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S. Borağan Aruoba
University of Maryland

Pablo Cuba-Borda
Federal Reserve Board

Kenji Higa-Flores
University of Maryland

Frank Schorfheide
University of Pennsylvania

CEPR, NBER, PIER

Sergio Villalvazo
University of Pennsylvania

Current Version: October 9, 2020

Abstract

We develop an algorithm to construct approximate decision rules that are piecewise-

linear and continuous for DSGE models with an occasionally binding constraint. The

functional form of the decision rules allows us to derive a conditionally optimal particle

filter (COPF) for the evaluation of the likelihood function that exploits the structure

of the solution. We document the accuracy of the likelihood approximation and embed

it into a particle Markov chain Monte Carlo algorithm to conduct Bayesian estimation.

Compared with a standard bootstrap particle filter, the COPF significantly reduces the

persistence of the Markov chain, improves the accuracy of Monte Carlo approximations

of posterior moments, and drastically speeds up computations. We use the techniques

to estimate a small-scale DSGE model to assess the effects of the government spending

portion of the American Recovery and Reinvestment Act in 2009 when interest rates

reached the zero lower bound. JEL: C5, E4, E5

KEY WORDS: Bayesian Estimation, Effective Lower Bound on Nominal Interest Rates,

Nonlinear Filtering, Nonlinear Solution Methods, Particle MCMC

∗ Correspondence: B. Aruoba (aruoba@umd.edu), K. Higa-Flores (kenjihf@umd.edu): Department of
Economics, University of Maryland, College Park, MD 20742. P. Cuba-Borda (pablo.a.cubaborda@frb.gov):
Division of International Finance, Federal Reserve Board, 20th Street & Constitution Ave., NW, Washington,
DC 20551. F. Schorfheide (schorf@ssc.upenn.edu), S. Villalvazo (vsergio@sas.upenn.edu): Department of
Economics, University of Pennsylvania, 133 S. 36th Street, Philadelphia, PA 19104. We are thankful for
helpful comments and suggestions from participants of the 2018 and 2019 MFM conferences, the 2019
conference of the Society for Nonlinear Dynamics, and the Alejandro Justiniano Memorial conference. Much
of this paper was written while Aruoba and Schorfheide visited the Federal Reserve Bank of Philadelphia,
whose hospitality they are thankful for. Higa-Flores and Villalvazo gratefully acknowledge financial support
from the Becker Friedman Institute under the Macro Financial Modeling Project. Aruoba and Schorfheide
gratefully acknowledge financial support from the National Science Foundation under Grant SES 1851634.
The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as
reflecting the views of the Board of Governors of the Federal Reserve System or any other person associated
with the Federal Reserve System.



This Version: October 9, 2020 1

1 Introduction

Dynamic stochastic general equilibrium (DSGE) models with financial frictions are widely

used in central banks, by regulators, and in academia to study the effects of monetary and

macroprudential policies and the propagation of shocks in the macro economy. The most

recent vintage of these models involves occasionally binding constraints arising from financial

frictions and the effective lower bound (ELB) on nominal interest rates. In order for these

models to be usable for a quantitative analysis, they need to be solved numerically, and their

parameters need to be estimated based on historical data.

Two types of solution approaches for models with occasionally binding constraints have

been used in the literature. The first group of solution algorithms can be broadly clas-

sified as global methods. Agents’ decision rules (or value functions associated with opti-

mization problems) are represented by a family of flexible functions—for example, Cheby-

shev polynomials—or by a discrete mapping on a finite state-space domain. The flexible

functions are parameterized by coefficients that are chosen such that the resulting decision

rules (approximately) satisfy the model’s equilibrium conditions and solve the underlying

intertemporal optimization problems. Examples of this approach include Christiano and

Fisher (2000), Adam and Billi (2007), Fernández-Villaverde, Gordon, Guerrón-Quintana,

and Rubio-Ramı́rez (2015), Maliar and Maliar (2015), Nakata (2016), Gust, Herbst, Lopez-

Salido, and Smith (2017), Aruoba, Cuba-Borda, and Schorfheide (2018), Mendoza and Vil-

lalvazo (2020), and Atkinson, Richter, and Throckmorton (2020).

The second type of solution approaches are variants of the extended perfect-foresight

path (EPFP) method that build on Fair and Taylor (1983). These algorithms rely on the

assumption that, after H periods, the system reverts back to the steady state in which the

constraint, say, is non-binding. With an initial guess about whether the constraint is binding

in periods t + h, h = 1, . . . , H, it is possible to solve the dynamic system for the values of

the endogenous variables. One can then compare the initial guess about the duration of the

binding regime to the backward solution and iterate until consistency is achieved. Because

the computations are based on the initial state, the previously described steps need to be

repeated for every t in a multi-period simulation. Variants of this approach have been

used in Eggertsson and Woodford (2003), Christiano, Eichenbaum, and Trabandt (2015),

Guerrieri and Iacoviello (2015), Kulish, Morley, and Robinson (2017), Holden (2019), and

Boehl (2019). The Guerrieri and Iacoviello (2015) paper is accompanied by a popular model
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solution toolbox called OccBin that implements a variant of the EFPF approach. We will

refer to OccBin in various instances throughout our paper.

Given the model solution, one then constructs a state-space representation for an es-

timable empirical model. The solution itself generates the state transition equations. A

set of measurement equations can then be specified that links the state variables with the

observables. Because the model solution is nonlinear, so is the state-space representation.

Thus, a nonlinear filter is required to compute the likelihood function. For instance, in the

context of DSGE models with an ELB constraint, Gust et al. (2017) and Aruoba et al. (2018)

use a particle filter in combination with a global solution to construct likelihood functions.

Guerrieri and Iacoviello (2017) use an EPFP solution for a model in which the number of

observables equals the number of structural shocks and combine it with an inversion filter

that essentially solves for the innovations as a function of the observables conditional on an

initial state.

Against this backdrop, the contribution of our paper is to construct an alternative model

solution that (i) is able to capture an important aspect of the decision rule nonlinearity

generated by an occasionally binding constraint, (ii) can be solved quickly, and (iii) allows

us to derive an accurate and fast filter for the evaluation of the likelihood function that

exploits the structure of the solution. One of our goals is to make the procedure efficient

enough that it can be run on a desktop computer in a reasonable amount of time. For

instance, the small-scale New Keynesian model in our empirical application is estimated

using U.S. data from 1984 to 2018 in about 13.5‘ hours on a single core.

The basic idea of the proposed solution method is to approximate agents’ decision rules

globally by piecewise-linear functions that are continuous but have a kink along the locus

of the state space in which a constraint becomes binding. The coefficients of the decision

rules are determined to ensure that the model’s equilibrium conditions are (approximately)

satisfied. The equilibrium conditions typically take the form of nonlinear expectational

difference equations. We require that the (potentially transformed) state variables enter

the occasionally-binding constraint linearly. For the remaining equilibrium conditions a

(log)linearization is optional. In determining the decision rule coefficients, we take account

of the fact that, in the next period, the constraint could either be binding or non-binding.

Thus, we are capturing precautionary behavior. Importantly, the decision rule coefficients

only have to be computed once (as opposed to for each period t separately as in the EPFP

approach). Compared with higher-order Chebyshev polynomials, the piecewise-linearity and
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continuity at the kink drastically reduce the number of coefficients that need to be determined

and hence simplify computations.

The motivation for the piecewise-linear functional form is twofold. First, we have ob-

served in a number of models that more densely parameterized nonlinear decision rules look

approximately piecewise linear. For instance, in Aruoba et al. (2018) we considered a New

Keynesian DSGE model and stitched together higher-order Chebyshev polynomials along

the locus in the state-space where the ELB constraint becomes binding. We found that the

decision rules on both sides of the kink are approximately linear. In the Online Appendix we

solve a consumption-savings model with an occasionally-binding borrowing constraint and

demonstrate that a global solution technique produces approximately piecewise linear deci-

sion rules. Second, in Section 3 we solve a simplified version of the New Keynesian DSGE

model with an ELB constraint and show that the piecewise-linear structure is exact.

To solve the nonlinear filtering problem, we develop a conditionally optimal particle filter

(COPF). A particle filter is a stochastic algorithm that approximates the distribution of a

vector of hidden states st conditional on the sequence of observations Y1:t available in time t

by a swarm of M particle values and weights {sjt ,W
j
t }Mj=1. Because of its stochastic structure,

repeated runs of the filter generate a distribution of likelihood values. An important property

of the particle filter is that the average likelihood across repeated runs is equal to the exact

likelihood (unbiasedness). The tuning of the particle filter determines the precision of the

approximation. A key step in the specification of the algorithm is the mutation of time t-1

particle values into time t particle values. We show how, in the case of a piecewise linear

DSGE model solution, the mutation step can be executed optimally, conditional on the stage

t-1 particle values.

In a sequence of numerical illustrations based on a small-scale New Keynesian DSGE

model with an ELB constraint, we document important properties of our solution algorithm

and the COPF likelihood approximation. We show that, compared to a naive bootstrap

particle filter (BSPF), which mutates particle values by simulating the model solution for-

ward, our COPF drastically reduces the variance of the likelihood approximation holding

the runtime fixed. In practice, this allows us to run the COPF with far fewer particles

than the BSPF (150 for COPF versus 1,000 for BSPF in our experiments), which in turn

speeds up the computations. When we embed the more accurate COPF into a random

walk Metropolis–Hastings (RWMH) algorithm, we are able to significantly reduce the per-

sistence of the resulting Markov chain and therefore improve the accuracy of Monte Carlo

approximations of moments of the posterior distribution.
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A key feature of our paper is that it integrates model solution, likelihood approximation,

and Bayesian estimation. There are a few papers that assess the interplay of existing model

solution and likelihood evaluation techniques in Monte Carlo experiments. The ones most

closely related to our work are Cuba-Borda, Guerrieri, Iacoviello, and Zhong (2019) and

Atkinson et al. (2020).1 Cuba-Borda et al. (2019) take a simple consumption-savings model

subject to a borrowing constraint. They illustrate that less accurate solution methods affect

inference even when the inversion filter is available. They also show that, as one increases

the measurement error variance in the BSPF, the likelihood misspecification becomes more

problematic, making it harder to retrieve the parameter values that govern the data gener-

ating process (DGP). In their setting, measurement error and solution approximation error

make it difficult for the econometrician to identify the model regime that generates the data,

and this incorrect classification of regimes leads to a bias in parameter estimates. In our

empirical application, one of the observed time series allows us to exactly identify the regime,

and we modify the COPF to capture this feature.

Atkinson et al. (2020) compare the performance of a fully nonlinear solution and a variant

of the BSPF for estimation, with the approximated solution using OccBin and the inversion

filter. They simulate data from a DSGE model that includes more frictions and shocks than

the model used for estimation, and the latter is close to the model we use in this paper

in terms of size. As such, their estimated model is misspecified with respect to the DGP.

Their results show that the nonlinear approach performs slightly better than the OccBin

approach, but the differences are small. Moreover, relative to the pseudo-true parameters,

the estimates from both approaches show biases in some key parameters, such as the degree

of price rigidities. Since the OccBin-inversion filter approach can be scaled up easily and is

faster, they argue that building a bigger and less misspecified model using this approach may

be preferable. Similarly, our method offers scalability, even without multicore processing

or distributed computing, and allows for more general model structures and state-space

representations than the inversion filter.

Based on U.S. data from 1984 to 2018 on output growth, inflation, interest rates, and

the government-spending to GDP ratio, we estimate the small-scale DSGE model using our

proposed piecewise-linear and continuous (PLC) solution in combination with the COPF.

From the estimated model, we compute dollar-for-dollar government spending multipliers

associated with the increase in government spending that was part of the 2009 American

1Boehl (2019) combines his model solution, which is a variant of the EPFP, with a variant of an ensemble
Kalman filter. His paper presents an application but does not focus on accuracy comparisons of solution
and estimation methods.
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Recovery and Reinvestment Act (ARRA). The counterfactual output levels are computed

by lowering the exogenous government spending process in the model by an amount that

is commensurable to the ARRA intervention and keeping all other exogenous processes at

their historical levels. We find that the ex post multiplier during the Great Recession, when

the United States was at the ELB, was larger than in normal times when interest rates were

positive, albeit with a mean estimate of 0.7 still small in absolute terms. One novel result

we show through counterfactuals is that, in 2009 and 2010, there was very little room for

the Federal Reserve to stimulate the economy with conventional monetary policy over and

above what the policy rule implied, because adverse shocks kept the desired interest rate

near zero despite the large expansionary fiscal policy due to ARRA.

The remainder of the paper is organized as follows. Section 2 describes the small-scale

New Keynesian DSGE model with ELB constraint used in the subsequent analysis. In Sec-

tion 3 we solve a simplified version of the New Keynesian model and show that the resulting

decision rules are piecewise linear and continuous. We also provide a comparison to the Oc-

cBin solution. In Section 4, we describe how to impose continuity on piecewise-linear decision

rules and derive a canonical form for the DSGE model solution. Section 5 discusses how the

decision rule coefficients are determined to approximately satisfy the model’s equilibrium con-

ditions. The COPF is derived in Section 6. Section 7 presents some numerical experiments

to document the accuracy of the likelihood approximation through the COPF, and Section 8

contains the empirical analysis. Finally, Section 9 concludes. Derivations and further im-

plementation details are provided in the Online Appendix. The Appendix also contains a

section that shows how to solve a consumption-savings model with an occasionally-binding

borrowing constraint using the techniques proposed in this paper and compares our PLC

solution to an “exact” solution and a solution constructed with OccBin.

2 A Prototypical New Keynesian DSGE Model

We will illustrate our solution and filtering methods based on a prototypical New Keynesian

DSGE model. The model is identical to the one used in Aruoba et al. (2018). Variants of

this model have been widely studied in the literature, and its properties are discussed in

detail in Woodford (2003). To make this paper self-contained and introduce some important

notation, we briefly describe the preferences and technologies of the agents in Section 2.1

and summarize the equilibrium conditions in Section 2.2.
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2.1 Preferences and Technologies

Households. Households derive utility from consumption Ct relative to an exogenous habit

stock and disutility from hours worked Ht.
2 The households maximize

Et

[
∞∑
s=0

βsdt+s

(
(Ct+s/At+s)

1−τ − 1

1− τ
−
H

1+1/η
t+s

1 + 1/η

)]
, (1)

subject to the budget constraint

PtCt + Tt +Bt = PtWtHt +Rt−1Bt−1 + PtDt + PtSCt.

Here β is the discount factor, dt is an exogenous shock to the discount factor, 1/τ is the

intertemporal elasticity of substitution, and η is the Frisch labor supply elasticity. Pt is

the price of the final good. The households receive the real wage Wt in exchange for labor

services. Bt is the quantity of nominal bonds, which pay gross interest Rt. Furthermore, the

households receive profits Dt from the firms and pay lump-sum taxes Tt. SCt is the net cash

inflow from trading a full set of state-contingent securities.

Firms. The final-goods producers generate aggregate output Yt aggregating intermediate

goods Yt(j), j ∈ [0, 1]. Under the assumption of perfect competition and free entry, the

demand for the intermediate inputs and the price of the aggregate final good are given by

Yt(j) =

(
Pt(j)

Pt

)−1/ν

Yt and Pt =

(∫ 1

0

Pt(j)
ν−1
ν dj

) ν
ν−1

, (2)

respectively. We define inflation as πt = Pt/Pt−1.

Intermediate good j is produced by a monopolist who has access to the production

technology

Yt(j) = AtHt(j), (3)

where At is an exogenous productivity process that is common to all firms and Ht(j) is the

firm-specific labor input. Intermediate-goods-producing firms face quadratic price adjust-

2The habit stock is proxied by the level of technology At, which ensures that the economy evolves along
a balanced growth path. Since we will not focus on it in the subsequent analysis, we do not make a money-
holding motive, such as valuing transaction services from real money balances, explicit in the description of
the environment. Such a motive is necessary to make the ELB a relevant constraint in a model like this.
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ment costs of the form

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π̄

)2

Yt(j),

where φ governs the price stickiness in the economy and π̄ is a baseline rate of price change

that does not require the payment of any adjustment costs. In our quantitative analysis, we

set π̄ = π∗, where π∗ is the target inflation rate of the central bank. Firm j chooses its labor

input Ht(j) and the price Pt(j) to maximize the present value of future profits

Et

[
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sHt+s(j)− ACt+s(j)

)]
. (4)

Here, Qt+s|t is the time t value to the household of a unit of the consumption good in period

t+ s, which is treated as exogenous by the firm.

Government Policies. Monetary policy is described by an interest rate feedback rule.

Because the ELB constraint is an important part of our analysis we introduce it explicitly

as follows:

Rt = max {1, R∗t eσRεR,t} , R∗t =

[
rπ∗

(
πt
π∗

)ψ1
(

Yt
γYt−1

)ψ2
]1−ρR

RρR
t−1, (5)

Here R∗t is the systematic part of monetary policy which reacts to an inflation gap and an

output growth gap, r is the steady-state real interest rate, π∗ is the target-inflation rate, γ

is the growth rate of the economy, and εR,t is a monetary policy shock.

The government consumes a stochastic fraction of aggregate output. We assume that

government spending evolves according to

Gt =

(
1− 1

gt

)
Yt (6)

where gt is an exogenous process. The government levies a lump-sum tax Tt (or provides a

subsidy if Tt is negative) to finance any shortfalls in government revenues (or to rebate any

surplus). Its budget constraint is given by

PtGt +Mt−1 +Rt−1Bt−1 = Tt +Mt +Bt. (7)

Exogenous shocks. The model economy is perturbed by four exogenous processes. Aggre-
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gate productivity evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + σzεz,t. (8)

Thus, on average, the economy grows at the rate γ, and zt generates exogenous stationary

fluctuations of the technology growth rate around this long-run trend. We assume that the

government spending shock follows the AR(1) law of motion

ln gt = (1− ρg) ln g∗ + ρg ln gt−1 + σgεg,t. (9)

The shock to the discount factor evolves according to

ln dt = ρd ln dt−1 + σdεd,t (10)

The monetary policy shock εR,t is assumed to be serially uncorrelated. We stack the four

innovations into the vector εt = [εz,t, εg,t, εd,t, εR,t]
′ and assume that εt ∼ iidN(0, I).

2.2 Equilibrium Conditions

Because the exogenous productivity process has a stochastic trend, it is convenient to char-

acterize the equilibrium conditions of the model economy in terms of detrended consumption

ct ≡ Ct/At and detrended output yt ≡ Yt/At.

It is well known that the New Keynesian model features multiple equilibria. In one of the

equilibria, the so-called targeted-inflation equilibrium, the endogenous variables fluctuate

around the steady state in which inflation equals the value targeted by the central bank.

Another important equilibrium is the so-called deflation equilibrium where the economy

fluctuates around the so-called deflation steady state in which nominal interest rates are

zero.3 In the remainder of the paper we mostly focus on the targeted-inflation equilibrium,

though we also discuss a deflation equilibrium in Section 3. The former is essentially the

equilibrium that arises in linearized New Keynesian DSGE models, adjusted for the presence

of the ELB constraint. The corresponding steady state is given by

π∗, r∗ =
γ

β
, R∗ = r∗π∗, y∗ =

[
(1− ν)gτ∗

] 1
τ+1/η , c∗ =

y∗
g∗
. (11)

3See, for instance, Benhabib et al. (2001), Aruoba and Schorfheide (2016) and Aruoba et al. (2018) for
a discussion of multiplicity of equilibria in this model.
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Without loss of generality, for any variable xt we can define the percentage deviations from

the steady state as x̂t = lnxt− lnx∗. Using this notation we can substitute xt by x∗e
x̂t .4 Our

goal is to write the equilibrium conditions as a system of expectational difference equations

of the form

Et
[
R(ŷt, ĉt, π̂t, R̂t, ŷt+1, ĉt+1, π̂t+1, R̂t+1, . . .)

]
= 0, (12)

where R(·) captures residuals in the equilibrium conditions.

The residual function comprises of the following elements. The consumption Euler equa-

tion leads to

Rc(·) = d̂t+1 − d̂t − τ(ĉt+1 − ĉt) + R̂t − π̂t+1 − ẑt+1. (13)

In a symmetric equilibrium, in which all firms set the same price Pt(j), the price-setting

decision of the firms leads to

Rπ(·) = ln

[
1

ν

(
1

ν
+

(
1− 1

ν

)
eτ ĉt+ŷt/η

)
− φπ2

∗
(
eπ̂t − 1

) [(
1− 1

2ν

)
eπ̂t +

1

2ν

]
(14)

+φβπ2
∗

(
ed̂t+1−d̂t

) (
e−τ(ĉt+1−ĉt)

) (
eŷt+1−ŷt

) (
eπ̂t+1 − 1

)
eπ̂t+1

]
.

The aggregate resource constraint leads to

Ry(·) = ŷt − ĉt + ln

[
1

eĝt
− φ

2
g∗
(
π∗e

π̂t − π̄
)2
]
. (15)

It reflects both government spending as well as the resource cost (in terms of output) caused

by price changes. The monetary policy rule generates the residual function

RR(·) = R̂t−max
{

(1− ρR)
[
ψ1π̂t +ψ2(ŷt− ŷt−1 + ẑt)

]
+ ρRR̂t−1 +σRεR,t, − ln(rπ∗)

}
. (16)

We stack the residual functions for the exogenous shocks as follows:

Rexo(·) =


ẑt − ρz ẑt−1 − σzεz,t
d̂t − ρdd̂t−1 − σdεd,t
ĝt − ρgĝt−1 − σgεg,t
eR,t − σRεR,t

 . (17)

4Introducing x̂t does not imply that we are log-linearizing all of the equilibrium conditions. It is foremost
a reparameterization. However, in our model it happens to be the case that the consumption Euler equation
and (abstracting from the max operator) the monetary policy rule are log-linear.
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3 Solving a Simplified Version of the DSGE Model

In order to highlight some important features of the proposed solution method, we first

consider a highly simplified version of the DSGE model introduced in Section 2 that can be

(almost) solved analytically.5 In particular, we will show that the PLC form emerges as the

exact solution to the simplified DSGE model. We also discuss the multiplicity of solutions

and provide a comparison to OccBin.

On the model described in the previous section we impose the parameter restrictions

τ = 1, γ = 1, η = ∞, g∗ = 1, π̄ = π∗, ψ1 = ψ, ψ2 = 0, ρR = 0, σz = 0, σg = 0, and

ρd = 0. We log-linearize the equilibrium conditions (except for the ELB constraint) around

the targeted inflation steady state in (11) and regard the resulting equations as the model to

be solved. Some details of the calculations are relegated to the Online Appendix.

Equilibrium Conditions. The residual functions (13), (14), and (16) simplify to

Rc(·) = d̂t+1 − d̂t − (ĉt+1 − ĉt) + R̂t − π̂t+1

Rπ(·) = π̂t − βπ̂t+1 − κĉt (18)

RR(·) = R̂t −max
{
ψπ̂t + σRεR,t, − ln(rπ∗)

}
Under parameterizations in which monteary policy is active, i.e., ψ > 1, the model has typi-

cally two stationary solution in which (R̂t, ĉt, π̂t) are independently and identically distributed

(iid) over time. These correspond to the targeted-inflation and the deflation equilibria de-

fined in the previous section.

In both equilibria expected consumption and inflation are time invariant and can be

replaced by µc = Et[ĉt+1] and µπ = Et[π̂t+1]. Thus, setting the expected value of the residual

function to zero, and conducting a few basic algebraic manipulations, we obtain:

R̂(εd,t, εR,t) = max

{
1

1 + ψκ

[
ψκµc + ψ(κ+ β)µπ + ψκσdεd,t + σRεR,t

]
, − ln(rπ∗)

}
ĉ(εd,t, εR,t) = −R̂(εd,t, εR,t) + µc + µπ + σdεd,t (19)

π̂(εd,t, εR,t) = −κR̂(εd,t, εR,t) + κµc + (κ+ β)µπ + κσdεd,t

Here we replaced R̂t, ĉt, and π̂t by decision rules that are time-invariant functions of the

state variables (εd,t, εR,t).

5A similar model was solved in Mendes (2011).
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Constructing a Solution. In order to solve the system (19) we need to find constants µc

and µπ such that

µc = E[c(εd,t, εR,t)] and µπ = E[π(εd,t, εR,t)].

Because of the max operator in the monetary policy rule, this requires the computation

of the mean of a truncated Normal random variable. We rotate the vector of innovations

[εd,t, εR,t]
′ to separate the component that enters the monetary policy rule from a second

component that is orthogonal:

η1,t =
1

ση
(ψκσdεd,t + σRεR,t), η2,t =

1

ση
(σRεd,t − ψκσdεR,t), ση =

√
(ψκσd)2 + σ2

R. (20)

By construction, the innovations η1,t and η2,t are also N(0, 1).

Using the expression for η1,t in (20) we can rewrite the interest rate rule as

R(η1,t) = max

{
1

1 + ψκ

[
ψκµc + ψ(κ+ β)µπ + σηη1,t

]
, − ln(rπ∗)

}
. (21)

Define the cutoff value

η̄1 = − 1

ση

[
(1 + ψκ) ln(rπ∗) + ψκµc + ψ(κ+ β)µπ

]
(22)

such that R(η1,t) = − ln(rπ∗) whenever η1,t ≤ η1. Using the formula for the mean of a

truncated standard normal random variable, we obtain

E[R(η1,t)] = −ΦN(η̄1) ln(rπ∗) (23)

+
1

1 + ψκ

[(
1− ΦN(η̄1)

)(
ψκµc + ψ(κ+ β)µπ

)
+ σηφN(η̄1)

]
.

Here ΦN(·) and φN(·) are the cumulative density function (cdf) and the probability density

function (pdf) of a standard Normal random variable. Taking expectations of the second

and third equation in (19) and substituting out E[R̂(εd,t, εR,t)] = E[R(η1,t)] using (23) leads

to the following nonlinear system of equations:

µc =
1− ΦN(η̄1)

1 + ψκ

[
µc + (1− ψβ)µπ

]
− σηφN(η̄1)

1 + ψκ
+ ΦN(η̄1)

[
ln(rπ∗) + µc + µπ

]
. (24)

µπ =
1− ΦN(η̄1)

1 + ψκ

[
κµc + (κ+ β)µπ

]
− κσηφN(η̄1)

1 + ψκ
+ ΦN(η̄1)

[
κ ln(rπ∗) + κµc + (κ+ β)µπ

]
,
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where η̄1 is given in (22). Conditional on η̄1 the system is linear in (µc, µπ) which means

that it can be reduced to a single nonlinear equation in terms of η̄1 that needs to be solved

numerically. This equation typically has two solutions, which generate the targeted-inflation

and deflation equilibrium, respectively.

Properties of the Solution. (i) The decision rules are piecewise-linear and continuous for

each (µc, µπ). Plugging the expression for R̂(εd,t, εR,t) = R(η1,) in (23) into the consumption

and inflation decision rules in (19) and using the relationship between the εt’s and ηt’s in

(20), we can rewrite the decision rules for consumption and inflation as follows:

c(η1,t, η2,t) =

 1
1+ψκ

[
µc + (1− ψβ)µπ

]
+
(
γd,1 − 1

1+ψκ

)
σηη1,t + γd,2σηη2,t if η1,t > η̄1

ln(rπ∗) + µc + µπ + γd,1σηη1,t + γd,2σηη2,t otherwise

(25)

π(η1,t, η2,t) =

 1
1+ψκ

[
κµc + (κ+ β)µπ

]
+ κ
(
γd,1 − 1

1+ψκ

)
σηη1,t + κγd,2σηη2,t if η1,t > η̄1

κ ln(rπ∗) + κµc + (κ+ β)µπ + κγd,1σηη1,t + κγd,2σηη2,t otherwise

Here, the γ constants are functions of the structural parameters obtained from (20) by re-

arranging the equations to express the εt’s as a function of the ηt’s. The ELB becomes

binding at the locus in the state space defined by

η̄1 = η1,t =
1

ση
(ψκσdεd,t + σRεR,t). (26)

The second innovation, η2,t, does not enter the policy rule and therefore cannot push the

economy toward the ELB. The decision rules are piecewise linear functions of the innovations

η1,t and η2,t. The slope coefficients associated with η1,t change when the economy hits the

ELB at η1,t = η̄1, whereas the slope coefficients for η2,t do not change. We verify in the

Online Appendix that the decision rules are also continuous at η1,t = η̄1, meaning that for

each η2,t and for each sequence ηn1,t −→ η̄1 as n −→∞:

∣∣c(ηn1,t, η2,t)− c(η̄1, η2,t)
∣∣ −→ 0 and

∣∣π(ηn1,t, η2,t)− π(η̄1, η2,t)
∣∣ −→ 0. (27)

Because the transformation between (εd,t, εR,t) and (η1,t, η2,t) is continuous, the continuity

result also holds for the decision rules ĉ(εd,t, εR,t) and π̂(εd,t, εR,t), expressed in terms of the

original state variable, as (ψκσdε
n
d,t + σRε

n
R,t)/ση −→ η̄1.

(ii) The law of motion given by the interest rate rule (21) and the consumption and

inflation decision rules (25) is coherent and complete for each (µc, µπ) and each realization
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of the innovations (η1,t, η2,t). The system takes the form of a linear simultaneous equations

model with regime switches. The concepts of coherency and completeness were introduced

by Gourieroux et al. (1980) and more recently studied in the context of ELB applications

by Mavroeidis (2020) and Ascari and Mavroeidis (2020). Coherency requires that given an

innovation (η1,t, η2,t) there exists a solution to the system of equations. Completeness refers

to the uniqueness of that solution. Define

R
(1)
t =

1

1 + ψκ

[
ψκµc + ψ(κ+ β)µπ + σηη1,t

]
and R

(2)
t = − ln(rπ∗).

Coherency and completeness require that: (a) η1,t > η̄1 implies Rt = R
(1)
t is a solution to

the maximization on the right-hand side of (23), whereas Rt = R
(2)
t is not. Likewise, it is

required that (b) η1,t < η̄1 implies Rt = R
(2)
t is a solution to the maximization on the right-

hand side of (23), whereas Rt = R
(1)
t is not. Coherency and completeness follows directly

from the linearity of R
(1)
t with respect to η1,t and the definition of η̄1 in (22) and require no

further restrictions on the domain of the innovations.

(iii) Solutions for µc and µπ. The means µc and µπ together with the cutoff value η̄1 are

determined by the nonlinear system of equations (22) and (24). To understand the properties

of the nonlinear system, assume that ψ > 1, i.e., monetary policy is active, and ση = 0, i.e.,

there is no uncertainty. First, suppose we start with the conjecture that η̄1 = −∞. Then

(24) simplifies to

µc =
1

1 + ψκ

[
µc + (1− ψβ)µπ

]
, µπ =

1

1 + ψκ

[
κµc + (κ+ β)µπ

]
which is solved by

µc = 0, µπ = 0. (28)

Recall that the system was expressed in deviations from the targeted-inflation steady state.

Thus if µc = µπ = 0, then the means of consumption and inflation are equal to the steady

state. The analysis is completed by noting that (22) implies that indeed η̄1 = −∞ as initially

assumed.

Second, suppose we start from the conjecture that η̄1 = +∞. Then (24) simplifies to

µc = ln(rπ∗) + µc + µπ, µπ = κ ln(rπ∗) + κµc + (κ+ β)µπ,
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which implies

µc = −1

κ
(1− β) ln(rπ∗), µπ = − ln(rπ∗). (29)

Substituting the means into (22), we obtain η̄1 = (ψ− 1) ln(rπ∗)/ση > 0. Thus, as ση −→ 0,

η̄1 −→ +∞ as required. In this case, the system is in the so-called deflation steady state

and the ELB constraint is always binding.

Once we allow for uncertainty, ση > 0, then the means in (28) and (29) no longer solve

the system of equations (22) and (24). However, for values of ση that are not “too large,”

one can obtain solutions that are “close” to the ones derived above. Due to the nonlinearity

of the ΦN(·) and φN(·) functions, these solutions can only be computed numerically.

Comparison to OccBin Solution. It is instructive to compare the above solution to the

one generated by OccBin. OccBin requires the choice of a reference regime. Because subse-

quently we focus on the targeted inflation equilibrium in which the ELB is non-binding with

high probability, we impose that the ELB is non-binding in the reference regime. Consider

a generic period t. The OccBin solution is based on the assumption that for τ ≥ T the

economy will be in the reference regime. Given the lack of dynamics in the simple model,

we can choose T = t + 1 and assume that the regime will remain in the targeted-inflation

steady state: R̂t+1 = 0, ĉτ = 0, and π̂τ = 0. For period t, the algorithm draws the shocks

(εd,t, εR,t) and solves the system

R̂t = max
{
ψπ̂t + εR,t, − ln(rπ∗)

}
ĉt = Et[ĉt+1]− R̂t + Et[π̂t+1]

π̂t = βEt[π̂t+1] + κĉt

under the restriction that Et[ĉt+1] = 0 and Et[π̂t+1] = 0. The solution is identical to (21) and

(25) with µc = µπ = 0 imposed. Thus, in the context of our stylized model the difference

between our solution, which happens to be exact, and the OccBin solution is that the latter

does not take into account the uncertainty about the regime in period t+ 1.

Summary. We draw the following conclusions from the analysis of the simplified DSGE

model. First, the log-linearized model has static solutions that are exact and in which

the decision rules for consumption and inflation are piecewise-linear and continuous. We

use this as a motivation for subsequently considering a class of approximate solutions with

PLC decision rules for richer nonlinear DSGE models with occasionally-binding constraints.

Second, although we approximated the equilibrium conditions around the targeted-inflation
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steady state, because of the nonlinearity generated by the occasionally-binding constraint,

for ση > 0 the decision rules do not pass through the steady state around which the model

was initially approximated. In fact, because the decision rules are flexible enough to have

unrestricted intercepts, we can also generate the deflation equilibrium which is far away

from the targeted-inflation steady state. Third, an important difference between our pro-

posed PLC solution and the OccBin solution is that our decision rule coefficients capture

uncertainty about the future.

4 PLC Decision Rules and the Canonical Form

In the analysis of the simplified model in the previous section, the PLC decision rules emerged

from the analytical solution of the model. For more elaborate DSGE models, we will param-

eterize a family of piecewise-linear decision rules and then impose coefficient restrictions that

guarantee that the decision rules are continuous at the kink, where the constraint changes

from being slack to being binding. The remaining free coefficients of the decision rules can

then be used to (approximately) satisfy the equilibrium conditions of the model by setting

the residual functions (close) to zero. A discussion of how to do this numerically is deferred

to Section 5.

4.1 PLC Decision Rules

Let X = [x1, X
′
2] ∈ X be an n × 1 vector of non-redundant state variables. We assume

that X also contains a constant. Here x1 is one particular element of X that enters the

characterization of the locus of points in the state space at which the constraint becomes

binding and the decision rules have their kink. The reason for separating out one of the X
elements will become clear below. Let Y denote a k × 1 vector of control variables. As we

make explicit below, we assume Y depends on x1 and X2 linearly where the coefficients may

depend on whether the constraint is binding or not.

We assume that there is a linear(ized) scalar-valued function h
(
x1, X2, Y

)
that determines

whether the constraint is binding:

h
(
x1, X2, Y

)
=

{
> 0 if constraint is non-binding (n)

≤ 0 if constraint is binding (b)
. (30)
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The h(.) function may depend on the state variables (x1, X2) and some of the elements in

Y . Because the function is assumed to be linear, we write it as

h(x1, X2, y) = γ1x1 + γ′2X2 + γ′Y Y. (31)

The γ’s are not free coefficients. They are obtained from the equilibrium conditions of the

DSGE model. In the simplified model of Section 3 we set x1 = 1, X2 = [εd, εR]′, and y = [ĉ, π̂]′

such that h(x1, X2, y) = ln(rπ∗) + εR + ψĉ with γ1 = ln(rπ∗), γ
′
2 = [0, 1]′, and γ′Y = [0, ψ].

We define the kink function x1 = `(X2) such that [`(X2), X ′2]′ ∈ X characterizes the locus

of points in the state space for which h
(
`(X2), X2, Y (`(X2), X2)

)
= 0, that is, the constraint

is just binding. Here Y (.) denotes the assumed piecewise linear decision rules for the control

variables. The linearity of h(·) in (31) and the assumed piecewise-linearity of the decision

rules for y imply that `(X2) is a linear function and we parameterize it as

`(X2) = δ′X2, (32)

where δ is a (n − 1) × 1. The δ coefficients will be determined as functions of the decision

rule coefficients and the coefficients of the constraint function h(.). So far we have not yet

made a determination whether the constraint is slack if x1 < δ′X2. In the simplified model

the equilibrium kink function is given by (26).

Returning to the control variables, we assume the decision rules for each yi are of the

piecewise-linear form

Y i(x1, X2) =

{
αi1,1x1 + αi1,2

′
X2 if x1 ≥ `(X2)

αi2,1x1 + αi2,2
′
X2 if x1 < `(X2)

i = 1, . . . , k , (33)

where each decision rule has 2n unknown coefficients. The decision rules are exactly linear

if αi1,1 = αi2,1 and αi1,2 = αi2,2. The specification in (33) makes the benefit of using the kink

function `(.) clear: given the state variables x1 and X2, we can easily determine on which side

of the constraint we need to be, even when the constraint contains some control variables.

In the simplified model the equilibrium decision rules are given by (25). Once we replace the

ηt’s by the εt’s we obtain the same form as (33), where the α coefficients were determined

such that the decision rules satisfy the equilibrium conditions of the model.
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4.2 Imposing Continuity on Piecewise-Linear Decision Rules

We now turn to imposing continuity on the decision rules at the kink, which means we

impose the restriction that the two parts of each decision rule are equal to each other along

the kink. Doing so will restrict a subset of the unknown α and δ coefficients. Continuity at

x1 = δ′X2 requires that for each i = 1, ..., k

αi1,1δ
′X2 + αi1,2

′
X2 = αi2,1δ

′X2 + αi2,2
′
X2 ∀X2,

which generates (n− 1) restrictions for each i:

αi1,1δ
′ + αi1,2

′
= αi2,1δ

′ + αi2,2
′
. (34)

Next, we impose restrictions that make the `(.) and Y (.) functions consistent with the

constraint in (30). The condition h[g(X2), X2, Y
(
`(X2), X2

)
] = 0, which represents the kink

in terms of the h(.) function, can be written as

γ1δ
′X2 + γ′2X2 +

k∑
i=1

γiY (αi1,1δ
′X2 + αi1,2

′
X2) = 0 ∀X2,

which leads to another set of (n− 1) restrictions:

γ1δ
′ + γ′2 +

k∑
i=1

γiY (αi1,1δ
′ + αi1,2

′
) = 0. (35)

Counting all unknowns and restrictions, we have k(n + 1) degrees of freedom.6 Let us

assume the coefficients αi1,1, αi1,2, and αi2,1 for each decision rule are free and collect them in

the vector ϑ of size k(n+ 1)

ϑ = [α1
1,1, . . . , α

k
1,1, α

1
1,2
′
, . . . , αk1,2

′
, α1

2,1, . . . , α
k
2,1]′. (36)

In other words, we treat all the decision rule coefficients for the “1” regime and the coefficient

in front of x1 in the “2” regime as free. The remaining decision rule coefficients in the “2”

6There are 2n α coefficients for each decision rule and (n − 1) δ coefficients, which yield 2nk + n − 1
unknowns. With (n − 1) restrictions for each decision rule as derived in (34) and the (n − 1) restrictions
in (35), we get (k + 1)(n − 1) restrictions. Subtracting the number of restrictions from the number of
unknowns, we get k(n+ 1).
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regime, αi2,2, i = 1, . . . , k, as well as all of the δ coefficients are determined as functions

of these free coefficients, which we now turn to. In our application the choice of which

coefficients go in to ϑ is driven by numerical considerations. The “1” regime corresponds

to the ELB not being binding. In the targeted-inflation equilibrium, this is the more likely

regime and a good starting value for the numerical procedure that is used to determine ϑ

is given by the decision-rule coefficients of a log-linear approximation that ignores the ELB

constraint.

Conditional on ϑ, we can rewrite (35) as(
γ1 +

k∑
i=1

γiY α
i
1,1

)
︸ ︷︷ ︸

a(ϑ)

δ′(ϑ) +

(
γ2 +

k∑
i=1

γiY α
i
1,2

)
︸ ︷︷ ︸

−B′(ϑ)

= 0

and solve for δ as

δ′(ϑ) =
1

a(ϑ)
B′(ϑ), (37)

where a(ϑ) is a scalar and B(ϑ) is a (n − 1)-dimensional vector. By combining (37) with

(34) we obtain an expression for the constrained decision rule coefficients αi2,2:

αi2,2
′
(ϑ) = (αi1,1 − αi2,1)

(
1

a(ϑ)
B(ϑ)

)
+ αi1,2

′
. (38)

The last step is to determine which part of the decision rule in (33) corresponds to the

part of the state space where the constraint is slack and which part where the constraint is

binding. Take h
(
x1, X2, Y (x1, X2)

)
for some x1 and X2. Let us derive how its sign depends

on the sign of (x1 − δ(ϑ)′X2). First, assume x1 > δ′(ϑ)X2, then

h
[
x1, X2, Y (x1, X2)

]
= γ1x1 + γ′2X2 +

k∑
i=1

γiY (αi1,1x1 + αi1,2
′
X2) (39)

=

(
γ1 +

k∑
i=1

γiY α
i
1,1

)
︸ ︷︷ ︸

c(ϑ)

x1 +

(
γ′2 +

k∑
i=1

γiY α
i
1,2

′
)

︸ ︷︷ ︸
D′(ϑ)

X2,

where c(ϑ) is a scalar and D(ϑ)′ is a (n − 1)-dimensional vector, which can be evaluated

given model parameters and free decision-rule coefficients. Collecting the δ terms, we notice

that the restriction in (35) implies c(ϑ)δ′(ϑ) +D′(ϑ) = 0, or D′(ϑ) = −c(ϑ)δ′(ϑ). Using this
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on (39), we get

h[x1, X2, Y (x1, X2)] = c(ϑ)[x1 − δ′(ϑ)X2]. (40)

Since we assumed x1 > δ′(ϑ)X2 above in the derivations, we conclude that h(.) > 0 if and

only if c(ϑ) > 0. In other words, if c(ϑ) > 0, then the “1” regime in (33) corresponds to the

constraint being slack.

4.3 Example: The Full New Keynesian Model

We now adapt the generic notation so far to the New Keynesian model with ELB con-

straint described in Section 2. We partition the state space as x1,t = R̂t−1 and X2,t =

[1, ŷt−1, ẑt, d̂t, ĝt, eR,t]
′, and we have n = 7.7 As for the choice of control variables to approx-

imate, we have a few options. We approximate the decision rules π̂(x1, X2) and ŷ(x1, X2)

directly and let the remaining control variables ĉ and R̂ follow exactly from the equilibrium

conditions. Specifically, given x1, X2, ŷt = ŷ(x1, X2) and π̂t = π̂(x1, X2), ĉ(x1, X2) follows

from solving for ĉt in Ry(·) in (15) and R̂(x1, X2) follows from solving for R̂t in RR(·) in (16).

Thus, we set Y (·) =
[
ŷ(·), π̂(·)

]′
and k = 2.

The ELB constraint can be written in terms of the variables defined so far as R̂t +

ln(r∗π∗) ≥ 0, which leads to the h(.) function

h
(
x1,t, X2,t, Yt(·)

)
= (1− ρ)

[
ψ1π̂(·) + ψ2(ŷ(·)− ŷt−1 + ẑt)

]
+ ρRR̂t−1 + eR,t + ln(r∗π∗). (41)

Thus, the γ coefficients in (31) are

γ1 = ρR, γ
′
2 = [ln(r∗π∗), −(1− ρR)ψ2, (1− ρR)ψ2, 0, 0] , γ′Y = [(1− ρR)ψ1, (1− ρR)ψ2] ,

and we can write c(ϑ) in (39) as

c(ϑ) = ρR + (1− ρR)ψ1α
π
1,1 + (1− ρR)ψ2α

y
1,1.

If απ1,1 and αy1,1 are both positive, then c(ϑ) is also positive because the remaining struc-

tural parameters are positive under standard parameterizations. Thus, we label the “1”

7In principle, one of the other state variables could have been chosen as x1. However, we found it natural
to use the lagged interest rates, because all else being equal, higher lagged interest rates move the economy
away from the ELB constraint.
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regime as the regime where the ELB is slack, “n” (non-binding), and the “2” regime as the

“b” (binding) regime. We check that c(ϑ) is indeed positive every time we solve the model.

4.4 Canonical Form

The final step in preparing the model solution for filtering is to cast the solution in the

following canonical form:

st =

{
Φ0(n) + Φ1(n)st−1 + Φη(n)ηt if η1,t < ζ(st−1)

Φ0(b) + Φ1(b)st−1 + Φη(b)ηt otherwise,
(42)

which is a VAR for st with endogenous regime switching. The innovations ηt are a function

of the structural innovations εt. This transformation is done so that the first element of ηt,

η1,t, is a linear combination of structural shocks that determines whether the constraint is

binding in period t. Precise definitions of ηt, the impact matrices Φη(·) and the threshold

function ζ(·) will be provided below. Recall that we used the rotated ηt shocks also in the

construction of the solution to the simplified DSGE model in Section 3 and its decision rules

(25) were written in the canonical form.

Equation (42) will serve as a transition equation in a state-space model. Thus, the vector

st needs to include all variables (whether or not they are directly approximated) that are

necessary for the construction of the measurement equations and all variables necessary to

determine the transition of such variables, which are all the state variables. The canonical

form resembles a regime-switching VAR with a “binding” (b) and “non-binding” (n) regime.

However, the regime transition is not determined by an exogenous Markov process. Instead,

it is determined by the realization of the shock innovations.8 Whether the coherency and

completeness conditions are satisfied – recall that we showed in Section 3 that they are

satisfied for the simplified New Keynesian model – depends on the structure of the Φ(·)
matrices and is model specific. The construction of the canonical form for the New Keynesian

DSGE model of Section 2 is outlined in the Online Appendix.

8Aruoba et al. (2020) estimate a structural VAR that takes the form of (42). Chen (2017) and Bianchi and
Melosi (2017) use an exogenous regime-switching process to characterize the ELB dynamics. Such models
can be solved using the tools proposed by Farmer, Waggoner, and Zha (2011). Benigno, Foerster, Otrok,
and Rebucci (2016) endogenize the regime-switching probability in a model of financial crisis, but, unlike in
our paper, the transition from one to the other regime remains partly decoupled from the realization of the
fundamental shocks.
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4.5 Measurement Equations

The key requirement for the conditionally optimal particle filter that is developed in Section 6

is that the conditional mean function (given st−1) of the observables is piecewise-linear.

This is guaranteed if the state-transition equation has the canonical form (42) and the

measurement equation is linear in st as in

yot = A0 + Asst + ut, ut ∼ N(0, ςΣu), (43)

where yot is the vector of observable variables, ut is a vector of measurement errors, and the

constant ς allows us to scale the measurement error covariance.

The small-scale New Keynesian DSGE model is typically estimated using output growth

yogr,t, inflation πot , and interest rates Ro
t . In addition, we will include a measure of the

consumption-output ratio. Starting from the definition of st given in (A.6), we define the

augmented vector s̃t = [s′t, ŷt−1]′ and add the trivial equation ŷt−1 = ŷt−1 to the canonical

form in (42). Because the ŷt−1 identity is linear, the structure of the canonical form is pre-

served. Assuming that output growth is measured in quarter-on-quarter percentages, and

inflation and interest rates are measured in annualized percentages, the system of measure-

ment equations is

yogr,t = 100 ln(γ) + 100(ŷt − ŷt−1 + ẑt) + σu,yuy,t

πot = 400 ln(π∗) + 400π̂t + σu,πuπ,t (44)

Ro
t = 400 ln(R∗) + 400R̂t + σu,RuR,t.

We use data on government spending Gt to construct a measure of the consumption output

ratio: Ct/Yt = 1−Gt/Yt. We define cyot as linearly detrended 100 · ln(1−Gt/Yt). Because

in our model 1−Gt/Yt = 1/gt, we obtain the additional measurement equation

cyot = −100 ln g∗ − 100ĝt + σu,cuc,t. (45)

Thus, we are treating the exogenous process ĝt as observed in the estimation. Because the

law of motion of ĝt is linear, the PLC structure of the empirical model is maintained.
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5 PLC Model Solution

In this section, we describe how the free coefficients ϑ in the PLC decision rules, as defined

in (36), are determined. We first discuss the equilibrium conditions that define the objective

function that we will minimize to find the optimal ϑ coefficients. We then describe the choice

of the solution grid, the integration method and the optimization.

Equilibrium Conditions. More formally, let us denote the generic equilibrium conditions

as

H [f0(·),X] = 0, ∀ X ∈ X , (46)

where f0(X) corresponds to the optimal decision rules. To simplify the notation, we dropped

the vector of DSGE model parameters θ from the conditioning set. For instance, for the

New Keynesian DSGE model (46) becomes

Et

 Rc

(
ŷ0(Xt), ĉ0(Xt), π̂0(Xt), R̂0(Xt), ŷ0(Xt+1), ĉ0(Xt), π̂0(Xt+1), R̂0(Xt+1), . . .

)
Rπ

(
ŷ0(Xt), ĉ0(Xt), π̂0(Xt), R̂0(Xt), ŷ0(Xt+1), ĉ0(Xt), π̂0(Xt+1), R̂0(Xt+1), . . .

)
 = 0,

where we explained how we construct the decision rules ŷ(.), ĉ(.), π̂(.), and R̂(.) in Section 4.3.

Expectations over Xt+1 can be evaluated by using the law of motion of the exogenous shocks

in (17) and noting that the first three elements of Xt+1, R̂t, 1, and ŷt, are known at time t.

Thus, the equilibrium conditions only depend on the two decision rules y0(.) and π0(.) and

the current states Xt, just like (46) requires.

We approximate f0(X) by PLC decision rules g(X;ϑ) ∈ G, where ϑ contains the free

coefficients that are necessary to characterize the PLC function and G is the set of all PLC

functions. To determine ϑ, we minimize the norm of the vector-valued functionH [g(X;ϑ),X]

over a set of M grid points S obtained using a sparse Smolyak grid:

ϑ = arg min
ϑ

1

M

∑
X∈S

‖H [g(X;ϑ),X; θ] ‖2.

In the simplified DSGE model in Section 3 we were able to find two sets of decision rule

coefficients ϑ that set H[·] exactly equal to zero for all X and generate what we called the

targeted-inflation equilibrium and the deflation equilibrium. In the numerical illustrations

of Section 7 and the empirical application of Section 8 we will focus on the targeted-inflation

equilibrium by choosing starting values for the ϑ optimization that generate the decision
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rules for a linearized version of the model without ELB constraint.9

Solution Grid. There are two popular ways to choose the solution grid. In the collocation

approach, the grid points typically come from a grid that is constructed using a tensor

product of grids for each state variable, which in turn are constructed using the roots of a

set of complete polynomials. It is well known that tensor product grids used to approximate

the solution of nonlinear models suffer from the curse of dimensionality. Maliar and Maliar

(2014, 2015) propose a series of techniques based on stochastic simulations to construct

lower dimensional grids that represent the ergodic distribution of the model. However, these

simulation-based methods require a time-consuming iterative procedure, and, in general,

there does not seem to be a guarantee for the convergence of the grid and the approximate

solution.

For our application, where we need to solve the model with different parameters tens of

thousands of times, neither the collocation approach that uses tensor grids, nor the iterative

approach that uses the ergodic distribution seem feasible. Coleman, Lyon, Maliar, and Maliar

(2018) propose the use of random and quasi-random grids on a fixed hypercube, because

they are easier and faster to construct but lack the dimensionality reduction. Smolyak grids

(Krueger and Kubler (2004), Malin, Krueger, and Kubler (2011), Judd, Maliar, Maliar, and

Valero (2014)) offer a balance in this trade-off, combining the advantages of a fixed and

predetermined domain and the dimensionality reduction of sparse grid methods.

In constructing the grid S, we follow Judd et al. (2014) and build a sparse Smolyak grid.10

The Smolyak grid is a sparse grid defined on the interval [−1, 1]. To use it in an application,

it has to be scaled so that it represents the space of Xt. The scaling of the grid amounts to

picking minimum and maximum values for each state variable. The extrema correspond to

−1 and 1 in the original domain of the Smolyak grid, respectively. One of the properties of

the Smolyak grid is it places grid points at the edges of the domain – at −1 and 1. Thus,

we recommend picking values for the scaling that are not too extreme in order to have some

mass on both sides of the grid point.

9While some progress has been made in Ascari and Mavroeidis (2020) studying parameter and innovation
domain restrictions that guarantee coherency and completeness, formal results for general DSGE models with
endogeneous state variables and continuously distributed innovations remain elusive.

10One interpretation of our approach is that we are using the sum squared residual over the Smolyak
grid as a proxy for integrating the squared residual function over the ergodic distribution. Monte Carlo
experiments in Heiss and Winschel (2008) in the context of the calculation of the likelihood function of a
mixed logit model, which also involves evaluating an integral without a closed-form expression, show that
using a Smolyak grid provides superior performance over simulation techniques.
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In the context of the New Keynesian DSGE model, we proceed as follows. For the

exogenous state variables in Xt, we linearly scale the grid so that it starts from the 10th

percentile and goes to the 90th percentile of the distribution of each state variable. For the

endogenous state variable ŷt−1, we use the same scaling as the exogenous state ẑt, since we

have verified that they have similar dispersion when simulating the model. Finally, for R̂t−1,

we use the observed nominal interest rate data. Because we want to analyze the ELB, the

grid is scaled so that its minimum value matches the ELB with R̂t−1 = − ln(r∗π∗), which

happens to be the 10th percentile in the data. The maximum value is matched to the 90th

percentile of Rt in the data. For this variable in particular, we scale the grid so that the

middle of the Smolyak grid coincides with the steady state at R̂t−1 = 0.

Integration and Minimization. Expectations in the residual functions as in (12) are

computed using the monomial integration rule M2 as in Judd, Maliar, and Maliar (2010).

For a generic expression Et[v(xt+1)], our implementation with four random variables requires

computing v(.) at 33 nodes and taking a weighted average. In our experience, this method

produces results that are very similar to using a Gauss-Hermite integration for each random

variable. As an example, with 5 nodes per random variable, the latter approach would make

it necessary to evaluate v(.) at 625 nodes and increase running time considerably.

To minimize the objective function, we utilize a gradient-based nonlinear solver with

Jacobians evaluated analytically. As an initial guess for the solver, we use the decision rules

from a log-linear approximation. Because the log-linear decision rules are a special case of

the PLC decision rules—recall that we defined the model variables in log-deviations from

the steady state—we can denote them by g(0)(X). We find the free coefficients ϑ0 (with

αi11 = αi21 and αi12 = αi22 for all i = 1, ..., k) that generate the same decision rules and use

this to initialize the minimization algorithm.

Interpretation of PLC Decision Rules. We offer two interpretations of the PLC decision

rules. First, they can be viewed as an approximation to the optimal decision rules f0(X).

In fact, our motivation for constructing PLC rules was that the decision rules computed in

Aruoba et al. (2018) with Chebyshev polynomials for a New Keynesian DSGE model that is

essentially identical to the model in Section 2, appeared to be almost piecewise-linear. While

in any given model, the PLC decision rules may or may not provide accurate approximations

of the optimal decision rules, there is no sense in which the PLC rules become more accurate

“asymptotically.”

Second, the PLC rules can be viewed as describing the behavior of boundedly-rational
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agents. In principle, bounded rationality can take many forms. The basic notion is that

decision making is constrained by agents’ abilities to gather, retain, and process decision-

relevant information. Boundedly-rational agents may also be unable to solve a complicated

mathematical problem. Under this interpretation, the PLC rules can be viewed as more

easily computable decisions that have the additional benefit of being linear, except when the

constraint in the model becomes binding.

6 Particle Filters for PLC Models

The state-space representation associated with the PLC solution comprises the nonlinear

transition equation (42) and the linear measurement equation (43). The state-space repre-

sentation provides a joint density for the states st and the observations yt (omitting the o

superscript):

p(Y1:T , S1:T |θ) =
T∏
t=1

p(yt|st, θ)p(st|st−1, θ), (47)

where Yt1:t2 and St1:t2 denote the sequences yt1 , . . . , yt2 and st1 , . . . , st2 and θ is the vector of

model parameters. Of particular interest are the sequence of estimates p(st|Y1:t) of the state

vector and the likelihood function, which is defined as

p(Y1:T |θ) =
T∏
t=1

p(yt|Y1:t−1, θ) =
T∏
t=1

∫ ∫
p(yt|st, θ)p(st|st−1, θ)p(st−1|Y1:t−1, θ)dstdst−1. (48)

These objects can be obtained from a nonlinear filter. We describe below how p(st|Y1:t, θ)

and p(yt|Y1:t−1, θ) can be efficiently approximated by a particle filter.11

6.1 Generic Particle Filter

A particle filter represents the density p(st|Y1:t, θ) through a swarm of particles {sjt ,W
j
t }Mj=1

with the property that posterior expectations. Following the notation in Herbst and Schorfheide

(2015) we now use h(·) to denote a function of st for which a posterior expectation is sup-

posed to be evaluated. E[h(st)|Y1:t, θ] can be approximated by Monte Carlo averages of the

11Surveys and tutorials can be found, for instance, in Arulampalam, Maskell, Gordon, and Clapp (2002),
Cappé, Godsill, and Moulines (2007), Doucet and Johansen (2011), and Creal (2012). Kantas, Doucet, Singh,
Maciejowski, and Chopin (2014) discuss using particle filters in the context of estimating the parameters of
state-space models. Textbook treatments of the statistical theory underlying particle filters can be found in
Cappé, Moulines, and Ryden (2005), Liu (2001), and Del Moral (2013).
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form 1
M

∑M
j=1 h(sjt)W

j
t . The approximation typically holds in the form of a Law of Large

Numbers and a Central Limit Theorem. The particle filter can be implemented using the

following algorithm:12

Algorithm 1 (Generic Particle Filter)

1. Initialization. Draw the initial particles from the distribution sj0
iid∼ p(s0|θ) and set

W j
0 = 1, j = 1, . . . ,M .

2. Recursion. For t = 1, . . . , T :

(a) Forecasting st. Draw s̃jt from density gt(s̃t|sjt−1, θ) and define the importance
weights

ωjt = p(s̃jt |s
j
t−1, θ)

/
gt(s̃

j
t |s

j
t−1, θ). (49)

(b) Forecasting yt. Define the incremental weights

w̃jt = p(yt|s̃jt , θ)ω
j
t . (50)

The predictive density p(yt|Y1:t−1, θ) can be approximated by

p̂(yt|Y1:t−1, θ) =
1

M

M∑
j=1

w̃jtW
j
t−1. (51)

(c) Define the normalized weights

W̃ j
t = w̃jtW

j
t−1

/
1

M

M∑
j=1

w̃jtW
j
t−1. (52)

(d) Selection. Resample the particles, for instance, via multinomial resampling. Let
{sjt}Mj=1 denote M iid draws from a multinomial distribution characterized by sup-

port points and weights {s̃jt , W̃
j
t } and set W j

t = 1 for j =, 1 . . . ,M . An approxi-
mation of E[h(st)|Y1:t, θ] is given by h̄t,M = 1

M

∑M
j=1 h(sjt)W

j
t .

3. Likelihood Approximation. The approximation of the log-likelihood function is
given by

ln p̂(Y1:T |θ) =
T∑
t=1

ln

(
1

M

M∑
j=1

w̃jtW
j
t−1

)
. (53)

The most important choice in the configuration of the algorithm is the proposal density

gt(s̃t|sjt−1, θ). Different choices of the proposal density lead to different versions of the particle

filter.

12Exposition and notation are based on Herbst and Schorfheide (2015).
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6.2 Bootstrap Particle Filter

The BSPF was originally proposed by Gordon and Salmond (1993). It uses the state-

transition equation as the proposal density, that is, gt(s̃t|sjt−1, θ) = p(s̃t|sjt−1, θ). This choice

is attractive because it is straightforward to implement the forecasting step by forward

simulation of the transition equation and the importance weights simplify to ωjt = 1. A

well-known disadvantage is that the proposal distribution is blind and hence ignores infor-

mation about st contained in the current observation yt. This can lead to a large variance

of the incremental weights ω̃jt . This problem is exacerbated if the measurement error vari-

ance is small and p(yt|s̃jt) has thin tails or if the model is inappropriately parameterized or

misspecified and therefore has difficulties predicting yt one step ahead. Because the BSPF

has been used in the DSGE model literature (see Fernández-Villaverde and Rubio-Ramı́rez

(2007), An and Schorfheide (2007) and Herbst and Schorfheide (2015)), we will include it as

a benchmark.

6.3 Conditionally Optimal Particle Filter

The proposal density for the COPF utilizes information in yt with the goal of minimizing

the variance of the incremental weights ω̃jt . It is given by

g∗t (s̃t|s
j
t−1, θ) = p(s̃t|yt, sjt−1, θ) ∝ p(yt|s̃t, θ)p(s̃t|sjt−1, θ). (54)

Combining the formula for g∗t (s̃t|s
j
t−1, θ) with the expressions for the importance weights ωjt

in (49) and the incremental weights ω̃jt in (50), we obtain

ω̃jt =
p(yt|s̃jt , θ)p(s̃

j
t |s

j
t−1, θ)

p(s̃jt |yt, s
j
t−1, θ)

= p(yt|sjt−1). (55)

The second equality follows from Bayes Theorem. It can be shown that conditional on

{sjt−1} the proposal density g∗t (s̃t|s
j
t−1, θ) minimizes the variance of the incremental weight

w̃jt in (50).

While direct sampling from the conditionally optimal proposal density is elusive for

most nonlinear state-space models, we can derive a convenient formula for the piecewise-

linear state-transition equation (42). Note that, conditional on st−1, the current state st is

determined by ηt. It turns out, that it is more convenient to derive a conditionally optimal

proposal density for ηt, denoted by g∗t (ηt|s
j
t−1, θ).
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In order to state the result, we have to define the following objects:

νjt (·) = yt − A0 − As
(
Φ0(·)− Φ1(·)sjt−1

)
(56)

η̄jt (·) =
(
ςI + Φ′η(·)A′sΣ−1

u AsΦη(·)
)−1

Φ′η(·)A′sΣ−1
u νjt (·)

Ω̄(·) = ς
(
ςI + Φ′η(·)A′sΣ−1

u AsΦη(·)
)−1

.

We use the argument (·) to indicate that the expressions are obtained either based on(
Φ0(n),Φ1(n),Φη(n)

)
or
(
Φ0(b),Φ1(b),Φη(b)

)
. Here νjt (·) is the error made in forecasting

yt based on sjt−1. η̄jt (·), and Ω̄(·) are the posterior mean vector and covariance matrix of

ηt|(yt, sjt−1) absent any truncation—that is, for ζ(sjt−1) being +∞ or −∞. Moreover, let

Dj
t (n) = (2π)−ny/2|Σu|−1/2|ςI + Φη(n)′A′sΣ

−1
u AsΦη(n)|1/2 (57)

× exp

{
−1

2
νjt (n)′(ςΣu + AsΦη(n)Φ′η(n)A′s)

−1νjt (n)

}
×ΦN

(
(ζ(st−1)− η̄j1,t(n)/

√
Ω̄11(n)

)
,

Dj
t (b) = (2π)−ny/2|Σu|−1/2|ςI + Φη(b)

′A′sΣ
−1
u AsΦη(b)|1/2

× exp

{
−1

2
νjt (b)

′(ςΣu + AsΦη(b)Φ
′
η(b)A

′
s)
−1νjt (b)

}
(

1− ΦN

(
(ζ(st−1)− η̄j1,t(b))/

√
Ω̄11(b)

))
.

It can be shown that p(yt|sjt−1) = Dj
t (n) +Dj

t (b).

The characterization of the conditionally optimal proposal density is summarized in

Proposition 1. A proof of the proposition is provided in the Online Appendix.

Proposition 1 Suppose the state-transition equation is given by (42), ηt ∼ N(0, I), η1,t is a

scalar, and the measurement equation is given by (43). Draws from the conditionally optimal

proposal densities g∗t (s̃t|s
j
t−1, θ), j = 1, . . . ,M , defined in (54) can be generated as follows:

1. Let

ξjt =

{
‘n’ with prob. λjt

‘b’ with prob. 1− λjt
, where λjt =

Dj
t (n)

Dj
t (n) +Dj

t (b)
.

2. If ξjt = ‘n’ then generate ηt from the distribution

ηj1,t ∼ N
(
η̄j1,t(n), Ω̄11(n)

)
I{ηj1,t ≤ ζ(sjt−1)}, ηj2,t|η

j
1,t ∼ N(η̄j2|1(n, ηj1,t), Ω̄2|1(n)) (58)
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and let

s̃jt = Φ0(n) + Φ1(n)sjt−1 + Φη(n)ηjt .

If ξjt = ‘b’ then generate ηjt from the distribution

ηj1,t ∼ N
(
η̄j1(b), Ω̄11(b)

)
I{ηj1,t > ζ(sjt−1)}, ηj2,t|η

j
1,t ∼ N

(
η̄j2|1(b, ηj1,t), Ω̄2|1(b)

)
(59)

and

s̃jt = Φ0(b) + Φ1(b)sjt−1 + Φη(b)η
j
t .

3. The incremental particle weight is ω̃jt = D(n) +D(b). �

Vanishing Measurement Errors. It is instructive to examine what happens as ς −→∞.

For the conditional density of yt|st−1 to be nonsingular in the limit, it has to be the case that

the number of rotated structural innovations is at least ny. Formally, the covariance matrices

AsΦη(·)Φ′η(·)A′s have to be non-singular. Suppose that ny = nη and (AsΦη(·)) are invertible

ny × ny matrices. This means, ignoring the truncation, under the invertibility assumption,

we can solve for the innovations ηt as a function of (yt, s
j
t−1):

ηjt∗(·) = (AsΦη(·))−1(yt − As(Φ0(·) + Φ1(·)st−1)).

Now consider what happens if we let the measurement error variance converge to zero.

First, the expressions in (56) remain well defined in the limit:

η̄jt −→ ηjt∗(·), Ω̄(·) −→ 0.

The posterior variance converges to zero and the posterior mean converges to the innovation

ηjt∗(·) that generates the observed yt conditional on sjt−1. For the limit behavior on Dj
t (n),

the crucial term is

lim
ς−→0

ΦN

(
(ζ(sjt−1)− η̄j1,t(n))/

√
Ω̄11(n)

)
=

{
1 if ζ(sjt−1)− η̄j1,t(n) ≥ 0

0 otherwise
.

This term measures whether it is possible to explain yt using the (n) coefficients, accounting

for the fact that the n regime is only active if η̄j1,t(n) ≤ ζ(sjt−1). A similar analysis can

be conducted for the term Dj
t (b). Thus, for each particle j, there are four possible cases
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(ignoring equalities):

Case 1 : η̄j1,t(n) < ζ(sjt−1), η̄j1,t(b) < ζ(sjt−1)

Case 2 : η̄j1,t(n) > ζ(sjt−1), η̄j1,t(b) > ζ(sjt−1)

Case 3 : η̄j1,t(n) < ζ(sjt−1), η̄j1,t(b) > ζ(sjt−1)

Case 4 : η̄j1,t(n) > ζ(sjt−1), η̄j1,t(b) < ζ(sjt−1).

In Case 1 Dj
t (b) = 0 and λjt = 1. Here, only the (n) decision rules can rationalize the

data conditional on sjt−1. Case 2 is the opposite: Dj
t (n) = 0, λjt = 0, and only the (b)

decision rules can rationalize the data. Under Case (3), both Dj
t (n) and Dj

t (b) are strictly

positive, 0 < λjt < 1, and both decision rules could explain the data. Finally, in Case 4

yt is inconsistent with sjt−1, and none of the decision rules can explain the data. If each

j = 1, . . . ,M falls into Case 4, then the particle-filter based likelihood approximation for this

particular parameterization of the DSGE model will be zero. Note that, if the measurement

error variance is strictly greater than zero, (potentially very large) measurement errors could

also rationalize the data under Case 4.13

The previous calculations highlight that, unlike for the BSPF, the weights of the COPF

do not degenerate if one decreases the measurement error variance. In this case, if AsΦη(·) is

a square matrix, the COPF specializes to the inversion filter that solves for the innovations

as a function of yt and sjt−1. Because our model is piecewise-linear, this inversion may have

one, two, or no solution(s).

Perfectly Observed Regimes. Our ELB application has the special feature that the

observation yt identifies the regime. Let yt = [y′1,t, y2,t]
′, where y2,t corresponds to the nominal

interest rate. Suppose the ELB is binding in the b regime and non-binding in the n regime.

Then, the ex post regime probability λj is independent of sjt−1 and given by the indicator

function.

λj = I{y2,t > c}. (60)

While the distribution of yt is continuous in the n regime, for the binding regime the con-

tinuous part of the distribution concentrates in the lower-dimensional subspace defined by

y2,t = c. Thus, the formulas for Dj
t (b) in (57) and the moments of the distribution of ηjt in

13The four cases distinguished here are closely connected to the coherency and completeness conditions
discussed in Section 3. Previously, we asked whether conditional on a realization of ηt the vector st, using the
notation of the canonical form (42), is uniquely determined. If the condition is not satisfied, then p(st|st−1, θ)
is not well defined. In addition, for the filtering it matters whether in the absence of measurement errors,
there exist one or more ηt’s that can rationalize the data.
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Proposition 1 in the b regime have to be adjusted to account for the reduced dimensionality

of the continuous part of the yt distribution. Further details are provided in the Online

Appendix.

7 Numerical Illustrations

We now illustrate the proposed filtering method based on data simulated from the DSGE

model of Section 2. First, we compare the distribution of the stochastic likelihood approxi-

mation conditional on a particular parameter θ between the proposed COPF and the basic

BSPF. It has been shown in the literature, that likelihood approximations of particle filters

are unbiased; see Herbst and Schorfheide (2015). In view of the unbiasedness, a low-variance

approximation is preferable to a high-variance approximation. Jensen’s inequality implies

that log likelihood approximations are downward biased. The magnitude of the bias is con-

nected to the variability of the likelihood approximation: the larger the variance, the larger

also the downward bias.

Second, we embed the particle filter approximation of the likelihood function into a

Metropolis-Hastings algorithm. It has also been shown in the literature that if the exact

likelihood function is replaced by a noisy but unbiased estimate, MCMC algorithms still

converge to the exact posterior distribution. However, there is no free lunch: the larger the

variability of the likelihood approximation, the slower the convergence. In the numerical

illustrations below, we will compare the speed of convergence as measured by the degree of

serial correlation in the parameter draws, across different versions of the particle filter.

Throughout this section, we assume that all variables, including interest rates, are mea-

sured with error and that therefore regime (ELB binding versus non-binding) is not perfectly

observed. Thus, conditional on the states st, yt has a continuous distribution; see (43) and

(44). All computations reported below are executed on a single core of PC with an Intel

Xeon CPU E5-2687Wv3 at 3.10 GHz running Windows 10 (64bit) and JuliaPro 1.0.3.1.

7.1 Accuracy of Likelihood Approximation

We simulate a sample of T = 140 observations from the DSGE model, loosely parameterized

based on the empirical estimates reported in Section 8. The parameter values are summarized

in the second column of Table 1. The sample size matches the one used in the empirical
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Table 1: DGP and Prior

Parameter DGP Prior Distribution
Density P(1) P(2) HPD Low HPD High

τ 2.00 G 2.00 0.20 1.67 2.32
κ 0.13 B 0.10 0.05 0.02 0.17
ψ1 2.60 fixed at 2.60
ψ2 0.98 fixed at 0.98
ρR 0.80 B 0.80 0.10 0.65 0.96
ρg 0.97 B 0.80 0.10 0.65 0.96
ρd 0.91 B 0.80 0.10 0.65 0.96
ρz 0.37 B 0.40 0.20 0.08 0.73
σR 0.0019

√
IG 0.005 4.00 0.003 0.010

σg 0.0025
√
IG 0.005 4.00 0.003 0.010

σd 0.017
√
IG 0.01 4.00 0.005 0.020

σz 0.0058
√
IG 0.01 4.00 0.005 0.020

η 0.72 fixed at 0.72
ν 0.10 fixed at 0.10
χH 1.00 fixed at 1.00
g∗ 1.27 G 1.20 0.20 0.88 1.63
rAnet 0.22 G 1.00 0.40 0.39 1.64
gamQnet 0.33 N 0.50 0.25 0.09 0.91
piAnet 0.50 N 2.50 1.00 0.87 4.14

Notes: G is Gamma distribution; B is Beta distribution; IG is Inverse Gamma distribution; and N
is Normal distribution. P(1) and P(2) are mean and standard deviations for Beta, Gamma, and Nor-
mal distributions. The IG distribution is parameterized as scaled inverse χ2 distribution with density
p(σ2|s2, ν) ∝ (σ2)−ν/2−1 exp[−νs2/(2σ2)], where P(1) is

√
s2 and P(2) is ν. The density of σ is obtained

by the change of variables σ =
√
σ2. HPD(Low,High) refers to the boundaries of 90% highest prior density

intervals. We use the following parameter transformations: β = exp{−rANet/400}, γ = exp{gamQnet/100},
and π∗ = exp{piAnet/400}.

application in Section 8. In order to increase the likelihood of hitting the ELB in the

simulation, we lower the target inflation rate π∗ to an annualized rate of 0.5%. In the

selected subsample, the ELB binds 22% of the periods, which is roughly consistent with our

actual sample.

We begin by comparing the accuracy of the particle-filter-based likelihood approximation

using the same parameter values that were used to generate the data. The likelihood eval-

uation is conditional on a vector of initial states which are the true initial states associated

with the simulated observations. We consider two values for the scaling parameter for the

measurement errors, ς: 0.1 and 0.05. The smaller ς is, the larger is the penalty for deviations

between model-predicted and actual observations. Thus, small measurement errors can be
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Figure 1: Density of Log-Likelihood Approximations
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Notes: Density plots are based on Nrun = 100 runs of the BSPF (M = 1, 000 is red solid and M = 10, 000
is red dashed) and COPF (M = 180, blue solid), respectively.

provided as a stress test for the filter in case the model (or its parameterization) is at odds

with the data.

The accuracy of the filter depends on the number of particles M . For the COPF, we set

M = 180, and, for the BSPF, we consider M = 1, 000 and M = 10, 000. Starting from the

benchmark of the BSPF with M = 1, 000, the choice of M = 180 for the COPF equalizes

the run times of the two filters, which is 1.54 seconds for ς = 0.1.14 Raising the number of

particles from 1,000 to 10,000 increases the run time of the BSPF roughly tenfold, to 16.2

seconds. Moreover, for ς = 0.1 the BSPF is able to match the accuracy of the COPF with

the increased number of particles.

We run the COPF and the BSPF Nrun = 100 times, respectively, and construct kernel

estimates of the likelihood from the repeated runs, which are depicted in Figure 1. The more

concentrated the densities, the more accurate the likelihood approximation. Holding the run

time fixed, the COPF is substantially more accurate than the BSPF. For ς = 0.1 the number

of particles for the BSPF has to be increased from M = 1, 000 to M = 10, 000 to achieve

similar accuracy to the COPF. This which implies that the BSPF likelihood evaluation takes

roughly ten times as long as the COPF likelihood evaluation.

14The absolute run times depend on the programming language – Julia in our case – and the efficiency of
the code. We are mainly interested in the relative run times. The code for the COPF and BSPF is almost
identical, except that the COPF requires a few additional steps to evaluate the expressions in Proposition 1,
which implies that for the same M , the COPF is slower than the BSPF.
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Because the BSPF ignores the information in yt when generating the proposal draws s̃jt ,

the variance of the particle weights increases as ς falls. This, in turn, translates into an

increase in the variance (and by virtue of the concave transformation also the bias) of the

log-likelihood approximation, which is clearly visible by comparing the solid red densities

across panels for the two different values of ς. The precision of the COPF, on the other

hand, increases as ς falls. When ς −→ 0, it is possible to uniquely determine the innovations

ηjt conditional on sjt−1 during non-ELB periods, because the number of observables equals

the number of shocks.

Figure 2 depicts standard deviations of log-likelihood approximations as a function of the

mean log-likelihood value across Nrun = 100 runs of the filter for ς = 0.1 and ς = 0.05. Each

dot (or asterisk) in the two scatter plots corresponds to a different parameter value θi.15

Two important findings emerge. First, as we have seen already from Figure 1, the COPF

likelihood approximation is less dispersed than the BSPF approximation. The accuracy gain

from the conditionally optimal proposal density increases as the measurement error variance

decreases, because the BSPF performance deteriorates. Second, while the accuracy of the

COPF is independent of the log-likelihood value associated with the posterior draw θi, the

accuracy of the BSPF approximation deteriorates the further the θi draw is in the tails of

the posterior distribution.

7.2 Particle MCMC

We now embed the particle filter likelihood approximations in a standard single-block RWMH

algorithm. The particle RWMH algorithm operates on an enlarged probability space that

includes all the random variables that are generated when running the particle filter; see

Herbst and Schorfheide (2015) for a textbook exposition and Andrieu et al. (2010) for a

formal analysis. The use of an enlarged probability space leads to an increase in the per-

sistence of the Markov chain generated by the posterior sampler. The noisier the likelihood

approximation, the larger the persistence of the resulting Markov chain. A high degree of

serial correlation is undesirable, because it leads to very noisy Monte Carlo approximations

of posterior moments. We will show that the use of an accurate particle filter such as the

COPF can alleviate this problem.

15The parameter values are obtained from the output of the particle Markov chain Monte Carlo (PMCMC)
algorithm in Section 7.2.
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Figure 2: Comparison of Log-Likelihood Approximations
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Notes: Standard deviations of log-likelihood approximations are based on Nrun = 100 runs of the two filters.
Each dot (or asterisk) corresponds to a particular θi. We are using M = 1, 000 particles for the BSPF (red
asterisks) and M = 180 particles for the COPF (blue dots).

Under some regularity conditions, the sequence of posterior draws generated from a

RWMH algorithm satisfies a Central Limit Theorem (CLT) for dependent processes. The

numerical accuracy of the Monte Carlo approximation of posterior means depends on the

long-run covariance matrix of the sequence of parameter draws θi, i = 1, . . . , N . The larger

the autocorrelation of these draws, the less precise the Monte Carlo approximation.

The RWMH algorithm requires a covariance matrix for the proposal distribution (we

use a multivariate normal distribution) that is constructed as follows. We start from a

log-linearized version of the DSGE model that ignores the ELB constraint and sets the

measurement error variance to zero (ς = 0). In this case the likelihood function can be

evaluated with the Kalman filter (KF). We conduct two preliminary MCMC runs using the

linearized model. The first run is based on a diagonal covariance matrix with scaled prior

variances on the diagonal and the second run is based on the posterior covariance matrix of

the first run. Finally, we compute the posterior covariance matrix from the second run and

denote it by ˆ̄Vθ. The particle MCMC runs using the nonlinear DSGE model are based on

c ˆ̄Vθ where c = 0.1.

For the estimation of the nonlinear model we set the scale of the measurement error

variance to ς = 0.1 and keep the number of particles at M = 180 for the COPF and M =

1, 000 for the BSPF. Thus, according to the left panel of Figure 2, the standard deviation of

the log-likelihood approximation of the COPF is around 1 whereas the standard deviation
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for the BSPF ranges from 3 to 5. We generate 55,000 draws from the posterior distribution

and discard the first 5,000 draws. The overall run time using the two filters is approximately

the same: 24 hours and 37 minutes for the COPF-RWMH algorithm and 25 hours and 55

minutes for the BSPF-RWMH algorithm. Note that the codes for the COPF-RWMH and the

BSPF-RWMH algorithms are identical, except for the more complicated way of generating

draws from gt(s̃t|sjt−1, θ) and evaluating ω̃jt in the COPF likelihood approximation.

Using a scaling of c = 0.1, the acceptance rate for the proposed draws is 28% for the

COPF-RWMH algorithm. Herbst and Schorfheide (2015) documented that for the estima-

tion of small-scale linearized DSGE models, an acceptance rate between 15% and 30% is

associated with the most accurate Monte Carlo approximations of posterior means. Replac-

ing the COPF by the BSPF while keeping the scale factor c = 0.1, the acceptance rate drops

to 2.6%. The lower acceptance rate is caused by the noisier likelihood approximation.16

The first row of Figure 3 compares posterior densities constructed from the output of

the COPF- and BSPF-RWHM algorithms for two representative parameters: τ and σd. The

posterior densities for σd look very similar and both peak near the “true” parameter values

depicted by the solid vertical line. For the parameter τ , the posterior density obtained from

the COPF is less concentrated at the peak than the BSPF density. The reason is that BSPF

chain moves very slowly – recall the 2.6% acceptance rate – and has not fully explored the

high-density area of the posterior.

The second row of Figure 3 shows the autocorrelation functions for the τ i and σid se-

quences. Here, stark differences emerge. While under the BSPF-based sampler the auto-

correlation at lag 100 is still around 0.92 for the τ i sequence, it is only 0.25 for draws from

the COPF-RWMH. Suppose the autocorrelation function of the draws is given by ρj, where

j is the temporal displacement among the draws. Then the variance of the mean of the

draws is given by Vπ[h(θ)](1 + ρ)/(1 − ρ), where Vπ[h(θ)] is the posterior variance of h(θ)

and (1 + ρ)/(1 − ρ) can be viewed as inefficiency factor that arises due to the serial cor-

relation of the draws. A reduction from ρ = 0.921/100 = 0.999 to ρ = 0.251/100 = 0.986

lowers the inefficiency factor from approximately 2,000 to 142. This implies only 7% of the

draws are required to achieve the same accuracy of posterior mean approximations with the

COPF-based sampler as with the BSPF-based sampler, or, holding the numbers of draws

16The acceptance rate could be increased by decreasing c, but it does not cure the persistence problem
because the chain moves very slowly due to the smaller size of the accepted steps. In our case, setting
c = 0.005 delivers an acceptance rate of 3.8% and an even more persistent sequence of parameter draws.
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Figure 3: Posterior Draws: Density and Autocorrelation
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Notes: ME scale ς = 0.1, proposal covariance scale c = 0.1, N = 55, 000 draws (drop first 10%). COPF:
number of particles M = 180, run time is 24:37:33 (hh:mm:ss). BSPF: number of particles M = 1, 000, run
time is 25:55:14 (hh:mm:ss). Top row: kernel density estimates of posterior distributions based on MCMC
output. Vertical lines indicate true parameter values. Center row: autocorrelation functions of posterior
draws based on COPF and BSPF. Bottom row: scatter plots of autocorrelations BSPF vs. COPF for various
lags. Solid line is 45 degree line.

fixed across samplers, the COPF-based sampler delivers Monte Carlo approximations that

are six times as accurate (in terms of sampling variance).
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The last row of Figure 3 compares autocorrelations for lags 10, 20, 30, and 40 for all esti-

mated parameters. The solid lines are 45-degree lines. The two panels show that the COPF

is able to reduce the autocorrelation for all estimated parameters, and hence it drastically

improves the performance of the MCMC algorithm.

To summarize, when we calibrated the COPF and the BSPF to run at the same time, the

former delivers a likelihood approximation that is as much as five times more accurate, and

when used inside a RWMH algorithm we showed that the COPF yields a posterior mean

that is substantially more accurate. Because the COPF needs a relatively small number

of particles, M = 180 in our numerical illustration, it is possible to accurately estimate a

DSGE model with an occasionally binding constraint without supercomputing capabilities

in a relatively short amount of time.

8 Empirical Application

We now estimate the small-scale New Keynesian DSGE model based on quarterly U.S. data

using the previously developed model solution and filtering techniques and conduct a fiscal

policy experiment. The estimation results are summarized in Section 8.1, and the fiscal

policy analysis appears in Section 8.2.

8.1 Estimation

The DSGE model is estimated based on data on GDP growth (q-o-q %), the log consumption-

GDP ratio (scaled by 100), GDP deflator inflation (annualized %), and nominal interest rates

(annualized %) with data from 1984:Q1 to 2018:Q4. The data for the estimation was ex-

tracted from the FRB St. Louis FRED database (vintage 2019-10-30). Output growth is

defined as real gross domestic product (GDPC1) growth converted into per capita terms.

Our measure of population is Civilian Noninstitutional Population (CNP16OV). We com-

pute population growth rates as log differences and apply an eight-quarter backward-looking

moving average filter to the growth rates to smooth out abrupt changes in the population

growth series. In constructing a measure of the consumption-GDP ratio, we define con-

sumption as the difference between output and government spending. Thus, our measure of

consumption includes investment and net exports. Government spending is constructed as

real government consumption expenditures and gross investment (GCEC1). We remove a
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linear trend from the log consumption-GDP ratio to correct for different time trends in the

price deflators of the GDP components. Inflation is defined as the log difference in the GDP

deflator (GDPDEF), and the interest rate is the average effective federal funds rate (FED-

FUNDS) within each quarter. During the period 2009:Q1 to 2015:Q4, when the effective

federal funds rate was between 0 and 25 basis points, we set the interest rate exactly equal

to zero and regard the ELB as binding.

The prior distribution used for the estimation is identical to the one in Table 1. We

absorb the initial values of the latent state variables into the parameter vector and specify

prior distributions over the initial states; see Table A-1 in the Online Appendix.17 We fix a

number of parameters prior to estimation. Because our sample does not include observations

on labor market variables, we fix the Frisch labor supply elasticity. Based on Ŕıos-Rull et al.

(2012), who provide a detailed discussion of parameter values that are appropriate for DSGE

models of U.S. data, we set η = 0.72. The parameter ν, which captures the elasticity of

substitution between intermediate goods, is not separately identifiable from the slope of the

Phillips curve κ which in turn determines the adjustment cost parameter φ. We set ν = 0.1,

which generates a markup of 10%. We fix the preference parameter at χH = 1. It determines

steady-state hours worked and is neither relevant for the model dynamics nor identifiable

based on our observables. We also fix the monetary policy coefficients ψ1 and ψ2 at 2.60 and

0.98, respectively, which are values estimated in Aruoba and Schorfheide (2016).

We start out by estimating the log-linearized version of the DSGE model that ignores the

ELB constraint, setting the measurement error variances of the state-space model to zero.

Draws from the posterior are generated by a single-block RWMH algorithm. In an initial

run, we use a diagonal matrix with the prior variances to configure the covariance matrix of

the proposal distribution. In the main run, we use the estimated posterior covariance matrix
ˆ̄V from the initial run to construct a proposal covariance matrix Σ with the scaling factor

c = 0.2. We generate N = 110, 000 draws, discarding the first 10,000.

For the estimation of the nonlinear version of the model we assume that interest rates are

observed without error. Thus, conditional on Ro
t , it is known whether the ELB is binding or

not; see (60). We maintain the assumption that the remaining variables are observed subject

to a measurement error and set the scale factor for their measurement error variances to

ς = 0.001. We generate N = 55, 000 draws from the posterior distribution of θ using the

particle RWMH algorithm, discarding the first 5,000 draws. We use a scaling of c = 0.2 for

17This approach has the advantage that uncertainty about the initial state does not add to the variability
of the particle-filter-based likelihood approximation conditional on a parameter θi.
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Table 2: Posterior Distribution (PLC / COPF)

Parameter Mean MAP HPD Low HPD High
τ 2.08 2.05 1.75 2.40
κ 0.12 0.10 0.08 0.16
ρR 0.82 0.83 0.79 0.85
ρg 0.981 0.986 0.967 0.996
ρd 0.95 0.96 0.93 0.97
ρz 0.32 0.29 0.17 0.47
σR 0.0018 0.0018 0.0016 0.0020
σg 0.0026 0.0029 0.0023 0.0028
σd 0.0282 0.0290 0.0178 0.0399
σz 0.0060 0.0069 0.0053 0.0068
g∗ 1.27 1.28 1.25 1.29
rAnet 0.67 0.23 0.27 1.08
gamQnet 0.36 0.47 0.24 0.48
piAnet 2.98 2.69 2.54 3.42

Notes: The estimation period is 1984:Q1 to 2018:Q4. The following parameters are fixed during the es-
timation: ψ1 = 2.6, ψ2 = 0.98, η = 0.72, ν = 0.10, and χH = 1.00. We use the following parameter
transformations: β = exp{−rANet/400}, γ = exp{gamQnet/100}, and π∗ = exp{piAnet/400}. MAP refers
to the maximum posterior probability estimate. HPD(Low,High) refers to the boundaries of 90% highest
posterior density intervals. COPF configuration: number of particles M = 150, ME scale ς = 0.001, proposal
covariance scale c = 0.2, N = 55, 000 draws (drop first 10%), acceptance rate is 25%, run time is 13:27:23
(hh:mm:ss).

the covariance matrix of the proposal distribution. The likelihood function is approximated

using the COPF with M = 180 particles. The resulting acceptance rate of the particle

RWMH algorithm is 25%, and the run time is 16 hours and 14 minutes on a single core,

which comes to about 0.9 seconds per draw. The assumption of a perfectly observed regime

simplifies the COPF calculations and reduces the run time by 34%, compared to the results

reported in Section 7.2.

The parameter estimates are summarized in Table 2. The table reports posterior means,

the maximum posterior probability (MAP) estimates, and lower and upper endpoints of

highest posterior density (HPD).18 The parameter estimates are similar to the ones reported

elsewhere in the literature for variants of the small-scale New Keynesian DSGE model. The

estimated slope of the Phillips curve is κ̂ = 0.12. The government spending shock is close to

18We compared these estimates with those obtained from a linearized model using the Kalman Filter and
data that exclude the ELB episode. The most noteworthy differences are in ρd and σd, both of which need
to be larger when the ELB episode is used in order to deliver large (negative) and persistent shocks that
take the economy to the ELB. We also find that rAnet and gamQnet estimates are somewhat smaller in the
full sample, both of which are consistent with related results in the literature.
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a unit-root process (ρ̂g = 0.981), and the estimated autoregressive parameter of the discount

factor shock is ρ̂d = 0.95. Thus, innovations to these processes will have a long-lasting effect.

One of the outputs of the estimation is the set of filtered values for the exogenous variables.

We use these explicitly in our policy experiment and discuss them in the next section.

8.2 Fiscal Policy Analysis

The recent literature has emphasized that the effects of expansionary fiscal policies on output

may be larger if the economy is at or near the ELB; see, for instance, Eggertsson (2011) and

Christiano and Eichenbaum (2012). In the absence of the ELB, a typical interest rate

feedback rule implies that the central bank raises nominal interest rates in response to

rising inflation and output caused by an increase in government spending. This monetary

contraction raises the real interest rate, reduces private consumption, and overall dampens

the stimulating effect of the fiscal expansion. If, however, the economy remains at the ELB

despite the expansionary fiscal policy, then the increase in inflation that results from the fiscal

expansion reduces the real rate. In turn, current-period demand is stimulated, amplifying

the positive effect on output. We will use our model to provide a quantitative assessment of

this effect.

Because our model solution is nonlinear, the effect of a fiscal intervention depends on

the initial condition and the size of the intervention. We use the Great Recession and the

subsequent period in the U.S. as our laboratory and consider a fiscal intervention that is

calibrated to a portion of the ARRA of February 2009 as we explain below. Our analysis is

conducted from an ex post perspective, where we extract the historical shocks that make our

model match the realized U.S. data, which include both a fiscal and monetary intervention,

and ask what would have happened if one or both of the policy interventions were not

implemented.

ARRA of February 2009 consisted of a combination of tax cuts and benefits; entitlement

programs; and funding for federal contracts, grants, and loans. We focus on the third

component, because it can be interpreted as an increase in gt. We model the ARRA spending

as a one-period positive shock of δARRA to the demand shock process, where we calibrated

δARRA = 0.0077 using data on the disbursement of ARRA funds, as we explain in the Online

Appendix. This one-time shock is roughly 2.7σg, and, since ĝt is highly serially correlated,

the effect of the shock will slowly decay over time. We assume that the ARRA innovation

to government spending took place in the second quarter of 2009.
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Figure 4: Ex Post Policy Analysis
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Notes: The vertical red line corresponds to 2009:Q2, which is the date of the ARRA intervention. Intervention
(black) versus no-intervention paths (blue). Along the no-intervention path, we set monetary policy shocks
to zero and lower the innovation to the government spending shock in 2009:Q2 by the size of the ARRA
intervention. Red dashed lines represent paths in the absence of exogenous shock innovations from 2009:Q2
onwards. The level processes in the second row of the figure are standardized by the unconditional standard
deviations of the corresponding AR(1) processes. Inflation and the interest rate are expressed in terms of
annualized percentage rates.

We use the COPF to obtain estimates of the exogenous shock processes for the period

2009:Q2 through 2011:Q1. The subsequent results are based on the MAP estimator of the

DSGE model parameters. The panels in the first two rows of Figure 4 show the filtered

monetary policy and government spending innovations and the levels of the government

spending, technology growth, and discount factor shock processes. Recall that, in the model

εR,t and εg,t are N(0, 1) random variables. The level processes in the second row of the

figure are standardized by the unconditional standard deviations of the corresponding AR(1)

processes. For the government spending and the monetary policy shocks, we distinguish

between intervention and no-intervention paths.
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According to the estimated model, the drop in output during the Great Recession is gen-

erated by drastic falls in the technology growth and discount factor shock processes. Because

of the stylized structure of the DSGE model, these two shocks also absorb the contribution

of financial shocks and financial accelerator effects. While the technology shock is not very

persistent (ρ̂z = 0.29) and reverts back to zero by the end of 2009, the mean reversion of the

discount factor shock is very slow, and it remained below 2 standard deviations until the end

of 2010. Meanwhile the government spending process is positive, indicating that fiscal policy

started to become expansionary (relative to the historical average) in 2008. The filtered mon-

etary policy innovations ε̂R,t|t turn out to be negative past 2009:Q2, which captures an effort

by the Federal Reserve to keep the policy rate lower than what the policy rule implies. This

is how our model that abstracts from explicitly modeling unconventional monetary policies

implemented in this period (quantitative easing, forward guidance) handles the existence of

these policies in the data.

Because the actual path of the government spending shock already contains the effect

of fiscal expansion due to ARRA, we compute the counterfactual path by subtracting the

effect of ARRA from the filtered demand shock ĝt|t using

ĝCt|t = ĝt|t − ρt−T∗g δARRA for t = T∗, T∗ + 1, ..., T∗ + 7, (61)

where T∗ corresponds to 2009:Q2, the period the ARRA intervention is implemented in. The

magnitude of the ARRA intervention is reflected in the difference between the intervention

(black) and no-intervention (blue) government spending innovation depicted in the top left

panel of Figure 4. The ARRA intervention shifts ĝt persistently downward as shown in the

center left panel of the figure. To measure the effect of the combined fiscal and monetary

policy, we set the counterfactual monetary policy shocks to zero.

The main finding is depicted in the bottom panels. The ex post effect of the intervention

is defined as Xo −XC , where Xo is the observed value of a generic variable and XC is the

counterfactual path along which the policy intervention is removed.19 In the figure, the ex

post effect is given by the gap between the no intervention and the intervention path. In

the absence of the ARRA and monetary interventions, output and inflation would have been

persistently lower than they actually were. In particular, annualized inflation would have

been 41 basis points lower, and annualized output growth would have been 32 basis points

lower, on average, over these eight quarters.

19Details on the algorithm to compute the effects of the policy interventions are reported in the Online
Appendix.
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Table 3: Ex Post Multipliers

Intervention 1Q 4Q 8Q
Fiscal Only 0.65 0.69 0.69
Fiscal + Monetary 0.63 0.77 0.82

Notes: Ex post analysis is conditional on filtered 2009:Q2 - 2011:Q1 shocks. The pure fiscal multipliers are
obtained by setting the monetary policy shocks to zero, whereas the combined fiscal and monetary multipliers
are based on leaving the monetary policy shocks at their filtered values.

Based on the output and government spending paths, we can also compute cumulative

dollar-for-dollar multipliers

µH =

∑H
τ=1(Y o

T∗−1+τ − Y C
T∗−1+τ )∑H

τ=1(G0
T∗−1+τ −GC

T∗−1+τ )
where H = 1, ..., 8,

which are reported in Table 3. The pure fiscal multipliers are obtained by setting the

monetary policy shocks to zero, whereas the combined fiscal and monetary multipliers are

based on leaving the monetary policy shocks at their filtered values. The ex post multipliers

are around 0.7 according to our estimated model. We started out this section providing an

explanation for why fiscal multipliers tend to be higher when the economy is at the ELB.

If we compute fiscal multipliers conditional on the economy being in a state in which the

central bank would respond to rising output and inflation with an increase in interest rate

(for example starting the exercise in 2007:Q1), then the fiscal multipliers would be around

0.6, which is indeed lower than our ex post multiplier. However, the presence of the ELB

only generates a modest increase in the multiplier – on impact at the ELB the multiplier is

0.65 while away from the ELB the multiplier is 0.55.

Focusing on the two different policies at the ELB, the difference between the two types of

multipliers reported in Table 3 is small, because as the no-intervention path of the nominal

interest rate indicates, the adverse discount factor shock kept the economy close to the ELB,

leaving very little room for conventional monetary policy interventions ex post.

The red dashed lines in the second-row panels of Figure 4 represent the post-2009:Q1

path of the exogenous shock processes in the absence of further innovations, which is the

expected path conditional on 2009:Q1 innovation. Subsequent technology and discount factor

innovations had only small effects on the path of the respective exogenous processes, keeping

them roughly in line with expectations. Thus, the low level of the discount factor shock also

implied very low interest rates from an ex ante perspective, leaving little scope for the Fed
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to boost the effects of a fiscal expansion through a zero-interest-rate policy.

9 Conclusion

Likelihood-based estimation of nonlinear DSGE models is computationally challenging. While

it is becoming easier for economists to access powerful computer clusters that enable mas-

sive parallel computation, the ability to solve and estimate models on a desktop computer

remains useful and desirable. Computations can often be simplified and accelerated consid-

erably by taking shortcuts in regard to model solution or estimation techniques. The goal

of this paper has been to develop a new solution method that captures important aspects of

the nonlinearity generated by occasionally binding constraints and, at the same time, allows

for efficient filtering and likelihood-based estimation. The piecewise-linearity of the deci-

sion rules allows us to solve the model faster and to derive a conditionally optimal proposal

distribution for a particle filter. This filter delivers a much more accurate likelihood approx-

imation than a standard bootstrap particle filter and enables us to estimate a nonlinear New

Keynesian DSGE model with a ELB constraint in a relatively short amount of time on a

single core processor.
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A Equilibrium Conditions for the Model of Section 2

In this section we sketch the derivation of the equilibrium conditions presented in Section 2.

A.1 Households

The representative household solves

max
{Ct+s,Ht+s,Bt+s,Mt+s}

Et

[
∞∑
s=0

βsdt+s

(
(Ct+s/At+s)

1−τ − 1

1− τ
− χH

H
1+1/η
t+s

1 + 1/η
+ χMV

(
Mt+s

Pt+sAt+s

))]
,

subject to:

PtCt + Tt +Bt +Mt = PtWtHt +Mt−1 +Rt−1Bt−1 + PtDt + PtSCt.

Consumption and bond holdings. Let βsdt+sλt+s be the Lagrange multiplier on the

household budget constraint. Then the first-order condition with respect to consumption

and bond holdings are given by:

Ptλt =

(
Ct
At

)−τ
1

At

λt = β
dt+1

dt
Rtλt+1.

Combining the two equations leads to the consumption Euler equation:

1 = βEt

[
dt+1

dt

(
Ct+1/At+1

Ct/At

)−τ
1

γzt+1

Rt

πt+1

]
,

where γzt+1 = At+1/At. We define the stochastic discount factor as:

Qt+1|t =
dt+1

dt

(
Ct+1/At+1

Ct/At

)−τ
1

γzt+1

.

Labor-Leisure Choice. Taking first-order conditions with respect toHt yields the standard

intratemporal optimality condition for the allocation of labor

Wt

At
= χH

(
Ct
At

)τ
H

1/η
t .
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A.2 Intermediate Goods Firms

Each intermediate goods producer buys labor services Ht(j) at the real wage Wt. Firms

face nominal rigidities in terms of price adjustment costs. The adjustment cost, expressed

as a fraction of firms’ real output, is given by the function Φp

(
Pt(j)
Pt−1(j)

)
. We assume that the

adjustment cost function is twice-continously differentiable, weakly increasing and weakly

convex, Φ′p ≥ 0 and Φ′′p ≥ 0. The firm maximizes expected discounted real profits with

respect to Ht(j) and Pt(j):

Et
∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s
At+sHt+s(j)− Φp

(
Pt+s(j)

Pt+s−1(j)

)
At+sHt+s(j)−Wt+sHt+s(j)

)
,

subject to

AtHt(j) =

(
Pt(j)

Pt

)−1/ν

Yt.

We use µt+sβ
sQt+s|t to denote the Lagrange multiplier associated with this constraint. In

equilibrium, the firms use the households’ stochastic discount factor to discount future prof-

its.

Price setting decision. Setting Qt|t = 1, the first-order condition with respect to Pt(j) is

given by:

0 =
AtHt(j)

Pt
− Φ′p

(
Pt(j)

Pt−1(j)

)
AtHt(j)

Pt−1(j)
− µt
ν

(
Pt(j)

Pt

)−1/ν−1
Yt
Pt

+βEt
[
Qt+1|tΦ

′
p

(
Pt+1(j)

Pt(j)

)
At+1Ht+1(j)

Pt+1(j)

P 2
t (j)

]
.

Firms’ labor demand. Taking first-order conditions with respect to Ht(j) yields

Wt =
Pt(j)

Pt
At − Φp

(
Pt(j)

Pt−1(j)

)
At − µtAt.

Symmetric equilibrium. We restrict attention to a symmetric equilibrium where all firms

choose the same price Pt(j) = Pt ∀j. This assumption implies that in equilibrium all firms

face identical marginal costs and demand the same amount of labor input. Combining the

firms’ price setting and labor demand first order conditions and assuming that the price
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adjustment costs are quadratic, i.e.,

Φp

(
Pt(j)

Pt−1(j)

)
=
φ

2

(
Pt(j)

Pt−1(j)
− π̄

)2

,

we obtain:

(1− ν)− χH
(
Ct
At

)τ
H

1/η
t − φ

2

(
Pt
Pt−1

− π̄
)2

+

νφ

(
Pt
Pt−1

− π̄
)

Pt
Pt−1

= νβEt
[
Qt+1|t

Pt+1

Pt
Φ′p

(
Pt+1

Pt

)
Yt+1

Yt

]
.

A.3 Equilibrium Conditions

Resource constraint. The derivation of the aggregate resource constraint is straightfor-

ward. In equilibrium real profits by intermediate producers is given by:

Dt = Yt − Φp (πt)Yt −WtHt.

Substituting this into the household budget constraint we obtain:

Ct +

[
Tt
Pt

+
Mt

Pt
+
Bt

Pt
− Mt−1

Pt
− Rt−1Bt−1

Pt

]
= WtHt + Yt − Φp (πt)Yt −WtHt.

From the government budget constraint in (7) we can see that the term in square brackets

corresponds to real government expenditure Gt. Simplifying yields:

Ct +Gt = [1− Φp (πt)]Yt.

The technology process introduces a long-run trend in the variables of the model. To

make the model stationary we use the following transformations: yt = Yt/At, ct = Ct/At,

and note that Yt/Yt−1 = yt
yt−1

γzt. We also define the gross inflation rate πt = Pt/Pt−1. The

equilibrium conditions shown in Section 2.2 of the main text follow immediately.
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Steady States and Reparameterizations. Let

r = γ/β, φ =
τ(1− ν)

νπ∗κ
, b =

1

2ν
.

The steady states are given by

c∗ =

[
1− ν + φν(1− β)π∗(π∗ − π̄)− 0.5φ ∗ (π∗ − π̄)2

χH((1/(g∗))− 0.5φ(π∗ − π̄)2)−1/η

](1/(τ+1/η))

y∗ =
c∗

1/g∗ − 0.5φ(π∗ − π̄)2

R∗ = π∗r.

B Derivations for Section 3

The log-linearized system (omitting hats) that characterizes the simplified model takes the

form

Rt = max

{
ψπt + σRεR,t, − ln(rπ∗)

}
(A.1)

ct = dt + Et[ct+1 − dt+1]− (Rt − Et[πt+1])

πt = βEt[πt+1] + κct.

The assumption that shocks are iid implies that Et[dt+1] = 0. Because we are focusing

on solutions under which the endogenous variables are iid, we can set Et[ct+1] = µc and

Et[πt+1] = µπ. This leads to

Rt = max

{
ψπt + σRεR,t, − ln(rπ∗)

}
(A.2)

ct = −Rt + µc + µπ + σdεd,t

πt = βµπ + κct.

The consumption equation corresponds to the second equation in (19) in the main text.

Combining the Euler equation and the Phillips curve leads to the following expression for

inflation:

πt = −κRt + κµc + (κ+ β)µπ + κσdεd,t, (A.3)
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which is the third equation in (19) in the main text. We now can use (A.3) to eliminate

inflation from the monetary policy rule:

Rt = max

{
− ψκRt + ψκµc + ψ(κ+ β)µπ + ψκσdεd,t + σRεR,t, − ln(rπ∗)

}
(A.4)

Note that if the ELB is non-binding the interest rate is given by

Rt =
1

1 + ψκ

[
ψκµc + ψ(κ+ β)µπ + ψκσdεd,t + σRεR,t

]
.

Thus, we can also write

Rt = max

{
1

1 + ψκ

[
ψκµc + ψ(κ+ β)µπ + ψκσdεd,t + σRεR,t

]
, − ln(rπ∗)

}
, (A.5)

which is the first equation in (19).

The solution of the model requires the calculation of the mean of a truncated random

variable. If X ∼ N(µ, σ2) and C is a truncation constant, then

E[X|X ≥ C] = µ+
σφN(α)

1− ΦN(α)
,

where α = (C − µ)/σ, φN(x) and ΦN(α) are the probability density function (pdf) and the

cumulative density function (cdf) of a N(0, 1). To obtain E[R(η1,t)], we need to compute

E[η1,t|η1,t ≥ η̄1]. Because η1,t ∼ N(0, 1) we obtain

E[η1,t|η1,t ≥ η̄1] =
φN(η̄1)

1− ΦN(α)
,

which is used in (23) in the main text.

To show continuity of the consumption decision rule (see (25) in the main text), consider
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the following limit from above:

lim
η1,t↓η̄1

c(η1,t, η2,t)

=
1

1 + ψκ

[
µc + (1− ψβ)µπ

]
+
(
γd,1 −

1

1 + ψκ

)
σηη̄1 + γd,2σηη2,t

=
1

1 + ψκ

[
µc + (1− ψβ)µπ + (1 + ψκ) ln(rπ∗) + ψκµc + ψ(κ+ β)µπ

]
+γd,1σηη̄1 + γd,2σηη2,t

= ln(rπ∗) + µc + µπ + γd,1σηη̄1 + γd,2σηη2,t

= c(η̄1, η2,t).

To obtain the second equality, we use the formula for η̄1 from (22) in the main text:

η̄1 = − 1

ση

[
(1 + ψκ) ln(rπ∗) + ψκµc + ψ(κ+ β)µπ

]
.

The last two equalities establish the continuity. A similar calculation for the inflation decision

rule yields

lim
η1,t↓η̄1

π(η1,t, η2,t)

=
1

1 + ψκ

[
κµc + (κ+ β)µπ + κ

(
(1 + ψκ) ln(rπ∗) + ψκµc + ψ(κ+ β)µπ

)]
+κγd,1σηη̄1 + κγd,2σηη2,t

= κ ln(rπ∗) + κµc + (κ+ β)µπ + κγd,1σηη̄1 + κγd,2σηη2,t

= π(η̄1, η2,t).

Replacing the ηi,t’s by the εi,t’s does not affect continuity because the transformation is

linear.

C Canonical Form for the New Keynesian DSGE Model

Because the definition of st is model and application specific, we outline the construction of

the canonical form in the context of the New Keynesian DSGE model with ELB constraint.

Define the vectors st

st =
[
ŷt, π̂t, R̂t, ẑt, d̂t, ĝt, eR,t

]′
(A.6)
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and recall that εt =
[
εz,t, εd,t, εg,t, εR,t

]′
. We will begin by expressing the law of motion of st

as a function of the innovations εt and then, later on, we transform the εt’s into η’s:

st = Φ0(·) + Φ1(·)st−1 + Φε(·)εt.

Rather than providing detailed algebraic expressions for the elements of the Φ(·) matrices,

we will provide an outline of how the expressions can be derived.

Output, inflation, and interest rates. We use the first three rows of the Φ(·) matrices

to represent the decision rules for ŷt and π̂t and the monetary policy rule that determines R̂t.

Note that the decision rules in (33) are expressed in terms of Xt = [R̂t−1, 1, ŷt−1, ẑt, d̂t, ĝt, eR,t]
′,

whereas the canonical form is written in terms of st—see (A.6). Thus, in order to generate

the equations for ŷt, π̂t, and R̂t for the canonical form, we have to express Xt as a linear

function of st−1 and εt.

Exogenous shocks. The remaining four rows of the Φ(·) matrices reproduce the law of

motion of the exogenous shock processes in (17).

From εt’s to ηt’s and defining the threshold condition. To express the threshold

condition in the canonical form and transform the εt into ηt innovations, define

ζ(st−1) = ln(r∗π∗) + φ0(n) + φ′1(n)st−1, η1,t = − 1

‖φε(n)‖
φ′ε(n)εt

such that the ELB constraint is non-binding if and only if

η1,t < ζ(st−1)

as in (42). Let Null(x) be an orthogonal basis for the null space for the vector x. We define

the vector ηt as

ηt =

[
φ′ε(n)/‖φε(n)‖

Null
(
φε(n)/‖φε(n)‖

)′
]
εt.

The transformation has the property that, if E[εtε
′
t] = I, then E[ηtη

′
t] = I as well. The

definition of ηt as a function of εt allows us to convert the Φε(·) matrix into Φη(·) and

completes the derivation of the canonical form.
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D Derivations for Section 6

We provide a proof of Proposition 1, which contains the formulas for the terms λt, η̄1,1(·),
Ω̄11(·), η̄2|1,t(·), and Ω̄2|1(·) that appear in the proposition. Throughout this section we set

the intercept in the measurement equation A0 = 0 and we drop the subscript from the matrix

As.

Proof of Proposition 1. Conditional on st−1 the current state st is determined by ηt. In

order to derive g∗t (s̃t|s
j
t−1) (we are omitting θ from the conditioning set), we will work in the

(ηt, st−1) space and derive (also omitting tildes and j superscripts) the conditionally optimal

proposal distribution

g∗t (ηt|yt, st−1) = p(ηt|yt, st−1) ∝ p(yt|ηt, st−1)p(ηt)

and the incremental particle weights

ω̃jt = p(yt|st−1) =

∫
p(yt|ηt, st−1)p(ηt)dηt.

Define

ŷt|t−1(·) = A(Φ0(·) + Φ1(·)st−1) + AΦη(·)ηt, νt(·) = yt − ŷt|t−1(·).

We will denote the density of a N(µ,Σ) random variable Y by pN(y;µ,Σ). Using this

notation, we write

p(yt|ηt, st−1)p(ηt) (A.7)

= pN
(
yt; ŷt|t−1(n), ςΣu

)
pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t ≤ ζ(st−1)}

+pN
(
yt; ŷt|t−1(b), ςΣu

)
pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t > ζ(st−1)}

= I + II.
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We will begin by manipulating term I(n). Omitting the (n) arguments we obtain:

I = I{η1,t ≤ ζ̃(st−1)}(2π)−ny/2|ςΣu|−1/2(2π)−nη/2

× exp

{
−1

2
(νt − AΦηηt)

′(ςΣu)
−1(νt − AΦηηt)

}
exp

{
−1

2

(
η2

1,t + η′2,tη2,t

)}
= I{η1,t ≤ ζ̃(st−1)}(2π)−ny/2|ςΣu|−1/2(2π)−nη/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
× exp

{
−1

2
η′tΦ

′
ηA
′(ςΣu)

−1AΦηηt + ν ′t(ςΣu)
−1AΦηηt

}
exp

{
−1

2

(
η2

1,t + η′2,tη2,t

)}
.

Note that term I takes the form of a product between “likelihood function” and “prior.”

The prior covariance matrix of ηt is Ω = I, and the negative Hessian and the maximum of

the “log-likelihood” function are

Ω̂−1 = Φ′ηA
′(ςΣu)

−1AΦη, η̂t = Ω̂Φ′ηA
′(ςΣu)

−1νt. (A.8)

With this notation we can write

I = I{η1,t ≤ ζ(st−1)}(2π)−ny/2|ςΣu|−1/2(2π)−nη/2|Ω|−1/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
× exp

{
−1

2

(
η′tΩ̂

−1ηt − 2η̂′tΩ̂
−1ηt

)}
exp

{
−1

2
η′tΩηt

}
.

Now define the quasi posterior mean and covariance matrices for ηt|(yt, st−1)

Ω̄ =
(
Ω−1 + Ω̂−1

)−1
, η̄t = Ω̄Ω̂−1η̂t. (A.9)

This leads to

I = (2π)−ny/2|ςΣu|−1/2|Ω|−1/2|Ω̄|1/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
exp

{
1

2
η̄′tΩ̄

−1η̄t

}
×I{η1,t ≤ ζ(st−1)}(2π)−nη/2|Ω̄|−1/2 exp

{
−1

2
(ηt − η̄t)′Ω̄−1(ηt − η̄t)

}
.

We now decompose the kernel of the “posterior” of ηt|(yt, st−1) in the second line of the

preceding equation into a conditional and a marginal distribution. We use the “1” subscript

to indicate the marginal posterior of η1 and the “2|1” subscript to indicate the conditional
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mean and variance associated with the posterior of η2,t given η1,t:

η̄2|1,t(η1,t) = η̄2,t + Ω̄21Ω̄−1
11 (η1,t − η̄1,t), Ω̄2|1,t = Ω̄22 − Ω̄21Ω̄−1

11 Ω̄12. (A.10)

Thus,

I = (2π)−ny/2|ςΣu|−1/2(2π)−nη/2|Ω|−1/2|Ω̄|1/2 exp

{
−1

2
ν ′tΣ

−1
u νt

}
exp

{
1

2
η̄′tΩ̄

−1η̄t

}
×(2π)−(nη−1)/2|Ω̄2|1|−1/2 exp

{
−1

2
(η2,t − η̄2|1,t)

′Ω̄−1
2|1(η2,t − η̄2|1,t)

}
(A.11)

×I{η1,t ≤ ζ(st−1)}(2π)−1/2|Ω̄11|−1/2 exp

{
−1

2
(η1,t − η̄1,t)

′Ω̄−1
11 (η1,t − η̄1,t)

}
.

This is the final form for term I in (A.7).

Integrating I in (A.11) with respect to (η1,t, η2,t) and re-introducing the (n) arguments

yields

D(n) =

∫ ∫
I(η1,t, η2,t)dη2,tdη1,t (A.12)

= (2π)−ny/2|ςΣu|−1/2|Ω|−1/2|Ω̄(n)|1/2ΦN

(
(ζ(st−1)− η̄1,t(n)/

√
Ω̄11(n)

)
× exp

{
−1

2
νt(n)′Σ−1

u νt(n)

}
exp

{
1

2
η̄′t(n)Ω̄−1(n)η̄t(n)

}
.

The analysis of term II proceeds in almost identical manner, with the understanding that

term I depends on Φ0(n), Φ1(n), and Φη(n), whereas term II depends on Φ0(b), Φ1(b), and

Φη(b). As a consequence the posterior coefficient matrices η̂, Ω̂, η̄, and Ω̄ should also be

indexed by either (n) or (b). Because for term II the inequality in the indicator function is

reversed, we obtain

D(b) = (2π)−ny/2|ςΣu|−1/2|Ω|−1/2|Ω̄(b)|1/2
(

1− ΦN

(
(ζ(st−1)− η̄1,t(b))/

√
Ω̄11(b)

))
× exp

{
−1

2
νt(n)′Σ−1

u νt(n)

}
exp

{
1

2
η̄′t(b)Ω̄

−1(b)η̄t(b)

}
. (A.13)

Using the formulas for I, II, D(n), and D(b), we can write the posterior density of ηt as

follows:

p(ηt|yt, st−1) =
p(yt|ηt, st−1)p(st−1)∫
p(yt|ηt, st−1)p(st−1)dηt

=
I(n) + II(b)

D(n) +D(b)
. (A.14)
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Thus, the resulting conditionally optimal proposal is given by the following mixture. Define

λ =
D(n)

D(n) +D(b)
. (A.15)

Then, with probability λ

η1,t ∼ N(η̄1,t(n), Ω̄11(n)I{η1,t ≤ ζ(st−1)}, η2,t|η1,t ∼ N(η̄2|1,t(n, η1,t), Ω̄2|1(n)) (A.16)

and with probability 1− λ

η1,t ∼ N
(
η̄1,t(b), Ω̄11(b)

)
I{η1,t > ζ(st−1)}, η2,t|η1,t ∼ N

(
η̄2|1,t(b, η1,t), Ω̄2|1(b)

)
. (A.17)

The incremental weight is constant and given by the following formula:

ω̃jt = p(yt|sjt−1) = D(n) +D(b). (A.18)

This completes the proof of the proposition. �

In the remainder of this section we consider two special cases: (i) yt identifies the regime

without error. This is the case, for instance, for a DSGE model with ELB constraint if the

interest rate is observed without error, at least when it hits the ELB. (ii) Measurement errors

that are zero or very close to zero.

(i) Known Regime. Let yt = [y′1,t, y2,t] and partition A′ = [A′1, A
′
2] so that the partitions

of A conform with the partitions of yt. Assume that the n-regime is active if and only if

y2,t > c. In the b-regime y2,t = c. Moreover, let δ(y2t; c) denote the Dirac delta function with

the property that δ(y2t; c) = 0 for y2t 6= c and
∫
δ(y2t; c)dy2t = 1. Using the above notation,

we can rewrite (A.7) as

p(yt|ηt, st−1)p(ηt)

= pN
(
yt; ŷt|t−1(n), ςΣu

)
pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t ≤ ζ(st−1)}

+pN
(
y1t; ŷ1t|t−1(b), ςΣu,11

)
δ(y2t; c)pN(η1,t; 0, 1)pN(η2,t; 0, I)I{η1,t > ζ(st−1)}

= I + II.

The formula for D(n) in (A.12) remains unchanged. The formula for D(b) in (A.13) changes

to

D̃(b) = δ(y2t; c)D(b)
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with the understanding that Σu in D(b) needs to be replaced by Σu,11. After having observed

yt we know whether y2,t = c so that we can define

λ = I{y2,t > c}.

Conditional on λ, we can simulate [η1,t, η
′
2,t]
′ from (A.16) and (A.17), respectively. Finally,

ω̃jt = p(yt|sjt−1) =

{
D(n) if y2,t > c

D(b) if y2,t = c
,

where here D(b) corresponds to (A.13) and does not include the Dirac function δ(y2t; c).

(ii) Zero Measurement Errors. Consider a linear state-space model without regimes:

yt = Ast + ut, st = Φ0 + Φ1st−1 + Φηηt.

Ignoring the censoring and dropping the regime indicator, note that D = p(yt|st−1). We can

write

yt = A(Φ0 + Φ1st−1) + AΦηηt + ut.

Note that

AΦηηt + ut ∼ N
(
0, AΦηΦ

′
ηA
′ + ςΣu

)
.

Thus, we can deduce that the term D(n) in (A.12) can be rewritten as

D(n) = (2π)−ny/2|AΦηΦ
′
ηA
′ + ςΣu|−1/2

× exp

{
−1

2
(yt − A(Φ0 + Φ1st−1))′

[
AΦηΦ

′
ηA
′ + ςΣu

]−1
(yt − A(Φ0 + Φ1st−1))

}
× ΦN

(
(ζ(st−1)− η̄1)/

√
Ω̄11

)
.

A similar adjustment can be made to the term D(b) in (A.12). The advantage of this

alternative expression is that we can take the limit ς −→ 0. The argument of the Gaussian
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CDF behaves as follows:

η̄ = Ω̄Ω̂−1η̂t

=
(
Ω−1 + Ω̂−1

)−1
Φ′ηA

′(ςΣu)
−1νt

= ς−1
(
Ω−1 + ς−1Φ′ηA

′Σ−1
u AΦη

)−1
Φ′ηA

′Σ−1
u νt

=
(
ςΩ−1 + Φ′ηA

′Σ−1
u AΦη

)−1
Φ′ηA

′Σ−1
u νt,

−→
(
Φ′ηA

′Σ−1
u AΦη

)−1
Φ′ηA

′Σ−1
u νt

which eliminates divisions by ς. Moreover,

Ω̄ = ς
(
ςΩ−1 + Φ′ηA

′Σ−1
u AΦη

)−1 −→ 0.

Thus,

lim
ς−→0

ΦN

(
(ζ(st−1)− η̄1)/

√
Ω̄11

)
=

{
1 if ζ(st−1)− η̄1 ≥ 0.

0 otherwise

Because the posterior covariances matrices are zero in the limit, the sampling in (A.16) and

(A.17) is replaced by setting η1,t and η2,t equal to their means.
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E Additional Details for the Empirical Application

Prior. Table A-1 summarizes the prior distribution for the initial states used in the empirical

analysis.

Table A-1: Prior Distributions for Initial States

Parameter Density P(1) P(2)
εR,0 N 0.00 .002
ĝ0 N 0.00 .012
ẑ0 N 0.00 .008

d̂0 N 0.00 .170
π̂0 N 0.00 .030
ĉ0 N 0.00 .030

R̂0 + 0.01 G 0.01 .008

Notes: N is Normal distribution; G is Gamma distribution. P(1) and P(2) are mean and standard deviations
for Normal and Gamma distributions. We set ŷ0 = ĉ0 + ĝ0 and ŷ−1 = ŷ0.

Calibration of ARRA. Table A-2 summarizes the award and disbursements of funds for

federal contracts, grants, and loans. We translate the numbers in the table into a one-period

location shift of the distribution of εg,t below.

Table A-2: ARRA Funds for Contracts, Grant, and Loans

Awarded Received Nominal GDP
2009:2 158 36 3488
2009:3 17 18 3533
2009:4 26 8 3568
2010:1 16 24 3603
2010:2 33 26 3644
2010:3 9 21 3684
2010:4 4 19 3704
2011:1 4 20 3751
2011:2 8 17 3791
2011:3 0 12 3830
2011:4 3 9 3870
2012:1 0 8 3899

Notes: Data were obtained from www.recovery.gov.
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Note that a one-time innovation εARRAg,t generates a response

ĝARRAt+h = ρhgσgε
ARRA
g,t .

We use the log-linear approximation

ζ̂ARRAt =
1

g∗ − 1
ĝARRAt ,

where ζt = Gt/Yt. We connect ζ̂ARRAt to the data in Table A-2 using the relationship

ζ̂ARRAt = ln

(
GARRA
t /Yt
G∗/Y∗

)
.

Figure A-2 compares the time path of ĝARRAt constructed from the impulse response to a

εARRAg,t = 0.0077 (the red solid line) and the time path constructed from the disbursements

in Table A-2 (the blue dashed line).20

Figure A-1: Calibration of Fiscal Policy Intervention

09Q2 09Q4 10Q2 10Q4 11Q2 11Q4

0.0050

0.0080

0.011

0.014
Received Simulated

Computational Details for Fiscal Policy Experiment. The following algorithm de-

scribes how we compute the effect of a combined fiscal and monetary intervention.

20Recall that σg = 0.0029, hence the ARRA impulse in our experiment is equal to 2.7× σg.
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Algorithm 2 (Effect of Combined Fiscal and Monetary Policy Intervention)

1. Initialize the simulation by setting (R0, y0, z0, g0, d0) equal to the mean estimate obtained

with the particle filter.

2. Generate a baseline trajectory that includes the intervention based on the sequence of

innovations obtained from the COPF: {εz,T ∗+s, εg,T ∗+s, εd,T ∗+s, εR,T ∗+s}Hs=0.

3. Generate the innovation sequence for the counterfactual trajectories without interven-

tion according to

εg,T ∗ = εIg,T ∗ − δARRA; εg,T ∗+s = εIg,T ∗+s for s = 1, . . . , H;

εz,T ∗+s = εIz,t for s = 0, . . . , H;

εd,T ∗+s = εId,t for s = 0, . . . , H;

εR,T ∗+s = 0 for s = 0, . . . , H.

4. Conditional on (R0, y0, z0, g0, d0), compute {RT ∗+s, yT ∗+s, πT ∗+s}Hs=0 and

{RI
T ∗+s, y

I
T ∗+s, π

I
T ∗+s}Hs=0 based on {εT ∗+s} and {εIT ∗+s}, respectively, and let

IRF (xt|εIt , εt) = (ln xIt − lnxt). (A.19)

We report results for δARRA = 0.0077 and H = 7 in the main text. When we consider only

a fiscal policy, we set εIR,t = 0 for t = T ∗, ..., T ∗ + 7 as well.
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F Consumption-Savings Model with Borrowing Con-

straint

In this section we consider a simple consumption-savings model with occasionally-binding

borrowing constraint. We compare the proposed PLC solution algorithm against OccBin and

a time-iteration algorithm. The time-iteration algorithm delivers an exact solution, whereas

the other two algorithms generate approximate solutions.

F.1 Model Specification

Consider the following model in which a representative agent chooses an path for consump-

tion, Ct and borrowing Bt+1 to maximizing the following expected utility function:

max
{Ct,Bt+1}

E0

∞∑
t=0

βt
C1−γ
t − 1

1− γ
,

where γ is the coefficient of relative risk aversion. The maximization problem is subject to

the budget constraint and to an exogenous borrowing limit that states that the amount of

debt chosen in the current period, Bt+1, cannot exceed a fraction m of the current period

income Yt:

Ct +RBt = Yt +Bt+1 (A.20)

Bt+1 ≤ mYt. (A.21)

In this economy, borrowing takes the form of one-period non-state contingent bonds that pay

a fixed interest rate R. The borrowing constraint can become occasionally binding depending

on the level of debt at the beginning of the period, Bt, and the realization of the exogenous

stream of income that follows a stochastic process: lnYt = ρ lnYt−1 + σεt, with 0 ≤ ρ < 1,

σ > 0, and εt ∼ N(0, 1). Denoting by λt the Lagrange multiplier associated to the borrowing

constraint, we can define a competitive equilibrium allocation.

Definition 1 A competitive equilibrium in this economy is a sequence of consumption, bor-

rowing decisions, and Lagrange multipliers {Ct, Bt+1, λt}∞t=0, that given initial conditions B0
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and the exogenous sequence of income {Yt}∞t=0, satisfy the following equations:

(Ct)
−γ = βREt (Ct+1)−γ + λt (A.22)

Ct +RBt = Yt +Bt+1 (A.23)

λt (mYt −Bt+1) = 0 . (A.24)

F.2 Solution Algorithms

F.2.1 Time Iteration

The time iteration procedure delivers a global approximation to the recursive equilibrium

associated with the optimality conditions of dynamic optimization problem. We follow the

implementation in Mendoza and Villalvazo (2020) and implement the Fixed-Point Iteration

algorithm (FiPIt).

The time iteration solves for recursive policy functions of the form Bt+1 = b′(B, Y )

and Ct = c(B, Y ) that define the optimal amount of borrowing and consumption given the

current level of debt B and income Y . Denote a candidate policy function as b̂′j(B, Y ),

where j denotes the sub-index that helps track the proposed policy function on the jth

step of the algorithm outlined below. The associated consumption decision rule cj(B, Y ) =

Y + b̂′j(B, Y )−RB. Note that cj(b̂
′
j(B, Y ), Y ′) = Y ′−Rb̂′j(B, Y )+ b̂′j(b̂

′
j(B, Y ), Y ′). Using the

Euler equation (A.22), we can write the recursion under the assumption that the constraint

is slack in period t+ 1:

cj+1(B, Y ) =

{
βREY ′|Y

[
Y ′ −Rb̂′j(B, Y ) + b̂′j(b̂

′
j(B, Y ), Y ′)

]−γ}− 1
γ

. (A.25)

The updated decision rule for bond holdings can be recovered directly from the budget con-

straint combined with borrowing constraint: b̂′j+1(B, Y ) = max {cj+1(B, Y )− Y +RB,mY }.

Algorithm 3 (FiPIt Algorithm)

1. Define a grid of values for the state variables S ⊂ [Bmin, Bmax] × [Ymin, Ymax]. For

current debt levels we define an equally-spaced grid B = {b1 < b2 < · · · < bNb} with a

total of Nb = 200 grid points. For the income grid, we discretize the AR(1) process

for Zt = ln(Yt) using the method of Kopecky and Suen (2010) and obtain a grid Y =
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{y1 < y2 < · · · < yNz} with a total of Nz = 11 grid points. This method also generates

a transition matrix, PNz×Nz for the Markov-chain approximation for the evolution of

Zt that we can use to compute expectations. Finally we construct the solution grid

using a Cartesian product B⊗Y.

2. Start with guess b̂′j(B, Y ) for every grid points. (B, Y ) ∈ S. To evaluate b̂j(b̂′j(B, Y ), Y ′)

off the grid points in S, we use one-dimensional linear interpolation.

3. Compute cj+1(B, Y ) using equation (A.25).

4. Obtain the implied borrowing decision rule: b̂′j+1(B, Y ) = max {cj+1(B, Y )− Y +RB,mY }.

5. Compute the distance ϑ = ||b̂′j+1(B, Y ) − b̂′j(B, Y )||. If ϑ ≤ 10−7 stop, otherwise set

j = j + 1 and go back to step 2.

6. Once the recursion converges, for every (B, Y ), we can obtain c(B, Y ) using (A.23)

and the b̂′(B, Y ) that we obtain from the recursion.

F.2.2 PLC Approximation

Let X = {x1, X
′
2} be the n × 1 vector of state variables. Specifically: x1 = {Bt} and

X2 = {1, Yt}. We proceed approximating the decision rule for the level of debt that will be

carried into the next period Bt+1 = b′(x1, X2) and in the standard generic notation we have

Y = {B′}. The PLC decision rule takes the following form:

b′(x1, X2) =

α1,1x1 + α′1,2X2, if x1 ≤ δX2

α2,1x1 + α′2,2X2 if x1 > δX2

, (A.26)

where the linear function x1 = δX2 characterizes the locus of points in the state space that

satisfy borrowing constraint just exactly.

The borrowing constraint in (A.21) is linear and we can write it as:

h (x1, X2, y) ≡ −B′ +mY

{
> 0 if constraint is non-binding (n)

≤ 0 if constraint is binding (b)
.

Given the general form of the kink function h(x1, X2, y) ≡ γ1x1 + γ′2X2 + γ′Y y, we deduce

that the constants entering the PLC constraint are: γ1 = 0, γ′2 = [0 m] and γ′Y = −1.
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Plugging the decision rule coefficients into the kink functions yields the δ coefficients:

δ′ =
−
(
γ′2 + γY α

′
1,2

)
γ1 + γY α1,1

=

(
γ′2 − α′1,2

)
α1,1

.

Continuity at the kink requires:

α′2,2 = (α1,1 − α2,1) δ′ + α′1,2.

Replacing δ:

α′2,2 = (α1,1 − α2,1)

(
γ′2 − α′1,2

)
α1,1

+ α′1,2.

From the complementary slackness condition we know that when the constraint binds b′ =

mY , implies that borrowing does not depend on the previous level of debt {B−1}, so we can

set α2,1 = 0 and obtain:

α′2,2 = α1,1

(
γ′2 − α

′
1,2

)
α1,1

+ α′1,2

α′2,2 = γ′2 .

Which correctly imposes the constraint. The last step is to verify which side of the constraint

corresponds to the non-binding regime. Following the derivation in the main text, it is easy

to show that, c(ϑ) = −α1,1 < 0. Hence for the constraint to be non-binding, h(.) > 0, we

need x1 < δ′X2.

The free coefficients α1,1, α2,1 defining the decision rules, can be obtained through the

following numerical algorithm:

Algorithm 4 (PLC Algorithm)

1. Define a grid S ⊂ [Bmin, Bmax] × [Ymin, Ymax]. For the PLC algorithm we construct

the solution grid using the Smolyak algorithm for two dimensions and with an approx-

imation order of µ = 2, delivering a total of 13 grid points—see Maliar and Maliar

(2014) for details. The bounds of the hypercube are constructed using simulated series

under the initial guess of the model, such that we cover 99% of the distribution of the

endogenous and exogenous state variables.
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2. Start with guess θ = {α1,1, α1,2} and use (A.26) to construct b′(B, Y ) for every grid

point (B, Y ) ∈ S. Use the resource constraint to compute C(B, Y ) = Y +b′(B, Y )−RB
which will also be piece-wise linear by construction.

3. For every grid point (B, Y ), compute the following residuals:

(a) When the constraint is slack (x1 > δ′X2):

λ(B, Y ) = 0

R(B, Y ) = C(B, Y )−γ − βREY ′|Y
(
C(b′(B, Y ), Y ′)−γ

)
(b) When the constraint is binding (x1 ≤ δ′X2):

λ(B, Y ) = C(B, Y )−γ − βREY ′|Y
(
C(b′(B, Y ), Y ′)−γ

)
R(B, Y ) = λ(B, Y ) (mY − b′(B, Y ))

The expectations are approximated using a Gaussian-Quadrature integration rule

of order 5.

4. The PLC solution solves the following minimization problem: minθ
1
M

∑M
i=1R(B, Y )2

F.2.3 OccBin Algorithm

The toolkit OccBin (Guerrieri and Iacoviello, 2015) implements a non-linear solution proce-

dure based on a modified shooting algorithm. To solve the model, it is necessary to define

two sets of linearized equilibrium conditions that correspond to a reference regime, with a

binding constraint, and an alternative regime, when the constraint does not bind but it is

expected to bind again the future. OccBin produces a decision rule of the form:

Xt = P (Xt−1, εt)Xt−1 + D (Xt−1, εt) + Q (Xt−1, εt) εt (A.27)

in which the evolution of all endogenous variables in the model, Xt, can be expressed as func-

tion of their past Xt−1 and the realization of an exogenous shock εt. The solution of the model

with ocassionally binding constraints from periods t = 1, ..., T , is characterized by a sequence

of time-varying matrices {P(.)t,D(.)t,Q(.)t}Tt=1. In terms of the simple consumption-savings

problem, we have Xt = [Bt+1, Ct, λt, Yt]
′.
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The decision rule in equation (A.27) shows that the solution matrices are state-dependent

and that the solution need not be piece-wise linear, despite the fact that the time-varying ma-

trices are obtained from linear approximations around the binding and non-binding regimes

of the original problem. The construction of the time-varying matrices requires an iterative

procedure that is briefly described in the following algorithm:

Algorithm 5 (OccBin Algorithm)

1. Take a generic period t, guess a sequence of regimes, such that for t ≥ T , the model

returns and forever remains in the reference regime. In our case, this corresponds to

the case in which the borrowing constraint is binding.

2. For period t ≥ T , solve the system of expectational equations that correspond to

the reference regime: A1EtXt+1 + A0Xt + A−1Xt−1 + Bεt = 0. Where the matri-

ces A1,A0,A−1,B are functions of the model parameters and Et is the expectations

operator. Standard solution procedures, yield a decision rule of the form: Xt =

D + PXt−1 + Qεt. Given we assumed there are no additional shocks beyond period

t and that we approximate the solution around the steady state of the reference regime,

we have PT = P, DT = 0, and XT = PXT−1.

3. For periods t < T proceed as follow to compute the solution for Xt:

(a) If the guess implies the reference regime in period T−1, solve the matrix equation:

A1PTXT−1 +A0XT−1 +A−1XT−2 + BεT−1 = 0.

(b) If the guess implies a change to the alternative regime, solve the matrix equation:

A∗1PTXT−1+A∗0XT−1+A∗−1XT−2+C∗+B∗εT−1 = 0. The matrices A∗1,A∗0,A∗−1,B∗, C∗

correspond to the linearized system of equations in the alternative regime when the

borrowing constraint is slack.

(c) The solution yields matrices PT−1, DT−1, QT−1. Given XT−1, solve for XT−2 and

repeat this step for all t < T . Recall the assumption of no future shocks, hence Qt
is irrelevant beyond period t and can be set to the null matrix.

4. Given Xt−1, εt, and the sequence of matrices Pt, Dt and Qt, simulate the model forward

using Xt = Dt + PtXt−1 + Qtεt. If the implied regimes in the forward simulation

coincide with the regimes guessed in Step 1, a solution is given by P (Xt−1, εt) = Pt,
D (Xt−1, εt) = Dt and Q (Xt−1, εt) = Qt. Otherwise, update the guess of regimes and

return to Step 1.
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Table A-3: Solution Times

FiPIt OccBin PLC
Time in seconds 10.6 3.9 0.5

Figure A-2: Decision Rules
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F.3 Quantitative Comparison

We set the following parameters to perform a numerical evaluation of the three solution

algorithms for the consumption-savings problem. R = 1.05, β = 0.945, ρ = 0.9, σ = 0.010,

m = 1, γ = 1. The parameter configuration satisfy the condition βR < 1 which ensures the

existence of a stationary equilibrium in the incomplete market setting of this model.

We solve the model and compute solution times for the three methods. To compare with

OccBin, we record the time it takes to construct decision rules over the same solution grid

used to for the global solution implemented with the FiPIt method. The solution times for

the three algorithm are reported in Table A-3.

Figure A-2 shows two different slices of the decision rules implied by each of the three



This Version: October 9, 2020 A-25

Figure A-3: Simulated Paths
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solution algorithms. The top row shows the decision rules for consumption and borrowing

decisions as a function of income, while holding the current period level of debt at its steady

state of B = 1. The second row shows the decision rules for consumption and borrowing

decisions as a function of the current level of debt, while holding the income realization at its

steady state level of Y = 1. In each panel, the grade shaded areas show 95% of the ergodic

distribution of the associated state variable.

Figure A-3 shows a simulated path of 50 observations for the three solution algorithms.

We show the time path for consumption, borrowing and the Lagrange multiplier as well as

the exogenous sequence of income realizations.

One may also want to see how the three methods compare in terms of where the constraint

binds in the state space. To investigate this, we compare the three algorithms in terms of

their predictions about the constraint binding. Taking the global solution as the “truth”, we
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find that when the constraint is slack in the global solution, the other two algorithms also

predict that the constraint will be slack with over 99.7% probability. When the constraint

in the global solution is binding, that is when λ > 0, then for a vast majority of the cases,

both solutions find that the constraint will be binding as well. In particular, if we look at

quartiles of λ values obtained in the global solution conditional on λ > 0, in the third and

fourth quartiles, the match is virtually perfect, and in the second quartile match is over 92%.

Only in the first quartile – when λ is small – both methods deliver a positive λ in about 20%

of the cases.

Looking at these results, we conclude that the PLC algorithm produces results that are

very close to OccBin. Relative to the global solution, the decision rules show small differences

around the kink, but the simulations show that this is not consequential: consumption

simulation is virtually indistinguishable while the borrowing simulation shows slightly bigger

but still small deviations. Similarly the multiplier is slightly different especially when it is

positive and small, but in terms of identification of when the constraint binds, the three

methods broadly agree. At the end of the day, for estimation purposes the simulation is

really what matters and the three methods very much agree, with PLC taking about 1/20

of the time of the global solution and about 1/8 of the time of OccBin.


