state, then Assumption 2 reduces to the standard Samuelson con-

dition: βuc(e
o) > uc(e

y). In this case, it is well known that there are Pareto-improving

transfers from the young to the old. Assumption 2 is the generalisation to the stochastic

case and a natural assumption given that our focus is on transfers to the old.9 Given

Assumption 2, it follows that the constraint set Λ is non-empty.

Proposition 1. Under Assumption 2, there exists a non-autarkic and stationary Sus-

tainable Intergenerational Insurance rule.

Since λ(s) is increasing in s, Assumption 2 implies that β > λ(1), or equivalently,

βuc(e
o(1)) > uc(e

y(1)). That is, the state-wise Samuelson condition is satisfied in state 1.

We shall assume that the opposite is true in state S.

Assumption 3. λ(S) ≥ β/δ.

Since δ < 1, Assumption 3 implies that β < λ(S), or equivalently, βuc(e
o(S)) <

uc(e
y(S)). We make Assumption 3 for two reasons. First, it shows that the analysis

below does not depend on the state-wise Samuelson condition applying in every state.

Second, it provides a simple sufficient condition for the strong convergence result of

Section 4.

2 Two Benchmarks

Before turning to the characterization of the optimal sustainable intergenerational insur-

ance, it is helpful to consider two benchmark cases that serve to illustrate the inefficiencies

generated by the presence of limited enforcement and uncertainty. The first benchmark

9A simple sufficient condition for Assumption 2 to be satisfied is that the Frobenius lower bound,
given by the minimum row sum of Q̂, is greater than one. That is,

∑
s′ q̂(s, s

′) > 1 for each state s. This
implies that in autarky the young would, if they could, save for their old age in each endowment state,
even at a zero net rate of interest.
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ignores the participation constraints of the young but not the participation constraints

of the old. The second benchmark has only one endowment state but requires that the

planner respects the participation constraints of both the young and the old.

First Best We assume there is uncertainty, S ≥ 2, but suppose that the planner ignores

the participation constraints of the young. Let Λ∗ := {cy(st) ∈ Y(st)}∞t=0 denote the set

of transfers without the constraints in (1).10

Definition 3. An Intergenerational Insurance {cy(st)}∞t=0 ∈ Λ∗ is first best if it maximizes

the objective function (2) subject to constraint (3).

It is easy to verify that at the first-best optimum:

uc(c
y∗(st))

uc(e(st)− cy∗(st))
= max

{
β

δ
, λ(st)

}
∀ st. (5)

Condition (5) is the familiar Arrow-Borch condition for optimal risk sharing modified to

account for the constraint that transfers are only from the young to the old. It shows

that cy∗(st) is independent of the history st−1 and depends only on the current state st,

that is, transfers are stationary. Let τ ∗(s) = ey(s)− cy∗(s) denote the first-best transfer

conditional on state s. The transfer τ ∗(s) = 0 for states in which the participation

constraint of the old binds, that is, for states in which β/δ ≤ λ(s). Under Assumption 3,

there is always one such state and hence, the first-best transfer is not positive in every

state. The transfer τ ∗(s) is positive for states in which β/δ > λ(s). For such states,

condition (5) shows that the ratio of marginal utilities is constant across each of these

states and across all generations. It can be seen from condition (5) that for states in

which transfers are positive, τ ∗(s) is increasing in β since a higher β puts more weight

on the utility of the old who receive the transfer, whereas τ ∗(s) is decreasing in δ since a

higher δ puts more weight on the utility of the young who make the transfer.

Let ω∗ :=
∑

s π(s)u(e(s)−cy∗(s)) denote the expected utility of the old in the first-best

solution. From the definition in (4), it follows that ω0 = ω∗. Now consider constraint (3).

For ω ≤ ω∗, constraint (3) does not bind and the first-best consumption at time t = 0,

cy∗(s0), is determined by condition (5), as in every other time t > 0. For ω > ω∗,

constraint (3) binds and the initial transfers to the old are correspondingly higher. In

particular, if ω > ω∗, then there is a ν0 > 0 (the multiplier associated with constraint (3)

10Hereafter, the asterisk designates the first-best outcome. Note that the first best could be defined by
assuming that the planner ignores the participation constraints of both the young and the old. The reason
for presenting the first best as we do is to show that this allocation is stationary. Hence, any history
dependence in the optimal sustainable intergenerational insurance rule derives from the imposition of
the participation constraints of the young.
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is (β/δ)ν0) such that consumption at t = 0 satisfies:

uc(c
y∗(s0))

uc(e(s0)− cy∗(s0))
= max

{
β

δ
(1 + ν0) , λ(s0)

}
∀ s0, (6)

and constraint (3) holds with equality. Again, for states in which the transfers are positive,

the ratio of the marginal utilities is constant.

Denote the per-period payoff to the planner with the first-best allocation by v∗ :=∑
s π(s)u(c

y∗(s)) + (β/δ)ω∗ and the expected discounted payoff to the planner for ω ∈ Ω

by V ∗(ω). The first-best outcome is summarized in the following proposition.11

Proposition 2. (i) The consumption of the young cy∗(st) is stationary and satisfies

condition (5) for t > 0 and condition (6) for t = 0. (ii) The value function V ∗: Ω → R

is equal to V ∗(ω) = v∗/(1 − δ) for ω ∈ [ωmin, ω
∗] and is strictly decreasing and strictly

concave for ω ∈ (ω∗, ωmax] with ωmax :=
∑

s π(s)u(e(s)) and limω→ωmax V
∗
ω (ω) = −∞.

Note that when ω > ω∗, the consumption of the young is lower than the first-best

consumption given by condition (5), but only in the initial period. In terms of the

expected utility of the old, there is convergence to a unique invariant distribution with a

single mass point at {ω∗} immediately after the initial period.

Deterministic Economy We now consider a deterministic economy but assume that

the planner respects the participation constraint of the young as well as that of the old. In

this case, Assumption 2 reduces to the standard Samuelson condition. This assumption

together with the strict concavity of the utility function implies that there is a unique

consumption cymin < ey, which is the lowest stationary consumption of the young that

satisfies the participation constraint with equality, that is, u(cymin) + βu(e − cymin) = v̂

where v̂ := u(ey) + βu(eo). The corresponding utility of the old is ωmax = u(e − cymin).

Analogously to condition (5), the first-best consumption cy∗ satisfies uc(c
y∗)/uc(e−cy∗) =

max{β/δ, λ} where λ = uc(e
y)/uc(e

o) and the corresponding utility of the old is ω∗ =

u(e − cy∗). Since β/δ > β > λ, the participation constraint of the old is satisfied at

cy∗. Whether the participation constraint of the young is satisfied at cy∗ depends on the

value of δ. If δ is above a critical value, then cy∗ > cymin and the first-best consumption is

sustainable. Otherwise, the first-best consumption is not sustainable.

Denote the consumption of the young at time t by cyt and the corresponding utility of

the old by ωt = u(e−cyt ). Consider the maximization problem in (2) with the participation

11The proof of Proposition 2 is omitted because it follows from standard arguments. Nonetheless, the
properties of the function V ∗(ω) are mirrored in Proposition 3 and Lemma 1, both below, which do
respect the participation constraints of the young.
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constraints of the young given by u(cyt ) + βu(e− cyt+1) ≥ v̂ for t ≥ 0. The solution to this

problem is cyt = max{cy∗, cymin} for all t. For ω ≤ ω∗, constraint (3) does not bind and it is

optimal to set cyt = max{cy∗, cymin} for all t. On the other hand, consider a case in which

δ is large enough such that the first-best consumption is sustainable and ω ∈ (ω∗, ωmax).

In this case, at t = 0, cy0 must satisfy u(e− cy0) ≥ ω, which requires that cy0 < cy∗. Clearly,

it is desirable to set cy0 such that u(e − cy0) = ω and cy1 = cy∗. However, setting cy1 = cy∗

may violate the participation constraint of the young. In such a case, cy1 has to be chosen

to satisfy u(cy0) + βu(e − cy1) = v̂, which implies that cy1 < cy∗. Repeating this argument

for t > 1 shows that given cyt , the consumption of the young at time t+ 1 either satisfies

u(cyt ) + βu(e − cyt+1) = v̂ or cyt+1 = cy∗ if u(cyt ) + βu(e − cy∗) ≥ v̂. It is useful to express

this rule in terms of a policy function that determines the next-period value of the utility

of the old, ω′, as a function of the current value ω:

ω′ = f(ω) :=

ω∗ for ω ∈ [ωmin, ω
c],

1
β
(v̂ − u (e− u−1(ω))) for ω ∈ (ωc, ωmax],

(7)

where ωmin = u(eo) and ωc := u(e − u−1(v̂ − βω∗)). It follows from the strict concavity

of the utility function that ωc > ω∗. The function f(ω) is increasing and convex in

ω as illustrated in Figure 1. The dynamic evolution of ωt is straightforwardly derived

from f(ω): for ωt ∈ [ωmin, ω
c], ωt+1 = ω∗ for all t; for ωt ∈ (ωc, ωmax], ωt+1 declines

monotonically. Since ωc > ω∗, the process for ωt converges to ω
∗, attaining its long-run

value in finite time. Intuitively, if the utility of the old is large (or equivalently, the

consumption of the young is low), then the planner would like to reduce ω to ω∗ (or

equivalently, raise the consumption of the young to cy∗) as fast as possible to improve

welfare. But if the consumption of the next-period young is raised too much, it will violate

the participation constraint of the current young. The presence of limited enforcement

means that the consumption of the young has to be raised gradually.

Denote the per-period payoff to the planner with the first-best allocation in the absence

of uncertainty by v∗ := u(cy∗)+(β/δ)ω∗ and the expected discounted payoff to the planner

for ωt ∈ Ω by V (ωt). The optimal solution for the deterministic case with sustainable ω∗

is summarized in the following proposition.

Proposition 3. (i) If ω ∈ [ωmin, ω
∗], then the consumption of the young is cyt = cy∗ for

t ≥ 0, where uc(c
y∗)/uc(e − cy∗) = β/δ. (ii) If ω ∈ (ω∗, ωmax], then the utility of the old

ωt+1 satisfies equation (7). There exists a finite t̂ such that ωt is monotonically decreasing

for t < t̂ and ωt = ω∗ for t ≥ t̂. Likewise, cyt is monotonically increasing for t < t̂ and

cyt = cy∗ for t ≥ t̂. (iii) The value function V : Ω → R is equal to V (ω) = v∗/(1 − δ)

14



ω∗ ωmax

ω∗

ωc

ω′

ω
ωmin

45◦ line

Figure 1: Policy Function in the Deterministic Case.
Note: The solid line is the deterministic policy function f(ω). For any initial ω ∈ [ωmin, ωmax), ωt

converges to ω∗.

for ω ∈ [ωmin, ω
∗] and is strictly decreasing and strictly concave for ω ∈ (ω∗, ωmax] with

limω→ωmax Vω(ω) = −∞.

The optimal solution is either stationary or converges monotonically to a stationary

point within finite time with cyT = cy∗ for T large enough. Hence, the long-run distribution

of ω is degenerate and for the case where cy∗ > cymin, it has a single mass point at {ω∗}.

In the following sections, we show that in the case where the participation constraint of

the young binds, and there is more than one endowment state, the long-run distribution

of ω is non-degenerate. The benchmarks highlight that both limited enforcement of

transfers and risk are necessary for the long-run distribution to be non-degenerate.

3 Optimal Sustainable Intergenerational Insurance

In this section, we characterize the optimal intergenerational insurance rule under uncer-

tainty when the planner respects the participation constraints of both the young and the

old. We rule out the case in which the first-best outcome is sustainable and assume that

the first-best transfers violate the participation constraint of the young in at least one

state.

Assumption 4. At the first best, u(cy∗(s)) + β
∑

s′ π(s
′)u(e(s′) − cy∗(s′)) < v̂(s) for at

least one state s ∈ S.

We reformulate the optimization problem described in Definition 2 recursively. This

reformulation is possible because the endowment states are i.i.d. and all constraints are
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forward looking. Our characterization is similar to the promised-utility approach (see,

for example, Edward J Green, 1987; Stephen Spear and Sanjay Srivastava, 1987; Thomas

and Worrall, 1988). For simplicity of notation, we often omit the time t indexes and

use primes to denote next-period variables. At each period, the expected utility ω ∈ Ω

promised to the current old embodies information about the history of shocks. The

problem at each period is to determine the state-contingent consumption of the young,

cy(s), and the state-contingent promise of expected utility, ω′(s), made to the young for

their old age.

Since v̂(s) = u(ey(s))+βωmin, the participation constraint of the young, constraint (1),

can be rewritten as:

u(cy(s)) + βω′(s) ≥ u(ey(s)) + βωmin ∀ s ∈ S. (8)

The participation constraint of the old is subsumed by the requirement that cy(s) ∈ Y(s)
for all s. In each period, the utility promises made to the young must be feasible:

ω′(s) ≤ ωmax ∀ s ∈ S; (9)

and the expected utility of the current old must be at least that previously promised:∑
s
π(s)u(e(s)− cy(s)) ≥ ω. (10)

Constraint (10) is a promise-keeping constraint and is analogous to constraint (3), but

is now required to hold in every period. Let Φ := {{cy(s) ∈ Y(s), ω′(s) ∈ Ω}s∈S |
(8), (9) and (10)} denote the constraint set. Since utility is strictly concave and Ω is

an interval, Φ is convex and compact. The value function V (ω) satisfies the following

functional equation:

V (ω) = max
{cy(s),ω′(s)}s∈Φ

[∑
s
π(s)

(
β
δ
u(e(s)− cy(s)) + u(cy(s)) + δV (ω′(s))

)]
. (11)

Denote the state vector by x := (ω, s) and the two stochastic policy functions that

solve (11) by cy(x) and f(x). The policy functions cy(x) and f(x) are the optimal

consumption of the young and the optimal promise of expected utility for their old age

when the current old have a utility promise of ω and the current endowment state is s.

The optimal allocation is solved recursively. First, starting from an ω0 ∈ Ω (how ω0

is determined is discussed below), solve the maximization problem of equation (11) to

obtain the policy functions cy(ω0, s) and f(ω0, s). Next, depending on the endowment

state realised, say s0, input the future promised utility f(ω0, s0) into equation (10) and
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resolve the maximization problem for the next period, and so on. The compactness of Ω

and Φ guarantees the existence of the optimal allocation, and the strict concavity of u(·)
guarantees its uniqueness.

The function V (ω) cannot be found by a standard contraction mapping argument

starting from an arbitrary value function because the value function associated with the

allocation in autarky also satisfies the functional equation (11). Nevertheless, a similar

approach can be used to iterate the value function, starting from the first-best value

function derived in Proposition 2. Following the arguments of Jonathan P. Thomas

and Tim Worrall (1994), it can be shown that the limit of this iterative mapping is the

optimal value function V (ω).12 Proposition 2 established that the first-best value function

is non-increasing, differentiable and concave, and the limit value function inherits these

properties.

Lemma 1. The value function V : Ω → R is non-increasing, concave and continuously

differentiable in ω, where Ω = [ωmin, ωmax] and ωmin < ωmax <
∑

s π(s)u(e(s)). There is

an ω0 ∈ (ωmin, ω
∗) such that V (ω) is constant for ω ≤ ω0 and is strictly decreasing and

strictly concave for ω > ω0 with Vω(ω0) = 0 and limω→ωmax Vω(ω) =−(β/δ)νmax, where

νmax ∈ R+ ∪ {∞}.

The concavity of the objective function and the convexity of the constraint set guaran-

tee the concavity of the value function. The lower endpoint ωmin of the domain of V (ω) is

the autarkic value since zero transfers are feasible. The upper endpoint ωmax is determined

by choosing the consumption of the young and the promised utility that maximizes the

expected utility of the current old subject to constraints (8) and (9). This maximization

problem is itself a strictly concave programming problem and has a unique solution.13

The latter part of Assumption 1 is sufficient to guarantee that ωmax <
∑

s π(s)u(e(s)).

Differentiability follows because the constraint set satisfies a linear independence con-

straint qualification when ω ∈ [ωmin, ωmax). The left-hand derivative of V (ω) evaluated

at ωmax is finite if ωmax is part of the ergodic set and infinite otherwise. These two

possibilities are discussed in more detail below.

Given Lemma 1, the planner chooses an initial promise ω0 = sup{ω | Vω(ω) = 0}. For
ω < ω0, constraint (10) does not bind and the promise to the initial old can be increased

without reducing the planner’s payoff. Therefore, attention can be restricted to promises

ω ≥ ω0. The initial promise ω0 is determined as part of the optimal solution and depends,

12We use this iteration procedure to compute the optimal value function for the numerical examples
considered in Sections 6 and 7.

13Finding ωmax is straightforward since the value function V (ω) does not enter into the constraint set.

17



in general, on all parameter values. However, Assumption 4 implies that the first-best

outcome violates one of the participation constraints in (8) and hence, ω0 < ω∗.

Optimal Policy Functions We now turn to the properties of the policy functions cy(x)

and f(x). Given the differentiability of the value function, the first-order conditions for

the programming problem in equation (11) are:

uc(c
y(x))

uc(e(s)− cy(x))
=
β

δ

(
1 + ν(ω) + η(x)

1 + µ(x)

)
, (12)

Vω(f(x)) = −β
δ
(µ(x)− ξ(x)) , (13)

where π(s)µ(x) are the multipliers associated with the participation constraints of the

young (8), βπ(s)ξ(x) are the multipliers associated with the upper bound on the promised

utility (9), (β/δ)ν(ω) is the multiplier associated with the promise-keeping constraint (10)

and (β/δ)π(s)η(x) are the multipliers associated with the non-negativity constraints on

transfers. Given the concavity of the programming problem, conditions (12) and (13) are

necessary and sufficient. There is also an envelope condition:

Vω(ω) = −β
δ
ν(ω). (14)

Taken together, equations (13) and (14) imply the following updating property:

ν(ω′) = µ(x)− ξ(x). (15)

Equation (15) is easily interpreted. For simplicity, suppose that the upper bound con-

straint on promises and the non-negativity constraint on transfers do not bind, that is,

ξ(x) = η(x) = 0. From equation (12), it follows that 1+µ(x) is the relative weight placed

on the utility of the young and 1 + ν(ω) is the relative weight placed on the utility of

the old. The updating property in equation (15) shows that the relative weight placed

on the utility of the old corresponds to the tightness of the participation constraint they

faced when they were young.

The policy function for the future promise of expected utility is the key to understand-

ing the evolution of the intergenerational insurance rule. It has the following properties:14

Lemma 2. (i) The policy function f : Ω × S → [ω0, ωmax] is continuous and increasing

in ω and strictly increasing for f(ω, s) ∈ (ω0, ωmax). (ii) For at least one state r, there

is a critical value ωc(r) > ω0 with f(ω, r) = ω0 for ω ∈ [ω0, ω
c(r)]. (iii) For each

14To avoid the clumsy terminology of non-decreasing or weakly increasing, we describe a function as
increasing if it is weakly increasing and highlight cases where a function is strictly increasing.
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state s, there is a unique fixed point ωf (s) of the mapping f(ω, s) with f(ω, s) > ω for

ω < ωf (s) and f(ω, s) < ω for ω > ωf (s). For at least one state, ωf (s) > ω0. (iv) If the

aggregate endowment is fixed, then f(ω, s) is decreasing in s and strictly decreasing for

f(ω, s) ∈ (ω0, ωmax).

Figure 2 depicts an example, with three endowment states, of the policy function

f(ω, s). The key properties of f(ω, s) are that, for a given s, it is continuous and increasing

in ω, cuts the 45◦ line at most once from above (see state 1 in Figure 2) and there is a

state such that f(ω, s) is constant in ω for some ω > ω0 (see states 2 and 3 in Figure 2).

ω′

ω

f(ω, 3)

f(ω, 2)

f(ω, 1)

45◦ line

ω̄ω0

ω0

ωc(2) ωc(2)

ω̄

Figure 2: The Policy Function f(ω, s).
Note: The policy function f(ω, s) represents the future promise ω′(s) for s ∈ {1, 2, 3} as a function of ω.
The fixed points are ωf (2) = ωf (3) = ω0 and ωf (1) = ω̄, the largest fixed point. The upward sloping
parts of the policy functions are drawn as linear for illustrative purposes.

The continuity of f(ω, s) in ω follows from the strict concavity of the programming

problem. Intuitively, f(ω, s) is increasing in ω. A higher promise to the current old

means lower consumption for the current young. For endowment states in which the

participation constraint binds, lower consumption for the current young requires a higher

future promised utility as compensation. Since the value function is decreasing in ω,

a higher promise lowers the planner’s payoff. Thus, the planner will want to reduce

the future promise whenever the participation constraint permits. In particular, if the

participation constraint of the young does not bind in state s, then it follows from the

first-order conditions that f(ω, s) = ω0. That is, the promised utility is reset to its

initial value whenever the participation constraint of the young does not bind. Once the

promised utility is reset, it is as if the history of shocks is forgotten. Resetting occurs

because not all participation constraints bind at ω0, which follows from Assumption 3

that there are states in which there is no transfer at ω0. For these states, the participation
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constraint of the young is strictly satisfied since ω0 > ωmin. This establishes property (ii)

of Lemma 2. Part (iii) of Lemma 2 shows that the policy function f(ω, s) cuts the 45◦

line once from above and part (iv) shows that the promised utility is monotonic in s if

there is no aggregate risk. These two latter properties are discussed after the following

lemma, which establishes the properties of the policy function for the consumption of the

young.

Lemma 3. (i) The policy function cy: Ω×S → R is continuous and decreasing in ω and

strictly decreasing for cy(ω, s) < ey(s) and f(ω, s) < ωmax. (ii) At the fixed point ωf (s),

cy(ωf (s), s) ≤ cy∗(s) and with equality for ωf (s) < ωmax. (iii) If the aggregate endowment

is fixed, then cy(ω, s) is decreasing in s.

As mentioned above, the consumption of the young is decreasing in ω. To understand

part (ii) of Lemma 3 (and part (iii) of Lemma 2), suppose for simplicity that η(x) =

ξ(x) = 0. From equations (13) and (14), a fixed point of f(x) corresponds to a stationary

point of the updating condition (15), that is, µ(x) = ν(ω). Substituting this condition

into (12) shows that the ratio of the marginal utilities equals β/δ and hence, consumption

is at the first-best level: cy(ωf (s), s) = cy∗(s). Likewise, for f(x) > ω, where the next-

period promise is higher than today’s promise, the consumption of the young is higher

than the first-best consumption; and for f(x) < ω, where the next-period promise is

lower than today’s promise, the consumption of the young is lower than the first-best

consumption. To understand why f(x) cuts the 45◦ line from above, consider some

ω > ωf (s) and suppose, to the contrary, that f(x) ≥ ω. This would imply that the

consumption of the young is no lower, and that the promised utility is higher, at ω

than at ωf (s). Since the participation constraint of the young binds at ω, this would

violate the participation constraint at ωf (s). A similar argument shows that f(x) > ω

for ω < ωf (s).15

The policy functions cy(ω, s) and f(ω, s) need not be monotonic in s. However, as

stated in part (iv) of Lemma 2 and part (iii) of Lemma 3, both functions are decreasing

in s when the aggregate endowment is fixed. This monotonicity is intuitive because,

absent aggregate risk, the ordering convention for λ(s) implies that the autarkic utility is

decreasing in s. Given that the autarkic utility is decreasing in s, if the participation con-

straint of the young binds in two different endowment states, then either the consumption

of the young or the future promise has to be lower in the higher of the two states. The

lemmas show neither the consumption of the young nor the future promise is increasing

15The argument can be extended to the case where the non-negativity and upper bound constraints
bind and the complete proof of Lemma 2 is given in the Appendix.
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in the state at the optimum.16 Monotonicity of f(ω, s) in s can also be used to show

that, absent aggregate risk, the fixed points ωf (s) are ordered by state: ωf (s) ≥ ωf (r)

for s < r, with strict inequality unless ωf (s) = ωf (r) = ω0 or ωf (s) = ωf (r) = ωmax.

u−1(ω0)

u−1(ωmin)
0 2 4 6 8 10 12 14

0.45

0.55
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p
ro
m
is
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Figure 3: Sample Path of the Promised Utility.
Note: The shade of the dots indicates the state st: dark gray for st = 1, mid gray for st = 2 and light
gray for st = 3. Promised utility is converted to certainty-equivalent consumption u−1(ω).

Figure 3 illustrates the evolution of promised utility for a given history of shocks,

corresponding to the three-state example illustrated in Figure 2. The given history

creates a particular sample path of the promise ω. A sample path for the history

sT = (s0, s1, . . . , sT ) is constructed iteratively from the policy function f(ω, s) starting

with ω0 as follows: ω1 = f1(ω0, s0) := f(ω, s0), ω2 = f2(ω0, s
1) := f(f1(ω0, s0), s1) and so

on, up to fT+1(ω, s
T ) := f(fT (ω, s

T−1), sT ). Figure 3 illustrates two important features.

First, the path is history dependent. That is, promised utility (and hence, consumption)

varies both with the current endowment state and the history of shocks. For example,

state 1 occurs at both t = 7 and t = 12, but the promised utility is different at the two

dates. In particular, whenever state 1 occurs, the participation constraint of the young

binds and a higher promised utility has to be offered to them so that they are willing

to share more of their current relatively high endowment. Subsequent realizations of

state 1 exacerbate the situation because the young of the next generation must deliver on

past promises as well. This property is evident in Figure 3 where ωt increases whenever

state 1 repeats. Secondly, there are points in time at which promised utility resets to ω0.

In the case illustrated in Figure 2, this happens whenever state 3 occurs and sometimes

when state 2 occurs. Before resetting occurs, the effect of a shock persists. However,

once resetting has occurred, the history of shocks is forgotten and the subsequent sample

16The result regarding monotonicity of the policy function f(ω, s) in s can be extended to the case in
which ey(1) ≥ ey(2) ≥ · · · ≥ ey(S) and e(S) ≥ e(S−1) ≥ · · · ≥ e(1), that is, the endowment of the young
is weakly decreasing in s but aggregate endowment is weakly increasing in s. By continuity, monotonicity
of f(ω, s) in s is also preserved provided that aggregate risk is not too large. The convergence property
discussed in Section 4 depends only on the monotonicity of the policy function f(ω, s) in ω and does not
depend on whether it is monotonic in s.
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path is identical whenever the same sequence of states occurs. That is, the sample paths

between resettings are probabilistically identical.17

Implications for the Design of Social Security The results of this section provide

the basis for an interpretation of the optimal sustainable intergenerational insurance as a

pay-as-you-go social security or state pension system.18 The optimum can be expressed

in terms of how the pension received depends on the contribution made when young.

This reinterpretation can be simply and succinctly stated with a change of variables. Let

z := u(ey)−u(ey−τ) denote the contemporaneous utility loss of the young from making a

transfer τ and let Z := [0, zmax] be the set of feasible z, where zmax := β(ωmax−ωmin). The

planner can be thought of as choosing a policy function gz(ω, s) that determines z rather

than choosing the consumption of the young cy(ω, s). The optimal policy gz: Ω×S → Z
inherits the properties of cy(ω, s). In particular, it is increasing in ω, strictly increasing

for gz(ω, s) > 0, and, absent aggregate risk, it is decreasing in s.

The advantage of using gz(ω, s) as the policy function is that the future promise depends

only on z and is independent of the current endowment state. Denote the future promise

ω′ by the function f z:Z → Ω and rewrite the participation constraint of the young

as −z + βf z(z) ≥ ωmin. Letting zc := β(ω0 − ωmin), it follows from the participation

constraint that f z(z) = ω0 if z ≤ zc and f z(z) = ωmin + z/β otherwise.

The functions gz(ω, s) and f z(z) can be used to write the pension of the old as a

function of z9, the utility loss of the transfer made by the young in the previous period,

and the current endowment state.19 Denote the pension function by hz(z9, s) where

hz(z9, s) :=

ey(s)− u−1 (u(ey(s))− gz(ω0, s)) if z9 ≤ zc,

ey(s)− u−1
(
u(ey(s))− gz

(
ωmin +

z9

β
, s
))

if z9 > zc.
(16)

Equation (16) shows that z9 is sufficient to capture all the relevant information about

the past. The properties of the pension function are described by the following corollary

to Lemmas 2 and 3.

Corollary 1. (i) The pension function hz:Z × S → Y(s) is continuous and increasing

in z9 and strictly increasing for hz(z9, s) > 0. (ii) If the aggregate endowment is fixed,

then hz(z9, s) is decreasing in s and strictly decreasing for hz(z9, s) > 0.

17This property is used in Section 4 to establish convergence to a unique invariant distribution.
18In a pay-as-you-go scheme, pensions are paid from the contributions of the current young. Most

state pension schemes are wholly or substantially pay-as-you-go. A funded scheme, in contrast, invests
the contributions of the young in financial or other assets to be paid out during retirement.

19In the initial period, z9 can be set equal to any value in Z less than or equal to zc.
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The pension function exhibits three main features: (i) it depends only on the current

endowment state if the utility loss when young was low, that is, when z9 < zc; (ii) for

each endowment state, it is increasing in the utility loss when young if the loss was high,

that is, when z9 > zc; and (iii) absent aggregate risk, it is decreasing in the endowment

of the old.

For specific preferences, the utility loss of the young can be directly expressed in terms

of their contribution. For example, consider the case of CRRA preferences where u(c) =

(c1−γ − 1)/(1− γ) with coefficient of relative risk aversion γ > 1 and u(c) = log(c) in the

limit as γ → 1. Define

ζ := 1− u−1(−z9) = 1−

(
1 + (ey)1−γ

((
1− τ 9

ey

)1−γ

− 1

)) 1
1−γ

,

where τ 9/ey is the contribution rate. Note that ζ ∈ [0, 1] is an increasing function of

the contribution rate, with ζ = 0 for τ 9/ey = 0 and lim(τ9/ey)→1 ζ = 1. Moreover, ζ

converges to τ 9/ey as γ → 1. Hence, ζ can be interpreted as a modified contribution rate,

which is equal to the contribution rate when preferences are logarithmic. Since z and

ζ are monotonically related, it follows from equation (16) that there is a corresponding

function hζ(ζ, s) that determines the pension transfer to the old as a function of the

(modified) contribution rate paid when young and the current endowment state, with a

threshold of ζc := 1− u−1(−zc).20

ζc

τ

ζ

hζ(ζ, 3)

hζ(ζ, 2)

hζ(ζ, 1)

ζ̄ζ

Figure 4: The pension function hζ(ζ, s).
Note: The pension functions plot the pension of the old as a function of the contribution rate ζ made
when young and the current endowment state s. ζ and ζ̄ are the smallest and greatest values of the
contribution rates. The upward sloping parts of the pension functions are shown as linear for illustrative
purposes. The case illustrated has ζ > 0 and hence, hζ(ζ, s) is strictly increasing for ζ > ζc.

20It is also possible to consider alternative parameterizations of preferences. For example, with CARA

preferences, the pension transfer depends on the level of contribution rather than the contribution rate.
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Figure 4 illustrates the pension function hζ(ζ, s) when there are three endowment

states. It shows that the optimal pension scheme has both means testing and a mixture

of flat-rate and contributory-related elements. If the contribution rate paid when young

is low (ζ ≤ ζc), then hζ(ζ, s) is constant in ζ (the flat-rate element). If the contribution

rate paid when young is high (ζ > ζc), then hζ(ζ, s) is increasing in ζ (the contributory-

rate element). Furthermore, the pension depends on the current endowment state (the

means-testing element). For example, in the case of a constant aggregate endowment,

as illustrated in Figure 4, the pension received by the old is inversely related to their

endowment. As argued in the Introduction, all three elements are commonly found in

national pension schemes. The contributory-related element is a fundamental component

of the optimum when there is limited enforcement of transfers. If the first best were

sustainable, then the optimum would have only flat-rate and means-testing elements.

With limited enforcement, the young who contribute more than the threshold must be

promised a higher pension for their old age.

Although an essential part of the optimum, the contributory-related element may be

non-linear and hence, it may be impractical even when preferences are logarithmic. There-

fore, in Section 7, we compare the risk and welfare properties of simpler linear alternatives

with and without a threshold.

4 Convergence to the Invariant Distribution

We now consider the long-run distribution of promised utilities and show that there is

a countable ergodic set and strong convergence to a unique, non-degenerate invariant

distribution. The future evolution of the promise ω is a Markov chain defined for any set

A ⊆ Ω by the transition function P (ω,A) := Pr{ωt+1 ∈ A | ωt = ω} =
∑

s π(s)1Af(ω, s)

where 1Af(ω, s) = 1 if f(ω, s) ∈ A and zero otherwise. Since the planner sets the initial

promise to ω0 and since, from Lemma 2, f(ω, s) is increasing in ω, it follows that all

subsequent promises ωt ≥ ω0.

Recall from Section 3 that ft+1(ω, s
t) := f(ft(ω, s

t−1), st) where f1(ω, s) := f(ω, s).

The monotonicity and resetting properties of Lemma 2 imply that there is a history of

finite length k such that fk(ω, s
k−1) = ω0 for any ω ∈ Ω. That is, it is possible to find

a sequence of endowment states such that the participation constraint of the young does

not bind at the end of such a sequence and hence, the promise is reset to ω0. This is

obvious when the policy function is ordered by the endowment state. In this case, simply

pick the highest endowment state and consider the positive probability path along which

this state is repeated. This gives the shortest time to reach ω0. If the policy function is
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not ordered by the endowment state, then a similar procedure is to take the sequence of

endowment states where st is chosen to minimize f(ft(ω, s
t−1), st) at each point along the

path. This may be a sequence of different endowment states but after such a sequence

there is a positive probability of reaching ω0 in finite time. An immediate consequence

is that Condition M of Nancy L. Stokey and Robert E. Lucas Jr. (1989, page 348) is

satisfied and hence, there is convergence in the uniform metric to a unique invariant

probability measure ϕ(A).21

Since there is a positive probability that the promise is reset to ω0 in finite time, the

Markov chain for the promise is regenerative and ω0 is a regeneration point (see, for

example, Foss et al., 2018). Moreover, the process starts at a regeneration point because

the planner sets the initial promise to ω0. Let rω := min{k ≥ 1 | fk(ω0, s
k−1) = ω} denote

the first time at which the promise is equal to ω starting from ω0. Then, rω0 is the first

regeneration time, that is, the first time after the initial period at which ω0 reoccurs. Any

sample path of promises can be divided into different blocks with each block starting at

a regeneration time. This can be seen in Figure 3 where there are regeneration times

at dates 0, 5, 6, 8 and 14. The blocks between regeneration points are not identical

but by the strong Markov property they are i.i.d. That is, at each regeneration time,

the past shocks are forgotten and the future evolution of the promise is probabilistically

identical. The regeneration times are also i.i.d. and the expected time to regeneration is

ϖ := E0[rω0 ], the same for any block. The expected time to regeneration ϖ is finite since

all positive probability paths must have a sequence of endowment states that lead to ω0.

Let Rω := Pr(rω < ∞) be the probability of attaining the promise ω in finite time

starting from ω0. If Rω > 0, then ω is said to be accessible from ω0. Since ω0 has a

positive probability mass and the set of endowment states S is finite and time is discrete,

the associated set E := {ω | Rω > 0} is countable. Moreover, the set E is an equivalence

class because every ω ∈ E is accessible from ω0 and there is always a path from every

such accessible ω back to ω0. Therefore, E is an absorbing set, that is, P (ω,E) = 1

for all ω ∈ E, and since no proper subset of E has this property, it is ergodic (see, for

example, Stokey and Lucas, 1989, chapter 11). Let ϖω denote the expected return time

to the promise ω, where ϖω0 ≡ ϖ. With ϖ finite, it follows that Rω = 1 and ϖω is finite

for all ω ∈ E, that is, each promise ω ∈ E is positive recurrent (see, for example, Sean

Meyn and Richard L. Tweedie, 2009, Theorem 10.2.2).

21Condition M is satisfied because there is a k ≥ 1 and an ϵ > 0 such that the k-step transition
function P k(ω, {ω0}) > ϵ. In this case, ω0 is an atom of the Markov chain. Ömer Açikgöz (2018),
Sergey Foss, Vsevolod Shneer, Jonathan P. Thomas and Tim Worrall (2018) and Shenghao Zhu (2020)
use similar arguments to establish strong convergence in the case of a Aiyagari precautionary savings
model with heterogeneous agents.
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Define ω̄ := maxs{ωf (s)} to be the largest of the unique fixed points of the S mappings

f(ω, s). If ω̄ < ωmax, then any ω ∈ (ω̄, ωmax] is transitory and cannot be part of the ergodic

set and hence, E ⊆ [ω0, ω̄). Since the initial promise is ω0, attention can be restricted

to promises that are accessible from ω0, that is, promises belonging to the ergodic set E.

Hence, standard results on the convergence of positive recurrent Markov chains defined

on a countable space can be applied. To state these results, let P denote the transition

matrix with elements P (ω, ω′) and let P k(ω, ω′) be the elements of the corresponding

k-period transition matrix.

Proposition 4. There is pointwise convergence to a unique and non-degenerate invariant

distribution ϕ = ϕP where for each ω ∈ E, ϕ(ω) = limk→∞ P k(·, ω) = ϖ−1
ω . If ω̄ <

ωmax, then ω̄ /∈ E. The invariant distribution can be found iteratively using ϕt+1(ω
′) =∑

ω∈E P (ω, ω
′)ϕt(ω).

The non-degeneracy of the invariant distribution in Proposition 4 follows from As-

sumption 4 that the first best is not sustainable. This result contrasts with the two

benchmarks considered in Section 2. If transfers are enforced, or if there is no risk, then

convergence is to a degenerate invariant distribution with unit mass at ω∗. If ω̄ < ωmax,

then part (ii) of Lemma 3 implies that ω̄ > ω∗ and the promise fluctuates above and

below the first-best promise ω∗ even in the long run, unlike the benchmark cases. More-

over, part (i) of Lemma 2 shows that f(ω, s) is strictly increasing in ω if ω̄ < ωmax.

Hence, ω̄ is not accessible from ω0 and ω̄ /∈ E.22 The last part of Proposition 4 shows

that the invariant distribution can be computed iteratively. In particular, the invariant

distribution can computed using ϕ0(ω) = 1 if ω = ω0 and zero otherwise, which is the

distribution corresponding to the planner’s optimal choice to set the initial promise to

ω0.
23

A straightforward corollary of Proposition 4 is that there is a unique invariant distri-

bution φ(x) for x = (ω, s) where φ(x) = ϕ(ω)π(s) for ω ∈ E and s ∈ S. Therefore,

corresponding to the ergodic set E is another countable ergodic set Ex := E × S.
22While deriving the ergodic set and invariant distribution may be quite complex, Section 6 examines

an example with two endowment states and shows that the invariant distribution is a transformation of
a geometric distribution with a denumerable ergodic set.

23The convergence results hold for any initial distribution ϕ0(A) even if A ̸⊆ E since eventually, once
regeneration occurs, all subsequent promises belong to the ergodic set.
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5 Measuring Generational Risk

We use the results of the previous two sections to examine how risk is shared across

and between generations. To assess generational risk sharing we employ the conditional

and mean entropy measures (see, for example, Backus, Chernov and Zin, 2014) and the

bound on the variability of the implied yields introduced by Martin and Ross (2019). The

advantage of this approach is twofold. First, it allows us to decompose risk sharing into

measures of risk sharing between the young and the old and risk sharing across adjacent

generations of the young. Second, it is closely tied with the implied bond yields and

connects with the literature on the dominant root characterization of Pareto optimality.24

To proceed, write the stochastic discount factor (see, for example, Gur Huberman,

1984; Gregory W. Huffman, 1986; Pamela Labadie, 1986) as follows:

m(x, x′) := β
uc(e(s

′)− cy(x′))
uc(cy(x))

= δ

(
uc(c

y(x′))

uc(cy(x))

)
︸ ︷︷ ︸

mA(x,x′)

(
β

δ

uc(e(s
′)− cy(x′))

uc(cy(x′))

)
︸ ︷︷ ︸

mB(x,x′)

, (17)

where x = (ω, s) is the current state and x′ = (f(ω, s), s′) is the successor state in

the following period. The stochastic discount factor in equation (17) is decomposed

into two terms, mA(x, x′) and mB(x, x′). The first component represents risk sharing

across two adjacent generations of the young and the second component represents risk

sharing between the young and the old at a given date.25 Since the planner sets the

initial promise to ω0, every state x and each successor state x′ belongs to the ergodic set

Ex. Let Q denote the matrix of state prices q(x, x′) :=π(x, x′)m(x, x′), where π(x, x′) and

ϱ(x, x′) :=q(x, x′)/
∑

x′ q(x, x
′) are the transition and risk-neutral probabilities. Given the

multiplicative decomposition in equation (17), the Perron root of Q satisfies ρ = ρAρB

and the associated eigenvector ψ(x) = ψA(x)ψB(x), where (ρA, ψA) and (ρB, ψB) are the

24Two alternative measures used to assess the divergence from first-best risk sharing are the insurance
coefficient (see, for example, Greg Kaplan and Giovanni L. Violante, 2010) and a consumption equivalent
welfare change (see, for example, Zheng Song, Kjetil Storesletten, Yikai Wang and Fabrizio Zilibotti,
2015). We discuss these alternatives in Part F of the Supplementary Appendix and compute their values
at the invariant distribution for the numerical example considered in Section 6. It is shown that using
the insurance coefficient or consumption equivalent welfare change leads to similar conclusions to those
presented below.

25Such a decomposition can also be found in Pamela Labadie (2006). The decomposition is also similar
to the multiplicative decomposition into transitory and permanent components used by Fernando Alvarez
and Urban J. Jermann (2005). Since endowment states are i.i.d., there is no permanent component to
the stochastic discount factor in equation (17). Note that although we maintain the general notational
dependence on x and x′, π(x, x′) = π(s′) since endowment states are i.i.d. and mB(x, x′) depends only
indirectly on x.
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Perron roots and eigenvectors of the matrices corresponding to the across and between

components of the stochastic discount factor.26

Conditional entropy is the Kullback-Liebler divergence between the rows of the matrices

of π(x, x′) and ϱ(x, x′) corresponding to state x. Denote the conditional entropy by

L(x) := −
∑

x′ π(x, x
′) log(ϱ(x, x′)/π(x, x′)). It is well known that L(x) is non-negative

and provides an upper bound on the expected log excess returns of any one-period asset.

Hence, L(x) provides a measure of the residual risk faced by a generation born in state x.

It is easily shown (see, for example, Steve Ross, 2015) that:

L(x)=log

(∑
x′

π(x, x′)

ψ(x′)

)
−
∑

x′
π(x, x′) log

(
1

ψ(x′)

)
. (18)

Conditional entropy measures for the across and between components of the stochastic

discount factor, say, LA(x) and LB(x), are obtained by replacing ψ with ψA and ψB

in (18). Note that L(x) is not necessarily equal to the sum of LA(x) and LB(x) since

mA(x, x′) and mB(x, x′) may be correlated.27 Mean entropy, L̄ :=
∑

x φ(x)L(x), measures

the expected conditional entropy at the invariant distribution and the corresponding

mean entropies for the across and between components of risk are obtained by replacing

L(x) with LA(x) and LB(x) in this expectation.

Conditional entropy can easily be adapted to provide an upper bound on the expected

log excess returns of any k-period asset. Conditional entropy over k periods, Lk(x), is

found by using the k-period transition values of πk(x, x′) and ϱk(x, x′). Similarly, the

associated mean entropy per-period, L̄k/k, provides a measure of long-run risk and how

it is spread over time.

There is a close connection between entropy and implied yields. The continuously com-

pounded return on a k-period bond, conditional on state x, is yk(x) :=−(1/k) log(pk(x)),
where pk(x) is the bond’s price.28 The mean entropy per period satisfies:

L̄k

k
= y∞ − ȳk, (19)

26For simplicity, and because it corresponds to our numerical procedure, we assume here that the set
Ex is finite and hence, ψ is an eigenvector. It is possible to adapt the arguments to the denumerable
case and to more general state spaces (see, for example, Lars Peter Hansen and José A. Scheinkman,
2009; Timothy M. Christensen, 2017).

27Letting o(x) = cov(mA(x, x′),mB(x, x′))/(Ex′ [mA(x, x′)] · Ex′ [mB(x, x′)]), it can be shown that
L(x) = LA(x)+LB(x)+log(1+o(x)) where the expectations and covariance are taken over x′ conditional
on x. Hence, L(x) ≶ LA(x) + LB(x) as o(x) ≶ 0.

28The bond’s price can be defined recursively by pk(x) :=
∑

x′ q(x, x′)pk−1(x′) where p0(x) ≡ 1.
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where ȳk :=
∑

x φ(x)y
k(x) is the average yield and y∞ := limk→∞ yk(x) is the yield on

a long bond.29 Since mean entropy is non-negative, the average yield cannot be greater

than the long-run yield. Martin and Ross (2019) show that |yk(x)− y∞| ≤ (1/k)Υ, where

Υ := log(ψmax/ψmin) and ψmax and ψmin are the maximum and minimum values of the

eigenvector ψ. The deviation of the yield from its mean satisfies:

∆yk(x) := yk(x)− ȳk ∈
[
L̄k −Υ

k
,
L̄k +Υ

k

]
.

Since yk(x) cannot be greater than the average yield for all x, it follows that L̄k ≤ Υ.

While entropy is a measure of the variability in the eigenvector ψ, which in turn depends

on the variability of the stochastic discount factor, the term Υ quantifies the range of the

variability in ψ. It provides an upper bound on mean entropy and can be thought of as

an upper bound on the residual risk.

First-Best Benchmark In the first best, the promised utility is constant and only the

endowment state s matters. For simplicity, suppose that the non-negativity constraint

on transfers does not bind. In this case, mB∗(s, s′) = 1 and m∗(s, s′) = mA∗(s, s′). This

is akin to a representative agent model with consumption variability across time due to

aggregate risk. Since the corresponding matrix of state prices has rank one, the Perron

root is equal to the trace of the matrix Q and hence, ρ∗ = ρA∗ = δ and ρB∗ = 1. The

elements of the corresponding eigenvector are ψ∗(s) = 1/uc(c
y∗(s)), which depend only

on the endowment state s. Since cy∗(s) is increasing in the aggregate endowment, ψ∗
max

corresponds to an endowment state with the highest aggregate endowment and ψ∗
min to

an endowment state with the lowest aggregate endowment. Hence,

Lk∗(s) = log

(∑
s

π(s)

ψ∗(s)

)
−
∑

s
π(s) log

(
1

ψ∗(s)

)
∀s, k; and Υ∗ = log

(
ψ∗
max

ψ∗
min

)
.

Entropy in the first best is independent of the endowment state s and time horizon k be-

cause the endowment shocks are transitory. Risk is perfectly shared between generations

and there is no differential in risk shared across endowment states or time. If there is no

aggregate risk, then the first-best consumption is independent of the endowment state,

mA∗(s, s′) = δ and the eigenvector ψ can be normalized to the unit vector. In this case,

Lk∗(s) = Υ∗ = 0 and yk∗(s) = − log(δ) for all s and k.

Limited Enforcement If only partial risk sharing can be sustained, then Lk(x) and

yk(x) depend on the time horizon k and the state x, even in the absence of aggregate risk.

In general, this dependence might be quite complex. Therefore, the following two sections

29It is shown below that y∞ is independent of the current state. Part C of the Supplementary Appendix
provides details of the derivation of equation (19).
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explore an example with two endowment states and derive some additional theoretical

and numerical results. Nevertheless, there are some properties that hold in general.

Proposition 5. In the optimal sustainable intergenerational insurance: (i) The deviation

∆yk(ω, s) is increasing in ω for each k and s. (ii) The yield on a long bond satisfies

limk→∞ yk(x) = − log(ρ) for each x. (iii) If ω̄ < ωmax, then ρ ≤ δ, with equality if

the non-negativity constraint on transfers does not bind. (iv) Absent aggregate risk, if

ω̄ < ωmax, then y
1(ω̄, 1) > − log(δ) > y1(ω0, S).

To understand Proposition 5, recall that the consumption of the young is decreasing in

ω, while the future promise is increasing in ω. Therefore, the stochastic discount factor

m((ω, s), (f(ω, s), s′)) is decreasing in ω.30 Hence, taking expectations, the price of the

one-period bond decreases with ω. Equivalently, the one-period yield, y1(ω, s), increases

with ω. Thus, an agent born into a generation where the promise is higher faces higher

one-period yields. Part (i) shows this is true for bonds of any maturity. Part (ii) is a

standard result that all yields converge in the long run (see, for example, Martin and

Ross, 2019). That is, the optimal exposure to the risk from a shock vanishes in the very

long run. Part (iii) shows that if the upper bound on promises and the non-negativity

constraint on transfers do not bind, then the long-run yield is the same as in the first best

and is determined by the planner’s discount factor. In particular, ρ = ρA = δ and ρB = 1.

Finally, part (iv) shows that the yield is high when the young have a high endowment

and the promise is large.

6 Two Endowment States

Finding the optimal sustainable intergenerational insurance is complex because it involves

solving the functional equation (11). In this section, we present an example with two

endowment states that can be solved using a shooting algorithm without the need to

compute the value function V (ω).31 For this case, a full characterization of the optimal

dynamics of consumption and the invariant distribution of promises is provided together

with solutions for the generational risk measures outlined in the previous section.

Assumptions 1-4 are maintained but we concentrate on a case with CRRA utility:

u(c) = (c1−γ − 1)/(1− γ) with u(c) = log(c) in the limit as γ → 1. The two endowment

30If consumption is ordered by endowment state (for example, if aggregate endowment is constant),
then m((ω, s), (f(ω, s), s′)) is decreasing in s′. However, the dependence on s is not clear cut because a
higher endowment state (lower endowment of the young) means a lower consumption of the young but
also a lower future promise, leading to a lower consumption of the old in the subsequent period.

31See Part D of the Supplementary Appendix for details of the shooting algorithm.
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states s ∈ {1, 2} occur with probabilities π and 1 − π. There is no aggregate risk and

the aggregate endowment is normalized to unity. The endowments of the young are

ey(1) = κ + σ and ey(2) = κ − σπ/(1 − π), where κ ∈ (1/2, 1) and σ > 0. That is, the

young are relatively rich in state 1 and relatively poor in state 2. An increase in σ is a

mean-preserving spread of risk.

By Assumptions 3 and 4, the promised utility satisfies f(ω0, 1) > f(ω0, 2) = ω0. From

Lemma 2, f(ω, 1) > f(ω, 2) and the largest fixed point ω̄ = ωf (1) is unique. We make two

additional assumptions. First, that ω̄ < ωmax: that is, the upper bound constraint (9)

never binds. Second, that f(ω, 2) = ω0 for ω ∈ [ω0, ω̄]: that is, the participation con-

straint of the poor young never binds. In this case, the multiplier µ(ω, 2) = 0 for

ω ∈ [ω0, ω̄] and the promised utility is optimally reset to ω0 whenever state 2 occurs.

When the young are rich, the promised utility increases, approaching ω̄ if state 1 is re-

peated infinitely often. Consequently, the history of states is forgotten whenever state 2

occurs and the future promise depends only on the number of consecutive state 1s in the

most recent history. There is a non-empty set of parameter values that satisfies these two

additional assumptions. For example, they are valid for the following parameter values.

Example 1. δ = β = exp(−1/75), γ = 1, π = 1/2, κ = 3/5, and σ = 1/10.

Example 1 is our canonical example and all figures in this section relate to this case.32

Using the two additional assumptions, we proceed in three steps. First, Proposition 6

establishes the properties of the optimal consumption and the generational risk measures

conditional on the current state. Second, Proposition 7 derives the invariant distribution

and the moment conditions for consumption at the invariant distribution. Finally, we

consider how the implied yields and mean entropy per period depend on the time horizon.

Conditional Risk The following proposition shows how consumption and the genera-

tional risk measures depend on the current state.

Proposition 6. Suppose f(ω, 2) = ω0 for ω ∈ [ω0, ω̄] and ω̄ < ωmax, then: (i) The policy

function cy(ω, s) is decreasing in ω with cy(ω, 1) > cy(ω, 2) and cy(ω̄, 1) = cy∗(1) = cy∗(2)

= cy(ω0, 2). (ii) The Perron root of Q is ρ = ρA = δ. The corresponding eigenvectors

satisfy ψ(ω, s) = ψA(ω, s)ψB(ω, s) for s = 1, 2 where:

ψA(ω, 1) = cy(ω, 1)γ ; ψB(ω, 1) = υ(ω)−1; ψA(ω, 2) = cy(ω, 2)γ ; ψB(ω, 2) = 1;

32It can be checked that this example satisfies Assumptions 2-4. The value of δ in Example 1 corre-
sponds to a long-run interest rate of 11⁄3%.
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and υ(ω) := 1 + µ(ω, 1) > 1 is increasing in ω. The upper bound on mean entropy is

Υ = ΥB = log(υ(ω̄)). (iii) Conditional entropy in state 2 is independent of ω:

LA(ω, 2) = log (πcy(ω0, 1)
γ+(1−π)cy∗(2)γ)−γ (π log (cy(ω0, 1))+(1−π) log (cy∗(2))) ,

LB(ω, 2) = log (1+π(υ(ω0)−1))−π log (υ(ω0)) ,

where cy(ω0, 1) = (υ(ω0))
1/γ/((β/δ)1/γ + υ(ω0)

1/γ) and cy∗(2) = 1/(1 + (β/δ)1/γ).

Figure 5: Panel A – Promised Utility. Panel B – Young Consumption.
Note: In Panel A, the light gray line is f(ω, 1) and the dark gray line is f(ω, 2). The dotted line is the
45◦ line. In Panel B, the light gray line is cy(ω, 1) and the dark gray line is cy(ω, 2).

Figure 5 plots the future promised utility and the consumption of the young as a

function of the current promise ω for each endowment state. The policy function f(ω, 1)

is monotonically increasing in ω with a fixed point at ω̄, while the policy function f(ω, 2) =

ω0 for ω ≤ ω̄. As stated in part (i) of Proposition 6, cy(ω, s) is monotonically decreasing

in ω and ordered by the state: cy(ω, 1) > cy(ω, 2). Since ω̄ and ω0 are fixed points of

f(ω, 1) and f(ω, 2), it follows from Lemma 3 that cy(ω̄, 1) = cy∗(1) and cy(ω0, 2) = cy∗(2).

With no aggregate risk, the first-best consumption is independent of the state, that is,

cy∗(1) = cy∗(2), and hence, cy(ω̄, 1) = cy(ω0, 2). In this case, for ω ∈ (ω0, ω̄), the transfer

is lower than the first-best transfer in state 1 and higher than the first-best transfer in

state 2.

Panel A of Figure 6 plots the eigenvector ψ(ω, s) and its components ψA(ω, s) and

ψB(ω, s) for each s. With γ = 1, the components ψA(ω, 1) and ψA(ω, 2) correspond

exactly to consumption cy(ω, 1) and cy(ω, 2) illustrated in Panel B of Figure 5. Since

υ(ω) > 1 and is increasing in ω, ψB(ω, 1) < ψB(ω, 2) = 1 and is decreasing in ω. Equally,

ψ(ω, 1) < ψA(ω, 1) and ψ(ω, 2) = ψA(ω, 2). Moreover, ψmax = ψ(ω0, 2) = cy∗(2) and

ψmin = ψ(ω̄, 1) = cy∗(1)/υ(ω̄). Since cy∗(1) = cy∗(2), the upper bound on mean entropy

is Υ = log(ψmax/ψmin) = log(υ(ω̄)). That is, the bound Υ depends only on the tightness
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of the participation constraint of the young in state 1 at ω̄. Furthermore, it can be

derived analytically from the primitives of the model, without the need for numerical

approximation, by using the promise-keeping constraint and the participation constraint

of the young, both of which bind in state (ω̄, 1). Likewise, ψBmax = 1 and ψBmin = 1/υ(ω̄)

and hence, Υ = ΥB. That is, with no aggregate risk, the upper bound on mean entropy

is determined by the upper bound on the between component of risk.33

Figure 6: Panel A – Eigenvectors. Panel B – Conditional Entropy.
Note: In Panel A, the light gray solid line is ψA(ω, 1) and the dark gray solid line is ψA(ω, 2). The light
gray dashed line is ψB(ω, 1) and the dark gray dashed line is ψB(ω, 2). The light gray dot-dashed line is
ψ(ω, 1). Note that ψ(ω, 2) coincides with ψA(ω, 2). For illustrative purposes, ψB(ω, 1) and ψ(ω, 2) are
normalized by multiplying by 1/2. In Panel B, the light gray solid line is LA(ω, 1) and the dark gray solid
line is LA(ω, 2). The light gray dashed line is LB(ω, 1) and the dark gray dashed line is LB(ω, 2). The
light gray dot-dashed line is L(ω, 1) and the dark gray dot-dashed line is L(ω, 2).

While Υ = log(υ(ω̄)) provides an upper bound, the term log(υ(ω)) provides a measure

of the deviation of the between component of the stochastic discount factor from its

first-best level for a given promise ω. To see this, recall that the between component

depends on the ratio of marginal utilities of the young and the old at a given date.

With some abuse of notation, write this as mB(ω, s). Assuming that the non-negativity

constraints on transfers do not bind, log(mB(ω, s)) measures the deviation of mB(ω, s)

from the first best for a given (ω, s). It is easily checked that mB(ω, s) is decreasing in

ω, mB(ω, 1) ≥ 1 ≥ mB(ω, 2) with one of the inequalities holding strictly, mB(ω0, 1) >

1 > mB(ω̄, 2) and mB(ω̄, 1) = 1 = mB(ω0, 2). As ω increases, the deviation of mB(ω, s)

from the first best decreases in state 1 and increases in state 2. Using the first-order

condition (12), log(υ(ω)) = log(mB(ω, 1))− log(mB(ω, 2)) > 0. Since log(υ(ω)) increases

in ω, an agent born into a generation where the promise ω is higher bears more of the

between component of risk.

33The exact formula for Υ is given in the proof of Proposition 6 in the Appendix and its comparative
static properties are described in Part E of the Supplementary Appendix. If e1 > e2, then Υ = ΥB +Υ∗,
where Υ∗ is upper bound on mean entropy corresponding to the first-best allocation.
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Panel B of Figure 6 plots the conditional entropy L(ω, s) and its components LA(ω, s)

and LB(ω, s) for each state s. These measures quantify the conditional risk faced by

a generation born into state x. As shown in Part (iii) of Proposition 6, the entropy

measures in state 2 are independent of ω because the future promise is always reset to

ω0 irrespective of the current promise. In state 1, the entropy measures are increasing

in ω because the variability of old-age consumption increases with ω. In this example,

LB(ω, s) > LA(ω, s) and the between component of risk dominates, consistent with the

result that Υ = ΥB. However, since cy(ω, 1) > cy(ω, 2), the across and the between

components of risk are negatively correlated and hence, L(ω, s) < LA(ω, s) + LB(ω, s).34

Invariant Distribution To simplify notation, let ω
(n)
0 denote the promised utility after

n consecutive state 1s, starting from an initial promise ω
(0)
0 ≡ ω0.

35

Proposition 7. Suppose f(ω, 2) = ω0 for ω ∈ [ω0, ω̄] and ω̄ < ωmax, then the ergodic

set is E = {(ω(n)
0 )n≥0} and at the invariant distribution: (i) The expected time to re-

generation is ϖ = (1 − π)
∑∞

j=1 jπ
j−1 = 1/(1 − π) and the probability mass function is

ϕ(ω
(n)
0 ) = πnϖ−1 for n = 0, 1, . . . ,∞. (ii) Mean entropy is given by:

L̄ =
∑∞

n=0
(1− π)πn+1L(ω

(n)
0 , 1) + (1− π)L(2). (20)

(iii) The logarithm of the ratio of marginal utilities is heteroskedastic with the endowment:

var(log(mB(ω, 2))) > var(log(mB(ω, 1))). (iv) The auto-covariance of the promised utility

over two adjacent periods is positive: cov(ωt, ωt+1) > 0. (v) The auto-covariance of the

consumption of the young for two adjacent generations conditional on the endowment

state is non-negative with cov(cyt , c
y
t+1 | st = 1) > 0 and cov(cyt , c

y
t+1 | st = 2) = 0.

Part (i) of Proposition 7 follows directly from the resetting property. With ω̄ <

ωmax, and since the promised utility is reset to ω0 whenever state 2 occurs, the invariant

distribution of ω depends only on the number of consecutive state 1s. Since the number of

consecutive state 1s is geometrically distributed, so too is the invariant distribution of ω

with an appropriate change of variables. It follows from Proposition 4 that the invariant

distribution has a probability mass of ϕ(ω0) = ϖ−1 at ω0 and has no probability mass at ω̄.

The invariant distribution of x is also easily calculated from ϕ because φ(ω, s) = π(s)ϕ(ω).

Using the invariant distribution φ(ω, s), mean entropy is given by equation (20).

Part (iii) of Proposition 7 shows that the consumption allocation is heteroskedastic.

For Example 1, the variance of the consumption of the young is lower when their en-

34The covariance of mA(x, x′) and mB(x, x′) is negative for this two-state example.
35Formally, ω

(n)
0 = f

(n)
1 (ω0), f1(ω) := f(ω, 1) and f

(n)
1 is the n-fold composition of f1 with f

(0)
1 (ω) = ω.

Since ω̄ is the fixed point of the policy function f(ω, 1), limn→∞ ω
(n)
0 = ω̄.
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Figure 7: Panel A – Joint Distribution of ω. Panel B – Joint Distribution of cy(ω, s).
Note: In both panels, the size of the dot represents the frequency of occurrence. Light gray dots
correspond to state 1 and dark gray dots to state 2 in the current period. The dashed line is the 45◦

line. In Panel B, a solid dot indicates that the endowment state is the same in both periods and an open
dot means transition to the other endowment state.

dowment is higher. The results in parts (iv) and (v) of Proposition 7 are illustrated in

Figure 7, which plots the joint distribution of the promised utility (Panel A) and the joint

distribution of the consumption of the young for two adjacent generations (Panel B). It

follows that cov(ωt, ωt+1) > 0 because f(ω, s) is increasing in the current promise.36 The

properties of the auto-covariance of promised utility are reflected in the auto-covariance

of consumption. Conditional on state 2, the auto-covariance between the consumption of

the young of two adjacent generations is zero because the promise and hence, next-period

consumption, is always reset whenever state 2 occurs. On the other hand, conditional on

state 1, the expected consumption of the young next period is increasing in the consump-

tion of the current young.37 The comparison to a model of limited commitment with

infinitely-lived agents is discussed in Section 8, but it is worth noting that in an equiv-

alent two-state case with two infinitely-lived agents, the conditional and unconditional

auto-covariance of consumption across adjacent periods is zero.

Horizon Dependence Panel A of Figure 8 plots the yield curves yk(ω0, s) and y
k(ω̄, s)

for each s. Part (iv) of Proposition 5 demonstrated that yk(ω̄, 1) > − log(δ) > yk(ω0, 2)

36At the invariant distribution, cov(ωt, ωt+k) depends only on the time horizon k and is positive. As
k → ∞, the conditional expectation of ωt+k converges to the mean of the invariant distribution, which
is constant and independent of k. Hence, limk→∞ cov(ωt, ωt+k) = 0.

37Similarly, absent aggregate risk, there is a positive relationship for the consumption of the old:
cov(cot , c

o
t+1 | st = 1) > 0. The unconditional auto-covariance of consumption, cov(cyt , c

y
t+1), is typically

negative (see Part F of the Supplementary Appendix). This is because consumption is high in the
period after resetting but consumption is generally low in state 2. By the law of total covariance,
cov(cyt , c

y
t+1) = Es[cov(c

y
t , c

y
t+1 | st)]+ cov(Eφ[c

y
t | st],Eφ[c

y
t+1 | st]). The first term is positive by part (v)

of Proposition 7, but the second term is negative because Eφ[c
y
t | st = 1] > Eφ[c

y
t | st = 2] and

Eφ[c
y
t+1 | st = 1] < Eφ[c

y
t+1 | st = 2].
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Figure 8: Panel A – Yield Curves. Panel B – Risk Measures.
Note: In Panel A, the light gray solid line is yk(ω0, 1), the light gray dotted line is yk(ω̄, 1), the dark
gray solid line is yk(ω0, 2), and the dark gray dotted line is yk(ω̄, 2). In Panel B, the solid line is L̄k/k
and the dashed lines are (L̄k −Υ)/k and (L̄k +Υ)/k.

for k = 1. The figure shows that the same result holds for every k and that yk(ω̄, 2) >

− log(δ) > yk(ω0, 1). Moreover, all yields converge to the long-run yield y∞ = − log(δ)

as k →∞. Panel B of Figure 8 plots the mean entropy per period, L̄k/k, together with

the associated bounds (L̄k ± Υ)/k. As shown in equation (19), the mean entropy per

period equals the deviation of the average yield from the long-run yield. The dashed

lines provide the bounds of ∆yk(x) and give an indication of the maximum variability

of the possible yield curves. The mean entropy per period and the associated bounds

converge to zero with the horizon k showing that the influence of past shocks dies out

over time. Similarly, it can be checked that the autocorrelation between the consumption

of the young for generations born at time t and time t+k is monotonically declining in k

and tends to zero with the horizon, implying a low persistence in consumption between

generations born far apart.

7 Social Security Policy Alternatives

As noted in Section 3, with CRRA preferences and a coefficient of relative risk aversion

greater than or equal to one, the optimal pension transfer to the old is given by a function

of the modified contribution rate paid when young and the current endowment state. This

function exhibits several features of observed pay-as-you-go state pension systems, with

both means testing and a mixture of flat-rate and contributory-related elements. How-

ever, the optimal pension scheme may be impractical if the contributory-related element

is non-linear. Therefore, in this section, we consider some simpler linear alternatives with
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and without a threshold and compare their welfare and risk properties using the example

of Section 6.38

We examine three alternatives. The first is an Approximated Rule that matches the

optimal function hζ(ζ, s) except that it imposes linearity on the contributory-related

element. This rule can be described by the following ramp function:

h̃ζ(ζ, s) =

a(s) if ζ ≤ ζc,

a(s) + b(s)(ζ − ζc) if ζ > ζc,

where ζc is the optimal threshold for the contribution rate and a(s) and b(s) are pa-

rameters contingent on the endowment state. The second is a Flat-rate Rule without

the contributory-related element (b(s) = 0) and the third is a Contributory-related Rule

without a threshold (ζc = 0). All three alternatives involve means testing.

Table 1: Social Security Alternatives.

Social Security Rules Parameter Values Welfare Loss Mean Entropy

Optimum — 1.536 14.72

Approximated Rule
a(1)=0.161, b(1)=0.407

1.539 14.97
a(2)=0.000, b(2)=0.935

Flat-rate Rule
a(1)=0.158, b(1)=0.000

1.727 41.93
a(2)=0.050, b(2)=0.000

Contributory-related Rule
a(1)=0.167, b(1)=0.000

1.603 27.02
a(2)=0.000, b(2)=0.243

Note: At the first best, a∗(1) = 0.2, a∗(2) = b∗(1) = b∗(2) = 0, the steady-state welfare is −2 log(2)
and the mean entropy is zero. The welfare loss is percentage loss measured relative to the first best.
The mean entropy is in basis points. Both the Optimum and the Approximated Rule have the same
threshold, ζc = 0.191.

The parameters of the Approximated Rule are chosen by minimizing a constrained sum

of squared errors between the ramp function h̃ζ(ζ, s) and the optimal function hζ(ζ, s)

for the given optimal threshold ζc.39 The parameters for the Flat-rate Rule and the

Contributory-related Rule are chosen to maximize the steady-state expected discounted

utility subject to the participation constraints. Table 1 lists parameter values of each

alternative together with the welfare loss relative to the first best and the corresponding

38Emmanuel Farhi and Iván Werning (2013) provide a similar comparison of income tax policies. They
compare a non-optimized age-dependent linear tax, which they show is close to optimal, with a simpler
and numerically tractable age-independent tax for which the optimum can be computed.

39This procedure avoids the numerical complexity of optimizing over a non-differentiable function. It
is possible that the Approximated Rule may violate the participation constraints. However, at least in
this example, any violations of the participation constraints are numerically negligible.
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mean entropy.40 The welfare loss and the mean entropy of the optimal solution are also

reported for comparison. Figure 9 plots a sample path of the contribution rates for the

three alternatives (Panel A) and the corresponding conditional entropy along the same

sample path (Panel B).

Figure 9: Panel A – Contribution Rates. Panel B – Conditional Entropy.
Note: In both panels, shaded areas mark periods in the low endowment state for the young (s = 2). The
solid black line is the Approximated Rule, the dashed gray line is the Flat-rate Rule, and the solid gray
line is the Contributory-related Rule.

Table 1 and Figure 9 show that the Approximated Rule does well in matching the wel-

fare and risk properties of the optimal solution. The contribution rate increases whenever

there is a sequence of consecutive states 1s, while it adjusts downward and hits the min-

imum level a(2) in finite time whenever there is a sequence of consecutive state 2s. The

associated conditional entropy increases with the number of consecutive state 1s, showing

that the young born after such a sequence bear the greatest risk. In contrast, the young

born in state 2 face the lowest risk regardless of the history of endowment shocks.

The Flat-rate and Contributory-related Rules generate different paths of contribution

rates and risk faced by each generation. Under the Flat-rate Rule, the contribution rate

fluctuates with the endowment state and the conditional entropy is constant, so that all

generations face the same risk. Under the Contributory-related Rule and with b(1) = 0,

contributions are linked to the past only in state 2. The contribution rate and the

conditional entropy remain constant whenever state 1 occurs, while both decrease with

the number of consecutive state 2s. Thus, the young born after an infinitely long sequence

of state 2s bear the lowest risk. The contribution rate of the rich young is higher and

40It is intuitive that b(1) = 0 for the Contributory-related Rule since in this case the participation
constraint always binds in state 1 for all contribution rates. Although we numerically find that b(1) = 0
is optimal for the canonical example, this may not be the case for all examples: lowering b(1) toward
zero improves risk sharing over time in state 1, but the long-run distribution shifts to put more weight
on higher contribution rates, thereby reducing the risk-sharing benefits in state 2.
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the contribution rate of the poor young is generally lower under the Contributory-related

Rule than under the Flat-rate Rule. This raises welfare and reduces risk relative to the

Flat-rate Rule, as shown in Table 1.

As stated in Section 3, when enforceability is an issue, the optimal sustainable social

security scheme has a contributory-related element. This section shows that a linear

approximation for the contributory-related component can be close to optimal.

8 Discussion

Comparison with Infinitely-lived Agents It is worthwhile contrasting our results

to those on risk sharing and limited commitment with infinitely-lived agents. The case

of two infinitely-lived agents with endowment risk has been considered by Thomas and

Worrall (1988) and Kocherlakota (1996). A common feature of that model with the

overlapping generations model considered here is that only one agent is ever constrained

at any point in time, namely, the agent making the transfer or facing a non-negativity

constraint. To illustrate the contrast between the two models, suppose there are just two

i.i.d. endowment states in which the first agent has the higher endowment in one state,

while the situation is reversed in the other state. In the case with two infinitely-lived

agents, there is convergence to the invariant distribution immediately after both states

have occurred. If there is partial insurance at the invariant distribution, then there are

two different ratios of marginal utilities associated with the two endowment states. Since

consumption is determined by the endowment state, the conditional and unconditional

autocorrelation of consumption between two adjacent dates is zero and there is no persis-

tence in consumption. In the overlapping generations model, if there is partial insurance,

then convergence occurs but not within finite time. With two endowment states, each

generation faces only two potential ratios of marginal utilities, but these ratios differ

from one generation to the next depending on the previous promise. Hence, as shown

in Section 6, there is autocorrelation between the consumption of the young of adjacent

generations even in the long run.

Our overlapping generations model is more closely related to models of risk sharing

and limited commitment with a continuum of infinitely-lived agents (see, for example,

Thomas and Worrall, 2007; Krueger and Perri, 2011; Broer, 2013). In those models,

agents have high or low income (employed or unemployed). If there is partial insurance,

then there is a finite set of possible transfers from the employed to the unemployed at the

invariant distribution. There are three different ratios of marginal utilities, one each for

constrained agents whether employed or unemployed and one for unconstrained and un-

39



employed agents. Each ratio determines a value of consumption that depends only on the

employment state for constrained agents but varies with the spell of unemployment for

unconstrained and unemployed agents. To maintain a constant growth rate of marginal

utilities, the consumption of an unconstrained and unemployed agent varies over time.

This contrasts to the overlapping generations model considered here, where consumption

changes when the same state reoccurs and the young are constrained. Another differ-

ence is that we derive the optimal sustainable intergenerational insurance for any given

promise and establish strong convergence to the invariant distribution, whereas Krueger

and Perri (2011) and Broer (2013) consider the solution only at an invariant distribution

and Thomas and Worrall (2007) discuss convergence only in a special case.

Pareto Optimality Two concepts of Pareto optimality are widely used in stochastic

overlapping generations models: ex ante optimality and interim optimality. In an ex ante

Pareto optimum, it is impossible to increase the expected lifetime utility of one generation

without reducing that of another generation. When the planner weighs all generations

equally, the ex ante optimum corresponds to the first-best outcome of Section 2, which

is called an equal-treatment Pareto optimum by Labadie (2004). In the interim case,

generations are distinguished by the state as well as the date of birth and at an interim

Pareto optimum it is impossible to increase the lifetime utility of one generation without

decreasing the lifetime utility of another generation conditional on the current state. This

concept is often referred to as conditional Pareto optimality (see, for example, Aiyagari

and Peled, 1991).

The optimal sustainable intergenerational insurance we have characterized is condi-

tionally Pareto optimal. The ratio of marginal utilities varies across endowment states

because the participation constraint of the young binds in some states. This means that

there is only partial sharing of endowment risk, unlike in an equal-treatment Pareto op-

timum. The ratio of marginal utilities is constant across all endowment states only when

the participation constraint of the young does not bind in any endowment state, that is,

when the optimal allocation is first best. Nevertheless, even when the first best cannot

be sustained, the optimal sustainable intergenerational insurance has a built-in equal-

treatment property with all generations born in the same state x = (ω, s) receiving the

same conditional allocation.

To understand the Pareto weight that the planner places on the lifetime utility of

each generation, reconsider condition (12) and for simplicity ignore the non-negativity

constraint on transfers and the upper bound on the promised utility. In determining the

optimum, the Pareto weight on the utility of the old born at time t can be interpreted

to be δtβ(1 + ν(ω)), where ω is the promise they received when they were young. The
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young they interact with at time t+1 have a Pareto weight of δt+1(1 + µ(ω, s)), which

reflects the promise made to the old and the endowment state. By the updating property

of equation (15), ν(ω′) = µ(ω, s). If µ(ω, s) < ν(ω), then ω′ < ω and the young are

given a lower weight than the old. If, on the other hand, µ(ω, s) > ν(ω), then ω′ > ω

and the young are given a greater weight than the old. It is straightforward to establish

that the Pareto weight for each generation in state x at the invariant distribution is

φ(x)(1 + µ(x))/(1 +
∑

y φ(y)µ(y)) where φ(x) is the probability of state x.41 This shows

that the optimal sustainable intergenerational insurance is conditionally Pareto optimal

with the Pareto weights determined endogenously by the participation constraints and

the history of shocks. Furthermore, although agents born in the same endowment states

may be treated differently, each generation with the same promise and endowment is

treated equally.

Decentralization The optimal sustainable intergenerational insurances involves a de-

gree of ex ante risk sharing between generations. In terms of our canonical example,

generations born in endowment state 1 after a long sequence of preceding and consec-

utive state 1s transfer more than generations also born in endowment state 1 after a

similar but shorter sequence. As pointed out by Demange and Laroque (1999), such an

allocation cannot be supported as a decentralized equilibrium since there is no market

in which the young can buy insurance before they are born.42 Denote the intertemporal

budget of the young in state x by B(x) := −τ(x)+
∑

x′ q(x, x
′)τ(x′), where x′ = (f(x), s′),

τ(x) is the optimal transfer and q(x, x′) is the associated state price for the delivery of

one unit in state x′ next period at the invariant distribution. In a decentralized system,

the transfer τ(x) can be identified as the price of an infinitely-lived asset (money), in

which case B(x) ≤ 0 for each x (see, for example, Rangel and Zeckhauser, 2000). The

first-best allocation derived in Section 2 does not satisfy this constraint and B(s) > 0

for some state s. Likewise, with the optimal sustainable intergenerational insurance, it

cannot be the case that B(x) ≥ 0 for each state x, otherwise, there would be a set of

Pareto improving transfers. However, there will generally be states for which B(x) > 0.

In our canonical example, B(ω, 1) < 0 and B(ω, 2) > 0 because the transfer is high in

state 1 and low in state 2.43

41Dan Peled (1984) and Labadie (2004), among others, show that at a stationary Pareto optimal
solution δα(x′)uc(c

y(x′)) = β
∑

x α(x)π(x, x
′)uc(e(s

′)−cy(x′)), where α(x) is the implied Pareto weight.
The implied Pareto weight in our case is derived from this equation using the first-order condition in (12)
and (15) under the assumption that the upper bound and non-negativity constraints do not bind.

42It is well known that the market equilibrium with an infinitely-lived asset is interim efficient (see,
for example, Peled, 1984)

43Fernando Alvarez and Urban J. Jermann (2000) introduced the idea of “not too tight” borrowing
constraints into a model of limited commitment with infinitely-lived agents. In this case, the two agents
may have different marginal rates of substitutions at the optimum. The state price is set equal to the
maximum but, in order to match the optimum, a (not too tight) constraint is imposed on the assets
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Robustness and Extensions We have kept the model as simple as possible for the

sake of readability and tractability. In particular, we have assumed that the economic

environment is stationary to emphasize that the dynamics of the model derive from the

participation constraints themselves rather than from the underlying endowment process.

Nevertheless, the results are extendable in several directions. We briefly discuss some

of these extensions here and provide further details in Part G of the Supplementary

Appendix.

It has been assumed that the old and the young have a common utility function,

but this is inessential and easily generalized. Likewise, the analysis can be adapted to

allow for stochastic growth of the endowments, along the lines of Fernando Alvarez and

Urban J. Jermann (2001) or Dirk Krueger and Hanno Lustig (2010), among others. In

the basic model, there is no storage technology or savings. It is possible to allow for

storage possibilities, provided that the rate of return to storage is not too high since, in

that case, storage will not be used at the optimum. The model can also be adapted to

the case where the old care altruistically about the young. For example, if the old attach

a weight of ς > 0 to the utility of the young, then the properties of Lemmas 2 and 3

continue to hold, provided that ς is not too large. It is also possible to allow for some

persistence in the endowment process. For example, it can be shown that the shooting

algorithm that was used in the two-state case of Section 6, can be generalized to the case

where there is some persistence of the endowment process, provided that the persistence

is not too large.

The optimal sustainable intergenerational insurance is not renegotiation-proof despite

belonging to the Pareto frontier of the set of all equilibrium payoffs. This is because

the young receive their autarkic utility when they default. In the case of default, it

would be possible to offer the promised utility ω0 instead of ωmin without diminishing

the planner’s payoff. A simple modification of the participation constraint is needed to

derive a renegotiation-proof outcome. Replace the participation constraint of the young in

equation (8) by the inequality u(cy(s))+βω′(s) ≥ u(ey(s))+βω0. Since ω0 is determined

as part of the solution and appears in the constraint, a fixed point argument similar to

that used by Thomas and Worrall (1994) is required to find the solution.44 Although

imposing this tighter constraint restricts risk sharing, the structure of the constrained

optimization problem is not affected and we expect that the qualitative properties of the

optimal solution are substantially unchanged.

an agent can accumulate. In our overlapping generations model, the only relevant marginal rate of
substitution is that of the young.

44In a deterministic overlapping generations model, Edward C. Prescott and José-Vı́ctor Ŕıos-Rull
(2005) consider a similar condition, which they refer to as a no-restarting condition.
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9 Conclusion and Future Research

The paper has developed a theory of intergenerational insurance in a stochastic overlap-

ping generations model when risk-sharing transfers are voluntary. In this setting, it has

been shown that (i) generational risk is spread across future generations in ways that

create history dependence of transfers with periodic resetting, at which time the history

of shocks is forgotten; (ii) there is heteroskedasticity of consumption conditional on the

endowment and autocorrelation of consumption between adjacent generations, even in

the long run; and (iii) the optimum can be interpreted as a pay-as-you-go social security

scheme with both flat-rate and contributory-related elements along with means testing.

The results suggest several potential directions for future research. Firstly, the model

is deliberately parsimonious in its assumptions to highlight the role played by the limited

enforcement of transfers. Despite the stationarity of the underlying economic environ-

ment, limited enforcement generates heteroskedasticity and autocorrelation of consump-

tion. An alternative approach to explain rich dynamics in consumption is to assume that

the underlying endowment or earnings process is itself non-stationary (see, for example,

Mariacristina De Nardi, Giulio Fella and Gonzalo Paz-Pardo, 2020). An important avenue

for future research is to combine these two approaches to better understand the role of

both earning dynamics and limited enforcement in determining consumption allocations.

Secondly, a key feature of the optimal social security scheme with limited enforcement

of transfers is the existence of a threshold for the past contribution, above which the

pension is contributory-related. While it might be tempting to interpret this to mean

that agents making a higher contribution when young receive a larger pension, the model

has no heterogeneity within a generation and the correct interpretation applies only to

the contributions of different generations of the young. Therefore, another important

extension is to enrich the demographic structure of the model, either by having more than

two overlapping generations or allowing for heterogeneity within the same generation,

thereby making it possible to address the interdependence between intergenerational and

intra-generational insurance.

Finally, there is no storage or production technology in the model for transforming

endowments from one date to another. Introducing such a technology would make it

possible to study the interplay between self-insurance and intergenerational insurance.

43



Appendix

Proofs of Propositions 1 and 3 and the proof of Lemma 1 can be found in Part B of the

Supplementary Appendix.

Proof of Lemma 2. It is established in the proof of Lemma 1 that the participation

constraints of the young and old cannot bind simultaneously in a given endowment state.

For convenience, define:

h(ω) := − δ
βVω(ω); gc(ω) := β

δ (1 + h(ω)); v(ω, µ; e) := u(y(ω, µ; e)) + βh−1(µ− ξ);

where y(ω, µ; e) and ϑ(ω, e, v̂) are defined implicitly by:

gc(ω)

1 + µ
=

uc(y(ω, µ; e))

uc(e− y(ω, µ; e))
; v(ω, ϑ(ω; e, v̂); e) = v̂; and g(ω, µ; e) :=

uc(y(ω, µ; e))

uc(e− y(ω, µ; e))
.

The term y(ω, µ; e) is the consumption of the young given ω, the multiplier µ and the

aggregate endowment e. Likewise, v(ω, µ; e) is the lifetime utility of the young and

ϑ(ω, e, v̂) is the value of µ when the participation constraint of the young binds. Recall

that ω0 = sup{ω | Vω(ω) = 0}. The function h: Ω → [0, νmax] is strictly increasing

for ω > ω0 with h(ωmax) = νmax and h(ω) = 0 for ω ≤ ω0. From equation (13),

ω′ = h−1(µ− ξ). The function y is continuous by the implicit function theorem because

the derivative uc and the function h are continuous. It can be checked that y is increasing

in e (with ∂y/∂e < 1) and µ, and decreasing in ω. Recall that ξ > 0 only if ω′ = ωmax

and hence, µ ≥ νmax. For µ = 0 and hence, ξ = 0, h−1(0) = ω0, y(ω0, 0; e) = cy∗(s)

and v(ω0, 0; e) = u(cy∗(s)) + βω0. It follows from the properties of v(ω, µ; e) that ϑ is

increasing in ω (weakly because the solution may be µ = 0) and v̂, and decreasing in

e. The function g is the ratio of the marginal utilities of the young and the old. It is

decreasing in µ and increasing in ω.

(i) Since the constraint set Φ is convex and the objective function is strictly concave, the

policy function f(ω, s) is single-valued and continuous in ω. It is also non-decreasing in

ω. It follows from the definitions above that ω′ = f(ω, s) = min{h−1(ϑ(ω; e, v̂)), ωmax}.
For ϑ = 0, f(ω, s) = ω0. For ϑ > 0, h−1(ϑ(ω; e, v̂)) is strictly increasing in ω and hence,

f(ω, s) is strictly increasing in ω provided f(ω, s) < ωmax. If ξ(ω, s) > 0 (or equivalently,

h−1(ϑ(ω; e, v̂)) > ωmax), then f(ω, s) = ωmax.

(ii) The value of the threshold ωc(e, v̂), above which µ is positive, is determined by

v(ωc(e, v̂), 0; e) = v̂. Thus, ωc(e, v̂) is increasing in e and decreasing in v̂. We next
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show that there is some state r such that ωc(e(r), v̂(r)) > ω0. Taking r = S, it can

be shown that µ(ω0, S) = 0. To see this, suppose to the contrary that µ(ω0, S) > 0.

Then, η(ω0, S) = 0 and g(ω0, µ(ω0, S), e(S)) < β/δ = gc(ω0). Since there is no transfer

from the old, y(ω0, µ(ω0, S), e(S)) ≤ ey(S) and hence, g(ω0, µ(ω0, S), e(S)) ≥ λ(S). By

Assumption 3, λ(S) ≥ β/δ, which gives a contradiction. Since ω0 > ωmin, v(ω0, 0; e(S)) =

u(ey(S)) + βω0 > u(ey(S)) + βωmin = v̂(S). Finally, since v(ω, 0; e) is continuous and

decreasing in ω and v(ωc(e(S), v̂(S)), 0; e(S)) = v̂(S), it follows that ωc(e(S), v̂(S)) > ω0,

as required.

(iii) Existence of a fixed point ωf (s) of the mapping f(ω, s) follows from the standard

fixed point theorem given the continuity and monotonicity of f(ω, s) in ω. Part (ii) shows

that there is at least one state, namely s = S, for which µ(ω0, s) = 0. By Lemma 1,

ω0 < ω∗ and hence, at least one of the participation constraints of the young binds at

ω = ω0. Thus, there is at least one state r ∈ S such that µ(ω0, r) > 0. It follows that the

set of states can be partitioned into two non-empty subsets, Ŝ and its complement with

µ(ω0, s) = 0 for s ∈ Ŝ and µ(ω0, r) > 0 for r ̸∈ Ŝ.

For states s ∈ Ŝ, µ(ω0, s) = ξ(ω0, s) = 0 and hence, f(ω0, s) = h−1(0) = ω0. That is,

ω0 is a fixed point of the mapping f(ω, s). Since f(ω, s) ≥ ω0 (see, part (i)), there can

be no ωf (s) < ω0. Now consider a state s ̸∈ Ŝ where µ(ω0, s) > 0. Since ν(ω0) = 0 and

η(ω0, s) = 0 by complementary slackness, it follows that f(ω0, s) > ω0 (with f(ω0, s) =

ωmax > ω0 if ξ(ω0, s) > 0). That is, in any state where µ(ω0, s) > 0, any fixed point

satisfies ωf (s) > ω0. First, note that for ω
f (s) > ω0, µ(ω

f (s), s) = ν(ωf (s))+ξ(ωf (s), s).

If ξ(ωf (s), s) > 0, then ν(ωf (s)) = νmax and ωf (s) = ωmax. Then, from condition (12),

cy(ωmax, s) < cy∗(s) and u(cy(ωmax, s)) = u(ey(s)) − β(ωmax − ωmin). If ξ(ωf (s), s) = 0,

then µ(ωf (s), s) = ν(ωf (s)) and hence, cy(ωf (s), s) = cy∗(s). Hence, ωf (s) = ωmin +

β−1(u(ey(s))− u(cy∗(s))). Taking the cases s ∈ Ŝ and s /∈ Ŝ together, we obtain:

ωf (s) = min
{
max

{
ω0, ωmin + β−1 (u(ey(s))− u(cy∗(s)))

}
, ωmax

}
. (21)

From Proposition 2, cy∗(s) is unique and hence, from equation (21) it follows that ωf (s)

is unique. There may, of course, be multiple states with the same fixed point.

(iv) Recall that ω′(ω, e, v̂) = min{h−1(ϑ(ω, e, v̂)), ωmax}. It follows from the properties

of h and ϑ derived above that ω′(ω, e, v̂) is decreasing in e and increasing in v̂. To

determine how f(ω, s) depends on s, we need to know how e(s) and v̂(s) depend on s.

When e is fixed, it follows from the convention on λ(s) that ey(1) ≥ ey(2) ≥ · · · ≥ ey(S).

Hence, v̂(s) is decreasing in s. Moreover, for distinct states s and r with s < r and

ey(s) > ey(r), we have v̂(s) > v̂(r). Thus, f(ω, s) = min{h−1(ϑ(ω, e, v̂(s))), ωmax} is
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decreasing in s. Moreover, for distinct s and r such that both f(ω, s) ∈ (ω0, ωmax) and

f(ω, r) ∈ (ω0, ωmax), f(ω, s) > f(ω, r) for ey(s) > ey(r). We can order fixed points:

ωf (s) ≥ ωf (r) for every s < r, with strict inequality unless ωf (s) = ωf (r) = ω0 or

ωf (s) = ωf (r) = ωmax.

Proof of Lemma 3.

(i) It is established in part (i) of Lemma 2 that the function y(ω, µ; e) is strictly decreas-

ing in ω for a fixed µ and e, provided that the non-negativity constraint on transfers does

not bind. If µ(ω, s) > 0, then u(cy(ω, s)) + βf(ω, s) = v̂(s). Since Lemma 2 establishes

that f(ω, s) is strictly increasing in ω for f(ω, s) ∈ (ω0, ωmax), it follows that c
y(ω, s) is

strictly decreasing in ω for cy(ω, s) < ey(s) and f(ω, s) < ωmax.

(ii) This is shown in the proof of part (iii) of Lemma 2.

(iii) For a fixed aggregate endowment e, the lifetime endowment utility v̂(s) is decreasing

in s. If the participation constraint of the young binds, then from Lemma 2, ϑ(ω; e, v̂) is

increasing in v̂. Since y(ω, ϑ(ω; e, v̂); e) is increasing in ϑ, cy(ω, s) is increasing in v̂ and

hence, decreasing in s. It is constant in s if the participation constraint of neither the

young nor the old binds.

Proof of Corollary 1.

(i) Since gz(ω, s) = u(ey(s))− u(cy(ω, s)), it follows from Lemma 3 that gz(ω, s) is con-

tinuous and increasing in ω and strictly increasing for gz(ω, s) > 0. Lemma 2 implies that

f z(z9) = ω0 if z9 ≤ zc and f z(z9) = ωmin + z9/β otherwise. Hence, from equation (16),

hz(z9, s) is continuous and increasing in z9 and strictly increasing for hz(z9, s) > 0.

(ii) Consider two states s and ŝ with ŝ > s. It follows from Lemma 2 that with a

fixed aggregate endowment e, gz(·, s) ≥ gz(·, ŝ). Then, from equation (16), u(ey(s)) −
u(ey(s) − hz(·, s)) ≥ u(ey(ŝ)) − u(ey(ŝ) − hz(·, ŝ)) where hz(·, s) ≥ 0 and hz(·, ŝ) ≥ 0.

Since ey(s) > ey(ŝ) for a fixed e and since u is strictly concave, hz(·, s) ≥ hz(·, ŝ), with
strict inequality if hz(·, s) > 0.

Proof of Proposition 4. Using Lemma 2 and the argument in the text, it can be seen

that there is a k ≥ 1 and ϵ > 0 such that P k(ω, {ω0}) > ϵ for all ω ∈ [ω0, ω̄] and it

follows that Condition M of Stokey and Lucas (1989, page 348) is satisfied. Therefore,

Theorem 11.12 of Stokey and Lucas (1989) applies and there is strong convergence. Non-

degeneracy follows from Assumption 4 and existence of a mass point at ω0 follows from
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Part (ii) of Lemma 2. The relationship between the probability mass and the expected

return times is standard as is pointwise convergence (see, for example, Theorems 10.2.3

and 13.1.2 of Meyn and Tweedie, 2009).

Proof of Proposition 5.

(i) To simplify notation, let m(ω, s, s′) := m((ω, s), (f(ω, s), s′)). It follows from equa-

tion (17) and the monotonicity of f(ω, s) in ω that m(ω, s, s′) is decreasing in ω. The

price of a one-period discount bond in state (ω, s) is p1(ω, s) =
∑

s′ π(s
′)m(ω, s, s′), which

is decreasing in ω. Making the induction hypothesis that the price of a k-period discount

bond is decreasing in ω, pk+1(ω, s) =
∑

s′ π(s
′)m(ω, s, s′)pk(f(ω, s), s′). Since pk(ω, s)

and m(ω, s, s′) are positive and decreasing in ω, and f(ω, s) is increasing in ω, it follows

that pk+1(ω, s) is decreasing in ω. Hence, the conditional yield yk(ω, s) = − log(pk(ω, s))

and the deviation ∆yk(ω, s) are increasing in ω.

(ii) This is a standard result (see, for example, Martin and Ross, 2019).

(iii) It follows from part (ii) that limk→∞ yk(x) = Eφ[log(m(x, x′))] = log(ρ), where Eφ

is the expectation taken over the invariant distribution of x and ρ is the Perron root of

the matrix Q. Taking logs of equation (17) gives:

log (m(x, x′)) = log (β)− log (uc(c
y(x))) + log (uc(c

o(x′))) .

Furthermore, taking logs in condition (12) and moving it one period forward gives:

log (uc(c
y(x′)))− log (uc(c

o(x′))) = log
(
β
δ

)
+ log (1 + ν(ω′) + η(x′))− log (1 + µ(x′)) .

Combining these two equations and using the updating property ν(ω′) = µ(x) − ξ(x)

gives:

log (m(x, x′)) = log (δ)+log (uc(c
y(x′)))−log (uc(cy(x))) + log (1+µ(x′))−log (1 +µ(x))

−(log (1+µ(x)−ξ(x)+η(x′))−log (1+µ(x))) .

Assume that ξ(x) = η(x′) = 0 for all x. Then, the last term in the above equation is

zero and Eφ[log(m(x, x′))] = log(δ). Hence, comparing to the standard result given in

part (ii), when ξ(x) = η(x′) = 0 for all x, ρ = δ. If ξ(x) = 0 for each x, then ρ ≤ δ. If

η(x) = 0 for each x, then ρ ≥ δ, with strict inequality if ξ(x) > 0 for some x.

(iv) With no aggregate risk, ωf (s) is ordered by state. In particular, ω̄ = ωf (1) >

ωf (S) = ω0. Consider state (ω0, S). Since ω0 is a fixed point of the mapping f(ω, S) and
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µ(ω0, S) = 0, it follows from equations (12) and (17) that m(ω0, S, S) ≥ δ, with equality

if η(ω0, S) = 0. Furthermore, it follows from equation (17) that m(ω, s, s′) is decreasing

in s′. Hence, for each s < S, m(ω0, S, s) ≥ m(ω0, S, S) ≥ δ, with at least one of the

inequalities strict. Taking expectations, the bond price p1(ω0, S) > δ. Consequently, the

yield y1(ω0, S) < − log(δ). Similarly, it can be checked that m(ω̄, 1, 1) ≤ δ, with equality

if ξ(ω̄, 1) = 0, that is, if ω̄ < ωmax. Hence, m(ω̄, 1, s) ≤ δ for each s > 1, with strict

inequality for some state, and consequently, y1(ω̄, 1) > − log(δ).

Proof of Proposition 6.

(i) It follows from parts (i) and (iii) of Lemma 3 that the functions cy(ω, s) are mono-

tonically decreasing in ω and ordered by the state: cy(ω, 1) > cy(ω, 2). Since ω̄ and

ω0 are fixed points of f(ω, 1) and f(ω, 2), it follows from part (ii) of Lemma 3 that

cy(ω̄, 1) = cy∗(1) and cy(ω0, 2) = cy∗(2). With no aggregate risk, the first-best consump-

tion is independent of the state, cy∗(1) = cy∗(2), and hence, cy(ω̄, 1) = cy(ω0, 2).

(ii) It follows from condition (12), the definition of the stochastic discount factor in

equation (17) and the Ross Recovery Theorem that ρB = 1 and ψB(x) = 1/(1 + µ(x)).

Hence, from Proposition 5, the Perron root of the state price matrix Q is ρ = ρA = δ.

Let υ(ω) := 1 + µ(ω, 1). Since µ(ω, 2) = 0, it follows that:

ψA(ω, 1) =
1

uc(cy(ω, 1))
; ψB(ω, 1) = υ(ω)−1; ψA(ω, 2) =

1

uc(cy(ω, 2))
; ψB(ω, 2) = 1.

Using CRRA utility gives the specification in the statement of the proposition and the

consumption of the young is determined by:

cy(f(ω, 1), 1) =
υ(f(ω, 1))

1
γ

υ(f(ω, 1))
1
γ +
(
β
δ υ(ω)

) 1
γ

; cy(f(ω, 1), 2) =
1

1+
(
β
δ υ(ω)

) 1
γ

;

cy(ω0, 1) =
υ(ω0)

1
γ

υ(ω0)
1
γ +
(
β
δ

) 1
γ

; cy(ω0, 2) = cy(ω̄, 1) = cy∗(2) = cy∗(1) =
1

1+
(
β
δ

) 1
γ

.

Since f(ω, 1) is increasing in ω, it follows from (13) that υ(ω) is also monotonically

increasing in ω and hence, ψB(ω, 1) is decreasing in ω. Likewise, it follows from parts (i)

that both ψA(ω, 1) and ψA(ω, 2) are decreasing in ω and from the equation above that

ψA(ω̄, 1) = ψA(ω0, 2). Also, ψ(ω, 1) < ψ(ω, 2) with ψ(ω, 1) and ψ(ω, 2) decreasing in

ω. Hence, ψmax = ψ(ω0, 2) = 1/uc(c
y∗(2)) and ψmin = ψ(ω̄, 1) = 1/(uc(c

y∗(1))υ(ω̄)).

With no aggregate risk, cy∗(1) = cy∗(2) and hence, Υ = log(ψmax/ψmin) = log(υ(ω̄)).

Likewise, ψBmax = 1 and ψBmin = υ(ω̄)−1, so that ΥB = log(ψBmax/ψ
B
min) = log(υ(ω̄)) = Υ.
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To compute υ(ω̄), we use the fact that both the participation constraint of the young in

state 1 and the promise-keeping constraint bind at ω = ω̄, that is,

β (π (u (co(ω̄, 1))−u (eo(1))) + (1− π) (u (co(ω̄, 2))−u (eo(2)))) = u (ey(1))−u (cy(ω̄, 1)) .

From this, with CRRA utility and the consumption values given above, we get:

Υ = log (υ(ω̄)) = log (δ)− log (β)− γ log
(
Ξ

1
γ−1
γ − 1

)
, where

Ξγ =
(

1
β(1−π)

)
(κ+ σ)1−γ + β

(
π

1−π

)
(1− κ− σ)1−γ +

(
1− κ+ σ π

1−π

)1−γ
−
(

1
β(1−π)

)( 1

1+(β
δ )

1
γ

)1−γ

+ βπ

(
(β

δ )
1
γ

1+(β
δ )

1
γ

)1−γ
 .

In the limit as γ → 1, we have:

Ξ1 =
(
δ
β

) π
1−π
(
β+δ
δ

) 1+βπ
β(1−π)

(κ+ σ)
1

β(1−π) (1− κ− σ)
π

1−π

(
1− κ+ σ π

1−π

)
.

(iii) In the two-state case, conditional entropy can be defined as:

Li(ω,s)=log
(
πmi(ω,s,1)+(1−π)mi(ω,s,2)

)
−π log(mi(ω,s,1))−(1−π) log(mi(ω,s,2)),

for i = A,B. From the Ross Recovery Theorem, mi(ω, s, s′) = ρiψi(ω, s)/ψi(f(ω, s), s′).

In state 2, f(ω, 2) = ω0. Therefore, using the eigenvectors defined above gives the

formulas in the statement of the proposition.

Proof of Proposition 7.

(i) Since the promised utility ω is reset to ω0 whenever state 2 occurs, the probability

that the promised utility is ω0 is 1− π, irrespective of the date or history. Therefore, T

periods after such a resetting, the distribution of ω is:

ϕT

(
ω
(n)
0

)
= (1− π)πn for n = 0, 1, 2, 3, . . . , T − 1 and ϕT

(
ω
(T )
0

)
= πT .
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The distribution ϕT satisfies the recursion

ϕT+1 (ω0) = (1− π)
∑T

n=0
ϕT

(
ω
(n)
0

)
and

ϕT+1

(
ω
(n+1)
0

)
= πϕT

(
ω
(n)
0

)
for n = 0, 1, 2, 3, . . . , T.

In the limit, ϕT converges to the invariant distribution ϕ(ω
(n)
0 ) = (1 − π)πn for n =

0, 1, . . . ,∞, which is a simple geometric distribution. The expected time to regeneration

is ϖ = (1 − π)
∑∞

j=1 jπ
j−1 = (1 − π)(1 + 2π + 3π2 + · · · ) = 1/(1 − π). Denote the

expected return times for ω
(n)
0 by ϖn. A first-step analysis of the Markov chain shows

that ϖn = 1/(πn(1 − π)) = ϖ/πn. The invariant distribution φ(x) is easily calculated

from ϕ because φ(ω, s) = π(s)ϕ(ω).

(ii) Mean entropy is computed from the conditional entropy given in Proposition 6 and

the invariant distribution derived in part (i).

(iii) From the first-order condition (12), log(mB(ω, 2)) = log(mB(ω, 1))− log(υ(ω)). The

two variables log(mB(ω, 1)) and − log(υ(ω)) are co-monotonic increasing in ω. Therefore,

it follows by applying Chebyshev’s order inequality that their covariance is positive.

Computing the variance at the invariant distribution gives:

var(log(mB(ω, 2)))=var(log(mB(ω, 1)))+var(log(υ(ω)))+cov(log(mB(ω, 1)),−log(υ(ω)))

and hence, var(log(mB(ω, 2))) > var(log(mB(ω, 1))).

(iv) Using the invariant distribution, the conditional expected promised utility for t+1

is E[ωt+1 | ωt = ω
(n)
0 ] = (1− π)ω0 + πω

(n+1)
0 . Since ω

(n)
0 is monotonically increasing in n,

so too is the above conditional expectation. Thus, ωt and E[ωt+1 | ωt]) are co-monotonic.

Since cov(ωt, ωt+1) = cov(ωt,E[ωt+1 | ωt]), it follows that cov(ωt, ωt+1) > 0.

(v) The argument of part (iv) can be applied to the conditional auto-covariance. Con-

sumption cy(ω, s) is decreasing in ω from Proposition 6. The expectation of the con-

sumption of the young next period conditional on the current endowment state is:

E[cyt+1 | c
y
t = cy(ω, 1)] = πcy(f(ω, 1), 1) + (1− π)cy(f(ω, 1), 2),

E[cyt+1 | c
y
t = cy(ω, 2)] = πcy(ω0, 1) + (1− π)cy(ω0, 2).

Since the first expectation is decreasing in ω, cov(cyt , c
y
t+1 | st = 1) > 0. The second

expectation is independent of ω and hence, cov(cyt , c
y
t+1 | st = 2) = 0.
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Supplementary Appendix

This appendix presents supplementary material referenced in the paper. Part A provides

evidence on the relative income of the young and the old for six OECD countries referred

to in footnote 2 in the Introduction. Part B provides proofs of Propositions 1 and 3 from

Sections 1 and 2 together with the proof of Lemma 1 from Section 3. Part C derives results

on the measures of generational risk stated in Section 5. Part D presents the shooting

algorithm used to derive the optimal allocation in Section 6. Part E provides comparative

static results for the two-state example of Section 6. Part F examines two alternative

welfare measures, the insurance coefficient and consumption-equivalent welfare change

measure. Part G provides further details of the robustness and possible extensions of

the model discussed in Section 8. Part H describes the pseudo-code for the numerical

algorithms used in the paper.

A Change in Relative Income of Young and Old

Figure A.1 illustrates the average disposable income of individuals aged 25-34 (the young)

and the average disposable income of individuals aged 65-74 (the old) relative to the na-
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Figure A.1: Relative Income of Young and Old for six OECD Countries
Note: The solid line is the average net (of taxes and transfers) equivalized disposable income for individ-
uals aged 25-34 divided by the average of the same measure for the whole population. The dotted line
is the corresponding ratio for individuals aged 65-74.

tional average over recent decades for Denmark, Germany, Italy, Spain, U.K. and U.S.

(data periods are country specific). Data is taken from the Luxembourg Income Study

Database available at www.lisdatacenter.org. In each country there has been an im-

provement in the average disposable income of the old compared to the average disposable

income of the young over the sample period. For example, the average disposable income

of the young in the U.S. has fallen from just below the national average to just above 90%

of the national average during 1974-2018. Over the same period, the old have fared much

better with their average disposal income rising from approximately 70% of the national

average to become roughly equal to the national average. Moreover, the old overtook the

young for the first time around the time of the financial crisis of 2008.

A similar pattern can be seen in Italy and Spain and a narrowing of the gap between the

young and the old can also be observed in Denmark and the U.K. Germany is somewhat

different with the old overtaking the young as early as the 1980s.

B Proof of Propositions 1 and 3 and Lemma 1

Proof of Proposition 1. The lifetime endowment utility of an agent born in state r is:

v̂(r) := u(ey(r)) + β
∑

s
π(s)u(eo(s)).

Consider a small transfer dτ(r) in state r from the young to the old. The problem

of existence of a sustainable allocation can be answered by finding a vector of positive
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transfer dτ such that there is a weak improvement over the lifetime endowment utility

in all states and a strict improvement in at least one state. The change in the lifetime

endowment utility induced by a vector dτ is non-negative if

−uc(ey(r))dτ(r) + β
∑

s
π(s)uc(e

o(s))dτ(s) ≥ 0. (B.1)

Rearranging (B.1) in terms of the marginal rates of substitution m̂(r, s), we have:

−dτ(r) +
∑

s
π(s)m̂(r, s)dτ(s) ≥ 0.

The problem of existence can then be addressed by finding a vector dτ > 0 that solves:(
Q̂− I

)
dτ ≥ 0, (B.2)

where I is the identity matrix and Q̂ is the matrix of q̂(r, s) = π(s)m̂(r, s). Equation (B.2)

has a well-known solution. Using the Perron-Frobenius theorem, there exists a strictly

positive solution for dτ , provided that the Perron root, that is, the largest eigenvalue of Q̂,

is greater than one. This is satisfied by Assumption 2, which guarantees the existence of

positive transfers from the young to the old that improve the utility of each generation.

Proof of Proposition 3. Define the critical transfer τ c1 by:

u(ey − τ c1) + βu(eo + τ ∗) = v̂ := u(ey) + βu(eo).

Define τ cn recursively by:

u(ey − τ cn) + βu(eo + τ cn−1) = v̂ for n = 2, 3, . . . ,∞.

From the strict concavity of utility function u, τ cn > τ cn−1 and limn→∞ τ cn = τ̄ = ey − eo.
Correspondingly, define ωcn := u(eo + τ cn). We have ωc0 = ω∗ and limn→∞ ωcn = ω̄. Let

v∗ = u(ey − τ ∗) + (β/δ)ω∗. With some abuse of notation, let Vn(ω) denote the value

function when ω ∈ (ωcn−1, ω
c
n]. Hence,

Vn(ω) = u(e− u−1(ω)) +
β

δ
ω + δVn−1

(
1

β

(
v̂ − u(e− u−1(ω))

))
.
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For ω ≤ ω∗, τ(ω) = τ ∗ and ω′ = ω∗. Therefore, V (ω) = v∗/(1 − δ) for ω ∈ [u(eo), ω∗].

For ω ∈ (ω∗, ωc1],

V1(ω) = u(e− u−1(ω)) +
β

δ
ω +

δ

1− δ
v∗.

Differentiating the function V1(ω) gives:

dV1(ω)

dω
=
β

δ
− uc(e− u−1(ω))

uc(u−1(ω))
.

Let g(ω) := uc(e− u−1(ω))/uc(u
−1(ω)). Since ω > ω∗, g(ω) > β/δ and dV1(ω)/dω <

0. Note that g(ω∗) = β/δ and therefore, in the limit as ω → ω∗, dV1(ω)/dω = 0.

Furthermore, the function V1(ω) is strictly concave because g(ω) is increasing given the

strict concavity of u. Using this result, we can proceed by induction and assume Vn−1(ω)

is decreasing and strictly concave. Then, it is straightforward to establish that Vn(ω) is

decreasing and strictly concave. Continuity follows since limω→ωc
n
Vn+1(ω) = Vn(ω

c
n). To

establish differentiability, we need to demonstrate that:

lim
ω→ωc

n

dVn+1(ω)

dω
=

dVn(ω
c
n)

dω
.

To show this, note that for ω ∈ (ωcn, ω
c
n+1):

dVn+1(ω)

dω
=
β

δ
− g(ω)

(
1− δ

β

dVn(ω
′)

dω

)
.

Starting with n = 1, we have:

lim
ω→ωc

1

dV2(ω)

dω
=
β

δ
− g(ωc1)

(
1− δ

β
lim
ω→ωc

0

dV1(ω)

dω

)
.

Since limω→ωc
0
dV1(ω)/dω = 0, we have:

lim
ω→ωc

1

dV2(ω)

dω
=
β

δ
− g(ωc1) =

dV1(ω
c
1)

dω
.

Therefore, make the recursive assumption that limω→ωc
n−1

dVn(ω)/dω = dVn−1(ω
c
n−1)/dω.

In general, we have:

lim
ω→ωc

n

dVn+1(ω)

dω
=
β

δ
− g(ωcn)

(
1− δ

β
lim

ω→ωc
n−1

dVn(ω)

dω

)
dVn(ω

c
n)

dω
=
β

δ
− g(ωcn)

(
1− δ

β

dVn−1(ω
c
n−1)

dω

)
.
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By the recursive assumption, these two equations are equal. Hence, we conclude that

V (ω) is differentiable. In particular, repeated substitution gives:

dVn(ω
c
n)

dω
=
β

δ
−
(
δ

β

)n−1∏n

j=1
g(ωcj).

Since g(ωcj) ∈ [(β/δ), λ−1), taking the limit as n → ∞, or equivalently, ω → ω̄, gives

limω→ω̄ dV (ω)/dω = −∞.

Proof of Lemma 1. We establish the domain and concavity and differentiability prop-

erties of the value function V (ω).

Domain Since τ(s) ≥ 0 for all s ∈ S, ω ≥ ωmin :=
∑

s π(s)u(e
o(s)). The largest

feasible ω, ωmax, can be found by solving the problem of choosing (τ(s), ω′(s)) to maximize∑
s π(s)u(e

o(s) + τ(s)) subject to τ(s) ≥ 0 and constraints (8) and (9). This is a strictly

concave programming problem and the objective and constraint functions are continuous.

Thus, there exists a unique solution. The constraint set is non-empty by Proposition 1.

All constraints in (8) bind at the solution: if one of these constraints did not bind, say in

state r, then it would be possible to increase the maximand by increasing τ(r) without

violating the other constraints. Equally, it is desirable to choose ω′(s) as large as possible

because an increase in ω′(s) allows τ(s) to be increased without violating constraint (8),

increasing the maximand. Thus, the solution involves ω′(s) = ωmax for each s. Let

τ ♯(s) denote the solution for the transfer and define ω♯ :=
∑

s π(s)u(e
o(s)+ τ ♯(s)). Since

constraint (8) binds for each s,

τ ♯(s) = ey(s)− u−1(u(ey(s))− β(ωmax − ωmin)).

By definition ωmax = ω♯. Thus, ωmax can be found as the root of∑
s
π(s)

(
u(e(s)− u−1(u(ey(s))− β(ω − ωmin)))

)
− ω.

We next show that the root ωmax ∈ (ωmin,
∑

s π(s)u(e(s))). To see this, first note that

ωmax > ωmin by Proposition 1. For all ω > ωmin, τ
♯(s) > 0. Secondly, suppose that

τ ♯(r) = ey(r) for some state r. Then, u(ey(r))− β(ω − ωmin) = u(0) or

u(0) ≥ u(ey(r))− β
∑

s
π(s) (u(e(s))− u(eo(s))) ,

which provides a contradiction since it violates Assumption 1. Hence, τ ♯(r) < ey(r) for

all r and consequently, ωmax <
∑

s π(s)u(e(s)).
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Concavity We now show that V (ω) is concave. Consider the mapping T defined by

(TJ)(ω) = max
{cy(s),ω′(s)}∈Φ

[∑
s
π(s)

(
β
δ u(e(s)− c

y(s)) + u(cy(s)) + δJ(ω′(s))
)]

.

Consider J = V ∗, the first-best frontier. Proposition 2 established that V ∗(ω) is concave.

It follows from the definitions of T and V ∗ that TV ∗(ω) ≤ V ∗(ω) because V ∗(ω) ≤
v∗/(1−δ) and the mapping T adds the participation constraints (8). That is, T nV ∗(ω) ≤
T n−1V ∗(ω) for n = 1. Now, make the induction hypothesis that T nV ∗(ω) ≤ T n−1V ∗(ω)

for n ≥ 2 and apply the mapping T to the two functions T nV ∗(ω) and T n−1V ∗(ω).

It is straightforward to show that T n+1V ∗(ω) ≤ T nV ∗(ω), because the constraint set

is the same in both cases but, by the induction hypothesis, the objective is no greater

in the former case. Hence, the sequence T nV ∗(ω) is non-increasing and converges. Let

V∞(ω) = limn→∞ T nV ∗(ω), the pointwise limit of the mapping T . We have that V∞ and

V are both fixed points of T . Since the mapping is monotonic, T n(V ∗) ≥ T n(V ) = V .

Hence, V∞ ≥ V but, since V is the maximum, we have that V∞ = V . Starting from V ∗,

the objective function in the mapping T is concave because V ∗ and the utility function

u are concave. The constraint set Φ is convex. Hence, TV ∗(ω) is concave. By induction,

T nV ∗(ω) and the limit function V are also concave.

Differentiability There are 2S choice variables and 3S + 1 constraints, including the

non-negativity constraints on transfers. Without differentiability of the value function

V , the first-order condition (13) is replaced by

∂V (f(ω, s)) ∋ −β
δ (µ(ω, s)− ξ(ω, s)) ,

where ∂V (ω) denotes the set of superdifferentials of V at ω. Since V is concave, it is

differentiable if the multipliers associated with the constraints are unique. The multipliers

are unique if the linear independence constraint qualification is satisfied, that is, if the

gradients of the binding constraints are linearly independent at the solution. We first note

that the participation constraints of the young and the old cannot bind simultaneously

in a given endowment state. If η(ω, s) > 0, that is, the participation constraint of the old

binds, then both the young and the old consume their endowments. Since the sustainable

intergenerational insurance is non-autarkic, the current young receive a transfer in some

endowment state when they are old and hence, they cannot be constrained in the current

period, so that µ(ω, s) = 0. Likewise, if µ(ω, s) > 0, that is, the participation constraint

of the young binds, then the current young are making a transfer and hence, the current

old are unconstrained, so that η(ω, s) = 0. Similarly, for ω < ωmax, it is easily checked

that not all upper bound constraints can bind for all states. Thus, for ω < ωmax, there

can be at most 2S binding constraints. Since utility is strictly increasing, β > 0, and
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π(s) > 0 for each s, it can be checked that the matrix of binding constraints has full rank.

Hence, the multipliers are unique and V (ω) is differentiable on the interior of Ω. Since

V (ω) is concave and differentiable, it is also continuously differentiable. It follows from

the envelope condition (14) that Vω(ω0) = 0. Since the promise-keeping constraint (10)

is an inequality, it is easily checked that V (ω) is non-increasing. The multiplier ν(ω) =

0 for ω < ω0 and is increasing in ω for ω > ω0. Let νmax := limω→ωmax
ν(ω), then

limω→ωmax
Vω(ω) = −(β/δ)νmax, where νmax ∈ R+ ∪ {∞}.

Interiority ω0 ∈ (ωmin, ω
∗) Any non-autarkic sustainable intergenerational insurance

involves some transfer from the young to the old. Thus, by Proposition 1, ω0 > ωmin.

Since V (ω) is a concave Pareto frontier, that is, it is weakly decreasing and concave,

it follows that V (ω) is constant for ω < ω0 and that, by differentiability, ν(ω0) = 0.

Therefore, from the first-order condition (12), τ(ω0, s) ≤ τ ∗(s), with strict equality if the

participation constraint of the young is non-binding, that is, if µ(ω0, s) = 0. Thus, the

utility promised to the old is no greater than ω∗. By Assumption 4, the first best cannot

be sustained. Hence, we conclude ω0 < ω∗.

C Derivation of Results of Section 5

Kullback-Leibler Divergence The Kullback-Leibler divergence (hereafter, KL) mea-

sures the divergence between the corresponding rows of a stochastic matrix Π and a non-

negative irreducible matrixQ. The two matrices are compatible if the element π(x, x′) = 0

whenever q(x, x′) = 0. Let Π(x) and Q(x) denote the rows of our transition matrix and

state price matrix that correspond to state x. Then, the Kullback-Leibler divergence is:

KL (Π(x)∥Q(x)) = −
∑

x′
π(x, x′) log

(
q(x, x′)

π(x, x′)

)
.

This divergence is zero if and only if the rows are identical. By the log sum inequality,

KL(Π(x)∥Q(x)) ≥ y1(x), but y1(x) could be negative if the row sum of Q corresponding

to state x is greater than one. However, there is a lower bound that depends on the

Perron root ρ of Q and the left eigenvector φ of Π. Define the average divergence as∑
x φ(x)KL(Π(x)∥Q(x)). Then,∑

x
φ(x)KL (Π(x)∥Q(x)) ≥ − log(ρ).

Moreover, the bound is attained when

m(x, x′) :=
q(x, x′)

π(x, x′)
= ρ

ψ(x)

ψ(x′)
,
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where ψ is the right eigenvector of Q corresponding to the eigenvalue ρ, that is, when the

Ross Recovery Theorem holds. To see this lower bound note that the average divergence

can be rewritten as:∑
x
φ(x)KL (Π(x)∥Q(x)) = −

∑
x
φ(x)

∑
x′
π(x, x′) log

(
q(x, x′)

π(x, x′)

)
.

Moreover, note that for any probability vector ψ̃(x):

∑
x
φ(x)

∑
x′
π(x, x′) log

(
ψ̃(x′)

ψ̃(x)

)
=
∑

x
ψ(x)

∑
x′
π(x, x′) log

(
ψ̃(x′)

)
−
∑

x
φ(x)

∑
x′
π(x, x′) log

(
ψ̃(x)

)
=
∑

x′
log
(
ψ̃(x′)

)∑
x
φ(x)π(x, x′)

−
∑

x
φ(x) log

(
ψ̃(x)

)∑
x′
π(x, x′) = 0,

(C.1)

where the last line follows because
∑

x′ π(x, x
′) = 1 and

∑
x φ(x)π(x, x

′) = φ(x′). Hence,

the left hand side of equation (C.1) is independent of ψ̃. Let Dψ denote the diagonal

matrix with the eigenvector ψ on the diagonal. It therefore follows from equation (C.1)

that the average divergence can be rewritten as:∑
x
φ(x)KL (Π(x)∥Q(x)) =

∑
x
φ(x)KL

(
Π(x)∥IQI−1(x)

)
=
∑

x
φ(x)KL

(
Π(x)∥ρ−1DψQD

−1
ψ (x)

)
− log(ρ).

Since the matrix ρ−1DψQD
−1
ψ is stochastic and φ > 0,

∑
x
φ(x)KL

(
Π(x)∥ρ−1DψQD

−1
ψ (x)

)
≥ 0,

with equality if ρ−1DψQD
−1
ψ = Π.

Conditional Entropy Let

ϱ(x, x′) =
q(x, x′)∑
x′ q(x, x

′)
and p(x) =

∑
x′
q(x, x′),

denote the risk-neutral probability of state x′ when the current state is x and the price

of the one period risk-free bond in state x. Let Γ denote the matrix of risk-neutral

probabilities. Conditional entropy is defined by:

L(x) := KL(Π(x)∥Γ(x)) = −
∑

x′
π(x, x′) log

(
ϱ(x, x′)

π(x, x′)

)
.
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Let y(x) = − log(p(x)) denote the yield on the one period bond. Then,

L(x) = KL(Π(x)∥Γ(x)) = KL (Π(x)∥Q(x))− y(x).

Since q(x, x′) = π(x, x′)m(x, x′), we can also write:

L(x) = log
(∑

x′
π(x, x′)m(x, x′)

)
−
∑

x′
π(x, x′) log (m(x, x′)) .

Mean Entropy Let φ(x) denote the probability of state x at the invariant distribution.

That is φ is the left eigenvector of Π. The mean entropy is:

L̄ =
∑

x
φ(x)L(x).

Using the Ross Recovery Theorem,

q(x, x′) = π(x, x′)ρ
ψ(x)

ψ(x′)
,

where ρ is Perron root of Q and ψ is the corresponding right eigenvector. That is,

Q = ρDψΠD
−1
ψ or Π = ρ−1D−1

ψ QDψ. Then, the bound described above is attained, and:

∑
x
φ(x)KL (Π(x)∥Q(x)) = −

∑
x
φ(x)

∑
x′
π(x, x′) log

(
q(x, x′)

π(x, x′)

)
= − log(ρ)−

∑
x′

(
φ(x′)−

∑
x
φ(x)π(x, x′)

)
log (ψ(x′))

= − log(ρ),

where the last line follows because
∑

x φ(x)π(x, x
′) = φ(x′). Hence,

L̄ =
∑

x
φ(x)L(x) = − log(ρ)−

∑
x
φ(x)y(x).

Since y∞ = − log(ρ) and letting ȳ =
∑

x φ(x)y(x) denote the average yield, we have:

L̄ =
∑

x
φ(x)L(x) = y∞ − ȳ.

Repeating for the k-period entropy gives equation (19) in the text. Note that:

L̄ =
∑

x
φ(x)KL (Π(x)∥Γ(x)) =

∑
x
φ(x) (KL (Π(x)∥Q(x))− y(x)) ,
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which can be rewritten using L̄ = y∞ − ȳ as:

− log(ρ) =
∑

x
φ(x) (y(x) + KL (Π(x)∥Γ(x))) = ȳ + L̄.

Martin-Ross Measure Let ψmax = maxx ψ(x) and ψmin = minx ψ(x). Define the

Martin-Ross measure:

Υ := log

(
ψmax

ψmin

)
.

It follows from the Ross Recovery Theorem that for each pair (x, x′):

log (m(x, x′))− log(ρ) = log

(
ψ(x)

ψ(x′)

)
,

and hence, using the definitions of ψmax and ψmin,

−Υ ≤ log (m(x, x′))− log(ρ) ≤ Υ.

Since ψ is the corresponding eigenvector, we have the following two sets of inequalities:

ρψmin ≤ ρψ(x) =
∑

x′
q(x, x′)ψ(x′) ≤

∑
x′
q(x, x′)ψmax = p(x)ψmax,

ρψmax ≥ ρψ(x) =
∑

x′
q(x, x′)ψ(x′) ≥

∑
x′
q(x, x′)ψmin = p(x)ψmin.

Taking logs and using log(ρ) = −y∞, |y(x)− y∞| ≤ Υ. Since L̄ = y∞− ȳ, it follows that
L̄−Υ ≤ y(x)− ȳ ≤ L̄+Υ. Repeating for the k-period case, gives:

L̄−Υ

k
≤ yk(x)− ȳk ≤ L̄+Υ

k
.

D Shooting Algorithm

In the two-state economy in Section 6, the multiplier on the participation constraint in

state 2 satisfies µ(ω, 2) = 0 for all ω ∈ [ω0, ω̄]. Therefore, write υ(ω) := 1 + µ(ω, 1). At

the invariant distribution, write υ(n) = υ(ω(n)) where ω(n) is the promised utility after n

consecutive state 1s. Using the updating property of equation (15), ν(ω(n+1)) = µ(ω(n))
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and equation (12) can be written as:

e(1)− cy(ω(n), 1)

cy(ω(n), 1)
=
β

δ

(
υ(n−1)

υ(n)

)
,

e(2)− cy(ω(n), 2)

cy(ω(n), 2)
=
β

δ
υ(n−1).

Given Assumptions 3 and 4, both the participation constraint of the young in state 1 and

the promise-keeping constraint bind. That is,

π log
(

βυ(n−1)e(1)
βυ(n−1)+δυ(n)

)
+ (1− π) log

(
βυ(n−1)e(2)
βυ(n−1)+δ

)
= ω(n), (D.1)

log
(

δυ(n)e(1)
βυ(n−1)+δυ(n)

)
+ βω(n+1) = log(ey(1)) + βωmin, (D.2)

for n ≥ 0 where υ(−1) = 1. For n = 0,

π log
(

βe(1)
β+δυ(0)

)
+ (1− π) log

(
βe(2)
β+δ

)
= ω0,

while for n that tends to infinity,

π log
(
βe(1)
β+δ

)
+ (1− π) log

(
βυ(∞)e(2)
βυ(∞)+δ

)
= ω̄, (D.3)

where υ(∞) = limn→∞ υ(n) and

ω̄ =
1

β

(
log(ey (1))− log

(
βe(1)
β+δ

))
+ π log(eo (1)) + (1− π) log(eo (2)). (D.4)

Substituting equation (D.4) into (D.3), we have:

υ(∞) =
δ

β

−1+(( δβ) π
1−π
(
β+δ
δ

) 1+βπ
β(1−π)

(
ey(1)
e(1)

) 1
β(1−π)

(
eo(1)
e(1)

) π
1−π eo(2)

e(2)

)−1
−1

. (D.5)

Using the equations (D.1) and (D.2), we can derive a second-order difference equation

for υ(n) where

υ(n+1)= β
δ υ

(n)

(
−1+

(
βυ(n)

βυ(n)+δ

) 1−π
π
(
βυ(∞)+δ
βυ(∞)

) 1−π
π
(
β+δ
δ

) 1
βπ
(
β+δ
β

)(
1+ β

δ
υ(n−1)

υ(n)

)− 1
βπ

)
. (D.6)

It can be shown that the second-order difference equation in (D.6) has a unique saddle

path solution. Recalling that υ(−1) = 1, the solution can be found by a forward shooting

algorithm to search for an υ(0) such that the absolute difference between υ(∞) (given

in (D.5)) and υ(N+1) (given in (D.6)) is sufficiently close to zero for N sufficiently large.
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E Comparative Statics

In this section, we continue the two-state example of Section 6 and examine how the

generational risk measures and the autocorrelation of consumption of the young across

two adjacent generations respond to comparative static changes of endowment parameters

and discount factors.45 For all comparative statics, we change the value of the parameter

of interest holding all other parameters at the values in the canonical case of Example 1.46
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Figure E.1: Comparative Statics at the Invariant Distribution.
Note: In the top row, the solid line is L̄ and the dashed lines are L̄ ± Υ (where Υ is scaled by 1/10).
In the bottom row, the light gray line is the autocorrelation of consumption of the young between
adjacent periods conditional on state 1, corr(cyt , c

y
t+1 | st = 1), the dark gray line is the corresponding

autocorrelation conditional on state 2, corr(cyt , c
y
t+1 | st = 2), and the dashed line is the unconditional

autocorrelation, corr(cyt , c
y
t+1).

Changing the Endowment The effect of changes in κ and σ are illustrated in the

first two columns of Figure E.1. The top row illustrates the effect on L̄ and L̄ ± Υ and

the bottom row illustrates the effect on the autocorrelation of consumption. A larger

κ corresponds to a larger average endowment share to the young, while a smaller σ

corresponds to reduced idiosyncratic uncertainty. Increasing κ, or reducing σ, increases

45For the purposes of comparison, we use autocorrelation instead of auto-covariance. The conditional
autocorrelation is given by corr(cyt , c

y
t+1 | st) := cov(cyt , c

y
t+1 | st)/

√
(var(cyt | st) var(c

y
t+1 | st)) and the

unconditional autocorrelation is given by corr(cyt , c
y
t+1) := cov(cyt , c

y
t+1)/ var(c

y
t ).

46In all cases, the invariant distribution is geometric, except when discount factors are changed. When
the invariant distribution is not geometric, we can no longer rely on the shooting algorithm used in
Section 6. In this case, we implement an algorithm based on a value function iteration method (see,
Part H of the Supplementary Appendix for a description). Although we consider an example with two
endowment states here, the value function iteration method can be applied when there are more than
two states.
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risk sharing as measured by a reduction in L̄ and Υ. For κ above some critical value,

or σ below a critical value, the first best is sustainable in the long run at the invariant

distribution, in which case L̄ = Υ = 0.47 For the range of κ and σ illustrated, the

premise of Propositions 6 and 7 hold, that is, f(ω, 2) = ω0 for ω ≤ ω̄ and ω̄ < ωmax.

The implications of this premise can be seen in the bottom row of Figure E.1, where

the autocorrelation of consumption conditional on state 2 is zero. The corresponding

autocorrelation conditional on state 1 is positive, while the unconditional autocorrelation

is negative. Neither is very sensitive to changes in κ and σ. Although the auto-covariance

of consumption tends to zero as the consumption tends to the first best (for κ large

enough, or σ small enough), the variance of consumption decreases at a similar rate, so

that there is little change in the autocorrelation coefficient.

Changing the Discount Factors The final column of Figure E.1 illustrates the effect

of changes in the discount factor (holding β = δ). The effect on the generational risk

measures and the autocorrelation of consumption is non-monotonic. This occurs because

the assumptions f(ω, 2) = ω0 for ω ≤ ω̄ and ω < ωmax do not hold when the discount

factor is sufficiently small. For high values of the discount factor, the invariant distribution

has geometric probabilities as described in part (i) of Proposition 7. As the discount factor

is decreased, either the current transfer is reduced, or the future promise increased, to

satisfy the participation constraint of the young in state 1. This change spreads out the

distribution of ω, increasing ω̄ but reducing ω0 and ωmax. The reduced risk sharing and the

increased spread of promised utility are reflected in an increase of L̄ and Υ. The variance

of consumption is increased, but so too is the absolute value of the auto-covariance

of consumption, with an overall reduction in the absolute value of the autocorrelation

(unconditional as well as conditional on state 1). As the discount factor is reduced further,

both the upper bound constraint becomes binding, that is, ω̄ = ωmax, and f(ω, 2) > ω0

for high values of ω. Reversion to ω0 occurs less frequently and as the discount factor

falls, the invariant distribution has a positive probability mass at ωmax. Although ω0 falls

with the discount factor, the range ω̄−ω0 decreases, meaning that although L̄ increases,

the bound Υ decreases. For high values of ω, the future promise is strictly increasing in ω

even in state 2 and therefore, the autocorrelation of consumption conditional on state 2

is positive. For a low enough discount factor (β = 3/5 in the figure), autarky is the only

sustainable allocation: the invariant distribution tends to a degenerate distribution with

a unit mass on ωmin and the autocorrelation of consumption approaches zero because the

endowments are serially uncorrelated.

47The critical values are κ ≈ 0.6565 and σ ≈ 0.0243.
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F Alternative Measures of Risk Sharing

In this Appendix, we compute the insurance coefficient and the consumption equivalent

welfare change at the invariant distribution in the two-state example of Section 6. We do

this for the range of parameter values considered in Part E of this Appendix.

The insurance coefficient ι(x) is the fraction of the variance of the endowment shock

that does not translate into a corresponding change in consumption. With i.i.d. shocks,

it is defined conditional on state x = (ω, s) as follows:

ι(x) = 1− cov (log (cy(f(x), s′)) , log (ey(s′)))

var (log (ey(s′)))
.

At the first best, and provided that the non-negativity constraint does not bind, con-

sumption is independent of the endowment and the insurance coefficient is one. The

insurance coefficient increases as more risk is shared. With two states, the insurance

coefficient can be rewritten as:

ι(x) = 1− log (cy(f(x), 1))− log (cy(f(x), 2))

log (ey(1))− log (ey(2))
.

The top row of Figure F.1 plots the average insurance coefficient evaluated at the invariant

distribution of x for the three parameters κ, σ and δ when β = δ.

We measure the consumption equivalent welfare change relative to the first best for a

given ω by solving the following equation in terms of ε:

1

1− δ

(
Es[u(c

y∗(s)(1− ε))] + β

δ
Es[u((e(s)− cy∗(s))(1− ε))]

)
= V (ω).

The solution ε(ω) measures the proportion by which the first-best consumption needs

to be reduced to match the optimal solution for each ω. The consumption equivalent

welfare change is smaller when more risk is shared. The long-run welfare loss measure

is the average of ε(ω) at the invariant distribution of ω. The bottom row of Figure F.1

plots the consumption equivalent welfare change for the three parameters κ, σ and δ

when β = δ.

Comparing Figure F.1 with the mean entropy measure illustrated in top row of Fig-

ure E.1, it can be seen that broadly similar conclusions are obtained using mean entropy,

the average insurance coefficient or the average consumption equivalent welfare change.

The amount of risk shared at the optimal sustainable intergenerational insurances in-

creases with κ and δ but falls with σ.
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Figure F.1: Insurance Coefficient and the Consumption Equivalent Welfare Change
Note: The top row illustrates the average insurance coefficient Eφ[ι(x)]. The bottom row illustrates the
average consumption equivalent welfare change Eϕ[ε(ω)].

G Extensions

This appendix provides some further details of the extensions of the basic model that are

discussed in Section 8.

Heterogeneous Preferences The assumption in the basic model that the young and

the old have a common utility function is not essential. Allowing for heterogeneity of

preferences complicates the notation but does not change the results. As a special case,

consider the situation in which the young have risk-neutral preferences. In this case,

the ordering of the states λ(s) ≥ λ(q) for s > q implies that the endowment of the

old is monotonic in s: eo(s) ≥ eo(q). It can then be verified that the policy functions

for the future promised utility and the consumption of the old are also monotonic in s:

f(ω, s) ≤ f(ω, q) and co(ω, s) ≥ co(ω, q) for s > q.

Growth It has been assumed that the distribution of endowments is the same at all

dates. This can be generalized to allow for stochastic growth of the endowment. To

do this, decompose the endowment state into an idiosyncratic shock θ and an aggregate

growth shock Θ so that s = (θ,Θ). Suppose that the idiosyncratic and aggregate compo-

nents are i.i.d. and independent of each other, so that π(s) = π(θ)π(Θ) where π(θ) and

π(Θ) are the probabilities of the two shocks. Let α(θ) = eyt /et denote the endowment

share of the young and suppose that it depends only on θ. Similarly, let χ(Θ) = et/et−1
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denote the growth rate of the aggregate endowment and suppose that it depends only on

Θ at time t. Furthermore, suppose that the preferences of both agents exhibit CRRA with

relative risk aversion coefficient γ. It is then possible to rewrite the planner’s problem to

be stationary as follows: normalize consumption at t by dividing by et, normalize utility

variables ω, V and v̂, at t by dividing by e1−γt and normalize the discount factors by

multiplying by
∑

Θ π(Θ)χ(Θ)1−γ . The modified planner’s problem with these normal-

ized variables is identical to the stationary problem described in Section 3.48 Hence, the

solution with a stochastic growth component is obtained by a simple reinterpretation of

the variables.

Savings We have assumed that the only method of insurance is through intergenera-

tional transfers. Now suppose that the young have access to a linear storage technology

that delivers R units of endowment when they are old for every unit stored. Suppose that

access to storage is not available in autarky but only to the young who do not default on

the transfers they are called on to make. It is clear that storage is not used if the gross

rate of return R is too low. In other words, there is an R̄ such that for R < R̄, storage is

not used even if available. Given the solution to the optimal intergenerational insurance

rule, R̄−1 = maxx{p1(x)}. In the two-state case of Section 6, the maximum is attained

when x = (ω0, 1). With the parameter values of Example 1, R̄ ≈ 1.08171, demonstrating

that even when storage has a positive net return, the possibility of storage may have no

impact on the optimal sustainable intergenerational insurance.

The situation is only slightly different if individuals have access to the same storage

technology, with gross rate of return R, in autarky. Let a denote the amount stored, then

the lifetime autarkic utility is:

v̂(s;R) := max
a≥0

u(ey(s)− a) + β
∑

s′
π(s′)u(eo(s′) +Ra),

Let a(s;R) denote the optimal amount stored. The function v̂(s;R) is increasing in R and

a(s;R) is weakly increasing in R (strictly if a(s;R) > 0). Hence, there is a critical value

R̂ such that for R < R̂, a(s;R) = 0 for each s. In particular, R̂−1 = maxs
∑

s′ q̂(s, s
′),

where q̂(s, s′) is the state price evaluated in autarky. We can show that R̂ < 1. To see

this, note that Assumption 2 requires that the Perron root of the matrix Q̂ is greater

than one. This can only occur if at least one of the row sums of Q̂ is greater than one:∑
s′ q̂(s, s

′) > 1 for some state s (or equivalently, R̂ < 1).49 Nevertheless, for R ≤ R̂,

48The growth rate cannot be too high. The modified discount factor must satisfy δ
∑

Θ π(Θ)χ(Θ)1−γ <
1 for the planner’s problem to be finite.

49For the two-state case of Section 6, and setting γ = 1 and π = 1/2, it can be verified that R̂ =
β−1((1− κ)2 − σ2)/((1− κ)(κ+ σ)). Assumption 2 is satisfied for β ≥ ((1− κ)2 − σ2)/(κ(1− κ) + σ2)).
Hence, R̂ ≤ (κ(1− κ) + σ2)/((1− κ)(κ+ σ)) < 1. With κ = 3/5 and σ = 1/10, we have R̂ ≤ 25/28.
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there is no storage in autarky and provided that R ≤ min{R̂, R̄}, the possibility of storage

has no effect on the optimal sustainable intergenerational insurance.

Altruism To incorporate altruism into the model, we consider “warm glow” preferences

where the old attach a weight of ς > 0 to the utility of the young. In this case, the lifetime

utility of an individual born after the history st is:

u(cy(st)) + β
∑

st+1

π (st+1)
(
u(co(st+1)) + ςu(cy(st+1))

)
.

With these preferences, the participation constraints of the old and the young are:

u (e(s)− cy(s)) + ςu (cy(s)) ≥ u(eo(s)) + ςu(ey(s)) ∀ s ∈ S,

u (cy(s)) + βω′(s) ≥ u (ey(s)) + β
∑

s′
π (s′) (u(eo(s′)) + ςu(ey(s′))) ∀ s ∈ S,

and the promise-keeping constraint is:∑
s
π (s) (u (e (s)− cy (s)) + ςu (cy (s))) ≥ ω.

The analysis of Section 3 can be applied mutatis mutandis . The first-order conditions for

the optimal sustainable intergenerational insurance are given by equation (13) and

uc (c
y(x))

uc (e(s)− cy(x))
=
β

δ

(
1 + ν(ω) + η (x)

1 + µ(x) + ς βδ (1 + ν(ω) + η (x))

)
, (G.1)

where multipliers are as specified in Section 3. Condition (G.1) reduces to condition (12)

when ς = 0. Lemmas 2 and 3 continue to hold provided that ς is not too large.

Markov Endowments In the basic model, endowments are i.i.d. To see how the

i.i.d. assumption can be generalized, we consider the two-state example of Section 6 and

its invariant distribution. Let the probability of remaining in endowment state 1 be

π+(1−π)r and the probability of moving from endowment state 2 to endowment state 1

be π(1 − r), where r is a persistence parameter. The i.i.d. case corresponds to r = 0.

If r > 0, then the probability of remaining in state 1 is increased and the probability

of moving from state 2 to state 1 is reduced compared to the i.i.d. case.50 With this

parameterization, the long-run probabilities of state 1 and state 2 occurring are π and

1 − π respectively.51 From Section 6, there are parameter values such that the young

are never constrained in state 2. By continuity the same property will apply provided

50If r = 1, then we have the deterministic case examined in Section 2. It is also possible to consider
cases where r < 0 provided that r > max{−π/(1− π),−(1− π)/π}.

51If the initial probability of endowment state 1 is π, then these long-run probabilities hold at every
date and r is the correlation coefficient of the endowments at two consecutive dates.
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r is close to zero. In that case, the optimum will depend on the number of consecutive

state 1s in the most recent history and the shooting algorithm discussed in Section 6

can be adapted by using the conditional probabilities for state 1.52 At the invariant

distribution, the probability of state 2 is (1−π), the probability of one consecutive state 1

is (1−π)π(1−r), the probability of two consecutive state 1s is (1−π)π(1−r)(π+(1−π)r),
and so on. Hence, ϕ({ω(0)}) = 1−π and ϕ({ω(n)}) = (1−π)π(1− r)(π+(1−π)r)n−1 for

n = 1, 2, . . . ,∞, where each ω(n) is computed from the solution to the modified shooting

algorithm. For r = 0, this reduces to the result given in Part (i) of Proposition 7.

H Pseudo-code for Numerical Algorithms

Algorithms are implemented in MATLAB®. At each iteration, the optimization uses the

nonlinear programming solver command fsolve in Algorithm 1 and command fmincon

in Algorithm 2. Value function interpolation uses the spline method of the interp1

command. In a typical example, the value function converges within 300 iterations.

Algorithm 1: Shooting Algorithm

procedure ▷ Find υ(0) = 1 + µ(0) in two state economy (Section 6)
target← υ(∞) ▷ Use equation (D.5) in Appendix D
tolerance← ϵ > 0 ▷ ϵ = 10−10

repeat

initialization← υ
(0)
0 > 0

Compute υ
(N)
0 for N = 20 ▷ Use equation (D.6) in Appendix D

d← d(υ
(N)
0 , υ(∞)) ▷ d(υ

(N)
0 , υ(∞)) = |υ(N)

0 − υ(∞)|
until d < ϵ
υ(0) ← υ

(0)
0

end procedure

52The probability of remaining in state 1 is π + (1 − π)r and the probability of moving from state 1
to state 2 is (1 − π)(1 − r). One further assumption is required to apply the shooting algorithm. It
should be optimal to set consumption to the first-best level in state 2 whenever there are no immediately
proceeding state 1s (as in the i.i.d. case). This occurs whenever the initial ω is not too high, a property
that can easily be checked once the solution is computed.
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Algorithm 2: Find Value and Policy Functions

procedure ▷ Find solution to functional equation (11)
Ω← [ωmin, ω̄] ▷ ωmin and ω̄ computed
gridpoints← gp ▷ Discretize Ω: gp = 200 Chebyshev interpolation points
tolerance← ϵ > 0 ▷ ϵ = 10−6

J ← V ∗ ▷ V ∗ is first best
repeat

Compute TJ from J ▷ Use equation (11) and interpolate
d← d(TJ, J) ▷ d(TJ, J) = maxω|TJ(ω)− J(ω)|
J ← TJ

until d < ϵ
V ← J
Compute f(ω, s) and cy(ω, s) ▷ Using the function V just computed.

end procedure

Algorithm 3: Computing the Invariant Distribution

procedure ▷ Find invariant distribution for x = (ω, s) ∈ X ⊂ R
nS×1

initialization← a0 = e(1/nS) ▷ e = (1, 1, ..., 1) ∈ RnS×1

Compute a = Πa0 ▷ Use the transition probability Π ⊂ R
nS×nS

tolerance← ϵ > 0 ▷ ϵ = 10−8

repeat
Compute a = Πa ▷ a is eigenvector associated with 1
d← d(Πa, a) ▷ d(Πa, a) = maxx|Πa(x)− a(x)|
a← Πa

until d < ϵ
φ← a/

∑
x a(x) ▷ φ is normalized invariant distribution

end procedure
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