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Abstract

We study the long-run stochastic stability properties of volunteering strate-

gies in finite populations. We allow for mixed strategies, characterized by the

probability that a player may not volunteer. A pairwise comparison of evo-

lutionary strategies shows that the strategy with a lower probability of vol-

unteering is advantaged. However, in the long run there are also groups of

volunteering types. Homomorphisms with the more volunteering types are

more frequent if the groups have fewer members, and if the benefits from vol-

unteering are larger. Such homomorphisms with volunteering cease to exist

if the group becomes infinitely large. In contrast, the disadvantage of volun-

teering disappears if the ratio of individual benefits and costs of volunteering

becomes infinitely large.
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1 Introduction

Groups often suffer from the following problem known as the volunteers’dilemma:

Several members of a group might have the option to take a costly action. If at least

one of them volunteers and takes this action, this benefits all members in the group.

The volunteer also benefits but—unlike the other members of the group—incurs a cost.

So the volunteer’s net advantage is lower than that of other group members. Each

group member would be willing to volunteer if nobody else does, but each would

prefer that someone else volunteers.

Examples can be found in many contexts. Teams in military combat need volun-

teers for dangerous special tasks or for actions that might rescue the whole team.1

Firms choose whether to experiment, or to innovate technologies that have common-

good nature, such that all firms of the same industry might learn or benefit from

this volunteering activity.2 Single firms or their CEOs take lobbying actions that

benefit these firms but might also be advantageous for the whole industry.3 Norm

enforcement through social punishment is also a volunteering game: several players

might observe a norm-violating behavior and think about whether to sanction the

norm violator. The sanctioning activity is costly for the punisher and a contribution

to the enforcement of collective rules, so each player has an incentive to abstain, hop-

ing that someone else engages in this costly activity.4 The volunteers’dilemma also

caught the attention of psychologists (see, e.g., Olivola et al. 2020). And the animal

world provides further illustrative evidence. Archetti (2009a, 2009b) alludes to a set

of empirical environments in which the problem emerges. A generic example is the

choice of whether to make alarm calls that are costly for the call maker but alerts

the larger group, for instance, to an approaching predator.5 Archetti and Scheuring

1Blomberg, Hess and Raviv (2009) describe how merit awards might be used to turn a prisoner’s
dilemma into a volunteer’s dilemma in the context of heroic acts in military combat.

2See Johnson (2002) for a model of a volunteer game with incomplete information in the context
of the development of open-source software.

3Barbieri, Konrad and Malueg (2020) study volunteering in this context, allowing for a trade-off
between free-riding on other members of the own group and preempting other groups on behalf of
the own group.

4See Przepiorka and Diekmann (2018) for a discussion.
5Archetti (2010) reconsiders the alarm-call problem and studies the role of players’vigilance,
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(2010) study the volunteer’s dilemma for the case in which the group benefit emerges

only if multiple players volunteer. Mielke, Crockford and Wittig (2019) used artificial

dummies of snakes in a natural environment to study the possible motives of snake

alarms. They considered multiple possible reasons for such behavior, including the

motive of the alarm giving individual to signal his strength or fitness. They found

results in line with the volunteer’s dilemma game. A related variant of the volun-

teer’s dilemma emerges in waiting games, i.e., when wait-and-see behavior becomes

an option for the individuals in a group.6 A vivid example is the story of the murder

of Catherine Susan Genovese. According to early newspaper reports, thirty-eight

random bystanders allegedly watched or listened to it for thirty-five minutes before

the first person called the police (see Gansberg, 1964, in a New York Times article).7

Diekmann (1985) offers a Nash equilibrium analysis of the volunteer’s problem

if players maximize their expected material payoffs. In the symmetric equilibrium

players typically mix between volunteering and not volunteering, making each other

potential volunteer just indifferent about whether to volunteer or not. We study the

stochastic dynamics of Diekmann’s volunteer’s dilemma in the long run in a finite

population. At each point of time the population consists of potentially several

types, where an individual’s type is described by the probability that this player

volunteers. The type composition of the population is determined by a Markov

process in which strong forces of selection and weak forces of mutation describe the

transition probabilities between population states. We study the long-run properties

of this process, using a framework developed by Fudenberg, Nowak, Taylor and Imhof

(2006).

Finite population size is important for this concept, much like in Schaffer (1988),

and may make spiteful strategies evolutionarily advantageous.8 But unlike Schaf-

i.e., the probability that a group member will observe that there is a predator approaching or not.
Vigilance is a prerequisite of making an alarm call in this case.

6See Bliss and Nalebuff (1984), Fudenberg and Tirole (1986) and Barbieri, Konrad and Malueg
(2020) for game theory treatments of this and related volunteering games.

7Later studies report that the story is not supported by the available evidence and must be
corrected on the basis of the facts (see, e.g., Manning, Levine and Collins 2007).

8Schaffer’s (1988) criterion of whether a newly emerging mutant does better than incumbents
in an otherwise homogeneous finite population has been used in many contexts to explain status
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fer (1988), the concept developed by Fudenberg et al. (2006) looks at the long-run

composition of finite populations. It allows for a pairwise comparison of two strate-

gies with respect to their asymptotic success frequencies.9 We ask what the limit

distribution of strategies is. As strategies that randomize between volunteering and

not volunteering might yield superior outcomes (see, e.g., Bergstrom 2014), we al-

low for such mixing. For any two strategies we find that the limit distribution has

two monomorphic populations of players. Groups might consist of players who all

volunteer with the same positive probability - hence, there is some degree of coop-

eration in the limit distribution. Populations with the strategy type that volunteers

less frequently turn out to be more likely than populations with the strategy type

that volunteers more frequently, however. This evolutionary advantage of the less

volunteering type holds for any pairwise comparison of volunteering strategies. The

analysis of all pairs of evolutionary strategies drawn from a set that is a continuum

of such strategies shows that there is a complete and transitive rank order on this

set in the volunteer’s dilemma game.

We also look at the comparative static properties. Volunteering groups are more

likely if the material benefit from volunteering is larger. If the material benefit be-

comes very large in comparison to the cost of volunteering then, in a pairwise com-

parison of evolutionary strategies, the advantage of less cooperative types disappears

so that monomorphic groups of players with higher or lower volunteering probability

become equally likely. We also look at group size and find results suggesting that

volunteering is more pronounced in smaller groups, i.e., if the positive spillovers from

volunteering benefit a smaller group of other players. In the limit where the group

size becomes infinitely large, only monomorphic groups of players who volunteer less

frequently have a positive probability to exist in a pairwise comparison with any

other strategy type.

preferences (Eaton and Eswaran 2003), the emergence of property rights (Eswaran and Neary 2014),
in-group favoritism and out-group spite (Eaton, Eswaran and Oxoby 2011, and Konrad and Morath
2012), aggression in conflict (Hehenkamp, Possajennikov and Guse 2010), and the inclination to
start violent conflict (Konrad and Morath 2016).

9For applications of this framework see, e.g., Böttcher and Nagler (2016), Hauert and Imhof
(2012), and Traulsen and Nowak (2006).
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2 The Model

The state game Consider the following sequence of state games that follow the

rules of Diekmann’s (1985) volunteer’s dilemma game. In a given period the pop-

ulation consists of m > 1 players. The state game has a population that consists

of players who apply at most two different evolutionary strategies. Each player can

either volunteer or not volunteer. We denote these two actions as a ∈ {v, n} . Like in
many evolutionary games studied, these pure strategies relate to the players’types.

Broadening the framework, we allow for player types that randomize between these

two actions. Let σ with σ ∈ [0, 1] denote the probability for not volunteering, i.e.,
for a = n. We also refer to players who randomize according to σ as a player of type

σ. The analysis considers all possible pairs (σ, σ̂) ∈ (0, 1]× [0, 1) with σ > σ̂.10

The material payoffs are as follows. If at least one player volunteers then all

players receive a benefit that is equal to G > 1. Each player who volunteers has a

cost of volunteering that is normalized to 1, regardless of how many other players

volunteer. The name of the game is motivated by the observation that each player can

increase her own material payoff by volunteering if no other player volunteers. But

each player prefers not to volunteer if at least one of the other players volunteers. Let

s players choose the mixed strategy σ, i.e., they do not volunteer with a probability

σ. Furthermore, let the other (m− s) players follow mixed strategy σ̂ such that each
of them does not volunteer with probability σ̂, where σ̂ < σ. Then, the player who

follows the mixed strategy σ has the expected material payoff

y(s) = −(1− σ) + (1− σsσ̂(m−s))G. (1)

Here, (1 − σ) is the expected cost from volunteering for a player of type σ. The

term (1− σsσ̂(m−s)) describes the probability that the public benefit G will emerge,

if there are s players of type σ and (m − s) players of type σ̂, assuming that their
10A motivating question for this generalization is whether the existence of mixed strategy types

might cause stochastically stable bimorphisms. We limit consideration to pairwise comparisons.
Extending the analysis to an infinite number of types would require different tools to deal with the
stochastic dynamics with a continuum of types than we use here.
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actions emerge from their mixed strategies and in a way that makes their choice

outcomes from these mixed strategies stochastically independent. Analogously, each

player who follows strategy σ̂ has the expected material payoff

ŷ(s) = −(1− σ̂) + (1− σsσ̂(m−s))G. (2)

These material payoffs describe player types’fitness in the state game. Since G > 1,

the expected material payoffs in (1) and (2) are strictly positive.

Markov Process We next turn to describing the population dynamics in an in-

finite sequence of periods t = 1, 2, 3, ..., where a state game takes place in each of

these periods. Let ht = s players behave according to σ and (m− s) players behave
according to σ̂ in period t. Recall that σ > σ̂ by suitably naming the two strategies.

The material payoff of a player in period t does not depend on the actual period

but only on the type composition of the population and the player’s own type in

the state game taking place in that period. For two given strategies σ and σ̂ in

period t all relevant parameters for how the dynamics evolve are fully described by

these strategies and the single parameter ht, that is, by the number of players who

follow strategy σ. The types’expected material payoffs as in (1) and (2) drive this

Markov process which follows the rules described by Fudenberg et al. (2006): The

process is initially in the state h0 ∈ {0, 1, 2, ...,m}. From one period to the next

the total number of individuals in the group remains fixed and equal to m but one

individual is chosen to reproduce. The transition probabilities ps,s′ between states s

and s′ from period t to period t + 1 for a given state ht = s are described by (3) to

(8). For interior states s ∈ {1, ...,m− 1} the Markov state remains unchanged with
probability ps,s which equals

ps,s = 1− ps,s−1 − ps,s+1, (3)
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where ps,s+1 and ps,s−1 are the probabilities of transition to the neighboring states.

Other transitions are not feasible:

ps,s′ = 0 for all s′ /∈ {s− 1, s, s+ 1}. (4)

For the monomorphic boundary states s = 0 and s = m the process either stays

there, or moves to the neighboring state in the interior. This is possible due to

mutations, where µ measures the mutation probability.

pm,m = 1− pm,m−1 = 1− µ, (5)

p0,0 = 1− p0,1 = 1− µ, (6)

The probability for transitions from an interior state to one of the two neighboring

states is given by

ps,s+1 =
sy(s)(1− µ) + (m− s)ŷ(s)µ

sy(s) + (m− s)ŷ(s)
m− s
m

, (7)

and

ps,s−1 =
sy(s)µ+ (m− s)ŷ(s)(1− µ)

sy(s) + (m− s)ŷ(s)
s

m
. (8)

The transition probabilities strictly follow Fudenberg et al. (2006). They depend

on the material payoffs y (s) and ŷ (s), the frequency distribution of types and the

probability µ ≥ 0 that a mutation will occur (i.e., that, for instance, an individual
of type σ mutates and becomes a type who volunteers according to σ̂ instead of σ).

Note that (3)-(8) describe the dynamics as a stochastic process, not as a deterministic

process, as is commonly done in the context of populations with more than countably

many individuals.

The probabilities in (7) and (8) have an interpretation that becomes more trans-

parent for the case µ = 0. It goes back to Moran’s (1962) population dynamics with

frequency dependent transition probabilities, as described in Nowak et al. (2004) and

Taylor et al. (2004): all but one of the m players simply survive into the next period
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(or reproduce identically) and keep their types. One of the m players is singled out,

‘dies’and is replaced by a player who is possibly of the same type or of the other

type. To change the state from ht = s to ht+1 = s + 1, the player who is singled

out must necessarily be of type σ̂ and must be replaced by a player of type σ. In

the absence of mutations (µ = 0) the probability of this happening reduces to the

textbook version of frequency-dependent transition dynamics in the Moran process

without mutations (see Nowak 2006, p. 109):

sy(s)

sy(s) + (m− s)ŷ(s)
m− s
m

. (9)

Intuitively, any of the m players in period t can be the one who dies. The term
m−s
m
is the probability that the player who dies is of type σ̂. Furthermore, sy/(sy +

(m− s)ŷ) describes the probability that the replacement is a player of type σ. This
probability is frequency and fitness dependent. For y = ŷ this is as likely as s/m,

i.e., proportional to the share of type σ-players in the total population. But for

y 6= ŷ the selection of the replacement type follows a drift. For y > ŷ this drift favors

replacement by a player of type σ, and for y < ŷ it favors replacement by a player

of type σ̂. The possibility of mutations modifies this transition probability from (9)

to (7).

The reasoning for (8), i.e., the transition from ht = s to a state with ht+1 = s−1,
i.e., with one player of type σ being replaced by a player of type σ̂, is analogous. If

the process is in ht = s and does not transit to one of the neighboring states, it must

stay at s, i.e., ht+1 = s, and the probability of this is, hence, (3). Without mutations

(µ = 0) the process (3)-(8) has two absorbing states, characterized by s = 0 and

s = m and transition probabilities p0,0 = pm,m = 1. But mutation allows the process

to leave these absorbing states, where we can think of µ as the probability of such

an event. Also, in the non-absorbing states s ∈ {1, 2, ..., (m − 1)} such a mutation
(from σ to σ̂ or vice versa) might happen, as described in (7) and (8).

The limit result The Markov process described by (3)-(8) is an ergodic Markov

chain: it is aperiodic and positive recurrent. Let P be the matrix of transition prob-
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abilities ps,s′ . Because the Markov chain is ergodic, there exists a unique probability

vector π = (π1, ..., πm) that solves the equation

π(µ)P = π(µ) (10)

for any given positive µ. The vector π characterizes the unique limit distribution of

this Markov chain, with the following interpretation: If analogous Markov processes

operate in many populations in parallel—all of them following the logic of transition

probabilities (3)-(8) and all running for a very long time—and if we look at these

processes after a long enough time and identify the states in which these processes

are in the different groups, then the limit probability πs(σ, σ̂) is the share of these

populations that are in state s. The analytic steps in Fudenberg et al. (2006, p. 354)

can be used to find the limit properties:

π∗m ≡ lim
µ→0

πm (σ, σ̂) =
γ

γ + 1
and π∗0 = 1− π∗m, (11)

where

γ =
m−1∏
s=1

y(s)

ŷ(s)
. (12)

We can, hence, state the following result:

Proposition 1 Let the set of possible strategies be {σ, σ̂}. (i) In the limit distribu-
tion for µ→ 0 the population consists of players exclusively of type σ with probability

π∗m (σ, σ̂) =

m−1∏
s=1

y(s)
ŷ(s)

m−1∏
s=1

y(s)
ŷ(s)

+ 1

(13)

and of players exclusively of type σ̂ with probability 1−π∗m (σ, σ̂). (ii) π∗m (σ, σ̂) > 1/2
if and only if σ > σ̂. (iii) Let three feasible strategies be σ1, σ2, and σ3. It holds that{

π∗m(σ1, σ2) >
1

2
and π∗m(σ2, σ3) >

1

2

}
=⇒ π∗m(σ1, σ3) >

1

2
. (14)

9



In words, if strategy σ1 is advantageous against strategy σ2 and σ2 is advantageous

against strategy σ3, then σ1 is advantageous against σ3.

A proof of this and all further propositions is in the Appendix. The first part of

the proposition suggests that, in the long run, the Markov process is either in state

s = 0 or in s = m with probability 1. Hence, if one wants to compare strategies

with respect to their stochastic stability advantage, it makes sense to compare πm
and π0. Strategy σ can be considered to be more advantageous than strategy σ̂ if

πm(σ, σ̂) > 1/2.

The characteristic of a strategy to be more advantageous mainly depends on

material payoff relative to the material payoff associated with other strategies on

the whole set of states. Consider a player who volunteers. In some situations the

player is not pivotal, because one or several other players volunteer. Her action as

a volunteer is redundant and only costly to her, making her worse off than others.

In other situations the player is pivotal and G is provided if and only if the player

volunteers. If the player volunteers this increases the player’s own material payoff

by G− 1. This increase is, however, smaller than the increase G that results for all

other members of the population. Volunteering does never improve the player’s payoff

relative to the payoffs of others and this provides an intuition for result (iii) in the

proposition. It follows from (iii) that σ = 1 (i.e., not volunteering with probability

one) is the most advantageous evolutionary strategy, independent of which of the

infinite number of other strategies other players might be the alternative strategy.

This property is also interesting from a methodological point. It shows that there

is a complete and transitive ordering in a pairwise comparison of strategies in the

volunteer’s dilemma.11

Stochastic stability versus evolutionary stability: an example Think of

populations with two individuals only (m = 2). Consider a numerical example with

11The fact that a lower volunteering probability (i.e., higher σ) is more advantageous could also be
described as spiteful behavior: the player refrains from an action that would increase the material
payoff of the player, and this behavior is chosen because the action would increase the material
payoff of other players by even more.
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Figure 1: Limit probability π∗2 (on the vertical axis) for combinations of σ and σ̂ (on
the horizontal axes). The horizontal planes at altitude 1

3
and 2

3
suggest that all π∗2

are between these values.

a value of the public good of G = 2. There is only one interior state, which is s = 1.

Inserting into (13) yields

π∗m =
1− 2σσ̂ + σ

2− 4σσ̂ + σ + σ̂
(15)

as the probability that the population consists of players of type σ only. We plot

this probability for any combination (σ, σ̂) ∈ (0, 1)× (0, 1) in Figure 1. It shows that
for any σ this probability is increasing in σ and decreasing in σ̂ with lower bound

π∗m =
1
3
and upper bound π∗m =

2
3
, and π∗m(σ, σ̂) =

1
2
for all σ = σ̂.

Fudenberg et al. (2006) provides us with a framework to consider stochastic

stability if the set of possible player types has only two elements, as in this example.

In a more general framework a dynamic process might start in a monomorphic state

characterized by σ. After a mutant σ̂ emerges it might return to the monomorphic

state σ, or it might transit into a monomorphic state characterized by σ̂. It stays

there until another mutant type σ̃ ∈ [0, 1] emerges, which might differ from σ and

σ̂, and so on. It would be interesting to characterize a possible surface of the limit

11



distribution for any combination (σ, σ) on the type space [0, 1] × [0, 1] if it exists,
but we have to leave this problem to future analysis. Figure 1 is suggestive, showing

a stochastic stability advantage of more selfishness, for whatever are the two types

that might interact with each other.

To emphasize the divergence of this result to evolutionary stability in large popu-

lations, suppose that only the pure strategies σ = 0 and σ = 1 are feasible strategies.

By Proposition 1 it then holds almost always that both members of the population

either both volunteer or both do not volunteer. The state in which both individuals

are of the non-volunteering type is more likely than the state in which both volun-

teer. For m = 2, the probability that the population consists of non-volunteers only

is G/ (2G− 1). We might compare the stochastic stability outcome in this case with
the evolutionarily stable outcome if players in each period are drawn from a large set

with more than countably many players that are teamed up randomly in pairwise

interactions. If, in the latter environment, evolutionary strategies are restricted to

the two pure strategies σ = 0 and σ = 1, an equilibrium in evolutionarily stable

strategies has a share of q = 1/G of players of type σ = 1 and a remaining share of

(1− q) of players of type σ = 0. By construction of q, a player of type σ = 0 has, in
expectation, the material payoffof G−1. A player of type σ = 1 has an expected ma-
terial payoff of (1−q)G. These expected values are equal if q = 1/G. Any population
mixture q̃ > q with a higher share of non-volunteering types favors the volunteering

type σ = 0 as (1− q̃)G < (1− q)G = G− 1, and G− 1 is the payoff of type σ = 0.
Similarly, any population mixture q̃ < q with a larger share of volunteering types

favors the non-volunteering type σ = 1 as G− 1 = (1− q)G < (1− q̃)G.
The divergence between evolutionary stability for infinitely large populations and

stochastic stability of the Moran process as limit probabilities of the stochastic dy-

namics in finite populations has been noticed for some time. Transition dynamics

of the underlying Markov process in finite populations are stochastic, whereas the

evolutionary dynamics in infinite populations are typically approximated by deter-

ministic processes. Foster and Young (1990) discuss the importance of an ‘adequate’

account of stochastic effects and suggest the concept of stochastically stable equilib-

rium. Our results fundamentally build on the limit results for ergodic Markov chains

12



and the tool provided by Fudenberg et al. (2006) for calculating the invariant distrib-

ution.12 Attempts have been made to reconcile stochastic stability in finite but large

populations and standard concepts of deterministic approximations of the dynamics

of evolutionary processes in infinitely large populations by Harper and Fryer (2016)

and Mohseni (2019).

If the dilemma becomes more severe We can study how the stationary group

composition is affected by the relationship between the cost of volunteering (that was

normalized to 1) and the individual gross benefit for each group member denoted by

G. Recall that a higher σ means that the strategy type volunteers less frequently

and state m means that the population exclusively consists of types σ with σ > σ̂.

Proposition 2 Suppose only two evolutionary strategies exist, characterized by σ
and σ̂ with σ > σ̂. The limit probability π∗m (σ, σ̂;G) for the Markov process to be in

state s = m is smaller if the group members’benefits G from the volunteer’s action

is larger. Furthermore, limG→∞ π
∗
m (σ, σ̂;G) = limG→∞ π

∗
0 (σ, σ̂;G) = 1/2.

Proposition 2 suggests that groups of players who volunteer more frequently are

more common in the limit distribution of group types if the benefit G that each group

member has if one group member volunteers is larger. A higherG reduces the relative

disadvantage which the volunteer has, compared to the non-volunteer. Accordingly,

the two evolutionary strategies σ and σ̂ perform more equally in terms of relative

material payoff and differences in the likelihoods π∗m and π
∗
0 of homomorphic groups

of each of the two strategy types are reduced. If the benefit G becomes very large,

the comparative disadvantage of being a volunteer becomes less and less important

and vanishes in the limit so that homomorphic groups of more frequent volunteers

and groups of less frequent volunteers become equally likely for G→∞.
12Their theorem draws on a theorem that was developed by Fudenberg and Imhof (2006) who

relate their work to Freidlin and Wentzell (1984) on systems with random dynamics but offer an
independent proof for their result.
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Group size effects To study group size effects we consider the limit probability

π∗m(σ, σ̂) when comparing a mixed strategy to a strategy of always or never volun-

teering.

Proposition 3 Suppose that 1 = σ > σ̂ or σ > σ̂ = 0. Then π∗m(σ, σ̂) is higher for

higher m. For any σ > σ̂, in the limit for very large groups, groups consist of the

less volunteering types with probability 1.

We find that, compared to any mixed strategy, the advantage of never volun-

teering as well as the disadvantage of always volunteering increase with group size.13

In the limit for large groups, the stationary distribution attributes a probability of

1 to groups that consist of less volunteering members only. The intuition for the

result is again that only relative material success matters. It is precisely the fact

that volunteering benefits others that is to the disadvantage of the volunteer. Hence,

if more others benefit from the act of volunteering, then this disadvantage becomes

larger.

3 Conclusions

We studied the volunteer’s dilemma when the space of evolutionary strategies in-

cludes the two pure strategies (volunteer; not volunteer) and any mixing between

these. We provide a pairwise comparison of all possible mixed strategies with re-

spect to their long-run evolutionary advantage. This pairwise comparison builds on

methods introduced by Fudenberg et al. (2006) for games with only two strategies.

The pairwise comparison between all possible evolutionary strategies in a continu-

ous strategy space does not necessarily lead to a complete ordering on a continuous

strategy space. However, in the context of the volunteer’s dilemma, our analysis

shows that such a complete ordering exists. Comparing any two strategies, the type

13Intuitively, similar comparative statics properties should hold for arbitrary pairs (σ, σ̂) but ana-
lytical results are less straightforward in this case. The reason is that, when adding another player,
the relative advantage from a lower volunteering probability decreases (material payoff increases for
both strategies σ and σ̂ because it becomes more likely that someone else volunteers). However,
volunteering benefits a larger group of players, which makes non-volunteering more attractive.
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who volunteers with a lower probability has a greater evolutionary advantage for any

pairwise comparison.

A Appendix

A.1 Proof of Proposition 1

(i) The first part of this proposition just inserts the descriptions of players’fitness

(1) and (2) that emerge for the volunteer’s dilemma in the machinery of Fudenberg

et al. (2006). (ii) For the second part, note that

m−1∏
s=1

y(s)

ŷ(s)
=

m−1∏
s=1

z(s) + σ

z(s) + σ̂
(16)

where

z(s) = (−1 + (1− σsσ̂m−s)G). (17)

We can re-write (13) as

π∗m =

m−1∏
s=1

z(s)+σ
z(s)+σ̂

m−1∏
s=1

z(s)+σ
z(s)+σ̂

+ 1

. (18)

Hence, π∗m is larger than 1/2 if and only if

m−1∏
s=1

z(s) + σ

z(s) + σ̂
> 1. (19)

This inequality holds because, for each single factor, (z(s) + σ) / (z(s) + σ̂) > 1 if

and only if σ > σ̂. Thus, σ > σ̂ is necessary and suffi cient for π∗m (σ, σ̂) > 1/2.

(iii) By part (ii), π∗m(σ1, σ2) > 1/2 requires σ1 > σ2 and π∗m(σ2, σ3) > 1/2 requires

σ2 > σ3. Thus, σ1 > σ3, and this, in turn, implies πm(σ1, σ3) > 1/2. �
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A.2 Proof of Proposition 2

Equation (13) can be transformed to

1

π∗m (σ, σ̂;G)
= 1 +

1
m−1∏
s=1

((1−σsσ̂m−s)G−1)+σ
((1−σsσ̂m−s)G−1)+σ̂

. (20)

Hence, π∗m (σ, σ̂;G) is decreasing if

∂

[
m−1∏
s=1

((1−σsσ̂m−s)G−1)+σ
((1−σsσ̂m−s)G−1)+σ̂

]
∂G

< 0. (21)

Inequality (21) holds because

∂
[
((1−σsσ̂m−s)G−1)+σ
((1−σsσ̂m−s)G−1)+σ̂

]
∂G

= − (1− σsσ̂m−s) (σ − σ̂)
(G(1− σsσ̂m−s) + σ̂ − 1)2

< 0 (22)

for each factor in the product. The limit property for G → ∞ then follows directly

from

lim
G→∞

1

π∗m (σ, σ̂;G)
= 1 + lim

G→∞

1
m−1∏
s=1

((1−σsσ̂m−s)G−1)+σ
((1−σsσ̂m−s)G−1)+σ̂

= 2. (23)

�

A.3 Proof of Proposition 3

We have to show that, for m̃ = m+ 1 the inequality 1
π∗m

> 1
π∗m̂
holds if σ = 1 > σ̂ or

σ > σ̂ = 0, where

1

π∗m (σ, σ̂)
= 1 +

m−1∏
s=1

((1− σsσ̂m−s)G− 1) + σ̂

((1− σsσ̂m−s)G− 1) + σ
(24)
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and
1

π∗m̃ (σ, σ̂)
= 1 +

m+1−1∏
s=1

((1− σsσ̂m+1−s)G− 1) + σ̂

((1− σsσ̂m+1−s)G− 1) + σ
. (25)

Consider first the case σ = 1. The inequality 1
π∗m

> 1
π∗m̂
reduces to

m−1∏
s=1

((1− σ̂m−s)G− 1) + σ̂

((1− σ̂m−s)G− 1) + 1 >
m+1−1∏
s=1

((1− σ̂m+1−s)G− 1) + σ̂

((1− σ̂m+1−s)G− 1) + 1 (26)

The right-hand side of this inequality can be written as

((1− σ̂m+1−1)G− 1) + σ̂

((1− σ̂m+1−1)G− 1) + 1

m+1−1∏
s=2

((1− σ̂m+1−s)G− 1) + σ̂

((1− σ̂m+1−s)G− 1) + 1

=
((1− σ̂m+1−1)G− 1) + σ̂

((1− σ̂m+1−1)G− 1) + 1

m−1∏
s=1

((1− σ̂m−s)G− 1) + σ̂

((1− σ̂m−s)G− 1) + 1 (27)

and the claim then follows from

((1− σ̂m+1−1)G− 1) + σ̂

((1− σ̂m+1−1)G− 1) + 1 < 1.

Consider next the case σ̂ = 0. The comparison simplifies to

m−1∏
s=1

G− 1
G− 1 + σ

>
m+1−1∏
s=1

G− 1
G− 1 + σ

(28)

and holds because
G− 1

G− 1 + σ
∈ (0, 1). (29)

The limit property (ii) follows from

lim
m→∞

π∗m =
1

1 + limm→∞
m−1∏
s=1

((1−σsσ̂m−s)G−1)+σ̂
((1−σsσ̂m−s)G−1)+σ

= 1 (30)

for σ > σ̂. �
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