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1 Introduction

Statistical identification of the parameters of a structural vector autoregression (Svar)

through independent non-Gaussian shocks is becoming increasingly popular after Lanne, Meitz

and Saikkonen (2017) and Gouriéroux, Monfort and Renne (2017).1 A selected list of recent

papers that exploit the non-Gaussian features of the structural shocks includes Lanne and Lütke-

pohl (2010), Hyvärinen et al (2013), Moneta et al (2013), Capasso and Moneta (2016), Herwartz

and Plödt (2016), Guay and Normandin (2018), Herwartz (2018), Bernoth and Herwartz (2019),

Coad and Grassano (2019), Herwartz (2019), Lanne and Luoto (2019), Puonti (2019), Tank, Fox

and Shojaie (2019), Bekaert, Engstrom and Ermolov (2019, 2020), Gouriéroux, Monfort and

Renne (2020) and Maxand (2020).

Maximum likelihood estimation and inference in Svarmodels with independent non-Gaussian

shocks is relatively simple to implement, and leads to effi cient estimators of all the structural

parameters as long as the assumed univariate distributions are correctly specified. Unfortu-

nately, while Gaussian pseudo maximum likelihood estimators (PMLE) remain consistent for

the conditional mean and variance reduced form parameters under relatively weak conditions

when the true shocks are not Gaussian, the same is not true for many other distributions (see

e.g. Newey and Steigerwald (1997)). Nevertheless, this does not mean that all the parameters

are inconsistently estimated. In this respect, an important contribution of our paper is to prove

that the autoregressive matrices of the Var and the (scaled) matrix of impact multipliers, which

jointly determine the temporal pattern of the Impulse Response Functions (Irfs), continue to

be consistently estimated under distributional misspecification. In contrast, we show that in

general the standard deviation of the structural shocks will be inconsistently estimated in those

circumstances, which distorts the scale of the Irfs and the entire forecast error variance decom-

positions (Fevds). Further, we prove that while the drifts of the Var will also be consistently

estimated when both the assumed and true distributions of the shocks are symmetric, they will

be inconsistently estimated otherwise, thereby leading to biased forecasts.

In principle, semiparametric (SP) estimators seem to provide a very attractive solution in

this context because under appropriate regularity conditions they would be not only consistent

but also attain full effi ciency for the subset of the parameters that continue to be consistently

estimated under distributional misspecification. Unfortunately, SP estimators are usually com-

puted using one BHHH iteration of the effi cient score evaluated at a consistent estimator. But

for Svars the usual initial estimator, namely Gaussian PMLE, can only identify the elements

1The vast signal processing literature on Independent Component Analysis popularised by Comon (1994)
exploits the same identification scheme.
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of the impact multiplier matrix up to an orthogonal rotation of order N , so it is of no use.

In Fiorentini and Sentana (2019) (FS), we studied in detail the statistical properties of consis-

tent estimators which replace the parameters that are inconsistently estimated by a misspecified

non-Gaussian log-likelihood with the first and second sample moments of residuals readily gener-

ated by most software packages. In this respect, another important contribution of the present

paper is to show that if the non-Gaussian log-likelihood is based on a discrete scale mixture

of normals in the spherically symmetric case, or an unrestricted finite Gaussian mixture more

generally, there is no need to replace any of the initial estimators because all the parameters are

consistently estimated to begin with. Intuitively, the reason is that the discrete normal mixture-

based maximum likelihood estimators of the unconditional mean vector and covariance matrix

of an observed series coincide with the first and second sample moments.2 Similarly, the discrete

gamma mixture-based maximum likelihood estimators of the unconditional mean also coincides

with the sample mean in the spherically symmetric case. In both cases, though, the shape pa-

rameters of the mixture, including the mixing proportions, must be estimated simultaneously

with the mean and variance parameters.

Still, the fact that log-likelihoods based on discrete normal mixtures lead to consistent es-

timators for Svar models with independent non-Gaussian shocks does not imply that these

estimators are more effi cient than the two-step FS estimators with an alternative parametric

distribution, such as the popular Student t or the Laplace. We study this important issue by

means of Monte Carlo simulations. Nevertheless, the fact that under certain conditions discrete

mixture of normals with multiple components can provide good approximations to many other

distributions (see Hamdan (2006) for scale mixtures of normals and Nguyen et al (2019) for

general ones) suggests that the flexible parametric procedure we consider has the potential to

achieve the semiparametric effi ciency bound. We also compare our estimators to the two-step

procedure in Gouriéroux, Monfort and Renne (2017), which estimates all the reduced form pa-

rameters by Gaussian PML, and the orthogonal rotation matrix mapping structural shocks and

reduced form innovations by non-Gaussian PML.

We would like to emphasise that our results are valid not only for Svars with cross-sectional

independent structural shocks, but also for many dynamic conditionally heteroskedastic multi-

variate regression models routinely used in empirical finance and other fields, including Arch-M

models and multivariate regressions. In this respect, they provide an alternative justification for

the model-specific consistency results in Lee and Lee (2009) and Ha and Lee (2011).

Finally, we apply our proposed estimators to the empirical analysis of the dynamic linkages

2This result was first noted by Behboodian (1970) for univariate mixtures but largely ignored in the subsequent
literature (but see Supplemental Appendix E.7 in Fiorentini and Sentana (2020a)).
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between three popular market-based volatility indices representative of some of the most actively

traded asset classes: stocks, exchange rates and commodities. The empirical analysis of such

linkages has become a very active area of research (see e.g. Diebold and Yilmaz (2014) and

Barigozzi and Brownlees (2019)). Specifically, we analyse the omnipresent VIX, which captures

the one-month ahead volatility of the S&P500 stock market index; the EVZ, which computes the

30-day volatility of the $US/Euro exchange rate from options on the CurrencyShares Euro Trust

(Ticker - FXE); and the GVZ, which measures the market’s expectation of 30-day volatility of

gold prices by applying the VIX methodology to options on SPDR Gold Shares (Ticker - GLD)

index futures.

The rest of the paper is organised as follows. In section 2 we introduce finite mixtures of

normals and present two numerical results that their MLEs satisfy. Then in section 3 we dis-

cuss multivariate dynamic regression models with time-varying variances and covariances, and

exploit those two numerical results to prove the consistency of the pseudo MLEs based on finite

Gaussian mixtures. Section 4 analyses Svar models with cross-sectionally independent shocks

and characterises the parameters that remain consistently estimated under distributional mis-

specification. Next, in section 5 we present an extensive Monte Carlo exercise that combines

several simulation and estimation densities, while in section 6 we carry out our empirical ap-

plication to the aforementioned volatility indices. This is followed by our concluding remarks.

Proofs and auxiliary results are gathered in appendices.

2 Discrete mixture of normals

2.1 General mixtures and their ML estimators

Let s = (s1, . . . , sk, . . . , sK) denote a categorical random variable of dimension K, which

is nothing other than a collection of K mutually exclusive Bernoulli random variables with

P (sk = 1) = λk such that
∑K

k=1 λk = 1. If z|s is N(0, IN ), then

x =
∑K

k=1 sk(µk + Σ
1/2
k z), (1)

is a K-component mixture of normals, whose first two unconditional moments are

π=E(x)=
∑K

k=1 λkµk=E[E(x|s)], and (2)

Ω=V (x)=
∑K

k=1 λk[(µkµ
′
k)+Σk]−(

∑K
k=1 λkµk)(

∑K
k=1 λkµ

′
k)=E[V (x|s)]+V [E(x|s)]. (3)

The model parameters are λ = (λ1, . . . , λk, . . . , λK), subject to the unit simplex restrictions

λk ≥ 0 ∀k and
∑K

k=1 λk = 1, µ = (µ′1, . . . ,µ
′
k, . . . ,µ

′
K)′ and σ = (σ′1, . . . ,σ

′
k, . . . ,σ

′
K)′, where

σk = vech(Σk). The representation in (1) is very general, and may give rise to substantially
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deviations from multivariate normality through higher order moments.3 In particular, it nests

random vectors consisting of N independent univariate mixtures with Ki components each, in

which case K =
∏N
i=1Ki. Such mixtures play an important role in our analysis of Svars with

cross-sectional independent structural shocks in section 4.

If we observe a random sample of size T on x, ML estimation of the model parameters by

numerical methods is conceptually straightforward. Nevertheless, the log-likelihood function of

a finite normal mixture has a pole for each observation. Specifically, it will go to infinity if

we set µ̂1 = xt and let |Σ̂1| go to 0. As a result, the ML estimator must be defined as the

consistent root of the first order conditions (see Kiefer (1978)). In practice, one may deal with

this issue by starting the numerical algorithm from many different values. In addition, there

is a trivial identification issue that arises by exchanging the labels of the components, but this

is also easy to fix. Boldea and Magnus (2009) provide analytical expressions for the score and

Hessian matrix, and compare several numerical algorithms and asymptotic covariance matrix

estimators.

However, it is usually convenient to start the recursions from sensibly chosen values. In this

respect, the EM algorithm discussed by Dempster, Laird and Rubin (1977) allows us to obtain

initial values as close to the MLEs as desired. In the unrestricted case, the recursions are as

follows:

µ̂
(n
k =

1

λ̂
(n

k

1

T

T∑
t=1

wk(xt;ϕ
(n−1)xt, (4a)

Σ̂
(n
k =

1

λ̂
(n

k

1

T

T∑
t=1

wk(xt;ϕ
(n−1)xtx

′
t − µ̂

(n
k µ̂

(n′
k , (4b)

λ̂
(n

k =
1

T

∑T

t=1
wk(xt;ϕ

(n−1) (4c)

where

wk(xt;ϕ) = P (skt = 1|xt) =
λk|Σk|−N/2φN [Σ

−1/2
k (xt − µk)]∑K

j=1 λj |Σj |−N/2φN [Σ
−1/2
j

(
xt − µj

)
]

(5)

is the posterior probability that observation t comes from the kth component, and φN (.) the

spherical normal density of dimension N .4

The following proposition, which generalises the univariate result in Behboodian (1970), will

prove fundamental for our consistency results:

3By the law of iterated expectations, third- and fourth-order raw moments, defined as E[vec(xx′)x′] and
E[vec(xx′)vec(xx′)′] respectively, can be readily obtained as convex combinations of the third- and fourth-order
raw moments of the K underlying Gaussian components. Subtracting the corresponding moments for a N(π,Ω)
random vectors yields the third- and fourth-order cumulants.

4These recursions had been proposed by several authors without appealing to the EM principle. For example,
Hassenblad (1966) shows that they coincide with the steepest descent recursions, which confirms that they always
lead to improvements in the log-likelihood function (see also Wolfe (1970) and Peters and Walker (1978)).

4



Proposition 1 The (pseudo) maximum likelihood estimators of the unconditional mean vector
(2) and covariance matrix (3) of the discrete unrestricted mixture of K multivariate normals
in (1) are given by the sample mean vector and covariance matrix (with denominator T ) of xt,
respectively.

As a result, if we reparametrise the model as xt = π + Ω1/2ε∗t , where ε
∗
t is a standardised

discrete mixture of normals, then we can maximise the log-likelihood function with respect to λ

and the free elements of this distribution keeping π̂ and Ω̂ fixed at their Gaussian pseudo ML

values.5 Appendix C.2 first explains how to parametrise the distribution of ε∗t so as to ensure

that E(ε∗t ) = 0 and V (ε∗t ) = IN when K = 2 as a function of N mean difference parameters

δ, N(N + 1)/2 relative variance parameters K and a single probability parameter λ, and then

generalises this procedure for any K.

Given that Proposition 1 is a numerical result that holds for any sample size T and does not

depend in any way on the true distribution of the data, the discrete mixture of normals Pseudo

ML estimators of π and Ω will continue to be consistent for E(x) and V (x) under distributional

misspecification.

2.2 Scale mixtures and their ML estimators

Given that they are rather popular in empirical research, for completeness we also analyse

scale mixtures of normals, which as we will see below, inherit the consistency properties of

general mixtures under distributional misspecifications that preserve ellipticity.

The random vector x = µ+ Σ1/2√ςu, where u is uniform on the unit sphere surface in RN ,

is distributed as a discrete scale mixture of normals (DSMN) if

ς =
∑K

k=1 skκ
1/2
k ςoi , (6)

where ςo|s is χ2N . This is a special case of (1) in which µk = µ and Σk = κkΣ ∀k. Therefore,

its unconditional mean is µ while its unconditional variance will be

Ω = V (x) = $Σ = E[V (x|s)],

$ = E(ς/N) =
∑K

k=1 λkκk. (7)

As a result, we can easily standardise x by assuming that µ = 0, Σ = IN and defining the

relative variance parameters

κ∗k = κk/$, k = 1, . . . ,K.

DSMNs with µ = 0 and Σ = IN are a particular case of spherically symmetric random

5 Interestingly, this somewhat surprising result will continue to be true even in a complete log-likelihood situ-
ation in which we would observe not only xt but also st.

5



vectors. Therefore, all their odd central moments will be 0, while their fourth-order moments,

which exceed those of the multivariate normal, depend on a single parameter known as the

multivariate coeffi cient of excess kurtosis, which is given by E(ς2)/N(N + 1) − 1. DSMNs

approach the multivariate normal when κ∗k → 1 for all k, or when any λk → 1. Near the

limit, though, the distributions can be radically different. For instance, given that we can

choose κ2/κ1 ∈ (0, 1] when K = 2 without loss of generality, when λ → 0+ there are very

few observations with very large variance (“outliers case”), while when λ → 1− the opposite

happens, very few observations with very small variance (“inliers case”) (see Amengual and

Sentana (2011) for further details).

It is also possible to apply the EM algorithm to DSMNs but the recursions are different.

Specifically, they become:

µ̂(n =

∑T
t=1wk(xt;ϕ

(n−1)(κ
(n
k )−1xt∑T

t=1

∑K
j=1wj(xt;ϕ

(n−1)(κ
(n
j )−1

, (8a)

Σ̂(n =

∑T
t=1wk(xt;ϕ

(n−1)(κ
(n
k )−1(xt − µ̂(n)(xt − µ̂(n)′∑T

t=1

∑K
j=1wj(xt;ϕ

(n−1)(κ
(n
j )−1

, (8b)

κ
(n
k =

1

λ̂
(n

k

1

TN

T∑
t=1

wk(xt;ϕ
(n−1)(xt − µ̂(n)′(Σ̂(n)−1(xt − µ̂(n) (8c)

with λ̂
(n

k and wk(xt;ϕ) still given by (4c) and (5), respectively.6

But if we keep µ and Σ fixed, then the recursions for the λ′s and κ′s simplify considerably.

To understand why, it is convenient to work with the log-likelihood function of ς, which is a

discrete mixture of K gamma random variables with common shape parameter N/2 and scale

parameters 2κk, so that their means are Nκk.

Let

hς(ςt;η) =
ς
N/2−1
t

2N/2Γ(N/2)

∑K
k=1 λkκ

−N/2
k exp(−.5κ−1k ς)

denote the marginal density of ς, where η contains the free elements of λ and κ. In this context,

the EM recursions are given by

κ
(n
k =

1

λ̂
(n

k

1

NT

T∑
t=1

wk(ςt;η
(n−1)ςt, (9a)

λ̂
(n

k =
1

T

∑T

t=1
wk(ςt;η

(n−1) (9b)

6Some overall scale normalisation is obviously required. For example, we could fix one κ1 to 1, work with the
relative variance parameters κ∗k subject to the restriction

∑K
k=1 λkκ

∗
j = 1 or fix |Ω| = 1, as explained in appendix

B of Fiorentini and Sentana (2019). In the first case, the recursions (8a)-(8c) continue to be valid after excluding
the relevant element. Given the invariance properties of ML estimators, we recommend the first normalisation,
which can be changed after convergence has been achieved.
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where

wk(ςt;ϕ) = P (skt = 1|ςt) =
λkκ

−N/2
k exp(−.5κ−1k ς)∑K

j=1 λjκ
−N/2
j exp(−.5κ−1j ς)

(10)

is the posterior probability that observation t comes from the kth component. Not surprisingly,

(9a) and (10) coincide with (8c) and (5), respectively, when

ςt(µ̂
(n, σ̂(n) = (xt − µ̂(n)′(Σ̂(n)−1(xt − µ̂(n).

The following proposition, which is the counterpart to Proposition 1, will also prove funda-

mental for our consistency results in the spherically symmetric case:

Proposition 2 The (pseudo) maximum likelihood estimators of the unconditional mean (7 ) of
the discrete unrestricted mixture of K gammas with common shape parameter N/2 and scale
parameters 2κk in (6) is given by the sample mean of ςt.

Given that Proposition 2 is a numerical result that holds for any sample size T and does

not depend in any way on the true distribution of the data,7 the discrete scale mixture of

normals Pseudo ML estimator of$ will continue to be consistent for E(ς/N) under distributional

misspecification for any spherically symmetric distribution.

3 Multivariate dynamic regression models with time-varying
variances and covariances

3.1 Model specification

In a multivariate dynamic regression model with time-varying variances and covariances, the

vector of N observed variables, yt, is typically assumed to be generated as:

yt = µt(θ) + Σ
1/2
t (θ)ε∗t ,

where µt(θ) = µ(It−1;θ), Σt(θ) = Σ(It−1;θ), µ() and vech [Σ()] are N × 1 and N(N +

1)/2× 1 vector functions describing the conditional mean vector and covariance matrix known

up to the p × 1 vector of parameters θ, It−1 denotes the information set available at t − 1,

which contains past values of yt and possibly some contemporaneous conditioning variables, and

Σ
1/2
t (θ) is some particular “square root”matrix such that Σ

1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ). To focus

on the effect of distributional misspecification, we maintain the assumption that the conditional

mean and variance are correctly specified, in the sense that there is a true value of θ, say

θ0, such that E(yt|It−1) = µt(θ0) and V (yt|It−1) = Σt(θ0). We also maintain the high level

regularity conditions in Bollerslev and Wooldridge (1992) because we want to leave unspecified

7Once again, this somewhat surprising result will continue to be true even in a complete log-likelihood situation
in which we would observe not only ςt but also st.
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the conditional mean vector and covariance matrix in order to achieve full generality. Primitive

conditions for specific multivariate models can be found for example in Ling and McAleer (2003).

To complete the model, a researcher needs to specify the conditional distribution of ε∗t .

For the sake of generality, we initially consider a situation in which she makes the assumption

that, conditional on It−1, the distribution of ε∗t is independent and identically distributed with

mean vector equal to 0 and covariance matrix equal to the identity. Nevertheless, we will

obtain stronger results below by assuming that either the components of ε∗t are cross-sectionally

independent, or this vector follows some particular member of the spherical family with a well

defined density, or ε∗t |It−1;θ,η ∼ i.i.d. s(0, IN ,η) for short, where η denotes q additional shape

parameters which effectively characterise the distribution of ςt = ε∗′t ε
∗
t . As is well known,

spherical symmetry reduces to ordinary symmetry in the univariate case (N = 1).

In the first case, we follow Fiorentini and Sentana (2019) in assuming that it is possible to

rewrite the model in this form:

Reparametrisation 1 A homeomorphic transformation rg(.) = [r′gc(.), r
′
gim(.), r′gic(.)]

′ of the
mean-variance parameters θ into an alternative set φ = (φ′c,φ

′
im,φ

′
ic, )
′, where φim is N × 1,

φic = vech(Φic), Φic is an unrestricted positive definite symmetric matrix of order N and rg(θ)
is twice continuously differentiable in a neighbourhood of θ0 with rank

[
∂r′g (θ0) /∂θ

]
= p, such

that
µt(θ) = µ�t (φc) + Σ

�1/2
t (φc)φim

Σt(θ) = Σ
�1/2
t (φc)ΦicΣ

�1/2′
t (φc)

}
∀t. (11)

This parametrisations simply requires the pseudo-standardised residuals

ε�t (φc) = Σ
�−1/2
t (φc)[yt − µ�t (φc)] (12)

to be i.i.d. with mean vector φim and covariance matrix Φic.

In the spherically case, in contrast, we are able to consider the existence of a less restricted

reparametrisation.

Reparametrisation 2 A homeomorphic transformation rs(.) = [r′sc(.), r
′
si(.)]

′ of the mean-
variance parameters θ into an alternative set ϑ = (ϑ′c, ϑ

′
i)
′, where ϑi is a positive scalar, and

rs(θ) is twice continuously differentiable with rank [∂r′s (θ) /∂θ] = p in a neighbourhood of θ0,
such that

µt(θ) = µt(ϑc),
Σt(θ) = ϑiΣ

◦
t (ϑc)

}
∀t. (13)

Expression (13) simply requires that one can construct pseudo-standardised residuals

ε◦t (ϑc) = Σ
◦−1/2
t (ϑc)[yt − µ◦t (ϑc)] (14)

which are i.i.d. s(0, ϑiIN ,η), where ϑi is a global scale parameter, a condition satisfied by most

static and dynamic models.

3.2 Consistency of discrete mixtures of normals ML estimators

Proposition 1 in Fiorentini and Sentana (2019) states that if (13) holds, and ε∗t |It−1;υ0, is

i.i.d. s(0, IN ), where υ includes ϑ and the true shape parameters, but the spherical distribution

8



assumed for estimation purposes does not necessarily nest the true density, then the pseudo-

true value of the joint ML estimator of ϕ = (ϑ′c, ϑi,η)′, ϕ∞, is such that ϑc∞ is equal to the

true value ϑc0. In this context, in Fiorentini and Sentana (2007) we proposed to estimate ϑi

by ϑiT (ϑ̂cT ), where

ϑiT (ϑc) =
1

N

1

T

T∑
t=1

ς◦t (ϑc). (15)

The rationale for this estimator comes from the fact that under normality the score for ϑi

simplifies to:

sϑit(ϑ,0) =
1

2ϑi
[ςt(ϑ)−N ] , (16)

whose expected value when evaluated at ϑ0 is 0 because the expected value of ς◦t (ϑc0) =

ε◦′t (ϑc)ε
◦
t (ϑc) in (14) is precisely Nϑi0.

However, it turns out that Proposition 2 above implies that (15) numerically coincides the

MLE of ϑi when the assumed spherical distribution is a discrete scale mixture of normals, so it is

irrelevant whether we replace it or not. As a result, the ML estimators based on a discrete scale

mixture of normals are consistent for all the parameters when the true distribution is spherical.

In turn, Proposition 2 in Fiorentini and Sentana (2019) states that if (11) holds, and

ε∗t |It−1;υ0 is i.i.d. (0, IN ), where υ includes φ and the true shape parameters, but the dis-

tribution assumed for estimation purposes does not necessarily nest the true density, then the

pseudo-true value of the joint ML estimator of ϕ = (φ′c,φ
′
i,%)′, ϕ∞, is such that φc∞ is equal

to the true value φc0. In this context, in Fiorentini and Sentana (2007) we proposed to estimate

φim and φic as φimT (φ̂cT ) and φicT (φ̂cT ), respectively, where

φimT (φc) =
1

T

T∑
t=1

ε�t (φc), (17)

φicT (φc) = vech

{
1

T

T∑
t=1

[ε�t (φc)− φimT (φc)] [ε�t (φc)− φimT (φc)]
′
}
. (18)

Once again, the rationale for these estimators comes from the fact that under normality the

scores for φim and φic simplify to:

sψimt(φ,0) =
1

2
Φ
−1/2′
ic ε∗t (φ),

sψict(φ,0) =
1

2
D′N (Φ

−1/2′
ic ⊗Φ

−1/2′
ic )vec

{
ε∗t (φ)ε∗′t (φ)−IN

}
,

where DN is the duplication matrix (see Magnus and Neudecker (2019)), whose expected values

at φ0 are 0 because the expected value of

ε∗t (φc0,φi) = Φ
−1/2
ic (φim0 − φim) + Φ

−1/2
ic Φ

1/2
ic0 ε

∗
t
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is 0 and the expected value of ε∗t (φc0,φi)ε
∗′
t (φc0,φi) is IN when φi = φi0.

However, it turns out that Proposition 1 above implies that (17) and (18) numerically coincide

with the MLEs of φim and φic when the assumed distribution is an unrestricted discrete mixture

of normals, so once again, it is irrelevant whether we replace them or not. As a result, the

ML estimators based on an unrestricted discrete mixture of normals are consistent for all the

parameters regardless of the true distribution

4 Application to structural vector autoregressions

Consider the following N -variate Svar process of order p:

yt = τ +
∑p

j=1Ajyt−j + Cε∗t , ε∗t |It−1 ∼ i.i.d. (0, IN ), (19)

where C is a matrix of impact multipliers and ε∗t are “structural”shocks. In what follows, we

will often reparametrise C = JΨ, whereΨ is a diagonal matrix whose elements contain the scale

of the structural shocks, while the columns of J, whose diagonal elements are normalised to 1,

measure the relative impact effects of each of the structural shocks on all the remaining variables,

so that the parameters of interest become j = veco(J − IN ) and ψ = vecd(Ψ).8 Similarly, the

drift τ is often written as (IN−A1− . . .−Ap)µ under the assumption of covariance stationarity,

where µ is the unconditional mean of the observed process.

Let εt = Cε∗t denote the reduced form innovations, so that εt|It−1 ∼ i.i.d. (0,Σ) with

Σ = CC′ = JΨ2J′. As is well known, a Gaussian (pseudo) log-likelihood is only able to identify

Σ, which means the structural shocks ε∗t and their loadings in C are only identified up to an

orthogonal transformation. Specifically, we can use the so-called LQ matrix decomposition9 to

relate the matrix C to the Cholesky decomposition of Σ = ΣLΣ′L as C = ΣLQ, where Q is an

N ×N orthogonal matrix, which we can model as a function of N(N − 1)/2 parameters ω by

assuming that |Q| = 1.10 ,11 While ΣL is identified from the Gaussian log-likelihood, ω is not.

In fact, the underidentification of ω would persist even if we assumed for estimation purposes

that ε∗t followed an elliptical distribution or a location-scale mixture of normals.
12

8See Magnus and Sentana (2020) for some useful properties of the veco() and vecd() operators.
9The LQ decomposition is intimately related to the QR decomposition. Specifically, Q′Σ′L provides the QR

decomposition of the matrix C′,which is uniquely defined if we restrict the diagonal elements of ΣL to be positive
(see e.g. Golub and van Loan (1993) for further details).
10See section 9 of Magnus, Pijls and Sentana (2020) for a detailed discussion of three ways of explicitly para-

metrising a rotation (or special orthogonal) matrix: (i) as the product of Givens matrices that depend on
N(N − 1)/2 Tait-Bryan angles, one for each of the strict upper diagonal elements; (ii) by using the so-called
Cayley transform of a skew-symmetric matrix; and (c) by exponentiating a skew-symmetric matrix.
11 If |Q| = −1 instead, we can change the sign of the ith structural shock and its impact multipliers in the

ith column of the matrix C without loss of generality as long as we also modify the shape parameters of the
distribution of ε∗it to alter the sign of all its non-zero odd moments.
12The identifying assumption of Proposition 1 in Lanne and Lütkepohl (2010) explicitly rules out scale mixtures
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Nevertheless, Lanne, Meitz and Saikkonen (2017) show that statistical identification of both

the structural shocks and C (up to column permutations and sign changes) is possible assuming

(i) cross-sectional independence of the N shocks and (ii) a non-Gaussian distribution for at

least N − 1 of them. In what follows, we assume that the N structural shocks are cross-

sectionally independent. In addition to finite normal mixtures, a particularly important example

is ε∗it|It−1 ∼ i.i.d. t(0, 1,νi). Univariate t distributions are very popular in finance as a way of

capturing fat tails while nesting the traditional Gaussian assumption, and their popularity is also

on the rise in macroeconomics, as illustrated by Brunnermeier et al (2019). Other possibilities

are Generalised Error distributions (GED), which nest both the normal and the Laplace (or

double exponential).

Let θ = [τ ′, vec′(A1), . . . , vec
′(Ap), vec

′(C)]′ = (τ ′,a′1, . . . ,a
′
p, c
′) = (τ ′,a′, c′) denote the

structural parameters characterising the first two conditional moments of yt. In addition, let

% = (%1, . . . ,%N )′ denote the shape parameters, so that ϕ = (θ′,%′)′.

Given the linear mapping between structural and reduced form shocks, the contribution to

the conditional log-likelihood function from observation t (t = 1, . . . , T ) will be given by

lt(yt;ϕ) = − ln |C|+ l[ε∗1t(θ);%i] + . . .+ l[ε∗Nt(θ);%N ], (20)

where ε∗t (θ) = C−1(yt−τ −A1yt−1−. . .−Apyt−p). We consider two ML estimators: a restricted

one which fixes % to its supposedly true value, and an unrestricted one, which simultaneously

estimates all the elements of ϕ (see Fiorentini and Sentana (2020b) for further details).

It turns out that both the slope parameters a and the (scaled) impact multiplier coeffi cients

j will continue to be consistently estimated by distributional misspecified ML estimators. More

formally,

Proposition 3 If the true joint density of the structural shocks ε∗t in (19) is the product of
N univariate densities but they are different from the ones assumed for estimation purposes,
then the restricted and unrestricted non-Gaussian (pseudo) ML estimators of model (19) remain
consistent for a and j.

Intuitively, the pseudo-standardised residuals J−10 (yt−A10yt−1− . . .−Ap0yt−p) remain time

series and cross-sectionally i.i.d. with means J−10 τ 0 and covariance matrix Ψ2
0 under distribu-

tional misspecification, so in effect, the pseudo true values of τ mop up the biases in the means of

those residuals while the pseudo true values of ψ do the same for their standard deviations. This

intuition also justifies that the consistent estimators in Fiorentini and Sentana (2019), which

replace the non-Gaussian pseudo ML estimators of τ i and ψi by the sample mean and variance

of the ith pseudo-standardised residual, will work in this context too.

of normals.
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Proposition 3 also illustrates the practical consequences of distributional misspecification.

Given that the Irfs of the structural Var model in (19) under stationarity will be given by

(IN −A1L− . . .−ApL
p)−1JΨ, where L is the usual lag operator, their temporal pattern will be

consistent estimated. In contrast, the estimated scale of the Irfs, and the Fevds will generally

be inconsistent.

As we mentioned in the introduction, we can strengthen the consistency results in Proposition

3 by assuming that both the true univariate distributions of the structural shocks and the ones

assumed for estimation purposes are symmetric, even though they do not necessarily coincide:

Proposition 4 If the true joint density of the structural shocks ε∗t in (19) is the product of
N univariate symmetric densities but they are different from the symmetric ones assumed for
estimation purposes, then the restricted and unrestricted non-Gaussian (pseudo) ML estimators
of model (19) remain consistent for a, j and τ .

It is illustrative to compare Propositions 3 and 4 to the consistency results in Gouriéroux,

Monfort and Renne (2017), who work with the alternative reparametrisation C = ΣLQ(ω).

They show that regardless of the specific distributions assumed for estimation purposes, a non-

Gaussian PMLE can usually consistently estimate the N(N − 1)/2 underlying free elements of

Q(ω) when the true value of ΣL is either known, or replaced by a consistent estimator such as

the Gaussian PMLE. In contrast, we show that a non-Gaussian PMLE can consistently estimate

the N(N − 1) elements of J. In addition, we saw in the previous section that the non-Gaussian

PMLE of the diagonal elements of Ψ will be consistently estimated if we assume for estimation

purposes that the structural shocks follow univariate mixtures of normals. More generally, the

FS estimators, which are effectively Gaussian PMLEs based on pseudo-standardised residuals,

will provide consistent estimators of the N elements of ψ.

5 Monte Carlo evidence

In this section, we assess the small sample behavior of the different estimators discussed

in the previous section by means of an extensive Monte Carlo simulation exercise in which we

generate samples from the following three-variate Svar(1) process x1t
x2t
x3t

 =

 0
0
0

+

 0.5 0.2 0.2
0.2 0.5 0.2
0.2 0.2 0.2

 x1t−1
x2t−1
x3t−1

+

 1 0 0
0.2 1 0
0.2 0.2 1

 ε∗1t
ε∗2t
ε∗3t

 .
The main aim of the partial interchangeability of this design is to save space in presenting the

simulation results by pooling several groups of parameters. Nevertheless, the estimators that

we consider are fully unrestricted and do not exploit any of the restrictions resulting from the
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fact that the true unconditional means are zero or the true loading matrix of the shocks has a

triangular structure.

In accordance with the assumptions in section 4, the error terms ε∗t are stochastically indepen-

dent from each other with zero mean and unit variance. We simulate four different distributions,

two of which are symmetric: (i) three heterogeneous univariate Student t distributions; (ii) three

Laplace distributions; (iii) three heterogenous discrete location scale mixtures of two normals

(DLSMN); and (iv) three heterogenous asymmetric Student ts (see Mencía and Sentana (2009)

for details).

For each simulation design, we generate 5,000 samples of length T = 2, 000 and estimate

the model parameters with ten different estimators. In particular, we use: (1) the Student t

MLE and (2) the corresponding consistent FS correction, (3) the MLE based on unrestricted two-

component Gaussian mixtures (DLSMN), which are consistent regardless of the true distribution,

as we have previously shown, (4) the MLE which assumes that the shocks are symmetric scale

mixture of two normals (DSMN) and (5) the corresponding consistent FS correction, (6) the

Laplace-based MLE and (7) its FS consistent correction. We also compute three versions of

the two-step consistent procedure in Gouriéroux, Monfort and Renne (2017) (GMR). As we

mentioned at the end of the previous section, in their first step, they estimate the N + pN2 +

N(N+1)/2 reduced form parameters [τ ′, vec′(A1), . . . , vec
′(Ap), vech

′(ΣL)]′ by Gaussian PML.

Then, they compute the standardised reduced form residuals ũ∗t = Σ̃−1L (yt− τ̃ −
∑p

j=1 Ãjyt−j),

on the basis of which they estimate by non-Gaussian PML the N(N − 1)/2 free elements ω of

the orthogonal rotation matrix Q, which maps structural shocks and reduced form innovations

as u∗t = Q(ω)ε∗t . To level the playing field, in this second step we consider estimators based on

the Student t, the DLSMN and the Laplace likelihoods. These three estimators, though, share

the first step, so they only differ in the estimated values of C that they produce. As for the FS

corrections, we use a Gaussian PMLE for the N parameters in ψ and the N parameters in τ ,

except when we use unrestricted finite mixtures of normals to compute our joint non-Gaussian

ML estimators, in which case we estimate all the parameters in one go. In all cases, we choose

a unique global maximum from the different observationally equivalent permutations and sign

changes of the columns of the matrix C using the selection procedure suggested by Ilmonen and

Paindaveine (2011) and adopted by Lanne, Meitz and Saikkonen (2017).

In Table 1 we report the Monte Carlo mean absolute bias for several groups of parameters:

the drifts τ , the diagonal elements of the autoregressive matrix {A}ii, the off diagonal elements

{A}ij,i6=j , the diagonal elements of the impact multiplier matrix {C}ii, and its lower and upper

diagonal elements {C}ij,i>j and {C}ij,i<j , respectively. Finally, we also report the biases of the

13



lower and upper diagonal elements of J = CΨ−1, for which non-Gaussian PMLEs should be

consistent according to Propositions 3 and 4.

When the structural shocks follow independent Student t distributions with 6, 12 and 8

degrees of freedom, all estimators are consistent except the Laplace-based MLE of C. As ex-

pected, the Student t MLE and the corresponding FS correction dominate the others, but the

Mixture-based MLE and the Student t based GMR perform rather well. In turn, when the

errors follow independent Laplace distributions, the results are analogous, in that this time the

bias appears in the Student t MLE of C with all other estimators showing extremely low finite

sample bias. The third panel of Table 1 displays the results for the simulation with DLSMN

shocks. In this case, the biases of Student t MLEs of C and τ are large while the biases of

the Laplace MLEs are more apparent in the drift estimators. Not surprisingly, the DLSMN

MLE is the best but the two consistent FS corrections of the Student and Laplace MLEs are

also very good and compare favourably even to the DLSMN version of GMR. Finally, when the

error terms follow asymmetric Student t distributions, all estimators are based on misspecified

likelihoods. Nevertheless, the last panel of Table 1 indicates that many of them perform rather

well in terms of finite sample biases, with the DLSMN MLE being probably the best one.

Next, we evaluate the finite sample relative effi ciency of the different consistent estimators

using the Monte Carlo root mean squared errors (RMSE) in Table 2 for the same groups of

parameters. For the Student t DGP, the Student t MLE is obviously the best but its FS

correction also performs very well, and the same is true of the estimators that rely on a finite

normal mixture. As for the Student-based GMR estimators, they are clearly ineffi cient for τ

and a but fully effi cient for the elements of C because the information matrix is block diagonal

between conditional mean and variance parameters (see Proposition B1 in Fiorentini and Sentana

(2020b)). In contrast, the estimators that rely on a Laplace likelihood are the worst. Somewhat

surprisingly, the Laplace MLEs is more precise for J than the Laplace GMR estimator even

though the asymptotic covariance matrix of this estimator is likely to be block diagonal between

the conditional mean and variance parameters in view of the symmetry of the true distribution.

As expected, the second panel of Table 2 confirms that the relative performance of the

Student t and Laplace estimator is by and large the mirror image of the first panel. The main

difference is that the Laplace-based GMR estimators are noticeably less effi cient for C than the

Laplace-based MLEs.

Once more, the MLE based on the correct distribution is the best performer when we sim-

ulate DLSMN shocks, but the GMR-DLSMN estimator of the diagonal elements of C is also

very precise. In contrast, this estimator is again suboptimal when we look at the elements of
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the autoregressive matrix A since it relies on the first-step Gaussian PMLE, which is clearly

dominated by both the Student and Laplace PMLEs.

Finally, we can see in the last panel of Table 2 that the DLSMN MLE is the best performer in

terms of precision when the true shocks follow asymmetric Student ts even though all estimators

are based on misspecified likelihood functions. Among the remaining consistent non-Gaussian

PMLE estimators, the FS correction to the Laplace MLEs shows more finite sample variability

than the others, with the GMR-Laplace being even worse, especially for J and the off-diagonal

elements of C.

In summary, our Monte Carlo exercises confirm the effi ciency under distributional misspecifi-

cation of our proposed ML estimators based on unrestricted discrete mixtures of normals relative

to other consistent proposals.

6 Empirical application to volatility indices

We consider three daily series of market-based implied volatilities as measured by the VIX

index, the EVZ EuroCurrency ETF volatility index and the GVZ Gold ETF volatility index.

The series are compiled by the Chicago Board of Options Exchange (CBOE) and can be freely

downloaded from the St. Louis FRED site. They represent three of the most actively traded

asset classes, namely stocks, exchange rates and commodities, and since their inception have

become incredibly popular among academics, financial market practitioners and commentators.

Our sample spans from June 2nd 2008 to September 24th 2020 for a total of 3,101 observations.

Let xt = (xV IX,t, xEV Z,t, xGV Z,t)
′ denote the log-transformation of these volatility indexes,

which we depict in Figure 1. A preliminary univariate data analysis confirms their high persis-

tence, with a first-order autocorrelation above 0.98 and a slow rate of decay for higher orders.

This is hardly surprising, as it is well known that the temporal pattern of volatility indices at

the daily frequency shows mean reversion over the long run but persistent deviations from the

mean during extended periods. This is confirmed by the fact that Arma(2,1) models, which

correspond to the exact discretisation of the stationary central tendency process in continuous

time considered by Mencía and Sentana (2013), provide a good representation for the three

series.

Given that our interest is to study the dynamic linkages between these volatility indices, we

estimate the following three-variate Svar(5) model

xt = τ + A1xt−1 + . . .+ A5xt−5 + Cε∗t ,

where we have selected the lag order by looking at the Akaike information criterion and the
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likelihood ratio test for the null hypothesis of lack of residual serial correlation.

We estimate the structural parameters using three of the consistent estimators in the previous

section. The first estimator assumes that ε∗it ∼ i.i.d. t(0, 1,νi), where vi denotes the Student t

degrees of freedom parameter, but then we apply the FS correction, which is consistent even if the

true shock distributions are asymmetric. In turn, the second estimator assumes that ε∗it ∼ i.i.d.

DLSMN(δi, κi,λi) and estimates all the parameters jointly. Finally, the third estimator employs

the GMR two-step strategy with the same unrestricted finite mixture of normals assumption in

the second step.

As for initial values, we use standard Gaussian PMLE, which is equivalent to running OLS

regression for each of the three variables and computing the covariance matrix of the estimated

residuals. Thus, we obtain

µ̂tFS =

 2.895
2.254
2.880

 ; µ̂DLSMN =

 2.893
2.253
2.877

 ; µ̂GMR =

 2.902
2.265
2.886

 .
where µ = τ (I−A1 − . . . −A5)

−1 are the unconditional means. Notice that by construction

µ̂GMR is numerically the same as the corresponding OLS estimator. As expected from the

results in Table 1, the three estimators provide very similar point estimates.

As for the structural impact multipliers matrix, we find that

ĈtFS =

 0.0766 0.0074 0.0007
0.0123 0.0497 0.0033
0.0210 0.0118 0.0502

 ;

ĈDLSMN =

 0.0769 0.0052 0.0016
0.0135 0.0493 0.0033
0.0206 0.0111 0.0505

 ;

ĈGMR =

 0.0766 0.0064 0.0025
0.0133 0.0493 0.0034
0.0207 0.0122 0.0506

 ,
which are also rather similar, confirming once again the findings of the Monte Carlo simulation

exercise in the previous section.

The estimated structural shocks are shown in Figure 2. Reassuringly, they appear to be

serially i.i.d. but highly non-normal. To help with the interpretation of the structural shocks, it

is convenient to look not only at the estimated values of C but also at those of its inverse, which

expresses the structural shocks ε∗t as linear combinations of the reduced form prediction errors

ut. Given that both C and C−1 are almost lower triangular matrices despite the fact that they

are freely estimated, we can label the first shock as a stock volatility shock. Similarly, we will

refer to the second and third shocks as FX and Gold volatility shocks, respectively, in view of
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the largely recursive nature of the estimated structural model.

Figures 3 displays the Irfs and Fevds up to one-year ahead. The strong persistence implied

by the Svar(5) parameter estimates implies that all the Irfs decay rather slowly. The responses

of VIX to both FX and Gold volatility shocks are hump shaped but small in magnitude. The

volatility of the $/euro exchange rate seems to react mostly to its own shock, while Gold volatility

is mostly affected by the other shocks and, in particular, by the FX one.

A convenient way of summarising the information in the Fevd plots is to compute the con-

nectedness measures proposed by Diebold and Yilmaz (2014). Importantly, given that the we

have identified and consistently estimated the matrix of impact multipliers C and the autore-

gressive matrices Ai (i = 1, . . . , 5), we can compute those measures without having to resort to

the generalised Fevds of Pesaran and Shin (1996).

Using the entire sample, we find that the one-year ahead Fevds yield the following sample

connectedness table
Stock FX Gold

VIX 0.659 0.227 0.114
EVZ 0.024 0.931 0.045
GVZ 0.104 0.343 0.553

As can be seen, the historical total connectedness of the three volatility series, defined as the

sum of the off-diagonal elements of this table divided by N , takes the value of 0.286, which is

not very high if we take into account that the elements of each row add up to 1.

“From”connectedness, which we compute by summing the off-diagonal elements of the rows

in the previous table, is
VIX 0.341
EVZ 0.070
GVX 0.447

,

which, somewhat surprisingly, is very low for the EuroCurrency volatility index but moderately

high for Gold volatility, most of which being due to FX volatility shocks.

Similarly, “To”connectedness, which is the sum of the off-diagonal column elements, yields

Stock 0.129
FX 0.570
Gold 0.159

,

being high for the FX shock but moderately low for the other two.

In summary, we find an approximate recursive structure for the impact multipliers, which

combined with the estimates of the autoregressive matrices implies that FX volatility shocks

explain a non-negligible fraction of the forecast error variation of the VIX and especially the

GVX index. In contrast, the converse is not true, as most of the forecast error variation in the

EVZ index is explained by its own shocks.
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7 Conclusions and directions for future research

We prove that maximum likelihood estimation of structural vector autoregressions with in-

dependent non-Gaussian shocks generates consistent estimators of the autoregressive coeffi cients

and (scaled) impact multipliers under distributional misspecification, which in turn implies con-

sistent estimation of the temporal pattern of the Irfs. In contrast, the drifts and standard

deviations of the shocks are generally inconsistently estimated, and so are the Fevds. Never-

theless, we show consistency when the non-Gaussian log-likelihood is a discrete scale mixture of

normals in the symmetric case, or an unrestricted finite mixture more generally. We also confirm

the validity of the consistent estimators in Fiorentini and Sentana (2019) when the shocks are

assumed to follow other non-Gaussian distributions such as the Student t or the Laplace. Our

detailed Monte Carlo exercises illustrate the effi ciency under distributional misspecification of

our proposed estimators relative to other consistent proposals.

Finally, we study the dynamic linkages between the popular volatility indices for the S&P500,

the US $/euro exchange rate and gold. Somewhat surprisingly, we find that the matrix of impact

multipliers is close to lower triangular, which suggests that the structural volatility shocks that

we estimate correspond to stocks, foreign exchange and gold. We also find that the historical

total connectedness at the one-year ahead horizon is not very high, and that the FX volatility

shocks explain a non-negligible fraction of the forecast error variation of the VIX and especially

the GVX index.

A worthwhile extension of our paper would look at semiparametric estimators which use

our proposed consistent estimators as initial values for a single BHHH iteration based on the

semiparametric effi cient score. The results in Fiorentini and Sentana (2020b) suggest that such

estimators would be (partially) adaptive for the matrices of Var coeffi cients Aj (j = 1, . . . , p)

and the scaled impact multipliers in J. Given that the structural shocks are assumed cross-

sectionally independent, their densities would be estimated at univariate non-parametric rates.

An alternative procedure that should in principle achieve the semiparametric effi ciency bound

would be a sieves-type estimator that uses discrete mixtures of normals in which the number of

underlying components increases with the sample size at a suitable rate. A comparison of these

two estimators with the distribution-free methods in Herwartz (2018), who exploits the proposal

in Matteson and Tsay (2017), and Lanne and Luoto (2019), who employ a GMM estimator that

replaces the assumption of independent shocks with analogous restrictions on a finite number of

high-order cross-cumulants, would also be valuable.

Given that our theoretical results are valid not only for Svar models with cross-sectional

independent structural shocks, but also for many dynamic conditionally heteroskedastic multi-
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variate regression models routinely used in empirical finance and other fields, including Arch-M

models and multivariate regressions, it would be interesting to assess the performance of discrete

mixture of normals maximum likelihood estimators in those contexts. The study of the effects

on our proposed estimators of structural shocks which are not serially independent because of

the presence of time-varying volatility would also be worth pursuing. Finally, the empirical cred-

ibility of the identification approach that we have exploited would be enhanced if our proposed

estimators would be complemented by specification tests that confirm the assumption of cross-

sectionally independent shocks. We are currently exploring some of these interesting research

avenues.
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Appendices

A Proofs

A.1 Proposition 1

It is easy to check that the EM recursions (4a)-(4c) imply that

π̂(n =
∑K

k=1 µ̂
(n
k λ̂

(n

k =
1

T

∑T

t=1
xt,

Ω̂(n =
∑K

k=1(µ̂
(n
k µ̂

(n′
k + Σ̂

(n
k )λ̂

(n

k − π̂(nπ̂(n′ =
1

T

∑T

t=1
xtxt −

(
1

T

∑T

t=1
xt

)(
1

T

∑T

t=1
xt

)′
,

for all T regardless of the values of ϕ(n−1. Since the ML estimators constitute the fixed point

of the EM recursions, (i.e. ϕ̂ = ϕ(∞), it follows that π̂(n and Ω̂(n coincide with the Gaussian

PML estimators. �

A.2 Proposition 2

It is easy to check that the EM recursions (9a)-(9b) imply that

$̂(n =
∑K

k=1 κ̂
(n
k λ̂

(n

k =
1

T

∑T

t=1
ςt,

for all T regardless of the values of η(n−1. Since the ML estimators constitute the fixed point of

the EM recursions, (i.e. η̂ = η(∞), it follows that $̂ coincides with the sample mean of ςt. �

A.3 Proposition 3

Proposition 12 in the supplemental appendix of Fiorentini and Sentana (2019) implies that

the misspecification of the conditional distribution of the structural shocks ε∗ will not affect the

consistency of either the restricted or unrestricted MLEs of the elements of a. To prove the

consistency of j, it is convenient to study the scores with respect to the different parameters,

which are given by

sτ (θ;%) = −C−1′
∂f [ε∗t (θ);%]

∂ε∗
= −C−1′


−∂f [ε∗1t(θ);%1]

∂ε∗
...

−∂f [ε∗Nt(θ);%N ]
∂ε∗

 ,

sa(θ;%) = −

 yt−1 ⊗C−1′

...
yt−p ⊗C−1′

 ∂f [ε∗t (θ);%]

∂ε∗
= −

 yt−1 ⊗ IN
...

yt−p ⊗ IN

C−1′


∂f [ε∗1t(θ);%1]

∂η1
...

∂f [ε∗Nt(θ);%N ]
∂ηN

 ,
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sj(θ;%) = ∆′N (Ψ⊗C−1′)vec

[
IN +

∂f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

]

= veco

C−1′

IN +

∂f [ε∗1t(θ);%1]
∂ε∗ ε∗1t(θ) . . .

∂f [ε∗1t(θ);%1]
∂ε∗ ε∗Nt(θ)

...
. . .

...
∂f [ε∗Nt(θ);%N ]

∂ε∗ ε∗1t(θ) . . .
∂f [ε∗Nt(θ);%N ]

∂ε∗ ε∗Nt(θ)

Ψ

 ,
where ∆N is an N2 ×N(N − 1) matrix such that vec(J− IN ) = ∆Nveco(J− IN ), and

sψ(θ;%) = Ψ−1E′Nvec

[
IN +

∂f [ε∗t (θ);%]

∂ε∗
ε∗′t (θ)

]
= Ψ−1


1 +

∂f [ε∗1t(θ);%1]
∂ε∗ ε∗1t(θ)
...

1 +
∂f [ε∗Nt(θ);%N ]

∂ε∗ ε∗Nt(θ)

 .

Let us start by assuming that the shape parameters % are fixed to some value %̄. Let

υ = J−1τ so that τ = Jυ. In addition, let

ε∗t (τ ,a0, j0,ψ) = Ψ−1J−10 (yt − τ −A10yt−1 − . . .−Ap0yt−p) = Ψ−1[(υ0 − υ) + Ψ0ε
∗
t ].

Finally, define the pseudo true values of the parameters υ∞, τ∞ = J0υ∞ and ψ∞ such that

E

{
−∂f [ε∗it(τ∞,a0, j0,ψ∞); %̄i]

∂ε∗

}
= E

{
−∂f [ψ−1i∞[(υ0 − υ∞) + ψi0ε

∗
it]; %̄i]

∂ε∗

}
= 0 ∀i,

E

{
1 +

∂f [ε∗it(τ∞,a0, j0,ψ∞); %̄i]

∂ε∗
ε∗it(τ∞,a0, j0,ψ∞)

}
= E

{
1 +

∂f [ψ−1i∞[(υ0 − υ∞) + ψi0ε
∗
it]; %̄i]

∂ε∗
ψ−1i∞[(υ0 − υ∞) + ψi0ε

∗
it]

}
= 0 ∀i.

As a result, the expected value of the scores of τ and ψ will be 0. But the cross-sectional

independence of the true shocks combined with these expressions imply that the expected value

of the scores of a and j and will also be 0. Consequently, all parameters except τ and ψ will be

consistently estimated.

When % is simultaneously estimated, one should understand the solutions τ∞ and ψ∞ to

the above equations as functions of the fixed value of %, and add the scores for these parameters

as additional model conditions, which implicitly define their pseudo true values %∞. �

A.4 Proposition 4

The proof is very similar to the proof Proposition 3. The main difference is when the assumed

distributions of all the structural shocks are symmetric, the score expressions simplify to

sτ (θ;%) = C−1′


δ[ε∗1t(θ);%1]ε

∗
1t(θ)

...
δ[ε∗Nt(θ);%N ]ε∗Nt(θ)

 ,
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sa(θ;%) =

 yt−1 ⊗ IN
...

yt−p ⊗ IN

C−1′


δ[ε∗1t(θ);%1]ε

∗
1t(θ)

...
δ[ε∗Nt(θ);%N ]ε∗Nt(θ)

 ,

sj(θ;%) = veco

C−1′


δ[ε∗1t(θ);%1]ε

∗2
1t (θ)− 1 . . . δ[ε∗1t(θ);%1]ε

∗
1t(θ)ε∗Nt(θ)

...
. . .

...
δ[ε∗Nt(θ);%1]ε

∗
Nt(θ)ε∗1t(θ) . . . δ[ε∗Nt(θ);%1]ε

∗2
Nt(θ)− 1

Ψ

 ,
sψ(θ;%) = Ψ−1


δ[ε∗1t(θ);%1]ε

∗2
1t (θ)− 1

...
δ[ε∗Nt(θ);%1]ε

∗2
Nt(θ)− 1

 ,

where δ[ε∗it(θ);%i] is a scalar function of the square of ε
∗
it(θ).

In this case, it is easy to see that ε∗t (τ 0,a0, j0,ψ) = Ψ−1Ψ0ε
∗
t , so that for a fixed value of

the shape parameters %̄,

E{δ[ε∗it(τ 0,a0, j0,ψ); %̄i]ε
∗
it(τ 0,a0, j0,ψ)} = E[δ(ψ−1i ψi0ε

∗
it; %̄i)ψ

−1
i ψi0ε

∗
it] = 0 ∀i (A1)

for any value of ψ because the integrand is an odd function of ε∗it, whose true distribution is

symmetric. As a result, the expected value of the scores of τ will be 0 and the same applies to

the scores of a because of the law of iterated expectations.

Next, let us define ψ∞ such that

E
[
δ[ε∗it(τ 0,a0, j0,ψ); %̄i]ε

∗2
it (τ 0,a0, j0,ψ)− 1

]
= E[δ(ψ−1i∞ψi0ε

∗
it; %̄i)ψ

−2
i∞ψ

2
i0ε
∗2
it − 1] = 0.

In this case,

E{δ[ε∗it(τ∞,a0, j0,ψ∞); %̄i]ε
∗
it(τ∞,a0, j0,ψ∞)}

= E[(ψ−1i∞[(υ0 − υ∞) + ψi0ε
∗
it]; %̄i)ψ

−1
i∞[(υ0 − υ∞) + ψi0ε

∗
it]] = 0 ∀i,

E
[
δ[ε∗it(τ 0,a0, j0,ψ); %̄i]ε

∗2
it (τ 0,a0, j0,ψ)− 1

]
= E[δ(ψ−1i∞ψi0ε

∗
it; %̄i)ψ

−2
i∞ψ

2
i0ε
∗2
it − 1] = 0,

as desired. As a result, the expected value of the scores of ψ will be 0. But the cross-sectional

independence of the true shocks combined with (A1) implies that the expected value of the

scores of j will also be 0. Consequently, all parameters except ψ will be consistently estimated.

Once again, when % is simultaneously estimated, one should understand the solution ψ∞ to

the above equation as a function of the fixed value of %, and add the scores for these parameters

as additional model conditions, which implicitly define their pseudo true values %∞. �
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B Computational details

The log-density of a univariate Student t random variable with 0 mean, unit variance and

degrees of freedom νi = η−1i is given by

l[ε∗it(θ); ηi] = c(ηi)−
(
ηi + 1

2ηi

)
log

[
1 +

ηi
1− 2ηi

ε∗2it (θ)

]
,

with

c(ηi) = log

(
ηi + 1

2ηi

)
− log

[
Γ

(
1

2ηi

)]
− 1

2
log

(
1− 2ηi
ηi

)
− 1

2
log π.

In contrast, it becomes

l[ε∗it(θ);λi, κi] = c(λi, κi) + log

[
λi exp

(
−ε
∗2
it (θ)

κ∗i

)
+ (1− λi)κ−1/2i exp

(
−ε
∗2
it (θ)

κ∗iκi

)]
for a two-component DSMN, with

c(λi, κi) = −1

2
log κ∗i − log Γ

(
−1

2

)
and

κ∗i =
1

λi + (1− λi)κi
.

Finally, it will be

l[ε∗it(θ)] = − log(2)−
√

2|ε∗it(θ)|

under the Laplace assumption.

To apply the symmetric FS correction, one simply needs to use (15) and compute

ψ̃
2
i =

1

T

T∑
t=1

ε̂∗2it , i = 1, . . . , N,

where ε̂∗t = Ĵ−1ε̂t and ε̂t = yt − τ̂ − Â1yt−1 − . . . − Âpyt−p. Let Ψ̃ = diag(ψ̃1, . . . , ψ̃N ), then

the consistent estimator of C is obtained as

C̃ = ĴΨ̃. (B1)

In turn, to apply the asymmetric FS correction, first compute the pseudo residuals as

ε̃t = yt − Â1yt−1 − . . .− Âpyt−p,

and use (18) to compute

τ̃ i =
1

T

T∑
t=1

ε̂it, i = 1, . . . , N,

which yields the consistent estimator of τ̃ = (τ̃1, . . . , τ̃N )′. As for the standard deviations, we
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can use (17) to compute

ψ̃
2
i =

1

T

T∑
t=1

ε̄∗2it , i = 1, . . . , N,

with ε̄∗t = Ĵ−1εt and ε̄t = yt − τ̃ − Â1yt−1 − . . . − Âpyt−p. Finally, one simply needs to use

(B1).

C Standardised random variables

C.1 Univariate discrete location scale mixtures of normals

Let st denote an i.i.d. Bernoulli variate with P (st = 1) = λ. If zt|st is i.i.d. N(0, 1), then

ε∗t =
1√

1 + λ(1− λ)δ2

[
δ(st − λ) +

st + (1− st)
√
κ√

λ+ (1− λ)κ
zt

]
,

where δ ∈ R and κ > 0, is a two component mixture of normals whose first two unconditional

moments are 0 and 1, respectively. The intuition is as follows. First, note that δ(st − λ) is a

shifted and scaled Bernoulli random variable with 0 mean and variance λ(1− λ)δ2. But since

st + (1− st)
√
κ√

λ+ (1− λ)κ
zt

is a discrete scale mixture of normals with 0 unconditional mean and unit unconditional variance

that is orthogonal to δ(st−λ), the sum of the two random variables will have variance 1 +λ(1−

λ)δ2, which explains the scaling factor.

An equivalent way to define and simulate the same standardised random variable is as follows

ε∗t =

{
N [µ∗1(%), σ∗21 (%)] with probability λ
N [µ∗2(%), σ∗22 (%)] with probability 1− λ (C1)

where % = (δ, κ, λ)′ and

µ∗1(%) =
δ(1− λ)√

1 + λ(1− λ)δ2
,

µ∗2(%) = − δλ√
1 + λ(1− λ)δ2

= − λ

1− λµ
∗
1(%),

σ∗21 (%) =
1

[1 + λ(1− λ)δ2][λ+ (1− λ)κ]
,

σ∗22 (%) =
κ

[1 + λ(1− λ)δ2][λ+ (1− λ)κ]
= κσ∗21 (%).

Therefore, we can immediately interpret κ as the ratio of the two variances. Similarly, since

δ =
µ∗1(%)− µ∗2(%)√

λσ∗21 (%) + (1− λ)σ∗21 (%)
,
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we can also interpret δ as the parameter that regulates the distance between the means of the

two underlying components relative to the mean of the two conditional variances.

Finally, note that we can also use the above expressions to generate a two component mixture

of normals with mean π and variance ω2 as

yt =

{
N(µ1, σ

2
1) with probability λ

N(µ2, σ
2
2) with probability 1− λ

with

µ1 = π + ωµ∗1(%), µ2 = π + ωµ∗2(%), σ21 = ωσ∗21 (%), σ22 = ωσ∗22 (%).

Interestingly, the expressions for κ and δ above continue to be valid if we replace µ∗1(%), µ∗2(%),

σ∗21 (%) and σ∗22 (%) by µ1, µ2, σ
2
1 and σ

2
2.

We can trivially extend this procedure to define and simulate standardised mixtures with

three or more components. Specifically, if we replace the normal random variable in the first

branch of (C1) by a (K−1)-component normal mixture with mean and variance given by µ∗1(%)

and σ∗21 (%), respectively, then the resulting random variable will be a K-component Gaussian

mixture with zero mean and unit variance.

C.2 Standardised multivariate discrete location scale mixtures of normals

Consider the following mixture of two multivariate normals

εt ∼
{
N(µ1,Σ1) with probability λ,
N(µ2,Σ2) with probability 1− λ. (C2)

Let st denote a Bernoulli variable which takes the value 1 with probability λ and 0 with

probability 1 − λ. As is well known, the unconditional mean vector and covariance matrix of

the observed variables are:

E(εt) = E[E(εt|st)] = λµ1 + (1− λ)µ2,

V (εt) = V [E(εt|st)] + E[V (εt|st)] = λ(1− λ)(µ1 − µ2)(µ1 − µ2)′ + λΣ1 + (1− λ)Σ2.

Therefore, this random vector will be standardised if and only if

λµ1 + (1− λ)µ2 = 0,

λ(1− λ)(µ1 − µ2)(µ1 − µ2)′ + λΣ1 + (1− λ)Σ2 = I.

Let us initially assume that µ1 = µ2 = 0 but that the mixture is not degenerate, so that

λ 6= 0, 1. Let Σ1LΣ′1L and Σ2LΣ′2L denote the Cholesky decompositions of the covariance
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matrices of the two components. Then, we can write

λΣ1 + (1− λ)Σ2 = Σ1L[λIN + (1− λ)Σ−11LΣ2LΣ′2LΣ−1′1L ]Σ′1L = Σ1L(λIN + KLK′L)Σ′1L,

where KL =
√

1− λΣ−11LΣ2L remains a lower triangular matrix. Given that IN = e1e1 +

. . . + eNeN , where ei is the ith vector of the canonical basis, the Cholesky decomposition of

λIN + KLK′L, say GLG′L, can be computed by means of N rank-one updates that sequentially

add
√
λei
√
λe′i for i = 1, . . . , N . The special form of those vectors can be effi ciently combined

with the usual rank-one update algorithms to speed up this process (see e.g. Sentana (1999) and

the references therein). In any case, the elements ofGL will be functions of λ and the N(N+1)/2

elements in KL. If we then choose Σ1L = G−1L , we will guarantee that λΣ1 + (1− λ)Σ2 = IN .

Therefore, we can achieve a standardised two-component mixture of two multivariate normals

with 0 means by drawing with probability λ one random variable from a distribution with

covariance matrixG−1′L G−1L , and with probability 1−λ from another distribution with covariance

matrix (1− λ)−1KLK′L.

Let us now turn to the case in which the means of the components are no longer 0. The

zero unconditional mean condition is equivalent to µ1 = (1 − λ)δ and µ2 = −λδ, so that δ

measures the difference between the two means. Thus, the unconditional covariance matrix will

be λ(1 − λ)δδ′ + IN after imposing the restrictions on Σ1 and Σ2 in the previous paragraph.

Once again, the Cholesky decomposition of this matrix is very easy to obtain because it can be

regarded as a positive rank-one update of the identity matrix, whose decomposition is trivial.

Thus, we can parametrise a standardised mixture of two multivariate normals, which usually

involves 2N mean parameters, 2N(N+1)/2 covariance parameters and one mixing parameter, in

terms of the N mean difference parameters in δ, the N(N +1)/2 relative variance parameters in

KL and the mixing parameter λ, the remaining N mean parameters and N(N +1)/2 covariance

ones freed up to target any unconditional mean vector and covariance matrix.

Mencía and Sentana (2009) explain how to standardise Bernoulli location-scale mixtures of

normals, which are a special case of the two component mixtures we have just discussed in which

Σ2 = κΣ1. Straightforward algebra confirms that the standardisation procedure described above

simplifies to the one they provide in their Proposition 1.

As in the univariate case, we can trivially extended this procedure to define and simulate

standardised mixtures with three or more components. Specifically, if we replace the normal

random variable in the first branch of (C2) by a (K − 1)-component normal mixture with mean

and variance given by µ∗1(%) and Σ∗1(%), respectively, then the resulting random variable will be

a K-component Gaussian mixture with zero mean and unit variance.
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TABLE 1: Monte Carlo results. Mean absolute bias of pooled groups of estimators.

DGP: ε1t ∼ Student t6 ε2t ∼ Student t12 ε3t ∼ Student t8
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0002 0.0002 0.0002 0.0001 0.0002 0.0001 0.0002 0.0002 0.0002 0.0002
Aii 0.0016 0.0016 0.0017 0.0017 0.0017 0.0015 0.0015 0.0018 0.0018 0.0018
Aij,i6=j 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0002
Cii 0.0040 0.0043 0.0047 0.0046 0.0046 0.0727 0.0061 0.0044 0.0082 0.0048
Cij,i>j 0.0009 0.0009 0.0011 0.0010 0.0011 0.0138 0.0008 0.0009 0.0009 0.0012
Cij,i<j 0.0007 0.0007 0.0008 0.0008 0.0008 0.0008 0.0008 0.0007 0.0009 0.0008
Jij,i>j 0.0009 0.0009 0.0010 0.0010 0.0010 0.0008 0.0008 0.0009 0.0007 0.0010
Jij,i<j 0.0011 0.0011 0.0010 0.0010 0.0010 0.0021 0.0021 0.0010 0.0028 0.0010

DGP: ε1t ∼ Laplace ε2t ∼ Laplace ε3t ∼ Laplace
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0001 0.0001 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Aii 0.0009 0.0009 0.0008 0.0009 0.0009 0.0007 0.0007 0.0016 0.0016 0.0016
Aij,i6=j 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003 0.0003 0.0003
Cii 0.0915 0.0014 0.0013 0.0012 0.0013 0.0016 0.0011 0.0017 0.0015 0.0016
Cij,i>j 0.0183 0.0003 0.0002 0.0002 0.0002 0.0004 0.0003 0.0003 0.0003 0.0002
Cij,i<j 0.0004 0.0004 0.0003 0.0003 0.0003 0.0005 0.0005 0.0004 0.0005 0.0003
Jij,i>j 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001
Jij,i<j 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004 0.0004 0.0003 0.0006 0.0003

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4) ε3t ∼ dlsmn(−1, 0.2, 0.2)

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.1865 0.0001 0.0001 0.2624 0.0001 0.1998 0.0001 0.0001 0.0001 0.0001
Aii 0.0009 0.0009 0.0007 0.0007 0.0007 0.0009 0.0009 0.0015 0.0015 0.0015
Aij,i6=j 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002
Cii 3.3233 0.0011 0.0007 0.0399 0.0008 0.0128 0.0011 0.0021 0.0083 0.0012
Cij,i>j 0.7162 0.0002 0.0002 0.0108 0.0002 0.0016 0.0003 0.0005 0.0089 0.0003
Cij,i<j 0.0005 0.0003 0.0001 0.0002 0.0002 0.0004 0.0004 0.0007 0.0099 0.0001
Jij,i>j 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003 0.0003 0.0006 0.0095 0.0003
Jij,i<j 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0008 0.0104 0.0000

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5 ε3t ∼ Asy. Student t16,100
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.1244 0.0001 0.0001 0.1081 0.0001 0.1692 0.0002 0.0001 0.0001 0.0001
Aii 0.0011 0.0011 0.0010 0.0011 0.0011 0.0011 0.0011 0.0016 0.0016 0.0016
Aij,i6=j 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
Cii 0.0075 0.0022 0.0016 0.0046 0.0020 0.0350 0.0034 0.0027 0.0093 0.0019
Cij,i>j 0.0005 0.0002 0.0002 0.0003 0.0002 0.0129 0.0004 0.0003 0.0007 0.0002
Cij,i<j 0.0004 0.0004 0.0004 0.0002 0.0002 0.0004 0.0004 0.0004 0.0025 0.0004
Jij,i>j 0.0004 0.0004 0.0003 0.0002 0.0002 0.0008 0.0008 0.0004 0.0020 0.0003
Jij,i<j 0.0004 0.0004 0.0002 0.0002 0.0002 0.0006 0.0006 0.0006 0.0039 0.0004

Sample length=2000, Replications=5,000. S: Student-t MLE, M: DLSMN MLE, SM: DSMN MLE, L: Laplace
MLE, IC: GMR two step estimator. AFS is Fiorentini and Sentana (2019) consistent PMLE.
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TABLE 2: Monte Carlo results. (RMSE) of pooled groups of estimators.

DGP: ε1t ∼ Student t6 ε2t ∼ Student t12 ε3t ∼ Student t8
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0221 0.0232 0.0232 0.0222 0.0232 0.0257 0.0232 0.0232 0.0232 0.0232
Aii 0.0195 0.0195 0.0196 0.0196 0.0196 0.0227 0.0227 0.0204 0.0204 0.0204
Aij,i6=j 0.0194 0.0194 0.0195 0.0195 0.0195 0.0226 0.0226 0.0204 0.0204 0.0204
Cii 0.0247 0.0250 0.0255 0.0254 0.0254 0.0789 0.0275 0.0251 0.0303 0.0255
Cij,i>j 0.0573 0.0573 0.0604 0.0598 0.0598 0.0815 0.0746 0.0573 0.0842 0.0605
Cij,i<j 0.0561 0.0561 0.0595 0.0588 0.0588 0.0791 0.0728 0.0562 0.0831 0.0595
Jij,i>j 0.0576 0.0576 0.0609 0.0603 0.0603 0.0756 0.0756 0.0577 0.0859 0.0610
Jij,i<j 0.0582 0.0582 0.0618 0.0611 0.0611 0.0763 0.0763 0.0582 0.0887 0.0618

DGP: ε1t ∼ Laplace ε2t ∼ Laplace ε3t ∼ Laplace
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.0185 0.0232 0.0232 0.0185 0.0232 0.0171 0.0231 0.0233 0.0233 0.0233
Aii 0.0163 0.0163 0.0162 0.0162 0.0162 0.0151 0.0151 0.0203 0.0203 0.0203
Aij,i6=j 0.0162 0.0162 0.0162 0.0162 0.0162 0.0151 0.0151 0.0201 0.0201 0.0201
Cii 0.1042 0.0255 0.0255 0.0255 0.0255 0.0227 0.0254 0.0256 0.0254 0.0255
Cij,i>j 0.0332 0.0243 0.0242 0.0242 0.0242 0.0207 0.0208 0.0253 0.0221 0.0249
Cij,i<j 0.0255 0.0233 0.0232 0.0232 0.0232 0.0200 0.0200 0.0244 0.0214 0.0240
Jij,i>j 0.0238 0.0238 0.0237 0.0237 0.0237 0.0202 0.0202 0.0248 0.0216 0.0244
Jij,i<j 0.0231 0.0231 0.0231 0.0231 0.0231 0.0199 0.0199 0.0242 0.0213 0.0239

DGP: ε1t ∼ dlsmn(0.8, 0.06, 0.52) ε2t ∼ dlsmn(1.2, 0.08, 0.4) ε3t ∼ dlsmn(−1, 0.2, 0.2)

S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M
τ 0.2342 0.0231 0.0231 0.3128 0.0231 0.2470 0.0231 0.0232 0.0232 0.0232
Aii 0.0152 0.0152 0.0131 0.0138 0.0138 0.0165 0.0165 0.0202 0.0202 0.0202
Aij,i6=j 0.0151 0.0151 0.0130 0.0137 0.0137 0.0165 0.0165 0.0201 0.0201 0.0201
Cii 5.7458 0.0227 0.0225 0.0545 0.0226 0.0282 0.0228 0.0235 0.0298 0.0226
Cij,i>j 1.1789 0.0223 0.0187 0.0239 0.0200 0.0273 0.0271 0.0330 0.0845 0.0210
Cij,i<j 0.1165 0.0192 0.0133 0.0152 0.0148 0.0218 0.0215 0.0333 0.0838 0.0144
Jij,i>j 0.0219 0.0219 0.0183 0.0195 0.0195 0.0268 0.0268 0.0327 0.0854 0.0206
Jij,i<j 0.0184 0.0184 0.0130 0.0144 0.0144 0.0204 0.0204 0.0339 0.0988 0.0150

DGP: ε1t ∼ Asy. Student t12,1 ε2t ∼ Asy. Student t14,5 ε3t ∼ Asy. Student t16,100
S SAFS M SM SMAFS L LAFS IC-S IC-L IC-M

τ 0.1424 0.0231 0.0230 0.1244 0.0231 0.1861 0.0231 0.0231 0.0231 0.0231
Aii 0.0180 0.0180 0.0168 0.0178 0.0178 0.0215 0.0215 0.0201 0.0201 0.0201
Aij,i6=j 0.0181 0.0181 0.0169 0.0179 0.0179 0.0216 0.0216 0.0202 0.0202 0.0202
Cii 0.0340 0.0324 0.0321 0.0335 0.0322 0.0530 0.0338 0.0329 0.0398 0.0320
Cij,i>j 0.0338 0.0340 0.0252 0.0319 0.0319 0.0567 0.0516 0.0392 0.0889 0.0253
Cij,i<j 0.0366 0.0363 0.0288 0.0349 0.0346 0.0558 0.0547 0.0411 0.0887 0.0295
Jij,i>j 0.0336 0.0336 0.0246 0.0315 0.0315 0.0517 0.0517 0.0391 0.0910 0.0247
Jij,i<j 0.0383 0.0383 0.0303 0.0367 0.0367 0.0575 0.0575 0.0427 0.0909 0.0308

Sample length=2000, Replications=5,000. S: Student-t MLE, M: DLSMN MLE, SM: DSMN MLE, L: Laplace
MLE, IC: GMR two step estimator. AFS is Fiorentini and Sentana (2019) consistent PMLE.
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FIGURE 1: Volatility index series (logs)
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