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1 Introduction

The creation and retention of knowledge are key features of organizations. Information
about products, inputs and technologies is continuously disclosed, exchanged, and pro-
cessed within organizations, a phenomenon known as organizational learning (Argote
2013). At the same time, misalignment of interests threatens organizational perfor-
mance. In the presence of moral hazard or adverse selection, the provision of incentives
is crucial to achieve efficiency and hire and retain the most performing agents (Prender-
gast 1999; Lazear 2000).

This paper studies learning within organizations when incentives change. When infor-
mation is not perfect, changing incentives brings uncertainty. The objective function
of agents changes, and so does their optimal decision. The lack of information on all
variables evaluated at the new equilibrium generates the scope for learning. The costs
associated with learning may contribute to explain differences in the adoption of per-
sonnel management practices and performance across organizations (Bloom and Van
Reenen 2007, 2010).

Our analysis proceeds in three steps. First, we develop a principal-agent model where
agent’s effort maps into output with noise. The agent does not have full information
on the global shape of the production function, and uses output as signal to update her
beliefs over time. Multiple agents observe each other’s effort and output, and learn from
each other. If learning is local, agents only learn about the shape of the production func-
tion around a given level of effort. When the contract parameters changes, the optimal
effort decision changes as well, generating scope for learning at the new equilibrium.

Second, we take this prediction to the data. We use personnel records from an egg
production plant in Peru and exploit a change in workers’ incentive contract parameters
for identification. Workers are assigned batches of hens, exert effort to feed them, and
collect eggs as output. Workers get a bonus that depends on both total output and
food distributed. The weight attached to these performance measures changes over the
sampling period, and the optimal feeding effort changes accordingly. We show that
workers change their level of effort towards the one exerted by neighboring peers on
the previous day upon observing them achieve higher output. This happens only after
the announcement of the new contract, around the implementation date, and fades away
gradually after 4.5 months.

Third, we quantify the profit losses associated with the incentive change that result
from imperfect information and the need of learning. We estimate the amount of food
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workers would have distributed in the absence of experimentation, and calculate that
profits would have been 5 to 6% or USD 340 to 400K higher during the implementation
period in the absence of imperfect information over the production function.

This paper contributes to the literature on organizational learning. The empirical work
in this domain estimates models of learning across firms (Argote et al. 1990; Irwin and
Klenow 1994; Benkard 2000; Thornton and Thompson 2001). Others focus on uncer-
tainty about the production function and the profitability and use of new production
technologies, a prominent feature of low-income countries (Atkin et al. 2017). The
majority of these studies investigate social learning among farmers (Foster and Rosen-
zweig 1995; Munshi 2004; Bandiera and Rasul 2006; Conley and Udry 2010; BenY-
ishay and Mobarak 2018; Beaman et al. 2020). There is less evidence of social learning
among workers within firms. Two exceptions are Menzel (2020), who finds evidence of
knowledge spillovers among workers in Bangladeshi garment factories, and Chan et al.
(2014), who study peer learning among salespeople.

The second related literature is the one on workplace incentives. A large theoretical
literature exists on the trade-offs involved in performance pay, and the use of multiple
performance measures (e.g., Hölmstrom 1979; Holmstrom and Milgrom 1987; Baker
1992). Starting with Lazear (2000), a number of studies have shown that that perfor-
mance pay increases output. The most recent empirical literature has devoted increasing
attention to working arrangements in developing countries because of the higher preva-
lence of piece rate pay and the higher labor intensity of the production technology (see
for instance Guiteras and Jack 2018).

To the best of our knowledge, ours is the first paper showing that changing incentives
can trigger learning within organizations. Imperfect information over the shape of the
production function can increase the transaction costs associated with the implemen-
tation of new incentive schemes and management practices in general, possibly ex-
plaining low levels of adoption (Bloom et al. 2010; Atkin et al. 2017). We provide an
estimate of such transaction costs.

The remainder of the paper is organized as follows. Section 2 outlines the conceptual
framework. Section 3 introduces the empirical setting and data respectively. Section
4 illustrates the data, empirical strategy, and results. In Section 5, we estimate the
transaction cost associated with the contract change. Section 6 concludes.

3



2 Conceptual Framework

This section illustrates a simple model that formalizes the learning mechanism uncov-
ered by the empirical analysis that follows. Each worker i in period t independently
produces output yit combining effort ait with an input of heterogeneous quality sit.
Output is given by

yit(ait, sit) = sitf(ait) (1)

where f ′′it(ait) < 0 for all ai. Input quality sit is identically and independently dis-
tributed across workers. Workers do not observe sit, but know its distribution with
mean µs and variance σ2

s . The exact shape of f(·) is also unknown to the worker, who
holds in each period beliefs fit(·) over f(·). The combined uncertainty around sit and
f(·) is responsible for the inability of the worker to disentangle the separate contribu-
tion of effort and input quality to output. It follows that output is only an imprecise
signal of the shape of the f(·) function, generating the scope for learning.1

The worker’s utility cost of effort is given by C(ait) = θa2it/2 with 0 < θ < 1. The
management observes both output and effort, and motivates the worker by setting the
wage equal to

w(yit, ait) = κ+ αyit + (1− α)ait (2)

where κ is fixed and α is the weight attached to output relative to effort in compensation.
If α = 0, the worker is incentivized on effort only. If α = 1, the worker is incentivized
on output only. If 0 ≤ α ≤ 1, the worker is incentivized on both measures. This con-
tract matches the one we observe in our empirical application, and we take it as given.
Notice however that using a performance measure that captures worker’s effort along
a particular dimension is a common feature in many working environments, especially
when workers make decisions regarding the use of some inputs.2

1Allowing the worker to partially observe input quality does not meaningfully change the model and
its implications: the worker will discount the known pieces of information accordingly, but residual
uncertainty over input quality will still generates scope for learning. For instance, as we show in Amodio
and Martinez-Carrasco (2018), we can let sit = ritεit with rit being known and εit being unknown to
the worker, who will then use yit/rit as signal in learning about the f(·) function.

2Amodio and Martinez-Carrasco (2020) show that using performance measures linked to one specific
dimension of the effort can be optimal in a multitasking setting. Moreover, rewarding the worker for
output and effort can be optimal if the worker is risk averse. This is because the two metrics are both
informative of worker’s choice, but vary in the amount of risk they impose on the employee, and enter
the principal’s payoff in different ways (Hölmstrom 1979; Baker 1992). As explained later, assuming
that workers are risk averse does not change the model predictions and comparative statics.
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We assume that the worker is risk neutral, has utility

uit = κ+ αyit + (1− α)ait − θ
a2it
2

(3)

and chooses the effort level ait that maximizes her expected utility. Given the expected
value µs of input quality and worker’s belief fit(·) on the production function, taking
the first order condition we get

αµsf
′
it(ait) + (1− α) = θait (4)

which implicitly defines the optimal level of effort a∗it. This changes with the wage
contract parameter α. Applying the implicit function theorem we get

∂a∗it
∂α

=
µsf

′
it(ait)− 1

θ − αµsf ′′it(ait)
(5)

from which follows that the level of effort may increase or decrease with α depending
on whether its expected marginal product is higher or lower than one.3

Upon exerting effort, the worker observes the corresponding output realization yit =

sitf(a∗it). She uses output as signal to update her beliefs over the marginal product
of effort in the vicinity of a∗it. In order to see this, consider a Taylor series expansion
approximation of f(.) at 0 and assume without loss of generality f(0) = 0. We have

yit ≈ sitf
′(a∗it)a

∗
it (6)

It follows that, given her choice of effort a∗it at time t, when the worker observes a higher
than expected output realization – sitf ′(a∗it)a

∗
it > µsf

′
it(a

∗
it)a

∗
it – she acknowledges that

there is a positive probability that the true marginal product of effort f ′(·) in the vicinity
of a∗it is higher than her belief f ′it(·). This will lead the worker to revise upwards her
beliefs on f ′it(·). The opposite holds if the worker observes a lower than expected output
realization.4

The objective of the worker is to maximize utility. If the effort cost parameter θ is low

3Assuming risk averse agents yields similar results. Assuming a CARA utility function and sit nor-
mally distributed, working in terms of certainty equivalent we obtain the first order condition

αµsf
′
it(ait) + (1− α) = θait + ηfit(ait)σ

2

where η is the agent’s level of risk aversion. The comparative statics with respect to α remains unchanged.
4Notice that it is possible to characterize this process as standard Bayesian updating upon taking logs

of equation 6 and assuming that sit is log-normally distributed.
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enough, higher output maps into higher utility. It follows that the optimal effort choice
will change in the same direction of f ′it(·): effort will increase in the next period if
output is higher than expected, and decrease otherwise. The magnitude of the change
will depend on the wage contract parameter α.

If the effort choice and output of coworkers are observable, the worker will also use
this information in her learning process. Specifically, given worker j’s effort choice
ajt, worker i has expectation yijt on j’s output that is based on i’s beliefs, i.e. yijt =

µsfit(ajt). Whenever a∗it 6= ajt, such expected output – and corresponding utility – is
lower than the one associated with a∗it, as this is the optimal choice of i given her beliefs
f ′it(·). As a consequence, when worker i observes a realization of coworker’s output
that is higher than her own, yjt > yit, she will update her beliefs over f ′(·) and change
her level of effort in the next period towards the one exerted by the coworker in the
current period.

Notice that workers learn locally over f(·). This implies that learning over f ′(·) at one
level of effort ait is not necessarily informative of f ′(·) at a sufficiently distant level of
effort. A change in α changes the optimal choice of effort, and may trigger learning
over a different portion of the production function. This is the hypothesis that we take
to the data.

3 The Setting

In the empirical analysis, we use personnel data from a Peruvian egg production plant.
Production takes place in different sectors. Each sector comprises different sheds, long-
building facilities grouping one to four production units.

Each worker is assigned to a given production unit and assigned a batch of laying hens.
The batch as a whole is treated as a single input, as all hens within the batch are bought
all together from a supplier company, raised in a dedicated sector, and moved to produc-
tion accordingly. When that happens, they are assigned to a given production unit and
to the same worker for their entire productive life. Hen productivity varies over time de-
pending on hens’ age and idiosyncratic productivity shocks that materialize throughout
their egg-laying span that lasts approximately one year.

Output is measured by the number of eggs collected during the day. This is a function
of both hen characteristics and worker’s effort. Workers exert effort along three main
dimensions: egg collection and storage, hen feeding, cleaning and maintenance of the

6



unit facilities. Hen feeding is observed by the management, which records information
on the number of sacks of food distributed by the worker during the day. Effort is costly,
as workers need to carry multiple 50kg sacks of food a day and distribute it among all
hens. The amount of food distributed is decided by the worker. Each morning, a truck
arrives at the production unit and unloads a large (unbinding) number of sacks. The
worker decides how many of those to distribute during the day.5

Changing Incentives Workers are paid every two weeks. Their salary is equal to a
fixed wage plus a bonus component that depends on worker performance as measured
in a randomly chosen day within the two-week pay period. The formula to calculate
the bonus changed over time. In the first period, the bonus payment was calculated
according to the sum of the number of sacks of food distributed by the worker and the
total number of boxes of eggs collected, each box containing 360 eggs. If this quantity
exceeded a given threshold, a piece rate was awarded for each unit above the threshold.
On 24 February 2012, the company adopted a new bonus formula, which has been
maintained thereafter. This is now based on the number of boxes of eggs collected only.
Such quantity is multiplied by two, and a piece rate is awarded for each unit above a
given threshold. Both the piece rate parameter and the threshold were kept the same
across the two periods and contracts.

Mapping from our conceptual framework, the total number of boxes of eggs collected
is a measure of output yi, while the number of sacks of food distributed is a measure
of worker’s effort ai. The first contract is such that α = 1/2, and the second contract
is such that α = 1. This is the source of variation that we exploit to test the model
predictions.

When asked about the reason for changing incentives, the management claims that
workers were distributing “too much food” under the earlier incentive scheme. At the
same time, managers observed close to a one-to-one relationship between egg boxes
and sacks of food distributed, and they expected the contract change not to penalize the
workers. We show later that the implementation of the new contract manages to reduce
the amount of food distributed by workers, in line with the management’s expectations
and goal.

5Production units are independent from each other and there is no scope for technological spillovers.
Egg storage and manipulation is also independent across units, as each one of them is endowed with an
independent warehouse for egg and food storage.
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4 Empirical Analysis

4.1 Data

We gained access to daily records for all production units in one sector from June 2011
to December 2012. These data cover the period from 8 months prior to 10 months
following the change of contract. Overall, we observe 94 production units, 211 different
hen batches, and 127 workers present for at least one day.

Online Appendix Table A.1 shows the summary statistics for the main variables that we
use. It does so separately for the overall sample and for the three subsamples as defined
by the dates in which the contract change was announced and implemented. Across
all periods, workers distribute 23 sacks of food a day on average. The total number of
hens per batch is heterogenous across production units over time. Dividing the total
amount of food distributed by the number of hens, we derive the amount of food per
hen distributed by the worker, averaging 116 grams per day.

Output is given by the number of eggs collected, averaging more than 8,000 per day.
This corresponds to 0.8 daily eggs per hen on average. Consistent with the model,
at least part of this variation is attributable to heterogeneity in input quality as hen
productivity varies across and within units and batches over time. Part of this variation
is informed by the innate characteristics of the hens. When purchased, each batch comes
with detailed information on the average number of eggs per week each hen is expected
to produce every week. Divided by 7, this measure of expected daily productivity varies
from 0.02 to 0.93, with an average of 0.81.

Production units are grouped in 41 different sheds, 35 of them hosting more than one
production unit. We calculate for each production unit the average amount of food and
the average number of eggs per hen collected in neighboring production units in the
same shed on the same day. We complement all this information with a survey that
we administered to all workers in March 2013. We are able to use this information in
combination with production data for those workers that were still present on the day
of the survey, slightly more than 70% of our study sample. We use this survey to elicit
information on worker’s tenure at the firm.
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4.2 Preliminary Evidence

In the model, we assume that output is a concave function of effort. Online Appendix
Figure A.1 shows that this is the case empirically. It plots the average number of eggs
per hen collected by the worker against the amount of food per hen distributed on the
same day, together with its 95% confidence interval. It also plots a kinked linear ap-
proximation of the production function. The amount of food at the kink (113.25g) is set
to maximize the R2 of a kinked regression of number of eggs per hen over the amount
of food distributed. Evidence shows that a local linear approximation with only one
kink provides a very good approximation of the true shape of the production function.

The model also assumes that input quality is at least partially unknown to the worker. To
support this assumption, we regress daily output as measured by eggs per hen collected
by the worker over the expected productivity measure provided by the batch supplier.
The corresponding coefficient estimate is equal to 0.85 and significant at the 1% level.
More importantly, this known measure of expected productivity only explains around
40% of the variation in daily output, up to 65% when including the full sets of worker
and batch fixed effects, and their interactions that also capture “match effects.” This
indicates that idiosyncratic productivity shocks that materialize over the hen life cycle
affect their productivity, and that such residual variation in input quality matters.

On 29 November 2011, the firm announced that it would implement a new salary struc-
ture, changing the weight α attached to output from 1/2 to 1. The change was imple-
mented on 24 February 2012. Without further restrictions, our model delivers ambigu-
ous predictions on the impact of such change on effort as measured by the amount of
food distributed by the worker. Yet, Figure A.1 shows that the slope of the production
function is always lower than one. In this case, equation 5 delivers a clear prediction:
effort decreases when the weight α attached to output in the bonus formula increases.

Figure 1 shows the average amount of food distributed daily over time during the sample
period. The graph shows the smoothed average value together with its 95% confidence
interval. The two vertical red lines correspond to the dates of announcement and imple-
mentation of the new contract. The amount of food distributed falls discontinuously on
announcement and implementation dates, and then seems to stabilize in the later period
at a level that is lower than the initial one. This pattern suggests that the new contract
was successful in reducing the amount of food distributed by workers. Yet, variation
over time could also be driven by other factors that affect the production process and
workers’ choices differently on each day. This could explain for instance the slight de-
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crease in the amount of food distributed just before the announcement date. We explain
in details in the next section whether this is problematic and, in general, the conditions
under which the presence of unobserved determinants of workers’ food choice would
invalidate our identification strategy.

Online Appendix Table A.1 provides additional evidence of the fall in the amount of
food distributed by workers. After the implementation of the new contract, workers
distribute on average one sack of food less relative to the period before the announce-
ment. This corresponds to a decrease in food per hen of about 8 grams, or 6.6% of the
baseline mean.

Figure 2 plots the distribution of the amount of food per hen distributed by workers in
each day and separately for the period before the announcement of the incentive change,
between the announcement and implementation date, and after implementation. First,
the figure shows how the whole distribution shifts leftwards as the new contract is first
announced and then implemented. Second, the distribution is more dispersed in the
period between announcement and implementation dates than in the other two periods.
This is suggestive of experimentation during that time.

4.3 Identification Strategy

Our hypothesis is that changing incentives triggers learning among workers over the
shape of the production function around the new optimal level of effort. The spatial
arrangement of production units is such that neighboring peers can interact and observe
each other. We would therefore expect workers to use the available information on food
distributed and output of peers to update their beliefs and inform their own food choice
accordingly. This would generate a positive correlation between the choices of neigh-
boring coworkers. But, finding evidence of such correlation does not necessarily mean
that workers learn from each other. First, unobserved common factors may indepen-
dently affect the effort choice of coworkers and tilt them in the same direction. Second,
the simultaneous determination of their decisions makes it difficult to identify causal
relationships because of the so-called reflection problem (Manski 1993).

To overcome these issues, we adopt a regression framework that builds upon Conley
and Udry (2010) and their study of pineapple growers in Ghana. We look at changes
in workers’ effort choices over time, and whether they adjust towards their peer choice
differentially when the latter achieve higher output. To operationalize this approach, we
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define for each worker i operating batch b on day t the variable

Mibt = (ajbt−1 − aibt−1)× I {yjbt−1 > yibt−1} (7)

where ajbt−1 is the average effort choice – sacks of food distributed – of neighboring
coworkers on the previous day, aibt−1 is the effort choice of the worker on that same
day, and I {yjbt−1 > yibt−1} is an indicator of peer relative success, equal to one if the
average output – eggs per hen – of neighboring coworkers was higher than own output.

We then implement the following baseline regression specification

∆aibt = β Mibt + γ Postt ×Mibt + X′ibtκ+ δt + θi + uibt (8)

where ∆aibt = aibt−aibt−1 is the change in the effort choice of worker i from one day to
the other, and Postt is a dummy equal to one in the period after the announcement of the
new contract. The coefficient β captures whether workers change their level of effort
towards the one exerted by neighboring peers on the previous day upon observing them
achieve a higher output. γ captures whether this occurs systematically and differentially
after the announcement of the new contract. The vector Xibt includes the lagged own
and coworkers’ input choice and output as well as the total number of hens in the batch.
δt captures day fixed effects, which account for and net out all determinants of food
choice that vary over time and affect all workers in the same way. Similarly, θi captures
worker fixed effects, which account for and net out all determinants of food choice that
are idiosyncratic to each worker and do not vary over time. Finally, the term uibt cap-
tures any residual determinants of change in the amount of food distributed. We cluster
standard errors along the two dimensions of shed and day to account for unobserved
correlation between such residuals across observations belonging to the same shed or
day.

A first concern with our identification strategy is that the presence of unobserved de-
terminants of food choice could bias the estimated γ. However, this would be the case
only insofar as these were systematically related to peer relative success and its indicator
nested in the Mibt variable, and if this was differentially the case after the announce-
ment of the new contract. A second concern is related to “match effects,” meaning
the possibility that batches with particular characteristics are assigned to workers that
are particularly good or well-suited to handle batches with those characteristics. Once
again, this would be problematic only if the productivity of a match was systematically
related to own and coworkers’ food choice and peer relative success, and differentially
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so after the announcement of the new contract.

Before continuing, we investigate the extent of variation in the Mibt variable. Its value
is different than zero for around 45% of observations in the sample, and positive (neg-
ative) for 25% (20%) of the sample. These relative frequencies are not systematically
different across subsamples as defined by whether the observation belongs to before or
after the announcement of the new contract, or to workers with lower or higher than
median tenure. The R2 of a regression of Mibt over the full set of worker fixed effects
is equal to 0.40, up to 0.45 when also including all their interactions with the post-
announcement dummy. This indicates that Mibt varies within workers more than it does
between workers.

4.4 Results

Table 1 reports the regression coefficient estimates. Column 1 shows the estimated β
from a regression specification that only includes Mibt and the vector of controls Xibt

as independent variables. In column 2, we augment the specification with the full set of
day fixed effects. The estimated β is positive and significant at the 1% level. In column
3, we include the interaction between the Mibt variable and the post-announcement
dummy.6 The estimated β is now close to zero and insignificant while the estimate of γ
is positive and significant at the 5% level. It becomes significant at the 1% level upon
adding worker fixed effects in column 4. In column 5, we include as additional control
a dummy that equals one if expected productivity (estimated by the batch supplier) is
above the median. We interpret this as evidence that the announcement of the new
contract triggers learning among coworkers.

As explained earlier, when hen batches are moved to production they are assigned to
a given production unit and to the same worker for their entire productive life. It is
reasonable to expect that the extent of unobserved variation in input quality decreases
over time. If this is the case, the scope for learning would be highest among work-
ers handling a newly assigned batch. We test this hypothesis by including the triple
interaction between the Mibt variable, the post-announcement dummy, and a variable
MatchDurationibt capturing the time elapsed since current batch assignment in months.7

Column 6 of Table 1 reports the corresponding results. The triple interaction coefficient
estimate is negative and highly significant while the estimated γ remains positive, larger

6Notice that the post-announcement dummy itself is not included as its variation is absorbed by the
full set of day fixed effects.

7We also include this variable on its own as additional control.
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in magnitude, and highly significant. This suggests that the scope for learning is indeed
highest among workers handling a newly assigned batch, and decreases thereafter.8

In column 7 and 8, we implement the regression specification in column 5 separately
for the subsample of production units assigned to workers with lower and higher than
median tenure. The estimated γ is significant only for workers with high tenure. While
surprising at first, we interpret this as evidence that workers with longer experience
are more capable of monitoring their peers, elaborate the information that becomes
available, and act accordingly.9

To get a sense of the magnitude of the estimated γ, notice that for 99% of our sample
the value of ∆aibt is between -1 and 1, with a standard deviation of 0.143. In the
post-announcement period, upon observing their peers achieve a higher output, workers
change their food choice by 4 to 5% of such standard deviation.

The previous specification pools together all observations belonging to the pre and post-
announcement period. Yet, we would expect learning to occur only for a limited amount
of time. We thus augment the regression specification in equation 8 with the interactions
of Mibt with a set of dummies that identify each two-week pay period. We omit and use
as reference the pay period when the contract change was announced. Figure 3 plots
the coefficient estimates associated with these interaction terms over time, together with
their 95% confidence intervals. The two vertical red lines correspond to the periods of
announcement and implementation of the new contract. Estimates are not significantly
different from zero for the whole period before the announcement of the new contract.
They become positive and significant at the 5% level shortly before implementation,
remain significant for several periods, then return insignificant. We interpret this pattern
as showing evidence that learning was absent prior to the announcement of the new
contract. It only materializes thereafter, spikes around the implementation date, and
fades away gradually after 4.5 months.

8We also tested if learning is heterogeneous depending on the number of neighboring coworkers. We
included the triple interactions between the Mibt variable, the post-announcement dummy, and dummies
for whether the worker has two, three or four neighboring coworkers, workers having one being the
omitted category. The baseline estimate of γ remains positive and highly significant while none of the
interaction coefficients are. Results are available from the authors upon request.

9We reach the same conclusion when implementing a specification with the triple interaction between
the Mibt variable, the post-announcement dummy, and a dummy for workers with higher than median
tenure.
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5 The Cost of Learning

In this section, we summarize our attempt to quantify the profit losses associated with
the contract change and due to imperfect information and need of learning. We provide
the full details of the estimation procedure in Online Appendix A.2.

The fundamental challenge is that we do not observe the counterfactual, i.e. what would
have happened to feeding effort, output, and profits in the presence of complete infor-
mation. That is, we cannot disentangle the variation in the variables of interest that
is driven by learning and experimentation from the one determined by idiosyncratic
shocks such as changes in output and input prices.

We address this challenge as follows. In the first step, we filter out variation in food
choice across days, production units and batches by regressing the amount of food per
hen distributed by the worker over the corresponding three sets of fixed effects. We then
split the sample in three periods: the one before the announcement of the new contract,
the one during which learning occurs, and the one after. The length of the second period
is informed by Figure 3 and given by those two-week intervals in which the estimated
coefficient capturing knowledge spillovers is positive and significant. Notice that the
date of the implementation of the new contract falls within this second period.

In the second step, we use the estimated residuals from the first step to derive the average
residual of food distributed per hen in the three periods. We consider the averages in
the first and last period as informative of the equilibrium level of feeding effort under
the old and new contract respectively.

In the third and last step, we estimate the counterfactual feeding effort choice during the
adjustment period by re-centering the distribution of residuals as follows. We subtract
the average of the period and add the one of the first period to all observations prior to
the implementation date, and do the same using the average of the third period to those
after the implementation date. In other words, we re-center the observed distribution
of residual food choice in the second period using the averages in the first and third
period for the days before and after the implementation of the new contract respectively.
Finally, we add to these counterfactual residuals the fixed effects estimated in the first
step and obtain the counterfactual choice of food distributed. Not surprisingly given the
way we obtain the counterfactual, actual and counterfactual variables differ only in the
second period, with the counterfactual amount of food distributed being higher in the
absence of experimentation.
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Upon obtaining the counterfactual amount of food distributed, we can derive counter-
factual output, revenues, food costs, and bonuses paid to the workers. We implement
a regression of eggs per hen over the kinked function of food per hen specified in Sec-
tion 4, and the full set of day, production unit, and batch fixed effects. We then use
the estimated coefficients and the counterfactual food per hen to obtain counterfactual
output. We calculate revenues using the information on output prices that the firm made
available to us. Similarly, we calculate food costs using the information on the price of
a sack of food. We use the actual compensation formula before and after the contract
change to calculate the bonuses paid to employees. Finally, we combine all this infor-
mation to calculate profits. Figure 4 shows the corresponding results. The area between
the two lines measures the daily average profit loss over time.10

To get a sense of the uncertainty surrounding these estimates, we implement a bootstrap-
type procedure sampling with replacement from the full dataset and repeating all steps
described above 200 times. Online Appendix Table A.2 shows the results from this
exercise for each of the variables we use to calculate profits, with standard deviations in
parenthesis. We estimate a revenue loss of USD 560K and a profit loss of USD 373K.
According to our calculations, profits would have been 5.5% higher over the learning
period in the presence of complete information on the global shape of the production
function.11

6 Conclusions

This paper shows that changing incentives triggers learning among coworkers within
firms. We present a principal-agent framework that illustrates how a change in the
contract parameters can trigger learning and experimentation over a new, unexplored
portion of the production function. We take this hypothesis to the data using person-
nel records from a Peruvian egg production plant. We show that workers change their
level of effort towards the one exerted by neighboring peers on the previous day upon
observing them achieve a higher output, which we interpret as evidence of learning
among coworkers. The learning process lasts around 4.5 months, and brings about es-
timated profit losses of USD 340 to 400K. This finding suggests that varying degrees
of information completeness and related costs can explain at least part of the variation

10Online Appendix Figures A.2 and A.3 show the smoothed averages of all actual and counterfactual
variables used to calculate profits.

11Online Appendix Figure A.4 shows the distribution of absolute and relative profit gains across the
200 repetitions.
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we observe across firms within and across countries in the adoption of personnel man-
agement practices. Understanding whether and how this is the case is an open question
that we leave for future research.
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Exhibits

Figure 1: Food Choice Over Time
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Notes. The figure plots the smoothed average of the total number of 50kgs sacks of food distributed
across all production units in a given day, together with its 95% confidence interval. The two vertical
lines correspond to the dates of announcement and implementation of the new contract. The amount of
food distributed is stable before the announcement, falls discontinuously on announcement and imple-
mentation dates, and stabilizes again in the later period at a level that is lower than the initial one.
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Figure 2: Distribution of Food Choice Across Periods
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Notes. The figure plots the smoothed kernel density of grams of food per hen distributed in each day across
workers and separately in the period before, during, and after the implementation of the contract change.
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Figure 3: Incentive Change and Learning Over Time
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Notes. The figure plots the coefficient estimates associated with the whole set of interactions between the Mibt

variable specified in Section 4.3 and a dummy for each two-week pay period. Estimates are obtained from an
augmented version of regression specification in equation 8 that includes all these interactions. The two vertical
lines correspond to the periods of announcement and implementation of the new contract. The announcement
pay period is used as reference. The coefficient estimate that captures learning among coworkers increases after
the announcement and becomes positive and significant around and after the implementation date, consistent
with Figure 1.
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Figure 4: Actual and Counterfactual Profits
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Notes. The figure shows the predicted and counterfactual smoothed average profits per day. The estimation
is described in Section 5 and Online Appendix A.2. The first two vertical lines indicate the period of an-
nouncement and implementation of the incentive change respectively, while the third one corresponds to the
last period in which learning occurs according to the results depicted in Figure 3.
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A Appendix for Online Publication

A.1 Additional Tables and Figures

Table A.1: Summary Statistics

Variable Mean Std. Dev. Min. Max. N
Panel A – All Sample

Food Distributed (50kg sacks) 23.339 8.762 0.5 37 41490
No. of Hens 10068.737 3707.413 353 15517 41490
Food per Hen (gr) 115.937 9.145 66.774 163.235 41490
Total Eggs Collected 8154.689 3552.199 0 15131 41490
Total Eggs per Hen 0.809 0.179 0 1 41490
Expected Productivity 0.814 0.138 0.02 0.934 40648

No. of Neighboring Coworkers 2.011 0.87 1 4 41490
Food Distributed by Coworkers (avg) 23.334 8.763 0.5 37 41490

Match Duration (months) 4.265 3.417 0.033 17.567 41490
Experience (years) 5.395 3.531 0.038 15.781 32892

Panel B – Before Annoucement

Food Distributed (50kg sacks) 24.443 9.029 3 37 14156
No. of Hens 10134.422 3698.474 1311 15396 14156
Food per Hen (gr) 120.691 6.874 67.146 163.235 14156
Total Eggs Collected 8530.853 3531.786 0 13830 14156
Total Eggs per Hen 0.843 0.154 0 0.993 14156
Expected Productivity 0.809 0.148 0.02 0.934 14037

Panel C – Between Announcement and Implementation

Food Distributed (50kg sacks) 23.115 8.541 1 35 4999
No. of Hens 10010.448 3641.729 520 14963 4999
Food per Hen (gr) 115.591 9.122 68.673 159.795 4999
Total Eggs Collected 8026.72 3375.86 60 13112 4999
Total Eggs per Hen 0.806 0.162 0.005 1 4999
Expected Productivity 0.8 0.129 0.02 0.934 4802

Panel D – After Implementation

Food Distributed (50kg sacks) 22.689 8.568 0.5 35 22335
No. of Hens 10040.153 3727.173 353 15517 22335
Food per Hen (gr) 113.001 9.154 66.774 159.61 22335
Total Eggs Collected 7944.917 3584.261 0 15131 22335
Total Eggs per Hen 0.788 0.194 0 1 22335
Expected Productivity 0.821 0.133 0.02 0.934 21809

Notes. The table reports the summary statistics of the variable used in the empirical analysis in the overall sample and
separately for the period before, during, and after the contract change.
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Table A.2: Counterfactual Estimates

Data Simulation Difference % Difference

Total Eggs 374.084 379.210 5.126 0.014
(Millions) (0.802) (0.802) (0.161) (0.000)

Revenues 38.860 39.419 0.560 0.014
(USD Millions) (0.083) (0.083) (0.017) (0.000)

Food 1.077 1.090 0.013 0.012
(Millions of 50kg sacks) (0.002) (0.002) (0.000) (0.000)

Food Cost 17.816 18.001 0.186 0.010
(USD Millions) (0.032) (0.032) (0.003) (0.000)

Bonuses 0.018 0.019 0.002 0.089
(USD Millions) (0.000) (0.000) (0.000) (0.003)

Profits 21.026 21.399 0.373 0.018
(USD Millions) (0.059) (0.059) (0.016) (0.001)

Profits Adj. Period 6.754 7.126 0.373 0.055
(USD Millions) (0.062) (0.061) (0.016) (0.002)

Notes. The table shows the average and standard deviation of predicted and counterfactual variables. Both are
estimated with the procedure described in Section 5 and Online Appendix A.2. Distributions are obtained by
implementing a bootstrap-type procedure of resampling with replacement in 200 repetitions.
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Figure A.1: Output and Feeding Effort
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Notes. The figure plots the smoothed average of the number of eggs per hen collected by the worker over
the grams of food per hen distributed in the day, together with its 95% confidence interval. It also plots a
kinked linear approximation of the production function. The values of amount of food at the kink (113.25g)
is chosen in order to maximize the R2 of a kinked regression of number of eggs per hen over the amount
of food distributed.
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Figure A.2: Actual and Counterfactual Output and Revenues
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Notes. The top figure shows the predicted smoothed average of the total number of eggs collected,
and its counterfactual in a simulated environment with no learning. The bottom figure shows the
predicted and counterfactual amount of revenues per day. The procedure to construct these counter-
factuals is described in Section 5 and Online Appendix A.2. The first two vertical lines indicate the
period of announcement and implementation of the incentive change respectively, while the third one
corresponds to the last period in which learning occurs according to the results depicted in Figure 3.
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Figure A.3: Actual and Counterfactual Food Choice and Wages
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Notes. The top figure shows the actual smoothed average of the amount of food distributed by
workers, and its counterfactual in a simulated environment with no learning. The bottom figure shows
the predicted smoothed average of bonuses paid and its counterfactual. The procedure to construct
these counterfactuals is described in Section 5 and Online Appendix A.2. The first two vertical lines
indicate the period of announcement and implementation of the incentive change respectively, while
the third one corresponds to the last period in which learning occurs according to the results depicted
in Figure 3.
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Figure A.4: Distribution of Profit Gains
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Notes. The top figure shows the distribution of overall profit gains in the absence of learning. The
bottom figure shows the percentage change in profits over the adjustment period, between the date
of announcement of incentive change and the last period in which learning occurs according to
the results depicted in Figure 3. Predictions and counterfactuals are estimated with the procedure
described in Section 5 and Online Appendix A.2. Both distributions are obtained after a bootstrap
procedure of resampling with replacement in 200 repetitions.
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A.2 Counterfactual Estimation

In this section, we provide the full details of the counterfactual estimation procedure
summarized in Section 5.

In the first step, we implement the following regression specification

hibt = θi + ψb + δt + εibt (1)

where hibt is the amount of food per hen distributed by the worker at production unit i
who is assigned batch b on day t while θi, ψb and δt stand for production unit, batch,
and day fixed effects.

In the second step, we use the estimated residuals from the first step to derive the average
residual of food distributed per hen in the periods before the announcement of the new
contract, the one during which learning occurs, and the one after. The length of the
second period is informed by Figure 3 and given by those two-week intervals in which
the estimated coefficient capturing knowledge spillovers is positive and significant. The
date of the implementation of the new contract, which we label as T , falls within this
second period.

Specifically, let ¯̂εB be the average of ε̂ibt in the period before the announcement of the
new contract, ¯̂εD be the average in the period during which learning occurs, and ¯̂εA be
the average in last period after that.

In the third step, we use these averages to re-center the distribution of residuals. That
is, we obtain counterfactual residuals ε̃ibt as

ε̃ibt = ε̂ibt − ¯̂εD + ¯̂εB if t < T

ε̃ibt = ε̂ibt − ¯̂εD + ¯̂εA if t ≥ T
(2)

Finally, we add to these counterfactual residuals the fixed effects estimated in the first
step and obtain the counterfactual choice of food distributed per hen h̃ibt as given by

h̃ibt = θ̂i + ψ̂b + δ̂t + ε̃ibt (3)

from which we can derive the counterfactual total amount of food ãibt distributed by the
worker, i.e. ãibt = h̃ibtnibt where nibt is the number of assigned hens.

Upon obtaining the counterfactual amount of food distributed, we can derive counter-
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factual output, revenues, food costs, and bonuses paid to the workers. Consistent with
Section 4, Figure A.1 and the specification in equation 1 above, we implement the fol-
lowing kinked regression specification

yibt = β hibt × I {hibt < H}+ γ hibt × I {hibt ≥ H}+ ωi + λb + φt + εibt (4)

where yibt is the number of eggs per hen distributed by the worker at production unit
i who is assigned batch b on day t. hibt is the amount of food per hen distributed
by the worker, and H is the kink value, equal to 113.25g. ωi, λb and φt stand for
production unit, batch, and day fixed effects. We use the estimated coefficients and the
counterfactual food per hen to obtain counterfactual output ỹibt, i.e.

ỹibt = β̂ h̃ibt × I {hibt < H}+ γ̂ h̃ibt × I {hibt ≥ H}+ ω̂i + λ̂b + φ̂t (5)

Upon obtaining counterfactual output, we use information on output prices that the firm
made available to us to calculate actual and counterfactual revenues, i.e. ribt = pyibt

and r̃ibt = pỹibt where p is the price per egg. Similarly, we use the information on food
price to calculate actual and counterfactual food costs, i.e. cibt = qaibt and c̃ibt = qãibt

where q is the unit price of food. We also use the actual compensation formula before
and after the contract change to calculate actual and counterfactual bonuses paid to
employees, equal to b(yibt, aibt) = αyit + (1−α)ait and b̃(ỹibt, ãibt) = αỹit + (1−α)ãit

respectively with α = 1/2 before the change, and α = 1 after the change. Finally,
we combine all this information to calculate actual and counterfactual profits πt =∑

i

∑
b (ribt − cibt − bibt) and π̃t =

∑
i

∑
b

(
r̃ibt − c̃ibt − b̃ibt

)
respectively.

To get a sense of the uncertainty surrounding these estimates, we implement a bootstrap-
type procedure sampling with replacement from the full dataset and repeating all steps
described above 200 times. Online Appendix Table A.2 shows the results from this
exercise for each of the variables we use to calculate profits, with standard deviations in
parenthesis.
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