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1 Introduction

The toolbox we described in this paper is written in MATLAB. It also works with OCTAVE,

with the provisos explained below. The package is available as free software, under the GNU

General Public License version 3, and can be downloaded from

https://github.com/naffe15/BVAR

with all the supplementary material (data and source codes) to replicate the examples we

present. The toolbox collects into a set of routines programs that the authors have used for

Ph.D. courses or classes in central banks and international institutions. The toolbox comes

as it is. We assume no responsibility whatsoever for its use by third parties and make no

guarantees, implicit or explicit, about its quality, reliability, or any other characteristic. We

would appreciate acknowledgment by citation of this working paper whenever the software

is used. We extensively tested the toolbox prior to its public release. Users may inform the

authors via email1 or by opening an issue in GitHub of potential problems with the routines

when they emerge.

The toolbox deals specifically with fixed coefficient Bayesian VAR models and local pro-

jections and has a number of identification options. It is equipped to handle missing obser-

vations, mixed frequencies and time series with large cross-section information (e.g. panels

of VAR and FAVAR). It also contains a number of routines to extract cyclical information

and to date business cycles. It does not directly cover topics such as time varying coeffi-

cients VAR models, models with stochastic volatility, non-gaussian or non-causal VARs, even

though it provides tricks to deal with the first two with the available routines. Furthermore,

it does not have an option for identification via volatility changes. There are also a number

of other issues that are not explicitly dealt with, e.g. the critique of sign restrictions identifi-

cation discussed in Baumeister and Hamilton (2015). When building a toolbox, one needs to

decide when to stop adding features. We chose the current one: as it stands the toolbox has

options that cover, more or less, everything that is currently interesting in modern applied

macroeconomic analysis.

The toolbox is intended to users which are dissatisfied by the inflexibility of packages like

BEAR (see Dieppe, van Roye and Legrand (2016)) or STATA, think that existing routines

are too mechanical, but do not want to get directly involved in programming the empirical

tools they need; and are more concerned with the economics rather than the econometrics

details of the exercises.

Other toolboxes covering similar topics exist, e.g. the VAR toolbox of Ambrogio Cesa-

Bianchi, the Econometric toolbox of James LaSage, the Dynare project (Adjemian, Bastani,

Juillard, Karamé, Maih, Mihoubi, Perendia, Pfeifer, Ratto and Villemot 2011), the Global

VAR toolbox of Vanessa Smith, the mixed frequency VAR toolbox of Brave, Butters and

Kelley (2020), the Bayesian VAR and Bayesian Local Projection of Miranda-Agrippino and

1Our emails are: fabio.canova@bi.no; fferroni@frbchi.org
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Ricco (2017), as well as series of codes from Haroon Mumtaz or Dimitris Korobilis. To the

best of our knowledge, we are the first to mechanize new identification procedures and to

provide ready available tools to estimate mixed frequency VARs, FAVARs, and panels of

VAR models.

2 Getting started

Getting started is easy. Open MATLAB, and add the toolbox to the MATLAB path. As-

suming that it is stored in C:\USER_LOCATION, the toolbox is added to the MATLAB path

by typing in the command window:

addpath C:/USER_LOCATION/BVAR_/v4.1

This has to be done every time you begin a MATLAB session. If you want to add permanently

the toolbox to the MATLAB PATH, go to the set-path icon in the MATLAB HOME window,

click on it, add with the subfolders BVAR_/v4.1, and save. A similar procedure should be

used to install Chris Sims’ routines2; which are used to optimally select the hyper-parameters

of the Minnesota prior. In this case, type in the command window

addpath C:/USER_LOCATION/BVAR_/cmintools

If instead of MATLAB you use OCTAVE you will be doing the same. With OCTAVE,

however the graphic is not as good and some of the pictures with present will not come

out as nicely. Also, while you can use Chris Sims’ routines, the other optimization routines

featured in MATLAB, can not be employed. Finally, because the functions the toolkit uses

are optimized for MATLAB, their use in OCTAVE slows down the computations quite a bit.

2.1 Loading the data

The user needs to prepare the data she wants to use beforehand. Data can be format-

ted in any way the users wants but needs to be loaded in the MATLAB workspace and

collected in matrix format (of dimension T × n), where time occupies the first dimension

(so T is the sample size) and different variables the second (so n is the number of vari-

ables). For instance, in the forecasting example we use monthly Euro Area data for the

one-year Euribor (Euribor1Y), the log of HICP (HICP), the log of HICP excluding food and

energy (CORE), the log of industrial production index (IPI) and the log of M3 (M3) from

2000m1 2015m8. The data is stored in the MATLAB file Data.mat, which is located in

C:/USER_LOCATION/BVAR_/v4.1/BVAR tutorial and thus has dimension 188× 5.

In principle, there is no need to specify the frequency: the time unit can be months,

quarters, years, or mixed monthly and quarterly. Section 3.6 describes how to use the toolkit

when some data are missing. For plotting purposes, we define an array column vector, T,

which is of the same length of the estimation sample. We use the convention that the first

2The toolbox can be downloaded from http://sims.princeton.edu/yftp/optimize/ or from
https://github.com/naffe15/BVAR
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quarter (the first month) of the year corresponds to the integer of that year; for example,

2000Q1 (2000m1) corresponds to 2000.00. Data already converted to MATLAB format is

loaded with the standard command

load Data

Data available in spreadsheets is loaded in the workspace with the command

y = xlsread(’filename’,’sheetname’);

For details about reading in data formatted in other ways, see the MATLAB manual.

3 VAR models

A vector of autoregressive model with p lags, denoted by V AR(p), is typically written as

yt = Φ1yt−1 + ...+ Φpyt−p + Φ0 + ut (1)

= Φ(L)yt−1 + Φ0 + ut (2)

where yt is n× 1 vector of endogenous variables, Φ0 is n× 1 vector of constants and Φj with

j = 1, ..., p are n×n matrices; ut is an i.i.d. normally distributed, zero mean, random vector

with covariance matrix Σ. The second line writes the models using the lag operator. The

vector of parameters to be estimated is ϑ = vec(Φ0,Φ1, ...,Φp,Σ).

V AR(p) models can also be written in other ways. The one we will use quite often in this

toolkit in the companion V AR(1) form. A companion form is useful to generate forecasts

and to compute impulse response functions. The companion form is

xt
(np×1)

= F
(np×np)

xt−1 + F0
(np×1)

+ G
(np×n)

ut (3)

xt =


yt
yt−1

...
yt−p+1

 F =


Φ1 Φ2 . . . Φp−1 Φp

I 0 . . . 0 0
0 I . . . 0 0
...

. . .
. . .

...
0 0 . . . I 0

 G =


I
0
...
0

F0 =


Φ0

0
...
0


where I is a n× n identity matrix and 0 is a n× n matrix of zeros.

For computing forecast error variance and historical decompositions, it is useful to write

the VAR model in its Vector Moving Average (VMA) form:

yt = ut + Ψ1ut−1 + ...+ Ψtu1 + Ψt (4)

= Ψ(L)ut + Ψt (5)

where Ψj for j = 1, ..., t are functions of (Φ1, ...,Φp) and Ψt is a function of the con-

stant matrix Φ0, of the autoregressive matrices (Φ1, ...,Φp) and of the initial conditions

(y0, y−1, ..., y−p) and represents the pure deterministic or non-stochastic component.3

3For more details on the mapping between the VMA coefficients (Ψ’s) and VAR coefficients (Φ’s), see Appendix,
section A.1.1.
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At times, especially when dealing with small open economies, it may be useful to have

in VAR variables which are taken as given from the point of view of the local economy. In

this case, we consider a V ARX(p) model which we write as

yt = Φ(L)yt−1 + Φ0 + Γzt + ut (6)

where, as before, we assume that there are p lags of yt, and zt is the vector of exogenous

variables. Here yt is n × 1 vector of endogenous variables, Φj with j = 0, ..., p and Σ are

defined as in equation (2), zt is a q× 1 vector, and Γ is a n× q matrix. For this model, the

vector of parameters to be estimated is ϑ = vec(Φ0,Φ1, ...,Φp,Γ,Σ). As we will see later on,

the user supplies zt to the toolkit and thus may include in the zt not only variables which

are contemporaneous to yt but also lags, i.e. zt = [wt, wt−1].

3.1 Inference

The toolkit allows to estimate ϑ and conducts inference conditional on the estimates of ϑ.

Estimation can be performed using both classical (flat-prior) and Bayesian techniques. By

default, Jeffrey (uninformative) prior is assumed; other options for the prior are available

and discussed below. Given the prior, draws are generated from the posterior distribution

of the parameters using a Gibbs sampler algorithm; see section A.3 for more details. The

baseline estimation function is

BVAR = bvar(y, lags, options)

The first input is the data, y, an array of size T × n, where for now, we assume that there

are no missing values. The second input is the number of lags, lags, which has to be an

integer greater than zero. The third input, options, specifies the options; it can be omitted

if default options are used. The autoregressive model is specified with a constant. One can

remove it using the noconstant option, before the estimation command is launched, e.g.

options.noncostant = 1;

BVAR = bvar(y,lags,options)

When a flat or Multivariate Normal Inverse Wishart Conjugate prior is used, one can allow

also a time trend in the model, if that is of interest. To do so, type options.timetrend= 1

before the bvar command. Time trends are not allowed in the case of Bayesian estimation

with Minnesota prior as they are taken care of by means of prior restrictions. Unless oth-

erwise specified, we will assume throughout the document that the user assumes a constant

in the VAR specification and no time trend.

The output of the function, BVAR, is a structure with several fields and sub-fields con-

taining the estimation results:

• BVAR.Phi_draws is a (n×lags+1)×n×K matrix containing K draws from the posterior

distribution of the autoregressive parameters, Φj , assuming a Jeffrey prior. For each
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draw k, the first n×n submatrix of BVAR.Phi_draws(:,:,k) contains the autoregressive

matrix of order one and subsequent submatrices contain higher order lags. The last

row of BVAR.Phi_draws(:,:,k) contains the constant, Φ0, if it assumed to be present.

• BVAR.Sigma_draws is a n× n× K matrix containing K draws from the posterior distri-

bution of the innovation covariance matrix, Σ.

• BVAR.e_draws is a (T− lags)× n× K matrix containing K draws of the innovations.

• BVAR.ir_draws is a four dimensional object (i.e. n× hor× n× K matrix) that collects

the impulse response functions with recursive identification. The first dimension cor-

responds to the variables, the second to the horizons, the third to the disturbances,

and the fourth to the responses obtained with particular draw from the posterior dis-

tribution of the VAR parameter. See Section 3.2 for the implementation of different

identification schemes.

• BVAR.forecasts.no_shocks is a three dimensional object (i.e. fhor × n × K matrix)

that collects the forecasts assuming zero shocks in the future. The first dimension

corresponds the horizon, the second to the variable, and the third to the draw from the

posterior distribution of the parameters. See Section 3.7 has the details on forecasting

options.

• BVAR.logmlike contains the log marginal likelihood − a measure of fit.

• BVAR.InfoCrit contains four information criteria which can be used to select the lag

length of the model: the Akaike information criterion, AIC, Hannan-Quinn information

criterion HQIC and the Bayes information criterion, BIC, see A.2 for details.

By default, K is set to 5,000. It can be changed by setting options.K to any positive desired

number prior to calling the bvar routine.

Example 1 We use monthly Euro Area data (Data) and consider a VAR with the following

variables: the log of industrial production index (IPI), the log of HICP (HICP), the log of

HICP excluding food and energy (CORE), the one-year Euribor (Euribor1Y), the log of M3

(M3) and the exchange rate (EXRATE) from 2000m1 to 2015m8. We optimize the lag length

of the VAR.

load Data

% collect the endogenous variables to be used in the VAR

y = [IPI HICP CORE Euribor1Y M3 EXRATE];

maxlag = 10; % maximum number of lags allowed

opt.K = 1; % generate only 1 draw from the posterior

for nlags=1:maxlag

BVAR = bvar(y, nlags, opt);

disp([’Number of lags’ num2str(nlags)])

8



disp(BVAR.InfoCrit)

end

3.1.1 Minnesota prior

The Minnesota prior is a special conjugate prior specification. In the original formulation, the

prior for the VAR parameters is normally distributed while the covariance of the innovations

is treated as fixed. More details on the features of the Minnesota prior are in Canova (2007,

Chapter 5). The Minnesota prior is convenient, since under the assumption that the prior

hyper-parameters are fixed (or estimable), it is possible to derive analytically not only the

format of the posterior distribution but also its moments.

The toolbox considers the version of the Minnesota prior discussed in Sims and Zha

(1998), Del Negro and Schorfheide (2011) or Villemot and Pfeifer (2017), where the covari-

ance matrix of the innovations is random, and there are various layers of shrinkage imple-

mented via dummy observations. The direction of the shrinkage is controlled by a handful

of hyper-parameters regulating: (i) the prior tightness for the autoregressive coefficients of

order one; (ii) the prior tightness for the autoregressive coefficients of higher lags; (iii) the

weight on its own-persistence; (iv) the weight on the co-persistence of the data; and (v)

the weight for the priors of the covariance matrix of innovations. (iii) is typically labeled

sum-of-coefficients prior and reflects the belief that if a variable has been stable at its initial

level, it will tend to stay at that level, regardless of the value of other variables. (iv) is

typically labeled co-persistence prior dummy observations and reflects the belief that when

the data is stable at its initial levels, it will tend to stay at that level.4

The hyper-parameters controlling the restrictions on the prior second moments are com-

puted using pre-sample information. By default, the size of pre-sample coincides with the

number of lags. This feature can be changed by setting options.presample to an integer

(default options.presample = 0).

To use the Minnesota prior, the user needs to activate it with the option.priors.name

command. To do so, type in the MATLAB command window (or put in your script) the

following sequence of commands:

options.priors.name = ’Minnesota’;

BVAR = bvar(y,lags,options);

As with Jeffrey prior, draws from the posterior distribution are collected in BVAR.Phi_draws

and BVAR.Sigma_draws, which have the same dimensions as before. The hyper-parameters

controlling the Minnesota prior are:

1. options.minn_prior_tau is a scalar controlling the overall tightness (default value 3).

The larger is this value, the tighter is prior.

4Section A.5 describes how to draw from the posterior distribution with Minnesota priors. Some
of the functions used in the Minnesota prior are adapted from Chris Sims’s VAR codes, see
http://sims.princeton.edu/yftp/VARtools. The default values for the hyperparameters also follow Sims.
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2. options.minn_prior_decay is a scalar controlling the prior tightness on the lags

greater than one (default value 0.5). The larger is this value, the faster is the lag

decay.

3. options.minn_prior_lambda is a scalar controlling the Sum-of-Coefficient prior (de-

fault value 5)

4. options.minn_prior_mu is a scalar controlling the co-persistence prior (default value

2)

5. options.minn_prior_omega is a scalar controlling the prior on the covariance matrix

(default value 2)

The hyper-parameter values can be cherry-picked by the user. This can be done by setting

their values in the options command. When one of the hyper-parameter is set to a specific

value - for example, options.minn_prior_tau=10 - the Minnesota prior is automatically

activated. Prior hyper-parameters can also be chosen to maximize the marginal data density,

as described in Canova (2007) or Giannone, Lenza and Primiceri (2015). If you prefer this

option, use the command:

options.max_minn_hyper = 1;

BVAR = bvar(y,lags,options);

Note that hyper-parameter maximization does not work with missing data. By default,

optimization is performed unconstrained and Chris Sims optimizer cminwel.m is used (this

is options.max_compute=3).5 The following options can be set in the maximization step:

1. options.index_est is a row vector that selects the parameters to be optimized. By

default, options.index_est=1:5, that is, all five hyper-parameters are optimized.

2. options.lb and options.ub set the lower and upper bounds for the optimization.

Both are row array vectors of the same size of options.index_est.

3. options.max_compute is a scalar selecting the maximization routine to be employed:

• options.max_compute = 1 uses the MATLAB fminunc.m(unconstrained)

• options.max_compute = 2 uses the MATLAB fmincon.m (constrained)

• options.max_compute = 3 uses the Chris Sims’s cminwel.m

• options.max_compute = 7 uses the MATLAB fminsearch.m

The first three are Newton, derivative-based algorithms; the latter is a direct search

(symplex) method based on function comparisons. While typically slower, the latter

method is useful in situations where derivatives are not well behaved.

The ordering of the hyper-parameters must follow the order of the list, i.e. 1 is tau; 5 is

omega. Mixed options can be used as described in the following example.

5The optimizer can be downloaded at https://github.com/naffe15/BVAR .
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Example 2 (Mixed Options Maximization) Using the same data in Example 1, we es-

timate the VAR using a Minnesota prior and 6 lags. We set the overall prior tightness to

10 (instead of the default value of 3) and optimally estimate the sum-of-coefficient and the

co-persistence prior hyper-parameters. We use the MATLAB’s Symplex routine to perform

the optimization. The following set of instructions perform the task:

options.max_minn_hyper = 1;

options.minn_prior_tau = 10; % set tau

options.index_est = [3 4]; % define the hyper-parameters to maximize

options.max_compute = 7; % optimization by Matlab Simplex

lags = 6;

BVAR = bvar(y,lags,options);

The output printed in the command window is reported below

Iteration Func-count min f(x) Procedure

0 1 -3791.37

1 3 -3791.47 initial simplex

2 5 -3792.76 expand

...

37 70 -3800.44 contract inside

Optimization terminated:

the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-03

and F(X) satisfies the convergence criteria using OPTIONS.TolFun of 1.000000e-03

=================================================================

** Initial Hyperpara Values and Log Density **

tau = 10

decay = 0.5

lambda = 5

mu = 2

omega = 2

log density = 3791.4

** Posterior Mode: (Minimization of -Log Density) **

tau = 10

decay = 0.5
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lambda = 1.0533

mu = 1.4001

omega = 2

log density = 3800.4

Maximization Successful: I will use the the mode values.

In this case, the optimum is found and the marginal likelihood increases by nine log points.

Once the maximum is found, the posterior distribution is computed using the optimal hyper-

parameter values. If the maximization is unsuccessful (converge criteria are not satisfied or

Hessian not positive definite are the typical reasons), the posterior distribution is computed

with default values. In such case a warning is issued in the command window.

Often, the maximization is not successful in the first few runs. Issues making routines

fail could be diverse, ranging from ’poor’ initial conditions to the mode too close to the

boundaries of parameter space. It is difficult to give general advices on how to perform the

optimization, as the solution tends to be case specific and to depend on the data used. It is

advisable to start maximizing the log-marginal likelihood using few hyper-parameters, say,

the overall prior tightness, and add one or more parameters at time starting the optimization

from the values obtained in the previous maximization step.

Since draws from the posterior distribution are not needed, rather than using the function

bvar it is possible to speed up the calculating using the function bvar_max_hyper, which is

much faster.

Example 3 (Maximize the Marginal Likelihood Only) We use the same setting of

Example 2. We maximize the marginal likelihood only over the overall tightness (tau), given

default values of the other hyper-parameters. We add an upper and lower bound for tau and

use the MATLAB constraint minimization routine, fmincon.m. The following commands

instruct the toolbox to optimize over the prior tightness hyper-parameter:

clear options

% setting the default values for the hyperparameters

hyperpara(1) = 3; % tau

hyperpara(2) = 0.5; % decay

hyperpara(3) = 5; % lambda

hyperpara(4) = 2; % mu

hyperpara(5) = 2; % omega

% setting the options

options.index_est = 1:1; % hyper-parameter over which to maximize

options.max_compute = 2; % maximize using Matlab fmincon function

options.lb = 0.8; % Lower bound
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options.ub = 10; % Upper bound

[postmode,logmlike,HH] = bvar_max_hyper(hyperpara,y,lags,options);

In the output of the bvar_max_hyper routine postmode has the mode, logmlike the log of

the marginal likelihood at the mode, and HH the Hessian evaluated at the mode. The output

of the optimization process is reported below.

** Initial Hyperpara Values and Log Density **

tau = 3

decay = 0.5

lambda = 5

mu = 2

omega = 2

log density = 3792.6

** Posterior Mode: (Minimization of -Log Density) **

tau = 5.1539

decay = 0.5

lambda = 5

mu = 2

omega = 2

log density = 3802

Thus, the log marginal likelihood increases by nine log points, when tau moves from 3 to

5.15.

Example 4 (continuation) Using the mode value of the maximization in Example 3,

jointly maximize over the overall tightness, the decay and the sum-of-coefficient hyper-parameters.

The bounds for the parameters to be maximized are [0.05, 50]. The commands are as follows

hyperpara(1) = postmode(1); % use as starting value previous mode

options.index_est = 1:3; % set hyper-parameters over which maximize

options.lb = [0.05 0.05 0.05]; % Lower bounds

options.ub = [50 50 50]; % Upper bounds

[postmode,log_dnsty,HH] = bvar_max_hyper(hyperpara,y,lags,options);

The output of the optimization process is:

** Initial Hyperpara Values and Log Density **

tau = 5.1539
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decay = 0.5

lambda = 5

mu = 2

omega = 2

log density = 3802

** Posterior Mode: (Minimization of -Log Density) **

tau = 1.2553

decay = 1.8578

lambda = 1.1325

mu = 2

omega = 2

log density = 3813.9

The log marginal likelihood increases by almost twelve log points with the new optimal

values of tau, decay and lambda. If needed the other two parameters can now be added in

a third stage of the maximization process.

3.1.2 Conjugate priors

Posterior distributions can also be constructed using a Multivariate Normal-Inverse Wishart

conjugate prior. The command to activate this prior is

options.priors.name = ’Conjugate’;

With a conjugate setting, the prior for the autoregressive parameters is centered at zero

with a diagonal covariance matrix of 10 and the prior for the covariance matrix of the

residual is inverse Wishart with a unitary diagonal matrix as scale and n+1 degrees of free-

dom (see appendix A.11 for details). The way the prior is set is consistent with all the

variables of the VAR having the same units. if this is not the case, one should use the op-

tion (options.priors.Phi.cov and/or options.priors.Sigma.scale) which changes the

prior scale of the covariance matrix. In general, the hyper-parameters can be customized as

follows:

• options.priors.Phi.mean is a (n× lags + 1)× n matrix containing the prior means

for the autoregressive parameters.

• options.priors.Phi.cov is a (n× lags + 1)× (n× lags + 1) matrix containing the

prior covariance for the autoregressive parameters.

• options.priors.Sigma.scale is a (n × n) matrix containing the prior scale of the

covariance of the residuals.

• options.priors.Sigma.df is a scalar defining the prior degrees of freedom.
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One can set these options one at the time or jointly. Given this prior, draws are gener-

ated from the posterior distributions using a Gibbs sampler algorithm; see section A.4 for

more details. Draws from the posterior distribution are collected in BVAR.Phi_draws and

BVAR.Sigma_draws, which have the same dimensions as before.

3.1.3 Estimating a VAR with exogenous variables

A V ARX model can be estimated in the toolkit assuming either Jeffrey priors or conjugate

priors; Minnesota priors in VARs with exogenous are not currently supported.

In order to activate the V ARX specification the exogenous variables need to be specified

with the command:

options.controls = z;

where z is a T × q matrix. The first dimension of z is time and must coincide with the

time dimension of y or with the sum of the time dimension of y and the out-of-sample

forecast horizon, see section 3.7 for more details. As in a basic VAR, draws from the pos-

terior distribution are collected in BVAR.Phi_draws and BVAR.Sigma_draws. For each draw

k, the first n × n submatrix of BVAR.Phi_draws(:,:,k) contains the autoregressive ma-

trix of order one and subsequent submatrices higher order lags. The (lags × n)+1 row of

BVAR.Phi_draws(:,:,k) contains the constant, Φ0, if it assumed to be present. The follow-

ing rows contain the estimate of Γ. Lags of exogenous controls can be used and specified as

additional columns in z.

3.2 Computing Impulse Responses

Vector Autoregressive (VAR) models have become very popular to study how certain distur-

bances are dynamically transmitted to macroeconomic aggregates. To study the transmission

of interesting disturbances, we need to impose some structure on the VAR. Once this is done,

one can trace out the causal effects of structural disturbances.

Compared to theoretical business cycle models, VARs are less restricted. For this reason

VAR-based analyses are less likely to be distorted by incorrect specification of the theoretical

equilibrium conditions. The cost of using a limited number of restrictions is that structural

disturbances may be confused, see Canova and Paustian (2011) or Wolf (forthcoming). When

the VAR includes all the theoretical relevant variables, it can be regarded as an unrestricted

representation of the linear solution of a structural macroeconomic model. Under the condi-

tions described in Canova and Ferroni (2019), the dynamic transmission of disturbances in

the structural model can be mapped into structural VAR impulse responses.

Assuming normally distributed innovations6, if the solution of the structural model has

linear (state space) representation, the reduced form VAR innovations ut can be mapped

6For identification non Gaussian VARMA models see Gourieroux, Monfort and Renne (Forthcoming)
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into structural disturbances νt by means of

ut = Ω νt = Ω0 Q νt

where E(νtν
′
t) = I, ΩΩ′ = Σ, Ω0 is the Cholesky decompostion of Σ and Q is an orthonormal

rotation such that Q′Q = QQ′ = In. To recover νt, we need to impose restrictions on Ω.

This is because Σ only contains n(n + 1)/2 estimated elements, while Ω has n2 elements.

Several identification schemes have been proposed in the literature, see Ramey (2016) for a

survey. Once Ω is measured, the dynamics of the endogenous variables in response to the

disturbances can be obtained by means of impulse response functions.

To characterize the posterior distribution of the responses we use the following algorithm

Algorithm 1

Given the posterior distribution p(ϑ|Y ), do the following steps m = 1, ...,M times

1. Draw ϑ(m) = vec(Φ
(m)
0 , ...,Φ

(m)
p ,Σ(m)) from p(ϑ|Y ).

2. Construct the impact matrix Ω(m) and generate a candidate impulse response function

using

x
(m)
t+h =

(
F (m)

)h
G Ω(m) νt

for h = 0, ...,H, where F and G are the matrices of the VAR companion form.

The algorithm will generate M trajectories,
{
y

(m)
t+h:T+H

}M
m=1

; these trajectories can then

be used to obtain numerical approximations to moments, quantiles, or to the empirical

distribution of the impulse response functions. Note that the algorithm works for just-

identified, sign identified or instrument identified models. For over-identified models, see

Canova and Perez-Forero (2015).

The BVAR toolkit allows one to construct responses when disturbances are identified

with a number of schemes and assuming any of the prior described in the previous section;

the baseline function to generate the impulse response function is

[BVAR] = bvar(y, lags, options)

where options can be used to select the desired identification scheme. By default, responses

are computed for 24 periods and constructed assuming a one standard deviation impulse;

both can be changed using the option command as follows

• options.hor controls the horizon for the IRF; default value is 24.

• options.irf_1STD activates a 1% increase in the shock; by default, responses are

computed using one standard deviation impulse in the shock.

In section 3.4 we present examples illustrating the use of several identification schemes.

3.2.1 Recursive or Cholesky identification

The Cholesky decomposition assumes a recursive ordering so that the disturbance to the

first variable is predetermined relative to the disturbances to the variables following in the
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order. For example, in a trivariate VAR with GDP, prices and interest rate in that order,

the Cholesky decomposition implies that disturbances to GDP have an immediate impact

on all variables; disturbances to prices have an immediate impact on prices and the interest

rate, but not on GDP; and disturbances to the interest rate do not have a contemporaneous

impact on GDP or prices. These restrictions imply that the matrix Ω is lower triangular: uyt
upt
urt

 =

 ω1,1 0 0
ω2,1 ω2,2 0
ω3,1 ω3,2 ω3,3

 νyt
νpt
νrt


The Cholesky decomposition is unique, meaning that there is only one matrix lower trian-

gular such that ΩΩ′ = Σ, up to a permutation of the order of the variables. It is easy to

check the order condition for identification (there are n(n+1)/2 restrictions) is satisfied and

thus the scheme produces a point-identified system. Following Rubio-Ramı́rez, Waggoner

and Zha (2010), one can easily check that a Cholesky system is both locally and globally

identified.

By default, the function [BVAR] = bvar(y,lags) computes impulse response functions

based on a recursive identification scheme, in the order the variable are listed in the vector y.

Changing the order of the variables in y will alter the responses of the endogenous variables

only if the innovations in different variables are highly correlated. When the covariance of

ut is almost diagonal, the ordering of the variables is irrelevant. If there are doubts about

the ordering to be used, one can use the estimated covariance matrix produced by bvar

and check which innovations are highly correlated (values above 0.3-0.4 should deserve some

thinking). The estimation routine produces BVAR.Sigma_ols, a n× n matrix containing the

OLS estimate of the variance covariance matrix of the shocks, Σ. The correlation matrix

can be obtained taking that matrix and scaling the off-diagonal elements by the
√
σiiσjj .

Cholesky responses are stored in

BVAR.ir_draws;

BVAR.ir_draws is a four dimensional object (i.e. a n× hor× n× K matrix), where the first

dimension corresponds to the variables, the second to the horizon, the third to the distur-

bances, and the fourth to the responses obtained with particular draw from the posterior

distribution of the VAR parameter. Note that in a Cholesky decomposition the elements

of Ω are treated as fixed when drawing from the posterior of VAR parameters. Such an

approach is valid as long as there is a one-to-one mapping between the u’s and the ν’s.

3.2.2 Long run identification

The implementation of long run restrictions follows Gali (1999). We assume that the first

variable in the y lists is specified in log difference and that the first disturbance has long run

effects on the first variable.7 To activate identification via the long run restrictions, the user

7See Appendix A.7 for details.
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needs to set the following option:

options.long_run_irf = 1;

Responses obtained with this identification scheme are stored in

BVAR.irlr_draws

where BVAR.irlr_draws is a four dimensional object (i.e. a n× hor× n× K matrix), where

the first dimension corresponds to the variables, the second to the horizon, the third to

the disturbances, and the fourth to the responses obtained with particular draw from the

posterior distribution of the parameters.

Typically, the variables other than the first one are assumed to be stationary and specified

in (log) level. More than one long run shock, as in Fisher (2006), can be estimated by

introducing more variables in first difference. I.e. VAR may include the growth rate of

the relative price of consumption over investment and the growth rate of output and other

variables. The first shock identified via long run restrictions corresponds to the investment

specific technological change, i.e. the only shock affecting the long run level of the relative

price; the second innovation corresponds to the permanent neutral technology shock so that

the long run level of output is determined by investment specific and permanent neutral

shocks.

3.2.3 Sign and magnitude restrictions identification

A popular way to impose loose restrictions and identify a set rather than a point is to employ

sign constraints, see Canova and de Nicolo (2003) and Uhlig (2005). Sign restrictions are

flexible: they can be imposed on one or more variables, at one or multiple horizons, to

identify one or more shocks. We generate candidate draws using the algorithm discussed in

Rubio-Ramı́rez et al. (2010).

Sign restriction are activated by setting the following option:

options.signs{1} = ’y(a,b,c)>0’

where a, b, and c, are integer. The syntax means that shock c has a positive impact on

variable a at horizon b. There is no limit to the number of restrictions one can impose.

Note that the larger the set of restrictions, the harder it is to find a rotation satisfying them,

and thus the longer the time it takes to construct impulse response functions. When a large

number of restrictions are imposed, one or no rotation may be found.

Accepted responses and accepted rotations are stored in, respectively

BVAR.irsign_draws BVAR.Omegas;

BVAR.irsign_draws is a four dimensional object (a n× hor× n× K matrix), where the first

dimension corresponds to the variables, the second to the horizon, the third to the distur-

bances, and the fourth to the responses obtained with a particular draw from the posterior
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distribution of the parameters and one accepted rotation. BVAR.Omegas is a three dimen-

sional object (a n×n×K matrix) where the first dimension corresponds to the variables, the

second to the disturbances, and the third to a particular draw from the posterior distribution.

The syntax above is quite general and allows to impose a variety of restrictions. For

example, one could also impose magnitude restrictions, where a certain shock has some

particular sign on a variable k at horizon h and it is bounded (above, below, or both). For

example, one could use:

options.signs{1} = ’y(a,b,c)>m’

options.signs{2} = ’y(a,b,c)<M’

where m and M are positive numbers with M > m and as before a, b, and c, are integer

corresponding to the variable, the horizon, and the shock of interest.

One could also impose magnitude restrictions on the maximum of the cumulative response

of a specific variable as follows:

options.signs{1} = ’max(cumsum(y(a,:,c),2))<m’

where cumsum(X,DIM) computes the cumulative sum of X along the dimension specified by

DIM. Alternatively, one could impose the constraint that the impact elasticity between the

variables a_1 and a_2 (i.e. the ratio of the responses of two variables in log-levels) is larger

than a threshold, i.e.

options.signs{1} = ’y(a_1,1,c)/y(a_2,1,c)>m’

In general, the toolkit allows one to build generic restrictions using any mathematical oper-

ation on the elements of the three dimensional object y.

Needless to say that one must justify where these bounds come from. In some cases,

elasticity restrictions or capacity constraints can be used to impose these bounds (see Kilian

and Murphy (2012)). In others, cross sectional differences can be used (see De Graeve and

Karas (2014)). In many situations, however, one has to think hard why such bounds may

be reasonably imposed. Again, the larger the set of restrictions, the harder it is to find

a rotation satisfying them, and the longer becomes the time it takes to construct impulse

response functions.

3.2.4 Narrative restrictions identification

The sets of responses identified with sign restrictions tend to be large, making inference

sometimes difficult. One could reduce the length of the intervals by imposing additional

sign restrictions or restricting other shocks, even if they are not direct interest, see Canova

and Paustian (2011). Alternatively, one may also have a-priori information on the sign or

the relative magnitude of shocks (see Ben Zeev (2018) or Antolin-Diaz and Rubio-Ramı́rez
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(2018)). For example, using the Volker period (say 1979-1982), a contractionary monetary

policy disturbance need to satisfy certain sign restrictions and, in addition, be positive during

these years. To see how these restrictions can be imposed, we use the structural VMA format:

yt = ut + Ψ1ut−1 + ...+ Ψtu1 + Ψt

= ϕ0νt + ϕ1νt−1 + ...+ ϕtν1 + Ψt

where ϕ0 = Ω, ϕj = ΨjΩ for j = 1, ..., t and Ψt has deterministic variables.

Sign restrictions are imposed on the elements of ϕj for some j, j = 0, ..., t for a candidate

Ω to be accepted. Narrative restriction are instead imposed on νt, t = [τ0, τ1], where τ0 and

τ1 are chosen by the user for a candidate Ω to be accepted. In other words, we now have

two types of sign restrictions: on ϕj and on νt. If the second type of restrictions are binding,

the set of accepted impulse responses should be smaller at each j.

Narrative restrictions can be jointly activated with sign restrictions by setting, in addition

to the sign option, the following option:

options.narrative{1} = ’v(tau,n)>0’

where tau is a vector of integers and n is an integer. The syntax means that shock n is

positive on the time periods tau. Note that if no signs restrictions are specified, a warning

message is printed. There is no limit to the number of narrative restrictions on can impose.

However, the larger the set of restriction, the harder is to find a rotation jointly satisfying

sign and narrative constraints.

Accepted responses and accepted rotations are stored in, respectively,

BVAR.irnarrsign_draws BVAR.Omegan;

BVAR.irnarrsign_draws is a four dimensional object (i.e. a n× hor× n× K matrix), where

the first dimension corresponds to the variables, the second to the horizon, the third to

the disturbances, and the fourth to the responses obtained with a particular draw from

the posterior distribution of the parameters and one accepted rotation. BVAR.Omegan is a

three dimensional object (i.e. a n× n× K matrix) where the first dimension corresponds to

the variables, the second to the disturbances, and the third to a particular draw from the

posterior distribution.

Narrative restriction can be imposed also on the cumulative value of the structural shock

of interest using the following option

options.narrative{1} = ’sum(v(tau_0:tau_1),n)>0’

where tau_0 and tau_1 are integers and n is an integer. The syntax means that the sum of

the shock n between periods tau_0 and tau_1 is positive.
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3.2.5 Mixed identification strategy

One can also identify shocks using a mix of the primitive restrictions we have discussed so

far. For example, one can identify shocks using zeros and sign restrictions, see Arias, Rubio-

Ramı́rez and Waggoner (2018). We generate candidates using the algorithm discussed in

Binning (2013). Let j, k, k_1 and k_2 be integers. Below is an example of a mix of

restrictions to identify different shocks.

1. Sign restrictions on impact:

options.zero_signs{1} = ’y(j,k)=+1’

This restriction implies that shock k has a positive effect on the j-th variable on

impact. ’y(j,k)=-1’ imposes a negative sign on impact on variable j.

2. Zero restrictions on impact (short run):

options.zero_signs{2} = ’ys(j,k_1)=0’

This restriction implies that shock k_1 has a zero impact effect on the j-th variable.

3. Zero long run restrictions:

options.zero_signs{3} = ’yr(j,k_2)=0’

This restriction implies that shock k_2 has a zero long run effect on the j-th variable.

Notice that short and long run restrictions are distinguished by the addition of r or s

to the y vector.

Accepted responses and accepted rotations are stored in, respectively

BVAR.irzerosign_draws BVAR.Omegaz;

BVAR.irzerosign_draws is a four dimensional object (i.e. a n× hor× n× K matrix), where

the first dimension corresponds to the variables, the second to the horizon, the third to

the disturbances, and the fourth to the responses produced by a particular draw from the

posterior distribution. BVAR.Omegaz is a three dimensional object (i.e. a n× n× K matrix),

where the first dimension corresponds to the variables, the second to the shocks of interest,

and the third to a particular draw from the posterior distribution.

3.2.6 External, instrumental or proxy variable identification

The proxy, external, or instrumental variable approach was pioneered by Stock and Watson

(2012) and Mertens and Ravn (2013). The basic idea is that the disturbance of interest

is identified by the predicted value in the regression of a reduced form VAR innovation on

the instrument. For the approach to provide valid inference we need the instrument to be

relevant (i.e. correlated with the disturbance of interest) and exogenous (uncorrelated with
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the other disturbances). The regression allows one to identify a column of the rotation

matrix, and thus recover transmission mechanism of one disturbance.8

The toolkit considers the case where one wishes to identify one structural disturbance

and has at least one instrument, stored in the array column vector called instrument, is

available. The toolkit computes proxy/IV responses when the following options is activated

options.proxy = instrument;

The length of the times series for the instrument cannot be longer than the length of the time

series of the innovation, i.e. T - lags. By default, it is assumed that the last observation

for the instrument coincides with the last observation of the VAR (this need not be the case

for the first observation). When this is not the case, the user needs to inform the toolkit

about the number periods that separate the last observation of the instrument and the last

observation of the innovation as follows

options.proxy_end = Periods

where Periods corresponds to the number time periods between the last observation of the

instrument and the last observation in the innovation.

Impulse responses identified via external instruments are stored in

BVAR.irproxy_draws;

BVAR.irproxy_draws is a four dimensional object (i.e. a n × hor × n × K matrix), where

the first dimension corresponds to the variables, the second to the horizon, the third to

the disturbances, and the fourth to the responses produced by a particular draw from the

posterior distribution.

Multiple proxy variables are allowed to identify one structural shocks. However, the codes

do not allow to identify multiple structural shocks with multiple proxy variables. Clearly,

if one is interested in identifying two disturbances, she can repeat the IV exercise twice

separately for each disturbance.

By convention, the structural shock of interest is ordered first. Responses to the IV

identified disturbance can be retrieved using

BVAR.irproxy_draws(:,:,1,:);

3.2.7 Additional identification schemes

While the toolbox covers a number of standard identification schemes, it does not exhaust all

of them, e.g. Angeletos, Collard and Dellas (2018). Yet, it can be used to generate draws for

the posterior distribution for the impulse responses obtained with additional methods as long

as the desired identification scheme makes use of an orthonormal matrix Q, i.e. QQ’=Q’Q=I.

8See appendix A.6 for details.
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Two functions are useful for this purpose; the first function generates orthonormal matrices

of size n

Q = generateQ(n)

where n is an integer. The second function computes responses, given Q:

y = iresponse(Phi, Sigma, hor, Q)

where y is a n×h×n array containing the responses; and the first dimension corresponds to the

variable, the second to the horizon, and the third to the shock. The inputs are, respectively,

the matrix of the autoregressive parameters (Φ), the variance covariance matrix (Σ), the

maximum horizon of the responses (hor), and the orthonormal (rotation) matrix (Q). If the

latter is omitted, the identity matrix is used.

To illustrate how these commands could be employed, consider the situation where one

wants to identify the shock maximizing the forecast error variance decomposition of a partic-

ular variable at a specific horizon, see section 3.3. Given a draw (Phi,Sigma) of the reduced

form VAR parameters, one can use the following function, which finds the orthonormal

rotation maximizing the forecast error variance decomposition,

Qbar = max_fevd(i, h, j, Phi, Sigma, Kappa)

where i stands for the variable, h stands for the horizon and j corresponds to the shock.

The function max_fevd generates Kappa draws for orthonormal matrices calling the function

generateQ.m; if it is omitted, its value is set to 1000. For each of these draws, the forecast

error variance decomposition (FEVD) at horizon h is computed (see section 3.3 and appendix

A.8); FEVD is a n× n matrix where the (i,j) element corresponds to the share of variance

of variable i explained by shock j. Then, Qbar corresponds to the rotation matrix where

the latter is maximized.

Once this is obtained, one can use the following loop to construct the distribution of the

responses of interest. Assume that the shock of interest is the first and we want it to explain

the largest portion of the variance of the first variable four periods ahead:

j = 1; % shock

i = 1; % variable

h = 4; % periods

for k = 1 : BVAR.ndraws % iterate on posterior draws

Phi = BVAR.Phi_draws(:,:,k);

Sigma = BVAR.Sigma_draws(:,:,k);

Qbar = max_fevd(i, h, j, Phi, Sigma);

% compute responses with a particular posterior draw

% and the rotation matrix Qbar.

[ir] = iresponse(Phi, Sigma, hor, Qbar);

% store the IRF of interest
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BVAR.irQ_draws(:,:,:,k) = ir;

end

3.2.8 Plotting impulse responses

One can obtain numerical approximations to the distribution of the impulse response func-

tions. Typically, numerical approximations are constructed sorting the IRF draws and plot-

ting the percentiles of interests. The function that performs that task is

plot_irfs_(irfs_to_plot)

irfs_to_plot is a fourth dimensional array where the first dimension corresponds to the

variables, the second to the horizon, the third to the shocks, and the fourth to the responses

produced by a particular draw from the posterior distribution. For example, when con-

sidering a recursive identification, type irfs_to_plot = BVAR.ir_draws. The output is a

sequence of figures reporting the response functions, one figure per shock; by default, each

figure consists of the upper bound integers of
√
n ×
√
n subplots reporting the IRF of all

variables included in the VAR.

In each panel, a black solid line represents the median response and the gray area cor-

responds to the 68% high probability density (HPD) set. Different settings are possible. If

one wants to change the default options type:

plot_irfs_(irfs_to_plot, options)

where the available options are:

• options.varnames is a cell string containing the variable names for the subplot titles.

The cell must be of the same length as the first dimension of irfs_to_plot.

• options.shocksnames is a cell string containing the shock names for the figure title.

The cell must be of the same length as the third dimension of irfs_to_plot.

• options.normz is a scalar that normalizes the responses to a 100% increase when the

impulse set to 1 (as opposed to a one standard deviation).

• options.conf_sig is a number between 0 and 1 indicating the size of HPD set to be

plotted; the default is 0.68.

• options.conf_sig_2 is a number between 0 and 1 indicating the size of the second

HPD set to be plotted (if more than one set are required).

• options.nplots is a 1× 2 array indicating the structure of the subplots.

• options.saveas_strng a string array indicating the name of the plot.

• options.saveas_dir a string array indicating the directory where to save the plot;

the figures are not saved if options.saveas_dir or options.saveas_strng are not

specified.
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• options.add_irfs allows to add additional IRF to be plotted when one wants to

compare responses.

3.3 Forecast error variance and historical decomposition

Often researchers are interested in whether certain shocks explain the second moment of a

VAR variable (forecast error variance decomposition, FEVD) or its level (historical decom-

position). Since structural shocks are orthogonal, we can rewrite the vector of structural

shocks as follows

νt = ν1
t + ...+ νnt νkt ∼ N(0, Jk) ∀k = 1, .., n

where each νkt is a n× 1 vector of zeros except for k-th position. Similarly, Jk is a n × n a

matrix with zeros everywhere and with one in the (k, k) position. With this setup it is easy

to explain what the two decompositions do.

Historical decomposition

The historical decomposition is typically employed to measure the contribution of certain

structural shocks to the deviation of the level variables from a forecasted path. That is, we

want to answer the question: how much of the deviation of inflation from the predicted path

is due to oil price shocks? To perform an historical decomposition we use the structural

VMA form:

yt = ut + Ψ1ut−1 + ...+ Ψtu1 + Ψt

= ϕ0vt + ϕ1vt−1 + ...+ ϕtv1 + Ψt

where, as previously mentioned, ϕ0 = Ω and ϕj = ΨjΩ for j = 1, ..., t are functions of

(Φ1, ...,Φp)
9 and Ω, and Ψt is the pure deterministic component. Given the linearity of the

model and orthogonal structure of vt we can decompose the mean adjusted level of the VAR

observables (yt −Ψt) as the sum of the contribution of each shock, i.e.

yt −Ψt =
t∑

j=0

ϕjv
1
t−j + ...+

t∑
j=0

ϕjv
n
t−j

In the toolkit, an historical decomposition is performed with the function

[yDecomp,v] = histdecomp(BVAR,opts);

where yDecomp is a T× n× n+1 array where the first dimension corresponds to the time, the

second to the variable, and the third to shock with the n+1 element indicating the initial

condition Ψt. v is the T× n array of structural innovations.

The first input of the histdecomp.m function is BVAR, the output of the bvar.m function.

By default the function uses the mean value of the parameters over posterior draws and a

9See section A.1.1 in the appendix.
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recursive identification scheme. Both settings can be changed using opts. opts.Omega is a

n× n array that defines the rotation matrix to be used; opts.median = 1 uses the median

of the posterior draws and opts.draw = integer selects instead a specific draw from the

posterior distribution.

Remark 5 (Historical Decomposition with non stationary data) When data is non-

stationary (e.g. it contains real quantity and price indices), the deterministic component is

overwhelmingly dominant. Thus, a historical decomposition of growth rates or of the vari-

ables in deviation from the deterministic component tends to be more informative.

The function that plots the historical decomposition is

plot_shcks_dcmp_(yDecomp, BVAR, optnsplt)

where optnsplt is optional and controls a number of options:

• optnsplt.plotvar_ a cell array with the variables that one wishes to consider for the

decomposition. Without this option, the decomposition of all variables in the VAR

is plotted. By default, variables’ names are Var1, Var2, ...., VarN and are stored in

BVAR.varname. Thus, if one is only interested in the historical shock decomposition

of the variable ordered second in the VAR, she should type optnsplt.plotvar_= {

’Var2’ }. Notice: names in BVAR.varnames can be changed to any string array while

preserving the order of the variable entering the VAR specification.

• optnsplt.snames_ is a cell array with the shocks that one wishes to consider for the

decomposition. Shocks are called Shck1, Shck2, ...., ShckN. Dy default, the decom-

position consider each shock individually. One could also group some of them. For

example, when N = 4 and one is interested in the contribution of the first shocks and

the remaining three, one can type

optnsplt.snames_ = {{ ’Shck1’} ; {’Shck2’ ’Shck3’ ’Shck4’} };

In such case, the plot consists of two bars, one that identifies the contribution of Shck1

only and one that groups together the contributions of Shck2, Shck3, Shck4.

• optnsplt.stag_ is a cell array with the shocks names or shock aggregation names.

By default, shocks are called Shck1, Shck2, ...., ShckN. When optnsplt.snames_ is

employed, one must declare also the names for the shock groups. As in the previous

example, when N = 4 and one is interested in the contribution of the first shocks and

the remaining three, one can type:

optnsplt.stag_ = { {’Shck1’} ; {’Shcks: 2+3+4’} };

• optnsplt.time is a T-lags × 1 vector that defines the time vector. By default,

optnsplt.time = [1 : 1 : T-lags].

26



• Other options available are options.saveas_dir and options.save_strng which are

described in 4.2.

Forecast error variance decomposition (FEVD)

The contribution of the structural shocks to the volatility of the variables is usually measured

by means of the forecast error variance decomposition. The variance decomposition can be

used to answer the question: how much of the fluctuations in inflation are due to supply

shocks? Let ŷt+h = Et(yy+h) be the h-step head forecast of the VAR model, which is the

conditional expectation of yt given time t information; we have:

ŷt+h = Et(ϕ0vt+h + ϕ1vt+h−1 + ...+ ϕhvt + ...+ ϕt+hv1 + Ψt+h)

= ϕhvt + ...+ ϕt+hv1 + Ψt+h

We define the forecast error at horizon h as

et+h = yy+h − ŷt+h

= ϕ0vt+h + ϕ1vt+h−1 + ...+ ϕh−1vt+1

The forecast error variance and its decomposition is given by10

E(et+he
′
t+h) =

[
h−1∑
`=0

ϕ`J1ϕ
′
`

]
+ ...+

[
h−1∑
`=0

ϕ`Jnϕ
′
`

]

where
[∑h−1

`=0 ϕ`J1ϕ
′
`

]
represents the contribution of shock 1 to the h-step ahead forecast

error variance decomposition.

The horizon h FEVD is called with the function

FEVD = fevd(hor,Phi,Sigma,Omega);

where FEVD is a n × n array containing the fraction explained by each shock; the first di-

mension corresponds to the variable, and the second to the shock; hence, the (i,j) element

corresponds to the share of variance of variable i explained by shock j at horizon h. The

inputs are respectively the horizon hor, the autoregressive parameters Φ, the variance co-

variance matrix Σ, and the rotation matrix Ω. If the latter is omitted, the function considers

a recursive identification.

3.4 The transmission of structural disturbances: some examples

In this section we use the monthly US data of Gertler and Karadi (2015) (henceforth GK) to

study the transmission of a number of structural shocks using various identification schemes.

The DataGK.mat contains the log of industrial production index (logip), the log of CPI

10See appendix A.8 for details
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(logcpi), the one-year government bond rate (gs1) and the excess bond premium (ebp)

which are the four series used by the Gertler and Karadi (2015) paper. The sample runs

from 1979m7 to 2012m6.

Example 6 (Responses to Monetary Policy shocks, recursive identification, default commands)

We estimate and plot the responses to a monetary policy impulse (a shock to the one-year

government bond rate, gs1) identified using a recursive identification scheme and uninfor-

mative priors. We use the same lag length as in GK, i.e. twelve. We proceed in steps. First,

we prepare the data. Since flat priors are used by default, no specific instruction is needed.

By default, the horizon of the responses is set to 24. We modify it to have the same horizon

as in GK and then run the model. Recall that responses are stored in bvar1.ir_draws. We

sort them along the fourth dimension which corresponds to the draws and then select the

response of interest. The relevant disturbance is an orthogonalized shock to gs1, which is

ordered third. Suppose that the variable of interest is the interest rate, which is also ordered

third. We plot the median response and some percentiles of interest. The commands are as

follows:

load DataGK % load the data in the workspace

y = [logip logcpi gs1 ebp]; % combine the data in a Tx4 matrix y

lags = 12; % number of lags

options.hor = 48; % response horizon

% run the BVAR

bvar1 = bvar(y,lags,options);

% sort the responses

irf_sort = sort(bvar1.ir_draws,4);

% select variable and shock of interest

irf_interest = squeeze(irf_sort(3,:,3,:));

irf_m = irf_interest(:,0.5*bvar1.ndraws); % median response

irf_u = irf_interest(:,0.05*bvar1.ndraws); % 5th percentile

irf_l = irf_interest(:,0.95*bvar1.ndraws); % 95th percentile

% plots

plot(irf_m,’k’); hold on; plot(irf_u,’k-.’); plot(irf_l,’k-.’); axis tight

Example 7 (Plot responses with build-in function) We use the toolbox function plot_irfs_

to plot the responses. We display 68% and 90% credible sets. We use a different variable

ordering for the plot, i.e. the one-year government bond rate (gs1) is ordered first followed

by log of industrial production index, the log of CPI and the excess bond premium. We use

titles and save the responses. Figure 1 displays the results.

% Define the IRFs

% index of the shocks of interest (shock to gs1)
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indx_sho = [3];

% Order of the variables in the VAR

% 1. logip; 2. logcpi; 3.gs1; 4. ebp

% Change the order of the variables for plotting

% 1. gs1; 2. logcpi; 3. logip; 4. ebp

indx_var = [3, 2, 1, 4];

% specify the responses

irfs_to_plot = bvar1.ir_draws(indx_var,:,indx_sho,:);

% Customize the plot

% names of the variables to be plotted.

options.varnames = {’1 year rate’ ’CPI’ ’IP’ ’EBP’ };
% name of the directory where the figure is saved

options.saveas_dir = ’./irfs_plt’;

% name of the figure to be saved

options.saveas_strng = ’cholesky’;

% name of the shock

options.shocksnames = {’MP’};
% additional 90% HPD set

options.conf_sig_2 = 0.9;

% finally, the plotting command

plot_irfs_(irfs_to_plot,options)
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Figure 1: Responses to a one standard deviation Cholesky orthogonalized innovation in MP. Light
(dark) gray bands report 68 (90)% credible sets.
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Example 8 (Responses to monetary Policy shocks, sign identification) Assume the

same data and the same setting of Exercise 6. We identify monetary policy disturbances as-

suming, without loss of generality, that the first shock is the monetary policy disturbance

and that a monetary tightening increases the one-year government bond rate and depresses

the CPI price level. We assume that these restrictions hold on impact and for the next two

months. These constraints can be coded below. We plot the responses with the same settings

as in Example 7 and figure 3 reports the results.

% specify the restrictions

options.signs{1} = ’y(3,1:3,1)>0’; % 1Y rate up in periods 1 to 3

options.signs{2} = ’y(2,1:3,1)<0’; % CPI down in periods 1 to 3

% run the BVAR

bvar2 = bvar(y,lags,options);

% Define the IRFs

% index of the shocks of interest (shock to gs1)

indx_sho = [1];

% IRFs (indx_var is defined in Example 7: 1. gs1; 2. logcpi; 3. logip; 4. ebp )

irfs_to_plot = bvar2.irsign_draws(indx_var,:,indx_sho,:);

% Customize the plot

% name of the figure to be saved

options.saveas_strng = ’signs’;

% name of the shock

options.shocksnames = ’MP tightening’;

plot_irfs_(irfs_to_plot,options)

31



Figure 2: Responses to monetary policy tightening, sign restrictions. Light (dark) gray bands
report 68 (90)% credible sets.
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Example 9 (Responses to Monetary Policy shocks, sign and narrative restrictions)

Assume the same data and the same setting of Exercise 8. We add additional narrative re-

strictions on the MP shocks. We use the information during the Volker mandate and consider

four large tightening episodes in the Romer and Romer database. In particular, we assume

that in September, October and November 1980 and May 1981, monetary policy shocks were

positive. Since the sample starts in 1979m7 and there are 12 lags, the first reduced form

innovation is for 1980m7. Therefore, the innovation for 1980m09 is the third, for 1980m10

the forth, for 1980m11 the fifth, and the innovation for 1981m05 the eleventh. We specify

the restrictions below. Figure 3 reports the results. Bands are a bit narrower relative to the

case of signs restriction. For sharper results, one could add more narrative restrictions, at

the cost of increasing the computation burden. .

% sign restrictions

options.signs{1} = ’y(3,1:3,1)>0’; % 1Y rate up in period 1 to 3

options.signs{2} = ’y(2,1:3,1)<0’; % CPI down in period 1 to 3

% narrative restrictions

options.narrative{1} = ’v([3:5],1)>0’; % MP tightening in 1980m9-m11

options.narrative{2} = ’v([11],1)>0’; % MP tightening in 1981m5

% run the BVAR

bvar3 = bvar(y,lags,options);

% Define the IRFs of interest

% index of the shocks of interest

indx_sho = [1];

% IRFs (indx_var is defined in Example 7: 1. gs1; 2. logcpi; 3. logip; 4. ebp )

irfs_to_plot = bvar3.irnarrsign_draws(indx_var,:,indx_sho,:);

% Customize the plot

% name of the directory where the figure is saved

options.saveas_dir = ’./irfs_plt’;

% name of the figure to be saved

options.saveas_strng = ’signsnarrative’;

% name of the shock

options.shocksnames = {’MP tightening’};
plot_irfs_(irfs_to_plot,options)
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Figure 3: Responses to monetary policy tightening, sign and narrative restrictions. Light (dark)
gray bands report 68 (90)% credible sets.
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Example 10 (Responses to monetary policy shocks, identification with instruments)

We instrument the one-year government bond innovation with the GK preferred monetary

policy surprise proxy. The ordering of the variables in y is the following: one-year govern-

ment bond rate(gs1), log of industrial production index (logip), log of CPI (logcpi) and the

excess bond premium (ebp). The commands reported below allow to construct the responses

with external instruments. The responses are plotted in figure 4.

% define the dataset for the identification with IV

y = [gs1 logip logcpi ebp];

% load the instruments

numi = xlsread(’factor_data.csv’,’factor_data’);

% use the same instrument as GK

options.proxy = numi(:,4);

% Since both instruments and data end in 2012m6 - no more instructions are needed.

% run the BVAR

bvar6 = bvar(y,lags,options);

% Define the IRFs of interest

% shock index

indx_sho = [1];

% Keep the same order of variables as in the estimation

% 1. gs1; 2. logip; 2. logcpi; 4. ebp;

indx_var = [1:4];

irfs_to_plot = bvar6.irproxy_draws(indx_var,:,indx_sho,:);

% Customize the plot

% names for the variables in the plots

options.varnames = {’1 year rate’ ’IP’ ’CPI’ ’EBP’};
% name of the figure to be saved

options.saveas_strng = ’IV’;

% name of the shock

options.shocksnames = {’MP’};
plot_irfs_(irfs_to_plot,options)
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Figure 4: Responses to a monetary policy tightening, instrumental variables identification. Gray
bands report 68 (90)% credible sets.
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Example 11 (Responses to AD, AS, and MP shocks identified with a mixture of restrictions)

Assume the same data and the same setting of Exercise 6. We jointly identify an aggregate

supply (AS), an aggregate demand (AD), and a monetary policy (MP) disturbance using the

following restrictions: (1) the aggregate demand disturbance increases the industrial produc-

tion, prices (CPI) and the one year government rate; (2) the aggregate supply disturbance

increases industrial production and decreases prices, (3) the monetary policy disturbance

does not have contemporaneous effects on prices and quantities, but positively affect the ex-

cess bond premium. These sets of restrictions, can be implemented with instructions listed

below. We plot the responses to the three shocks with the same settings as in Example 7. Fig-

ures 5, 6 and 7 present the responses to a one standard deviation orthogonalized innovation

in AD, AS and MP.

% specify the restrictions

% 1) ad = aggregate demand disturbance [sign restrictions]

options.zeros_signs{1} = ’y(1,1)=1;’; % positive sign on IPI

options.zeros_signs{end+1} = ’y(2,1)=1;’; % ’end+1’ adds a new cell - positive sign on CPI

options.zeros_signs{end+1} = ’y(3,1)=1;’; % positive sign on gs1

% 2) as = aggregate supply shock [sign restrictions]

options.zeros_signs{end+1} = ’y(1,2)=1;’; % positive sign on IPI

options.zeros_signs{end+1} = ’y(2,2)=-1;’; % negative sign on CPI

% 3.1) mp = monetary policy shock [zero restrictions]

options.zeros_signs{end+1} = ’ys(1,3)= 0;’; % no effect on impact on IPI

options.zeros_signs{end+1} = ’ys(2,3)= 0;’; % no effect on impact on CPI

% 3.2) mp = rate and bond premium go up [sign restrictions]

options.zeros_signs{end+1} = ’y(3,3)=1;’; % positive sign on gs1

options.zeros_signs{end+1} = ’y(4,3)=1;’; % positive sign on EBP

% run the BVAR

bvar4 = bvar(y,lags,options);

% Define the shocks of interest

indx_sho = [1:3];

% IRFs (indx_var is defined in Example 7: 1. gs1; 2. logcpi; 3. logip; 4. ebp )

irfs_to_plot = bvar4.irzerosign_draws(indx_var,:,indx_sho,:);

% Customize the plots

options.saveas_strng = ’zerossigns’;

options.shocksnames = {’ADshock’ ’ASshock’ ’MPshock’}; %

plot_irfs_(irfs_to_plot,options)
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Figure 5: Responses to a one standard deviation innovation in AD identified with zero and sign
restrictions. Light (dark) gray bands report 68 (90)% credible sets.
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Figure 6: Responses to a one standard deviation innovation in AS identified with zero and sign
restrictions. Light (dark) gray bands report 68 (90)% credible sets.
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Figure 7: Responses to a one standard deviation innovation in MP identified with zero and sign
restrictions. Light (dark) gray bands report 68 (90)% credible sets.
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Example 12 (Responses to technology shocks, identified via long run restrictions)

Assume the same data and the same setting of Exercise 6. We identify a technology shock

assuming that it is the only shocks having a long run impact on industrial production. We

specify log of industrial production in first difference. For housekeeping we also remove pre-

vious identification settings. These commands are detailed below. We plot the responses with

the same settings as in Example 7. Figure 8 reports the responses.

% Housekeeping: remove previous identification settings

options = rmfield(options,’signs’);

options = rmfield(options,’zeros_signs’);

options = rmfield(options,’saveas_strng’);

options = rmfield(options,’shocksnames’);

options = rmfield(options,’proxy’);

% define the data for the identification of LR shock (remove first obs)

y = [diff(logip) logcpi(2:end) gs1(2:end) ebp(2:end)];

% Activate the LR identification and run the BVAR

options.long_run_irf = 1;

bvar5 = bvar(y,lags,options);

% Define the IRFs of interest

% shock index

indx_sho = [1];

% Define the order of the variables for the plot

% 1. D(logip); 2. logcpi; 3. gs1; 4. ebp;

indx_var = [1:4];

irfs_to_plot = bvar5.irlr_draws(indx_var,:,indx_sho,:);

% Transform D(logip) back to logip

cirfs_to_plot = cumsum(bvar5.irlr_draws(indx_var,:,indx_sho,:),2);

irfs_to_plot(1,:,:,:) = cirfs_to_plot(1,:,:,:);

% Customize the plot

% variable names for the plots

options.varnames = { ’IP’ ’CPI’ ’1 year rate’ ’EBP’};
% name of the figure to be saved

options.saveas_strng = ’LR’;

% name of the shock

options.shocksnames = {’Technology’}; %

plot_irfs_(irfs_to_plot,options)
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Figure 8: Responses to a technology shock identified with long run restrictions. Light (dark) gray
bands report 68 (90)% credible sets.
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Example 13 (Transmission of Monetary Policy shocks with flat and Minnesota priors)

Assume the same settings in Example 6. We now consider a different prior; in particular,

assume a Minnesota prior with a relatively loose overall shrinkage, e.g. τ = 0.5, and use the

first two years of the sample to calibrate the first and second moment of the prior. We com-

pute the responses and compare them with the median response obtained with uninformative

priors. The following commands allow to compare the responses under the two settings. The

responses are reported in figure 9. Responses computed with the Minnesota prior tend to be

more persistent than those obtained with uninformative (flat) priors.

lags = 12;

options.presmaple = 12; % presample + lags to initialize the minnesota prior.

options.prior.name = ’minnesota’;

options.minn_prior_tau = 0.5;

bvar6 = bvar(y,lags,options);

% Define the IRFs of interest

% index of the shocks of interest (shock to gs1)

indx_sho = [3];

% Change the order of the variables for the plot

% 1. gs1; 2. logcpi; 3. logip; 4. ebp

indx_var = [3, 2, 1, 4];

% IRFs

irfs_to_plot = bvar6.ir_draws(indx_var,:,indx_sho,:);

% Customize the plot

% variables names for the plot

options.varnames = { ’1 year rate’ ’CPI’ ’IP’ ’EBP’};
% name of the directory where the figure is saved

options.saveas_dir = ’./irfs_plt’;

% name of the figure to be saved

options.saveas_strng = ’BayesianCholesky’;

% name of the shock

options.shocksnames = {’MP’};
% additional 90% HPD set

options.conf_sig_2 = 0.9;

% add the Cholesky IRF with flat prior

options.add_irfs = squeeze(median(bvar1.ir_draws(indx_var,:,indx_sho,:),4));

% finally, the plotting command

plot_irfs_(irfs_to_plot,options)

Example 14 (FEVD: The role of monetary policy shocks) We assume the same set-

tings of exercise 6. We compute the share of the forecast error variance at the two years

43



Figure 9: Responses to a monetary policy tightening, Minnesota prior, recursive identification.
Gray bands report 68 (90)% credible sets. The blue line is the median response with flat priors.

1 year rate

10 20 30 40

0

0.1

0.2

0.3

0.4

0.5

0.6

CPI

10 20 30 40

-0.4

-0.2

0

0.2

0.4

0.6

IP

10 20 30 40

-1

-0.5

0

0.5

EBP

10 20 30 40

-0.06

-0.04

-0.02

0

0.02

0.04

horizon explained by monetary policy shocks. The commands are described below.

% use the mean of the posterior distribution

Phi = mean(bvar1.Phi_draws,3);

Sigma = mean(bvar1.Sigma_draws,3);

% index of the shock of interest (shock to gs1)

indx_sho = [3];

% 2 years ahead forecast error

hh = 24;

FEVD = fevd(hh,Phi,Sigma);

Recall that FEVD is a 4× 4 matrix where rows correspond to variables (in the same order

as in the VAR) and columns to shocks. Thus, the monetary policy shock is ordered third and

the contribution of monetary policy at two year horizon is given by the FEVD(:,indx_sho)
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column, which gives

%=====================================================%

% Forecast Error Variance Decomposition of MP shock %

% Percentage of volatility explained by MP shock %

logip logcpi gs1 ebp

3.2456 3.6060 66.1847 1.5028

%=====================================================%

Example 15 (Historical contribution of demand, supply and monetary policy shocks)

We consider the same settings of exercise 11. We plot the historical decomposition of the

one year government bond and the excess bond premium in terms of AD, AS, MP and ini-

tial conditions. We combine together demand and supply shocks. The commands described

below generate the required historical decomposition. Figures 10 and 11 report the historical

decomposition of the one year government bond and excess bond premium from 2006 until

2012.

% use the zero-sign restrictions average rotation

opts_.Omega = mean(bvar4.Omegaz,3);

% by default use the mean over posterior draws

[yDecomp,ierror] = histdecomp(bvar4,opts_);

% yDecomp = historical decomposition ordered as

% time, variable, shocks and initial condition

% ierror = structural innovation

% Declare the names of the variables in the order they appear in the VAR

bvar4.varnames = {’IP’ ’CPI’ ’Interest Rate’ ’EBP’};
% select the variables for the plot of the historical decomposition

optnsplt.plotvar_ = {’Interest Rate’ ’EBP’};
% select the shocks combination to report

optnsplt.snames_ = {{’Shck1’ ’Shck2’}; ... Combine Supply and Demand

{’Shck3’};... MP

{’Shck4’} ... Other shock not identified in the VAR

};
% declare the name of the shocks

optnsplt.stag_ = {’Supply+Demand’;
’MP’;

’Other Shocks’;

’Initial Condition’};
% name of the file to save

optnsplt.save_strng = ’y0’;

% define the time for the plot
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optnsplt.time = T(1+lags:end);

% define the directory where the plot is saved

optnsplt.saveas_dir = ’./sdcmp_plt’;

% limit the plot to a specific time window

optnsplt.Tlim = [2006 2012];

% plot the decompostition

plot_sdcmp_(yDecomp,bvar4,optnsplt)
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Figure 10: Historical decomposition of one year government bond in terms of aggregate demand,
aggregate supply, monetary policy, and other shocks and the initial condition.
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Figure 11: Historical decomposition of excess bond premium in terms of aggregate demand,
aggregate supply, monetary policy, and other shocks and the initial condition.
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3.5 A few tricks

As we have mentioned, the toolbox has limitations. For example, it does not deal with

parametric time varying (TVP) coefficient or with stochastic volatility (SV) models. How-

ever, it is easy to account for time variations in the coefficients and in the variance with the

available functions. For example, one can run rolling windows VARs and examine whether

the parameters, the responses, or other interesting statistics vary over time.11

A number of authors highlighted that the responses of real GDP to monetary policy

shocks are larger in the pre-1979Q3 period than in the post-1984Q1 period.12 The following

example describes how one can use the toolbox to measure how much variations there are

in the responses of unemployment to monetary policy disturbances over time.

Example 16 (The responses of unemployment to monetary policy shocks over time)

Consider a three variables VAR with inflation, a measure of economic activity, and the short

term interest rate (as in Primiceri (2005)). Inflation is measured by the annual growth rate

of a chain weighted GDP price index. Unemployment, which is used as a measure of real

activity, refers to the unemployment rate of all workers over 16. The nominal interest rate

is the yield on 3-month Treasury bills, which is preferred to the more conventional federal

fund rate, because it is available for a longer period of time. The sample runs from 1953Q1

to 2007Q4. Two lags are used for the estimation.

We employ a 30-years window and a one year time shift between adjacent windows. Thus,

the first estimation window is 1953Q1:1982Q4, the second is 1954Q1:1983Q4, etc. To speed

up the calculation, we limit attention to the response functions obtained with OLS estimates

of the autoregressive parameters and of the covariance matrix which are stored in the matrix

BVAR.ir_ols with the usual ordering of the dimensions (i.e. variable, horizon, and shock).

We report the dynamics of the unemployment rate, which is ordered second. Responses are

plotted in a 3 dimensional space, where the first axis corresponds to the horizon, the second

to the sample, and the third to the response of unemployment rate. Figure 12 presents the

dynamics of the unemployment rate to a standardized one percent increase in the 3-month

Treasury bill. As expected, the peak response has been weakening over time and the negative

impact in the medium run is stronger.

load DataQ % load the data

% select GDP deflator (year-on-year) Unemployment; 3m Tbill.

yQ = [GDPDEF_PC1 UNRATE TB3MS];

lags = 2;

% setting for parameters for the rolling windows

Wsize = 120; % quarterly lenght of the rolling window

shift = 4; % time shift between adjacent windows

11For Bayesian kernel estimation of VAR models see Petrova (2019).
12See e.g. Boivin, Kiley and Mishkin (2010).
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indx_sho = 3; % shock of interest

options.K = 1; % no MC draws, use the OLS IRF (BVAR.ir_ols)

options.hor = 24; % horizons of the IRFs

rollIRF = ... % initialize the rolling IRFs (one IRFs per window)

nan(size(yQ,2),options.hor,1);

timespan = nan(1,Wsize);

w = 0; % index for counting the windows

% start the rolling window estimation of the IRFs

while (w*shift + Wsize) <= size(yQ,1)

w = w + 1;

timespan(w,:) = shift*(w-1) + 1 : Wsize + shift * (w-1);

rollbvar = bvar(yQ(timespan(w,:),:),lags,options);

% normalize for the shock size (1% increase in 3mTbill on impact)

norm = rollbvar.ir_ols(indx_sho,1,indx_sho);

% Collect the normalized responses

rollIRF(:,:,w) = squeeze(rollbvar.ir_ols(:,:,indx_sho))/norm;

end

figure(’name’,’UNR’)

tt = T(timespan(:,end)’);

surf(tt,[1:options.hor],squeeze(rollIRF(2,:,:))) % three dimensional plot

axis tight;
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Figure 12: Time evolution of the responses of the unemployment rate to a 1% increase in the
3-month Treasury bill.
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One way to take into account stochastic volatility is to scale the variables of the VAR,

prior to estimation using a recursive (non-parametric) measure of volatility. For example,

one can preliminary run univariate regression of yjt on its own lags, compute w1jt = |ejt| ≡
|yjt − Aj(L)yjt−1| or w2jt = e2

t and use, as VAR variables, yjt/w1jt or yjt/
√
w2jt. The first

variable transformation can be performed using the following commands

opt.K =1;

yhat = nan(size(y,1)-lags,size(y,2));

for var =1 : size(y,2)

tmp_ = bvar(y(:,var),lags,opt); % univariate AR(lags) estimation

yhat(:,var) = y(lags+1:end,var) ./ abs(tmp_.e_ols);

end

Then, one can run the VAR on the transformed variables, yhat. Alternatively, the toolkit

allows to estimate a VAR corrected for heteroskedasticity when high volatility cluster occurs

at known dates, along the lines discussed in Lenza and Primiceri (2020). In particular, we

allow the V AR(p) to be specified as follows

yt = Φ(L)yt−1 + Φ0 + stut

where the factor st is typically equal to one and larger than one at specific known dates.

The size of the increase in variance, st, can be calibrated or estimated. The two following

examples describe how to setup the estimation under the two situations.

Example 17 Lenza and Primiceri (2020) consider US macroeconomic monthly data on

unemployment, industrial production, employment, real personal consumption expenditure

(PCE), core and headline PCE prices from 1988m12 to 2020m7. They notice that at time

of the outbreak of the COVID-19 pandemic (March 2020) an abnormal data variation is

observed; thereby they assume that the change in volatility occurs there. Before then, there

were no jumps in volatility. We postulate that the increase in volatility occurs in three

months, March, April and June, and the volatility increases by a factor of 10. The following

commands allow to correct the VAR parameters estimates for heteroskedasticity.

tstar = find(time==2020) + 2; % march 2020

% scale the observed variables by factor >1 in the periods that

% characterize the COVID-19 induced recession

st = ones(size(y,1),1);

st(tstar:tstar+2 ,:) = [10 10 10]; % March, April, May

st(1:lags) = [];

options.heterosked_weights = st;

options.tstar = tstar;

bvar_het = bvar(y,lags,options);
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Example 18 Consider the same setting of exercise 21. Similar to Lenza and Primiceri

(2020), we maximize marginal data density over the Minnesota hyper parameters and the

size of the scaling. The following commands allow to compute the optimal level of scaling

heteroskedasticity correction and optimal amount of Minnesota prior shrinkage.

hyperpara(1) = 3; % tau

hyperpara(2) = 0.5;% decay

hyperpara(3) = 1; % lambda

hyperpara(4) = 1; % mu

hyperpara(5) = 2; % omega

hyperpara(6) = 2; % s0: scale march 2020

hyperpara(7) = 2; % s1: scale april 2020

hyperpara(8) = 2; % s2: scale may 2020

% setting the options

options.index_est = [1 6:8]; % hyper-parameter over which maximize

options.max_compute = 1; % maximize using Matlab fmincon function

options.objective_function = ’bvar_opt_heterosked’;

options.tstar = find(time==2020) + 2; %march 2020

% Compute the optimal values

[postmode,logmlike,HH] = bvar_max_hyper(hyperpara,y,lags,options);

VAR models are linear. Thus, interesting questions about the differential effects of posi-

tive or negative, or large or small shocks can not be answered. One can deal with asymmetric

shocks is via identification restrictions (as in Canova and Pappa (2011)). Alternatively, one

can build VARs with interacted variables (as in Sa, Towbin and Wieladek (2014)), where the

interaction term, for example, accounts for positive vs. negative states. Although none of

these options is perfect, they can give researchers hints about what they care about without

having to estimate a fully non-linear model, which is computationally costly.

These exercises can be conducted within the available functions, but they require some

attention. For example, using sign and quantity restrictions one can measure when large

and small shocks have similar effects on the variables of interest, see 3.2.3. Similarly, by

interacting one or more variables of the vector y with dummies, one can see how shocks

propagate in various states. We let the creative user to come up with her favorite trick to

implement the non-linear model she wishes to analyze.

3.6 Mixed Frequency VARs

The Mixed Frequency VAR (MF-VAR) model we consider has constant parameters and it

is designed to deal primarily with monthly and quarterly data. The MF-VAR setup can be

also employed when one or more of the VAR variables display missing observations. Thus,

53



it can be used for backcasting, nowcasting, or for retrieving variables that have an arbitrary

pattern of missing observations.

From a Bayesian perspective, the problem is simple. We need to construct the joint

distribution of the observables y, of the latent states, and of the parameters, conditional on

the pre-sample used to initialize the lags. With the Gibbs sampler, we generate a draw from

the posterior distribution of the reduced form VAR parameters, conditional on observables

and states. With this draw and the Kalman smoother, we can estimate the unobserved states,

and thus implicitly recover the values of the variables whose observations are missing.

A standard application of the MF-VAR function is when one has recent and more fre-

quent available information (e.g. monthly data) and wants to construct timely estimates of

variables of interest which are observed only at lower frequency (e.g. quarterly data). This

generate nowcasts that incorporate available information efficiently. The efficiency property

is crucial for forecasting as ’good’ nowcasts are the necessary prerequisites for generating

accurate out-of-sample predictions (see section 3.7). For example, applied researchers and

economic analysts are often interested in the monthly version of the GDP. Since GDP is

measured only at quarterly frequency and typically its release from national statistical of-

fices comes with lags, researchers often use the information contained in monthly data to

estimate the monthly level of GDP. The MF-VAR function is well suited for this purpose. In

particular, it treats the monthly GDP values as unobserved, and uses a state space represen-

tation to reconstruct missing observations. The state vector includes the monthly observed

variables and the monthly unobserved counterparts of the quarterly observed variables. The

construction of the state space and its estimation in the toolbox closely follows Schorfheide

and Song (2015).

Another application of interest is when one jointly use monthly and weekly times series

to estimate a weekly version of the monthly variable; e.g. one could consider the weekly

unemployment Insurance claims or/and weekly Google trends to infer the weekly unemploy-

ment rate, which only is reported monthly. For the purpose of this document and for fixing

ideas, we only discuss MF-VAR with monthly and quarterly variables but its extension to

weekly-monthly or quarterly-annual frequency is straightforward.

The estimation of a MF-VAR can be performed using any of the prior specifications

discussed in section 3.1 with the caveat that maximization over the Minnesota prior hyper-

parameters is not permitted. After MF-VAR estimation is performed, one can proceed with

the identification and the computation of impulse response functions, as discussed in section

3.2, and the production of point or density forecasts, as discussed in section 3.7.

MF-VAR estimation is triggered automatically whenever there are NaN in the array matrix

containing the data, y. When this is the case, a warning message is printed on the command

window. One can handle the unobserved variables in several ways; the toolbox’s approach is

to vary the dimension of the vector of observables as a function of time t (as in, e.g., Durbin

and Koopman (2001) and Schorfheide and Song (2015)).
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Assume that we have {ymt , y
q
t }, and that t corresponds to the month. For quarterly

variables, we have observations only on the last month of the quarter and nan for the other

months. The measurement equation for monthly variables is trivial, i.e. ymt = xm,t. By

default, quarterly variables are treated as stocks; in other words, the monthly unobserved

state, xqt , is mapped into quarterly observed variables, yqt , whenever the latter is observed.

Thus we have:

yqt = xq,t

Clearly this approach is appropriate for variables, such as debt or capital. It can also be used

with mixed quarterly and annual frequency variables when the annual variable is a stock.

For quarterly flow variables (such as GDP), we use the quarterly aggregator

yqt =
1

3
(xq,t + xq,t−1 + xq,t−2)

where yqt is the quarterly observed variables and xq,t is the monthly unobserved counterpart.

To activate this option, the user needs to type

options.mf_varindex = num;

where num is a scalar indicating the position (column in y) in the dataset of the flow variable

we wish to aggregate.13 Once the mapping between monthly and quarterly variables is

selected, we assume that [x′q,t x′m,t]
′ follows a VAR with p lags.

The unobserved or irregularly sampled variable becomes an additional output of the bvar

function; in particular, the T× n× K array called

BVAR.yfill

contains the smoothed (two-sided) estimates of the unobserved states, where the first di-

mension is time, the second represents the variable, and the third a specific draw from the

posterior distribution of the parameters. The T× n× K array called

BVAR.yfilt

contains the filtered (one-sided) estimates of the unobserved states.

3.6.1 Constructing the monthly GDP for the Euro Area

We use monthly data on the log of industrial production index (IPI), the log of HICP (HICP),

the log of HICP excluding food and energy (CORE), the one-year Euribor (Euribor1Y), the

unemployment rate (UNRATE) from 2000m1 to 2015m8 to construct a monthly version of

GDP and GDP growth. We assume a VAR with six lags. We first construct the database.

13For the case of flow variables with annual-quarterly or weekly-monthly data, the temporal aggregation is
yht = 1

4 (xh,t + xh,t−1 + xh,t−2 + xh,t−3) where xh,t is the quarterly (weekly) version of the annual (monthly)
counterpart. Assuming that the low frequency variable occupies the second column, this option is activated by
typing options.mixed freq index = zeros(n, 1); and options.mixed freq index(2) = 4;.
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% load the mixed frequency data

load DataMF

% select the variables

y = [GDP IPI HICP CORE Euribor1Y UNRATE];

% specify the lag lenght

lags = 6;

This is how the data looks like

>> disp(y)

NaN 4.6079 4.4897 4.5113 4.3645 9.0900

NaN 4.6254 4.4909 4.5110 4.8485 9.0300

14.5660 4.6103 4.4947 4.5127 4.9649 8.9900

NaN 4.6210 4.4972 4.5148 5.1050 8.9400

NaN 4.6252 4.4986 4.5159 5.2484 8.8800

14.5712 4.6246 4.5031 4.5164 5.2192 8.8300

...

We treat GDP as a flow variable and assume Minnesota prior with default hyper-parameters

values; the following instruction are needed.

options.mf_varindex = 1;

options.K = 1000; % number of draws

options.priors.name = ’Minnesota’;

% estimate the bvar

bvarmf = bvar(y,lags,options);

In the command window, the toolbox prints the maximum difference between the observed

data and the corresponding filtered (one-sided) and smoothed (two-sided) states.

Warning: Activating the Mixed Frequency BVAR

Max Discrepancy Filtered vs. Actual Data: 1.9103e-12

Max Discrepancy Smooth vs. Actual Data: 8.1174e-11

Max Discrepancy Filtered vs. Actual Data: 2.1771e-11

Max Discrepancy Smooth vs. Actual Data: 7.0942e-10

...

To disactivate the warning, set options.noprint =1. Figure 13 reports the median estimate

of the unobserved monthly GDP in level and growth rate.
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Figure 13: MF-VAR estimates of the monthly GDP level and of the monthly GDP growth
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As mentioned, the maximization over the Minnesota prior hyper-parameters is not per-

mitted in the toolbox. This is because with mixed frequency and unobserved states, the

marginal likelihood cannot computed in closed form. There are two ways to discipline the

choice of hyper-parameters in this context. First, one could run the prior hyper-parameters

maximization using only the higher frequency variables and take the modal values of this first

step to set they hyper parameters values for the MF-VAR. Alternatively, the toolkit com-

putes the posterior kernel, p(Y |Σ(m),Φ(m), X(m)), evaluated at a specific draw (m); a K× 1

array called BVAR.logL collects the posterior kernel evaluation at each draw. Based on the

kernel values, one could construct an estimate of the marginal likelihood, using say Geweke

(1999) harmonic mean estimator, for a given value of the hyper-parameter. One could then

maximize the estimated marginal likelihood over a grid of hyper parameter values. This

alternative route is feasible, but obviously more time consuming.

3.7 Predictions

Regardless of the prior distribution used to estimate the parameters, one can easily generate

forecasts from a VAR model. Following Del Negro and Schorfheide (2013), we employ the

following algorithm:

Algorithm 2

Given the posterior of the parameters, p(ϑ|Y ) , for m = 1, ...,M

1. Draw ϑ(m) = vec(Φ
(m)
0 , ...,Φ

(m)
p ) from p(ϑ|Y ).

2. Draw a sequence of ut’s, i.e. u
(m)
T+1:T+h, from a N(0,Σ(m)), and iterate on the VAR

representation, that is:

y(m)
τ = Φ

(m)
0 + Φ

(m)
1 yτ−1 + ...+ Φ(m)

p yτ−p + u(m)
τ

for τ = T + 1, ..., T + h.

The algorithm generates M out-of-sample trajectories,
{
y

(m)
T+1:T+h

}M
m=1

; these trajectories

can then be used to obtain numerical approximations to moments, quantiles, or the predictive

density.

By default, the bvar function generates out-of-sample unconditional forecasts for 12

periods. Suppose we wish to generate forecasts for the next nfor periods. To do this, we

need to set the appropriate options:

options.fhor = nfor;

BVAR = bvar(y,lags,options);

Forecasts are stored in BVAR.forecasts, which contains a number of subfields:

• BVAR.forecasts.no_shocks is a nfor×n×K matrix containing unconditional forecasts.

The first dimension corresponds to the horizon, the second to the variable, and the third

to the draw from the posterior distribution of the parameters. These trajectories are
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constructed assuming that all future shocks are zeros (i.e. u
(m)
T+1:T+h = 0 ∀m). Thus,

these forecasts only account for the uncertainty in the parameter estimates.

• BVAR.forecasts.with_shocks is a nfor×n×K matrix containing unconditional fore-

casts with shocks. The first dimension corresponds to the horizon, the second to the

variable, and the third to the draw from the posterior distribution of the parameters.

These trajectories include uncertainty in the parameter estimates and in the shocks

realization.

• BVAR.forecasts.conditional is a nfor × n × K matrix containing the conditional

forecasts, when the path for one or more endogenous variables of the VAR are specified.

These conditional forecasts are generated as in Waggoner and Zha (1999) and Maih

(2010). To activate conditional forecasts, more inputs are needed. In particular,

1. options.endo_index is a row array containing the index of the variable con-

strained to a specified path.

2. options.endo_path is a matrix containing the path for each variable (rows hori-

zon, column variables). Notice that the number of rows in options.endo_path

must coincide with options.fhor.

3. options.exo_index specifies the shocks of the VAR used to generate the assumed

paths of the endogenous variables. exo_index could be one or more shocks. If no

structural identification is performed, the program uses a Cholesky factorization

by default.

• BVAR.forecasts.EPS contains the shocks used to generate the conditional forecasts.

Note that bvar does allow the use of exogenous variables as long as Jeffrey or Conjugate

priors are used. In this case, exogenous variables must be declared among the options

options.controls = z;

where z is a (T+fhor) × n_z array that contains the exogenous variables. A rough way to

include exogenous variables in the VAR when Minnesota priors are assumed is to add them

as endogenous variables and use the conditional forecast option to set their future path.

3.7.1 Plotting the Forecasts

The function plot_frcst_(frcst_to_plot,y,T) plots fan charts. frcst_to_plot is a three

dimensional array, where the first dimension corresponds to the horizon, the second to the

variables, and the third to the trajectory produced by a particular draw from the posterior

distribution; y and T are respectively the T × n array of data and the T × 1 array that

defines the in-sample time span. For example, when considering unconditional forecasts

without shocks, type frcst_to_plot = BVAR.forecasts.no_shocks. The output is one

figure reporting the forecasts; by default, the figure consists of the upper bound integers
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of
√
n ×
√
n subplots with the forecasts of all variables included in the VAR. Each panel

displays a black solid line, which corresponds to the median forecast, and a gray area, which

corresponds to the 68% high probability density (HPD) set of the empirical distribution.

Different settings are possible. The general plot command is:

plot_frcst_(frcst_to_plot,y,T,options)

where the options are as follows

• options.varnames is a cell string containing the variable names for the subplots title.

The length of the cell must be of the same size as the first dimension of irfs_to_plot;

• options.time_start defines the initial period where plot starts. options.time_start

must be included in T; the default value is first date of the in-sample data.

• options.conf_sig is a number between 0 and 1, indicating the size of HPD set to be

plotted; the default is 0.68.

• options.conf_sig_2 is a number between 0 and 1, indicating the size of the second

HPD set to be plotted.

• options.nplots is a 1× 2 array indicating the structure of the subplots.

• options.saveas_strng is a string array with the name of the plot.

• options.saveas_dir is a string array with the directory where to save the plot. Note

that figures are not saved if options.saveas_dir or options.saveas_strng are not

specified.

• options.add_frcsts is a (T+nfor)×n array containing additional data and forecasts.

The first dimension must coincide with the sum of the in-sample and out-of-sample

sizes; the second with the size of the second dimension of frcst_to_plot.

• options.order_transform is a 1× n array indicating the transformation to apply to

each variable. Allowed transformation are

1. 0 = no transformation

2. 1 = period-by-period change

3. 12 = 12 period change multiplied by 100, i.e. 100(yt+12 − yt). With monthly

variables expressed in logs, this is the year-on-year percentage change.

4. 4 = 4 period change multiplied by 100, i.e. 100(yt+4−yt). With quarterly variables

expressed in logs, this is the year-on-year percentage change.

5. 100 = period over period change multiplied by 100. With annual variables ex-

pressed in logs, this is the year-on-year percentage change.

3.7.2 A few examples

We use monthly data on the log of industrial production index (IPI), the log of HICP (HICP),

the log of HICP excluding food and energy (CORE), the one-year Euribor (Euribor1Y), log of
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M3 (M3) and the nominal exchange rate (EXRATE). The sample runs from 2000m1 to 2015m8

(time). We use the convention that January 2000 corresponds to 2000 and December 2000 to

2000+11/12. Data up to 2014m8 is used to estimate a VAR with six lags and the remaining

12 months are used to compare the forecasts with the actual data. We first construct the

database.

% load the data

load Data

% select the variables

y_actual = [IPI HICP CORE Euribor1Y M3 EXRATE];

% stop estimation at August 2014

in_sample_end = find(time==2014 + 7/12);

y = yactual(1:in_sample_end,:);

T = time(1:in_sample_end);

Example 19 (Compare different point forecasts) We compute a number of forecasts:

1. Unconditional forecasts, using a flat prior.

lags = 6;

options.fhor = 12; % one year forecasts

b.var(1) = bvar(y,lags,options);

2. Unconditional forecasts, using a Minnesota prior, and default values.

options.priors.name = ’Minnesota’;

b.var(2) = bvar(y,lags,options);

3. Unconditional forecasts, using an optimal Minnesota prior.

options.max_minn_hyper = 1;

options.index_est = 1:4;

options.max_compute = 3; % sims optimization routine

options.lb = [0 0 0 0]; % set the lower bound

b.var(3) = bvar(y,lags,options);

4. Forecasts conditional on a path of the short run interest rate. We assume that inter-

est rate path coincides with the actual realization of the Euribor rate from 2014m9 to

2015m8. We use an optimal Minnesota prior.

options.max_minn_hyper = 0;

options.minn_prior_tau = b.var(3).prior.minn_prior_tau;

options.minn_prior_decay = b.var(3).prior.minn_prior_decay;

options.minn_prior_lambda = b.var(3).prior.minn_prior_lambda;

options.minn_prior_mu = b.var(3).prior.minn_prior_mu;

% select the conditioning variables (Interest rate =4)

options.endo_index = 4;
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% impose a trajectory for the short term interest rate

% which coincides with the actual trajectory observed

options.endo_path = Euribor1Y(in_sample_end+1:end);

c.var(1) = bvar(y,lags,options);

5. Forecasts conditional on the path of the short run interest rate as before, using only

monetary policy shocks identified via Cholesky decomposition to generate that path.

We use an optimal Minnesota prior.

options.exo_index = options.endo_index;

c.var(2) = bvar(y,lags,options);

Figure 14 presents the mean forecasts with the various setups. The gray area identifies the

forecasting period - September 2014 to August 2015; the top panel displays the year-on-year

growth rate of industrial production; the central panel the year-on-year growth rate of HICP

and HICP excluding food and energy; and the bottom panel the one year Euribor. While all

forecasts miss the HICP disinflation of 2015. The forecasts with an optimal Minnesota prior

seem to perform better.

Example 20 (Fan Charts) We plot the forecasts constructed using an optimal Minnesota

priors (i.e. case 3 of Example 19) with credible sets. We use the plot_frcst_.m function

to plot. The inputs are the forecasts (with shocks) e.g b.var(3).forecasts.with_shocks,

the data used for in-sample estimation (y) and the in-sample time span (T). We also add the

following options:

• We specify the directory where plots are saved (options.saveas_dir); the directory is

created, if it does not exists.

• We control the appearance of the subplots, using options.nplots.

• We start the plots in 2013.

• We customize the names for the subplot titles.

• Variable transformations: for industrial production, HICP, CORE and the EXRATE

we are interested in the year-on-year percentage change. Since the data is monthly and

in logs, options.order_transform=12 will take the 12 periods difference multiplied by

100.

• We plot 68% and 90% highest credible posterior bands.

• We add the plot the actual data realization (or of different point forecasts), using the

option options.add_frcst.

The appropriate commands are described below. Figure 15 presents the forecasts. The black

line is the median; the light (dark) gray bands are the 68% (90%) credible sets. The blue line

corresponds to the actual data.
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% select the forecast to plot (Option Minnesota)

frcsts = b.var(3).forecasts.with_shocks;

% Customize the plot

% declare the directory where the plots are saved

options.saveas_dir = ’frcsts_plt’;

% control the appearence of the subplots

options.nplots = [3 2];

% start of the forecast plot - default first date of the in-sample data

options.time_start = 2013;

% Transformations

% 12 = Year-on-year percentage change with monthly data for IPI and HICP

options.order_transform = [12 12 12 0 12 0];

% Titles for subplot

options.varnames = ...

{’Industrial Production’ ’HICP’ ’CORE’ ’Euribor 1Y’ ’M3’ ’EXRATE’};
% second credible set to be plotted

options.conf_sig_2 = 0.9;

% add the actual data

options.add_frcst = yactual;

% Plot the forecasts

plot_frcst_(frcsts,y,T,options)
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Figure 14: Forecasts with various specifications
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Figure 15: Fan charts with optimal Minnesota Prior. The black line is the median; the light
(dark) gray bands 68% (90%) credible sets. The blue line corresponds to the actual data.
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3.8 Panels of VAR models

The study of the macroeconomic propagation of shocks sometimes involves the use of different

units of the economy, different sectors, different regions (see e.g. Canova and Pappa (2007)),

different individuals, different banks (see e.g. Altavilla, Canova and Ciccarelli (2020)), or

different countries. In these situations, the researcher has to take a stand on how to treat the

cross-sectional dimensional of the panel. The modeling choice boils down to decide whether

ones wants to (i) treat the units separately, (ii) pool the units together, or (iii) partially pool

the units. An alternative approach would be to compress somehow the information contained

in the cross-section using a principal component methods, see section 3.9 for details.

If T is large, the average of the responses estimated unit by unit (the so-called average

time series estimator) is consistent for the mean response; this turns out to be the best

strategy to use with long enough times series. When T is small, the cross section is large
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and homogeneous, one could combine the cross section and time series dimensions and obtain

estimates using the pooled data (the pooled estimator). A pooled estimator is consistent for

the mean response only if the data features dynamics homogeneity; otherwise, the estimate

is biased and instrumental variable approaches are unlikely to work because it is difficult

to find instruments which are uncorrelated with the innovations and correlated with the

regressors. When T is small and the homogeneity assumption is either difficult to verify

or untenable, one could partially pool the data using cross-sectional prior specifications, for

example an exchangeable prior, see Canova (2007).

Note also that while a pooled estimator only provides an estimate for the mean response,

the average time series and the partial pool approach provide estimates for the mean response

and for the responses of each separate unit and this allow researches to study in more details

the reasons of potential heterogeneities in the cross section.

We discuss how to implement these alternative approaches with a series of examples.

In all of them, we consider bank level data on lending and deposit rates and study the

transmission of a lending shock to lending and deposit rates. DataBanks is a monthly panel

with 100 data points for 50 banks, where LendingRate and DepositRate are 100×50 arrays

of data, containing respectively lending and deposit rates.

Example 21 (Average time series estimator) We run separate bivariate VAR models

on bank lending and deposit rates, unit by unit. We assume two lags. First, we load the

data (DataBanks); and define a bank specific dataset with lending rate ordered first followed

by the deposit rate. To speed up the calculation, we limit attention on the response func-

tions obtained with OLS estimates of the autoregressive parameters and of covariance matrix,

stored in the matrix BVAR.ir_ols with the usual ordering of the dimensions (i.e. variable,

horizon, and shock). We then collect the banks specific responses. Figure 16 reports the

median (black), mean (blue) and the numerical dispersion produced by a normalized lend-

ing shock across the 50 banks. Identification of lending shocks is achieved with a Cholesky

decomposition, with lending rate ordered first.

% load the data

load DataBanks

[T,NBanks] = size(LendingRate);

% Estimate a bivariate VAR for each unit

lags = 2; % Number of lags

opt.K = 1; % Draws from the posterior (=1 since they are not needed)

for i = 1 : NBanks

% construct the banks i database

yi = [LendingRate(:,i) DepositRate(:,i)];

% estimate a VAR(2)

bvar0 = bvar(yi,lags,opt);
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% store the Cholesky IRFs

irfs_to_plot(:,:,:,i) = bvar0.ir_ols;

end

% Customize the plot

% variables names

options.varnames = {’Lending Rate’ ’Deposit Rate’};
% name of the directory where the figure is saved

options.saveas_dir = ’./panels_plt’;

% names of the figure to save

options.saveas_strng = ’TSAverageIRF’;

% name of the shock

options.shocksnames = options.varnames;

% additional HPD set

options.conf_sig_2 = 0.95;

% plot appeareance

options.nplots = [2 2];

% add mean response

options.add_irfs = mean(irfs_to_plot,4);

% the plotting command

plot_all_irfs_(irfs_to_plot,options);
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Figure 16: Average (blue), median (black) dynamic transmission of a normalized lending shock
across 50 banks with dispersion bands.
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Example 22 (Pooling (with fixed effects)) Using the same data as in example 21, we

estimate the mean transmission of a lending shock, assuming homogeneous dynamics and

fixed effects. Figure 17 reports the estimated dynamic transmission of a lending shock using

the pooled estimator (black line). The blue line is the average time series estimate previously

computed. The mean dynamics are similar, suggesting that dynamic heterogeneity is not

very important. The pooled estimator with fixed effects is more precise, as expected under

dynamic homogeneity, since it efficiently uses the NT observations.

% remove fixed effects and reorder the data

LendingRate_ = reshape(demean(LendingRate),T*NBanks,1);

DepositRate_ = reshape(demean(DepositRate),T*NBanks,1);

% pool the data

ypooled = [LendingRate_ , DepositRate_];

% Estimate one bivariate VAR with the data from all units

lags = 2;

bvar1 = bvar(ypooled,lags);

% IRFs

irfs_to_plot = bvar1.ir_draws;

% name of the figure to save

options.saveas_strng = ’Pooling’;

% the plotting command

plot_all_irfs_(irfs_to_plot,options);
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Figure 17: The dynamic transmission of a lending shock using a pooled estimator with fixed
effects. The blue line is the average time series estimators. Confidence bands are in grey
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Example 23 (Partial pooling with a data-based prior) Using the same data of ex-

ample 21, estimate the transmission of a lending shock in a VAR with dynamic heterogeneity,

using a prior that favors homogeneity. We employ a subset of units to estimate the prior

first two moments and use the remaining units to estimate the propagation of a lending

shock. For illustration, we focus on the propagation for bank number 50. Rather than using

the identify matrix in options.priors.Phi.cov one could also use the dispersion matrix of

(bvar2.Phi_draws to scale the prior.

Figure 18 reports the median (black line) dynamic transmission of a lending shock for

the 50th bank using the constructed prior.

% Construct the prior, pooling the first 20 units

N1 = 20;

LendingRate_ = reshape(demean(LendingRate(:,1:N1)),T*N1,1);

DepositRate_ = reshape(demean(DepositRate(:,1:N1)),T*N1,1);

yp = [LendingRate_ , DepositRate_];

bvar2 = bvar(yp,lags);

% Activate a conjugate prior

options.priors.name = ’Conjugate’;

% Center the prior at the pooled estimator

options.priors.Phi.mean = mean(bvar2.Phi_draws,3);

% covariance matrix

% if gam large you get OLS; if it is small, you get close to perfect pooling.

gam = 0.1;

options.priors.Phi.cov = gam * eye(size(options.priors.Phi.mean,1));

options.K = 1000;

% recover banks 50 (=NBanks) in database

i = NBanks;

yi = [LendingRate(:,i) DepositRate(:,i)];

% estimate a bivariate VAR for bank i with the databased prior

bvar_e = bvar(yi,lags,options);

options.saveas_strng = [’BayesianPartialPoolingBank#’ num2str(i)];

plot_all_irfs_(bvar_e.ir_draws,options)

There are many other alternatives one can use to tune up the prior for a panel of VAR

models. For example, when aggregate data is available, one could use it to form a prior

and then shrink the unit specific estimates as we have done above. Note that the toolbox

only allows priors with fixed parameters (which are estimable from a training sample). Fully

hierarchical priors are not currently supported. From experience, we can say that fully

hierarchical estimates nd standard posterior estimates, constructed conditional on a carefully

tuned prior, are very similar.
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Figure 18: Median and credible sets for the dynamic transmission of a lending shock for the 50th
bank when Bayesian partial pooling is used. The blue line is the average time series estimator.
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The important underlying assumption we have used in this section is that units can

be treated independently of each other. Thus, current and lagged cross unit dynamics are

unimportant. Clearly, if the focus of investigation are regions of a country or nations in a

monetary union, such an assumption is untenable. One could use aggregate control variables

to try to absorb cross unit interdependences. But this is just a short cut. A better way to

approach the transmission problem is to use a panel VAR model with full interdependences.

This is just a large scale VAR model, where the dimension of the vector of endogenous

variables is N*G where G is the number of variables per unit. Canova and Ciccarelli (2009)

provide a convenient reparameterization of the such a large scale VAR model which makes

it possible to estimate it by standard Bayesian methods when T is moderate or small. A full

panel VAR is not currently supported in the toolbox.
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3.9 FAVARs

When n, the number of variables one would like to include in the VAR, is large, and T is

short, running a VAR may be problematic, both because of low sample information and of

identification difficulties. In this case, let yt = [y1t, y2t]. y2t contains data excluded from

the VAR which is going to be used to construct factors wt. Then, one can keep the VAR

sufficiently small by employing ỹt = [y1t, wt] as observables. This choice avoids overparame-

terization but allows the VAR to span the full information set available to researchers. Once

BVAR is run on ỹt, structural inference on y2t can be conducted either with standard FAVAR

techniques; i.e. use the estimated loadings to transform the responses of the factors into

responses of the variables in y2t or, once the structural disturbances of interest are obtained,

use a series of local projections of y2t, see section 4.2, on the relevant identified disturbances.

Let y2 be a T × n2 matrix containing the variables excluded from the VAR and suppose

that the data generating process for y2 is well described by a static factor model:

y2 = WΛ′ + E

where W is a T×nw matrix of principal components, Λ is a n2×nw matrix of factor loadings

and E is a T × n2 matrix of idiosyncratic error terms. The function {pc_T} allows one to

extract the first principal components from a time series database:

[E, W, Lambda, EigenVal, STD] = pc_T(y_2, n_w, transf);

The syntax of this function is the following: y_2 contains the variables excluded from the

VAR, n_w is a scalar, indicating the number of factors to be extracted, and transf indicates

the data transformation to be used, where 0 means no transformation, 1 means demean, and

2 means demean and standardize. E, W, Lambda are, respectively, the idiosyncratic errors,

the principal components, and the loadings. Typically, y_2 is assumed to be stationary and

standardized to make the units of the n2 variables comparable; when transf=2, STD is the

n2 × 1 vector containing the standard deviation of y_2; otherwise, it is a vector of ones.

The FAVAR model can be estimated using the bvar function on compressed and raw

data as follows:

FAVAR = bvar([W y_1], lags)

Any of the prior specifications discussed in section 3.1, including the maximization over the

Minnesota prior hyper-parameters, can be used to estimate FAVAR parameters. One can

also construct impulse response functions as discussed in section 3.2, and point or density

forecasts, as discussed in section 3.7.

Because the transformed (and standardized) variables W are typically not very inter-

esting, we need to construct rescaling coefficients that map the dynamics of the principal

components back to the uncompressed raw variables, y_2; these coefficients depend on the

factor loadings, the standard deviations of the y_2 variables, the relative dimension of y_1,
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y_2 and W. Let n_1 be the number of variables in y_1, the following function allows to

construct the matrix of rescaling coefficients:

ReScale = rescaleFAVAR(STD,Lambda,n_1)

where ReScale is a (n_2+n_1) × (n_w + n_1) matrix. By default, factors loadings are

ordered first. If factors are ordered after y_1 in the FAVAR, type

ReScale = rescaleFAVAR(STD,Lambda,n_1, 2)

The objects of interest (e.g. forecasts or impulse response functions) about y_2 can then

be retrieved combining the FAVAR fields and ReScale. For example, assuming that one is

interested in the mean forecast of y_2, we can type

mean_forecast_y = mean(fabvar.forecasts.no_shocks,3) * ReScale’;

which contains the forecast of both y_2 and y_1. Analogously, one could retrieve the response

of y_2 to the structural shock identified using W and y_1, as it is shown in the following

example.

Example 24 (FAVAR: Responses of y2 variables to monetary policy shocks) We con-

sider the database available at https://research.stlouisfed.org/pdl/788 which contains a num-

ber of slow moving quarterly variables, such as real quantities and price indices. We use

the growth rate of these variables and the sample spans the period 1980Q1 to 2007Q4; we

employ the same ID name available in the FRED database and variables names are collected

in varnames_y2. We compress 28 slow moving variables, which are in y2t, into three fac-

tors. The FAVAR has 4 variables: the three month Treasury Bill ( y1t) and three factors

(w1t, w2t, w3t). We identify a monetary policy disturbance with a recursive identification

scheme, where slow moving variables are ordered first. We trace the responses of real GDP

growth and core PCE inflation to the identified shock.

% load favar data (Quarterly)

load DataFAVAR

% y1 is interest rate (TBILL3M)

% y2 are slow moving variables (YoY growth rates)

transf = 2; % standardize y2

% extract the first 3 Principal Components (PC)

nfac = 3; % number of PC

[~,fhat,Lambda,~,STD] = pc_T(y2, nfac, transf);

% use the PC of the slow moving variables (PC) and the TBILL3M in the FAVAR

y = [fhat y1];

% estimate under recursive identification

lags = 2;
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fabvar = bvar(y,lags);

% Rescale the estimates from (3 PC and y1) back to (y2 and y1)

% PC are ordered first

order_pc = 1;

C_ = rescaleFAVAR(STD,Lambda,size(y1,2),order_pc);

% construct the IRF for the shock of interest (using a number of draws)

% shocks of interest: MP (4th innovation in the VAR)

indx_sho = nfac + 1; % index for the shock

for k = 1: fabvar.ndraws % iterate on draws

fabvar.irX_draws(:,:,1,k) = C_ * fabvar.ir_draws(:,:,indx_sho,k);

end

% Indentify the variables of interest for the plots (real GDP and CORE PCE)

[~,indx_var] = ismember ({’GDPC96’ ’JCXFE’},varnames_y2);
% Real GDP and CORE PCE

irfs_to_plot = fabvar.irX_draws( indx_var, :, 1, :);

% Customize the IRFs plot

% variables names for the plots

options.varnames = {’GDP’ ’CORE PCE’};
plot_irfs_(irfs_to_plot,options)

A bit more involved is the identification of shocks, when restrictions are imposed in part

on y2 variables. The following example shows how to conduct structural inference in this

case.

Example 25 (FAVAR with sign restrictions on y2) Consider the same setting of ex-

ercise 24. We identify an aggregate supply shock assuming that the sign of real GDP (the

GDP deflator) is positive (negative) for the first two quarters after the shock. We compute

the responses of real GDP, of the deflator, and of core personal consumption expenditure

(PCE). The commands to perform this exercise are described below and Figure 19 reports

the responses to a sign-identified aggregate supply shock.

% Use sign restrictions on the uncompressed variables.

% Identification: aggregate supply: GDP (+), GDP deflator (-).

% Assume that AD is the first shock

[~,indx_var] = ismember ({ ’GDPC96’ ’GDPCTPI’ },varnames_y2);
signrestriction{1} = [’y(’ num2str(indx_var(1)) ’,2:3,1)>0;’];

signrestriction{2} = [’y(’ num2str(indx_var(2)) ’,2:3,1)<0;’];

for k = 1 : fabvar.ndraws % iterate on draws

Phi = fabvar.Phi_draws(:,:,k);

Sigma = fabvar.Sigma_draws(:,:,k);

% compute the impulse response function with a particular
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% draw from the posterior distribution.

% Note: ’C_’ is computed in the previous example

[ir,Omeg] = iresponse_sign(Phi,Sigma,fabvar.hor,signrestriction,C_);

fabvar.irXsign_draws(:,:,:,k) = ir;

end

[~,indx_var] = ismember ({’GDPC96’ ’GDPCTPI’ ’JCXFE’},varnames_y2);
indx_sho = 1; % shocks of interest

irfs_to_plot = fabvar.irXsign_draws(indx_var ,:,indx_sho,:);

% Customize the IRFs plot

options.saveas_dir = ’./irfs_plt’; % folder

options.saveas_strng = ’FaVAR’; % names of the figure to save

options.shocksnames = {’AS’}; % name of the shock

options.varnames = {’GDP’ ’GDP Defl’ ’CORE PCE’}; % variables names

% the plotting command

plot_irfs_(irfs_to_plot,options)
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Figure 19: Dynamics of real GDP, of GDP deflator, and of Core PCE in response to a sign-
identified aggregate supply shock.
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4 Direct methods

Direct methods (DM) provide an alternative approach to study causal inference and to pre-

dict in macroeconomics. In particular, one can forecast the future trajectory of interesting

variables using direct forecasts (DF) rather than iterated forecasts, see Marcellino, Stock and

Watson (2006), or study the dynamic transmission of policy shocks using local projections

(LP) rather than SVAR, as in Jordà (2005). While asymptotically VAR and LP procedures

estimate the same impulse response function up to a scaling factor (see Plagborg-Møller and

Wolf (2019)), in small samples researchers face a bias-variance trade off. The forecasting

literature has highlighted that direct methods tend to have relatively lower bias, whereas it-

erated methods tend to have relatively low variance, but are more prone to be parametrically

misspecified; and that the trade-off is most relevant at longer horizons. Furthermore, in the

presence of near-unit roots and at long horizons, inferential conclusions may be different, see

Plagborg-Møller and Montiel-Olea (2020).

To discuss how to implement DF and LP in toolbox, we need first some notation and the

mapping between the two procedures.

4.1 Notation and Mapping

In a general formulation, direct methods can be represented as follows:

yt+h = α(h) + β(h)xt−1 + Γ(h)zt + e
(h)
t e

(h)
t ∼ N(0,Σ(h))

where yt+h is a n× 1 vector of endogenous variables, xt−1 is the vector containing p lags of

the endogenous variables yt, α(h), β(h), and Σ(h) are matrices of coefficients of appropriate

dimensions, zt represents a set of exogenous controls (and possibly, lags of the controls), and

Γ(h) is an appropriate loading matrix.

For the purpose of this section, we assume that a V AR(p) correctly represents the data

generating process; thus, for now, zt = 0, ∀t. To ease the notation, we consider the VAR

companion form representation pre-multiplied by the selection matrix G′ which is defined in

(3). Notice that G′G = In. The following set of equations summarize the mapping between

78



iterative and direct methods

yt = G′
(n×np)

xt = G′ F0
(np×1)

+G′ F
(np×np)

xt−1 + Ωνt

= α(0)
(n×1)

+ β(0)
(n×np)

xt−1 + e
(0)
t

(n×1)

yt+1 = G′xt+1 = G′(I + F )F0 +G′F 2xt−1 +G′FGΩνt + Ωνt+1

= α(1) + β(1)xt−1 + e
(1)
t

...

yt+h = G′xt+h = G′
h∑
j=0

F jF0 +G′F h+1xt−1 +G′
h∑
j=0

F h−jGΩνt+j

= α(h) + β(h)xt−1 + e
(h)
t

where we assume that

α(h) = G′
h∑
j=0

F jF0 β(h) = G′F h+1 e
(h)
t = G′

h∑
j=0

F h−jGΩνt+j

A few observations may highlight the features of the mapping. First, if DM includes xt−1

as regressors and Ωνt ≡ ut = e
(0)
t , then e

(0)
t is the one-step ahead innovation in yt. Second,

under proper identification restrictions, the impulse response function computed with the

two procedures coincide:

dyt+h
dνt

≡ G′F hGΩ = β(h−1)GΩ

Third, assuming that T is the last observation data point, point forecasts computed with

VAR and DM coincide, if appropriate restrictions are imposed:

ŷT+h = G′
h−1∑
j=0

F jF0 +G′F hxT = α(h−1) + β(h−1)xT

Fourth, the uncertainty around β(h) for h > 0 is typically larger than the uncertainty for

h = 0, since e
(h)
t compounds h shocks. Fifth, β(h) will be biased if some variable appearing

in the data generating process is excluded from xt−1 and omitted and included variables are

correlated. Thus, the use of control variables may help to proxy for omitted lagged variables.

Finally, the mapping between the two approaches could be used to elicit priors for Bayesian

versions of direct methods, see section 4.4 and appendix A.9 for details.

The restrictions to identify Ω presented in previous sections can be also employed with

direct methods. For example, one could use rotation matrices or impose ”hard” restrictions

on the covariance matrix of e
(0)
t . When proxy or IV approaches are used, it is straightforward

to adapt the SVAR technology we developed to direct methods. Assume that the shock of

interest is ordered first in the VAR and there exists a parametric relationship between the

shock of interest and the proxy variables of the form:

ν1,t = ρmt + umt
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where umt is a zero mean measurement error. The DM specification corresponding to this

situations is

yt+h = α(h) + β(h)xt−1 + e
(h)
t

= α(h) + β(h)xt−1 + F hΩνt +
h∑
j=1

F h−jGΩνt+j

= α(h) + β(h)xt−1 + F hΩ

([
ν1,t

0

]
+

[
0

ν−1,t

])
+

h∑
j=1

F h−jGΩνt+j

= α(h) + β(h)xt−1 + F hΩ

([
ρmt

0

]
+

[
umt
ν−1,t

])
+

h∑
j=1

F h−jGΩνt+j

= α(h) + β(h)xt−1 + ρ(h)mt + e
(h)
t

where e
(h)
t = F hΩ

[
umt
ν−1,t

]
+
∑h

j=1 F
h−jGΩνt+j , and ρ(h) = F h Ω [ρ 0]′.

The impulse responses of interest are contained in the vector ρ(j) j = 0, ..., h.

4.2 Local Projections

In the toolbox, estimation by local projection can be performed using both classical and

Bayesian techniques. By default, the toolbox computes the OLS (conditional Maximum

Likelihood) estimates, with robust HAC standard errors for the coefficients α(h), β(h) and

Σ(h) (and ρ(h) if a proxy is used). Once parameters estimates are obtained, for a given

rotation Ω, the impulse response function with confidence bands are computed as follows:

dyt+h
dνt

=
(
β̂(h−1) ± τaSE(β(h−1))

)
G Ω h > 0 (7)

where β̂(h−1) is the OLS estimator, τa is the Student-t critical value probability a, SE(.) is

the standard error of the estimator. By default, it is assumed that

Ω = chol(Σ(0))

The impulse response function with confidence bands using IV-LP are instead given by:

∂yt+h
∂mt

= γ̂(h) ± τaSE(γ(h)) (8)

The baseline estimation function for local projections is

[DM] = directmethods(y, lags, options)

The first input, y, is the data where we assume that there are no missing values. The

second input , lags, is the number of lags, which is an integer greater than zero. Note that

lags corresponds to the number of lags of the endogenous variables in yt. The third input,

options, specifies the options the user may want to employ; it can be omitted, if default

options are used. The options available in directmethods are:
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• options.hor is a scalar indicating the horizon of the responses (default 24).

• options.conf_sig is a number between 0 and 1, indicating the size of the confidence

interval; default is 0.9.

• options.controls is a (T×n_c) array of n_c exogenous controls and the first dimension

of controls must coincide with the first dimension of the endogenous variables, y.

• options.proxy is a (T× n_p) array containing n_p variables that proxy for the shock

of interest. Notice that the first dimension of the proxy variables must coincide with

the first dimension of the endogenous variables, y.

• options.robust_se_ a scalar indicating the type of standard errors to be computed;

when it is set to 0, no adjustments are made; when it is set to 1 standard errors are

HAC adjusted as in Hamilton (2007), Ch 10, pag 282, eq (10.5.20) (default setting);

and when it is set to 5, the MATLAB hac.m function is used (in this option is used,

the Matlab Econ Toolbox is required).

• options.Q is a (n × n) orthonormal matrix, i.e. Q′Q = QQ′ = I, that can be used

to rotate the Cholesky decomposition of the impact matrix. Recall that the toolbox

assumes that Ω = chol(Σ(0))Q, and the default is Q = I.

The output of the function, DM, is a structure with several fields and sub-fields containing

the estimation results:

• DM.ir_lp is a (n × hor × n × 3) array containing the impulse response function com-

puted with a recursive identification scheme using equation (7). The first dimension

corresponds the endogenous variable, the second to the horizon, the third to the shock.

The first and third elements in the fourth dimension are to the upper and lower limits

of the confidence interval, whereas the second dimension is the mean.

• DM.irproxy_lp a (n × hor × 1 × 3) array containing the impulse response function

computed with a recursive identification scheme using LP and equation (8). The di-

mensions are the same as the ones discussed in the previous bullet point.

4.3 Direct Forecasts

The h-step ahead (point and confidence interval) direct forecasts, ŷt+h, is computed as follows

ŷT+h = α̂(h) + β̂(h)xT ± τaΣ̂(h)

Forecasts are also stored in DM; in particular,

DM.forecasts

is a (n × hor × 3) array containing the forecasts. The first dimension corresponds the

endogenous variable, the second to the horizon. The first and third elements in the third

dimension correspond to the upper and lower limits of the confidence interval, whereas the

second element of the third dimension is the mean.
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4.4 Bayesian Direct Methods

Bayesian inference is possible with direct methods. In this case, one can generate the poste-

rior distribution of the coefficients using a conjugate Multivariate Normal-Inverse Wishart

prior, as discussed in the online Appendix of Miranda-Agrippino and Ricco (2017). We

assume that α(h), β(h) are asymptotically normally distributed and centered at the MLE

estimator and Σ(h) is asymptotically inverted Wishart distributed, centered on MLE esti-

mator. Priors on α(h), β(h) are assumed to be normally distributed and the prior Σ(h) is

assumed to be inverse Wishart (see appendix A.11 for details). The first moments of the

priors are centered on the iterated projections of F , F0 and Σ. For example, the prior mean

for β(h) is centered on F h−1, where F is the estimated companion form matrix of the VAR

parameters. Details on the prior and posterior construction of the Direct Methods parame-

ters can be found in A.9. To set the hyperparameters, one can use a pre-sample of data or

data from different country/sectors. The prior variance of the autoregressive coefficient is

controlled by a hyperparameter, τh, which is horizon-specific. The command to active the

prior is

options.priors.name = ’Conjugate’;

With a conjugate setting, the prior for the autoregressive parameters is centered at zero with

a diagonal covariance matrix of 10 and τh is set to 1; the prior for the covariance matrix of

the residual is inverse Wishart with a unitary diagonal matrix as scale and n+1 as degrees

of freedom. If the user does not like these settings, she can customize the prior parameters

as follows:

• options.priors.Phi.mean is a (n× lags + 1)× n matrix containing the prior means

for the autoregressive parameters.

• options.priors.Phi.cov is a (n× lags + 1)× (n× lags + 1) matrix containing the

prior covariance for the autoregressive parameters.

• options.priors.Sigma.scale is a (n × n) matrix containing the prior scale for the

covariance of the residuals.

• options.priors.Sigma.df is a scalar defining the prior degrees of freedom.

• options.priors.tau is a (hor × 1) vector controlling shrinkage at various horizons;

the default value is one. The larger this value is, the stronger will be the shrinkage

around the prior mean.

One can set these options one at the time or jointly. The following approximate posterior

distributions are constructed by the toolkit:

• dm.ir_blp is a (n×hor×n×K) matrix containing the Bayesian local projections impulse

responses obtained with recursive identification. The first dimension corresponds to the

variables, the second to the horizon, the third to the disturbances, and the fourth to
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the responses obtained with particular draw from the posterior distribution of the local

projection parameters.

• dm.irproxy_blp is a (n× hor× 1× K) matrix containing the Bayesian local projection

impulse responses with IV identification. The first dimension corresponds to the vari-

ables, the second to the horizon, the third to the shock, and the fourth to the responses

obtained with particular draw from the posterior distribution of the local projection

parameters.

• dm.bforecasts.no_shocks is a (hor × n × K) matrix containing unconditional fore-

casts. The first dimension corresponds the horizon, the second to the variable, and the

third to the draw from the posterior distribution of the parameters. These trajectories

are constructed assuming that all future shocks are zeros. Thus, these forecasts only

account for parameter uncertainty.

• dm.bforecasts.with_shocks is a (hor× n× K) matrix containing unconditional fore-

casts with shocks. The first dimension corresponds the horizon, the second to the

variable, and the third to the draw from the posterior distribution of the parameters.

These trajectories account for uncertainty in the parameter estimates and in the shocks

realization.

The parameter vector that controls the overall prior shrinkage, options.priors.tau, can

also be chosen to maximize the marginal data density. If the user prefers this option, she

can use the command:

% triggers maximization of the overall prior shrinkage

options.priors.max_tau = 1;

bdm_opt = directmethods(y, lags, options);

By default, optimization is performed unconstrained and Chris Sims optimizer cminwel.m

is used (this is options.max_compute = 3). The following options can be set in the maxi-

mization step:

1. options.lb and options.ub set the lower and upper bounds for the optimization.

Both are row array vectors of the same size of options.priors.tau.

2. options.max_compute is a scalar, selecting the maximization routine to be employed.

The options are:

• options.max_compute = 1 uses the MATLAB fminunc.m (unconstrained)

• options.max_compute = 2 uses the MATLAB fmincon.m (constrained)

• options.max_compute = 3 uses the Chris Sims’s cminwel.m

• options.max_compute = 7 uses the MATLAB fminsearch.m

The first three are Newton, derivative-based algorithms; the latter is a direct search

(simplex) method based on function comparisons. While typically slower, the latter

method is useful in situations where derivatives are not well behaved.
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4.5 A few examples

We use the same monthly data employed section 3.4. Recall that the DataGK.mat contains

the log of industrial production index (logip), the log of CPI index (logcpi), the one-year

government bond rate (gs1) and the excess bond premium (ebp), which are the four series

used in the Gertler and Karadi (2015) paper. The sample runs from 1979m7 to 2012m6.

Example 26 (LP: MP shock with recursive identification) We estimate and plot the

responses to a monetary policy impulse identified using a recursive identification scheme. We

use the same lag length as in GK and estimate local projection impulse response function

with default settings. First, we prepare the data. By default, the horizon of the responses is

24. We modify it to have the same horizon length as in GK and then run the model. Figure

20 reports the responses. Relative to the Cholesky VAR responses (presented in figure 1),

bands are wider for industrial production and for the excess bond premium. However, the

dynamic profile of the median is comparable.

load DataGK % load the data

y = [logip logcpi gs1 ebp]; % combine the data in a Tx4 matrix

% Estimate LP IRF of 4 year horizon assuming 12 lags

lags = 12;

options.hor = 48;

dm1 = directmethods(y,lags,options);

% Define the responses of interest

% index of the shocks of interest (shock to gs1)

indx_sho = [3];

% Order of the variables in the dataset

% 1. logip; 2. logcpi; 3. gs1; 4. ebp

% Change the order for the plot

% 1. gs1; 2. logcpi; 3. logip; 4. ebp

indx_var = [3, 2, 1, 4];

lpirf2plot = dm1.ir_lp(indx_var,:,indx_sho,:);

% Customize the IRFs plot

% variables names for the plots

options.varnames = {’1 year rate’ ’CPI’ ’IP’ ’EBP’};
% name of the directory where the figure is saved

options.saveas_dir = ’./dm_plt’;

% name of the figure to save

options.saveas_strng = ’Cholesky’;

% name of the shock

options.shocksnames = ’MP’;

% Compare with BVAR estimates
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bvar_ = bvar(y,lags,options);

var_irf_sort = sort(bvar_.ir_draws,4);

% add BVAR IRF plot

options.add_irfs(:,:,:,1) = var_irf_sort(indx_var,:,indx_sho,round(bvar_.ndraws*0.95));

options.add_irfs(:,:,:,2) = var_irf_sort(indx_var,:,indx_sho,round(bvar_.ndraws*0.05));

% plot the responses

plot_irfs_(lpirf2plot,options)

Figure 20: Local projection responses to a monetary policy shock identified with recursive restric-
tions. Dark gray bands report 90% confidence intervals. Blue lines report the 90% confidence set
for VAR-based responses.
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Example 27 (LP: MP shock with IV identification) Consider the same setting of ex-

ample 10. We now identify a monetary policy shock with external instruments and trace the

dynamic transmission of the shock using LP. We consider the same set of endogenous vari-

ables as in the VAR setting, i.e. xt−1 includes lagged values of the log of industrial production

index (logip), the log of CPI (logcpi), the one-year government bond rate (gs1) and the

excess bond premium (ebp). The left side of figure 21 reports the responses. Relative to the

IV VAR responses (reported figure 4), bands are much larger; especially for the interest rate

and CPI. The uncertainty is so large that little can be said about the transmission properties

of monetary policy disturbances in this setting.

% load the instruments from GK dataset

[numi,txti,rawi] = xlsread(’factor_data.csv’,’factor_data’);

% NOTE: instrument must have the same length as the observed data

options.proxy = nan(length(y),1);

% instruments and data end in 2012m6

options.proxy(length(y)- length(numi)+1:end) = numi(:,4);

% Estimate LP IRF of 4 year horizon assuming 12 lags

dm2 = directmethods(y,lags,options);

% use previous saving settings

options0= options;

% figure tag

options0.saveas_strng = ’IV’;

% one plot per figure

options0.nplots = [1 1];

% variables names

options0.varnames = { ’1 year rate’ ’CPI’ ’IP’ ’EBP’};
% increase the title size

options0.fontsize =18;

% normalize shock to be a 25 bps increase in the one year govt bond

norm = dm2.irproxy_lp(3,1,1,2)*4;

% the plotting command

plot_irfs_(dm2.irproxy_lp(:,:,1,:)/norm,options0)

Example 28 (LP: MP shock with IV identification with one endogenous variable at time)

We consider the same setting of example 27. We now construct the linear projection impulse

response function using one endogenous variables at time, e.g. when computing the impulse

response of the log of industrial production index (logip), we only include lagged values of

logip. The right side of figure 21 plots the responses (the commands used to produce the

plot are reported below).
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In this case not only the uncertainty is significant but also the transmission dynamics are

quite different. Thus, unless one has the information set correctly specified, the responses

obtained are biased, because the instrument ends up being correlated with the error of the

projection equation.

% use previous saving settings

options1 = options0;

% iterate over endogenous var

for vv = 1 :size(y,2)

% consider only one endogenous variable at time

dm3 = directmethods(y(:,vv),lags,options);

% name of the file to save

options1.saveas_strng = [’IV_var’ num2str(vv)];

% variable name

options1.varnames = options0.varnames(vv);

% the plotting command

% NOTE: we use the same normalization as in the previous example.

plot_irfs_(dm3.irproxy_lp(:,:,1,:)/norm,options1)

end
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Figure 21: Local projection responses to a monetary policy shock identified with IV restrictions.
Dark gray bands report 90% confidence intervals. Left panels: specification of example 27. Right
panels: specification of example 28.
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It may be interesting to see whether Bayesian methods allow a more precise characteri-

zation when IV are used. The next example considers this setup.

Example 29 (Bayesian LP with VAR priors) We consider the same setting in 27. We

use the first eight years of data to calculate the posterior distribution of the VAR reduced

form parameters, use the posterior means to center the priors for the LP parameters, and

to compute the response functions. The commands are reported below. Figure 22 reports

the responses. Relative to the left panels of figure 21, bands are narrower and inference is,

indeed, more precise.

% run a VAR on a presample of data

presample = 96; % 8 years of presample

lags = 12;

bvar_ = bvar(y(1:presample,:),lags);

% use VAR estimates to set the priors for LP

options.priors.name = ’Conjugate’;

% use the posterior mean of the VAR coefficients

options.priors.Phi.mean = mean(bvar_.Phi_draws,3);

% use the posterior variance of the VAR coefficients

options.priors.Phi.cov = diag(mean(var(bvar_.Phi_draws,0,3),2));

% use the posterior mean of the covariance of the VAR residuals

options.priors.Sigma.scale = mean(bvar_.Sigma_draws,3);

options.priors.Sigma.df = size(bvar_.Phi_draws,1)-2;

% overall shrinkage (<1 looser prior)

options.priors.tau = 0.5*ones(options.hor);

% adjust the length of the IV to match the data size

options.proxy(1:presample,:) =[];

% compute the Bayesian DM

bdm = directmethods(y(presample+1:end,:),lags,options);

% save figure with name

options.saveas_strng = ’BLPIV’;

% credible sets

options.conf_sig = 0.90;

% normalize the shock to 25 bps increase in the one year govt bond

norm = median(bdm.irproxy_blp(3,1,1,:),4)*4;

% plot command

plot_irfs_(bdm.irproxy_blp(indx_var,:,1,:)/norm,options)
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Figure 22: Bayesian local projection responses to a monetary policy shock identified with IV
restrictions. Dark (light) gray bands 90% credible sets.
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5 Filtering and measuring cyclical information

In this section we show how to use the toolkit to extract latent cyclical information from an

observable time series and to date business cycles.

5.1 Trend and cycle/permanent and transitory decompositions

Trend and cycle (permanent and transitory) decompositions are very popular in academic

and policy making as way to get estimates of latent variables. Canova (2020) has argued

that decompositions of this sort may fail to recover objects that economists think important

(output gap, cyclical fluctuations, relative importance of permanent and transitory shocks)

whenever the data has been generated by the models that nowadays are used to explain

the data. Thus, great care needs to be exercised in taking the output of the procedures we

describe for inference.

Traditionally, time series are decomposed in trend, cycle, seasonal and irregulars. Since

seasonals are not of general interest, we assume that data is seasonally adjusted. Further-

more, for most cases, we take the irregulars (high frequency variations) to be part of the

cycle. Thus, one needs only to split a time series into two latent components which, for

short, we call the trend and the cycle, even if the trend may have business cycle variations

and may not be permanent and the cycle may feature low frequency variations and be highly

persistent.

To split an observable (or a vector of) time series into two latent components one needs

to make assumptions. The typical ones used concern the properties of the trend and the

correlation between the two latent components. Thus, for each procedure, we spell out the

assumptions used to perform the decomposition.

Historical decomposition

• Polynomial trend

This approach is the oldest and maintains that the trend is a deterministic process and it

is uncorrelated with the cycle. Thus, the latter can obtained as the residual of a regression

of the observables on a polynomial trend:

yt = a+ bt+ ct2 + . . .+ et

By construction, the cycle thus accounts for all the fluctuations in the observables. Thus, it

will display business cycle as well as high and low frequency variations. The command to

run the decomposition is:

[dc,dt] = polydet(y,ord,gg);

where, y is the data, ord is the order of the polynomial (the upper limit is 4) and gg an

indicator; if it is equal to 1 it plots the data, the trend, and the cycle. The output of the
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function are the estimated cycle dc and the estimated trend dt.

• Polynomial break trend

A deterministic trend has two unpleasant features: it can be perfectly predicted far out

in the future; and no acceleration/deceleration of its growth rate is possible. In addition,

the cycles which are extracted are highly persistent and have period of fluctuations which

is larger than those typically relevant for business cycle analysis. Using a break in the

trend, allows changes in its growth rate but leaves the other two problems untouched. The

command to run the break trend decomposition is:

[dc,dt] = polydet_break(y,ord,tt,gg);

where y is the data, ord is the order of the polynomial (upper limit 4), tt is the break date

and gg an indicator; if it is equal to 1 it plots the data, the deterministic trend, and the cy-

cle. The output of the function are the estimated cycle dc and the estimated trend dt. The

break date must be selected in advance. Thus, introspection or preliminary statistical tests

(e.g a Chow test on an interval of dates) needs to be used, prior to running the decomposition.

• Differencing

The third approach assumes that the trend is stochastic, displays at least one unit root,

and it is uncorrelated with the cycle. Thus, trend estimates are equal to yt−k and cycle

estimates are equal to yt − yt−k. There is no specific function in the toolkit to perform

this decomposition. Users may employ simple Matlab commands to do it. For example, to

compute the decomposition for k = 1, 4, 20 the following can be used

% one quarter difference (quarterly data)

dy1(2:end,:) = y(2:end,:)-y(1:end-1,:);

dt1(2:end,:) = y(1:end-1,:);

% one year difference (quarterly data)

dy4(5:end,:) = y(5:end,:)-y(1:end-4,:);

dt4(5:end,:) = y(1:end-4,:);

% 5 years difference (quarterly data)

dy20(21:end,:) = y(21:end,:)-y(1:end-20,:);

dt20(21:end,:) = y(1:end-20,:);

Note that in the above y could be a T × n matrix, where T denotes the length of the

time series and n the number of variables. Clearly, the longer is the differencing operator,

the larger is the number of data points lost. The cycle that short differencing produces is

typically very volatile and displays powerful high frequency variability. The cycle obtained

with k > 1 is typically smoother, but displays potentially artificial serial correlation (moving

average components of order k − 1).
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Because the cycle computed with the above commands does not necessarily have zero

mean, it is a good idea to demean y prior to computing the required difference.

• Hamilton (local projection) trend

The approach assumes that the trend is stochastic and uncorrelated with the cycle. The

trend here is defined to be the medium term forecastable component of the series and may

or may not display a unit root. To obtain the decomposition one runs the local projection:

yt+h = b0yt + b1yt−1 + ...+ bpyt−p + et+h (9)

and an estimate of the cycle is yt+h − b̂0yt − b̂1yt−1 − ...− b̂pyt−p. The command to run the

decomposition is:

[dc,dt] = hamfilter(y,h,lags,ff,gg);

where y is the data, h is the horizon of the projection (upper limit h = T − p− 1); lags is

the number of lags included in the projection; ff an indicator; if it is equal to 1 a constant is

included in the projection; gg an indicator; if it is equal to 1 it plots the data, the trend, and

the cycle. The output of the function are the estimated cycle dc and the estimated trend

dt. The typical value for h is 2 for yearly data, 8 for quarterly data, and 24 for monthly

data. For lags one would like to use at least one year of data; thus lags = 1 for annual

data, lags=4 for quarterly data; lags=12 for monthly data.

The function allows y to be a T × n matrix, where T is the sample size and n the num-

ber of series. Conditioning variables, other than the lags of the endogenous variable y are

not allowed in the specification. Contrary to previous approaches, cycle estimates obtained

with this approach are model free and thus are robust to misspecification of the time series

properties of the trend process. Furthermore, they will be stationary if yt has up to d unit

roots and properties similar to h-differencing of the data (see Hamilton (2018)).

• Hodrick and Prescott trend.

Here the trend is assumed to be stochastic but smooth (its acceleration should be small)

and uncorrelated with the cycle. The Hodrick and Prescott (HP) trend is obtained via the

ridge estimator:

ỹ = (H ′H + λQ′Q)−1H ′y

where λ is a smoothing parameter, y = (y1, . . . yt) the observable series, ỹ = (ỹ1, . . . , ỹt, ỹt+1, ỹt+2),

the trend, H = (It×t, 0t×2),

Qt×(t+2) =



1 −2 1 0 ... ... 0 0 0
0 1 −2 1 ... ... 0 0 0
0 0 1 2 ... ... 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 ... ... −2 1 0
0 0 0 0 ... ... 1 −2 1
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and the cycle is the difference between the level and the HP trend. The commands to run

the decomposition are:

dt = Hpfilter(y,lam); dc = y-dt;

where y is the data, lam is the smoothing parameter. The output of the hpfilter function

is the estimated trend dt. The typical values of λ are 1,600 for quarterly data, 6.25 for

annual data and 129,000 for monthly data. Ravn and Uhlig (2002) showed that with these

values the estimated cycles in monthly, quarterly and annual data displays the same ups and

downs and have a periodicity of approximately 4-8 years.

Because the gain function of the standard HP cyclical filter knocks out almost all power

at low frequencies (8-16 years), and partially eliminate power at business cycle frequencies

(2-8 years), and because these frequencies may be important for understanding economic

phenomena, one may want to consider alternatives which allow in the cycles also contain

relevant medium term cyclical variations. For example, for quarterly data λ = 51, 200, could

be used, a value close to the BIS recommendations, see Borio (2012).

• One-sided HP trend

The HP-filter is two-sided and thus not very useful for real time analysis and forecasting.

In addition, by construction, the cycle at t artificially predicts yt+2. There is a one-sided

version of the HP filter which does not feature future predictability. The specification is:

yt = yxt + yct

yxt = 2yxt−1 − yxt−2 + εt

where yxt , y
c
t are the trend and the cycle and εt, y

c
t are uncorrelated white noise sequences.

Stock and Watson (1999) show that such a model has the following state space representation:

1. State Equation [
yxt|t
yxt−1|t

]
=

[
2 −1
1 0

][
yxt−1|t−1

yxt−2|t−1

]
+

[
εt
0

]
2. Observation Equation

yt =
[

1 0
] [ yxt|t

yxt−1|t

]
+

[
yct
0

]
The trend and the cycle can be estimated with standard Kalman filter/EM algorithm iter-

ations. One can restrict λ = σ2
c
σ2
ε

with a prior, e.g. λ ∼ N(1600, 10). In this case, MCMC

methods need to be used.

The toolkit uses the serial implementation of Meyer-Gohde (2010). It is much faster than

other procedures and gives almost identical results. In practice, the one-sided HP trend is

obtained calculating for each t− 2 the standard HP filtered trend with data up to t− 2 and

equating the one-sided HP trend at t− 2 with the standard HP trend value for period t− 2

94



(i.e., we compute T two-sided HP filters trends, one for each 2 < t < T − 2). The command

to run this decomposition is:

[dt,dc] = one_sided_hpfilter_serial(y,lam,disc);

where y is the data, lam is the smoothing parameter, disc the number of unused observations

(typically disc = 0). The output of the function is the estimated trend dt and the estimated

cycle dc.

Example 30 (Two- and one-sided HP filter) We consider quarterly Euro Area log GDP

from 1999Q1 until 2017Q4 available in the AWM DATABASE. We apply the one- and two-

sided HP filter to the (log of) raw data. Figure 23 reports the log level data, the two trend

and cycle decompositions. Note that the one-sided HP gives a much more optimistic view of

the cycle after 2013.

Figure 23: One- and two-sided HP filter of the EA log of real GDP.

2000 2002 2004 2006 2008 2010 2012 2014 2016

14.3

14.35

14.4

14.45

14.5

log GDP

data
2-sided HP
1-sided HP

2000 2002 2004 2006 2008 2010 2012 2014 2016

-0.04

-0.02

0

0.02

2-sided HP
1-sided HP

• Band pass (BP) filter

BP filters are a combination of high pass and low pass filters. A band pass filter has a

squared gain function equal to 1 for all frequencies in some interval (ω1, ω2) and 0 otherwise.

Thus, it passes unchanged all the variability of the input between (ω1, ω2) and wipes out the

variability outside of it. The time series versions of these filters are:

Low pass: Blp0 = ω1
π ; Blpj = sin(jω1)

jπ ; 0 < j <∞, some ω1.

High pass: Bhp0 = 1− Blp0 ; Bhpj = −Blpj ; 0 < j <∞.
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Band pass: Bbp0 = Blpj (ω2)− Blpj (ω1); 0 < j <∞, ω2 > ω1.

Note that j must go to infinity to have the required gain function. Hence, for finite T ,

only approximations to these filters can be computed. The two most common ones have

been suggested by Baxter and King (1999) (BK), who cut j at some J̄ <∞ (usually 3 years

of data) and Christiano and Fitzgerald (2003) (CF) who use a non-stationary, asymmetric

approximation which is optimal in the sense of making the approximation error as small as

possible. In this approximation the coefficients of the filter change magnitude and even sign

at each t.

The CF version has better spectral properties (by construction the approximation error

is smaller) but one needs to know if the input series is I(1) or I(0) before applying the filter.

Furthermore, phase shifts may occur (the timing of ups and downs of the output do not

necessarily coincide with the ups and downs of the input), since the filter is asymmetric.

The two approximations produce similar timing of recessions and expansions when applied

to US macroeconomic time series, except at the beginning and at the end of the sample.

The toolkit features both the BK and the CF approximations. The BK decomposition

can be called using:

dc = bkfilter(y,bp1,bp2); dt = y-dc;

where the first command calculates the cycle and the second the trend. bp1 is the upper

limit of the frequency band and bp2 is the lower limit of the frequency band over which the

squared gain function is 1. Typical choices for quarterly data are bp1 = 8 and bp2 = 32.

For monthly (annual) data the typical choices are bp1 = 24 (2) and bp2 = 96 (8).

The command for the CF decomposition is instead:

dc = cffilter(y,bp1,bp2,cf1,cf2,cf3); dt = y-dc;

where cf1 is an indicator function describing the time series properties of the input (cf1 = 0

no unit root); cf2 is an indicator function for whether there is a drift in the unit root or a

deterministic trend (cf2 = 0 no drift); cf3 chooses the format of the filter: cf3 = 0 uses

the basic asymmetric filter; cf3 = 1 uses the symmetric filter; cf3 = 2 uses a fixed length

symmetric filter; cf3 = 3 uses a truncated, fixed length symmetric filter (the BK choice);

and cf3 = 4 uses a trigonometric regression filter. If cf1, cf2 and cf3 are omitted, the

default values are cf1 = 1, cf2 = 1 and cf3 = 0.

• Wavelet filters

A Wavelet filter is build using the same principles of a BP filter but the implementation

is directly in time domain. Furthermore, at each t the filter uses only past information to

separate the two components. Thus, it is a one-sided as opposed to a two-sided filter, such

as the BP or HP. How far one looks back in the past to construct the filtered series depends

on the cycles one wants to extract.
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Wavelet filters can be used on stationary and non-stationary inputs. The filter assumes

the following representation for the observable time series:

yt =
J∑
j=1

Djt + SJ,t

Djt = 1/(2j)(
2j−1−1∑
i=0

yt−i −
2j−1∑
i=2j−1

yt−i)

SJ,t = 1/(2J)(
2J−1∑
i=0

yt−i)

where typically J = 5. j = 1, 2 capture high frequency; j = 3, 4 business cycles and j = 5

low frequencies. SJt captures the long run component. In the toolkit, D3t, D4t, D5t are

computed using the Haar wavelet representation described by Lubik, Matthes and Verona

(2019). The representation for the relevant cycles are:

8-16 quarters cycles:

D3t = 1/8 (yt + yt−1 + yt−2 + yt−3 − yt−4 − yt−5 − yt−6 − yt−7)

16-32 quarters cycles:

D4t = 1/16 (yt + yt−1 + yt−2 + yt−3 + yt−4 + yt−5 + yt−6 + yt−7

− yt−8 − yt−9 − yt−10 − yt−11 − yt−12 − yt−13 − yt−14 − yt−15)

32-64 quarters cycles:

D5t = 1/32 (yt + yt−1 + yt−2 + yt−3 + yt−4 + yt−5 + yt−6 + yt−7

+ yt−8 + yt−9 + yt−10 + yt−11 + yt−12 + yt−13 + yt−14 + yt−15

− yt−16 − yt−17 − yt−18 − yt−19 + yt−20 − yt−21 − yt−22 − yt−23

− yt−24 − yt−25 − yt−26 − yt−27 − yt−28 − yt−29 − yt−30 − yt−31)

The wavelet filter decomposition can be obtained using the command:

[dc1,dt1,dc2,dt2] = wavefilter(y,gg);

where dc1 and dc2 are the cyclical components computed focusing attention on 8-32 (D3t +

D4t) or 8-64 (D3t + D4t + D5t) quarters cycles and dt1 = y-dc1, dt2 = y-dc2 are the

corresponding trend estimates; y is the input series, and gg is an indicator function for

whether the cyclical components are plotted (for gg = 1 plots are shown).

Example 31 (BP and Wavelet filters) Consider the same data of exercise 30. We apply

the BP and Wavelet filter to the logarithm of the raw data. Figure 24 reports the trend and

cycle decompositions obtained with BK, CF, and the two wavelet decompositions.
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Figure 24: BP and Wavelet filters of the EA log of real GDP.
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• Butterworth filters

Butterworth are a class of filters which can be designed by engineers to have low pass,

high pass, band pass and even stop pass characteristics. They are very flexible and can be

specified so that the cycle captures medium and low frequency variations; or to eliminate

unit roots without affecting medium frequencies.

The squared gain function of the filter is: G(ω) = G0
1+( ω

ωc
)2n

, where G0 is the gain at the

zero frequency, n is the (polynomial) order of the filter and ω is a selected frequency and ωc

a reference frequency (typically ωc = 1). By playing around with these three parameters,

one can give to the squared gain a variety of shapes.

Canova (2020) finds the specification useful to cut the spectrum of the observed series

horizontally, so that the estimated latent components have power at all frequencies, rather

than cutting it by frequencies as, for example, the BP filter does. Butterworth filters are

particularly useful when not all low frequency variations should be attributed to the trend.

There is no specific command in the toolkit to implement Butterworth filters, but simple

Matlab functions can be used if the signal processing toolbox is installed.

Here is a simple set of commands which allow to build a Butterworth filter:

1. Creating the ARMA weights

[a,b] = butter(n,cutoff,type)

where n is the degree of the polynomial, cutoff is the point in radians where the

squared gain falls and type is an indicator for the type of filter you want (could be
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low, high, stop-pass). If cutoff is a vector with two values, butter computes band

pass weights; a are the AR weights and b are the MA weights of the filter.

2. Filtering the input with an ARMA(a,b)

yc = filtfilt(a,b,y)

This command creates a filtered (output) series yc using an ARMA(a, b) on y as input.

With these commands G0 = 1 is automatically set. For a different G0, one needs to rescale

the b coefficients (if they are scaled up, the squared gain at ω0 is lower).

• Unobservable component (UC) decompositions

UC methods are based on a state space formulation of the latent variable problem. Thus,

there is a measurement equation linking the observable to the latent components and one

or two state equations describing the time evolution of the latent variable(s). Typically,

the trend is assumed to be random walk, with or without drift depending on whether the

input data is raw or demeaned, while the cycle is assumed to be an AR process. In some

specifications, the cycle is assumed to be a 2 × 1 vector of trigonometric functions which

load at a particular frequency ω (see e.g. Runstler and Vlekke (2018)). The measurement

equation may feature a measurement error. Typically, the innovations in the two latent

variables are assumed to be uncorrelated and the parameter of the model are estimated by

a Kalman filter, EM routine. Recently Grant and Chan (2017) described an approach which

allows them to be correlated. Estimation in this case is performed with MCMC methods.

The standard time series specification can be boosted up with regressors, affecting the

law of motion of the latent variables, and complicated structure can be imposed on the

innovations to the latent variables, see e.g. Stock and Watson (2016). The procedure is

typically run on a single time series, but the setup can be easily made multivariate, see e.g.

Gonzalez-Astudillo and Roberts (2016), or Grant and Chan (2017). In this case, one can

assume that there are common trends, or common cycles, or both.

One UC setup the toolkit accepts is the following:

yt = τt + ct

τt = τt−1 + µ+ ηt

ct = ϕ1ct−1 + ϕ2ct−2 + εt

Estimates of (θ1, θ2, µ, σ
2
u, σ

2
η, σ

2
ε ), and ρ = corr(ηt, εt) can be obtained KF-ML approach or

by MCMC with flat prior. The implementation employed uses the codes of Grant and Chan

(2017) and can be activated with the following command

[yt,yc] = uc1_(y,opts);

where y is the data and options is a field structure that allows to customize various the

settings which are listed below:
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• opts.figg: when equals 1 it plots the series, the trend, and the cycle.

• opts.noprint: when equals 1 it does not print estimates.

• opts.nsims: sets the number of MCMC simulations (default 5000).

• opts.burnin: sets the number of burn-in draws (default, 30000).

• opts.rhoyes when equals 1, it allows correlation between the trend and the cycle

(default, 0)

• opts.mu0: prior mean trend drift (default, 0.1)

• opts.Vmu: prior variance trend drift (default, 1)

• opts.phi0: prior mean cycle AR1 and AR2 coefficients (default, [0.2 0.2])

• opts.Vphi: prior variance AR coefficients (default, diagonal matrix with 1)

• opts.sigc2: prior mean cycle variance (default, 0.5)

• opts.sigtau2: prior mean trend variance (default, 1.5)

• opts.time: T × 1 array containing the time span. This option can be used when

opts.figg = 1 so that the x-axis display the desired time units.

The law of motions of the latent variables can be made more complicated, for example

one can assume a break in the random walk drift or assume a local linear trend specification,

see e.g. Harvey (1990). The toolkit also allows to estimate a local linear trend model:

yt = τt + ct

τt = τt−1 + µt + η2,t

µt = µt−1 + η1,t

ct = ϕ1ct−1 + ...+ ϕpct−p + εt

The implementation employed uses a maximum likelihood approach and can be activated

with the following command:

[yt,yc,out] = uc2_(y,lags,opts);

where y is the data, lags is the number of lags in the cycle specification. The parameters

of the local linear trend model are ordered as follows [ϕ1, ...., ϕp, σε, ση,1, ση,2]; they can be

estimated or calibrated by setting the appropriate options (see below) and are reported as

additional output as subfields in out. opts is a field structure that allows to customize

alternative settings which are listed as follows

• opts.phi is a lags × 1 vector that sets the initial value for the ϕ’s (default, 0.5j for

j = 1, ..., d).

• opts.sigma is a 3× 1 vector that sets the initial value for the σ’s (default, 0.5).
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• opts.index_est is a row vector that selects the parameters to be optimized. By

default, opts.index_est=1:lags+3, that is, all parameters are optimized.

• opts.lb and opts.ub set the lower and upper bounds for the optimization. Both are

row array vectors of the same size of opts.index_est.

• opts.max_compute is a scalar selecting the maximization routine to be employed. The

maximization settings are the same as those for the maximization of the Minnesota

hyper-parameters (see (3.1.1)).

Multivariate approaches

When the DGP features general equilibrium equations, univariate decompositions are inef-

ficient as they disregard, for example, the presence of a balance growth path when TFP has

a unit root, or the fact that cyclical components have similar features (since they are driven

by the same disturbances). The next procedure account for these possibilities.

• Beveridge and Nelson (BN) decomposition

The BN decomposition was originally thought for univariate time series but, in most

applications, a bivariate process is used. The procedure is flexible and can allow for more

than two endogenous variables, as long as sufficient smoothness conditions are imposed, see

e.g. Kamber, Morley and Wong (2018). It can also be cast into a state space formulation,

which helps to make clear the link with a UC methodology, see e.g. Morley, Nelson and

Zivot (2003).

In BN the trend is defined as the long run forecastable component of yt (recall, in Hamil-

ton local projection approach it was the medium term forecastable component). It assumes

that at least one of the components in yt has a unit root (otherwise the forecastable compo-

nent is simply the mean of yt), and the cycle is the difference between yt and its forecastable

component. Estimates of the cycle depend on the lag length of the estimated time series

model and the sample size. Thus, we recommend users to experiment with different model

specifications.

The univariate setup is the following. Assume that (∆yt − ȳ) = A(L)(∆yt−1 − ȳ) + et,

where et is iid(0; Σe), ȳ is the mean of yt and det(A(L)) has all its roots less then 1 in

absolute value. The Moving Average representation (MA) is (∆yt − ȳ) = ∆y∗t = D(L)et =

D(1)et + (D(L)−D(1)
1−L ∆et. Cumulating one obtains

yt = (ȳ +D(1)
t∑

j=1

ej) +
(D(L)−D(1)

1− L
et ≡ yTt + yct

where yTt is the trend and yct is the cycle. Note that, by construction the trend and the

cycle are perfectly correlated since they are driven by the same innovation. To call this
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decomposition, the user should use the command:

[dc,dt] = BNuniv(y,lags,ff,gg, mm);

where y is the time series, lags is the number of lags in the estimated autoregression; ff

is an indicator function for the constant in the AR model (ff = 0 no constant); gg is an

indicator function for whether the estimated cycle is plotted or not (gg = 0 no plot); mm is

an indicator function for whether the decomposition is computed using the estimated long

run mean from the model or the estimated mean of yt (mm = 1 use the estimated mean;

mm = 0 use long run mean).

The multivariate setup is instead the following. Let yt = [∆y1t, y2t], where yt is a m× 1.

Here y1t are I(1) variables; and y2t are I(0). Suppose yt admits a MA of the form yt =

ȳ+D(`)et, where et ∼ iid(0,Σe), D0 = I, the roots of | det(D(`))| are equal or greater than

one; and that D1(1) 6= 0, where D1(`) is m1 × 1 (first m1 rows of D(`)). Then(
∆y1t

∆y2t

)
=

(
ȳ1

ȳ2

)
+

(
D1(1)

0

)
et +

(
(1− `)D†1(`)

(1− `)D†2(`)

)
∆et (10)

D†1(`) = D1(`)−D1(1)
1−` D†2(`) = D2(`)

1−` , 0 < rank[D1(1)] ≤ m1 and yxt = [ȳ1 +D1(1)
∑

s es, ȳ2]′ is

the permanent component of yt.

Note that as in UC, the BN trend is the permanent component of the series. BN however

restricts the latent components to be perfectly correlated, while in UC the correlation is a

parameter that can be estimated from the data.

• Blanchard and Quah (BQ) decomposition

The Blanchard and Quah decomposition is run on a VAR which has the same format as

the one for the multivariate BN decomposition. However, rather than using the innovations

to construct estimates of the latent components, one uses rotation matrices to make sure that

the shocks of the model have some economic interpretation (typically demand vs. supply

shocks). In the typical setup, the decomposition has two variables, where at least one is a

I(1) process. The two shocks are identified by the restriction that only one shock affects the

I(1) variable in the long run and both affect the I(0) and the I(1) variables in the short run.

When there are more than two variables, balanced growth can be imposed, see King,

Plosser, Stock and Watson (1991), and more than one shock can have long run effects on

I(1) variables, see Fisher (2006). The standard BQ decomposition identifies supply and

demand shocks assuming that they are uncorrelated. Cover, Enders and Hueng (2006) use

an alternative normalization and different identification assumptions that allow demand and

supply shocks to be correlated.

In the toolkit, the BQ and the (bivariate) BN decompositions can be obtained with one

command:

[dt1,dc1,dt2,dc2] = BNBQbiv(y,lags,ff,rhoyes,ssts,gg,mm);
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where lags is the number of lags in the VAR; ff is an indicator function for whether a

constant is included in the VAR (if ff = 1 there is a constant); rhoyes is an indicator

function for whether the two disturbances are correlated (if rhoyes = 1 demand and supply

shocks are correlated; this option triggers the Cover et al. (2006) decomposition); ssts is an

indicator function for whether the second variable of the VAR is also integrated (if ssts = 1

it is I(1)); gg is an indicator function for the plots (if gg = 1 the permanent and transitory

component of the first variable are plotted); mm is an indicator function for spectral density

plots (if mm = 1 spectral densities plots appear on the screen). Here y should be a T × 2

matrix; dt1, dc1 are the permanent and the transitory components of the first series obtained

with BN; dt2, dc2 are the permanent transitory components of the first series obtained with

BQ.

BN and BQ decompositions are sensitive to the number of lags, the number and the type

of variables, whether a constant is included in the VAR and the sample size. We recommend

users to experiment with various options before taking one output for inference.

5.2 Dating turning points

There are different concepts of the business cycle researchers use. For example, following Lu-

cas (1977), several macroeconomists think business cycles as the presence variability, serial

and cross correlation in a vector of aggregate macroeconomic variables. Such a definition

typically requires the separation of observables time series into trends and cycles, and the de-

compositions presented in the previous subsection can be employed. Other macroeconomists

instead prefer to think of business cycles as the sequence of alternating, irregularly spaced

turning points generating expansion/recession phases of some minimum duration. Such an

approach has been pioneered by Burns-Mitchell (1946) and recently brought back to life by

Harding and Pagan (2002, 2006), Kulish and Pagan (2019), and others. The approach can

be used to compute cyclical statistics without having to first detrend the data; allows for

asymmetries between expansions and recessions, and involves first, dating turning points,

and second, computing statistics of business cycle (recession and expansion) phases.

The first step is basically a pattern recognition exercise: one finds turning points under

some constraints in the level of yit (or it growth rate). The constraints could be judgmental,

as for example NBER/CEPR dating committees use - a persistent period (at least two

quarters) of positive/negative growth is called an expansion/recession - or mechanical such

as the Bry and Boschen (BB) algorithm, who finds peak and through dates using a procedure

to locate local maximum and minimum of a series.

The rules of the BB algorithm are:

1. Peaks and troughs must alternate.

2. Each phase (peak to trough or through to peak) must have a duration of at least six

months (two quarters).
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3. A cycle (peak to peak or trough to through) must have a duration of at least 15 months

(5 quarters).

4. Turning points within six months (2 quarters) of the beginning or end of the series are

eliminated. Peaks or troughs within 24 months (8 quarters) of the beginning or end of

the sample are eliminated if any of the points after or before are higher (or lower) than

the peak (trough).

Note that BB turning point dates may be different from, e.g., NBER/CEPR turning point

dates because peaks (troughs) may occur at negative (positive) values and recessions may be

uniformly small (there is no sharp through). Note also that turning point dates are sensitive

to dating rules 2. and 3. and to minimum amplitude restrictions (e.g. peaks to troughs

drops of less than one percent are typically excluded). Thus, experimentation with these

parameters is important.

In general, however, the BB algorithm with the basic settings provides a good mechanical

rationalization for choices of business cycle dating committees. The table below has been

constructed using the BB algorithm present in the toolkit to date GDP turning points in

the EURO area. Even if the CEPR dating committee looks at series other than GDP the

match seems very reasonable, except at the end of the 1970 beginning of 1980.

Turning point dates: Euro area

Phase CEPR Length BB (GDP) Length

Peak 1974:3 1973:4
Through 1975:1 2 1974:1 2
Peak 1980:1 20 1979:2 21
Through 1982:3 10 1979:4 2
Peak 1992:1 38 1991:2 46
Through 1993:3 6 1992:2 4
Peak 2008:1 58 2007:2 60
Through 2009:2 5 2008:3 5
Peak 2011:3 9 2010:4 9
Through 2013:1 6 2012:2 6

The toolkit uses the implementation of the BB algorithm, coded by Harding and Pagan

and modified into a usable function by us. The command to date turning points in a series

is

[dt_] = date_(y, time, freq, tstart, tend, options);

where y is the data, time is the time span (same length as y), freq is a string declaring

the frequency of the data; that is, ’m’ for monthly data and ’q’ for quarterly data; tstart

(tend) is a (1×2) vector containing the year and the month/quarter when the dating exercise

should start (end), e.g. if the sample is 1970Q3-2020Q1, we have tstart = [1970 3] and

tend = [2020 1]. The sixth input, options, allows to customize the dating exercise; in

particular we have:

• options.phase sets the minimum duration of the estimated phase; default value for

quarterly (monthly) data equals 2 (6).
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• options.cycle sets the minimum length of the estimated cycle; default value for quar-

terly (monthly) data equals 5 (15).

• options.thresh bypasses phase and cycle restriction if peak to trough is larger than

threshold; default value equals 10.4.

• options.complete. When equals one, it uses only complete cycles, else incomplete

cycles (excess still computed on complete cycle). Default value equals one.

• options.nrep is used when multiple dataset simulated from a model are consid-

ered. So it will run the dating exercise options.nrep times rather than one time

on options.nrep× T observations. Default value equals one.

The output of the function is a field structure containing several objects of interest for

business cycles analysis:

• dt_.st is a T × 1 a binary array which contains the phases over time, i.e. expansion

(1) and contraction (0).

• dt_.trinary is a T × 1 trinary array which contains the cycle states over time, i.e.

peak (1), trough (-1) or none of the two (0).

• dt_.dura is a 2× 1 array with the average duration of contractions and the duration

of expansions respectively. For more details see below at 5.2

• dt_.ampl is a 2×1 array with the average amplitudes of contractions and the amplitude

of expansions respectively

• dt_.cumm is a 2 × 1 array with the average cumulative change in contractions and

expansions respectively

• dt_.excc is a 2 × 1 array reporting the percent of excess movements of triangle area

for contraction and expansions respectively

• dt_.durcv is a 2 × 1 array the coefficient of variation (the inverse of the standard

deviation) of the duration of contractions and expansions

• dt_.amplcv is a 2×1 array the coefficient of variation of the amplitude of contractions

and expansions

• dt_.exccv is a 2 × 1 array the coefficient of variation of the excess movements in

contractions and expansions

If one has more than one series that needs to be dates, the dating function can be put

into a loop and run over the available series, e.g.

for qq = 1 : size(Y,2)

y = Y(:,qq);

dt_(qq) = date_(y, time, freq, tstart, tend, options);

turningpoints(:,qq) = dt_(qq).trinary;

end
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and turningpoints contains as column vectors the turning points of each of the series.

The algorithm works on individual series. Thus, if one has many time series, she has

to decide how to aggregate turning point dates and business cycle phases across series to

construct ”reference” turning point dates and ”reference” business cycle phases.

One option is to ”aggregate-and-date”. This approach involves constructing a coincident

indicator of economic activity, e.g. Conference Board (TCB) Indicator in US; picking one

relevant series, e.g. GDP, or IP; using a dynamic factor model (DFM) to produce an estimate

of ft; for example:

yit = λft + eit

ft = a(L)ft−1 + ut ut ∼ (0, σ2
u)

eit = b(L)eit−1 + vit vit ∼ iidN(0, σ2
v) (11)

or construct an ISD (Index standard deviation) weighting the available time series

It = exp(
N∑
i=1

αiyit) (12)

where αi =
s−1
i∑N

j=1 s
−1
j

and si is the standard deviation of yit. Then, the dating exercise is

performed using TCB, GDP, ft or It. As shown in Stock and Watson (2014), the time paths

of ISD, DFM and TCB are similar and thus turning points dates are roughly coincident.

The alternative approach ”date-and-aggregate” computes turning points τis for each se-

ries yit, i = 1, . . . , ns in episode s and then compute a location measure of the turning points

distribution for each identified phase (e.g. NBER recession). If turning points are iid:

n0.5
s (τ̂means − τmeans )

D→ N(0, var(τis))

n0.5
s (τ̂medians − τmedians )

D→ N(0,
1

4(gs(τs))2
)

(h3ns)
0.5(τ̂modes − τmodes )

D→ N(0,
gs(τ

mode
s )

∫
[K ′(z)]2dz

g′′s (τmodes )
)

where K(.) is a kernel, h the length of the kernel, gs(τ) is the distribution of τ in episode s

(see Stock and Watson 2014).

When certain types of series are over-represented in the sample relative to the population

(e.g. there too many IP series and too few employment series), one can use weights in the

construction of the mean:

wi,s =
πmi
pmi,s

(13)

where πm is the population probability of class m series (IPs, employments, interest rates,

etc.) and pm,s is the sample probability of class m in business cycle episode s.

There are a number of other possibilities to compute location measures of the distribution.

For example, Harding and Pagan (2006) assume that a ”reference phase” is in place if at

least 50 per cent of the series are in that particular phase. Kulish and Pagan (2019) suggest
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to compute reference turning point dates by minimizing the discrepancy among individual

series turning point dates, i.e. if peaks are at 1973:1, 1973:5, 1973:9, the reference peak is

1973:5. One can also construct a (subjectively) weighted average of turning points where

the weight depends on importance of individual series (GDP turning points may have more

weights than, say, consumption turning points).

Example 32 (Euro area Turning point dates) We consider quarterly Euro Area series

on output, consumption, investment, labor productivity, employment, nominal rate and in-

flation from 1970Q1 until 2019Q3 available in the AWM DATABASE. We apply the BB

algorithm to each of the series and plot the distribution of turning points across series for

each data in the sample (+1 peak,-1 through), see Figure 25.

• 1975:1 is it a though? If we use the 50% rule, it is not, since less than 50% of the

series have a through at that date.

• Is there a through in 2008? If we use the minimal distance criteria, the through date

is 2009:2 (two series have minimum in 2008:1, two in 2010:3 and three have no minimum

in that interval).

As a general suggestion, if one wants to apply these simple rules, it is important to have

a good number of coincident series; otherwise a lot of measurement error may be present.

Figure 25: Distribution of Turning point dates: Euro area.
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Once turning points and reference phases are constructed one can compute a number

statistics:
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• Average durations (AD), i.e. the average length of time spent between troughs and

peaks or peaks and troughs.

• Average amplitudes (AA), i.e. the average magnitude of the drop between peaks and

troughs or of the gain between troughs and peaks.

• Average cumulative changes over phases (CM = 0.5(AD × AA)) and excess average

cumulative changes ECM = ((CM − CMA + 0.5 × AA)/AD), where CMA is the

actual average cumulative change. This is a measure of the average cost (gains) due to

recessions (expansions).

• Concordance index CIj,j′ = n−1[
∑
IjtIit−(1−Ijt)(1−Iit)]. It measures comovements

over business cycle phases of two variables, where n is the number of complete cycles

and Iit = 1 in expansions and Iit = 0 in contractions. CI = 1(= 0) if the two series

are perfectly positively (negatively) correlated.

As described, the dating function produces as output dates of turning points but also

amplitudes, durations, CMs and ECMs. To compute concordances one has two options.

Concordances, in fact, can be computed for turning point dates or for business cycle phases.

Assume that we have dated the business cycles for 7 different series (GDP, consumption,

investment, labor productivity, interest rate and inflation), and the output is collected in

dt_(1), ..., dt_(7). The following are simple Matlab commands that allow the computation

of concordances.

% GDP, C, Inv, Y/N, N, R, pi

zz = [dt_(1:7).st];

disp(’concordance index BC phases’)

ma = corr(zz,’type’,’Spearman’);

disp(ma(1, 2 : size(ma,2)))

turn = [dt_(1:7).trinary];

disp(’concordance turning points’)

qa = corr(turn,’type’,’Spearman’);

disp(qa(1, 2 : size(qa,2)))

where zz is the matrix containing business cycle phases and turn is the matrix containing

business cycle turning points for different series.

Example 33 (Euro area business cycle statistics) Using With the turning point dates

of exercise 32, we compute statistics of each phase. Three facts are evident. First, there are

large asymmetries in durations and amplitudes. Second, output and consumption expansions

are longer and stronger than in the other series. Third, there is very low concordance between

real and nominal series.
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Euro area Business Cycle Statistics

Average Duration (quarters) Average amplitude (%) ECM (%) CIj,j′ (phase)

PT TP PT TP PT TP

GDP 3.8 33.7 -2.5 20.9 6.7 1.9
C 5 36.6 -1.5 19.2 9.8 4.4 0.57
Inv 6.7 14.7 -7.2 14.7 14.9 1.1 0.52
Y/N 2.0 18.6 -1.2 8.9 1.7 10.1 0.61
N 9.0 22.8 -1.8 6.1 7.0 11.8 0.45
R 8.4 6.6 -3.1 2.7 10.5 7.8 0.04
π 9.0 6.9 -6.1 5.6 0.34 12.0 0.15

6 Final thoughts

As we have mentioned in the introduction, the toolbox comes as it is, with no support or

help on our part. The small scripts we used as examples work well, and have been tested

with generations of graduate students and numerous policy rounds in Central Banks. They

should be used as blue-print for building codes, users may want to employ.

If the reader has never seen MATLAB before, it is probably impossible to properly use

the toolbox after reading this paper. Thus, rather than sending us messages asking how to

do things, we suggest to look at the MATLAB manual first. After that, we encourage the

user to modify the examples, for instance using your favorite dataset, your favorite VAR

specification, or your favorite identification scheme, to gain confidence. Only after that,

it is logic to try to do something on your own. The toolbox has been written with the

scope of making life easier for applied researchers who want to do standard stuff, building

stylized facts, or running simple checks on the data. In case you use the toolbox to produce

something completely new, we will be interested in knowing what twist you have added.

If you are an experienced MATLAB user, you can access the codes and see yourself

how things are done. We did not strive for beauty or efficiency; most of the examples take

only a few second on standard machines with 32RAM of memory, so efficiency was never a

consideration for us. The codes are public. Feel free to modify them as you wish for your

own purposes.

It took us quite a long time to put together the routines in a consistent way and we hope

that the work will be useful for applied researchers and for teaching purposes. We think that

the toolbox could be very valuable when teaching applied macro for advanced MA students

or first year Ph.D. students, but some of the functions could be useful also for later courses.

We will take a break for a while, it has been a long road up to here. We plan to go back

to programming sometimes in the future and add other tasks as they will became relevant

for applied macroeconomists. Suggestions of what these may be are welcome.

Happy trails to all!
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A Appendix

This appendix provides some technical details about the construction of posterior distribu-

tions and the algorithms used to implement different identification restrictions. More details

on the construction of the posterior distributions can be found in Canova (2007) or Zellner

(1971). The part on the Minnesota prior closely follows Del Negro and Schorfheide (2011).

A.1 Notation

Let a V AR(p) be:

yt = Φ1yt−1 + ...+ Φpyt−p + Φ0 + ut

where yt is n × 1 vector and Φj are n × n matrices; ut are i.i.d. normal distributed, zero

mean, random vectors with covariance matrix Σ. We assume y0, . . . , y−p+1 are fixed. Let

ϑ = vec(Φ1, ...,Φp,Φ0,Σ) be the vector of parameters to be estimated.

As we have seen a V AR(p) can be transformed into a companion V AR(1). For inferential

purposes, however, it is useful to rewrite the VAR in a seemingly unrelated regression (SUR)

format. Let k = np+ 1, we have

Y︸︷︷︸
T×n

= X︸︷︷︸
T×k

Φ︸︷︷︸
k×n

+ E︸︷︷︸
T×n

Y =


y′1
y′2
...
y′T

 =


y1,1 y1,2 ... y1,n

y2,1 y2,2 ... y2,n
...

yT,1 yT,2 ... yT,n

 X =


x′0 1
x′1 1
...

x′T−1 1

 xt
(np×1)

=


yt
yt−1

...
yt−p+1



Φ =


Φ′1
...

Φ′p
Φ′0

 E =

 u′1
...
u′T



A.1.1 From a V AR to a VMA

The V AR(p) can be written in a VMA format as follows

yt = ut + Ψ1ut−1 + ...+ Ψtu1 + Ψt

where Ψj for j = 1, ..., t are functions of (Φ1, ...,Φp) and Ψt is a function of the con-

stant matrix Φ0, of the autoregressive matrices (Φ1, ...,Φp) and of the initial conditions
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(y0, y−1, ..., y−p). The mapping between the VAR and MA coefficients is given by

Ψ0 = I

Ψ1 = Φ1

Ψ2 = Ψ1Φ1 + Ψ0Φ2

Ψ3 = Ψ2Φ1 + Ψ1Φ2 + Ψ0Φ3

...

Ψj =

j∑
i=1

Ψj−iΦi for j < p

Ψj = Ψj−1Φ1 + Ψj−2Φ2 + · · ·+ Ψj−pΦp for j ≥ p

A.2 Classical Inference

By constructions the innovations ut = yt − E(yt|yt−1, yt−2, ...y0), are orthogonal to past

values of the endogenous variables. Thus, E(ut|yt−1, yt−2..., y0) = 0 and the OLS estimator

of the VAR parameters

Φ̂ = (X ′X)−1X ′Y

is consistent. The estimator of the covariance matrix of the shocks is

Sols = 1/(T − k)(Y −XΦ̂)′(Y −XΦ̂)

Under (asymptotic) normality of the shocks, the distribution for the OLS estimator is:

Φ̂ ∼ N(Φ, (X ′X)−1 ⊗ Sols)

where ⊗ is the Kronecker product. Fro lag selection, the information criteria considered are

AIC(p) = −2 lnL+
2

T
pn2

HQIC(p) = −2 lnL+
2 ln lnT

T
pn2

BIC(p) = −2 lnL+
lnT

T
pn2

where lnL is the log likelihood of the data evaluated at the OLS estimator, i.e. ln p(Y |X, Φ̂, Sols)
see below.

A.3 Posterior Distributions with Jeffrey’s prior

When E is a multivariate normal, i.e. p(E|0, IT ,Σ) has the format given in A.10, Y −XΦ

is also multivariate normal and the conditional likelihood has the following expression

p(Y |X,Φ,Σ) = (2π)−Tn/2 |Σ|−T/2 exp

{
−1

2
tr
[
Σ−1(Y −XΦ)′(Y −XΦ)

]}
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This function can be conveniently expressed as (see Zellner (1971))

p(Y |X,Φ,Σ) = (2π)−Tn/2 |Σ|−T/2 (14)

exp
(
−1/2tr(Σ−1Ŝ)

)
× exp

(
−1/2tr(Σ−1(Φ− Φ̂)′X ′X(Φ− Φ̂))

)
= p(Σ|Y,X)p(Φ|Σ, Y,X) (15)

where Φ̂ = (X ′X)−1X ′Y and Ŝ = (Y −XΦ̂)′(Y −XΦ̂) and we used the following result:

(Y −XΦ)′(Y −XΦ) = (Y −XΦ̂ +XΦ̂−XΦ)′(Y −XΦ̂ +XΦ̂−XΦ)

=Ŝ + (Φ̂− Φ)X ′X(Φ̂− Φ)

The likelihood in (15) contains the kernel of two known distributions: the multivariate

normal and the inverse Wishart. If we combine the conditional likelihood with Jeffrey’s

prior p(Φ,Σ) = |Σ|−(n+1)/2, we obtain a family posterior distribution for (Φ,Σ|Y )14:

p(Φ,Σ|Y ) = p(Y |X,Φ,Σ)× p(Φ,Σ)

= |Σ|−k/2|X ′X|n/2 exp
(
−1/2tr(Σ−1(Φ− Φ̂)′X ′X(Φ− Φ̂))

)
︸ ︷︷ ︸

Kernel of N(Φ̂,Σ,(X′X)−1)

× (2π)−Tn/2 |X ′X|−n/2

× |Σ|−(n+1)/2|Σ|−T/2|Σ|k/2 exp
(
−1/2tr(Σ−1Ŝ)

)
︸ ︷︷ ︸

Kernel of IW (Ŝ,T−k+n+1)

Therefore,

Φ|Σ, X, Y ∼ N(Φ̂,Σ⊗ (X ′X)−1)

Σ|X,Y ∼ IW (Ŝ, T − k + n+ 1)

Thus, draws from the posterior of the parameters can be obtained as follows:

1. Draw Σj from IW (Ŝ, T − k + n+ 1)

2. Conditional on Σj , draw Φj from N(Φ̂,Σj ⊗ (X ′X)−1)

A.4 Posterior Distribution with Conjugate Priors

Assume a multivariate normal-inverse Wishart (MN-IW) prior:

Φ ∼ N(Φ0,Σ⊗ V ) =(2π)−nk/2|Σ|−k/2|V |−n/2 exp

{
−1

2
tr
[
Σ−1(Φ− Φ0)′V −1(Φ− Φ0)

]}
Σ ∼ IW (Σ0, d) =

|Σ0|d/2

2dn/2Γn(d/2)
|Σ|−(n+d+1)/2 exp

{
−1

2
tr
[
Σ0Σ−1

]}
It can be shown that the posterior distribution is also MN-IW:

Φ|Σ, Y,X, ∼ N(Φ,Σ⊗ (X ′X + V −1)−1)

Σ|Y,X ∼ IW (S, T + d)

14See also Zellner (1971) equations (8.14) and (8.15) at page 227.
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where

Φ = (X ′X + V −1)−1(X ′Y + V −1Φ0)

S = Σ0 + Ŝ + Φ′0V
−1Φ0 + Φ̂′X ′XΦ̂− Φ

′
(X ′X + V −1)Φ

= Σ0 + (Y −XΦ)′(Y −XΦ) + (Φ− Φ0)′V −1(Φ− Φ0)

The process to draw from this joint posterior is the same as with Jeffrey’s prior, i.e.

1. Draw Σj from IW (S, T + d)

2. Conditional on Σj , draw Φj from N(Φ,Σj ⊗ (X ′X)−1)

A.4.1 Derivation the MN-IW Conjugate result

The posterior distribution can be conveniently expressed as

p(Σ,Φ|Y ) ∝ p(Y |X,Φ,Σ) p(Φ|Σ) p(Σ) =

(2π)−Tn/2 |Σ|−T/2 exp
(
−1/2tr(Σ−1Ŝ)

)
exp

(
−1/2tr(Σ−1(Φ− Φ̂)′X ′X(Φ− Φ̂))

)
[Likelihood]

(2π)−nk/2|Σ|−k/2|V |−n/2 exp

{
−1

2
tr
[
Σ−1(Φ− Φ0)′V −1(Φ− Φ0)

]}
[Prior Φ]

|Σ0|d/2

2dn/2Γn(d/2)
|Σ|−(n+d+1)/2 exp

{
−1

2
tr
[
Σ0Σ−1

]}
[Prior Σ]

Rearranging terms

p(Σ,Φ|Y ) ∝ (2π)−(T−k)n/2 |Σ0|d/2

2dn/2Γn(d/2)
|V |−n/2×

|Σ|−T/2|Σ|−k/2|Σ|−(n+d+1)/2×

exp

{
−1

2
tr
[
(Ŝ + Σ0)Σ−1

]}
×

exp

−1

2
tr

Σ−1

(Φ− Φ̂)′X ′X(Φ− Φ̂) + (Φ− Φ0)′V −1(Φ− Φ0)︸ ︷︷ ︸
A
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Focus on the term A and perform a number of algebraic manipulations:

(Φ− Φ̂)′X ′X(Φ− Φ̂) + (Φ− Φ̂ + Φ̂− Φ0)′V −1(Φ− Φ̂ + Φ̂− Φ0)

= (Φ− Φ̂)′
[
X ′X(Φ− Φ̂) + V −1(Φ− Φ̂) + V −1(Φ̂− Φ0)

]
+ (Φ̂− Φ0)′V −1(Φ− Φ̂)︸ ︷︷ ︸

A1

+ (Φ̂− Φ0)′V −1(Φ̂− Φ0)︸ ︷︷ ︸
A2

= (Φ− Φ̂)′
[
X ′XΦ−X ′XΦ̂ + V −1Φ− V −1Φ̂ + V −1Φ̂− V −1Φ0)

]
+A1 +A2

= (Φ− Φ̂)′
[
(X ′X + V −1)Φ−X ′XΦ̂− V −1Φ0

]
+A1 +A2

= (Φ− Φ̂)′(X ′X + V −1)

Φ− (X ′X + V −1)−1(X ′XΦ̂ + V −1Φ0)︸ ︷︷ ︸
Φ

+A1 +A2

= (Φ− Φ̂)′(X ′X + V −1)
[
Φ− Φ

]
+A1 +A2

= (Φ− Φ + Φ− Φ̂)′(X ′X + V −1)
[
Φ− Φ

]
+A1 +A2

= (Φ− Φ)′(X ′X + V −1)
[
Φ− Φ

]︸ ︷︷ ︸
A0

+(Φ− Φ̂)′(X ′X + V −1)
[
Φ− Φ

]
+A1 +A2

= A0 + (Φ− Φ̂)′(X ′X + V −1)(Φ− Φ) + (Φ̂− Φ0)′V −1(Φ− Φ̂) +A2

= A0 + (Φ− Φ̂)′(X ′X + V −1)Φ− (Φ− Φ̂)′(X ′X + V −1)Φ + (Φ̂− Φ0)′V −1Φ− (Φ̂− Φ0)′V −1Φ̂ +A2

= A0 +

(Φ− Φ̂)′(X ′X + V −1) + (Φ̂− Φ0)′V −1︸ ︷︷ ︸
A3

Φ−
[
(Φ− Φ̂)′(X ′X + V −1)Φ + (Φ̂− Φ0)′V −1Φ̂

]
︸ ︷︷ ︸

A4

+A2

It is easy to show that A3 = 0

A3 = Φ
′
(X ′X + V −1)− Φ̂′(X ′X + V −1) + Φ̂′V −1 − Φ′0V

−1

= (X ′XΦ̂ + V −1Φ0)′(X ′X + V −1)−1(X ′X + V −1)− Φ̂′(X ′X + V −1) + Φ̂′V −1 − Φ′0V
−1

= Φ̂′X ′X + Φ′0V
−1 − Φ̂′X ′X − Φ̂′V −1 + Φ̂′V −1 − Φ′0V

−1

= 0

Moreover, A2 −A4 does not depend on Φ and can be rearranged as

A2 −A4 =

= (Φ̂− Φ0)′V −1(Φ̂− Φ0)− (Φ− Φ̂)′(X ′X + V −1)Φ− (Φ̂− Φ0)′V −1Φ̂

= −(Φ̂− Φ0)′V −1Φ0 − (Φ− Φ̂)′(X ′X + V −1)Φ

= −Φ̂′V −1Φ0 + Φ′0V
−1Φ0 − Φ

′
(X ′X + V −1)Φ + Φ̂′(X ′X + V −1)Φ

= Φ̂′(X ′X + V −1)Φ− Φ̂′V −1Φ0 + Φ′0V
−1Φ0 − Φ

′
(X ′X + V −1)Φ

= Φ̂′(X ′X + V −1)(X ′X + V −1)−1(X ′XΦ̂ + V −1Φ0)− Φ̂′V −1Φ0 + Φ′0V
−1Φ0 − Φ

′
(X ′X + V −1)Φ

= Φ̂′X ′XΦ̂ + Φ̂′V −1Φ0 − Φ̂′V −1Φ0 + Φ′0V
−1Φ0 − Φ

′
(X ′X + V −1)Φ

= Φ̂′X ′XΦ̂ + Φ′0V
−1Φ0 − Φ

′
(X ′X + V −1)Φ
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The posterior distribution is then

p(Σ,Φ|Y ) = const× |Σ|−(T+k+n+d+1)/2×

exp

{
−1

2
tr
[(
Ŝ + Σ0 + Φ̂′X ′XΦ̂ + Φ′0V

−1Φ0 − Φ
′
(X ′X + V −1)Φ

)
Σ−1

]}
[p(Σ|Y ) kernel of a IW]

exp

{
−1

2
tr
[
Σ−1(Φ− Φ)′(X ′X + V −1)(Φ− Φ)

]}
[p(Φ|Y,Σ) kernel of a MN]

The marginal likelihood can be derived analytically by taking the integral of the latter with

respect to the reduced form VAR parameters. Taking the integral with respect to Φ first,

and to Σ second, and using tr(A′B) = tr(AB′) = tr(B′A) = tr(BA′), we can compute the

marginal likelihood

p(Y |X) =

∫
Σ

∫
Φ
p(Σ,Φ|Y )dΣdΦ =

=

∫
Σ

∫
Φ

const|Σ|−(T+k+n+d+1)/2 exp

{
−1

2
tr
[
SΣ−1

]}
exp

{
−1

2
tr
[
Σ−1(Φ− Φ)′(X ′X + V −1)(Φ− Φ)

]}
dΣdΦ

=

∫
Σ

[∫
Φ

(2π)−kn/2 |Σ|−k/2|X ′X + V −1|n/2 exp

{
−1

2
tr
[
Σ−1(Φ− Φ)′(X ′X + V −1)(Φ− Φ)

]}
dΦ

]
︸ ︷︷ ︸

=1

(2π)−Tn/2
|Σ0|d/2

2dn/2Γn(d/2)
|V |−n/2|X ′X + V −1|−n/2|Σ|−(T+n+d+1)/2 exp

{
−1

2
tr
[
SΣ−1

]}
dΣ

= (2π)−Tn/2
|Σ0|d/2

2dn/2Γn(d/2)
|V |−n/2|X ′X + V −1|−n/2

2n(T+d)/2Γn(T+d
2 )

|S|(T+d)/2∫
Σ

|S|(T+d)/2

2n(T+d)/2Γn(T+d
2 )
|Σ|−(T+n+d+1)/2 exp

{
−1

2
tr
[
SΣ−1

]}
dΣ︸ ︷︷ ︸

=1

=π−Tn/2
Γn(T+d

2 )

Γn(d2)
|Σ0|d/2 |V |−n/2 |X ′X + V −1|−n/2 |S|−(T+d)/2

Taking logs,

ln p(Y |X) = −(Tn/2) lnπ + ln Γn

(
T + d

2

)
− ln Γn

(
d

2

)
+ (d/2) ln |Σ0|

− (n/2) ln |V | − (n/2) ln |X ′X + V −1| − T + d

2
ln |S|

To avoid numerical issues, we employ FV F
′
V = V and F0F

′
0 = Σ−1

0 , so that |X ′X + V −1| =
|V −1||I+F ′VX

′XFV | and |S| = |Σ0||I+F ′0[(Y −XΦ)′(Y −XΦ)+(Φ−Φ0)′V −1(Φ−Φ0)]F0|.
With these transformation, the log marginal likelihood is

ln p(Y |X) = −(Tn/2) lnπ + ln Γn

(
T + d

2

)
− ln Γn

(
d

2

)
− (T/2) ln |Σ0| − (n/2) ln |I + F ′VX

′XFV |

− T + d

2
ln |I + F ′0[(Y −XΦ)′(Y −XΦ) + (Φ− Φ0)′V −1(Φ− Φ0)]F0|

A.5 Posterior Distributions with the Minnesota Prior

The Minnesota prior for Φ and Σ we use belongs to the MN-IW family of conjugate priors.

Let y−τ :0 be a presample, and let y and s be the n × 1 vectors of means and standard
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deviations. The first moment of the prior for Φ is

E(φij,k | Σ) =

{
1 if j = i and k = 1;
0 else.

The second moment of the prior for Φ1 is

cov(φij,1, φhg,1 | Σ) =

{
Σih/(τsj)

2 if g = j;

0 else.

Second moments of the prior for Φl, l = 2, 3, . . . , p is

cov(φij,`, φhg,` | Σ) =

{
Σih/(τsj2

d)2 if g = j;

0 else.

A popular way to introduce Minnesota prior restrictions is via dummy observations; below

we describe in detail how to construct artificial observations from the Minnesota prior to

impose the sum of coefficient and co-persistence restrictions. First, we describe the logic of

the dummy observations prior.

Suppose T ∗ additional observations are available and they are collected into the matrices

Y ∗ and X∗. We use the likelihood function of the VAR to relate these additional observations

to the parameters (Φ,Σ). Up to a constant, the product p(Y ∗|X∗,Φ,Σ) ∗ |Σ|−(n+1)/2 can be

interpreted as

Φ,Σ|Y ∗, X∗ ∼MNIW
(

Φ, (X∗
′
X∗)−1, S, T ∗ − k

)
provided that T ∗ > k+n, X∗

′
X∗ is invertible and the distribution is proper. Let T = T+T ∗,

Y = [Y ∗
′
, Y ′]′ and X = [X∗

′
, X ′]′ and Φ,Σ be the analog of Φ̂, Σ̂. Combining the two sets

of observations we have that

Φ,Σ|Y ∼MNIW
(

Φ, (X
′
X)−1, S, T − k

)
In other words, if the additional (dummy) observations are used to construct prior restric-

tions, they constitute a family of conjugate priors.

Next we illustrate how to generate artificial data, (Y ∗X∗), that respect the Minnesota

prior assumptions; to simplify the notation suppose that n = 2 and p = 2. For j = 1, 2 let

yj be the presample mean of yj and sj be the presample standard deviation of yj and s12

the presample covariance between y1 and y2.

Prior for Φ1

We use dummy observations to generate a prior distribution for Φ1.(
τs1 0
0 τs2

)
=

(
τs1 0 0 0 0
0 τs2 0 0 0

)
Φ +

(
u11 u12

u21 u22

)
The first row implies τs1 = τs1φ11,1 + u11 and 0 = τs1φ21,1 + u12. When u is normally

distributed, we have

φ11,1 ∼ N(1,Σ11/(τ
2s1

2))

φ21,1 ∼ N(0,Σ22/(τ
2s1

2))
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with covariance

E(φ11,1φ21,1) = E((1− u11/(τs1))(−u12/(τs1)) = Σ12/(τ
2s1

2)

E(φ11,1φ22,1) = E(φ11,1φ12,1) = 0

where Σij is the (i, j) element of Σ. A similar argument holds for φ12,1 and φ22,1. Note that

the prior distribution on φij,1 implies unit root behavior for the series.

Prior for Φ2

The dummy observations that generate a prior distribution for Φ2, where d scales the coef-

ficients associated with the lags, are(
0 0
0 0

)
=

(
0 0 τs12d 0 0
0 0 0 τs22d 0

)
Φ +

(
u31 u32

u41 u42

)
which imply

φ11,2 ∼ N(0,Σ11/(τs12d)2)

φ21,2 ∼ N(0,Σ22/(τs12d)2)

E(φ11,2φ21,2) = E((−u31/(τs12d))(−u32/(τs12d))) = Σ12/(τs12d)2

Sum-of-coefficient restrictions

The dummy observations are:(
λy1 0

0 λy2

)
=

(
λy1 0 λy1 0 0

0 λy2 0 λy2 0

)
Φ + U

which imply:

(φ11,1 + φ11,2) ∼ N(1,Σ11/(λy1)2)

(φ21,1 + φ21,2) ∼ N(0,Σ22/(λy1)2)

E((φ11,1 + φ11,2)(φ21,1 + φ21,2)) = Σ12/(λy1)2

and similarly for the second variable. The prior implies that when the lagged values of y1,t

equal y1, then y1 is a good forecaster for y1,t.

Co-persistence restriction

The next set of dummy observations provide a prior for the intercept(
µy1 µy2

)
=
(
µy1 µy2 µy1 µy2 µ

)
Φ + U

These restrictions imply

φ1,0 = y1 − y1(φ11,1 + φ11,2)− y2(φ12,1 + φ12,2)− (1/µ)u71

φ1,0 ∼ N(0,Σ11(λ−2 + µ−2) + Σ22λ
−2)
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The sum-of-coefficients prior does not imply cointegration. The co-persistence prior states

that a no-change forecast for all variables is a good forecast at the beginning of the sample.

Prior for Σ

The prior distribution for Σ is centered at the matrix with elements equals to the pre-sample

variance of yt (
s1 s12

s12 s2

)
=

(
0 0 0 0 0
0 0 0 0 0

)
Ψ + U

Assume that these observations are considered only once (ω = 1). In general, the prior for

the covariance matrix of the shocks is controlled by the hyper-parameter ω, which defines

the number of times we replicate these observations.

To summarize, we have generated the 9 artificial observations for Y ∗ and X∗:

Y ∗ =



τs1 0
0 τs2

0 0
0 0
λy1 0

0 λy2

µy1 µy2

s1 s12

s12 s2


X∗ =



τs1 0 0 0 0
0 τs2 0 0 0
0 0 τs12d 0 0
0 0 0 τs22d 0
λy1 0 λy1 0 0

0 λy2 0 λy2 0

µy1 µy2 µy1 µy2 µ

0 0 0 0 0
0 0 0 0 0


In a general setting, the total number of dummy observations for the Minnesota prior is:

T ∗ = n× p+ n× ω + 1 + n = n(p+ ω + 1) + 1

A.6 IV Identification

Let mt be a proxy for the unobserved shock; to simplify the notation assume that it is a

univariate variable. Let νt be the structural shock vector and ut the innovations. Assume

that the proxy mt is linked to the first shock in νt, ν1,t, and uncorrelated with the remaining

structural shocks, ν2,t. This leads to the following mapping

E(mt ν
′
t) = [ρ,0]

E(mt ν
′
t)Ω
′ = [ρ,0] Ω′

E(mt u
′
t) = [ρ Ω1,1, ρ Ω′2,1]

E(mt u
′
2,t)E(mt u1,t)

−1 = Ω′2,1Ω−1
1,1

where u1,t is the innovation in the first equation of the VAR and u2,t is the vector containing

the remaining innovation; Ω1,1 is the (1, 1)-element in Ω and Ω2,1 is the (n − 1) × 1 vector

containing all the remaining elements in the first column of Ω. Under stationarity and

ergodicity, we have

1

T

∑
mtu

′
2,t

(
1

T

∑
mtu1,t

)−1

→ E(mtu
′
2,t)E(mtu1,t)

−1 = Ω′2,1Ω−1
1,1 (16)
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Notice that the left hand side is observable and converges in population to the first column

of Ω. Let ρ̂ be the regression coefficient of u1,t on mt. Then the LHS of equation (16) is:

1

T

∑
mtu

′
2,t

(
1

T

∑
m2
t

)−1( 1

T

∑
m2
t

)(
1

T

∑
mtu1,t

)−1

︸ ︷︷ ︸
1/ρ̂

=
1

T

∑
mtu

′
2,t

(
1

T

∑
m2
t

)−1 ρ̂

ρ̂2

=
1

T

∑
(ρ̂mt)u

′
2,t

(
1

T

∑
(ρ̂mt)

2

)−1

=
1

T

∑
û1,tu

′
2,t

(
1

T

∑
û2

1,t

)−1

The last expression defines a two stage IV (2SLS) regression, where we first regress u1

on the proxy m. The fitted values û1 represent the portion of the reduced form shock

explained by the proxy (which is correlated with the structural shock). By regressing, u2 on

û1 we obtain the impact of the proxy on other reduced form shocks and as a byproduct the

contemporaneous impact on the VAR variables. Given sequence of VAR innovation, ut, as

in Mertens and Ravn (2013), we run the following regressions:

u1,t = ρ0 + ρ1mt + e1,t (17)

u2,t = b0 + b1û1,t + e2,t (18)

and we expect b1,OLS to converge to Ω′2,1Ω−1
1,1. This coupled with the restriction ΩΩ′ = Σ

implies the following system of equations

b1,OLS = Ω′2,1Ω−1
1,1

Σ1,1 = Ω2
1,1 − Ω1,2Ω′1,2

Σ1,2 = Ω1,1Ω2,1 − Ω1,2Ω′2,2

Σ2,2 = Ω2,1Ω′2,1 − Ω2,2Ω′2,2

where Ωj,i are appropriate partitions of Ω. These equations allow us to recover Ω1,1 and Ω2,1

up to a sign normalization, see Mertens and Ravn (2013) for more details.

In the toolbox, impulse responses are constructed as follows; we take a draw from the

posterior distribution of the reduced form parameters
(
Φ(d),Σ(d)

)
and compute the innova-

tions, U(d) = Y −XΦ(d). With the latter, we compute b1,OLS from (17)-(18). Then, using

Σ(d) we retrieve Ω
(d)
1,1 and Ω

(d)
2,1 and compute IRF. This approach is akin to the methods used

in Miranda-Agrippino and Ricco (2017).

A.7 Long Run identification

We assume that the first variable of the VAR is specified in first difference and that the

model looks like:

zt ≡
(

∆yt
x̄t

)
= Φ(L)

(
∆yt−1

x̄t−1

)
+ Ωνt
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The long run restriction we impose implies that ”only the first shock has a long run impact

on the level of the yt variable”. In Gali (1999), only technology shocks have a long run

impact on labor productivity; in Blanchard and Quah (1989) only supply shocks have a long

run impact on output.

The time t+ k companion form of the responses and of the cumulative impulse response

function (CIRF) are respectively

zt+k = F kGΩνt

zt+k + zt+k−1 + zt+k−2 + ...+ zt =

(
yt+k − yt−1

∗

)
=

 k∑
j=1

F j

GΩνt

where the ’*’ indicates the sum of the x̄ variables. Taking the limit of the CIRF we have:

lim
k→∞

k∑
j=0

zt = (I − F )−1GΩνt =

(
∗ 0
∗ ∗

)(
ν1t

ν2t

)
where ν1t is the long run shock, and

G Ω = (I − F )chol((I − F )−1GΣG′(I − F )−1)

where chol(A) is the Cholesky decomposition of A and Σ = ΩΩ′.

A.8 Forecast Error Variance Decomposition

Let ŷt+h be the h-step head forecast of the VAR model:

ŷt+h = Et(yy+h) = Et(ϕ0vt+h + ϕ1vt+h−1 + ...+ ϕhvt + ...+ ϕt+hv1 + Ψt+h)

= ϕhvt + ...+ ϕt+hv1 + Ψt+h

where, as previously described, ϕ0 = Ω and ϕj = ΨjΩ for j = 1, ..., t and Ψt is the pure

deterministic component. The mapping between (Ψ1, ...,Ψp) and are functions of (Φ1, ...,Φp)

is in section A.1.1. The forecast error at horizon h is

et+h = yy+h − ŷt+h = ϕ0vt+h + ϕ1vt+h−1 + ...+ ϕh−1vt+1

The forecast error variance is:

E(et+he
′
t+h) = ϕ0E(vt+hv

′
t+h)ϕ′0 + ...+ ϕh−1E(vt+1v

′
t+1)ϕ′h−1

= ϕ0E

((∑
k

νkt

)(∑
k

νkt

)′)
ϕ′0 + ...+ ϕh−1E

((∑
k

νkt

)(∑
k

νkt

)′)
ϕ′h−1

=
h−1∑
`=0

ϕ`E

((∑
k

νkt

)(∑
k

νkt

)′)
ϕ′`

=

h−1∑
`=0

ϕ`E
(
ν1
t ν

1′
t

)
ϕ′` + ...+

h−1∑
`=0

ϕ`E
(
νnt ν

n′
t

)
ϕ′`

=

h−1∑
`=0

ϕ`J1ϕ
′
` + ...+

h−1∑
`=0

ϕ`Jnϕ
′
`

and
∑h−1

`=0 ϕ`Jiϕ
′
` represents the contribution of shock i at horizon h.
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A.9 Priors and Posteriors for Direct Methods

Assume that the prior is given by15

Σ(h)
n×n
∼ IW (Sh, d)

Sh ≡
h∑
j=0

F h−jGΣG′F h−j
′

[
β(h)
n×np

α(h)
n×1

]
∼ N(Bh,Σ(h) ⊗

1

τh
V )

Bh ≡

G′F h︸ ︷︷ ︸
n×np

G′(Inp − F )−1(Inp − F h)F0︸ ︷︷ ︸
n×1


where d are the prior degrees of freedom (usually number of regressors minus 2), τh controls

the tightness of the prior response at the horizon h; F and F0 are the VAR reduced form pa-

rameters and Σ is the covariance of the VAR reduced form errors; V is the (np+ 1)× (np+ 1)

prior variance matrix of the reduced form coefficients (usually the identity matrix). Because

the prior is conjugate, the posterior also has a N-IW format:

Σ(h)|Y(h), τh ∼ IW (S, d)

S = Ê′(h)Ê
′
(h) + Sh +B′hV

−1Bh + B̂′X ′(h)X(h)B̂ −B
′
(X ′(h)X(h) + V −1)B

d = (T − h)− np− 1 + d

[
β(h) α(h)

]
|Y(h), τh ∼ N(B, V )

V = Σ(h) ⊗

(
X ′(h)X(h) +

(
1

τh
V

)−1
)−1

B =

(
X ′(h)X(h) +

(
1

τh
V

)−1
)−1((

X ′(h)X(h)

)
B̂(h) +

(
1

τh
V

)−1

Bh

)

where

B̂(h) =
(
X ′(h)X(h)

)−1
X ′(h)Y(h)

Ê(h) = Y(h) −X(h)B̂(h)

Y(h) =


y′1+h

y′2+h
...
y′T

 X(h) =


x′0 1
x′1 1
...

...
x′T−1−h 1



Posterior draws can be generated using the Gibbs Sampler algorithm, described in A.4.

15In what follows we use the result that
∑h−1

j=0 F
j = (Inp − F )−1(Inp − Fh)
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A.10 The Matrix Variate Normal Distribution

The multivariate matrix normal distribution Z ∼ N(M,U, V ) is

p( Z
(T×n)

| M
(T×n)

, U
(T×T )

, V
(n×n)

) = (2π)−Tn/2 |V |−T/2|U |−n/2 exp

{
−1

2
tr
[
V −1(Z −M)′U−1(Z −M)

]}

A.11 The Inverse-Wishart Distribution

The inverse Wishart is a distribution for symmetric matrices, S ∼ IW (Σ, d), where Σ is of

size n× n is

p( Σ
(n×n)

| Σ0
(n×n)

, d) =
|Σ0|−d/2

2−dn/2Γn(d/2)
|Σ|−(n+d+1)/2 exp

{
−1

2
tr
[
Σ0Σ−1

]}
Notice that

E(S) =
Σ0

d− n− 1
if d > n+ 1

mode(S) =
Σ0

d+ n+ 1
if d > n+ 1

To generate a draw from an IW (Σ, d):

• Draw d times a random vector of size n× 1 from a N(0,Σ−1).

• Combine them horizontally [η1, ..., ηd] = η(d×n).

• Compute the inner product and take the inverse → (η′η)−1.

We generate random draws form the inverse Wishart using the Matlab function developed

in Dynare (see Adjemian et al. (2011))
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