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Abstract

We construct recursive solutions for, and study the properties of the
dynamic equilibrium of an economy with three types of agents: (i) house-
hold/investors who supply labor with a finite elasticity, consume a large
variety of goods that are not perfect substitutes and trade government
bonds; (ii) firms that produce those varieties of goods, receive produc-
tivity shocks and set prices in a Calvo manner; (iii) a government that
collects an exogenous fiscal surplus and acts mechanically, buying and
selling bonds in accordance with a Taylor policy rule based on expected
inflation. In this setting we show that stock market returns are much less
than one-for-one related to inflation over a one-year holding period, which
means that stock securities have a strong nominal character. We also show
that their nominal character diminishes as the length of the stock-holding
period increases, in accordance with empirical evidence.
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Fama and Schwert (1977) found that expected stock returns did
not increase one-for-one with inflation. They interpreted this result
to say that expected returns are higher in bad economic times, since
people are less willing to hold risky assets, and are lower in good
times. Inflation is lower in bad times and higher in good times, so
lower expected returns in times of high inflation are not a result of
inflation, but a coincidence.
Cochrane (2005b)

Traders in the stock market take monetary policy very much into account.
Yet, the literature in monetary economics by and large ignores the stock market
and, given the complementary focus on fiscal policy, is only interested in pric-
ing government bonds, a task which is accomplished by means of the private
sector’s Euler condition of portfolio choice (known in this context as the Fisher
equation). There have been several exceptions (Marshall (1992), Challe and
Giannitsarou (2014), Swanson (2014)),1 and a few attempts to relate monetary
economics to financial economics. Several papers going in that direction are:
Svensson (1989), Benhabib, Schmitt-Grohe and Uribe (2001, 2002), Nakajima
and Polemarchakis (2005) and Magill and Quinzii (2009, 2012). We draw in-
spiration from these papers, our purpose being to describe the key features of
the relation between monetary and fiscal policy on the one hand and the stock
market on the other.
The main and most useful result of the model will be the manner in which

the stochastic process of equilibrium securities prices corresponds to a given
monetary-policy process.2 It will indicate how any multi-period government be-
havior is transmitted dynamically to financial markets. Investors are interested
in that transmission because, among other things, they would very much like to
know how shares of stock can serve as a hedge against inflation.3

The empirical evidence most cogently related to the present paper pertains to
the relations between stock returns and inflation. Lintner (1975), Bodie (1976),
Jaffee and Mandelker (1976), Nelson (1976), Fama and Schwert (1977), Fama
(1981), Gultekin (1983), Boudoukh and Richardson (1993), Goto and Valkanov
(2000) all document a negative correlation between nominal stock returns and
inflation at monthly or annual frequency.
To explain the correlation, Fama (1981) suggested a “proxy hypothesis”.

When money demand is stable and money supply is fixed so that no monetary

1Some more recent theoretical contributions that deal with asset prices in New Keynesian
settings include Nístico (2005), De Paoli, Scott and Weeken (2007), Milani (2008), Li and
Palomino (2009), Wei (2009), Castelnuovo and Nístico (2010) and Challe and Giannitsarou
(2014), who focus on the response of the stock market to a monetary policy shock, whereas
we focus exclusively on a productivity shock. And Rudebusch and Swanson (2008) provide a
calibration and apply it to bond prices.

2See Asness (2003).
3Conversely, the knowledge of that transmission can guide central bankers in their at-

tempt to utilize information from financial markets to gauge anticipations of monetary policy
(Bernanke and Gertler (1999, 2001), Bernanke and Kuttner (2004)).

2



effect is at play, a positive real shock both increases real stock returns and
reduces inflation. The negative correlation is then just due to the existence of real
shocks. The model to be outlined below does not satisfy Fama’s money-supply
assumptions; yet the negative correlation between real returns and inflation
that we find will also be attributable to real productivity shocks, in the way
mentioned in the epigraph of our article, the directions of the two contributing
effects being, however, reversed. To the opposite of Fama, Geske and Roll (1983)
suggested that the negative response is due to counter-cyclical monetary policy
and the monetization of government debt.
Boudoukh and Richardson (BR), whose dataset covers close to two hundred

years of annual data, introduce an important distinction between the ex ante
and the ex post forms of the correlation of stock returns with inflation. To
capture the ex post correlation, BR simply regress one-year holding-period re-
alized nominal stock returns on one-year realized inflation. They do the same
for five-year holding-period realized nominal stock returns and five-year realized
inflation. In both cases the slope coeffi cient is found to be significantly positive
but, more importantly, significantly less than 1: stocks are very much “nomi-
nal”, as opposed to “real” assets. And the slope is many times larger for the
five-year data: stocks are less nominal for a five-year holding period than for a
one-year holding period.4

The ex ante relation, otherwise called the “Fisher” hypothesis (applied to
stocks as opposed to bonds or Treasury Bills), relates conditionally expected
nominal stock returns to conditionally expected inflation. Under the null hy-
pothesis, the regression slope is expected to be equal to 1, reflecting a constant
real rate of return. When anticipating inflation, agents have available an in-
formation set, which the econometrician treats as instrumental variables. BR
use past inflation and past interest rates as instrumental variables. They do not
reject the null hypothesis on five-year data but reject it on one-year data.
Katz and Lustig (2017) using a panel of countries confirm that stock markets

are slow to incorporate news about future inflation, so that they do not qualify
to be called “real”assets, whereas bond markets are not. Gorodnichenko and
Weber (2016) show empirically that, after monetary policy announcements, the
conditional volatility of stock market returns rises more for firms with stickier
prices than for firms with more flexible prices and that sticky prices are, indeed,
costly for firms.
The chief goal of this paper is to explain these stylized facts, especially

those brought out by Boudoukh and Richardson concerning the slope of the
relationship, using for the purpose well-recognized economic models, which have
been shown in the past to be empirically relevant.
Before we begin, it is important to note that our purpose is analytical in

nature. To that aim, we take the analytical derivations as far as they go, after
which numerical solutions will take over. The use of numbers in this paper
does not mean that we undertake the quantitative exercise of calibrating a

4Goto and Valkanov (2002) and Hagmann and Lenz (2005), using a vector autoregression,
show an attenuation of the negative relationship following the Volcker reform of monetary
policy.
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DSGE model to a real-world economy. We want to illustrate a mechanism. For
the same purpose, we make simplifying assumptions. For instance, we consider
a bare-bone form of monetary policy (a Taylor rule; see Section 1), with no
monetary shock. There is only one shock in our model, namely the productivity
or supply shock.
With this single shock, the conditional correlation between all stochastic

variables is equal to 1 and their unconditional correlation is also high. For that
reason, the R2 of the relation between stock return and inflation will be very
high, which is not true in the data. When we succeed in obtaining a slope very
much smaller than 1, it will follow mechanically that the volatility of stock
returns will be smaller than the volatility of inflation, which is counterfactual.
Our purpose is singlemindedly to explain the slope, not the R2.
The article is organized as follows. In Section 1, we discuss our modelling

choices in relation to the existing literature. In Section 2, we set up a purely
financial economy in which income is given exogenously, thus obtaining the
aggregate-demand schule. In Section 3, we turn to aggregate supply, adding
to the financial side of the economy a productive sector in which oligopolistic
firms can set prices in a fully flexible way. In Section 4, the productive sector
functions along the lines of the New Keynesian model with Calvo pricing. Section
5 provides the main result of the paper as it derives the connection between
stock returns and inflation; extensive simulations are performed and the degree
to which the model matches the evidence is discussed. In Section 6, we add a
demand for cash in the form of a Baumol-Tobin inventory demand and perform
new simulations. Finally, in Section 7 we consider the pricing of long-term bonds
and discuss the ‘Fed model’of price comparison between bonds and stocks, as
spelled out in Asness (2003).

1 Modelling choices and related literature

A financial economist, building on monetary and fiscal policy research, cannot
treat the government as just any other trader that seeks to optimize his/her life-
time utility function under some budget constraint. Indeed, most of the existing
work in that area attributes no explicit objective function to the government.5

Issues of feasibility, stability and determinacy are discussed at length, but the
objective functions of the government and the central bank are not stated explic-
itly. Instead, a behavior rule is postulated as a quasi-mechanical intervention
formula. Today, the majority of central banks follows a policy called “infla-
tion targeting”epitomized by the famous Taylor (1993) or Henderson-McKibbin
(1993) rule.

5Three strands of monetary economics provide exceptions. First, ad hoc mean-variance
objective functions are used to justify the linear Taylor rule (Woodford (2003), pages 535ff).
Second, in the context of incomplete markets where nominal assets are traded, some re-
searchers (e.g., Chari et al. (1993), Allen et al. (2012)) ask: can monetary policy maximize
welfare by serving to render the market more complete. The optimal policy involves unreal-
istically volatile inflation rate and nominal interest rate. Third, Ramsey-optimal inflationary
taxes have been derived by e.g., Persson et al. (1987).
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Following Sargent and Wallace (1975), the literature has stressed the un-
avoidable financial linkage between monetary and fiscal policies when the cen-
tral bank intervenes in the money market, including the Treasury-bill market,
to set the nominal interest rate.6 Indeed, another distinction between the gov-
ernment and regular investors arises in the specification of its income. In an
exchange economy, regular investors receive an income, which is exogenous. Or,
in a production economy, they may draw some income from their labor and
that income is dictated by the production function, which is specified ab initio.
The government is different in that it draws income from taxes. A major dis-
tinction must be drawn between a specification in which the budget surplus of
the government is exogenous —a so-called “non Ricardian”fiscal policy —and
one in which it will at some point or the other have to raise enough taxes to
repay its debt —a “Ricardian”policy. The distinction between Ricardian and
non-Ricardian fiscal regimes can be traced back to Aiyagari and Gertler (1985),
Leeper (1991) and Canzoneri et al. (2011). In this paper, we assume that fiscal
policy is non Ricardian (or “active”in the vocabulary of Leeper (1991)). Under
a non Ricardian policy, it is conceivable for the government in some sense to
default but we do not model that event. More importantly for our purposes, in
a non Ricardian regime, some of the debt may be monetized.
When setting the nominal rate of interest, the principal aim of the central

bank is to anchor inflationary expectations. In most models of monetary eco-
nomics, the Taylor rule is backward looking in that it captures the central bank’s
reaction to realized inflation. Realized inflation is really a proxy for rationally
expected inflation, a proxy that a central bank would rely on when it has access
to incomplete information. In this paper, we make the assumption that the
central bank has access to the same full information as the private sector. For
that reason, we write the Taylor rule as a forward-looking formula relating the
nominal rate of interest to the rationally-expected rate of inflation, as in Clarida
et al. (2000), Bernanke and Bovin (2000) and Svensson and Woodford (2009)
who refer to this implementation as “Inflation-Forecast Targeting.”7

In most work in Monetary Economics, an initial price level of goods is picked
and the model is left to run its way forward into the indefinite future; one then
checks, often with the help of a linearized version of the model, whether the path
of the price level is stable or explosive.8 Instead, we postulate a finite terminal
date for the economy although, stepping backward, we are able to postpone it
indefinitely until we reach an unchanging solution. The private agents’utility
functions do not extend beyond the terminal date and the prices of all securities,
including the agents’financial wealth, after final payments have been made, are
set equal to zero, both in real and in nominal terms. In this way, the enforcement

6A recent, elaborately argued exposition of that view is to be found in Leeper and Leith
(2016).

7The literature has studied at length issues of stability of inflation over time, which arise
from the lag that the proxy introduces in the backward-looking Taylor rule. References to
that enormous literature and a convincing opinion on the matter can be found in Cochrane
(2005a, 2011).

8Recently, Kollman (2019) has illustrated the fact that commonly used criteria for stability
are not valid for non linear models. Linearizing them is not a proper way out.
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of terminal conditions is ensured.9 The price level of goods at the terminal date
is endogenous, as it is at any other date, including the initial one; it is always
finite. In our specification, the issue of stability over time does not arise. It
is replaced by an issue of uniqueness of the equilibrium, which we examine.
Provided one assumes as we do here, that the price level of goods is forward
looking —as is done in the Fiscal Theory of the Price Level —as opposed to being
predetermined, it makes no difference whether one solves by means of forward
shooting or by backward induction.
Finally, we do not resort to the customary technique of approximation (by

linearization or Taylor expansion) around the deterministic steady state.10 We
handle explicitly the non linearities of the model and obtain an exact solution.
We even sometimes discover two viable equilibria. We are able to do that because
we reach explicit solutions for the aggregate-demand curve (inclusive of the
policy rule) and, in this way, can enumerate and locate solution points exactly.
The empirical estimation of the money-demand curve has become a harder

and harder exercise to perform, so much so that, in recent years, many central
bankers have stopped paying attention to monetary aggregates and focused
exclusively on realized inflation and interest rates. The diffi culty, of course, is
that money demand and money supply shift simultaneously so that there is an
identification problem. We adopt successively two specifications of household
monetary behavior, which are standard.11 The first is the “cashless economy”
of Woodford (2003). Our second specification will be the “square-root”model of
money demand developed some sixty years ago by Allais (1947, pages 238-241),
Baumol (1952) and Tobin (1956). In that simple, inventory-theoretic model,
households incur a fixed cost every time they go to the bank to turn securities
into cash. They regulate their stock of money to minimize the average cost so
incurred while making sure that they can always have enough money to meet a
fixed, exogenous flow of consumption needs.12

As mentioned, the closest antecedents to the present paper are the articles
by Benhabib, Schmitt-Grohe and Uribe (2001a, 2001b, 2002), Nakajima and
Polemarchaskis (2005) and Magill and Quinzii (2009, 2012). They study issues
of indeterminacy (unrelateded to issues of stability) of the price level and of the

9See Michel (1982) for the interpretation of “transversality conditions,”which are used in
infinite-horizon models.
10Recently, some authors have superimposed on the policy rule a zero lower bound on the

nominal rate of interest. They were thus lead to worry about non linearities and multiple
solutions of the resulting system of equations (which previously was linearized without a
qualm). See Fernandez-Villaverde et al. (2012), Mertens and Ravn (2012), Aruoba and
Schorfeide (2013), Christiano and Eichenbaum (2013) and Braun et al. (2013).
11See Tin (2000).
12While several attempts have been made at developing general-equilibrium versions of the

Baumol-Tobin model (see, e.g., Romer (1986), Smith (1986), Heathcote (1998), Schwartz
(2006), Leo (2006), Bai (2005), Silva (2011) etc..), most of them tend to simplify the model by
postulating, e.g., an overlapping-generation model, for the sole purpose of cutting down to size
the dynamic program to be solved. Danthine and Donaldson (1986) assume a money demand
resulting from money in the utility function and an exogenous supply of money. In that
context, they establish the conditions under which stock returns and inflation are negatively
correlated.
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rate inflation, and their potential solutions by means of Taylor-like intervention
rules. The same issues arise here.

2 The aggregate-
demand side of the model

We begin our investigation with an economy in which economic agents need no
money to transact and in which prices of goods and services are fully flexible.
We consider a financial market populated with one (or a continuum of iden-

tical) household(s), for which we use a subscript 1, and one central bank, sub-
scripted 2, and a set of exogenous time sequences of individual income (or out-
put) received by households {yt ∈ R++; t = 0, ...T}, which are placed on a tree
or lattice. These are received by the households only. For simplicity, we consider
a binomial tree so that a given node at time t is followed by two nodes {u, d} at
time t+ 1 at which the two values of income are denoted {yt+1,u, yt+1,d} . The
transition probabilities are equal to 1/2. Notice that the tree accommodates
the exogenous state variables only.
In the financial market, there are several securities with at least one nomi-

nally riskless security, viz. a one-period nominal bond. The household trades
all securities to maximize some lifetime utility.

Assumption 1 The central bank only trades the one-period nominal bond in a
mechanical way described by a Taylor policy rule:

1 + it = (1 + ı̄)×

 1
2Pt+1,u+

1
2Pt+1,d

Pt

1 + π̄

φ

;φ ≥ 0;φ 6= 1 (1)

The Taylor rule aims to set expected inflation. It does not respond to realized
inflation, so that it should have little effect on its conditional volatility. We
would call monetary shock a deviation from the exact rule. Throughout this
paper we assume zero monetary shock.
The government’s primary surplus (taxes in excess of expenditures) is de-

noted st in real terms, St in nominal terms. The number of units (measured
by the nominal amount of the future payoff) of the one-period bond with which
the private sector exits time t is denoted θ1,t and its exiting financial wealth
F1,t , θ1,t/ (1 + it) is the present value of the nominally riskless bond holdings.
We handle the stock market separately as the central bank does not trade it
anyway.
We assume that the utility function of the private sector is time-additive

and isoelastic. Let the relative risk aversion of the household be 1− γ and their
impatience factor be ρ < 1. The private sector (agent carrying a subscript 1)
maximizes:

sup
{c,θ1}

E0
T∑
t=0

u (ct, t)
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subject to:

• terminal conditions:
θ1,T = 0, (2)

• a sequence of flow budget constraints:

Pt × ct +
θ1,t

1 + it
+ st × Pt = θ1,t−1 + Pt × yt (3)

• and given initial holdings:
θ1,−1 = θ̄1 (4)

The initial condition at t = 0 is given in terms of a nominal outstanding
claim θ̄1 = −θ̄2 of the public on the government. Please, bear in mind that θ2,t
is a negative number, except in very unusual and temporary fiscal situations.
The government (agent carrying a subscript 2) acts mechanically according

to the constraints:

θ2,t
1 + it

= θ2,t−1 + st × Pt; j = u, d (5)

and to the Taylor rule (1) with initial holdings:

θ2,−1 = θ̄2

and terminal condition:
θ2,T = 0

Citing Nakajima and Polemarchakis (2005), “a fiscal policy is called ‘Ricar-
dian’ if it guarantees that the public debt vanishes at each terminal node for
all possible, equilibrium or non-equilibrium, values of price levels and other en-
dogenous variables” [Emphasis added]. In that case, the fiscal surplus cannot
be exogenous throughout. Nakajima and Polemarchakis (2005) demonstrates
that, as long as fiscal policy is Ricardian in a cashless economy, the value of
government debt is indeterminate.13

For that reason, in the balance of this paper, we maintain the following

Assumption 2 The government pursues a non Ricardian fiscal policy.

Therefore, let government surplus st be exogenously fixed in real terms. As
explained earlier, the government’s debt is managed mechanically according to
a Taylor rule (1), which aims to anchor inflationary expectations.14

13This is in conformity with Woodford (2003, page 125) and Cochrane (2011). And this
indeterminacy induces an indeterminacy of the entire future path of inflation. When later we
introduce a production side of the economy, the indeterminacy would also be physical.
14 It is asserted in Canzoneri et al. (2011) that the backward looking Taylor rule based

on realized inflation is incompatible with non Ricardian fiscal policy. With a forward looking
Taylor rule involving expected inflation, there is no incompatibility as we show now.
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Definition 1 An equilibrium is defined as a joint process for the allocation of
consumption ct, the price level Pt, the amount of government bonds outstanding
θ2,t and the nominal rate of interest it such that the supremum of the private
sector’s objective function (31) is reached for all t, the government abides by
its period budget constraints (5) and follows the mechanical rule (1), and the
market-clearing conditions:

θ1,t + θ2,t = 0 (6)

are also satisfied with probability 1 at all times t = 0, ...T .

2.1 Equation system

It is shown in Appendix A that, for a utility function u (c, t) = ρtcγ/γ; γ < 1, a
recursive (backward-induction) equilibrium can be obtained by solving, at each
node (the exogenous state variable here being yt),15 the following system of
equations:16

Flow budget constraints of private sector at time t+ 1

Pt+1,u × ct+1,u + F1,t+1,u + st+1,u × Pt+1,u = θ1,t + Pt+1,u × yt+1,u;F1,T,u = 0

Pt+1,d × ct+1,d + F1,t+1,d + st+1,d × Pt+1,d = θ1,t + Pt+1,d × yt+1,d;F1,T,d = 0

Flow budget constraints of government at time t+ 1

F2,t+1,u = θ2,t + st+1,u × Pt+1,u;F2,T,u = 0

F2,t+1,d = θ2,t + st+1,d × Pt+1,d;F2,T,d = 0

Portfolio-choice, or Euler, or Fisher condition at time t (7)

1

1 + it

1

Pt
= ρ

1
2 (ct+1,u)

γ−1 1
Pt+1,u

+ 1
2 (ct+1,d)

γ−1 1
Pt+1,d

(ct)
γ−1

Taylor rule at time t

1 + it = (1 + ı̄)×

 1
2Pt+1,u+

1
2Pt+1,d

Pt

1 + π̄

φ

Market clearing at time t

θ1,t + θ2,t = 0

The functions carried backward in the backward-induction procedure are F1,t
(= −F2,t):

F1,t ,
θ1,t

1 + it
.

The unknowns are {it, ct+1,u, ct+1,d, θ1,t, θ2,t, Pt+1,u, Pt+1,d}. The only endoge-
nous state variable is the current price level Pt, which is determined at time
zero from the outstanding nominal amount of government debt, as in the Fiscal

15 In later sections, yt is endogenized and productivity is exogenous.
16 In principle, there is also an endogenous state variable (here being Pt) but, in the absence

of nominal illusion, it can be factored out on grounds of homogeneity.
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Theory of the Price Level.17 At time zero, the initial condition to be solved for
the unknown initial price P0 is

F2,0 = θ2,−1 + s0 × P0 (8)

where θ2,−1 is a given (negative) amount of nominal claim outstanding and s0
a given time-0 surplus.
Since the government does not trade the equity and private agents are ho-

mogeneous, it is not traded at all and its price is virtual. If the equity security
is defined —for the time being —as paying the total income, its price xt is equal
to

xt = ρ
1
2 (ct+1,u)

γ−1 × (yt+1,u + xt+1,u) + 1
2 (ct+1,d)

γ−1 × (yt+1,d + xt+1,d)

(yt)
γ−1 ;

xT = 0 (9)

Since the government consumes no goods, there exists an obvious analytical
solution for which

ct+1,u = yt+1,u; ct+1,d = yt+1,d

and for which, for that reason, the market clears. Once consumption is known,
and given that the government surplus is exogenous, the real value of government
debt f2,t = F2,t/Pt follows as a discounted present value. All the endogenous
quantities (inflation, interest rate, government debt etc.) that prevail under
that solution are derived in Appendix B. The formula for the real price xt of
the stockmarket (9) owes nothing to the price level but the real rate of return on
it is conditionally correlated with inflation since yt+1, st+1, f2,t+1 are correlated
with each other. We now turn to a special case, which will occupy us for the
rest of the article. The derivations for it are identical to those contained in the
appendix.

2.2 The case of IID growth and proportional taxes

In case growth is stochastic and identically and independently distributed (IID)
over time,

yt+1,u
yt

= 1 + u;
yt+1,d
yt

= 1 + d;u > d

the output shock is, by construction, permanent or infinitely persistent,18 and
there is scale invariance in the sense that the quantity f2,t does not depend on
the level of income yt at time t once the surplus process {st} is given.
If, however, the exogenous surplus is specified to be at all times and in all

states proportional to income, st = τ×yt, where τ can interpreted as a constant
17See Cochrane (2005a) and Niepelt (2004). A recent, comprehensive survey is Leeper and

Leith (2016).
18The IID growth example will suffi ce for our purposes. But a somewhat more realistic

mean-reverting growth could just as easily be handled by means of a Markov chain.
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tax rate, then the real discounted value of government debt f2,t is proportional
to the level of income yt at time t:

f2,t = f̂2,t × yt (10)

where f̂2,t approaches zero deterministically as one approaches the terminal
date. Indeed:

f̂2,t

−τ + f̂2,t+1
= k; f̂2,T = 0

f̂2,t = −τ ×
k ×

(
−1 + kT−t

)
−1 + k

(11)

where we define:

k , ρ×
[

1

2
(1 + u)

γ
+

1

2
(1 + d)

γ

]
(12)

k < 1 being assumed for now, so that for an infinite horizon, we get the Gordon
formula and a constant real debt factor:

f̂2,t = τ × k

−1 + k

The realized inverse real gross rates of return on government debt are:

f2,t
−st+1,u + f2,t+1,u

=
k

1 + u
in a u state

f2,t
−st+1,d + f2,t+1,d

=
k

1 + d
in a d state

The quantity:

k ×
(

1

2

1

1 + u
+

1

2

1

1 + d

)
can be viewed as the expected inverse gross real rate of interest on nominally
riskless claims, which is not equal to the inverse gross real rate on really riskless

claims (ρ×
[
(1 + u)

γ−1
+ (1 + d)

γ−1
]
/2).

Proposition 1 Under the IID growth assumption, the realized rates of inflation
are:

Pt+1,u
Pt

=
k

1 + u
× (1 + it)

Pt+1,d
Pt

=
k

1 + d
× (1 + it)

independent of the tax rate. Inflation is lower in the u state than in the d state.
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The result goes the same way as in the traditional quantity theory of money
but for completely different, in this case fiscal, reasons. A high output shock
today implies higher real fiscal surpluses into the indefinite future. For a given
outstanding nominal debt, the price level is lower. In the remarks that follow
Proposition 6 below, we comment on the empirical validity of a generalized
version of Proposition 1.

Proposition 2 Under the IID growth assumption, the nominal rate of interest
is constant:

1 + it =

(
1 + ı̄

(1 + π̄)
φ

) 1
1−φ

×
[
k ×

(
1

2

1

1 + u
+

1

2

1

1 + d

)] φ
1−φ

(13)

The price level at time 0, according to the Fiscal theory, solves the initial
condition (8):

−τ ×
k ×

(
−1 + kT

)
−1 + k

× y0 × P0 = θ2,−1 + τ × y0 × P0

so that it is equal to

P0 = − θ2,−1

τ × y0 ×
[
1 + k×(−1+kT )

−1+k

]
The stock-market price (excluding current output) is proportionnal to out-

put:
xt = x̂t × yt;xT = 0

where x̂t (a form of dividend-price ratio) is deterministic:19

x̂t = k × (1 + x̂t+1) ; x̂T = 0

x̂t =
k ×

(
−1 + kT−t

)
−1 + k

and, when the horizon is infinite:

x̂t =
k

1− k
19Not surprisingly, because of the proportional tax, there exists a systematic relation be-

tween the real stock market price per unit of output x̂t (the price-dividend ratio) and the real
discounted value of government debt per unit of output f̂2,t:

− f̂2,t
τ

= x̂t

Over time, they both decline deterministically.
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Proposition 3 Under the IID growth assumption, the real gross rates of return
on the stock market are:

1 + u

k
in a u state

1 + d

k
in a d state

On a u node, inflation is lower than in the d node with the same predecessor
while the real stock market return is higher but that is just a “proxy”result of a
common cause, namely the output shock, which acts both on the stock market
and on tax collection. The real rate of return on equity being low in a state
in which inflation is high, it is conditonally negatively correlated with the rate
of inflation and the stock market is not a one-for-one hedge against inflation.
In fact, for their product, which is the realized gross nominal rate of return on
stocks, we have:

Proposition 4 Under the IID growth assumption, the realized gross nominal
rate of return on stocks is equal to the gross nominal interest rate, which is
constant.

In that sense, stock market returns are 100% nominal. In later sections, we
introduce additional features —including endogenous output —that will produce
more realistic results. More importantly, these features will explain the fact that
the link between inflation and nominal stock returns varies depending on the
length of the holding period.
In the current section, the output growth rates u and d are given parameters,

which cannot be varied. To prepare for the situation in which output is endoge-
nous, however, we derive for the two states the aggregate-demand schedules (or
IS curves) that relate the future prices Pu, Pd to the future outputs yu, yd. We
draw Figure 1 which shows these relations in the two states at time t + 1 for
the two output shocks at time t+ 1 for a fixed level of output and a fixed price
level at time t. Proposition 1 shows that, for a given rate of interest, inflation is
decreasing in output. However, the relationships displayed in the figure incorpo-
rate the influence of future output on the current rate of interest as per Equation
(13). In that way, the two schedules are interdependent (in a symmetric way,
in the sense that Pu (yu, yd) and Pd (yd, yu) are the same function).

Proposition 5 As long as φ < 1 + (1 + d) / (1 + u), the aggregate demand
schedules (inclusive of policy rule) are increasing functions of income or output
y when φ > 1 and decreasing functions when φ < 1.

The proof is in Appendix C.

3 Flexible-price aggregate supply

The model we have built in Section 2 combines the policy rule with the aggregate-
demand or “IS” side of the economy. The solution we calculated is complete
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Figure 1: Aggregate-demand curve (inclusive of policy rule) with fixed
outputs, φ = 1.5 (top panels) and φ = 0.5 (bottom panels). In each row,
the left-hand panel shows Pt+1,u plotted against yt+1,u for the fixed value of
yt+1,d. The fixed value of yt+1,u is shown as a vertical line. Right-hand panel:
Pt+1,d plotted against yt+1,d for the fixed value of yt+1,u. The fixed value of
yt+1,d is shown as a vertical line. Parameter values are as in Table 1. T = 6.
The current price level is set at 1. The current level of output yt is set at 0.9011.

Parameter Value
ρ 0.99
π̄ 2%/year
ı̄ (in figures) 1/ρ− 1 + π̄
or ı̄ (in simulations) “neutral”as per Definition 2
1− γ 1
tax rate τ 1/3
σ 4
η 2
volatility of z growth 1%/year
expected value of z growth 0
probability u and d 1/2
ω (price stickiness) 0.6

Table 1: Parameter values for the numerical illustration; one-year periods
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when income or output is exogenous. We now introduce firms and endogenize
output. We use that part of the model to obtain future (time-t + 1) output.
We develop the aggregate-supply side, productivity z being now the exogenous
state variable, which is assigned to the nodes of the tree. In this section, we
assume that firms are free to adjust their prices, this being only a transition to
the next section in which prices are sticky.
Households: There exists a continuum ι ∈ [0, 1] of differentiated varieties

of the good.20 The argument ct of the households’utility is a composite defined
as

ct ,
(∫ 1

0

c
σ−1
σ

ι,t dι

) σ
σ−1

where σ > 1 is the elasticity of substitution between the separate varieties. As
a result, their demand for each separate variety ι is

cι,t =

(
Pι,t
Pt

)−σ
ct

where Pι,t is the nominal price of variety ι and Pt is the general price index,
which is defined generally as

Pt ,
(∫ 1

0

P 1−σι,t dι

) 1
1−σ

(14)

but will be particularized below. In addition, the utility function of households
now contains a separate, additive term for the dis-utility of labor. The full utility
function that households optimize is

sup
{c,l,θ1}

E0
T∑
t=0

u (ct, t)− v (lt, t)

subject to terminal conditions (2), a sequence of flow budget constraints:

Pt×ct+
θ1,t

1 + it
+θX,t×Pt×xt+st×Pt = θ1,t−1+θX,t−1×Pt×(δt + xt)+Wt×lt

and given initial holdings:

θ1,−1 = θ̄1

θX,−1 = 1

where Wt is the nominal wage rate, lt the number of hours worked, θX,t equity
holdings, xt the real price of equity and δt real dividends distributed. Since
households alone hold the stock, it will be the case at equilibrium that θX,t =
θX,t−1 = 1. We have in mind, however, that the first-order condition for equity
holdings will serve to price the equity.

20Here, we follow Chapter 8 in Walsh (2010) and Challe (2005).
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We assume an isoelastic dis-utility of work: v (l, t) = ρt × lη/η; η > 1. The
households’first-order condition for hours worked is obviously

lη−1t

cγ−1t

=
Wt

Pt
(15)

Firms: The production function for variety ι of the good is

yι,t = zt × lι,t (16)

where zt is a productivity shock, the same for all firms and lι,t is the amount of
labor utilized for the production of good ι.
Firms are free to adjust their prices at will. Firms producing variety ι that

choose price Pι,t sell an amount of goods equal to (Pι,t/Pt)
−σ

ct, for which they
will have to hire an amount of labor equal to (Pι,t/Pt)

−σ
ct/zt. Their profits

are:

Pι,t

(
Pι,t
Pt

)−σ
× ct −Wt ×

(
Pι,t
Pt

)−σ
ct
zt

Optimizing the selling price:

(1− σ)

(
Pι,t
Pt

)−σ
× ct −

Wt

Pt
× (−σ)

(
Pι,t
Pt

)−σ−1
ct
zt

= 0

so that:
P ∗ι,t
Pt

=
σ

σ − 1
ϕt

where

ϕt ,
Wt

zt × Pt
(17)

We interpret ϕt as the real marginal cost of labor. Profits are maximized by
setting a mark up and an optimal price P ∗ related to the price-elasticity of
demand, the same P ∗t for all varieties.
In the aggregate, firms produce (P ∗t /Pt)

−σ × yt. Total labor employed is:(
P ∗t
Pt

)−σ
× yt
zt

Letting lt stand for the labor supplied by households, the clearing of the labor
market requires:

lt =

(
P ∗t
Pt

)−σ
× yt
zt

(18)

Equilibrium: By Walras’law, the equilibrium in the financial market and
the equilibrium in the labor market imply the equilibrium in the goods market:
ct = yt. Furthermore, since all the firms behave the same way, (14) implies that
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Pt = P ∗t . Equations (17), (15) and (18) imply that the flexible-price level of
output is:

yf,t =

(
σ − 1

σ
zηt

) 1
η−γ

(19)

and that the supply price is indeterminate. The determination of the price level
is then left entirely to the aggregate demand side (inclusive of the policy rule)
exactly as in Section 2. Since η > 1 and γ < 1, output is an increasing function
of productivity.
The special IID-growth case described in Section 2.2 can be recast in terms

of productivity shocks. From this point on, we assume that

Assumption 3 The growth rate of productivity z is IID.

Equation (19) shows that, since η > 1 and γ < 1, the resulting equilibrium
diagrams remain identical to Figure 1, reinterpreted as showing endogenous
values of the output y.21

Proposition 6 Under Assumption 3, proportional taxes and flexible prices, the
equilibrium is unique and Propositions 1 to 4 remain true with 1 + u replaced
by 1 + û , (1 + u)

η
η−γ , 1 + d replaced by 1 + d̂ , (1 + d)

η
η−γ and k replaced by

k̂ , ρ×
[

1

2
(1 + û)

γ
+

1

2

(
1 + d̂

)γ]
(20)

(k̂ < 1 being now assumed anew). In particular, the gross nominal rate of return
on stocks remains equal to the gross nominal interest rate, which is constant.

The empirical evidence is very much in line with this generalization of Propo-
sition 1.22 Smets and Wouters (2011) fit both a DSGE model and a VAR spec-
ification, both producing very similar results, to seven US macroeconomic time
series with a highly persistent total factor productivity (TFP) shock. Their Fig-
ure 7 indicates clearly that the DSGE model produces a negative response on
impact of inflation to a positive TFP shock. Altig et al. (2011) after performing
a VAR analysis on US data comment their Figure 2 saying that: “Finally notice
that a neutral technology shock leads to an initial sharp fall in the inflation
rate.” Furthermore, the VAR fit performed by Alves (2004, Figure 2) on six
OECD countries leads uniformly to the same conclusion.
Our productivity shock, being a (geometric) random walk, is highly persis-

tent. For that reason the shock is also news about future productivity. The
empirical literature confirms a negative impact of news shocks about TFP on

21 In each row, the left-hand panel shows Pt+1,u plotted against yt+1,u for the flexible-price
value of yt+1,d. The flexible-price value of yt+1,u is shown as a vertical line. Right-hand panel:
Pt+1,d plotted against yt+1,d for the flexible-price value of yt+1,u. The flexible-price value of
yt+1,d is shown as a vertical line. Additional parameter values are as in Table 1. The current
level of output yt is set at its flexible-price level equal to 0.9011.
22We are very grateful to Rafael Wouters for these references.
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prices and inflation. See, for instance, Kurmann and Sims (2017), Barsky and
Sims (2011) and Miranda-Agrippino et al. (2019).
Dividends and stock prices: As the firms enjoy market power, they

generate positive profits. We now re-define the aggregate stock security as paying
corporate profits (as opposed to paying output, which it was in Section 2). The
real, future profits, assumed to be distributed as dividends, are:

δt =

[(
P ∗t
Pt

)1−σ
− Wt

Pt
×
(
P ∗t
Pt

)−σ
1

zt

]
× yt =

1

σ
yt

The value of the stock market, in real terms, not including current profits, is:

xt = ρ
1((

σ−1
σ zηt

) 1
η−γ
)γ−1

1

2

((
σ − 1

σ
zηt+1,u

) 1
η−γ
)γ−1

×
(

1

σ

(
σ − 1

σ
zηt+1,u

) 1
η−γ

+ xt+1,u

)

+
1

2

((
σ − 1

σ
zηt+1,d

) 1
η−γ
)γ−1

×
(

1

σ

(
σ − 1

σ
zηt+1,d

) 1
η−γ

+ xt+1,d

) ;

xT = 0

The stock-market price (not including current profits) is proportionnal to pro-
ductivity to a power:

xt = x̂t ×
(
σ − 1

σ
zηt

) 1
η−γ

;xT = 0

where x̂t is deterministic:

x̂t =
1

σ
× k̂ × (1 + x̂t+1) ; x̂T = 0

x̂t =
1

σ
×
k̂ ×

(
−1 + k̂T−t

)
−1 + k̂

and where k̂ is as defined in (20). When the horizon is infinite:

x̂t =
1

σ
× k̂

1− k̂

In the next section, we introduce sticky prices. They will explain the main
fact that we are trying to understand, i.e., that the link between inflation and
nominal stock returns varies depending on the length of the holding period.

18



4 Sticky-price aggregate supply

We now develop in standard New Keynesian fashion (see, for instance, Galí
(2008), Walsh (2010) or Challe (2005)), the case in which firms are not free
to set their prices, thus generating the Phillips curve, which endogenizes total
income. The Phillips curve relates the price level to output or total income
contemporaneously. Taking a cue from Dumas and Lyasoff (2012), we later shift
it to time t + 1, so that, in our rendition, it will relate the future price level
to future income. Here again, productivity growth is IID but income growth,
inflation and stock returns are no longer IID as they depend on an endogenous
state variable reflecting path dependence.
Firms: Firms are not free to adjust their prices at will. Instead, as in Calvo

(1983), each firm at each point in time has a probability 1− ω of being allowed
to adjust its price to an optimal level P ∗t (which will be the same for all firms).
By the Law of Large Numbers, a fraction 1− ω do so, so that the price index,
or general price level, Pt particularizes to:23

Pt ,
[
(1− ω)× (P ∗t )

1−σ
+ ω × (Pt−1)

1−σ
] 1
1−σ

(21)

Firms maximize their market value on the equity market. With regard to setting
the current price Pι,t of variety ι, the part of each firm’s objective function that
depends on it is:24

sup
Pι,t

T−t∑
i=0

Et

[
(ρω)

i (ct+i)
γ−1

(ct)
γ−1

(
Pι,t
Pt+i

− ϕt+i
)(

Pι,t
Pt+i

)−σ
yt+i

]

(where: yt ,
(∫ 1

0
y
σ−1
σ

ι,t dι
) σ
σ−1
), with a solution Pι,t = P ∗t which is:

25

P ∗t
Pt

=
σ

σ − 1

Et
∑T−t
i=0 (ρω)

i
(ct+i)

γ−1
yt+iϕt+i

(
Pt+i
Pt

)σ
Et
∑T−t
i=0 (ρω)

i
(ct+i)

γ−1
yt+i

(
Pt+i
Pt

)σ−1 (22)

a function of yt for which the numerator and the denominator will be computed

23This equation should really be:

Pt ,
[
(1− ω)×

∫ 1

0

(
P ∗ι,t

)1−σ
dι+ ω ×

∫ 1

0
(Pι,t−1)1−σ dι

] 1
1−σ

We are going to find that P ∗ι,t is the same for all ι but that is not true for Pι,t−1. The index
of price dispersion across firms should really be present in the derivations below. We ignore
it, as does most of the literature. For more details on this, see the appendix of Challe and
Giannitsarou (2014). We thank Edouard Challe for confirmation.
24The overall objective function is the maximization of equity value, which includes addi-

tional terms not dependent on Pι,t. See the value of the stock market (25) and (26) below.
25The proof is standard and is reproduced in Appendix D.
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by backward induction. To that aim, we restate Equation (22) in recursive form:

P ∗t
Pt

=
σ

σ − 1

cγ−1t ytϕt +A (t, yt)

cγ−1t yt +B (t, yt)
(23)

A (t, yt) , Etρω
(
Pt+1
Pt

)σ [
(ct+1)

γ−1
yt+1ϕt+1 +A (t+ 1, yt+1)

]
A (T, yT ) = 0

B (t, yt) , Etρω
(
Pt+1
Pt

)σ−1 [
(ct+1)

γ−1
yt+1 +B (t+ 1, yt+1)

]
B (T, yT ) = 0

Equilibrium: As a result of their choice of price, a proportion ω of firms
produce (Pt−1/Pt)

−σ × yt on an average and employ (Pt−1/Pt)
−σ × yt/zt units

of labor and a proportion 1 − ω of firms produce (P ∗t /Pt)
−σ × yt and employ

(P ∗t /Pt)
−σ × yt/zt units of labor.26 Total labor employed is:[

ω ×
(
Pt−1
Pt

)−σ
+ (1− ω)×

(
P ∗t
Pt

)−σ]
× yt
zt

Letting lt stand for the labor supplied by households, the clearing of the labor
market requires:

lt =

[
ω ×

(
Pt−1
Pt

)−σ
+ (1− ω)×

(
P ∗t
Pt

)−σ]
× yt
zt

(24)

Substitution of Equations (17), (15), (24) and (21) into (23) gives the equi-

26Because of (21):

yt ≡

ω ×
[(

Pt−1
Pt

)−σ
× yt

]σ−1
σ

+ (1− ω)×
[(

P ∗t
Pt

)−σ
× yt

]σ−1
σ


σ
σ−1

i.e., the amounts produced by the two categories of firms add up to yt.
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librium Phillips curve Pt/Pt−1 = Phillt (yt) in implicit form:27 ,281− ω ×
(
Pt−1
Pt

)1−σ
1− ω


1

1−σ

=
σ

σ − 1

1

yγt +B (t, yt)

×


(
yt
zt

)η ω × (Pt−1Pt

)−σ
+ (1− ω)×

1− ω ×
(
Pt−1
Pt

)1−σ
1− ω


− σ
1−σ

η−1

+A (t, yt)


where:

A (t, yt) = ρωEt
(
Pt+1
Pt

)σ
×


(
yt+1
zt+1

)η [
ω ×

(
Pt
Pt+1

)−σ
+ (1− ω)×

(
P ∗t+1
Pt+1

)−σ]η−1
+A (t+ 1, yt+1)


and:

B (t, yt) = ρωEt
(
Pt+1
Pt

)σ−1 [
yγt+1 +B (t+ 1, yt+1)

]
The shapes of the Phillips curves are illustrated in Figures 2 and 3, along

with the accompanying aggregate-demand curves derived according to Section
3.
The time t+ 1 Phillips curves and the system to be solved: Because

the time-t aggregate-demand relations established in Section 3 relate time-t+ 1
prices to time-t+ 1 output, it is convenient to shift the Phillips curves to time
t+ 1, separately and independently for states u and d. In this way, we are left
with a system of four equations in four unknowns: {Pt+1,u, Pt+1,d, yt+1,u, yt+1,d}
which must be solved numerically for each node of the tree (each capturing
exogenous state variable zt) and for each value of the endogenous state variable
yt, recursively for t = T −1, ..., 0. Equivalently, since productivity is exogenous,
the output gap —defined as the ratio of the actual, sticky-price output yt to the
flexible-price output (19) minus 1 —can be recognized as the endogenous state

27As we saw in the previous section, in the case of full price flexibility (ω = 0), the Phillips

curve is vertical at the flexible-price level of output: yt =
(
(σ − 1) zηt /σ

)1/(η−γ) and, on its
own, leaves the price indeterminate.
28There exists an explicit, approximate form for the Phillips function, as suggested in Galí

(2008).
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Figure 2: Aggregate-demand (inclusive of policy rule) and aggregate-
supply curves with sticky-price output and φ = 1.5. Top panels: low-
output equilibrium. Bottom panels: high-output equilibrium (left-
most intersection). In each row, left-hand panel: Pt+1,u plotted against yt+1,u
for the equilibrium sticky-price value of yt+1,d. Right-hand panel: Pt+1,d plot-
ted against yt+1,d for the equilibrium sticky-price value of yt+1,u. The lighter
solid line is the Phillips or aggregate-supply curve; the darker solid line is the
aggregate-demand (inclusive of policy rule) curve. Parameter values are as in
Table 1. T = 6. The time-t price level is set at 1. The time-t level of output yt
is set at 3.5% above the flexible-price level.
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Figure 3: Aggregate-demand (inclusive of policy rule) and aggregate-
supply curves with sticky-price output and φ = 0.5; single equilibrium.
Left-hand panel: Pt+1,u plotted against yt+1,u for the equilibrium sticky-price
value of yt+1,d. Right-hand panel: Pt+1,d plotted against yt+1,d for the equi-
librium sticky-price value of yt+1,u. The lighter solid line is the Phillips or
aggregate-supply curve; the darker solid line is the aggregate-demand (inclusive
of policy rule) curve. T = 6. Additonal parameter values are as in Table 1. The
time-t price level is set at 1. The time-t level of output yt is set at 3.5% above
the flexible-price level.

variable.29 ,30

By Walras’law, the equilibrium in the financial market and the equilibrium
in the labor marlet imply the equilibrium in the goods market: ct+1,u = yt+1,u
and ct+1,d = yt+1,d.31

The shapes of the aggregate-demand and Phillips curves are such that there
may not exist solutions, that there may be multiple solutions and that gradient-
based solvers do not find them easily. We may find our way towards one of the
solution by starting with the flexible-price solution (ω = 0) and by gradually
increasing ω in small increments, or by starting at no price adjustment (ω = 1)
and by gradually decreasing ω.
When φ > 1, there can be two solutions,32 which are shown in the two panels

of Figure 2, for the point in time t = T − 1. In such a case, it is impossible to
pursue the recursion to earlier points in time. This diffi culty would not have even
been spotted by the large number of researchers who work not with the exact
system of equations but with a system that is linearized around the flexible-price

29The current general price level Pt is also an endogenous state variable but, in the absence
of nominal illusion, it can be factored out on grounds of homogeneity, as noted before.
30 In addition, when household utility is isoelastic and the production function satisfies the

property of constant returns ot scale, a scale-invariance property can be exploited: we need
not do the calculation for every node of each point in time t, which differ only in the level of
productivity zt. For the several nodes of time t, the functions that are carried backward (f1
or f2, A and B) can be deduced from a single one of them.
31 In Appendix E, we verify that clearing of the financial market and of the labor market do

imply clearing of the goods market.
32And, for low enough values of current output yt there are no solutions.
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solution.
When φ < 1, the equilibrium is surely unique as shown in Figure 3. The

reason is that, in that case, as we have seen under Proposition 8, the aggregate-
demand functions (inclusive of the policy rule) are decreasing, while the Phillips
curve, of course, is increasing. In what follows, we assume that φ < 1 so that
we can obtain a unique solution at any point in time. In other words, we make
the following assumption:

Assumption 4 Monetary policy is “passive,”in the terminology of Leeper (1991).

In association with the active fiscal policy already assumed, we are consid-
ering Regime F in the vocabulary of Leeper and Leith (2018).

Figure 4: Relation between output gap at time t (on the x axis) and at
time t + 1 conditional on a u productivity shock (lower line) and a d
shock (upper line), across 10,000 paths at a fixed date. The 45◦ line is also
shown. Parameters are as in Table 1 with ı̄ set at a neutral level (see Definition
2). The 45◦ line is also drawn.
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Under the set of assumptions made so far, the behavior of the output gap is
illustrated in Figure 4 and formulated in the following

Observation 1

1. A u productivity shock at time t + 1 decreases the output gap relative to
its value at t. A d shock increases it.
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2. The lower the time-t output gap, the smaller the decrease. A d shock
increases the output gap. The higher the time-t output gap, the smaller
the increase. In other words:

yu,t+1
yf,u,t+1

<
yt
yf,t

<
yd,t+1
yf,d,t+1

d
(
yu,t+1
yf,u,t+1

)
d
(
yt
yf ,t

) < 1;
d
(

yd,t+1
yf,d,t+1

)
d
(
yt
yf,t

) < 1

3. The gap is bounded above and below. When it is at its lower bound, a u
productivity shock leaves it unchanged. When it is at its upper bound, a d
productivity shock leaves it unchanged.

When prices are flexible, a u productivity shock induces firms to increase
equilibrium output. When prices are sticky they are not able to increase it as
much as they would with flexible prices. Therefore, the output gap decreases.
The upper and the lower bounds are temporary “anchor points” for d and u
shocks, respectively.
Initial conditions: At time zero, given the initial productivity z0, the

initial conditions to be solved for the unknown initial price P0 and the initial
income y0 are {

f2,0 × P0 = θ2,−1 + s0 × P0
P0
P−1

= Phill (0, y0)

where the first condition is identical to the initial condition of Section 2 and
the second one is just the Phillips curve at time 0, and where θ2,−1 is a given
(negative) amount of nominal claim outstanding and s0 a given time-0 surplus.
The solution for P0 is unique as long as the backward recursion provided a
unique function Phill.

Stationary solution: As mentioned, we solve the system for each node of
the tree (each node capturing exogenous state variable zt) and for each value
of the endogenous state variable, recursively for t = T − 1, ..., 0. With the im-
patience parameter set at ρ = 0.99, the value T = 270 years is suffi ciently large
for functions carried backward to be unchanging by the time we get to time 0.
The stationary functions capture the equilibrium of an economy with an horizon
that has been increased indefinitely.

5 Stock returns and inflation

As the firms enjoy market power, they generate profits. We now re-define the ag-
gregate stock security as paying corporate profits (as opposed to paying output,
which it was in Section 2)). The real, future profits, assumed to be distributed
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as dividends, are:33

δt+1 ,
[
ω ×

(
Pt
Pt+1

− ϕt+1
)(

Pt
Pt+1

)−σ
(25)

+ (1− ω)×
(
P ∗t+1
Pt+1

− ϕt+1
)(

P ∗t+1
Pt+1

)−σ]
× yt+1

The value of the stock market, in real terms, current profits not included, is:

xt = ρEt

[(
ct+1
ct

)γ−1
(δt+1 + xt+1)

]
(26)

Numerical illustrations will indicate the correlation between the rate of return
on the stock market and inflation.
After solving all the equations of all times in a backward sequence, we use

the stationary functions to simulate the economy, drawing at random the event
of a u or a d productivity shock z over 200 time steps of one year each. Ten
thousand paths are drawn. For this and the next simulations, we assume again
IID growth of productivity and we now set ı̄ to be equal to the neutral rate of
interest, where we define “neutral”as follows:

Definition 2 Under IID growth of productivity, the neutral rate of interest of
an economy is the interest rate that would prevail in a flexible-price economy
when ı̄ is equal to the equilibrium interest rate (13) (with 1 + u, 1 + d and k
replaced as in Proposition 6).

The value of the neutral rate is34

1 + i =
1 + π̄

k̂ ×
(
1
2

1
1+û + 1

2
1
1+d̂

)
Assumption 5 The Taylor-rule parameter ı̄ is equal to the neutral rate of in-
terest.

5.1 Impulse responses to a productivity shock

To obtain impulse response functions, we segregate the paths that experience
an a u productivity shock at t = 45 from those that experience a d productiv-
ity shock at that time. We then compute conditional average paths for each
of the two subsets of paths. We call “impulse-response function”the difference

33Current profit δt differs from one firm to the other, depending on which firm is allowed
currently to change its price. For future profits, we ignore current price dispersion, as explained
in footnote 23.
34With the parameter values of Table 1, the neutral rate is equal to 3.02%. With that value

of ı̄, the rate of interest that prevails in the sticky-price economy at an output gap equal to
zero is equal to 3.109%.
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between the two conditional averages, normalized (thereby detrended) by the
unconditional average path. Figure 5 shows the responses of output, the real
stock market return index and the price level to a +1% productivity shock com-
pared to a −1% shock. Output and the price level take several years to reach
new levels, increased by 2% and reduced by 3% respectively, while, because
of isoelastic utility, the real stock market return index reacts exactly like out-
put.35 The output gap is reduced by more than 0.8% on impulse and returns
to approximately zero in five to six years.
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Figure 5: Impulse responses: average path conditional on a u produc-
tivity shock occurring at t = 45 minus average path conditional on a d
productivity shock occurring at that time. Top left-hand panel: response
of output (t in years on the x-axis). Top right-hand panel: response of the op-
utput gap. Bottom left panel: response of the price level. Bottom right panel:
response of the stock market (in real terms). Bottom panel:All responses are
scaled by the corresponding unconditional average. Parameter values are as in
Table 1 with ı̄ set at a neutral level (see Definition 2). The figure is obtained
from 10,000 paths drawing at random the event of a u or a d productivity shock
z over 200 time steps of one year each.

35The long-run reaction is equal to the one that prevails under flexible prices (with γ = 0,
as in our numerical example, a 2% increase in productivity leads to a 2% increase in output
when prices are flexible; see formula (19)).
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5.2 The role of productivity shocks over one vs. several
periods

As we saw in Sections 2 and 3, if prices set by firms were fully flexible, there
would be zero relation whatever between the nominal return on stocks and the
rate of inflation.
When the prices set by firms are sticky, however, the output depends on the

previous-period output gap, thus generating richer dynamics for stock returns
and inflation. There can occur many values for inflation and many values for
nominal stock returns depending on the value of the preexisting output gap.
Over a single time-step, productivity can be increased by a factor u or d. Figure
6, left-hand panel, displays the two variables in a cross-section of paths.36 The
cloud of simulated points is highly structured.

Observation 2

1. For the same time-t value of the output gap, when productivity is increased
by a factor u, inflation is lower and the nominal stock return is higher than
when the factor is d.

2. Conditional upon productivity growth being u or d at time t+ 1, the time-
t+1 realized inflation and realized nominal stock returns are near-linearly,
positively related across different values of the time-t output gap. Upon a u
move, the lowest values of inflation and nominal stock return are reached
when the gap is at its upper bound. Upon a d move, the highest values of
inflation and nominal stock return are reached when the gap is at its lower
bound.

In accordance with Observation 2, the two radii that appear are increasing
near-straight lines. Of the two radii, the upper (lower) one portrays the relation
conditional upon productivity growth being u (d). On a given radius, the points
that plot farther from the origin correspond to higher values of the output gap
prior to the shock, as the labelling of some points indicates. And, as we have
seen, for any given value of the output gap at time t, a u productivity shock
causes the output gap to be down at time t + 1, the more so as the time-t
gap is higher.37 Observation 2 invites empirical tests that would be conducted
conditional on observed productivity shocks.
Not conditioning on the productivity growth, i.e., across the entire cloud

of points, the slope coeffi cient of a regression of the nominal stock return on
inflation is equal to 0.0966.
When measuring returns over a longer holding period, the relationship is

similar but more combinations of u and d productivity moves are possible. For

36When drawn along one path, the picture is nearly identical, as it should be under a
stationary-growth equilibrium.
37These are effects opposite to those of the epigraph of this article, but they leave unchanged

the conclusion about the sign of the correlation.
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instance, over five periods, six combinations are possible. The six corresponding
radii are shown in Figure 6, right-hand panel: the highest-slope radius reflects
realizations in which all five productivity moves are u; the line supporting that
radius is identical to that of a single u move on the left-hand panel The radius
second from the top contains realizations for which four moves where u and one
d in any order etc.38 The lowest-slope radius reflects realizations in which all
five productivity moves are d; the line supporting that radius is identical to that
of a single d move in the left-hand panel.
Across all the paths, i.e., not conditioning on the productivity growth com-

binations, the slope coeffi cient of an across-paths regression of the nominal stock
return on inflation is equal to 0.2348.39 This result about the slope is motivated
by the following:

Observation 3

1. For the same time-t value of the output gap, when productivity is increased
five times by a factor u, inflation per period and the nominal stock return
per period are lower than they would be with a single u productivity move
over one period, and are closer to the anchor point of the lower bound ot
the gap. In the limit, when the gap is at its lower bound, inflation per
annum and the stock return per annum are equal to what they would be
with a single u move.40

2. For the same time-t value of the output gap, when productivity is changed
five times by a factor d, inflation per period and the nominal stock return
per period are higher than they would be with a single d productivity move
over one period, and are closer to the anchor point of the upper bound ot
the gap. In the limit, when the gap is at its upper bound, inflation per
annum and the stock return per annum are equal to what they would be
with a single d move.41

3. Hybrid combinations of productivity moves have an intermediate effect,
over a wider range of values for inflation and the nominal stock return.

The observation implies that the unconditional regression slope is higher
over five periods than it is over one. The observation follows from Observation
1 above, which says that increases in the gap decrease with the starting value

38Except for the highest-slope and lowest-slope radii, all other radii are actually a bundle
of radii that are partially superimposed and overlapping, each depending on the order (or
permutation) in which the productivity shocks occur. In the (inflation, stock return, starting
output gap) space, they would be separate radii.
39For a ten-year holding period, the slope would be only slightly larger: 0.2639.
40Because of the anchor effect, the point of the highest-slope radius closest to the origin on

the right-hand panel is identical to the point of the higher-slope radius closest to the origin
on the left-hand panel of Figure 6.
41Because of the anchor effect, the point of the lowest-slope radius farthest from the origin

on the right-hand panel is identical to the point of the lower-slope radius farthest from the
origin on the left-hand panel of Figure 6.
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of the gap; five moves in the same direction have less effect per period than a
single move over one period. One can also imagine on the basis of the same
observation and Figure 4 that hybrid combinations of moves impart the gap
with more volatility.
We stress that the direction of the increase in the regression slope is not

just the mechanical result of frictions slowly working themselves out over time.
Indeed, the increase is a move away from the frictionless outcome, which, as the
reader will recall, was a zero slope.

5.3 Ex post regression result

We ask whether the message conveyed by Figure 6 is confirmed by time-series
regressions. Can the model fit the facts listed in the introduction? Having
simulated 10,000, 200-period long paths of the economy of Section 4, we run
on each an ex post regression in the manner of Boudoukh Richardson (1993)
(BR).42

The ex post regression being run is quite simply:43

Rt→t+j = αj + βj × πt→t+j + εt,j (27)

where R is the nominal rate of return on the equity and π is the rate of inflation,
with j = 1 for the one-year time interval and j = 5 for the five-year time
interval. If the real rate of return on stock were constant, one would expect
αj = 0 and βj = 1. Because the five-year rates of return are calculated every
year, there is overlap in the data and the Generalized Method of Moments is
used to compute heteroskedasticity- (and autocorrelation-) consistent standard
errors. The results are shown in Table 2.
The results are exactly in conformity with the intuition conveyed above, in

that the five-year regression slope is higher than the one-year slope. The results
are also in close conformity with the empirical results of BR. Recall that both
their slope coeffi cients were positive, with the exact same disparity between
them.44

Basically, therefore, we have discovered the reason for which BR found dif-
ferent slopes for different lengths of close holding-period.

5.4 Ex ante regression result

We test the moment conditions:

E
[(
Rt→t+j − αj − βj × πt→t+j

)
⊗ Zt

]
= 0 (28)

42We drop the first ten periods of the paths to ensure that statistical results do not depend
on the initial condition, which is just the nominal amount θ̄2 of government debt outstanding
at t = 0.
43The exercise is descriptive. We are not testing a hypothesis and do not assume that

inflation is an exogenous variable. Furthermore, if one wanted to hedge inflation risk using
equities, one should calculate the hedge ratio (i.e., the number of units of stock to buy) by
regressing inflation on stock returns.
44Had we included in our model a monetary shock, we could also have increased both our

simulated slope coeffi cients at will.
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α1 β1 α5 β5
Statistic
Median 0.029 0.091 0.14 0.233
Upper quintile 0.03 0.127 0.142 0.242
Lower quintile 0.028 0.048 0.139 0.22
Std error
Median 0.00 0.013 0.001 0.012
Upper quintile 0.00 0.016 0.002 0.014
Lower quintile 0.00 0.011 0.001 0.01

Table 2: Stock Returns and Contemporaneous Inflation: the regressions
are those of Equation (27). Parameters are as in Table 1 with ı̄ set at a neutral
level (see Definition 2). The table is obtained from 10,000 paths drawn at
random.

α1 β1 α5 β5
Statistic
Median 0.027 0.2 0.139 0.247
Upper quintile 0.051 1.327 0.214 0.972
Lower quintile 0.004 −1.011 0.064 −0.484
Std error
Median 0.000 0.407 0.023 0.225
Upper quintile 0.646 32.673 1.641 15.714
Lower quintile 0.002 0.1 0.006 0.057

Table 3: Stock Returns and Expected Inflation: the Instrumental Vari-
able Approach as in Equation (28). Past output is the instrument. Pa-
rameters are as in Table 1 with ı̄ set at a neutral level (see Definition 2). The
table is obtained from 10,000 paths drawn at random.

where Zt is some set of instrumental variables known to investors at time t.
The exact ex ante formula that would correspond to the model is the CAPM

(26) that applies to the equity. That CAPM in no way implies that the con-
ditionally expected real rate of return on equity is constant. It is obviously a
function of the state variable yt, the current level of output. For that reason,
we try one of the ex ante specifications of BR that involves the current level of
output as the instrumental variable.
The results are shown in Table 3.
Recall that BR found one-year slope coeffi cients that were markedly smaller

than the five-year coeffi cients. To the degree that the moments are conditional
on the previous year’s level of output, one may understand that the relationship
between stock returns and inflation has become more positive for the one-year
holding period. However, the comparative magnitudes of our simulated results
for β1 and β5 in the ex ante specifications are not in conformity with BR.
In our model, the previous year’s level of output is a strong instrument. It is
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conceivable that, in the data, the instruments used by BR were not as strong.

6 Money demand and the zero lower bound

We now investigate the behavior of money demand and supply in the equilibrium
of the last section. To do that, we build an equilibrium model of money demand
along the lines of Baumol (1952) and Tobin (1956). We must observe at the
outset that, when the nominal rate of interest approaches zero, money demand
grows steadily thereby creating a natural lower bound on the rate of interest.
Meanwhile, the demand of the private sector for the government bond drops
steadily. Eventually the demands for money and bonds become indeterminate
while their sum remains determinate and finite. The government cum central
bank, as noted by J. M. Keynes, falls into a “liquidity-trap”regime that is akin
to Quantitative Easing.45

Now there is cash explicitly in the economy, side by side with government
bonds. Calling M monetary claims, money supply at time t is: M2,t (a negative
number because, like θ2,t, it is a liability of the government cum central bank);
money demand is M1,t; the seignorage, an indirect tax, collected at time t and
measured in nominal terms of that date is: M1,t× (1− 1/ (1 + it)). Households
receive an income of a single good and no income in cash. At time t, the financial
wealth available for consumption is:

Pt × yt + θ1,t−1 +M1,t−1 − F1,t − St

The proceeds Pt × yt from the sale of the physical income are in the form of a
deposit at a bank. Cash on hand M1,t−1 and the other terms are assumed to be
readily available in cash. Cash can be withdrawn by taking trips to the bank.
Each trip costs a fixed real amount ν. The smaller the number of trips N1,t the
household decides to take to the bank, the more cash the household holds on
an average over the time period [t, t+ 1):46

M1,t =
Pt × yt
2×N1,t

45On the zero lower bound, a very active topic of research during the Great Recession, see
the following papers, which have implications for Finance: McCallum (2000), Krippner (2012),
Wright (2012), Gavin et al. (2013), Priebsch (2013), Greenwood et al. (2014), Swanson and
Williams (2014).
46We could have assumed that all the financial wealth except cash on hand is deposited

with a bank. Then,

M1,t =
Pt × yt + θ1,t−1 − F1,t − St

2×N1,t
so that the cost of the trips at current prices is:

k × Pt ×N1,t = ν × Pt ×
Pt × yt + θ1,t−1 − F1,t − St

2×M1,t

The derivation of the nodal system under that assumption is available in Appendix G.
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so that the cost of the trips at current prices is:

ν × Pt ×N1,t = ν × Pt ×
Pt × yt

2×M1,t

That cost is truly a deadweight loss; no one gets the benefit of it. But, for the
sake of computational simplicity we imagine that it is refunded to the private
sector in the form of a transfer ζ1,t = Pt×yt×ν×Pt/ (2×M1,t), thus keeping in
our equation system only the distortionary effect of the cost but not its wealth
effect.47 ,48 At the terminal point T , however, money is not “refunded.”Even
without a refund, the private sector holds it till the end because it has to. We
set 1/ (1 + iT ) = 0.
In Appendix F, we derive the set of equations (41) to be solved at each node

of the tree. Eliminating the money terms from it and taking (40) into account:

Flow budget constraints of private sector

Pt+1,j × ct+1,j + F1,t+1,j +

Pt+1,j ×
√

1
2yt+1,j ×

ν
1− 1

1+it+1,j

1 + it+1,j
+ St+1,j

= θ1,t + Pt ×
√

1

2
yt ×

ν

1− 1
1+it

+ Pt+1,j × yt+1,j ;

F1,T,j = 0; j = u, d

Flow budget constraints of government cum central bank

F2,t+1,j −
Pt+1,j ×

√
1
2yt+1,j ×

ν
1− 1

1+it+1,j

1 + it+1,j

= θ2,t − Pt ×
√

1

2
yt ×

ν

1− 1
1+it

+ St+1,j ;F2,T,j = 0; j = u, d

Portfolio-choice or Euler conditions

1

1 + it

1

Pt
= ρ

1
2 (ct+1,u)

γ−1 1
Pt+1,u

+ 1
2 (ct+1,d)

γ−1 1
Pt+1,d

(ct)
γ−1

Market clearing

θ1,t + θ2,t = 0

Initial conditions are:
P0
Pt−1

= Phill0 (y0)

F2,0 (y0) −
P0 ×

√
1
2y0 ×

ν
1− 1

1+i0

1 + i0
= θ2,−1 +M2,−1 + S0 (29)

47Without that assumption, the trips to the bank being deadweight losses ct 6= yt.
48 In addition, to preserve scale invariance (see footnote 30), we do not take ν to be a

constant; we assume it proportional to output.
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A change of unknown variables θ:

θ̂1,t , θ1,t + Pt ×
√

1

2
yt ×

ν

1− 1
1+it

; θ̂2,t , θ2,t − Pt ×
√

1

2
yt ×

ν

1− 1
1+it

along with a change of backward iterates:49

F̂1,t , F1,t +
Pt ×

√
1
2yt ×

ν
1− 1

1+it

1 + it
; F̂2,t , F2,t −

Pt ×
√

1
2yt ×

ν
1− 1

1+it

1 + it

transforms the system of equations into one that is identical to the system
(7), which we solved in the absence of money. We thus demonstrate that, for a
given value of the endogenous variable yt, money is simply added to government
bonds and is otherwise irrelevant. The government surplus being exogenous
anyway,50 seignorage being refunded and inflation targeting being an infinitely
elastic central-bank reaction function, money demand only serves to determine
money supply, as has been pointed out by many authors.
This is true with two caveats. Firstly, the change of variables is valid only

for strictly positive nominal interest rates. If we implemented it blindly, the
nominal rate of interest could become negative, despite the natural lower bound.
To prevent that error in the computation, we superimpose on the Taylor rule
an artificial zero lower bound on the nominal rate of interest:51

1 + it = max

1, (1 + ı̄)×

 1
2Pt+1,u+

1
2Pt+1,d

Pt

1 + π̄

φ
 (30)

Secondly, since we have assumed that money is not refunded, the termi-
nal conditions, which were originally F1,T,j = F2,T,j = 0 must be replaced by:

F̂1,T,j = −F̂2,T,j = PT ×
√

1
2yT × ν. We intend to study the paths of the econ-

omy in a stationary situation. For that, the change of terminal condition is not
very important except for the fact that it modifies the solution to the initial
conditions (29), so that the initial price level P0 and the initial output y0 are
affected by the presence of money. The initial point being modified, every path
of the economy will also be modified but the dynamics of the system will not,
unless the nominal rate of interest approaches the zero lower bound. We point
out that, with M2,−1 > 0, the initial level of government debt θ2,−1 could be
set equal to zero. In the cashless economy, the initial condition of the Fiscal
theory with zero debt would leave the price level of goods indeterminate at all
times. But, in the economy with money, the initial condition does determine the
initial price level even then, the present value of future government surpluses
being compared to the outstanding stock of money M2,−1. This shows that our
results are not predicated on the validity of the strict, debt-based Fiscal theory.

49Note: θ̂1,t/ (1 + it) = F̂1,t
50But see below the caveat concerning the terminal condition.
51We actually implement a smooth variant of that relation.
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We amend the “aggregate demand” subsystem of equations of Section 2
to reflect the modified policy rule (30), leaving intact the “aggregate supply”
subsystem of Section 4 and we solve by backward induction exactly as we did
before (with the additional parameter ν = 1% of output). Under the parameter
and state variable combinations considered so far, the result is identical to that
of Figure 3, simply because the cashless economy itself never produced a negative
value for the rate of interest. In order to make liquidity-trap episodes possible,
we replace Assumption 5 with the following:

Assumption 6 The Taylor-rule interest parameter ı̄ is set 1.5% below the neu-
tral rate of the flexible-price economy as defined in Definition 2.

We now discuss the outcome of that experiment.
The new version of Figure 6 is Figure 7, which shows that the lower bound

on the rate of interest introduces a support from below for realized nominal
stock returns. For that reason, the relation between inflation and stock returns
described above in section 5.2 is no longer near linear but is still positive, con-
tingent on a given sequence of productivity shocks. Not conditioning on the
productivity growth, the coeffi cient of an across-paths regression of the nominal
stock return on inflation between the two variables is equal to 0.0743 over one
period while it is equal to 0.1950 over five periods. Once again the slope is quite
a bit larger over five periods than it is over one.

-0.01
inflation

0.001

0.002

0.003

0.004

0.005

0.006

stock return

-0.01
inflation/yr

0.001

0.002

0.003

0.004

0.005

stock return/yr

Figure 7: Relation, in the presence of money, between one-period nom-
inal stock return and one-period inflation (left-hand panel) and re-
lation between the same two variables measured over five periods
(right-hand panel), across 10,000 paths at a fixed date. Parameters are as in
Table 1 with ı̄ set 1.5% below the neutral level (see Definition 2).
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α1 β1 α5 β5
Statistic
Median 0.003 0.02 0.02 0.117
Upper quintile 0.004 0.045 0.02 0.13
Lower quintile 0.003 −0.006 0.019 0.104
Std error
Median 0.00 0.009 0.00 0.008
Upper quintile 0.00 0.011 0.001 0.011
Lower quintile 0.00 0.008 0.00 0.006

Table 4: Stock Returns and Contemporaneous Inflation in the presence
of money: the regressions are those of Equation (27). Parameters are as in
Table 1 with ı̄ set at a neutral level (see Definition 2). The table is obtained
from 10,000 paths drawn at random.

The new version of Table 2, which contained the results of ex post regressions
across simulated paths, is Table 4.
The results are again in conformity with the empirical results of BR. We do

not display the ex ante regression results, which are once again ambiguous.

7 Bonds and the ‘Fed model’

7.1 Bond returns and inflation

As mentioned in the introduction, Katz and Lustig (2017) using a panel of
countries have confirmed empirically that stock markets are slow to incorporate
news about future inflation so that they do not qualify to be called “real”
assets, but that the same is not true at all of bond markets. We now check
whether our model can explain that fact. For that we draw figure 8, which
relates the one-year and five-year nominal rates of return on a ten-year pure-
discount nominal bond, across paths at a given point in time. The slope of an
unconditional regression line of one-year returns on inflation is is equal to 0.7202
(as opposed to 0.0966 for stocks) while the slope for five-year returns is equal
to 1.1028 (as opposed to 0.2348 for stocks). The difference between long-term
bonds and stocks is in the payoff. In our model with sticky prices but flexible
wages, dividends on stocks (Equation (25)) are adversely affected by inflation.

7.2 The ‘Fed model’

Asness (2003) criticizes a heuristic approach of professional circles who compare
yields on stock securities to yields on bonds, and expect the two to revert to
each other, which, empirically speaking, they do, both yields being high when
inflation is high.52 He refers to this approach as the “Fed model”. He points

52Maio (2013) shows empirically that the yield gap forecasts excess market returns, both
at short and long forecasting horizons, and for both value- and equal-weighted stock indexes,
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Figure 8: Relation between one-period nominal 10-year bond return
and one-period inflation (left-hand panel) and relation between the
same two variables measured over five years (right-hand panel), across
10,000 paths at a fixed date. Parameters are as in Table 1 with ı̄ set at a
neutral level (see Definition 2). In the left-hand panel, the labelling of the points
indicates the level of the output gap. The arrows show examples of increments
of the output gap between two successive points in time.
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out correctly that the two yields are not comparable; the coupon payments on a
bond are constant in current euros while the dividends on a share of stock will
grow with inflation.
This attitude of professional circles may be a form of money illusion, reminis-

cent of Modigliani and Cohn (1979), unless one of two rational explanations of
the fact that the “Fed model”works well empirically holds. One is the hypothe-
sis that says that high current inflation is associated with low expected long-run
nominal dividend growth in excess of the riskless rate, justifiably driving up the
equity dividend yield. The other is that high inflation drives up the risk of the
economy and thus the nominal equity risk premium. Campbell and Vuolteenaho
(2004) (CV) ran an empirical investigation to determine which of the three possi-
bilities transpires in the behavior of stock prices. They decompose the dividend
yield on equity into three components: a constant, expected long-run future
nominal equity excess returns and expected long-run nominal dividend growth
in excess of the riskless rate. They find that high current inflation is associated
with high expected long-run nominal dividend growth in excess of the riskless
rate, and that inflation is not related to the anticipated nominal equity premium,
thus leaving money illusion as the surviving hypothesis.
Indirect empirical evidence of the effect of monetary policy on the stock

market is also provided by a recent paper of David and Veronesi (2013) relating
stock returns to returns on bonds. The model allows for money illusion on the
part of investors. The authors argue that realized inflation is interpreted very
differently by investors depending on whether they fear stagflation (as in the
1980’s) —a fear that leads to a high correlation —or deflation, which would lead
to a lower correlation.
To examine these issues, we now revert to the cashless economy set up (with

the parameter values of Table 1) and introduce a ten-year zero-coupon bond that
pays one current monetary unit at maturity, just like the stock pays dividends
forever. We find (Figure 9) that there exists a near-straight line negatively
sloped relationship between dividend yield and bond yield. The labelling of a
few of the simulated points tell the dynamic story: as negative productivity
shocks accumulate, inflation becomes higher and higher, driving up the bond
yield while the dividend yield is brought down by the d productivity shocks.
Dividend yield and bond yield do not move in tango and should, therefore, not
be compared.
The theoretical result is not consistent with the empirical evidence mentioned

in the opening paragraphs of this section. This evidence, however, is entirely
based on post-World War II data, which feature a long upward swing of yields
to a peak in the early 80s followed by a long downward swing of both yields.
The up and down swings are probably caused by the change of monetary policy
regime that took place around 1980. If one extends the sample to the nineteenth
century, one finds that the empirical relationship between yields no longer holds.

and that it also outperforms competing predictors commonly used in the literature.
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Figure 9: Relation between nominal (or real) dividend yield on eq-
uity and nominal annualized yield on a ten-year nominal bond, across
10,000 paths at a fixed date. The labeling of the points of dates 40 to 50 along
one example path contains the following information: {date (year t), u or d
productivity shock (coded 1 and 0) two years ago, one year ago and contem-
poraneously, and the contemporaneous rate of inflation}. Parameters are as in
Table 1 with ı̄ set at a neutral level (see Definition 2).
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8 Conclusion

Adopting a method that has been used to calculate dynamic financial-market
equilibria, we have constructed the equilibrium of a cashless production economy
with productivity shocks and with three types of agents: (i) household/investors
who supply labor with a finite elasticity, consume a large variety of goods that
are not perfect substitutes and trade government bonds; (ii) firms that produce
those varieties of goods, setting prices in a Calvo manner; (iii) a government
that collects an exogenous fiscal surplus and acts mechanically, buying and sell-
ing bonds in accordance with a Taylor policy rule based on expected inflation.
Merging the consumption-financial behavior of households with the policy rule,
under IID productivity growth and no monetary shock, we have derived ex-
plicitly at each point in time and in each state of nature, aggregate-demand
schedules (inclusive of policy rule) relating, at the next point in time and in
each successor state, the price level to the level of output. We have shown that
these schedules are decreasing if and only if the exponent of the Taylor rule that
falls on expected inflation is less than 1. The aggregate supply schedules (or
Phillips curve) that also apply to the next point in time are always increasing.
The equilibrium is unique if the exponent is less than 1. Otherwise, because of
the non linearities of the two types of schedules, two equilibria can exist.
In this equilibrium, we have priced the stock market, defined as the present

discounted value of firms’ profits and demonstrated that, in a flexible price
version of our economy, the equilibrium nominal return on stocks is just equal
to the riskless interest rate, which is constant, whereas inflation is higher when
productivity growth is low. That explains a zero-slope relation between these
rates and gives stocks a nominal character.
Moving to a sticky-price version of the economy, we have simulated the joint

behavior of stock returns and inflation. That has allowed us to discover the
reason for which Boudoukh Richardson (1993) found different slopes for different
holding-period lengths. The reason lies in the succession of productivity shocks
that take place over several periods, which is a newfangled version of Fama
(1981)’s “proxy hypothesis”explained in the introduction.
The equilibrium has then been expanded to incorporate an explicit money

demand à la Baumol and Tobin. The only effect of the zero lower bound thus
created as been to support stock returns when they are low.
Finally, we turned to long-term bonds to observe that their behavior vis-à-

vis inflation is more “real” than that of stocks, which explains the surprising
empirical findings of Katz and Lustig (2017). We examined the validity of the
‘Fed model’in the context of our model. The model invalidates completely the
suggestion that one might compare dividend yields to bond yields to assess the
direction of the stock market. Under IID productivity-growth, the relationship
between them is in fact negative: when inflation is high, the bond yield is high
while the dividend yield is low.
All the results of this paper invite empirical tests that would be conducted

conditional on observed productivity shocks, as opposed to being conducted
across possible realizations of these shocks.
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Appendixes

A The backward equation system for the non-
Ricardian, real-surplus case of subsection 2.1

The dynamic programming formulation of the investor’s problem is:

J1 (θ1,t−1, ·, t) = sup
ct,{θ1,t,i}

u (ct, t) + EtJ1 (θ1,t, ·, t+ 1) (31)

subject to the flow budget constraint written at time t only.
The Lagrangian for problem (31) is:

L1 (θ1,t−1,i, ·, t) = sup
ct,θ1,t

inf
φ1,t

u (ct, t)

+
1

2

∑
j=u,d

J1 (θ1,t, ·, t+ 1)

+φ1,t ×
[
θ1,t−1 + Pt × yt − Pt × ct −

θ1,t
1 + it

− st × Pt
]

where φ1,t is the Lagrange multiplier attached to the flow budget constraint (3).
The first-order conditions are:

u′ (ct, t) = φ1,t × Pt

θ1,t−1 + Pt × yt − Pt × ct −
θ1,t

1 + it
− st × Pt = 0

1

2

∑
j=u,d

∂J1,t+1,j
∂θ1,t,i

(θ1,t, ·, t+ 1) (32)

= φ1,t ×
1

1 + it

In order to eliminate the value function from the first-order conditions, we
differentiate the Lagrangian with respect to θ1,t−1,i:

∂J1
∂θ1,t−1,i

=
∂L1

∂θ1,t−1,i
= φ1,t

so that the first-order conditions can also be written:

u′ (ct, t) = φ1,t × Pt

θ1,t−1 + Pt × yt − Pt × ct −
θ1,t

1 + it
− st × Pt = 0 (33)

1

2

∑
j=u,d

φ1,t+1,j = φ1,t ×
1

1 + it
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As has been noted by Dumas and Lyasoff (2012) in a different context,
the system made of (33) and (6) above has a drawback. It must be solved
simultaneously (or globally) for all nodes of all times. As written, it cannot be
solved recursively in the backward way because the unknowns at time t include
consumptions at time t, ct, whereas the third subset of equations in (33) if
rewritten as:

1

2

∑
j=u,d

u′ (ct+1,j , t)

Pt+1,j
= φ1,t ×

1

1 + it

can be seen to be a restriction on consumptions at time t + 1, which at time t
would already be solved for.
In order to “synchronize”the solution algorithm of the equations and allow

recursivity, we first shift all first-order conditions, except the third one, forward
in time and, second, we no longer make explicit use of the investor’s position
θ1,t−1 held when entering time t, focusing instead on the financial wealth: F1,t ,
θ1,t
1+it

held when exiting time t + 1, which are carried backward. Regrouping
equations in that way leads to the equation system of subsection 2.1.

B Analytical solution

Assume homogeneity with respect to the price level (with notation: θ1,t ≡
ϑ1,t×Pt; θ2,t ≡ ϑ2,t×Pt;F1,t+1,u ≡ f1,t+1,u×Pt+1,u;F2,t ≡ f2,t×Pt;F2,t+1,u ≡
f2,t+1,u × Pt+1,u) and assume: f1,t+1,u = −f2,t+1,u, f1,t+1,d = −f2,t+1,d. The
system of equations simplifies to

Flow budget constraints of private sector

−f2,t+1,u × Pt+1,u + st+1,u × Pt+1,u = ϑ1,t × Pt
−f2,t+1,d × Pt+1,d + st+1,d × Pt+1,d = ϑ1,t × Pt

Flow budget constraints of government

f2,t+1,u × Pt+1,u = ϑ2,t × Pt + st+1,u × Pt+1,u (34)

f2,t+1,d × Pt+1,d = ϑ2,t × Pt + st+1,d × Pt+1,d (35)

Portfolio-choice, or Euler, or Fisher condition

1

1 + it

1

Pt
= ρ

1
2 (yt+1,u)

γ−1 1
Pt+1,u

+ 1
2 (yt+1,d)

γ−1 1
Pt+1,d

(yt)
γ−1

Taylor rule

1 + it = (1 + ı̄)×

 1
2Pt+1,u+

1
2Pt+1,d

Pt

1 + π̄

φ

Market clearing

ϑ1,t + ϑ2,t = 0

Government debt: Government debt is nominal and can be priced by
means of the Fisher equation, which means that the financial wealth of the
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government can be obtained by the following backward induction:

F2,t
Pt

, 1

Pt

θ2,t
1 + it

(36)

= ρ

1
2 (ct+1,u)

γ−1
(
−st+1,u +

F2,t+1,u
Pt+1,u

)
+ 1

2 (ct+1,d)
γ−1

(
−st+1,d +

F2,t+1,d
Pt+1,d

)
(yt)

γ−1

From (36), the backward dynamics of real government financial liabilities are
provided by:

f2,t = ρ
1
2 (yt+1,u)

γ−1
(−st+1,u + f2,t+1,u) + 1

2 (yt+1,d)
γ−1

(−st+1,d + f2,t+1,d)

(yt)
γ−1 ;

f2,T = 0 (37)

The current real discounted value f2,t of government debt depends only on
future income and future surpluses. It does not depend on interest-rate policy.53

But the real face value ϑ2,t, which is the government’s equilibrium portfolio
choice or issuance decision, depends on the nominal rate of interest, which we
now determine.
Inflation: Solving for inflation from the government flow budget constraints

(34), (35):

Pt+1,u
Pt

=
ϑ2,t

−st+1,u + f2,t+1,u
Pt+1,d
Pt

=
ϑ2,t

−st+1,d + f2,t+1,d

so that the realized rates of inflation are:

Pt+1,u
Pt

=
f2,t × (1 + it)

−st+1,u + f2,t+1,u
(38)

Pt+1,d
Pt

=
f2,t × (1 + it)

−st+1,d + f2,t+1,d

These relate the two levels of future inflation (Pt+1,u/Pt, Pt+1,d/Pt) to calendar
time t, to the two levels of future real government debt
(−st+1,u + f2,t+1,u,−st+1,d + f2,t+1,d) and to the current level of real govern-
ment debt f2,t. We call f2,t/ (−st+1 + f2,t+1) the “ex post inverse real gross
rates of return on government debt”. It is also the ex post inverse real gross
rates of return on any nominally riskless debt.

Proposition 7 The ex post levels of inflation in the two states of nature are
separately
53This result is, of course, a statement of the Fiscal Theory of the Price Level. In an

overlapping-generations model, the real value of government debt may be larger than the
present value of future government surpluses; for an extension of the Fiscal theory to overlap-
ping generations, see Farmer and Zabczyk (2019).
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• increasing functions of the ex post inverse real gross rates of return on
nominally riskless debt

• increasing functions of the (ex ante) nominal gross rate of interest.
To illustrate, assuming that debt returns more in a u state than in a d state,

which is
−st+1,u + f2,t+1,u

f2,t
>
−st+1,d + f2,t+1,d

f2,t
then

Pt+1,u
Pt

<
Pt+1,d
Pt

Inflation is lower in the u state than in the d state.
Relations between the rate of inflation and the nominal rate of interest are

commonly known as the “aggregate-demand”schedules.54 We now merge them
with the policy rule.
Interest rate: Substituting into the Taylor rule:

1 + it = (1 + ı̄)×

 1
2

ϑ2,t
−st+1,u+f2,t+1,u + 1

2
ϑ2,t

−st+1,d+f2,t+1,d
1 + π̄

φ

so that (using ϑ2,t/ (1 + it) = f2,t):

1 + it = (1 + ı̄)
1

1−φ ×

 1
2

f2,t
−st+1,u+f2,t+1,u + 1

2
f2,t

−st+1,d+f2,t+1,d
1 + π̄


φ

1−φ

(39)

The nominal rate of interest depends on future fiscal surpluses and output, as
well as on the parameters of the Taylor rule. It is not generally equal to ı̄.

Proposition 8 The (ex ante) nominal gross rate of interest is an increasing
(decreasing) function of the expected inverse real gross rate of return on nomi-
nally riskless debt if φ < 1 (φ > 1).

In total, a higher ex post inverse real gross rates of return on government
debt has a double effect, one direct and increasing (Proposition 7), and one
indirect because it affects the expected value of the inverse real gross rates of
return. The sign of the second effect depends on whether φ is smaller or greater
then 1. When φ < 1, the direction of the effect is clear: a higher expected real
rate of return on government debt implies a lower rate of inflation in both future
states.
Finally, since (37) provides a unique value for the time-0 present value of the

government debt, and since θ2,−1 is a given (negative) amount of nominal claim
outstanding and s0 a given time-0 surplus, the solution of the initial condition
(8) for P0 is unique. Cochrane (2011, page 579) says that we have determinacy
in this case and, indeed, we do, irrespective of the value of the Taylor parameter
so long as φ 6= 1.
54The next two sections derive the “aggregate-supply” schedule. Here aggregate supply is

exogenous and completely inelastic.
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C Proof of Proposition 5

Combining (38) with (39), we get

Pt+1,u
Pt

=
f2,t

−st+1,u + f2,t+1,u
×(1 + ı̄)

1
1−φ×

 1
2

f2,t
−st+1,u+f2,t+1,u + 1

2
f2,t

−st+1,d+f2,t+1,d
1 + π̄


φ

1−φ

and, therefore

∂
Pt+1,u
Pt

∂
f2,t

−st+1,u+f2,t+1,u

= (1 + ı̄)
1

1−φ ×

 1
2

f2,t
−st+1,u+f2,t+1,u + 1

2
f2,t

−st+1,d+f2,t+1,d
1 + π̄


φ

1−φ
1

+

1
−st+1,u+f2,t+1,u

1
−st+1,u+f2,t+1,u + 1

−st+1,d+f2,t+1,d
× φ

1− φ

]

In view of (10),

∂
Pt+1,u
Pt

∂
f2,t

−st+1,u+f2,t+1,u

= (1 + ı̄)
1

1−φ ×

 1
2

f2,t
−st+1,u+f2,t+1,u + 1

2
f2,t

−st+1,d+f2,t+1,d
1 + π̄


φ

1−φ
1

+
1

1+u
1

1+u + 1
1+d

× φ

1− φ

]

And, from (37), (11) and (12)

∂
f2,t

−st+1,u+f2,t+1,u
∂yt+1,u

=
1

yt+1,u
×
[
−
ρ× 1

2 (1 + d)
γ

1 + u
+ ρ (γ − 1)

1

2
(1 + u)

γ−1
]
< 0

This shows that ∂ Pt+1,uPt
/∂yt+1,u is positive if and only if

1 +
1

1+u
1

1+u + 1
1+d

× φ

1− φ > 0

The proposition follows.

D Proof of equation (22)

The first-order condition is:

T−t∑
i=0

Et

[
(ρω)

i (ct+i)
γ−1

(ct)
γ−1

(
(1− σ)

P−σι,t

P 1−σt+i

+ σϕt+i
P−σ−1ι,t

P−σt+i

)
yt+i

]
= 0
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Divide by P−σι,t :

T−t∑
i=0

Et

[
(ρω)

i (ct+i)
γ−1

(ct)
γ−1

(
(1− σ)

1

P 1−σt+i

+ σϕt+i
P−1ι,t

P−σt+i

)
yt+i

]
= 0

Split:

(1− σ)

T−t∑
i=0

Et

[
(ρω)

i (ct+i)
γ−1

(ct)
γ−1

1

P 1−σt+i

yt+i

]
+σP−1ι,t

T−t∑
i=0

Et

[
(ρω)

i (ct+i)
γ−1

(ct)
γ−1 ϕt+i

1

P−σt+i
yt+i

]
= 0

Multiply by P 1−σt :

(1− σ)

T−t∑
i=0

Et

[
(ρω)

i (ct+i)
γ−1

(ct)
γ−1

P 1−σt

P 1−σt+i

yt+i

]
+σPtP

−1
ι,t

T−t∑
i=0

Et

[
(ρω)

i (ct+i)
γ−1

(ct)
γ−1 ϕt+i

P−σt
P−σt+i

yt+i

]
= 0

Solving for PtP
−1
ι,t gives (22).

E Walras’law in the sticky-price system

Aggregating the budget constraints in each state (j = u, d):

Pt+1,j × ct+1,j + F1,t+1,j + F2,t+1,j + st+1,j × Pt+1,j
= θ1,t + θ2,t + st+1,j × Pt+1,j + Pt+1,j × δt+1,j +Wt+1,j × lt+1,j ; F1,T,j = 0

Pt+1,j × ct+1,j = Pt+1,j × δt+1,j +Wt+1,j × lt+1,j

Pt+1,j × ct+1,j = Pt+1,j ×
[
ω ×

(
Pt

Pt+1,j
− ϕt+1,j

)(
Pt

Pt+1,j

)−σ
+ (1− ω)×

(
P ∗t+1
Pt+1,j

− ϕt+1,j
)(

P ∗t+1,j
Pt+1,j

)−σ]
× yt+1,j +Wt+1,j × lt+1,j

Pt+1,j × ct+1,j = Pt+1,j ×
[
ω ×

(
Pt

Pt+1,j
− Wt+1,j

zt+1,j × Pt+1,j

)(
Pt

Pt+1,j

)−σ
+ (1− ω)×

(
P ∗t+1
Pt+1,j

− Wt+1,j

zt+1,j × Pt+1,j

)(
P ∗t+1,j
Pt+1,j

)−σ]
× yt+1,j +Wt+1,j × lt+1,j

Pt+1,j × ct+1,j = Pt+1,j ×
[
ω × Pt

Pt+1,j

(
Pt

Pt+1,j

)−σ
+ (1− ω)×

P ∗t+1
Pt+1,j

(
P ∗t+1,j
Pt+1,j

)−σ]
× yt+1,j

+

(
−Wt+1,j

zt+1,j

)
×
[
ω ×

(
Pt

Pt+1,j

)−σ
+ (1− ω)×

(
P ∗t+1,j
Pt+1,j

)−σ]
× yt+1,j +Wt+1,j × lt+1,j
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Cancellation produced by (24) gives:

Pt+1,j × ct+1,j = Pt+1,j ×
[
ω × Pt

Pt+1,j

(
Pt

Pt+1,j

)−σ
+ (1− ω)×

P ∗t+1
Pt+1,j

(
P ∗t+1,j
Pt+1,j

)−σ]
× yt+1,j

ct+1,j =

[
ω ×

(
Pt

Pt+1,j

)1−σ
+ (1− ω)×

(
P ∗t+1,j
Pt+1,j

)1−σ]
× yt+1,j

ct+1,j = yt+1,j

Therefore, all accounts are straight: clearing of the financial market and of the
labor market do imply clearing of the goods market.

F Backward equation system for the Baumol-
Tobin case

In the entire paper, Wt is the nominal wage rate. In this appendix only, the
symbol W stands for entering (or pre-trade) wealth.

L1 (W1,t, ·, t) = sup
ct,θ1,t

inf
φ1,t

u1 (ct, t)

+
1

2

∑
j=u,d

J1 (θ1,t,M1,t, ·, t+ 1)

+φ1,t ×
[
W1,t −

θ1,t
1 + it

− St + Pt × yt ×
(

1− ν × Pt
2×M1,t

)
− Pt × ct −M1,t + ζ1,t

]
where: W1,t ,M1,t−1 + θ1,t−1. First-order condition with respect to θ1,t:

1

2

∑
j=u,d

∂

∂W1,t
J1 (θ1,t,M1,t, ·, t+ 1)−

φ1,t
1 + it

= 0

First-order condition with respect to M1,t:

1

2

∑
j=u,d

∂

∂W1,t
J1 (θ1,t,M1,t, ·, t+ 1) + φ1,t ×

[
Pt × yt ×

ν × Pt
2× (M1,t)

2 − 1

]
= 0

Envelope condition:

∂

∂W1,t−1
J1 (θ1,t−1,M1,t−1, ·, t) = φ1,t

The Euler conditions are:

1

2

∑
j=u,d

φ1,t+1,j −
φ1,t

1 + it
= 0; t = 0, ..., T − 1

1

2

∑
j=u,d

φ1,t+1,j = φ1,t ×
[

1− Pt × yt ×
ν × Pt

2× (M1,t)
2

]
; t = 0, ..., T
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The latter is simply:

1

1 + it
= 1− Pt × yt ×

ν × Pt
2× (M1,t)

2

Pt × yt ×
ν × Pt

2× (M1,t)
2 = 1− 1

1 + it
(40)

Pt × yt ×
ν × Pt

1− 1
1+it

= 2× (M1,t)
2

M1,t = Pt ×
√

1

2
yt ×

ν

1− 1
1+it

except at time t = T where:

1− PT × yT ×
ν × PT

2× (M1,T )
2 = 0

M1,T = PT ×
√

1

2
yT × ν

Summing up, the set of equations to be solved at each node of the tree is:

Flow budget constraints of private sector

Pt+1,j × ct+1,j + F1,t+1,j +M1,t+1,j + St+1,j

= θ1,t +M1,t + Pt+1,j × yt+1,j + ζ1,t+1,j ;

F1,T,j = 0; j = u, d

Flow budget constraints of government cum central bank

F2,t+1,j +M2,t+1,j = θ2,t +M2,t + St+1,j − ζ1,t+1,j ;F2,T,j = 0; j = u, d

Portfolio-choice or Euler conditions (41)

1

1 + it

1

Pt
= ρ

1
2 (ct+1,u)

γ−1 1
Pt+1,u

+ 1
2 (ct+1,d)

γ−1 1
Pt+1,d

(ct)
γ−1 ; t = 0, ..., T − 1

M1,t = Pt ×
√

1

2
yt ×

ν

1− 1
1+it

; t = 0, ..., T − 1;M1,T = PT ×
√

1

2
yT × ν

Market clearing

θ1,t + θ2,t = 0;M1,t+1,u +M2,t+1,u = 0;M1,t+1,d +M2,t+1,d = 0;M1,t +M2,t = 0
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G Backward equation system for the Baumol-
Tobin case under alternative specification

L1 (θ1,t−1,i,M1,t−1, ·, t) = sup
ct,θ1,t

inf
φ1,t

u1 (ct, t)

+
1

2

∑
j=u,d

J1 (θ1,t,M1,t, ·, t+ 1)

+φ1,t ×
{
M1,t−1 +

[
Pt × yt + θ1,t−1 −

θ1,t
1 + it

− St
]
×
(

1− ν × Pt
2×M1,t

)
− Pt × ct −M1,t + ζ1,t

}
First-order condition with respect to θ1,t:

1

2

∑
j=u,d

∂

∂θ1,t
J1 (θ1,t,M1,t, ·, t+ 1)−

φ1,t
1 + it

×
(

1− ν × Pt
2×M1,t

)
= 0

First-order condition with respect to M1,t:

1

2

∑
j=u,d

∂

∂M1,t
J1 (θ1,t,M1,t, ·, t+ 1)+φ1,t×

{[
Pt × yt + θ1,t−1 −

θ1,t
1 + it

− St
]
× ν × Pt

2× (M1,t)
2 − 1

}
= 0

Envelope conditions:

∂

∂θ1,t−1
J1 (θ1,t−1,M1,t−1, ·, t) = φ1,t ×

(
1− ν × Pt

2×M1,t

)
∂

∂M1,t−1
J1 (θ1,t−1,M1,t−1, ·, t) = φ1,t

so that the Euler conditions are:

1

2

∑
j=u,d

φ1,t+1,j ×
(

1− ν × Pt+1,j
2×M1,t+1,j

)
−

φ1,t
1 + it

×
(

1− ν × Pt
2×M1,t

)
= 0

1

2

∑
j=u,d

φ1,t+1,j + φ1,t ×
{[

Pt × yt + θ1,t−1 −
θ1,t

1 + it
− St

]
× ν × Pt

2× (M1,t)
2 − 1

}
= 0

The nodal system follows.
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