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Non-Technical Summary

In the context of the COVID-19 global pandemic, the need for real-time high-frequency
indicators to understand the evolution of the economy has become paramount. Particularly,
the heightened uncertainty and continuously changing economic and social conditions, along
with the global nature of this crisis, requires the development of such an indicator for global
economic activity. This is particularly useful for policy-makers, economic agents and the
general public in order to perform optimal decisions that contribute to a faster recovery. In
this paper, we present the GEA Tracker, a real-time indicator for global economic activity in
daily frequency that uses only a minimum amount of information which is publicly available.

Existing measures of global business conditions contain a number of caveats. Some of
them present serious publication delays, and most of them are biased to capture the activity
in advanced economies, where the information is more reliable. This under-representation of
emerging economies hampers the accuracy and performance of these indicators. A strand of
the literature overcomes these issues by focusing on commodity prices, which are timely and
publicly available and mostly reflect expectations of firms for future production. Nonetheless,
these indicators are very noisy, some of them clearly do not reflect movements in economic
activity and more dangerously, their idiosyncratic component is cross-correlated, all of which
makes the selection of commodities to build such an indicator a central issue.

In this paper, we present a novel procedure to select the relevant set of commodity price
series. We consider a total of 47 commodities, including metals, energy, raw materials and
agricultural products. A genetic algorithm is implemented to objectively select the best
combination of commodities to proxy global business conditions.

We find that a global economic activity indicator based on commodity prices is significantly
more accurate when these are carefully selected. Mainly, a simple combination of selected
metals and energy prices provides the best proxy for global business conditions, while the
inclusion of all commodities undercuts the accuracy of the indicator. This is particularly due
to the incorporation of agricultural products, which are highly volatile and cross-correlated,
with a majority of changes unrelated to the global economy.

We build the GEA Tracker using only information that would have been available at each
point in time. We find that our algorithm can properly adapt to a shift in the structure of the
economy or in technology by changing the pool of selected commodities. With this real-time
point of view, the GEA Tracker proves to be highly accurate in signaling periods of recession
or expansion in the global economy.

Additionally, the GEA Tracker has desirable forecasting properties. It significantly
improves the predictability of global business conditions with respect to benchmark models,
particularly for the manufacturing sector. Moreover, we find significant predictability of stock
returns of emerging markets, and show that an investor would have inexorably profited from
using the forecasts provided by the GEA Tracker to weight his/her portfolio.

Finally, we show daily real-time estimates of the GEA Tracker which provides a close-up
of the evolution of global economic activity during the COVID-19 pandemic.
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1. Introduction

After the declaration by the World Health Organization (WHO) on March 11th, 2020 of
the COVID-19 as a global pandemic, governments began implementing a series of mobility
restrictions with the purpose of slowing down the contagion. The harshness of these restrictions
brought global economic activity to its largest slowdown since the Great Depression of 1929.
As the first wave of the pandemic passed, how deep the economy would fall or how the
recovery would look like became a main point of interest. Today, as the second wave of
COVID-19 hits the world and the distribution of a vaccine remains months away, there is a
prevailing degree of uncertainty and continuously changing conditions. There exists, hence,
a paramount need for closely monitoring the evolution of global economic activity which
would allow policy-makers and economic agents to perform the decisions that enable a faster
recovery. With this need in mind, in this paper we develop the GEA Tracker, a high-frequency
indicator of global economic activity that is publicly available and estimated in real time.

Existing measurements of global economic activity vary greatly within the literature. The
most natural approach has been to use world gross domestic product (GDP) or industrial
production (e.g. Manescu and Van Robays, 2016; Herrera and Rangaraju, 2019). Also, e.g.,
Cooper and Priestley (2013) estimate the global business cycle using a capital-to-output ratio.
However, these measures contain several caveats that will be discussed later, a main one being
that they are published with a significant delay which make them invalid to address world
economic conditions in real time.

A different approach has been to extract the information present in the fluctuations of
commodity markets. This approach is interesting because global economic activity determines
the aggregate demand for all industrial commodities and, therefore, this demand can be used
as a proxy for global economic activity. For example, Ravazzolo and Vespignani (2017), put
forward the use of world steel production as a monthly indicator for global real economic
activity. This measure, however, is subject to idiosyncratic shocks in the steel industry for
which a different proposal is to aggregate information on numerous commodity markets. This
is done for the Kilian (2009) index, a widely used indicator in the literature that is based on
ocean freight rates for the transportation of industrial commodities. However, the raw data
used to construct this indicator is not publicly available and it also suffers from publication
delays.

Alternatively, one can simply observe the co-movement of commodity prices, using a factor
model. Delle Chiaie et al. (2017) and Alquist et al. (2019) show that the common factor
of commodity prices serves as a proxy for global economic activity. This has the advantage
that commodity prices consist in readily and publicly available data. Moreover, commodity
demand reflects the expectations of firms for future production, which causes it to lead global
business conditions. This should prove particularly useful not only in signaling but also in
forecasting global economic activity.

Nevertheless, Kilian and Zhou (2018) state that the choice of the commodity prices that
are to be included in the estimation of a global economic activity indicator is central. In
fact, Alquist et al. (2019) discuss the issue of the selection of commodities when extracting
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a common factor to measure their aggregate demand. To solve this, they provide a set of
theoretical criteria for a commodity to be included in the estimation. Yet, as Kilian and Zhou
(2018) state, “how important imposing each of these constraints is in practice, remains an
open question at this point”. We provide an answer to this question by developing a novel
indicator of global economic activity where the set of commodity price series is carefully
selected.

In this sense, our paper is in line with Boivin and Ng (2006) who raise the concern that
“more is not always better”. This is motivated by the fact that when using more series to
extract factors, these become less useful for forecasting. This is shown to be true in practice
when the idiosyncratic errors do not satisfy the weak cross correlation condition. When
this condition does not hold, the idiosyncratic co-movements dominate the signal, making
the factor biased. It might therefore be the case that the common factor extracted from
all commodity prices assigns significantly more weight to, e.g., agricultural commodities,
which do not accurately indicate fluctuations in global economic activity, than it assigns to
energy and metals, which do. We show that this is the case. There is, thus, a concern of
including irrelevant commodity price series in the estimation of a factor model to identify
global commodity demand.

The optimal selection of commodities, though, poses a highly nonlinear optimization
problem with a large number of possible solutions. Bai and Ng (2008) address this issue by
examining the use of well-known methodologies for selection and shrinkage such as LASSO,
and Elastic Net, which are special cases of the Least Angle Regression (LARS). However,
as will be shown, these methodologies, while improving the accuracy of a global economic
activity indicator estimated through the selection of commodities, they are limited by the fact
that they search through the solution space of possible commodity sets in a highly restrictive
manner. We resolve this by alternatively implementing a genetic algorithm which efficiently
explores all the possible sets of commodity prices to find the one that generates the most
accurate measure of global economic activity. This selection is performed in real time with
the information available up to the end of each year.

We begin by estimating the GEA Tracker in a monthly frequency from 1960M1 to 2020M8.
This is done to provide a sufficiently long time series for the examination of the properties of
the indicator, including its ability to identify global business cycles and the accuracy of the
genetic algorithm of selecting only those commodities that are truly relevant to the global
economic structure.

Followingly, we test the validity of the GEA Tracker by using it to forecast the Global
Composite Purchasing Managers’ Index (PMI) and the Global Manufacturing PMI, as leading
indicators of international business conditions. We find that the GEA Tracker significantly
reduces the out-of-sample mean squared error of an autoregressive (AR) model and outperforms
alternative measures of global economic activity.

We then also perform an out-of-sample forecasting exercise for world, developed, and
emerging stock markets.1 We find significant stock return predictability in emerging markets

1There is evidence that financial markets incorporate changing global business conditions. (Bekaert and
Harvey, 1995, Imbs, 2006, Ang and Bekaert, 2007, Bekaert et al., 2011, Cooper and Priestley, 2013)
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when using the GEA Tracker, which reflects these countries’ dependency on commodities. We
also show that a mean-variance investor would have profited most from using our forecasts to
weight his/her portfolio.

Finally, once the properties of the GEA Tracker have been carefully examined, we proceed
to estimating it at a daily frequency from January 2nd, 2020 to September 15th, 2020. This
is done with the purpose of closely observing the evolution of global economic activity during
the COVID-19 global pandemic. We show that the evolution of the GEA Tracker closely
follows the reading of the main economic shocks provoked by the global pandemic.

The structure of the paper is as follows. Section 2 describes the estimation of the GEA
Tracker at a monthly frequency. Section 3 contains the estimation results and properties
of the GEA Tracker. Section 4 presents its forecasting properties. Section 5 describes the
estimation of the GEA Tracker at a daily frequency for year 2020, providing a close-up of the
evolution of global economic activity during the pandemic. Finally, section 6 concludes.

2. Estimation of a Global Economic Activity Tracker

2.1. The Model

Global economic activity is estimated through the following factor model:

pit = λift + eit ∀ i ∃ {1, . . . , ns} (1)

where pit is the log-level of the real price of commodity i at time t, λi is a loading factor,
ft is global economic activity, eit is the idiosyncratic component for commodity i, and ns is
the total number of selected commodities. Equation 1 states that, at a certain period, the
change in price of a commodity results from either a shift in the common factor ft or from
supply or demand shocks that pertain exclusively to the commodity. We estimate this model
using Principal Component Analysis (PCA). Prices are deflated using the U.S. consumer price
index (CPI), as proxy for World CPI.

Note that Equation 1 may have two important drawbacks. The first one is that we assume
that there are no dynamics in the evolution of ft or eit, which would allow to forecast the
evolution of global economic activity several periods ahead in time. Later in the text, in
section 3.4, we relax this assumption by introducing dynamics to both the common factor
ft and the idiosyncratic components eit, where a dynamic factor model (DFM) is estimated
using the Kalman filter rather than PCA. We will see that the gains in the estimation are
minor compared to the gains obtained from carefully analyzing the second drawback: the
selection of variables.

Certainly, the estimation of a DFM and the selection of commodities are not mutually
exclusive. However, attempting both approaches for such a large data set becomes too
computationally intensive, basically because of the difference in estimation time between
PCA and a fully dynamic factor model using the Kalman filter. We, therefore, focus on
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the selection of commodities. Once the best model is selected, we introduce dynamics in
section 3.4 to show the robustness of the results and to be able to forecast, if necessary, global
economic activity several periods ahead.

2.2. Selection of Commodity Prices

For the selection of commodities, we begin by choosing a benchmark global economic
activity indicator as reference for the aggregate demand of commodities, defined as ft in
Equation 1. We then set the genetic algorithm to look for the combination of commodities
whose co-movement best matches the fluctuations of this indicator.

Some macroeconomists lean towards the use of proxies for world real gross domestic product
(GDP) or measures of world industrial production (see, e.g, Manescu and Van Robays, 2016;
Herrera and Rangaraju, 2019). There are, however, many caveats with these measures, as
discussed in Kilian and Zhou (2018). For instance, in the case of real GDP, the percent
contribution of the service sector, which has no direct relation with the demand for commodities,
has steadily risen since the 1970s. Also, for the case of industrial production, its link with
global commodity markets may be weakened by changes in the stock of raw materials held by
governments and firms. In addition, the time series for these two indicators are too short, with
sample data for global real GDP starting in 1990Q1, and for the OECD + BRICS industrial
production indicator starting in 2006. Moreover, both real GDP and industrial production
constitute coincident indicators to the global business cycle, and therefore, by construction,
will be lagging the timing of shifts in the aggregate demand of commodities, which should
lead business conditions. They are also not available in real-time. More importantly, neither
provide appropriate weights to emerging countries, or they make use of inadequate data for
these economies.

An alternative well-established global economic activity indicator is the Kilian (2009)
index. This indicator is constructed using information on ocean freight rates for industrial
commodities, based on a long observed positive correlation between economic activity and
shipping rates. Not only is it constructed as far back as January 1968 but, unlike global real
GDP and world industrial production, it automatically accounts for shifting country weights,
changes in the composition of real output, and changes in technology and productivity. More
importantly, the Kilian index is a coincident indicator with respect to the volume of shipping
in global commodity markets and responds instantaneously to shifts in the aggregate demand
of commodities (Kilian and Zhou, 2018). Hence, it reflects expectations of firms for future
production, making it a leading indicator with respect to global output. The magnitude of
the fluctuations of commodity demand implied by this index are therefore more accurate than
those indicated by global GDP or industrial production.

A concern with the Kilian index is that the shipbuilding cycle accentuates upswings in
the index caused by commodity booms and exaggerates downswings caused by commodity
busts (Kilian and Zhou, 2018). However, in practice, the business cycle timings implied by
the Kilian index are consistent with historical anecdotal evidence of global expansions and
recessions. Concerns that the sustained decline of the Kilian index after 2010 may be due to
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excess capacity in global dry cargo shipping markets are discussed by Kilian and Zhou (2018),
who show that this reflects a genuine economic slowdown due to a sluggish growth of the
Chinese economy. We therefore set the Kilian index as the benchmark indicator to reference
the selection of commodity prices. Consequently, our novel indicator approximates these
business cycle timings while not being subject to changes in the shipbuilding cycle, because it
is constructed with commodity price data. Moreover, since the GEA Tracker incorporates
information both on commodity prices as well as ocean freight rates, it is therefore built as
the aggregate demand of the set of selected commodities that also reflects the shifts in the
demand of the maritime transportation of industrial commodities.

It is important to note, however, that we do not directly use the Kilian index for tracking
global economic activity given two reasons. One is that the primary data source for the
construction of this indicator is found in Drewry’s Shipping Consultants Ltd. which is not
publicly available. The other is that it only becomes available in the author’s personal
website with a publication delay; whereas, in the current context as well as in forecasting,
readily-available data is crucial. One approach is to extrapolate the Kilian indicator using the
Baltic Dry Index (BDI) as in Baumeister and Kilian (2014), which is a shipping and trade
index estimated by the Baltic Exchange that measures the changes in the cost of maritime
transportation of several raw materials, for given shipping paths, time of delivery, and speed.
We will later show that while this approach does improve the forecasting performance when
attempting to predict global business or financial conditions, it continues to be outperformed
by the GEA Tracker. This responds to the fact that the GEA Tracker is based on commodity
prices which constitute data that is readily-available and publicly accessible.

2.2.a. The Genetic Algorithm

The selection of commodities is performed through a genetic algorithm, which was first
made popular by Holland (1975). It is a method used for solving constrained and unconstrained
optimization problems based on biological evolution. Its population-based search technique
mimics the principle of natural selection laid by Charles Darwin.

The basic idea of this algorithm is that, in the same way a living organism is the result of
the combination of its genetic information, we can think of a possible GEA Tracker as the
result of the combination of the information it contains, which is the set of commodity price
series used to construct such indicator. Evolutionary theory states that, given a population,
the most fit individuals have the highest probability of reproducing and passing on their genetic
information to future generations. This is why, with time, a certain population maintains
and propagates strong genes (or combination of genes), while weaker genes eventually die out.
Similarly, the genetic algorithm we design works by generating a population of possible GEA
Trackers, each containing different genetic information (different combinations of commodity
price series used in its estimation). Each GEA Tracker is then evaluated against the benchmark
indicator to determine its fitness. More fit indicators are given a higher probability of passing
on their genetic information to future generations. New populations are then iteratively
created. Holland (1975) showed that genetic algorithms could be applied to highly complex
and nonlinear optimization problems such as ours. He proved that after enough iterations,
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the genetic information will converge to the optimal solution.
Here, we provide a brief overview of the genetic algorithm for the selection of commodities.

A detailed explanation can be found in Appendix A.
In our application, we have a total of n = 47 commodity price series. We therefore

have a data set of size T × n, where T is the sample size. We define an individual (or
potential solution) Aj as a genome of n binary genes aij, which can take the value of 0 or 1,
∀ i ∃ {1, . . . , n}.

Aj = (a1j, a2j, ..., anj) (2)

where aij is assigned the value of 1 if commodity i is included in the estimation of the
indicator, and 0, if it is not. This implies that for individual Aj the original data set of size
T × n is reduced by eliminating all columns i, where aij = 0. The resulting data set is then
used to estimate Equation 1, where the common factor ft is identified as fjt for individual
Aj.2

The objective is then to find the optimal individual A∗ that maximizes the R2 statistic
when performing the following regression:

f ∗t = µ+ βfjt + εt (3)

where f ∗t is the Kilian index.
We start the algorithm by generating a random initial population where each individual is

assigned a fitness value defined as the R2 resulting from Equation 3. Once all fitness values
are estimated, these are turned into probabilities through an operation known as scaling. This
allows for individuals to be stochastically chosen through a selection operator, to be part of
the reproduction process, where a new set of individuals, called children, will be created. The
most fit individuals have a higher probability of being selected, and those who are selected
are called parents.

The reproduction process consists in performing two operations: crossover and mutation.
Crossover reproduction combines the genetic information from a pair of parents, generating
two new individuals from each pair. This operation allows the genetic algorithm to explore
the search space of possible solutions. Mutation, on the other hand, is applied to a single
parent by altering its genes with a small probability. This is done to provide diversity to the
population and avoid premature convergence to a local solution.

Additionally, we set our genetic algorithm to be elitist, which means that a small group of
elite individuals are ensured survival to the next generation. This guarantees that the most
fit members are maintained throughout the evolution process.

Finally, the individuals resulting from crossover, mutation and elitism substitute the
existing population, forming a new generation. The entire process is then repeated by
estimating the fitness values of the new individuals and again applying the scaling, selection,

2Note that because each gene has two possible values, we have a set of potential solutions of size 2n

individuals. This totals to 1.47× 1014 combinations. The evaluation of such a large set, nevertheless, is made
computationally viable by the genetic algorithm.
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crossover, mutation and elitism operators. This is done throughout several generations until
the population converges to an optimal solution or a stopping criterion is met.

2.2.b. LASSO: An Alternative Method for the Selection of Commodities

One could consider alternative methods for the selection of commodities. LASSO, for
example, is widely used in the literature for selection and shrinkage. Particularly, in Bai and
Ng (2008), the authors evaluate the performance of LASSO, Elastic Net and Least Angle
Regression for the selection of series in a factor model. As the authors state, both LASSO
and Elastic Net are merely special cases of Least Angle Regression, and we will therefore, for
simplicity, only consider LASSO.

Accordingly, we also estimate Equation 1 by selecting the pool of commodities using
LASSO selection.

LASSO provides a ranking of the series according to its predictive power for the targeted
variable. Principal components is then estimated using the first three series in the ranking
to obtain the first potential global economic activity indicator. The pool of commodities is
expanded to include the following series in the ranking, generating a new possible indicator
in each iteration. Then, as in Bai and Ng (2008), we use the BIC criteria, resulting from
equation 3, to select the factor.

In sections 3 and 4, the properties of the indicator estimated using LASSO will be compared
to that of the GEA Tracker.

2.2.c. Data Set of Commodity Prices

We use monthly data for commodity prices spanned between January 1960 and August
2020, available from the World Bank. We only consider those commodities for which data is
available for the full sample.3 However, because the total of 47 commodities implies a rather
large number of possible solutions, we assist the genetic algorithm in finding the optimal
combination by first reducing it to a subset of commodities which contains only metals and
energy, and then extending it until the full set of commodities is considered. We do this
because it is reasonable to expect that metals and energy, as they constitute main inputs
intensively used in industrial production processes, will be more highly correlated with global
economic activity than other industrial commodities (e.g., fertilizers, raw materials, fats and
oils) or than agricultural commodities.

The data set of the World Bank contains the following types of commodities: energy,
beverages, fats and oils, grains, other foods, raw materials, fertilizers, metals and minerals,
and precious metals. For our application, we define the following subsets:

ΩM ⊆ ΩI ⊆ Ω (4)

where ΩM includes the commodities that we denote as Metals & Energy and is a subset
of all industrial commodities, ΩI . Then, both ΩM and ΩI are subsets of Ω, which includes all

3For the case of crude oil, we include the price series estimated by the World Bank as the average between
Brent crude, WTI crude and Dubai crude.
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47 commodities. This classification can be seen in further detail in Figure 1.

< Insert Figure 1 about here >

The genetic algorithm is set to first select the optimal combination of commodities from
ΩM which contains a total of 13 price series (Figure 1). Once the genetic algorithm has
selected the optimal combination of commodities within subset ΩM (which we denote A∗M),
we run it again for subset ΩI , but by first seeding the initial population with individual A∗M .
This is done by setting one of the individuals of the initial population equal to A∗M . The
remaining initial population is generated randomly from a uniform distribution, as described
earlier. Note that, because our genetic algorithm is elitist, it will search the solution space
for a combination of industrial commodities that performs better than A∗M ; otherwise, the
selected combination A∗I will be set to A∗I = A∗M . Finally, we run the genetic algorithm for
the full set Ω, in order to find the optimal combination of all commodities, A∗, for which we
seed the initial population with A∗I .4

With this procedure, we generate three GEA Trackers through the selection of commodities
among the sets of metals and energy (ΩM), industrial commodities (ΩI) and all commodities
(Ω). These are denoted GEA Tracker Metals & Energy, GEA Tracker Industrial and GEA
Tracker, respectively. For completeness, we keep all three indicators for evaluation and
comparison. This will allow us to determine if there are any significant gains from including
industrial commodities, other than metals and energy, or agricultural commodities in the
estimation of a global economic activity indicator. We also add a fourth indicator, for
comparison, which is generated by estimating the model described in Equation 1, but with no
selection at all; that is, where aij = 1 ∀ i ∃ {1, ..., n}.

2.3. Recursive Estimation of the Indicator

It is important to note, that to ensure that, for the spanned sample, on would have been
able to construct this indicator in real time, we use only information available at each point
in time to not only assign the weights to commodity prices in the estimation of the GEA
Tracker, but to perform the selection as well.

This implies that, at any time t, our GEA Tracker, ft, is constructed with the last subset
of commodities that has been selected by the genetic algorithm as the optimal combination,
given by A∗t . Note that A∗t is generated by the genetic algorithm using a set of information
available at time t, which we denote as It. In this sense ft can be defined as a function of
(A∗t | It). However, because there is data available for all commodity price series before time
t, one might be tempted to use this same combination of commodities A∗t to estimate the
GEA Tracker at any time t− h. However, h periods before, we did not have the information,
It, that allowed us to determine the optimal combination of commodities, A∗t . If that were
the case, we would define ft−h(A∗t | It), where the GEA Tracker at time t − h would be

4Also, at any time t we define our set Ω to include all commodities that have a positive historical correlation
with our benchmark indicator yt. This is done in order to include only commodities that are pro-cyclical.
Such is the case for all metals and energy.
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estimated with information that only becomes available in the future, h periods ahead. To
avoid this, we perform the selection of commodities recursively and, therefore, create the
series {f1(A∗1 | I1), . . . , fT (A∗T | IT )}.

We do this by beginning the exercise in 1979M12. Later, every year, we update the
selection, A∗t , from December of 1980 to December of 2019.5 Also, because we consider a three
month publication delay of the Kilian index, the last three months of data are extrapolated
by regressing the benchmark indicator on the BDI, once it becomes available in 1985. For all
previous years, the genetic algorithm is implemented by obtaining the fitness values from the
regression of the Kilian index over the estimated indicators up to September of each year.
The pool of selected commodities is then kept during each following year and PCA is used,
for the following twelve months, to estimate the weights given to each commodity price series
at a monthly frequency.

3. Estimation Results and Properties of the GEA Tracker

3.1. Explained Variance of the Benchmark Indicator

Figure 2 shows all estimated indicators along with the benchmark Kilian index, where the
value of each indicator at any time t, ft(A∗t | It), corresponds to the most recent estimate, for
each case. Note that even though the pool of commodities selected for estimation changes
over time, the value of the indicator remains comparable from one period to the next because
data is standardized in order to perform PCA.

< Insert Figure 2 about here >

As can be seen in Figure 2, the indicators estimated with the selection of commodities
present fluctuations that match those of the Kilian index more closely than an indicator
estimated using all commodity price series. However, in order to carefully measure the gains of
variable selection, we estimate the variance explained of the Kilian index at each period t, by
each of the five proposed global economic activity indicators. The nature of this comparison
is the following: in each period t, the selection algorithm produces an optimal combination of
variables, which, through principal components, results in a time series from the first period
up to period t, f(A∗t | It). This proposed ‘optimal’ vintage in each period of time is then used
as an explanatory variable for Kilian’s index. Figure 3 then shows the explained variance of
the benchmark indicator by each proposed indicator at time t.

< Insert Figure 3 about here >

As can be seen in Figure 3, the selection of commodities in the estimation of a global
economic activity indicator largely increases the explained variance of the Kilian index with

5The selection of commodities could also be performed every month. However, the estimation would
become too computationally intensive. The basket of commodities is then selected only once a year for
parsimony.
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respect to an indicator generated with no selection at all. The GEA Tracker with selection
using the genetic algorithm explains around 50% of the variance of the Kilian index, while
the model with no selection barely explains around 10% of the variance on average. Results
then support that there is a gain in selecting variables prior to applying principal components,
which rebuts the idea of “more is always better” that has been standard in many factor-model
analyses in the literature.

Particularly, one can even observe a gain in explained variance when estimating the global
economic activity indicator through the selection of variables using LASSO. This gain, however
is not nearly as high as that obtained using the genetic algorithm. Results show, that with a
smaller sample, using no selection even outperforms the selection through LASSO. As the
sample increases, nonetheless, LASSO selection shows a learning ability, and therefore begins
to outperform the indicator generated with no selection. This provides further proof of the
importance of variable selection. Nevertheless, the selection of commodities using the genetic
algorithm is clearly more adequate.

Additionally, one can observe that the gain that is obtained from extending the pool of
commodities to include raw industrial materials, fertilizer and agricultural products, even
when performing selection with the genetic algorithm, is minimum. This is particularly true
starting 2005, when the commodity boom started, and remains true through to the end of
the sample. This provides evidence that although agricultural products may have helped
in signaling fluctuations in global economic activity in the first part of the sample, it is no
longer true for the last part. Also, although for the years previous to the commodity boom,
the genetic algorithm incorporates agricultural products in the estimation of the indicator,
this only marginally contributes to achieving a higher explained variance of the benchmark
indicator. Most explained variance, in the entire sample, is then due to the estimation of a
common factor between selected metals and energy.

Furthermore, because the selection of commodities is done once a year and kept every month
within that year, a sharp change in the price of one of the selected commodities significantly
alters the values of the indicator. This generates a special concern over agricultural products
which have high variances and, therefore, large price shifts that are mainly idiosyncratic.
This explains the drop in performance that is observed in the early and late 1980s and mid
1990s of the indicators estimated by the selection within ΩI and Ω below the one estimated
through the selection of only metals and energy, ΩM . As the sample enlarges, and the genetic
algorithm therefore counts on more information, the selected commodities within the full set
Ω correspond mainly to those selected amongst metals and energy.

An interesting observation is the drop in correlation of all estimated indicators with the
benchmark index in 2005. At this moment, global economic activity was characterized by
the commodity boom, an increase in the price of physical commodities mainly driven by the
rising demand from emerging markets such as the BRIICS6 countries, particularly China and
India. This commodity boom started in January 2001 and continued until June 2008, when
commodity prices crashed due to the Great Financial Crisis. This phenomenon is signaled by

6Brazil, Russia, India, Indonesia, China and South Africa.
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the Kilian index and all proposed indicators with an upward trend during this period (Figure
2). However, the Kilian index also signals a relative drop in global economic activity from
December 2004 to August 2005, which does not coincide with anecdotal evidence at the time.7

The reason for this can be found in events in the ocean freight markets that year. As reported
by UNCTAD (2006), although the seaborne shipments of the main bulks, particularly iron ore
and coal, increased by 7.2 percent in 2005; the balance between supply and demand for both
time and trip charters resulted in lower freight rates. In fact, the drop on the average annual
index of rates of time and trip charters reported was of 20.0 and 12.2 percent, respectively.
The downward turn in 2005 then reflected in the Kilian index reduces the correlation with
commodity-price based indicators, which continue to estimate an upward trend in 2005 as
they are not affected by events in the ship-building cycle.

Furthermore, the decrease in correlation between our GEA Tracker and the benchmark
index after 2011 is explained by unprofitable levels of freight rates for ship owners from
2011 to 2015. At this time, ship owners had invested in large capacity ships which, as
global economic conditions weakened due to the slowdown in Chinese growth, generated a
vessel oversupply and increased volatility in ocean freight rates (see UNCTAD, 2016). The
ship-building cycle then caused the Kilian index to magnify the drop in global economic
activity and introduce higher volatility to its estimations. Alternatively, while this drop is
also evidenced by commodity price behavior and identified by our GEA Tracker, it is done
with a much smoother and less volatile downward trend.

3.2. Business Cycle Identification

We now examine the accuracy with which the GEA Tracker identifies global business
cycles. Figure 4 shows the NBER dated recessions for the United States along with the Kilian
index and the GEA Tracker, Metals & Energy. As we can observe, they both coincide with
anecdotal evidence concerning expansions and recessions and provide evidence of a slowdown
in global economic activity in the last few years of the sample.

< Insert Figure 4 about here >

Both the Kilian index and the GEA Tracker effectively capture the second recession of
the 1970s, caused by the oil embargo of the OPEC and the fall of the Bretton Woods system;
the crisis of the early 2000s, which has been attributed to the dot-com bubble; and the great
financial crisis in 2008. They also both provide evidence of the slowdown from 2011 to 2016
due to sluggish Chinese growth.

Also note that, for the first recession in the 1970s, the GEA Tracker better coincides
with the NBER dates. Additionally, in the double dip recession of the 80s, the Kilian index
correctly captures the second dip of the economy by signaling a downward trend since the
start of 1981. However, the GEA Tracker also signals a drop in global economic activity since
February of 1980, effectively capturing the downturn during both periods. More importantly,
there is a more visible downward trend by the GEA Tracker during the recession in 1990.

7World output grew by 3.6 percent in 2005.
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This is because the ratio of freight rates to most commodity prices increased in 1990 with
respect to 1989 (UNCTAD, 1990). This was reported to be due to high shipping insurance
costs and anti-competitive shipping practices.

Finally, we do not observe any false signals of recessions given by the GEA Tracker. Any
significant downturns seem to coincide with known recessions or slowdowns of the global
economy. Overall, the GEA Tracker removes some of the contamination in the Kilian index
caused by events in the supply side of the freight rate industry and provides a robust measure
of the global business cycle.

3.3. Selection of Commodities Relevant to the Global Economy

It is important to note here that the genetic algorithm prompts us to select only those
commodities that are truly relevant for global economic activity, diminishing to the minimum
the amount of noise in the system. To observe this, we estimate the aggregated weights given
by each indicator and at each point in time to every commodity type, defined in the following
way:

λM =
∑
i

λi ∀ i ∃ ΩM (5)

λI =
∑
i

λi ∀ i ∃ (ΩI − ΩM) (6)

λA =
∑
i

λi ∀ i ∃ (Ω− ΩI) (7)

where λM , λI , and λA are the aggregated weights assigned to metals and energy, other in-
dustrial commodities (e.g., fertilizers, raw materials, fats and oils) or agricultural commodities,
respectively, and λi is defined as in Equation 1.

For comparison, we examine the respective weights assigned when there is no selection
and ft is merely obtained by estimating Equation 1 through PCA on all commodity price
series; when the selection is performed using LASSO, as well as when the genetic algorithm is
implemented to perform the careful selection of commodity prices to estimate Equation 1.
Figure 5 shows the results.

< Insert Figure 5 about here >

We can observe in panel A that when all commodities are included in estimating a global
economic activity indicator through principal components with no selection, information on
agricultural products, raw materials, fertilizers, fats and oils dominates in the factor model.
Moreover, the system does not learn over time that agricultural products might be noisy
and continues to add signals that are misleading with respect to the evolution of global
economic activity. However, in panels B and C we can observe how both LASSO as well as
the genetic algorithm learn over time with the input of more information. They both decrease
the importance of agricultural products while giving more weight to metals and energy. This
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becomes even more clear during the commodity boom. Nonetheless, it is clear that the genetic
algorithm not only has a significantly higher learning ability, but proves to be more stable
and less noisy.

Additionally, we examine the weights, λi, given to each individual commodity i selected
by the genetic algorithm from the full set, Ω.8 This is shown in Figure 6. We only show the
commodities that are included in the estimation of the indicator at any point of the sample.
All other commodities are always given a weight of zero.

< Insert Figure 6 about here >

Figure 6 shows that raw materials and agricultural commodities are selected by the genetic
algorithm only sporadically, and none are kept for long periods of time or given large weights.
The fact remains that the common factor amongst selected metal and energy commodities
best signals fluctuations in global economic activity.

One particular commodity that stands out is platinum. The price series of this commodity
is selected by the genetic algorithm throughout the entire sample, and it is given an even
larger weight in the estimation of the indicator starting 2005. Platinum is a precious metal
with unique physical and catalytic properties and is used primarily by manufacturers of the
automobile, electronics and jewelry industries. For the automobile sector, it is central in
reducing vehicle carbon dioxide emissions while in electronics it increases the media storage
capacity of laptops and servers. Furthermore, platinum catalysts increase yields in chemical
processes, increasing efficiency in industrial production. Additionally, it also has applications
in biomedical technology and optics.

Other metals that prove noteworthy are copper and zinc, which are given a large weight
in the years before the commodity boom. Copper is a very ductile and malleable metal
and is a very good conductor of electricity. It is also relatively inexpensive. However, there
has been a gradual substitution of copper for aluminum. Whereas major applications of
copper are electrical wire, roofing and plumbing, and industrial machinery; aluminum has
been mostly used in transportation, packaging, and household items. However, by mid
2000s, the relative price ratio between copper and aluminum began to increase, causing a
faster rate of substitution between the commodities, as technological advances were made to
allow for further usage of aluminum. Developments in aluminum wiring that compensate for
lower conductivity and flexibility and allow for more efficient and less corrosive conductors,
have driven major power companies to make the switch from copper to aluminum. There
is now more scope to replace copper in power grid cables, auto wiring, air conditioning and
refrigeration systems. This has also had its effect in the automotive industry, as aluminum
replaces copper as a conductor in on-board power systems. By ends of the sample, the genetic
algorithm therefore no longer incorporates the price of copper in the estimation of the GEA
Tracker and begins to incorporate the price of aluminum.

8We also have the results of the weights given to commodities when selection is performed solely in sets
ΩM and ΩI . However, we only include the results from set Ω for simplicity. Weights given to commodities are
similar in all three cases. Full results are available upon request.
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In the case of zinc, one of its most important qualities is its natural capacity to protect
steel from corrosion. Zinc coatings provide a physical barrier and cathodic protection to
the underlying steel. 60 percent of all zinc is destined to steel protection, which is then
used for construction, infrastructure, automobiles and machinery. However, the price of zinc
is not only driven by global economic activity, but also by changes in inventories of firms,
governments and investors. Indeed, when a U.S. stockpile of zinc for national defense was
authorized for disposal in 2005, demand for zinc fell significantly both in the U.S. and Europe.
Nickel, on the other hand, which also constitutes one of the main inputs in the production
of steel, gained great interest in light of the commodity boom. In fact, this commodity is
considered of great economic and strategic importance to many countries, as it is used in a
wide variety of industries: mobile phones, food preparation equipment, transport, buildings,
power generation, etc. Nickel based alloys are also used for gas turbines, chemical plants,
electronics, coinage and marine engineering. Our genetic algorithm, then substituted the
price of zinc for the price of nickel in 2005, all in all keeping at least one major input for steel
production in the estimation of the GEA Tracker.

Furthermore, natural gas has also become an important commodity in the two past
decades. It is extensively used to heat homes and generate electricity, and has commercial
and industrial applications, while emitting far less carbon dioxide than fossil fuels. Growing
concern for environmental issues and technological advancements in natural gas production
and distribution, makes it an important commodity to include in the estimation of the GEA
Tracker as an indicator of energy consumption. This is done by the genetic algorithm starting
in 2006.

On this note, one might find interesting that crude oil is not given any significant weight
in estimating global economic activity. The use of the price of crude oil would have been
problematic due to large idiosyncratic shocks from the beginning of the sample up to early
1990s where OPEC and political disturbances greatly determined the price of oil. All in all,
our selection procedure proves to successfully discriminate among commodity prices that truly
signal global economic fluctuations at any point in time.

3.4. Selection versus Dynamics

So far, we have used a static factor model, described in Equation 1, to estimate the GEA
Tracker, without taking into account any dynamics in the factor. Because global economic
activity can be assumed to have a smooth behavior, a DFM has been considered in the
literature for constructing such an indicator. Delle Chiaie et al. (2017), e.g., estimate a DFM
with a block structure to identify a global factor, block-specific components related to specific
commodity markets, and purely idiosyncratic shocks. They do not, however, consider variable
selection.

Therefore, to estimate the gains of carefully analyzing the variable selection with respect to
the gains of estimating a fully dynamic factor model, we relax the assumption of no dynamics
on the common factor and idiosyncratic shocks. To do so, we extend the model in Equation 1
with the following two equations:
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ft = ϕ1ft−1 + · · ·+ ϕpft−p + ωt ωt ∼ iid N(0, σ2
ω) (8)

et = ψ1et−1 + · · ·+ ψpet−p + εt εt ∼ iid N(0, σ2
ε) (9)

which describe the dynamics of the common factor ft and the idiosyncratic terms eit,
respectively.

However, the large number of parameters implied by a DFM requires the use of an
algorithm, such as the expectation maximization (EM) algorithm proposed by Doz et al.
(2011). Note that within the genetic algorithm, this requires for the EM algorithm to be
implemented for every single individual to obtain its fitness value, which would have been too
computationally intensive.

We therefore simply estimate the GEA Tracker using a DFM for the full sample, in which
we use the last selected pool of commodities (natural gas, nickel and platinum). We also
estimate a DFM for the case of no selection. We then compare the indicators resulting from
the following estimations: (1) static factor model with selection, (2) dynamic factor model
with selection, (3) static factor model with no selection, (4) dynamic factor model with no
selection. Figure 7 shows the resulting indicators.

< Insert Figure 7 about here >

As can be observed in Figure 7, there is little difference between indicators estimated
through a static factor model and a dynamic factor model. There are, however, large differences
between the indicators that perform the selection of variables as opposed to those that do
not. Altogether, results show that the consideration of dynamics in the factor model is not
nearly as important as the selection of variables in the estimation of a global economic activity
indicator.

We would also expect no large differences in the resulting pools of commodities selected
by a genetic algorithm at each point in time if we had considered a DFM from the start.

4. Forecasting Properties of the GEA Tracker

We now examine the forecasting properties of the GEA Tracker on economic and financial
variables.

A highly desirable property of a global economic activity indicator is its ability to forecast
global business conditions. If the GEA Tracker is a good indicator of activity, it should be
useful for forecasters to predict changes in world business conditions. Therefore, to test the
forecasting performance of the GEA Tracker, we select the global PMI index as a target
variable. Not only is the PMI one of the most reliable leading indicators for assessing the
state of the economy but, because it is based on the views of purchasing managers, it provides
information on current and future business conditions.
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Additionally, with respect to financial markets, we examine the ability of the GEA Tracker
to forecast international stock returns, which is the most used variable to describe global
financial conditions.

4.1. Forecasting the Purchasing Managers’ Index

The PMI is an indicator of economic health for manufacturing and service sectors. The
purpose of the index is to provide information about current business conditions to firms
and analysts. It is released monthly by the Institute for Supply Management and is based
in five major survey areas (new orders, inventory levels, production, supplier deliveries and
employment) with questions on whether business conditions will be improving, deteriorating
or remaining equal. We use the estimated global economic activity indicators to forecast the
Global Composite PMI and the Global Manufacturing PMI.

One caveat in performing this exercise is that the Global Composite PMI and the Global
Manufacturing PMI are only available starting July 1998 and January 1999, respectively,
providing a rather short sample for the forecasting exercise. We solve this by extending both
indices with the United States PMI, which is available since January 1960. We refer to these
extended time series as the Extended Global PMI and the Extended Global Manufacturing
PMI.

The exercise is performed for the sample spanned from 2003M1 to 2020M8. To simulate
the situation of a real forecaster, only data available before 2003M1 is used for an in-sample
estimation of parameters, which is then updated recursively each period as new information is
obtained for an out-of-sample estimation. Numerous researchers have stressed the importance
of out-of-sample forecasting (Rapach et al., 2010; among others), particularly to avoid the
data mining that might result from in-sample estimations.

We use the following predictive regression to generate the forecasts:

∆yt+1 = α + β1∆yt + β2∆ft + ξt+1 ξt ∼ N(0, σ2) (10)

where ∆yt+1 is the predicted change in the PMI index for time t + 1, α is a constant,
∆ft is the change in the global economic activity indicator at time t, and ξt+1 is an error
term that belongs to a normal distribution with zero mean and variance σ2. The forecasting
performance of this model is then compared to a benchmark AR(1) model, where the forecast
for the change in the PMI is given by

∆yt+1 = α + β1∆yt + ξt+1 ξt ∼ N(0, σ2) (11)

For global economic activity, ft, we consider the following indicators: the Kilian index, the
common factor of all commodity prices estimated with no selection, the indicator estimated
using LASSO selection, and the three GEA Trackers, recursively estimated with a genetic
algorithm to select commodities among ΩM , ΩI , and Ω. For the Kilian index we consider
a 3-month publication delay. We also consider the approach proposed by Baumeister and
Kilian (2014) to update the Kilian index using the BDI, and refer to this as the updated
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Kilian index.
The forecasting performance of each model is evaluated by the out-of-sample R2 statistic,

R2
OS, suggested by Campbell and Thompson (2008) to compare the ∆̂yt+1 and ∆yt+1 forecasts

at a 1-month horizon, where ∆̂yt+1 is a forecast based on the predictive model described by
Equation 10 and ∆yt+1 is a forecast based on the benchmark model described by Equation
11. Followingly, the R2

OS statistic is given by

R2
OS = 1−

∑T−1
t=to−1 (∆yt+1 − ∆̂yt+1)2∑T−1
t=to−1(∆yt+1 −∆yt+1)2 (12)

where ∆yt+1 is the realized change in the PMI index, to is the start of the forecasting
sample (2003M1) and T is the end of the sample (2020M8). Consequently, the R2

OS measures
the reduction in Mean Squared Prediction Error (MSPE) for the predictive regression model
relative to the benchmark model, in percentage terms. Thus, notice that when R2

OS > 0, the
∆̂yt+1 forecasts outperforms the benchmark forecasts ∆yt+1.

We then examine whether the results are statistically significant. To do so, we test against
the null of equal MSPE between the two models. However, note that, because the benchmark
model is nested in the predictive regression model, the parameter β2 in Equation 10 would be
zero in the population under the null. This produces an upward bias in the estimation of
the MSPE of the predictive regression model produced by such parameter. Therefore, we
estimate the MSPE-adjusted statistic developed by Clark and West (2007). This statistic
adjusts for the bias by deducting the square difference in the point predictions generated by
each model as follows.

We first define

ζt+1 = (yt+1 − yt+1)2 − [(yt+1 − ŷt+1)2 − (ŷt+1 − yt+1)2] (13)

and then regress {ζs+1}T−1
s=t0 on a constant and calculate the t-statistic under the null

that the constant is zero. The p-value is obtained with a standard normal distribution, for
a one-tailed test. Table 1 reports the estimated R2

OS using each global economic activity
indicator, and its statistical significance.

< Insert Table 1 about here >

Results for the PMI indices show that using the GEA Tracker to forecast business conditions
significantly outperforms the benchmark model, indicating that we can effectively predict
a percentage of the fluctuations in these indices. Note that for the sample period, the
performance of the three GEA Trackers is almost equal. This is because most of the weight is
given to metal and energy commodities for all cases, for which they have a similar forecasting
performance.

Moreover, we significantly improve our results when predicting the manufacturing rather
than the composite PMI, agreeing with the fact that we are measuring the demand for
industrial commodities which relate to the manufacturing sector of the economy, and not the
service sector. We are able to improve up to 10.850% of the out-of-sample forecast accuracy for
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the Extended Global Manufacturing PMI with respect to the benchmark model, as opposed to
only 3.879% that we are able to improve for the Global Composite PMI, which also includes
services.

An interesting observation is that the GEA Tracker performs significantly better when
extending the PMI for a longer time series as shown by the results for the extended PMI
indices, as opposed to the case of the benchmark Kilian index. Because the target time series
is extended with data from the U.S. PMI, this may be reflecting a mismatch with the global
PMI for which we consider results for the non-extended series more accurate. In this context,
it is also important to note that the fluctuations in global business conditions as signaled
by the Kilian index are far more accurate than those signaled by the common factor of all
commodity prices, when there is no selection. It is only by selecting the commodities which
best match the fluctuations in the Kilian index, as we do for our proposed indicator, that we
are able to significantly improve forecasting performance.

Results also highlight the importance of a global economic activity indicator being available
in real-time. When adopting the approach of Baumeister and Kilian (2014) of updating
the Kilian index with the BDI, we improve the forecasting performance for the Global
Manufacturing PMI, with respect to using the Kilian index with a publication delay. However,
this gain is much shorter in comparison to the gain obtained with our approach of using
carefully selected commodity price data.

Finally, in all cases, the indicators generated with selection, either through LASSO or
through the genetic algorithm, outperform one based on no commodity selection both in
the magnitude of the R2

OS, as well as in its statistical significance. This shows that the
inclusion of commodities that have no relation with global business conditions will deteriorate
the forecasting performance of an estimated commodity factor. The careful selection of
commodities through a genetic algorithm then proves highly relevant in practice. Nonetheless,
the GEA Tracker outperforms the indicator generated through LASSO in all cases, once more
proving that the genetic algorithm is best suited for variable selection in our application.

4.2. Forecasting Stock Returns

We now perform an out-of-sample forecasting exercise for the sample spanned from 2000M1
to 2020M8 where our objective variable is the real stock return for the following regions:
World, Developed Countries, and Emerging Countries. Stock indices are obtained from the
MSCI, and real stock returns are measured by deflating the stock index with the U.S. CPI, as
proxy for world inflation, and then obtaining the percentage change. All data available before
2000M1 is used for an in-sample estimation of parameters, which is then updated recursively
each period as new information is obtained.

We use the following predictive model:

∆yt+1 = α + β∆ft + ξt+1 ξt ∼ N(0, σ2
t+1) (14)

σ2
t+1 = ω + φ1σ

2
t + φ2ξ

2
t (15)
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where ∆yt+1 is the forecast for the real stock return at time t, α is a constant, ∆ft is
the change in the global economic activity indicator at time t, and ξt is an error term that
belongs to a normal distribution with zero mean and a time-varying volatility characterized
by a GARCH(1,1) process, which was developed by Engle (1982) and is typically used by
financial institutions to model the volatility of stock returns. For global economic activity, ft,
we consider the same indicators as in the forecasting exercise for the PMI. The forecasting
performance of this model is then compared to a random walk model, as benchmark, that is
defined as follows:

∆yt+1 = α + ξt+1 ξt ∼ N(0, σ2
t+1) (16)

where volatility, σ2
t+1, is modelled as in Equation 15.

We also evaluate the forecasting performance of each model through the R2
OS statistic

described in Equation 12, where now ∆̂yt+1 is a forecast based on the predictive model
described by Equation 14, ∆yt+1 is a forecast based on the benchmark model described by
Equation 16, to is 2000M1 and T is 2020M8. We also test for the statistical significance of
the R2

OS through the MSPE-adjusted statistic.
Additionally, we measure the economic importance of using each global economic activity

indicator to forecast international stock returns. To do so, we consider that, for any market,
an individual can perform his/her investment decisions based on the returns forecasted by a
given indicator. The value of the information depends on the certainty of the expected returns,
which is the result of the accuracy of the forecasts generated by each model. To determine
this value, we construct a series of portfolios based on such forecasts and then estimate the
certainty equivalent of each portfolio, which is the risk-free return that the individual would
consider equivalent to taking the risk of investing in the portfolio, given its expected returns
and volatility.

For this, we consider that, at any point in time, the individual is faced with the decision of
investing on the stock market or on a risk-free rate, usually based on government bonds. Given
the forecast for the stock return, the uncertainty of that forecast, and the known risk-free
rate, the investor then decides how much to allocate on each asset. The return and volatility
of his/her portfolio will depend on the weight the investor gives to the stock market and to
the risk-free asset. However, to determine the true value of the information provided by the
forecasts, these need to be used optimally to construct the portfolio in a way that maximizes
the returns while reducing the volatility. We therefore estimate the optimal weights as in
Markowitz (1952), in the following way:

wt = ∆̂yt+1 − rf,t+1

γσ̂2
t+1

(17)

where ∆̂yt+1 is the forecasted stock return for period t, rf,t+1 is the risk-free rate known at
time t, γ is the risk aversion coefficient which is set to 2, and σ̂2

t+1 is the forecasted volatility
of the stock return. Note that this weight is typically contained between 0 and 1 but can take
negative values if the investor shorts the market or values larger than 1 if he leverages the
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market.
At the end of each period, the investor’s return is then given by the weighted average

between the realized stock return and the risk-free rate, as described in the following equation:

rp,t = wt−1∆yt + (1− wt−1)rf,t (18)

where rp,t is the return of the portfolio at time t, wt−1 is the weight assigned by the
investor to the stock index in the previous period, and ∆yt is the realized stock return.

Finally, the certainty equivalent of a given portfolio is estimated by

ce = rp −
γ

2σ
2(rp) (19)

where ce is the certainty equivalent of the portfolio, and rp and σ2(rp) are the mean
and variance of the returns of the portfolio. Note that, because a typical investor is often
risk-averse, the value of a portfolio is given by its expected returns minus a cost of uncertainty.

The certainty equivalents are estimated for portfolios constructed with the point forecasts
generated by each global economic activity indicator through the predictive regression model
described in Equations 14 and 15. We also estimate the certainty equivalent of the portfolio
based on the benchmark random walk model. This is done for the sample spanned between
2000M1 and 2020M8 and for each stock market: World, Developed and Emerging.

We report the certainty equivalent gain of each portfolio as the difference with respect to
the certainty equivalent of the random walk portfolio. This is given in percentage values and
annualized. For robustness, we also estimate the certainty equivalent gain by restricting the
weights, wt, between −0.5 and 1.5. This is to prevent the investor from choosing unrealistic
leverages of the portfolio when longing or shorting the stock market at any point in time.

Results are reported in Table 2.

< Insert Table 2 about here >

Table 2 shows that we can only find significant predictability of monthly stock returns in
emerging markets. This is explained by the fact that emerging economies are not only less
financially diversified but also far more dependent on commodities. Using the GEA Tracker
to forecast emerging market stock returns outperforms the random walk model, by reducing
the out-of-sample mean squared error up to 2.368%

Also, as in the PMI forecasting exercise, results highlight the importance of a global
economic activity indicator being available in real-time. In emerging and global markets, the
Kilian index performs better if extrapolated using the BDI. Nonetheless, in emerging markets,
the GEA Tracker, which is based on readily available data from commodity prices, has a better
forecasting performance with respect to the Kilian index, even when extrapolated. More
important, however, is that we can only find statistically significant predictability using a
commodity price-based indicator when there is a careful selection of those commodities. This
is true even when performing the selection using LASSO, which shows that, particularly when
forecasting financial variables, incorporating information on irrelevant variables deteriorates
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both the performance as well as the economic gains. The selection of truly relevant variables
is therefore crucial. Note, however, that the GEA Tracker, estimated through the genetic
algorithm, again outperforms the indicator constructed through LASSO.

Consequently,a mean-variance investor would have significantly profited from using the
forecasts provided by the GEA Tracker to construct his/her portfolio, with a certainty
equilavent gain of up to 6,237% in emerging markets. This is proof, not only of the ability
of our indicator to forecast the magnitude of the stock returns, but of a better directional
accuracy.

5. A Close-Up of the COVID-19 Pandemic

Finally, now that we have carefully examined the properties of the GEA Tracker, we
proceed to estimating it a daily frequency for the sample spanned between January 2nd, 2020
to September 15th, 2020.

Daily data for commodity prices is obtained from DataStream and corresponds to the
trading price. Not all commodities are traded in stock markets, for which the pool of all
commodities is reduced to a total of 37, rather than 47, commodities.9

We perform the selection at the end of December 2020, by implementing the genetic
algorithm to search for the combination of commodities whose co-movement most closely
matches the Kilian index. This is done as in section 2, using monthly frequency data, but with
the reduced set of commodities. Real commodity prices are estimated by deflating nominal
prices with the U.S. CPI. The selected pool of commodities is kept constant during the entire
sample. When the search space is restricted to set ΩM , the genetic algorithm determines the
following group of selected commodities: Henry Hub natural gas, platinum and nickel. In
the case of industrial commodities, ΩI , the genetic algorithm additionally selects the daily
price of groundnut oil, and when the search space is extended to include the entire set of
commodities, Ω, it rejects the inclusion of any agricultural commodities.

The weight assigned to each commodity price series is determined as in Equation 1. These
are estimated monthly, through PCA (for which data are standardized) and are kept constant
during the entire month. Daily commodity prices are deflated by the last known value of the
U.S. CPI, which is only available at monthly frequency. This lies on the assumption that
there are no significant intra-month changes in consumer prices. Finally, daily real commodity
prices are standardized using the last estimated monthly mean and standard deviation of the
corresponding series.

While the resulting indicators are quite equivalent, for parsimony, we only present the
GEA Tracker Metals & Energy, which has proven to have the best properties. This is because

9The set ΩM then includes crude oil, natural gas (US), natural gas (Europe), aluminum, iron ore, copper,
lead, tin, nickel, zinc, gold, platinum and silver; ΩI additionally includes rubber, DAP, urea, coconut oil,
groundnut oil, palm oil, soybeans, soybean oil and soybean meal; and Ω also includes barley, maize, sorghum,
rice, wheat, orange, beef, chicken, sugar (US), sugar (Europe), sugar (world), cocoa, coffee arabicas and coffee
robustas.
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it is never subject to extreme idiosyncratic shocks, unrelated to the global economy, of highly
volatile commodities.10

Figure 8 shows the estimated GEA Tracker.

< Insert Figure 8 about here >

As can be observed in Figure 8, the daily GEA Tracker accurately indicates the evolution of
global economic activity during the sample. Particularly, one can observe the large decrease in
economic activity occurring in March 11th, 2020, day in which the World Health Organization
declared the COVID-19 disease as a global pandemic. This was accompanied by a travel ban
set by the United States on Europe and the co-movement of bonds and stocks as investors
performed a massive sell-off of their portfolios.

In January and February one can observe a milder slowdown of global economic activity
as Chinese premier Li Kegiang urged for decisive efforts to control the pandemic, and several
countries implemented travel bans on China. However, in the last week of February, as is
reflected by the GEA Tracker, global economic activity came to a stronger halt. On February
21st, the first province in Italy, Lodi, was placed on lockdown and, on February 24th, Asian
and European stock indices fell sharply, followed by a plunge of 700 points on the Dow Jones
index. This became, at the time, the worst week for stock markets since the Great Financial
Crisis.

The first few days of March presented some better news. The seven day decline on global
stock indices came to an end, and in March 3rd the U.S. Federal Reserve cut its fed funds rate
by 0,5% in an emergency move. The GEA Tracker, therefore, reflects a halt in the decline of
global economic activity. However, in March 8th, the Italian primer minister Giuseppe Conte
extended the lockdown to the entire region of Lombardy and 14 other northern provinces,
as sanitary conditions worsened. March 9th, therefore, was a ’black monday’ with the worst
drop of the Dow Jones in a single day and the extension of Italy’s lockdown to the entire
country. This would then be followed by the events of March 11th, after which a number of
countries would begin placing drastic mobility restrictions on citizens in an effort to stop the
contagion of the coronavirus.

However, as shown by the GEA Tracker, global economic activity slowly began to recover.
This was first prompted by fiscal and monetary policy measures in response to the crisis. One
can observe the first positive response of the GEA Tracker on March 19th, day in which the
U.S. Senate unveiled a $1 trillion economic stimulus package proposal to aid businesses and
citizens. This followed the announcement of the Federal Reserve on March 15th of decreasing
its benchmark rate for a full 1 percent, and a $700 billion quantitative easing program.

More fiscal and monetary policy actions followed during the month of March, including
the British stimulus plan on March 20th, the resumption of construction in China on March
21st, the commitment of the Federal Reserve to buy government-backed securities, and the $2
trillion stimulus package deal from the U.S. Senate on March 25th, among others. News also
arrived regarding the lifting of the lockdown in Wuhan.

10Full results are available upon request.
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The recovery of global economic activity continued throughout the rest of the sample, with
an observed impulse in May 15th, which is explained by the $3 trillion dollar coronavirus relief
package that was passed by the U.S. House of Representatives. However, this slow recovery
seems to come to a halt in the beginning of August, during which the reactivation of the trade
war and tariffs imposed by the U.S. administration further strained trading relationships.

All in all, the GEA Tracker proves to be a reliable and useful real-time indicator of the
daily evolution of global economic activity.

6. Conclusions

In this paper, we developed the GEA Tracker, a high-frequency real-time indicator of global
economic activity. Not only is this a desirable indicator in normal times for policy-makers and
economic agents to perform optimal decisions, but it is paramount during times of economic
and social crisis such as the one the world is currently experiencing due to the COVID-19
pandemic.

The GEA Tracker was estimated through a factor model of commodity prices, where
commodities were recursively selected through a genetic algorithm to only consider those that
are truly relevant to the global economy, at any point in time. We have shown that the issue
of the selection of variables is significantly more important than the issue of the dynamics
in a factor model. We, therefore, contribute to the strand of the literature that claims that
“more is not always better”, in which we additionally propose the implementation of the
genetic algorithm for the selection of variables. This methodology proves to outperform other
methods for selection and shrinkage. Also, in this regard, this is the first paper to empirically
examine the recursive selection of variables for the estimation of a factor model.

Moreover, the GEA Tracker proved to have desirable forecasting properties. In fact,
when forecasting fluctuations in the Global PMI, we were able to significantly reduce the
out-of-sample mean squared error of a benchmark autoregressive model, particularly for the
manufacturing sector. We also found significant predictability of stock returns in emerging
markets, for which a mean-variance investor would have inexorably profited from using the
forecasts provided by the GEA Tracker to weight his/her portfolio.

Finally, we proved that the GEA Tracker can be estimated at a daily frequency and in
real-time, which allows for a closer monitoring of the fluctuations in global economic activity.
This becomes critical in times of heightened uncertainty and severe crises.
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Table 1: R2
OS in percentage (%) values for forecasting the Purchasing Managers’ Index (PMI)

at the 1-month horizon

yt = Global
Composite PMI

yt = Extended
Global

Composite PMI

yt = Global
Manufacturing

PMI

yt = Extended
Global

Manufacturing
PMI

ft = Kilian’s In-
dex -1,546 -1,173 -0,275 -1,193

ft = Kilian’s In-
dex (Updated) -1,967 -2,902 1,199* -10,811

ft = PCA on
All Commodities
(No Selection)

-0,415 1,179 0,289 3,708*

ft = LASSO 1,264 2,793* 2,503** 7,504**

ft = GEA
Tracker, Metals
& Energy

2,586 3,334** 6,402** 9,587***

ft = GEA
Tracker, Indus-
trial

2,934 3,638** 6,869** 10,233**

ft = GEA
Tracker 2,782 3,879** 7,282* 10,850**

* The table above contains the estimated R2
OS percentage values, as described in Equation 12, for the different

objective variables, yt, and global economic activity indicators, ft, used in the predictive regression model
described in Equation 10. *, ** and *** denote significance of 90%, 95% and 99%, respectively.
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Table 2: R2
OS in percentage (%) values for stock returns at the 1-month horizon and annualized

certainty equivalent gains

yt ft R2
OS

CE Gain
(Unrestricted

Weights)

CE Gain
(Restricted
Weights)

World

Global Composite PMI -3.136 -9.693 -4.120
Kilian’s (2009) Index -0,765 -1,340 1,806
Kilian’s (2009) Index (Updated) 1,817 -15,071 1,663
PCA on All Commodities (No Selection) -0,566 -1,930 -1,964
LASSO 0,246 0,723 0,537
GEA Tracker, Metals & Energy 0,576 -0,544 1,321
GEA Tracker, Industrial 0,549 -0,771 0,513
GEA Tracker 0,639 -0,388 0,716

Developed

Global Composite PMI -1.251 -3.710 -3.018
Kilian’s (2009) Index 0,016 1,187 2,815
Kilian’s (2009) Index (Updated) -0,841 -4,593 -4,057
PCA on All Commodities (No Selection) -2,888 -7,483 -3,212
LASSO -0,172 -1,806 -1,588
GEA Tracker, Metals & Energy -1,037 -3,812 -3,337
GEA Tracker, Industrial -0,565 -2,267 -2,295
GEA Tracker -0,538 -1,949 -2,248

Emerging

Global Composite PMI -2.917 -6.984 -4.644
Kilian’s (2009) Index -3,119 -5,301 -0,385
Kilian’s (2009) Index (Updated) 1,261* -6,361 1,405
PCA on All Commodities (No Selection) -0,110 -0,523 -0,260
LASSO 1,473** 2,374 4,947
GEA Tracker, Metals & Energy 2,364** 5,020 6,237
GEA Tracker, Industrial 2,368** 4,967 5,963
GEA Tracker 2,268** 4,436 5,272

* The table above contains the estimated R2
OS percentage values, as described in Equation 12, for the different

objective variables, yt, and global economic activity indicators, ft, used in the predictive regression model
described in Equation 14. *, ** and *** denote significance of 90%, 95% and 99%, respectively. Estimations
for the certainty equivalent gains, in annualized percentage values, are also reported, as in Equation 19. The
estimation is done with no restriction on the portfolio weights, as well as with weights restricted to -0.5 and
1.5 in each period of time.
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Figure 1: Classification of commodity prices

All Commodities (Ω)

Grains

Barley,
Maize,
Sorghum,
Rice,
Wheat

Beverages

Cocoa,
Coffee
(Arabicas),
Coffee
(Robus-
tas), Tea
(Colombo),
Tea
(Kolkata),
Tea
(Mombasa)

Other
Foods

Orange,
Beef,
Chicken,
Shrimps,
Sugar
(Europe),
Sugar
(US),
Sugar
(World)

Industrial Commodities (ΩI)

Fertilizers

Phosphate
Rock, DAP,
TSP, Urea,
Potassium
Chloride

Raw
Materials

Tobacco,
Logs,
Sawn-
wood,
Cotton,
Rubber

Fats
and
Oils

Coconut
Oil,
Ground-
nut Oil,
Palm Oil,
Soybeans,
Soybean
Oil,
Soybean
Meal

Metals & Energy (ΩM)

Precious
Metals

Gold,
Plat-
inum,
Silver

Metals
&

Minerals

Aluminum,
Iron Ore,
Copper,
Lead,
Tin,
Nickel,
Zinc

Energy

Crude
Oil,
Natural
Gas
(US),
Natural
Gas
(Europe)

* The figure above shows the classification of commodities used in the estimation of the GEA Tracker.
The commodities and group of commodities that pertain to the sets Metals & Energy (ΩM ), Industrial
Commodities (ΩI) and All Commodities (Ω), can be observed.
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Figure 2: Recursively estimated indicators of global economic activity

*The figure above shows the benchmark indicator (Kilian, 2009), the indicator generated with no selection,
and the indicator estimated recursively by selecting commodities using LASSO, as well as the GEA Tracker
Metals & Energy, the GEA Tracker Industrial and the GEA Tracker.
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Figure 3: Explained variance of the benchmark indicator by each estimated indicator

*The figure above shows the variance of the benchmark indicator (Kilian, 2009) explained by each estimated
indicator. Each observation corresponds to the R2 statistic obtained when regressing the benchmark indicator
by the first principal component obtained each period t from the historical price series (available until t) of
each selected pool of commodities.
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Figure 4: Global economic activity indicators

*The figure above shows the GEA Tracker Metals & Energy along with the Kilian (2009) index, for the
period 1968M1 to 2020M8. For the GEA Tracker, each observation corresponds to the value estimated with
the weights assigned by PCA on the historical log-price series of the commodities selected by the genetic
algorithm among Metals & Energy. Light gray shaded areas correspond to U.S. NBER Dated Recessions.
The GEA Tracker is estimated in-sample up to 1979M12 and then recursively until 2020M8.
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Figure 5: Weights given to each commodity type according to selection method

(a) PCA on all commodities (no selection)

(b) LASSO

(c) GEA Tracker

*The figure above shows the time-varying weights given by each estimated indicator to the commodities
belonging to the following groups: metals and energy; raw materials, fertilizers and oils; and agricultural
commodities. For the case of the indicators estimated with selection (Panels B and C), the weights corresponds
to the commodities selected recursively by LASSO and by the genetic algorithm, respectively, with the
information available up to date. In Panel A, the pool includes the entire set of commodity prices available
from the World Bank.
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Figure 6: Weights given to each commodity in the estimation of the GEA Tracker

(a) Aluminum (b) Copper

(c) Crude oil (d) Gold

(e) Lead (f) Natural Gas (US)

(g) Nickel (h) Platinum

(i) Silver (j) Zinc
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(k) Coconut Oil (l) DAP

(m) Groundnut Oil (n) Logs

(o) Palm Oil (p) Potassium Chloride

(q) Rubber (r) Sawnwood

(s) Soybean Meal (t) Barley
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(u) Beef (v) Maize

(w) Rice (x) Sugar (US)

(y) Sugar (World) (z) Tea (Mombasa)

*The figure above shows the time-varying weights given by our proposed GEA Tracker to each commodity.
We only plot those commodities that are selected by the genetic algorithm at least once during the sample.
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Figure 7: Comparison of indicators estimated through dynamic and static factor models, with
and without selection

*The figure above shows the in-sample estimation of a global economic activity indicator as the common factor
of commodity prices. Depicted in blue, are the indicators estimated by implementing a genetic algorithm
to select the commodities that should be included in the estimation. Depicted in orange, are the indicators
estimated by implementing no selection at all, but rather including all available commodity price series.
Additionally, the indicators estimated through a (static) factor model, as the one described in Equation 1, are
represented by dashed lines; whereas the indicators estimated through a dynamic factor model, as described
in Equations 1, 8 and 9, are represented by continuous lines.
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Figure 8: Evolution of global economic activity in year 2020

*The figure above shows the GEA Tracker in daily frequency for the sample spanned from January 2nd, 2020
to September 15th, 2020.

39



Appendices
A. A Genetic Algorithm for the Selection of Commodities

For the selection of commodities to estimate the GEA Tracker, we begin by defining an
individual Aj as a genome of n binary genes aij ∃ 1, 0 ∀ i ∃ {1, . . . , n}.

Aj = (a1j, a2j, . . . , anj)

where n is the total number of commodities and aij is assigned the value of 1 if commodity
i is included in the estimation of the GEA Tracker, and 0, if it is not.

We then define a population as a set of J individuals, Aj, ∀ j ∃ {1, . . . , J}. A population
P is therefore a matrix of size J × n where each row corresponds to the genome of individual
Aj.

The genetic algorithm will evolve the population through a total number of generations or
iterations, K. The population Pk+1 is created from population Pk, where k ∃ {0, . . . , K − 1}.
This is done as explained followingly.

A.1. Initial Population

For the initial population P0, every gene aij ∀ i ∃ {1, . . . , n} and j ∃ {1, . . . , J}, is
randomly generated through a uniform distribution. This is done by assigning 0 or 1 to
each element aij, following a binomial distribution where the probability of aij = 1 is 0.5.
Otherwise, aij = 0.

A.2. Fitness Function

Once a population is generated, the fitness values, F , of the population are estimated. F
is a J × 1 size vector, in which each element is estimated as follows:

(i) For each Aj, a matrix Xj of real commodity price time series is constructed. Each
column of Xj contains the price series of commodity i if aij = 1.

(ii) Matrix Xj is standardized and Principal Component Analysis is estimated to extract
the first principal component, denoted fj.

(iii) fj is used as a regressor in the following regression model:

f ∗t = µ+ βfjt + εt εt ∼ N(0, σ2)

where f ∗t is the Kilian (2009) index at time t, µ is a mean constant, β is a slope-coefficient,
and εt is an error term with a normal zero-mean distribution and variance σ2. The
regression is estimated using Ordinary Least Squares (OLS).

(iv) The coefficient of determination R2 is then determined as the proportion of the variance
in the dependent variable that is explained by the regressor.
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R2 = 1−
∑

t
ε2t∑

t
(f∗

t −f∗
t )2

(v) The fitness value for individual Aj is defined as the estimated coefficient of determination
R2.

(vi) Furthermore, for all individuals Aj in a population where the genome contains 2 or less
genes, aij, equal to 1, the fitness values are penalized and set to −99999. This is to
avoid the selection of less than 3 variables, in which PCA degenerates.

The estimated fitness values of all individuals Aj of the population then constitute the
vector F .

A.3. Scaling Function

The scaling function g(·) then converts the fitness values F into values that are suitable
for the following steps of the algorithm. To do so, the population individuals Aj are first
ranked from highest to lowest according to their fitness value. The scaled values are given by

g(Aj) = 1√
rj

∀ j ∃ {1, . . . , J}

where rj is the rank of individual Aj. A vector FS is then defined as FS ≡ g(F ) and
contains the scaled fitness values of each individual Aj.

A.4. Creating Population Pk+1

Given the population Pk and its scaled fitness values, we generate population Pk+1 by
performing three operations: elitism, crossover and mutation. The elite function allows
for the most fit individuals of Pk to be included in Pk+1, while crossover and mutation are
reproduction functions that combine the genetic information of individuals in Pk to generate
new individuals that will be part of Pk+1. These new individuals are referred to as children,
whereas the individuals from Pk from which they are created are called parents.

Pk+1 will then be constructed as the union of the set of elite individuals denoted Re and
the set of “crossovered” and “mutated” children, denoted Rc and Rm, respectively.

1.4.a. Elite Function

An elite number of individuals with the best fitness values are guaranteed to survive to
the next generation Pk+1. The elite count Je is set to be 5% of the population size, J .

Je = 0.05J

The elite individuals are those who have the Je highest fitness values and create the elite
set Re. Re is then a matrix of size Je×n that contains the genomes of the most fit individuals.
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1.4.b. Reproduction Functions

80% of the children will be created through crossover, while the remaining 20% will be
created through mutation. Therefore, to keep a constant population size throughout all
generations k ∃ {0, . . . , K}, the number of children to generate is estimated as follows:

Jc = round(0.80(J − Je))
Jm = J − Je − Jc

where Jc is the number of children generated through the crossover function, and Jm is
the number of children generated through the mutation function.

Therefore, the total amount of parents, Jp, from population Pk we need is estimated in
the following way:

Jp = 2Jc + Jm

Then, for reproduction, we first implement a selection function on Pk in a way that the
most fit individuals have a higher probability of being parents.

1.4.c. Selection Function

The selection of parents from the current population Pk is performed as a stochastic
uniform selection. This operation consists on drawing a line in which each section of the line
corresponds to an individual Aj of the population. Every section has a length proportional
to its scaled fitness value. We then move along the line in steps of equal size, selecting the
individual it lands on as a parent. The size of the steps is set to 1

Jp
and the first step is given

by a randomly generated number in the range [0, 1
Jp

].
The most fit individuals will have a higher probability of being selected as parents, with

their genetic information being passed on to the following population Pk+1. Note that any
given individual of the population can be chosen to be a parent more than once.

The set of parents is then a matrix of size Jp × n which contains the genome of each
selected individual.

1.4.d. Crossover Function

The crossover function we use is the scattered crossover. This function generates a random
binary vector of size 1× n, with each element corresponding to gene ai. This random vector
indicates whether the child will inherit the value for each gene ai from parent A (for values
equal to one) or from parent B (for values equal to zero). We illustrate this using a simplified
example. Suppose parents A and B have the following genetic information:

Parent A = [A B C D E]
Parent B = [a b c d e]

If the random binary vector were, [1 1 0 1 0], then the child would be defined in the
following way:

Child = [A B c D e]
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The crossover function is applied Jc times, to a total of 2Jc parents from the set of selected
individuals to create a set of Rc “crossovered” children. The pair of parents for each child
is selected randomly. RC is then a matrix of size Jc × n which contains the genome of all
“crossovered” children.

1.4.e. Mutation Function

The gaussian mutation function adds a random number taken from the Gaussian distribu-
tion N(0, σk) to each gene aij of the parent vector, where σk is determined by

σk = σk−1(1− 1
J

)

Where σk is shrunk at each generation k, reducing the probability of mutation as the
algorithm approximates the optimal solution. Each aij is then set to its closest value in the
set {0, 1}.

The mutation function is applied to a total of Jm parents to create a set Rm.
Rm is then a matrix of size Jm × n which contains the genome of all “mutated” children.

A.5. Replacement

Finally, the new generation Pk+1 is created by the union of the elite set of children, Re,
the crossovered children, Rc, and the mutated children, Rm. Fitness evaluation, selection,
elite generation, reproduction and replacement are then repeated K times on all populations
Pk, where k ∃ {1, . . . , K}, until a stop selection criterium is met.

A.6. Stop Selection Criteria

The algorithm repeats until either:

(i) The maximum number of generations, K, is achieved, which is set to be 100× number
of selection variables n.

(ii) The function tolerance, defined as the average relative change (from k to k + 1) in the
fitness function value, reaches a maximum objective value. In our application, this is
specified as 1× 10−6.
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