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data giving the selected product and its price for each transaction. We estimate

the model using data from the UK brick industry and use it to measure market

power and analyze mergers. We measure the contribution of spatial di�erentia-

tion and ownership concentration to the distribution of market power across indi-

vidual transactions. In counterfactuals we �nd that, relative to uniform-pricing,

individually-negotiated pricing leads to reductions in mean markups and merger

e�ects, although markups and merger e�ects increase in a minority of transactions.

Keywords: individualized pricing, bargaining, price discrimination, spatial di�er-

entiation, merger analysis, construction supplies

∗We thank participants of several conferences and seminars for comments. We are grateful to Pat
Bajari, Ken Binmore, Allan Collard-Wexler, Vince Crawford, Isis Durremeyer, Matt Grennan, Gau-
tam Gowrisankaran, Joe Harrington, Tom Holmes, Jean-Francois Houde, John Kennan, Robin Lee,
Nate Miller, Eugenio Miravete, Nicola Pavanini, Markus Reisinger, Holger Sieg, Bernardo da Silveira,
Andrew Sweeting, Mariano Tappata, Greg Taylor, Bob Town, Ali Yurukoglu, and construction indus-
try experts, for discussion. *Birkbeck College, University of London and Institute for Fiscal Studies
†Department of Economics, Oxford University, CEPR and Institute for Fiscal Studies. ‡University of
Washington-Seattle. We are grateful to Segye Shin for research assistance, and for �nancial assistance
to the John Fell Fund at Oxford University and ESRC grant number ES/M007421/1.

1



1 Introduction

In many competitive markets the buyer makes a choice between di�erentiated products

and negotiates an individualized price. This is common in decentralized markets for

intermediate goods where buyers and sellers are few. In 2010 the US Merger Guidelines

were revised to include a section on markets with this feature.1

The theoretical literature suggests that individually-negotiated pricing can make

a major impact (relative to uniform pricing) on market power in oligopoly markets.2

The impact depends, among other things, on product di�erentiation and the bargain-

ing power of sellers�e.g. in the duopoly case where sellers can make take-it-or-leave-it

(TIOLI) o�ers to individual buyers, and di�erentiation is speci�ed as Hotelling, individ-

ualization causes markups to fall for all buyers, and mean markups to fall by 50% (see

Thisse and Vives (1988)). If product di�erentiation is speci�ed di�erently, markups may

rise for some buyers (see Stole (2007)). Individualized pricing can also change (relative

to uniform pricing) the e�ect of mergers on markups (see Cooper et al. (2005)).

A distinctive feature of competition with individualized pricing is the prominent

role in markup determination played by the �rst-best and runner-up goods, ranked in

terms of the surplus from trade. This feature is found in non-cooperative models both

where sellers set TIOLI prices (see Thisse and Vives (1988)), and where buyers have

bargaining power (see Binmore (1985), Bolton and Whinston (1993) and Manea (2018)),

and contrasts with uniform-price competition, where markups depend on market-level

elasticities and ownership portfolios (see Nevo (2001)). With multi-product �rms, the

relevant de�nition of the runner-up good is the highest-surplus good that is not co-owned

with the �rst-best good, so that an increase in multi-product ownership by means of

a merger can add to market power if the runner-up good is a more distant substitute

as a consequence. The importance of the runner-up good is recognized in antitrust

practice�e.g. the 2010 US Merger Guidelines suggest that, with individualized pricing,

anti-competitive e�ects are likely to arise for a buyer if merging parties jointly occupy

that buyer's (pre-merger) �rst-best and runner-up status.

1Section 6.2 on �Bargaining and Auctions� notes that �in many industries, especially those involv-
ing intermediate goods and services, buyers and sellers negotiate to determine prices� and �buyers
commonly negotiate with more than one seller, and may play sellers o� against one another.� US
merger cases where this was relevant include sellers of consumer-generated ratings platforms, whose
clients include online retailers (Power Reviews/Bazaarvoice, 2014), marine water treatment products,
whose clients run �eets of ships (Wilhelmsen/Drew Marine, 2018), and private label breakfast cereals,
procured by retailers (Post Holdings/TreeHouse Foods Inc, 2020); in the EU individually-negotiated
pricing was relevant in the GE/Honeywell avionics merger case in 2001. See Sweeting et al. (2020) for a
discussion of Post Holdings/TreeHouse Foods Inc and Nalebu� (2009) for a discussion of GE/Honeywell.

2We use individualized and negotiated (interchangeably) to describe pricing either where sellers
make take-it-or-leave-it o�ers or where buyers and sellers both have bargaining power.
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An important group of markets in which individualized pricing is found is construc-

tion materials�e.g. cement, steel, bricks, etc.3 Markets for these materials have seen

public policy discussion in at least two areas. The �rst area is the merits of price dis-

crimination; a well-known debate, for delivered products, which dates back at least to

FTC vs. Cement Institute 1948, compares uniform pricing, where the price before trans-

port cost is the same for all buyers, with discriminatory pricing, where prices depend on

buyer location (see Thisse and Vives (1988)). The second area is mergers and market

concentration; there have been many recent merger and market inquiries.4 In this paper

we consider the brick manufacturing industry in Great Britain. In CC (2007) the Com-

petition Commission (CC) investigated a merger between two of the four manufacturers

in this industry. They judged the market to be highly concentrated�with a two-�rm

concentration ratio of 0.60, and a Her�ndahl-Hirschman Index (HHI) of 2113�but,

despite this, assessed its pro�tability as at or below average, for industries with com-

parable risk, and approved the merger, even though the implied HHI increase exceeded

the normally-acceptable threshold in its merger guidelines (implicitly based on uniform

pricing). In e�ect the CC took the view�in line with some of the theoretical literature

noted above�that competition in this market is more intense, and the merger less of a

concern, than usual for a market at its concentration level.5

This paper makes two main contributions. First, we develop for empirical analysis

a model of demand for di�erentiated products in which the buyer negotiates prices

with multiple sellers and sources from one of them. The model is micro-founded in

the existing theoretical literature on non-cooperative bargaining with single-sourcing

but has not previously been estimated empirically in the discrete-choice literature. We

derive a tractable likelihood expression which can be used with micro data giving the

observed choice and price in each transaction. Second, we estimate the model using

data from the UK brick industry, and use it to measure market power and analyze

counterfactual changes to pricing policy and market concentration.

In the model, the buyers are house-building �rms, with multiple projects in separate

locations, and the suppliers are manufacturers of multiple di�erentiated products. Each

3See CMA (2016) paragraph 6.26 for a description that applies to aggregates, cement, and concrete
and paragraph 7.170 which states �cement prices are negotiated with customers, and can depend on
[...] delivery distance, type of cement, size of order and the customer's bargaining power.�

4Examples include the US cement merger case Holcim Ltd. and Lafarge S.A. in 2017 and the UK
construction supplies inquiry (CMA (2016)).

5CC (2007) reports (paragraph 5.47) that the current HHI was 2,113 and the HHI change implied
by the merger was 390; the CC merger guidelines regard a market with an HHI above 1,800 as highly
concentrated, and (in such a market) identi�es an increase in HHI of more than 50 as giving potential
competition concerns; summing up they say that �the market is thus already highly concentrated and
would become more so if the merger were to proceed.� The assessment that pro�ts are at or below
normal levels is in Appendix B of CC (2007).
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project requires cladding, using a brick product or the outside good. Products are valued

di�erently across projects. For each project, a price is negotiated for the �rst-best and

runner-up products. In our solution concept the buyer negotiates bilaterally with each

of the two sellers. In each bilateral negotiation the agents agree a price implied by

bilateral Nash bargaining, in which the disagreement point is the alternative of not

buying any brick product, and the buyer has an outside option (see Binmore et al.

(1989)) of buying the other product at its anticipated price. Equilibrium is achieved

when the two bilateral negotiations are mutually consistent. In equilibrium the buyer

buys the �rst-best product at a negotiated price which is the lower of (i) the price

implied by standard bilateral Nash bargaining with the �rst-best product's seller and

(ii) the Bertrand-Nash TIOLI price.6 This choice and price outcome is micro-founded

in the non-cooperative multi-seller bargaining models in Binmore (1985), Bolton and

Whinston (1993), and Manea (2018).

To estimate the model, we use a dataset of 13,788 transactions between manufactur-

ers and house-building �rms, giving the chosen product, price, production and delivery

locations, volume, transport costs, and brick characteristics. We also have plant-month

production cost data, which we use in model validation. The patterns in the data in-

dicate that prices vary across transactions, controlling for brick product, house builder

and year, and that spatial di�erentiation is important.

There are two main econometric challenges. First, we observe neither the runner-up

product nor (unlike standard discrete choice settings) the prices the buyer would have

paid for products that are not chosen. Second, since the price of the chosen product

is individualized, it is correlated with individual-speci�c tastes which are unobserved

to the econometrician and a�ect the choice of product, so that, conditional on choice

of product, the regressors in the pricing equation (such as product characteristics) are

endogenous. To overcome these challenges, we estimate the choice and pricing parts of

the model jointly, and integrate out unobserved tastes along with their implications for

the runner-up product and �rst-best price. Since our application has many products,

this is a high-dimension problem. We show that when idiosyncratic tastes are character-

ized by a Generalized Extreme Value (GEV) distribution there is a tractable likelihood

expression for the joint probability of the observed choice and individualized price.7

The estimated model implies that the case of TIOLI prices, nested in the bargain-

ing model, is rejected in a likelihood ratio test. As an external validity check on the

estimated model, we �nd a good match between the costs implied by our estimates

6The model accommodates alternative assumptions for the disagreement point. In the empirical
analysis we perform a robustness analysis where the disagreement point is the runner-up good.

7A separate challenge is that transactions data do not include information on demand for the outside
good. To overcome this we calculate market shares for the outside good using data from another source.
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and external plant-month level cost data supplied by the manufacturers. The estimated

model also �ts the data well in terms of the distribution (across transactions) of prices

and transportation distances. We �nd that markups are low on average but vary quite

widely across transactions; price-cost margins (PCM), in Lerner index form, have a

mean of 0.08 and a coe�cient of variation of 0.74. We �nd that location plays a role

in markup variation: sellers tend to set higher margins to buyers that are relatively

close, extracting some of their location advantage. Product ownership also plays a role:

monopoly power from multi-product ownership, sometimes referred to as the portfolio

e�ect, is much more relevant for some buyers than others.

We consider counterfactual questions in the two policy areas we noted above. The

�rst is the e�ect of pricing policy. We �nd that average markups increase if there is a

policy switch to uniform pricing. This holds for a wide range of potential market struc-

tures as well as the observed market structure, and is in line with the view that uniform

pricing adds to market power. The changes in markups in individual transactions, how-

ever, vary widely, and in a minority of transactions markups fall. This contrasts with

the all-markups-rise result in the Hotelling speci�cation of Thisse and Vives (1988). At

the observed market structure, for example, a switch to uniform pricing increases mean

markups by 34%, and, in the distribution of percentage price changes, the bottom and

top deciles are -6.57% and 14.32% respectively.

The second question is the e�ect on market power of market concentration. With

individualized pricing, other things equal, a change in product ownership does not in-

�uence a transaction's markup unless it changes the runner-up good for the transac-

tion�e.g. by in a merger reassigning ownership of the (pre-merger) runner-up good

to the �rst-best product's seller. To evaluate the importance of market power from

product ownership, at the observed market structure, we demerge to the case of single-

product manufacturers. Total manufacturer surplus falls substantially (by 24%) but the

impacts are unequal across transactions: in the distribution of markup reductions, the

top decile is 30 times greater than the bottom decile. This shows that the relevance of

the �rst-best seller's product portfolio varies greatly across individual transactions. The

remaining counterfactuals are pairwise mergers of the manufacturers. The merger of the

two largest �rms in terms of market share generates an increase in total manufacturer

surplus in the industry of 20%. However, markup increases are very unequal across

transactions. Finally, we �nd that a change to pricing policy has a major impact on the

e�ects of mergers: comparing the same mergers under the two pricing policies, we �nd

that individualized pricing abates markup-increasing e�ects of mergers on average but

makes them worse in some transactions.
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Related literature The theoretical literature on the impacts on market power of

oligopoly price discrimination with di�erentiated products dates at least from Thisse

and Vives (1988), Holmes (1989) and Corts (1998). Our paper builds on the empirical

contributions in Miller and Osborne (2014) and D'Haultfoeuille et al. (2017)�which

combine the di�erentiated products demand speci�cation in Berry et al. (1995) with

oligopoly price discrimination�by extending the analysis to individualized (rather than

third-degree) discrimination, by allowing buyers to have bargaining power (as opposed

being price-takers), and in the use of transaction-level (rather than market-level) data.

Our paper relates to the empirical bargaining literature based on the Nash-in-Nash

(NiN) solution in Horn and Wolinsky (1988). The papers in this literature, which are of-

ten applied to media and healthcare industries, include Chipty and Snyder (1999), Dra-

ganska et al. (2010), Crawford and Yurukoglu (2012), Grennan (2013), Gowrisankaran

et al. (2015), Ho and Lee (2017), Crawford et al. (2018), and Dubois et al. (2019). The

NiN solution concept has been given non-cooperative micro-foundations in Collard-

Wexler et al. (2019). There are two main di�erences between our paper and this lit-

erature. First, the buyers in our model single-source (as in standard discrete-choice

settings), so some sellers are rejected by the buyer, whereas in the the NiN framework

the buyers trade with all the sellers. The bargaining solution in our model thus accounts

for the impacts of sellers with whom the buyer negotiates but whose price the buyer

rejects. The bargaining solution we propose is micro-founded in the non-cooperative

multi-seller single-sourcing bargaining models of Binmore (1985), Bolton and Whinston

(1993) and the simple (i.e. no intermediary) version of the model in Manea (2018). Sec-

ond, the data that the econometrician can observe are di�erent in our setting. In the

NiN framework, since each buyer trades at each negotiated price, a price and a quantity

is in principle observed for all products that are in negotiations. Together with the pas-

sive beliefs assumption�i.e. that a disagreement with one seller leaves unchanged the

prices negotiated with other sellers�the researcher may use this information to estimate

the buyer's gains from trade in each bilateral negotiation. In our model by contrast only

one of the choice alternatives is selected for trade and hence we must account for the

inherent unobservability of the runner-up product and its negotiated price.

Ho and Lee (2019) develop a bargaining solution, Nash-in-Nash with Threat of Re-

placement (NNTR), which extends the NiN framework to give multi-sourcing buyers an

incentive to exclude �rms from their networks. The runner-up seller in our model and

the excluded �rms in the NNTR solution play the role of an outside option. Our frame-

work is not intended for use with multi-sourcing �rms, and has a di�erent estimation

approach, which extends the random utility discrete choice framework in Berry et al.

(1995) to allow for negotiated prices, deriving a convenient form for the joint probability
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of a discrete choice and negotiated price.

The paper builds upon the empirical literature on individualized pricing with single-

sourcing buyers, including Allen et al. (2019), Marshall (2020), and Salz (2020). Our

model di�ers in three main respects. First, we have di�erentiated products and multi-

product �rms. Second, in our model the agents do not search, which suits applications

with few buyers and sellers and minimal product or process innovation. Third, the

buyers in our model are not price-takers, allowing them to appropriate a greater level

of surplus from the seller than otherwise.

More generally the paper is related to the literature on auctions in the presence of

transportation costs, e.g. Porter and Zona (1999), and those with GEV taste shocks,

e.g. Brannman and Froeb (2000). Miller (2014) develops a theoretical model of scoring

auctions with Type-1 EV consumers, which is nested in our model, and includes an

extension which is equivalent to an alternative bargaining speci�cation which we use as

a robustness check.8 Finally, the paper is related to the empirical literature on mergers

when prices are not uniform across buyers: Gowrisankaran et al. (2015) consider mergers

in a structural Nash-in-Nash bargaining model (with multi-sourcing buyers) and Allen

et al. (2014) use reduced form methods in a market with consumer search.

2 The market and data

Institutional details Bricks have been used in construction for millennia. The largest

buyers of bricks in Great Britain are national house-building �rms, which buy bricks di-

rectly from manufacturers for cladding purposes. We study transactions of domestically-

produced bricks bought by these �rms, hereafter buyers. In any year each buyer develops

multiple housing projects of di�erent sizes in di�erent locations. The buyers are respon-

sible for all the key aspects of their projects including choice of cladding. The buyers

source from di�erent manufacturers for di�erent projects. The market is concentrated:

there are four main manufacturers with an 85% share of brick sales (CC (2007), para-

graph 5.46). Buyers negotiate prices that hold good for a given year; for any buyer the

negotiated prices vary with the brick variety, quantity and project location. Third-party

hauliers, arranged by the manufacturer, deliver the bricks to the project location and

are paid separately.9

8We show that the likelihood function derived in our paper for the (baseline) bargaining model
includes the case of the auction speci�cation (which we refer to as the TIOLI model and is nested in
the model) and can be adapted for the alternative bargaining speci�cation.

9Hereafter bricks refers to bricks used for cladding. Cladding is 80-90% of brick production (CC
(2007), paragraph 4.2). Alternative cladding materials include timber, stone, and plaster. Direct-
supply bricks are about 20% of brick production; the rest is sold through intermediaries whose �nal
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Mean SD

A: Price, quantity, distance, transport costs

Price (¿/1000 bricks) 182.256 24.843
Quantity (1000s) 84.072 83.950
Delivery distance (100km) 0.109 0.075
Transport cost (¿/1000 bricks)† 23.850 10.530

B: Agent size (#transactions per year)

Manufacturer 861.750 755.180
Buyer 231.864 221.038

C: Variety characteristics of chosen product: aesthetic and technical

Color: red (indicator variable) 0.718 0.450
Shaping method: wire (indicator variable) 0.720 0.449
Strength, Newton/square meter (100s) 0.398 0.182
Water absorption, percentage units (100s) 0.143 0.043

D: Weather and input prices of project's region-year

Frost: Average monthly (#days with frost, by region) 4.669 0.619
Rainfall: Average daily rainfall (mm/sq meter, by region) 2.396 0.742
Wage: Gross household income/head (¿1000s, by region-year) 13.786 1.352
Fuel: annual natural gas index (1990=100, by year)‡ 0.991 0.198
Fuel: annual haulage price (¿/L, by year)‡ 0.861 0.069

E: Competition [notation in italics used in Table 2]

#Manufacturers within 50 km: N(50) 1.555 1.182
#Manufacturers within 100 km: N(100) 2.680 1.044
Distance advantage of nearest manufacturer w.r.t. next-nearest: DA (km) 33.986 42.381

Notes: 13,788 observations. †11,855 observations. ‡BEER Quarterly Energy Prices Report (2008):

Gas price index Table 3.3.1 (three-year moving average); Haulage fuel price, Table 4.1.2. Appendix C.3

discusses product characteristics and weather data. Regions are the NUTS1 de�nition.

Table 1: Transactions data: summary statistics

Description of the data We use a data set which records all deliveries of bricks

from the four main manufacturers in Great Britain in the period 2003-2006. For each

delivery we observe the date, variety (with unique production location), destination

location, buyer, quantity, and payment. We treat a unique buyer-variety-destination-

year as de�ning a project. We obtain the four main characteristics of each variety from

the manufacturers' catalogs�color, shaping method, strength, and water absorption;

the �rst two are aesthetic and the other two are technical. Transport costs to the buyer

for each delivery are also recorded (for three of the manufacturers). We consider the

largest 16 buyers, which account for 94.1% of direct-delivery volume in the data. We

aggregate the data over deliveries within each year to buyer-variety-destination-year

customers are households or small builders, often for repair, maintenance and improvement of existing
dwellings (CC (2007), paragraphs 4.42 and 4.47). Imported bricks are about 8% of volume (CC (2007),
paragraph 4.21). For further discussion of institutional details see Appendix C.5.
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level, which corresponds to a negotiated transaction, giving 13,788 transactions over

four years sold from 36 plants; hereafter we refer to this as the transactions dataset.10

Since there are hundreds of varieties, and many are very similar, we de�ne for choice

modeling the less granular concept product, using unique combinations of the four brick

characteristics above and the plant's location. This results in 75 products.11

Table 1 reports summary statistics from the transactions data. Panel A describes

prices, quantities, distances, and transport costs. Panel B describes agent (manufac-

turers and buyers) size, measured by annual number of transactions. Panel C reports

statistics for the main brick characteristics other than location. Panel D summarizes

weather data in the region of the delivery location, which can a�ect the buyer's valua-

tion of the technical characteristics, along with key input price data. Panel E reports

two measures of competition: the number of manufacturers within a given radius of a

project, and the distance between a project's nearest and second-nearest manufacturer.

Finally, we calculate the market share of the outside good: non-brick cladding,

bricks from minor manufacturers, and imports. For each region-year market m this is

given by sm0 = (Hm − Bm)/Hm where Hm is the number of new houses and Bm is the

number of new houses that use bricks from the top four manufacturers. We calculateHm

from o�cial house-building data and obtain Bm using information on brick deliveries

and an estimate of the number of bricks per house. See Appendix C.7 for details.

The market share of the outside good has a mean of 0.272 and a standard deviation

0.141 across region-year markets. The number of buyers of the outside good is given

by N0m = NJms0m/(1 − s0m) where NJm is the number of buyers of inside goods in

region-year m in the transactions data.

Data patterns I: prices To characterize price variation, Panel A of Table 2 re-

ports the R2 and root mean square error (RMSE) for price regressions with dummies

at alternative levels: none, year, variety-year, and buyer-variety-year. Column (i) uses

the full set of brick transactions and�to help characterize intra-buyer price disper-

sion�column (ii) only includes observations with more than �ve transactions for each

buyer-variety-year. Year e�ects explain only a small amount of price variation. Adding

10To prepare the transactions dataset we drop a shaping type (pressed, 1.2% of volume) and colors
other than red and yellow (0.04% of volume) which are rarely used in new housing projects, products
with a mean of less than 7.5 annual transactions (which removes a tail of low market share products
which together are 4.2% of volume), low-quantity (<5000 bricks) deliveries (3.1% of volume), and, to
avoid outliers, transactions with unit prices in the top and bottom percentiles. See Appendix C.4 for
further details. See Beckert (2018) for a discussion of the data.

11To do this we discretize strength and water absorption�measured in N/m2 and percent units
respectively�using intervals of 5, resulting in 5 absorption and 13 strength levels, and use the mid-
point of the interval as the product's characteristic. See Appendix C.3. See also footnote 13.
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A: Price regressions with alternative controls (i) (ii)

R2 RMSE R2 RMSE

Dummy variables included: none 0.000 24.843 0.000 21.195

year 0.118 23.340 0.130 19.771

variety-year 0.775 11.780 0.816 9.098

buyer-variety-year 0.918 7.114 0.867 7.740

Observations included all observations
buyer-variety-year

with > 5 locations

#Observations 13,788 6,587

Mean price (¿/1000) 182.256 176.141

B: Price regressions (i) (ii) (iii) (iv)

Constant 59.371 (10.042) 59.492 (10.020) 63.673 (9.964) 63.856 (9.997)

Quantity (units 100,000) -0.383 (0.133) -0.421 (0.133) -0.446 (0.132) -0.454 (0.133)

Wage (units ¿1000) 8.281 (0.847) 8.270 (0.846) 8.107 (0.840) 8.299 (0.843)

Gas price (index) 27.200 (1.824) 27.239 (1.821) 27.499 (1.809) 27.084 (1.815)

ln(buyer size/seller size) -2.510 (0.147) -2.558 (0.147) -2.446 (0.146) -2.558 (0.146)

1[DA>DST ], indicator 0.482 (0.237) 2.204 (0.293)

N(DST ), count -1.531 (0.101) -1.487 (0.124)

R2 0.754 0.755 0.758 0.756

DST : 20km 40km 50km 100km

Notes. Dependent variable: price in ¿/1000 bricks. Panel A reports measures of �t (not adjusted for d.f.)

for alternative speci�cations. Panel B: Observations: 13,788. Variety dummies in all regressions. Seller refers

to manufacturer. Seller and buyer size, seller's distance advantage (DA), local seller count N(DST ), and other

variables, are as de�ned Table 1. Standard errors in parentheses.

Table 2: Results from unit price regressions

variety-year and buyer-variety-year e�ects absorbs more variation, but still leaves much

unexplained�i.e. there is intra-buyer (cross-project) variation conditional on variety-

year. Panel B explores the relationship between prices and variables that vary across

projects. All speci�cations include variety dummies. The four speci�cations use two

alternative measures of local competition: the distance-advantage DA of the nearest

manufacturer, and counts N(DST ) of local manufacturers as de�ned in Table 1. The

estimates indicate that prices are decreasing in quantity, increasing in input prices,

decreasing with the buyer-seller size ratio, and that competition variables have the

expected signs. While these estimates describe correlation we do not interpret them

causally: the speci�cation conditions on variety choice, which is endogenous, and which

for example implies seller, and hence seller size.

Data patterns II: product choice The relationship between project location and

product choice is illustrated in Figure 1. The �rst two maps respectively give the

locations of the plants and projects in the data. The third shows projects that use
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(a) Plants (#�Sussex,  �others) (b) Deliveries (all plants) (c) Deliveries (Sussex plants)

Map (a) shows plant locations, including the four (far-south) Sussex plants in hollow circles, map (b) shows all deliveries
2003-2006, and map (c) shows the subset of these deliveries from the Sussex plants.

Figure 1: Plant and delivery locations

varieties produced in four plants in Sussex, identi�ed by (the far-south) hollow circles

in the left-hand map: these projects have lower mean distances from the four identi�ed

plants, although in many cases buyers could have used a more closely-located plant.12

In a similar vein, Panel A1 of Table 3 presents the proportion of buyers that select a

product from the nearest x plants, for x = (1, 5): buyers do not exclusively select the

nearest plant, but do so more often than if they randomly selected one of the 36 plants.

The second row of A1 shows that a buyer does not exclusively select the nearest plant

of the chosen manufacturer, suggesting there is di�erentiation at product level rather

than (or in addition to) �rm level. Whilst the Euclidean distances we use do not fully

measure transport cost�e.g. grid references may be inaccurate, roads are not straight-

lines, and they do not account for congestion�the mean distance di�erence between the

nearest and the chosen plant reported in panel A2 is large and unlikely to be entirely

attributable to measurement factors. In sum, spatial di�erentiation is important but

does not dominate the other factors that drive choices.

To explore variables related to product choice, Panel B shows parameter estimates

for a simple choice model where we condition on choice of an inside good. We assume

12Although not obvious from the map, the distribution of plants and projects yields a positive cor-
relation (across projects) between the distances to the nearest plant for any pair of manufacturers�i.e.
if a project is located relatively close to one manufacturer, then it tends to be relatively close to each
of the others. This contrasts with Hotelling where the correlation is -1.
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A: Product choice

A1: Proportion of choices in nearest x ∈ {1, 5} plants to the project x=1 x=5

All manufacturers (36 plants) [Comparison: 1/36 = 0.028, 5/36 = 0.140] 0.119 0.401
Chosen manufacturer 0.243 0.726

A2: Comparison of chosen and nearest product Mean SD

Extra distance of chosen relative to nearest product (km) 56.017 63.106
B: Estimated parameters for descriptive logit product choice model

(i) (ii)

Product characteristics (xj)

Color: red 0.235 (0.021)
Shaping method: wire-cut 0.407 (0.028)
Strength −0.026 (0.004)
Absorption 0.015 (0.007)
ln (#varieties in product j) 0.713 (0.013)

Buyer-product characteristics (yij)

Distance from buyer (DSTij) 100km −1.168 (0.036) −1.357 (0.039)
Square of distance from buyer (DSTij) −0.007 (0.011) 0.017 (0.012)
Buyer frost × strength 0.379 (0.084) 1.032 (0.108)
Buyer rainfall × absorb −1.048 (0.300) −0.709 (0.355)
Log likelihood −48202.6 −48202.6

Product dummies (βj) No Yes

Notes: The number of observations is 13,788. Standard errors in parentheses.

Table 3: Analysis of product choice

the payo� from product j in project i is uij = β′xj + γ′yij + εij where xj is a vector

of j's non-price characteristics, yij is a vector of interactions between i and j, and εij

is an iid Type-1 EV e�ect (e.g. unobserved transport costs or local tastes). Included

in xj is the log of the number of varieties in j.13 In speci�cation (i) parameters β are

signi�cant, but, since price is not included, we do not have strong priors as to their sign;

in (ii) we replace β′xj with unreported product dummies βj which absorb the mean

e�ects of product characteristics. The signs of the parameters γ in both speci�cations

are as expected and mostly signi�cant: distance has an overall negative e�ect, while

synergies between rainfall and absorption, and frost and strength, are negative and

positive respectively. A limitation with this speci�cation is that prices are omitted

because they are individualized and hence observed only for the chosen product; we

now develop a model that allows us to account for the presence of unobserved prices.

13The log term accounts for unobserved variety-level product di�erentiation nested within product
j (see Ackerberg and Rysman (2005)); this is absorbed into the product dummy in speci�cation (ii).
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3 The model

3.1 Players, products, and surplus from trade

Each buyer has a number of independent construction projects. For each project, the

buyer selects a product j ∈ J = JJ ∪{0} where JJ is the set of inside goods (i.e. brick
products) and j = 0 is the outside good (i.e. non brick cladding). Each product has a

distinct manufacturer. Let K be the set of manufacturers. The set of inside products

is JJ = ∪k∈KJk where Jk is manufacturer k's portfolio. A project has a �xed quantity

requirement and a speci�c location.14 It is convenient to work in per-unit terms, so,

utility, cost, surplus, prices, etc., are de�ned per unit of the quantity required in project

i. Product j in project i gives the buyer money-metric utility vij (net of transport costs,

which are paid for by the buyer). The manufacturer's cost of supplying the project is

cij. The surplus is wij = vij− cij. The surplus from the outside good is wi0. We assume

that agents have complete information, and motivate this in section 3.3.

For a given project we use the surplus wij to de�ne two key products, namely the

�rst-best and the runner-up. For project i, the �rst-best product j(i, 1) is de�ned as

the highest-surplus product among all in J , i.e.

j(i, 1) = arg max
j ∈ J

wij (1)

The �rst-best manufacturer k(i, 1) produces this product. The runner-up product j(i, 2)

has the highest surplus among products sold by the �rst-best manufacturer's rivals, i.e.

j(i, 2) = arg max
j ∈ J\Jk(i,1)

wij. (2)

The runner-up manufacturer k(i, 2) ∈ K \ k(i, 1) produces the runner-up product. We

refer to the di�erence between the surplus from the �rst-best and runner-up products

as the �rst-best's surplus advantage and denote it ∆wi = wij(i,1) − wij(i,2).

3.2 Equilibrium markups and product choice

In this subsection we consider the bargaining model for a given project, and to simplify

notation we suppress i subscripts. Appendix A provides derivations of the results. The

model comprises three parts: (i) a discrete-choice problem, in which the buyer selects

from �rst-best and runner-up products, taking as given their negotiated markups, (ii)

14We assume the location and quantity requirements of a project are exogenous. In practice they
are determined when the land is acquired, before the choice of cladding material is made.
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two bilateral bargaining problems which determine the markups for the �rst-best and

runner-up products respectively, taking as given the markup anticipated in the other

problem, and (iii) an equilibrium concept to account for the two bargaining problems

being interdependent.

Product choice given negotiated markups It is convenient to work in terms of

markups, ρj, de�ned as price minus cost, i.e. ρj ≡ pj − cj where pj is the price of

product j. Given that the markup ρj is the part of surplus wj appropriated by the

manufacturer, the rest is enjoyed by the buyer as indirect utility, i.e. vj − pj ≡ wj − ρj.
Given the markup pair ρ = [ρj(n)]n∈{1,2} the buyer chooses the product j ∈ {j(1), j(2)}
that generates the highest indirect utility wj − ρj. The indicator function for the choice

of product j ∈ {j(1), j(2)}, given markups ρ, is therefore

dj(n)(ρ) = 1[wj(n) − ρj(n) ≥ wj(n′) − ρj(n′)] for n ∈ {1, 2}, n′ = {1, 2} \ {n}. (3)

If (3) is a tie we assume the buyer selects the �rst-best product j(1): in this case,

assuming non-negative runner-up markups, the �rst-best seller k(1) is always able to

reduce markup by an arbitrary amount without making a loss.

Bilateral bargaining: feasible payo�s We now describe the payo� pairs that it

is feasible to agree in each bilateral bargaining problem, taking account of the markup

in the other agreement, and the buyer's product choice problem. Bilateral negotiation

n ∈ {1, 2}, given markup ρj(n′) in the other bargaining problem n′ = {1, 2} \ {n}, has
the following set of feasible payo�s to the buyer and manufacturer respectively{∑

n∈{1,2}dj(n)(ρ
∗, ρj(n′))× [wj(n) − ρj(n)], dj(n)(ρ

∗, ρj(n′))× ρ∗ | ρ∗ ∈ [0, wj(n)]
}
. (4)

We assume that the agreed markup must be in the range ρ∗ ∈ [0, wj(n)] to rule out

equilibria in which a markup is either negative or greater than the surplus from trade.

If the buyer is unable to conclude negotiations with either manufacturer�a situation

known by bargaining theorists as the impasse point (see Binmore et al. (1989))�the

buyer uses the outside good j = 0 and fully appropriates the surplus w0.
15

15We have written the notation for the case that the outside good is not either the �rst-best or the
runner-up product. This is not assumed in the model. If the outside good is the �rst-best then the
buyer selects the outside good and receives utility wj(0) without any negotiation, and if the outside
good is the runner-up then wj(2) = w0. (In the latter case the alternative bargaining speci�cation,
discussed below, coincides with the baseline bargaining speci�cation.)
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TIOLI model The TIOLI model is an important reference point. In the TIOLI

model each manufacturer posts a markup and the buyer selects the seller o�ering most

utility. The best reply of manufacturer k(n) in negotiation n ∈ {1, 2} to markup

ρj(n′) ∈ [0, wj(n′)] in the other bilateral negotiation n′ = {1, 2} \ {n} is

ρNj(n)(ρj(n′)) = argmax
ρ∗∈[0,wj(n)]

dj(n)(ρ
∗, ρj(n′))× ρ∗. (5)

The choice condition in (3) tells us that to induce the choice of product j(n) the markups

must satisfy the inequality ρj(n) < ρj(n′) +wj(n)−wj(n′). Using standard Bertrand-Nash

reasoning, in which the best-reply is the markup that marginally attracts the buyer

(subject to the markup being non-negative), the best reply (5) can be written

ρNj(n)(ρj(n′)) = max[0, ρj(n′) + wj(n) − wj(n′) − ιn], for n ∈ {1, 2}, n′ = {1, 2} \ {n}, (6)

where ι2 is small and positive and ι1 = 0 (since we assume the buyer selects �rst-best in a

tie). The two best reply functions in (6) are mutually consistent only when the �rst-best

and runner-up markups are equal to the surplus advantage and zero respectively:

ρj(n) =

 ∆w for n = 1

0 for n = 2.
(7)

The buyer chooses the �rst-best product and, since the choice is marginal, gets a payo�

equal to the runner-up product's surplus wj(2). This result is familiar from models of

individualized Bertrand-Nash price setting (e.g. Thisse and Vives (1988)).

Bargaining model In the bargaining model, unlike the TIOLI model, the buyer has

bargaining power in each bilateral negotiation. We model each bilateral negotiation

using a Nash bargaining model in which the disagreement point is the impasse point,

where the buyer buys the outside good and gets surplus w0. The buyer also has what

bargaining theorists call an outside option, which constrains negotiations. The outside

option is to buy the product in the other bilateral negotiation at its anticipated markup.

To solve the model we begin by deriving the Nash bargaining solution in which the

outside option is absent, which, in negotiation n ∈ {1, 2}, is given by

ρAj(n) = argmax
ρ∗∈[0,wj(n)]

[wj(n) − ρ∗ − w0]bi × [ρ∗ − 0]bk(n) = bik(n)(wj(n) − w0) (8)
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where bi ≥ 0 and bk(n) ≥ 0 represent the bargaining skill of the buyer and manufacturer

respectively and bik(n) = bk(n)/(bi + bk(n)) is a bargaining parameter representing the

manufacturer's relative bargaining strength.

The buyer's outside option in negotiation n ∈ {1, 2} is to buy the product in the other
negotiation n′ = {1, 2} \ {n} at its anticipated markup ρj(n′). This option is relevant

only if it induces her to switch away at the Nash bargaining solution ρAj(n). This is

the case if ρAj(n) exceeds the best reply function ρNj(n)(ρj(n′)) de�ned in (6). Hence, the

markup that solves the bilateral bargaining problem can be written

ρBj(n)(ρj(n′)) = min
[
ρAj(n), ρ

N
j(n)(ρj(n′))

]
, (9)

or, more explicitly, substituting from (8) and (6),

ρBj(n)(ρj(n′)) = min
[
bik(n)(wj(n) − w0),max[0, ρj(n′) + (wj(n) − wj(n′))− ιn]

]
. (10)

This approach applies the outside option principle introduced in Binmore et al. (1989)

which says that an outside option has no e�ect on a Nash bargaining problem unless it

constrains it. The principle is based on the argument that any threat to use the outside

option is not credible unless doing so leaves the buyer better o�. Unlike Binmore et al.

(1989), which considers a single bilateral problem and an exogenous outside option, we

study two bilateral problems, where the outside option in one problem is endogenous

and determined in the other bilateral negotiation. It is the outside option that generates

the interdependence between negotiations.

To solve for an equilibrium we assume that the two bilateral bargaining problems

are mutually consistent�i.e the markup for each bilateral problem solves that problem

given the markup in the other bilateral problem. In the unique equilibrium outcome

the �rst-best markup is the minimum of the Nash bargaining solution and the TIOLI

markup and the runner-up markup is zero, i.e.

ρj(n) =

min [bij(1)(wj(1) − w0),∆w] for n = 1

0 for n = 2
(11)

and the buyer selects the runner-up product. See Appendix A for a derivation.16,17

16Manufacturer bargaining skill does not a�ect buyer's choice of product: the payo� of the buyer
when selecting j(1) is never lower than wj(2) even when bij(1) = 1 as the �rst-best manufacturer must
o�er at least the payo� the buyer can get when buying j(2) at marginal cost.

17As a consequence of inducing the buyer to choose the �rst-best product, we show in Appendix
A that the equilibrium has the property that it is �bilaterally e�cient� in each negotiation�i.e. in
each negotiation the agreed markups maximize the sum of the payo�s of the two negotiating agents
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At the equilibrium markups the negotiation with the runner-up is always constrained

by the outside option of buying the �rst-best product. The negotiation with the �rst-

best is however constrained by the outside option of buying the runner-up product only

if the �rst-best manufacturer's markup is greater in the Nash bargaining solution than

in the TIOLI solution (i.e. bij(1)(wj(1) − w0) > ∆w). Only in this case does the buyer

bene�t from competition, because the �rst-best manufacturer must reduce its markup to

∆w to retain the buyer. Note that as the bargaining parameter increases (and the buyer

becomes weaker) this is more likely to happen. In the limiting case, where bij(1) = 1, it

always does, because the �rst-best product's surplus advantage ∆w = (wj(1) − wj(2)) is

by de�nition less than its surplus di�erence with the outside good (wj(1) − w0). Hence,

the bargaining model nests the TIOLI model for the case where bij(1) = 1.

The model is an equilibrium of a pair of bilateral Nash bargaining problems in which

the buyer has the outcome from the other problem as an outside option. Given that

the model is derived using interacting axiomatic bargaining models, rather than from

non-cooperative game theory, it is useful to discuss how we interpret it. As we discuss

next, the model has microfoundations in a number of noncooperative bargaining models

with multiple rival sellers and discrete buyer choice. Thus we can interpret our model

as a representation of equilibrium in a noncooperative bargaining model.18

Noncooperative microfoundations The outcome of the bargaining model (11) is

supported in a number of alternative noncooperative bargaining models where the buyer

negotiates with multiple sellers (and the buyer must select no more than one).19 In these

models the outcomes are obtained in the limiting equilibrium as time discounting goes

to zero in the non-cooperative framework that dates back to Rubinstein (1982). All the

models assume single-sourcing buyers, all have sellers that di�er in terms of how much

surplus they generate in trade with that buyer, and all have the desirable feature that

(accounting for product choice) given the markups agreed in the other bilateral negotiation�which is
the de�nition of a contracts equilibrium given in Cremer and Riordan (1987).

18Turning to cooperative game theory, we note that the model's outcome is in the core of the coalition
game involving all three parties (namely the buyer and the two manufacturers)�i.e. it satis�es the
following principles that we may a priori consider reasonable: it (i) maximizes and fully distributes the
total surplus, (ii) ensures that no sub-coalition of the parties can be made better o� without another
being made worse o�, and (iii) implies a zero allocation of surplus to players that contribute nothing
to the overall surplus (namely the runner-up and other rivals). Moreover, each possible allocation in
the core can be achieved for some value of the relative bargaining skill bij in its range [0, 1], and this
parameter can be seen as capturing how the parties split the surplus. Hence, the model can also be
interpreted as representing an equilibrium that satis�es these principles, without assuming a speci�c
non-cooperative model.

19In the literature referenced in this paragraph, some papers present the problem with a single seller
negotiating with multiple buyers and others with a single buyer negotiating with multiple sellers. The
strategic problem is formally equivalent in these two alternative cases. We summarize all papers as
though they were for a single buyer and multiple sellers, consistent with our setting.
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they allow information �ow between the negotiations for the two alternative goods.20

The models di�er in the timing of o�ers and the identity of who makes an o�er at each

stage, but all generate the markup and choice outcome in our model as the equilibrium.

The �rst model is the seminal one-buyer two-seller �auctioning model� which is sketched

in Binmore (1985) and Binmore et al. (1992) (and derived formally in Chapter 9.3 of

Osborne and Rubenstein (1990)). This has an alternating-o�er protocol in which the

buyer begins by announcing a number, which represents the net utility she requires if

agreement is to be reached, which both sellers hear. If the �rst-best seller accepts then

there is trade but if he rejects then the runner-up can decide whether to accept or to

reject. If both reject there is a delay before the two sellers make simultaneous o�ers to

the buyer and the buyer can select one to accept. If the buyer rejects both then there

is another delay before the buyer can o�er again. A closely related model which gives

the same equilibrium outcome but with a slightly di�erent sequence of moves is the

�non-integration� case in Bolton and Whinston (1993). Another is the (no-intermediary

version of the) model in Manea (2018) which di�ers from the others in this paragraph

by adopting a �random-proposer� protocol, in which the buyer selects in any period an

upstream seller k ∈ K and with probability $ ∈ (0, 1) the buyer proposes a price and

seller k decides whether to accept and roles are reversed with probability (1 − $). In

either event if the o�er is rejected the game proceeds to the next period and the process

is repeated, and so on.21 Finally, the Appendix in Ghili (2018) presents a further model

which generates the outcomes in our model. This has an alternating-o�er protocol where

the timing of moves between the buyer and sellers is as described in Collard-Wexler et al.

(2019) but in a set-up where the payo�s (unlike those in Nash-in-Nash) are such that

buyer prefers single-sourcing.

Alternative bargaining model Binmore et al. (1989) note the possibility that in

applied work there is more than one plausible speci�cation for the disagreement point.

An alternative to the (baseline) bargaining model is to assume that in each bilateral

negotiation n ∈ {1, 2} the disagreement point is to buy the other product j(n′) at the

markup agreed in the other negotiation, so the disagreement payo� is (wj(n′) − ρj(n′)).
20The last of these features is absent from an alternative approach to establishing non-cooperative

foundations for multilateral bargaining models, which uses an �independent agents� representation, in
which the buyer sends a separate agent to each seller, and each negotiation proceeds bilaterally with
alternating o�ers and no information �ow between the negotiations (see Chipty and Snyder (1999)). It
is possible to microfound the baseline bargaining model in this alternative approach, assuming that (i)
time discounting derives from from time preference (see Binmore et al. (1986), deal-me-out case) and
(ii) a zero markup is anticipated for the runner up good.

21This protocol is adapted by Ho and Lee (2019) to allow for situations where the buyer bene�ts
from trading with multiple manufacturers in equilibrium; this is a generalization which we do not
require given that in our framework the buyer single-sources.
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The outcome of the model is

[ρj(1), ρj(2)] = [bij(1)(wj(1) − wj(2)), 0]. (12)

The �rst-best markup is lower than in the TIOLI outcome and the buyer buys the �rst-

best good. In the negotiation with the �rst-best, the �rst-best markup in (12) is the

Nash Bargaining solution, since the gains from trade with the �rst-best are wj(1)−wj(2)

when the runner up has a zero markup. The negotiation with the runner-up does not

have a well de�ned Nash bargaining solution, since the gains from trade with the runner-

up are negative when the �rst-best markup is less than the TIOLI price, so instead it is

assumed that the buyer and runner-up agree a zero markup given they do not expect

to trade. This alternative model is discussed in Miller (2014). The alternative model

(like the baseline) nests the TIOLI case when bij(1) = 1. It does not appear to be

as strongly micro-founded in the non-cooperative bargaining literature as the baseline

model.22 For this reason we proceed with the baseline bargaining model in the rest of

the paper. However, as a check on robustness, we also estimate and present results from

the alternative speci�cation.23

3.3 Speci�cation of value, cost and bargaining skill

We now reintroduce i subscripts to specify how value vij, cost cij, and the bargaining

parameter bij, vary across projects. The variation in surplus wij = vij − cij follows.
The value in project i of product j is

vij = δj + β′z
(1)
ij − α′z

(2)
ij + εij (13)

where δj is a constant e�ect for the product and the remaining terms capture the

project-product match. zij = (z
(1)
ij , z

(2)
ij ) is a vector of value-shifters available to the

econometrician. We divide zij into two parts: z
(1)
ij shifts value (up to transport costs)

and z
(2)
ij shifts transport costs. z

(1)
ij includes (i) interactions of dummies for project

region and aesthetic product characteristics (to pick up regional variation in aesthetic

tastes)24 and dummies for whether the product is produced in the same area as the

22We are unaware of any micro-foundation for the alternative model in non-cooperative bargaining
theory with multiple sellers other than in the �independent agents� representation described in footnote
20, where its predictions for the �rst-best markup can be derived assuming that (i) time discounting
derives from from an exogenous probability of breakdown at each stage (see Binmore et al. (1986),
split-the-di�erence case) and (ii) a zero markup is anticipated for the runner up good.

23In Appendix A we derive the �rst-best markup in (12) and the associated likelihood function.
24For parsimony we use two large regions, north and south, to interact with aesthetic characteristics.

The south region is NUTS1 regions H-K and the north region is other NUTS1 regions. This partition of
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project (to pick up a �home� taste e�ect);25 (ii) interactions of weather conditions for

project region and technical characteristics of the product; and (iii) pairwise buyer-

manufacturer indicators (to capture buyer-speci�c preferences over manufacturers).26

z
(2)
ij includes fuel costs and straight-line distance to the project from the production

location. εij captures heterogeneity in the project-product match that is not measured

by the econometrician in zij because (e.g.) the spatial granularity of the regional taste

and weather variables is quite crude, because there are omitted brick characteristics, or

because straight-line distance leaves measurement error in transport costs. We assume

εij is iid across projects i according to a GEV distribution (nesting the inside goods) with

parameters σ = (σJ , σε), where σJ ∈ [0, 1] is the nesting and σε the scale parameter.
27

The (unit) cost of supplying project i with quantity qi of product j is

cij = γ′wcij + γf/qi + σννi. (14)

The vector wcij is cost-shifters including input prices, a dummy for product j's plant,

and an indicator for whether product j is low quality.28 γf is a �xed cost which al-

lows transaction-level scale e�ects. Finally, νi is iid across projects with a standard

normal distribution and allows projects to vary in supply cost�e.g. production timing

requirements within the year or bespoke shape requirements speci�ed by the buyer.

A number of features of the model motivate the simplifying assumption of complete

information about values (13) and costs (14). First, manufacturers and buyers are few

and trade repeatedly. Second, there is little process or product innovation. Third,

factors a�ecting the project-product match, including those not observed by the econo-

metrician, tend to be quite transparent and largely driven by project location�e.g. (i)

the tastes of the �nal house-buying public to whom housing is marketed, (ii) local en-

vironmental and weather considerations, and (iii) the overall cost of transport from the

production location�and manufacturers are likely to become familiar with these from

GB re�ects what is said on regional preference in CC (2007) paragraph 5.26: �soft mud [molded] bricks
were, we were told, predominantly used in the South, and extruded [wirecut] bricks in the Midlands
and North.� Our estimates in the next section are consistent with this pattern.

25The CC report, CC (2007), mentions this e�ect in paragraph 5.26, where they say that there
is evidence of distinct regional brick preferences which �seemed to be driven by historical factors,
particularly customer preferences for bricks which historically had been produced locally.�

26Buyer-speci�c preferences over manufacturers are motivated in CC (2007) (paragraph 4.71): buyers
consider quality factors that vary by manufacturer such as continuity of supply, consistent quality,
complementary services, quality of just-in-time production and after-sales service.

27Given the inclusion of the δj terms, the speci�cation is consistent with a choice between varieties
(nested) within each j; this follows from the maximum stability property of the GEV distribution (see
Ackerberg and Rysman (2005) and footnote 13).

28A low quality product is de�ned as one with a below-median (across j ∈ J ) ratio of strength to
water absorption. Low quality bricks have a lower energy requirement in the production process.
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repeated market activity in multiple locations.

We assume that the bargaining skill is determined at the level of the manufacturer

and buyer. Let h(i) and k(j) denote the buyer for project i and manufacturer of

product j respectively. The bargaining skill of agent l (a buyer or manufacturer) is

bl = exp(η11[l∈K] + η2yl) where η = (η1, η2) are parameters, 1[l∈K] ∈ {0, 1} indicates

whether the agent l is a manufacturer, and yl is agent size, de�ned as the log of l's

number of transactions in the 4-year period of the data. A manufacturer with size

di�erence yij = yk(j) − yh(i) has relative bargaining power

bij = bk(j)/(bk(j) + bh(i)) = exp(η1 + η2yij)/(1 + exp(η1 + η2yij)) ∈ [0, 1].

Conditional on the primitives of the model, the speci�cation implies that choice and

price outcomes in a given project are independent of those in other projects. This rules

out at least three potential forms of non-independence. First, intra-manufacturer ef-

fects generated by plant-level capacity constraints; we regard these as negligible in our

application, given that plants are not operating close to capacity, have high levels of in-

ventory, and have a large capacity relative to individual transactions (see CC (2007) para

7.8).29 Second, inter-buyer interdependence could arise because buyers compete in the

retail market for new houses; however, in our framework bargaining induces the e�cient

buyer choice, so negotiations over price transfer bilateral surplus without impacting the

buyer's retail price or output decisions. Third, consider intra-buyer interdependence.

Given that the projects are spatially separate there is no obvious role for intrinsic taste

synergies. There is also little role for synergies arising from shopping costs�i.e. costs

per manufacturer used across all transactions in any buying period: buyers are already

multi-sourcing (in di�erent transactions) and according to CC (2007) (paragraph 7.7)

face no signi�cant switching costs. Moreover while, with non-individualized pricing,

multi-product �rms may have bundling incentives�loosely, cutting price on one prod-

uct to attract a buyer to another�these do not arise when prices are individualized,

with or without shopping costs, since negotiated prices induce the buyer to choose the

�rst-best product separately in each transaction.30

29The framework we use permits a relaxation of this where buyers and sellers condition on the
equilibrium outcomes of negotiations in other projects (the approach in Chipty and Snyder (1999)),
e.g. let costs to k from project i be ck(qi, Q−i) where Q−i is a vector of quantities in other projects,
and assume Q−i is una�ected by the bargaining process for i.

30As Nalebu� (2009) points out, while a seller in a market with non-individualized pricing might
sell a bundle of complementary items at a discount relative to its individual items, the presence of
such discounts �depends on an unstated assumption: that �rms set a single price in the market to all
customers. This is a quite reasonable assumption for a typical consumer good, such as Microsoft O�ce.
But it is not a reasonable assumption for the sale of large commercial products in which the two parties
engage in extensive negotiation as part of the sale process. If �rms can price discriminate or negotiate
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4 Probability, likelihood and estimation

For each project using an inside good the transactions data records: (i) the �rst-best

product and its negotiated price, [j(i, 1), pi], (ii) shifters of joint surplus xi = [xij]j∈JJ
where xij = (z

(1)
ij , z

(2)
ij ,w

c
ij, qi), and (iii) shifters of the �rst-best manufacturer's bargain-

ing skill relative to the buyer yij(i,1). We also observe, using other sources, the market

share s0m of the outside good, and hence the number of projects N0m choosing it, for

each region-year market m ∈ M. There are two main econometric challenges. First,

for any project i, we do not observe the buyer's runner-up good or the prices the buyer

would have paid for products she did not choose (unlike standard choice models, e.g.

Berry et al. (1995)). Second, there is a selection issue in the pricing equation, similar to

that in Dubin and McFadden (1984): the choice of product and the individualized price

both depend on unobserved shocks (νi, εi), so that, conditional on product choice, vari-

ables in the price equation are endogenous. To address these challenges we estimate the

pricing and choice parts of the model jointly. To do this we use the model to predict the

runner-up product and its impact on the �rst-best price, given the unobservables, and

then integrate out the unobservables. There are many candidate runner-up products, so

this is a high-dimensional integration problem; we show that when idiosyncratic tastes

are GEV there is a tractable likelihood for the joint probability of the observed choice

and price. A separate challenge is that the transactions data do not include transactions

for the outside good, which is why we add data on its market share by region-year.

4.1 Probability expressions

Inequality conditions for choice and �rst-best markup In this section we derive

a set of inequalities that are necessary and su�cient conditions for buyer i to choose

product j at a markup ρij that exceeds some constant ρ > 0. To do this we combine a

set of inequalities for choice of product j with a second set of inequalities for its markup

to exceed ρ. We obtain the former set of inequalities from the property that equilibrium

markups induce choice of the �rst-best product, so that in equilibrium

(i chooses j) ⇐⇒ wij ≥ wij′ ∀j′ ∈ J . (15)

We obtain the latter set of inequalities from the equilibrium �rst-best markup in (11)

ρij = min[bij(wij − w0),∆wi] (16)

with each customer, then the advantage to bundling disappears.�
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which says the markup is the minimum of the Nash bargaining solution and the surplus

advantage over the runner-up good. The de�nition of the runner-up good (see (2))

implies it has the lowest surplus advantage among rival manufacturer's goods, i.e.

∆wi = min(wij − wij′)j′∈JJ\Jk(j) (17)

where j is the �rst-best good. Hence, substituting (17) into (16) the markup must be

less than or equal to the Nash bargaining solution and every surplus di�erence with a

rival manufacturer's good:

ρij = min[bij(wij − wi0), (wij − wij′)j′∈JJ\Jk(j) ]. (18)

It follows from the conditions in (18) that if the markup is greater than or equal to

a positive constant ρ then so must be the Nash bargaining markup and the surplus

di�erence with each rival manufacturer's good, i.e.

ρij≥ ρ ⇐⇒ [bij(wij − wi0), (wij − wij′)j′∈JJ\Jk(j) ] ≥ ρ (19)

or, rearranging

(ρij ≥ ρ) ⇐⇒

wij ≥ ρ/bij + wij′ for j′ = 0

wij ≥ ρ+ wij′ ∀j′ ∈ JJ \ Jk(j).
(20)

The necessary and su�cient conditions for the joint outcome in which i chooses j and

pays a markup greater than ρ are given by combining the choice conditions in (15) and

the pricing conditions in (20). Notice that, for ρ > 0, the condition in (20) for a given

j′ implies the condition for the same j′ in (15), i.e. the inequalities in (20) are su�cient

for the corresponding ones in (15). Thus, pooling (15) and (20), we get

(i chooses j and ρij ≥ ρ) ⇐⇒


wij > wij′ ∀j′ ∈ Jk(j)

wij > ρ/bij + wij′ for j′ = 0

wij > ρ+ wij′ ∀j′ ∈ JJ \ Jk(j).

(21)

Choice probabilities Since the conditions in (21) are in the same form as the inequal-

ities of a standard discrete-choice model, we can leverage results from discrete-choice

theory, developed for example in McFadden (1978), to compute probability measures.

To derive probabilities we write wij = ω(xij, νi)+εij, de�ning ω(xij, νi) as surplus up to

εij given project type (xi, νi). Following standard practice we normalize surplus levels
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such that wi0 = εi0 for the outside good. Let the vector εi = (εij)j∈J have the prob-

ability distribution function Gε. The probability sij that product j ∈ JJ is chosen for

project i of type (xi, νi) is is the probability that εi satis�es the inequalities in (15):

sij =

∫
εi

1{ωij + εij ≥ max[(ωij′ + εij′)j′∈JJ , εi0]}dGε(εi) (22)

where ωij = ω(xij, νi). Since εi ∼ GEV (where inside goods are nested with parameter

σJ), we have from McFadden (1978) that sij(xij, νi) = sij|J(xij, νi)siJ(xij, νi) where

sij|J(xij, νi) =
exp{ σε

σJ
ωij}∑

j′∈JJ exp{ σε
σJ
ωij′}

, siJ =
exp{σJWi}

1 + exp{σJWi}

and Wi = ln[Σj′∈JJ exp{ σε
σJ
ωij′}].

Joint probability measure for choice and markup To derive the discrete-continuous

probability measure for buyer i's choice and markup outcome we rewrite the inequalities

(21) as follows

(i chooses j and ρij ≥ ρ) (23)

⇐⇒ ωij + εij ≥ ωij′ + εij′ + ρ× (χjj′ + b−1
ij 1[j′=0]) ∀j′ ∈ J

where χjj′ = 1[j′∈JJ\Jk(j)] indicates whether j′ is a rival manufacturer's good. The

probability rij(ρ) that product j is chosen and that its markup exceeds ρ for a project

of type (xi, νi) with bargaining skill shifters yij is the probability that εi satis�es the

inequalities in (23), i.e.

rij(ρ) = Pr(i chooses j and ρij ≥ ρ|xi, yij, νi) (24)

=

∫
εi

1{ωij + εij ≥ max[(ωij′ + εij′ + ρχjj′)j′∈JJ , ρb
−1
ij + εi0]}dGε(εi).

Since the inequalities in the second line of (24) have the same structure as those for

the discrete choice problem in (22), it follows by analogy from McFadden (1978) that

rij(ρ) = rij|J(ρ)riJ(ρ) where

rij|J(ρ) =
exp{ σε

σJ
ωij}∑

j′∈JJ exp{ σε
σJ

[ωij′ + ρχjj′ ]}
, riJ(ρ) =

exp{σJRi(ρ)}
exp{σερb−1

ij }+ exp{σJRi(ρ)}
(25)

and Ri(ρ) = ln(Σj′∈JJ exp{ σε
σJ

[ωij′ + ρχjj′ ]}).
To obtain the discrete-continuous probability measure fij(ρ) of observing choice j
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at markup ρ for project i we di�erentiate rij(ρ) in (24) with respect to ρ: fij(ρ) =

−∂rij(ρ)/∂ρ. fij(ρ) has a convenient closed form given in Proposition 1.

Proposition 1. If εi v GEV, nested by JJ , with nesting parameter σJ , then the

discrete-continuous probability measure, of choice j at markup ρ for project i, is

fij(ρ) = −∂rij(ρ)

∂ρ
= σεrij(ρ)[1− rik(ρ)− (1− σ−1

J )(1− rik|J(ρ))]− (1− b−1
ij )rij(ρ)ri0(ρ)

where rik(ρ) = Σj∈Jkrij(ρ) and rik|J(ρ) = Σj∈Jkrij|J(ρ).

Proof. See Appendix A.

To get the expressions in terms of observable data we begin by writing them in

terms of project type (xi, νi), where cost shock νi has standard normal distribution

function Gν(νi). Thus we write the choice probability sij = sj(xi, νi) and the choice

and markup probability measure fij(ρ) = fj(ρ|xi, yij, νi). Since we would like to express

the likelihood in terms of price p (rather than the markup ρ, which is not observed) we

de�ne f ∗ij(p|xi, yij, νi) = fj(p− ci(xi, νi)|xi, yij, νi). To obtain probability expressions in

terms only of observable type we integrate out νi to obtain

sj(xi) =

∫
νi

sj(xi, νi)dGν(νi) and f ∗j (p|xi, yij) =

∫
νi

f ∗j (p|xi, yij, νi)dGν(νi) (26)

We obtain the integrals by simulation.31

The analytical forms sj(xi, νi) and f
∗
ij(p|xi, yij, νi) are derived using the GEV assump-

tion and hence, conditional on any project's type (xi, νi), they imply the substitution

patterns of a nested logit model. However, the framework can accommodate additional

unobserved random e�ects: as we have just seen, equation (26) integrates out a random

cost e�ect. It is possible to add random utility parameters e�ects too, and integrate

these out numerically, as done in the mixed logit approach in Berry et al. (1995). This

might be desirable in some applications to allow more �exibility in substitution pat-

terns. We do not include any random utility coe�cients because in our application we

31In the integral for f∗j (pi|xi, yi) in (26) we use importance sampling to avoid cost shocks νi that are
uninformative because they imply negative markups, which have zero probability. Let νci be the highest
cost shock consistent with non-negative markups, i.e., from costs (14), νci = (pi − γ′wcij + γf/qi)/σν ,
which implies

f∗j (pi|xi, yij) =
∫ νci
−∞f

∗
j (pi|xi, yij , νi)gν(νi)dνi = Gν(νci )

∫ νci
−∞f

∗
j (pi|xi, yij , νi)g̃ν(νi)dνi. (27)

The �rst equation follows because the likelihood is zero outside the limit of integration. In the second
equation g̃ν(νi) = gν(νi)/Gν(νci ) is the density for the upper-truncated standard normal distribution,
where gν(νi) is the standard normal density. We simulate the integral for each i using 200 independent
draws from g̃ν(νi) in the range (−∞, νci ).
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include in the utility speci�cation a detailed set of observed product-project interactions

zij which capture taste heterogeneity between projects (see (13)).

The unconditional market share smj of product j, in arbitrary market m, is obtained

by summing over (discrete) x-types, i.e. smj = Σxsj(x)µ(x|m) where µ(x|m) is the

proportion of projects in m that are of type x including those using the outside good.32

4.2 Likelihood function

Let Y = {[j(i, 1), pi, xi, yij(i,1)]i∈IJ , (N0m)m∈M} summarize the data where IJ is the set

of projects using an inside good. Let the parameters be (θ, δ), where θ = (β, α, σ, γ, η)

and δ = (δj)j∈JJ . Rewriting probability expressions in terms of parameters (θ, δ) the

function f ∗j(i,1)(pi, θ, δ|xi, yij(i,1)) is the joint probability measure of a project of type xi

selecting j(i, 1) at price pi given bargaining skill shifters yij(i,1), and the function sm0(θ,δ)

is the probability that a project of unknown type in region-year market m selects the

outside good. The log-likelihood function is given by

l(θ, δ, Y ) = Σi∈IJ ln f ∗j(i,1)(pi, θ, δ|xi, yij(i,1)) + Σm∈MNm0 ln sm0(θ,δ) (28)

where the �rst term is the sum of the contributions from the |IJ | projects for which
inside goods are chosen (for which we have transaction-level data) and the second is the

sum of contributions from the Σm∈MNm0 projects in which the outside good is chosen

(for which we observe the number of projects in each region-year market). Parameters

are obtained by maximizing the likelihood. To reduce the dimension of the maximization

problem we use an inversion method as used in Berry et al. (1995). We concentrate (28)

with respect to the vector of mean utilities δ by inverting the market share functions

sM(θ,δ) = [sMj(θ,δ)]j∈J where market M is Great Britain over the full 4-year period of

the data. This gives a vector of mean utilities δ(θ, sM) for any candidate value of θ and

observed market share vector sM .
33 The parameters that maximize the log-likelihood

32For µ(x|m) we assume that projects are geographically distributed between NUTS2 sub-regions
within m in proportion to o�cial data on the number of new houses completed for the 4-year period of
the data, and that x is distributed within any NUTS2 sub-region and year according to its empirical
distribution in the transactions data. To be concrete let m = (κ, t) where κ is a NUTS1 region and
t is a year. Then µ(x|m) = Στ∈Ωκµ1(x|φ, t)µ2(φ|κ) where φ indexes NUTS2 regions, Ωκ is the set
of NUTS2 regions in κ, µ1(x|φ, t) is the distribution of x in the transactions data for φ and t, and
µ2(φ|κ) is the distribution of the number of new houses completed in the 4-year period of the data,
from the O�ce for National Statistics House Price Statistics for Small Areas; since these data on
completions are presented by dwelling size class we standardize by giving a detached house a weight
of 1, a semi-detached house 0.75, a terraced house 0.5 and an apartment 0.40. There are 39 NUTS2
regions in Great Britain. We consider NUTS2 regions to be su�ciently granular that we do not need
to distribute projects geographically within them using external data such as postal addresses

33To obtain δ(θ, sM ) we follow Berry et al. (1995) and iterate the system δι+1 = δι + ln[sM ] −
ln[sM (θ, δι)] where ι is an iteration count. The jth element of sM , i.e. the national market share for
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function are given by θ̂ = argmaxθ l(θ, δ(θ, sM), Y ).

4.3 Informal discussion of identi�cation

Identi�cation di�ers in three ways from the standard discrete-choice setting with micro

data discussed in Berry and Haile (2020). First, the issue of endogenous price regressors

does not arise as prices are modeled as the outcome variable in a price equation rather

than as an explanatory variable in product choice. Second, because the price equation

requires utility to be denominated in money units we cannot re-scale utility to normalize

the scaling parameter σε. Third, the model has bargaining parameters.

Since we have data on transport costs we estimate transport cost parameters α

directly in a �rst step using the regression model Tij = α0 + α′z
(2)
ij + ζij where Tij

denotes observed transport costs (in monetary units) in project i per unit of volume.

We assume that ζij is such that E[ζij|1, z(2)
ij ] = 0. The estimated values of parameters

α�and therefore the transport costs [α′z
(2)
ij ] for each i and j�are then treated as known

when maximizing the likelihood with respect to remaining parameters and play a role

similar to a consumer-varying price variable in identi�cation (as discussed in the next

paragraph). α0 is absorbed into mean utility δj (see equation (13)).34

Remaining utility parameters are identi�ed using standard discrete-choice argu-

ments. The covariance between project-product interaction variables [z
(1)
ij ]j∈J and prod-

uct choice is informative about the taste parameters β. The mean utility e�ects δ are

obtained, given any θ, by matching predicted and observed product market shares (since

the model satis�es the conditions in Berry et al. (2013)). The covariance between prod-

uct choices and �tted transport costs [α′z
(2)
ij ] is informative about σε. The covariance

(across region-years m) between observed surplus-shifters for inside goods and outside

good market shares sm0 is informative about σJ .

Turning to the cost parameters we leverage the transaction-level information in the

price. The covariance between price and cost-shifters wcij is informative about marginal

cost parameters γ. The relationship between price and quantity qi is informative about

the transaction-speci�c �xed cost γ0. The variance of prices, holding �xed the GEV

parameters, is informative about the parameter σν on the transaction-speci�c cost shock.

The bargaining parameters impact on prices so we turn to the pricing equation to

product j for the 4-year period of the data, is given by Σidij/N where N = |IJ |+
∑
m∈MN0m is the

total number of projects inducing those that use the outside good. We use a convergence criterion of∥∥δι+1 − δι
∥∥ < 1× 10−12.

34The transport cost parameters α can be identi�ed without using observing transport costs, using
the same information that is useful for identifying the β parameters, namely variation in choice sets
and chosen products across projects. Note also that transport costs were not available from one of the
four manufacturers; we assume these observations are missing at random.
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discuss their identi�cation. Let j and j′ be the �rst-best and runner-up goods respec-

tively, so that surplus advantage ∆wi = wij − wij′ , and price pij = cij + min [bij(wij −
wi0), wij −wij′ ], where, by de�nition, (wij −wi0) ≥ (wij −wij′) > 0. Note that variation

in (wij − wij′) across projects is fully passed through to price if bij = 1 and has no

impact if bij = 0. Despite the runner-up j′ being unobserved, the data are informative

about (wij − wij′). This is because we observe (i) the distance between project i and

the chosen product j and (ii) the distances between i and products in the set J \ J k

of candidates for runner-up j′. Hence, other things equal, a project for which (i) is un-

usually low, or the minimum value of the distances in (ii) is unusually high, will have a

relatively high value of (wij−wij′). Two bargaining parameters enter bij: η1 determines

the average level of bij and η2 determines how it varies with buyer-manufacturer size

di�erence. Thus, conditional on observing �rst-best product j, the observed covariance

of price with observed shifters of (wij − wij′) is informative about η1 and the observed

covariance of price and buyer-manufacturer size di�erence yij is informative about η2.

5 Estimates and model �t

Parameter Estimates The transport cost parameters α in Panel A of Table 4 are

estimated in a �rst step by regression. The remaining parameters in Panels B-D are

estimated by maximum likelihood; there is a separate set of likelihood estimates for the

bargaining and the TIOLI speci�cations.35 To help with interpretation note that the

model is scaled in units of ¿100 per 1000 bricks.

The estimates for α imply an average transport cost (for i ∈ IJ) of ¿23.74 per 1000

bricks, which is 13% of average unit prices (¿182.26 per 1000) reported in Table 1.

These costs vary across projects, depending on distance and annual fuel prices: the

1st and 99th percentiles (for i ∈ IJ) are ¿9.30 and ¿50.11 per 1000 bricks respectively,

consistent with executive testimony in CC (2007).36 The negative coe�cient on the

square of distance is consistent with the choice model estimates in Section 2.

Turning to utility parameters β in Panel B, there is a positive home-region taste

e�ect for each of the two home-region variables used, and projects in the north have

positive e�ects for red bricks and wire-cut bricks. Rainfall has a negative synergy with

brick absorption and frost has a positive synergy with brick strength. All these signs are

as expected. The GEV parameters σ imply that the εs for inside goods are positively

35We adjust standard errors as in Murphy and Topel (1985) to account for two-step estimation.
36Paragraph 4.60 of CC (2007) states that companies told the CC that �transport costs could be up

to nearly one-quarter of the cost of delivered bricks�. The mean production cost reported later in this
section (Panel D, Table 6) is about ¿167 for 1000 bricks. The 99th percentile transport cost, £50.11,
is 23% of the cost of delivered bricks, ¿50.11 + ¿167.00 = £217.11.
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A: Transport cost parameters

DSTij α1 (100km) 0.116 (0.004)
DSTij × wi α2 (100km × ¿/L) 0.048 (0.004)
DST 2

ij α3 -0.010 (0.001)
R2 0.825

B: Parameters in valuation vij Bargaining Price-taking

Same-region-produced β1 0.023 (0.004) 0.015 (0.003)
Within-100km-produced β2 0.040 (0.004) 0.017 (0.003)
North × red β3 0.046 (0.006) 0.041 (0.005)
North × wirecut β4 0.127 (0.007) 0.114 (0.006)
Absorption × rainfall β5 -0.048 (0.045) 0.015 (0.039)
Strength × frost β6 0.267 (0.128) 0.103 (0.112)
GEV nesting σJ 0.615 (0.023) 0.769 (0.019)
GEV scaling σε 0.208 (0.008) 0.145 (0.003)
Product e�ect (δ̄ is mean δj) δ̄ 0.861 (0.015) 0.553 (0.014)

C: Parameters in cost cij

Gas price index γ1 0.881 (0.030) 0.918 (0.023)
Wages (¿10k/year) γ2 0.412 (0.048) 0.196 (0.035)
Low-quality product (1/0)‡ γ3 -0.038 (0.007) -0.038 (0.007)
Plant e�ect (γ̄ is median) γ̄ 0.792 (0.059) 1.079 (0.044)
Fixed per-transaction cost γf 0.151 (0.029) 0.138 (0.029)
Scaling term for cost shock σν 0.071 (0.001) 0.069 (0.001)

D: Bargaining parameters

Manufacturer dummy 1[l ∈ K] η1 1.145 (0.122) - -

Agent l size yl η2 0.265 (0.046) - -

Log likelihood −46299.014 −446476.686

LR test statistic v χ2(2) 355.345 �

E: Manufacturer relative bargaining skill bik(j) ∈ [0, 1]

Bargaining TIOLI

Mean 0.540 1

SD 0.061 0

Min 0.401 1

Max 0.702 1

Notes. Panel A: regression of transport costs; observations: 11,855. Panels B-D: estimates

by maximum likelihood. Observations: N = |IJ | + ΣmN0m = 19, 036. Speci�cations include

regional and buyer-manufacturer dummies in value and plant dummies in cost. δ̄'s standard

error obtained by regressing (δj)j∈JJ on a constant. ‡Indicator for whether a brick has a below-

median ratio of strength to water absorption. LR test statistic is for the restriction imposed

by the TIOLI model. The 0.1% signi�cance level for the χ2 distribution with 2 d.f. is 13.82.

Statistics in Panel E for bik(i,1) are for i ∈ IJ . Units for transport costs and surplus estimates

is ¿100 per 1000 bricks. Standard errors in parentheses; those in panels C-D are adjusted to

account for two-step estimation.

Table 4: Estimated parameters
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External (a) External (b) Predicted

Unit cost c in ¿/1000 bricks 167.75 170.00 167.89

Notes: The predicted unit cost is Σi∈IJ ci/Σi∈IJ qi where costs ci are simulated as in footnote 39. The

external cost measures are averages of plant-month level unit costs. Measures (a) and (b) are for plants

for which respectively 90% and 99% of volume is facing bricks.

Table 5: External validation: comparison with external cost data

correlated. There are three further groups of unreported utility parameters: product-

speci�c e�ects δj, dummies that allow regional variation in tastes for inside goods, and

e�ects that allow buyer-speci�c preferences over manufacturers.37

Cost estimates are in Panel C. As expected, gas prices and wages have a positive

e�ect, and low-quality bricks have a negative e�ect. We estimate e�ects for each of

the 36 plants which are not reported. The per-transaction �xed cost parameter γf is

small, about ¿15 per transaction or 9% of the average unit cost of 1000 bricks, which

has an insigni�cant e�ect on unit costs except in the smallest transactions. The spread

parameter σν on project-speci�c costs implies a standard deviation of about 4% of

average unit costs.

The bargaining skill coe�cients in Panel D comprise a manufacturer e�ect η1 and

an e�ect for agent size η2. Panel E reports the implications of these e�ects for the

bargaining parameter bij = bk(i,1)/(bk(i,1) + bh(i)). The mean of {bij}i∈IJ is 0.540 which

indicates similar bargaining skill between manufacturers and sellers. The table shows

the variation around this mean because of relative agent size.

Likelihood ratio test of TIOLI pricing The TIOLI model is nested within the

bargaining model and is obtained by imposing the constraint bij = 1. This eliminates

the two bargaining parameters. Thus, we can test the hypothesis that bij = 1 using a

likelihood ratio test. The test statistic in Table 4 exceeds the critical value 13.82 of the

χ2(2) distribution at a signi�cance level of 0.1% so we reject the restriction.38

External cost validation To consider the �t of the bargaining model we simulate

a price, cost, and product choice prediction for each i ∈ IJ conditioning on an inside

good being chosen and on the project's observed characteristics.39 In the case of cost

37If a buyer never trades with a manufacturer we drop it from the choice set; equivalent to setting
its buyer-manufacturer e�ect to a large negative number. On average across in i ∈ IJ the buyer h(i)
trades with 3.6 of the 4 manufacturers in the 4-year period of the data.

38See the section 4.3 for a discussion of the identi�cation of the bargaining parameter.
39For each i we draw a realization from Gν|J(xi), the distribution of νi conditional on choice of

an inside good, a product j ∈ JJ using conditional choice probabilities [sj|J(xi)]j∈JJ (from which νi
cancels out), and a price from conditional density f∗j (p|xi, yij , νi)/sj(xi). The simulated j choice and
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Notes: The observed data are per-unit prices and distances for i ∈ IJ in the full sample period. Predicted outcomes
from the model are simulated for each project, conditional on choice of an inside good and observable type, as described
in footnote 39.

Figure 2: Distance and price densities

predictions, Table 5 compares them with external cost data which was not used in

estimation. These data, supplied by the manufacturers, consists of operating costs Cn

for each plant-month n for the plant-months covered by the transactions data. We

compute unit costs using (1/|N |)×Σn∈N (Cn/Qn) where Qn is the number of delivered

bricks for n and N is the set of plant-months. Given that some plants produce a wider

set of products than the type of brick we study (namely facing bricks), we limit N
to plants that specialize in facing bricks. De�nitions (a) and (b) use plants in which

facing bricks are 90% and 99% of output respectively (|N | being 182 and 106). The

model's unit cost prediction is calculated as Σi∈IJ (ciqi)/Σi∈IJ qi, where ci is simulated

for transaction i. We do not expect a particularly close match with the cost data,

as the predicted and observed concepts do not exactly correspond, mainly because of

di�erences between accounting and economic cost concepts. Subject to this caveat,

the match between the model's prediction and the external cost data provides a useful

validation of the model.

Informal model �t As a further �t check we compare observed and simulated prices

and distances (to product choices) in the densities in Figure 2 and Table 6. In Panels

A-C of the table we consider price �t from a number of angles, including a measure

of the within-product standard deviation, a decomposition by transaction size, and a

decomposition by relative agent size. Panel D reports statistics on distances. We regard

the overall �t of prices and distances as good.

cost shock νi imply a cost ci which is used in the cost validation exercise.

31



Observed Predicted

A: Price (¿/1000 bricks)

Mean 182.26 182.99
Standard deviation 24.84 23.05
Pooled standard deviation (product groups) 14.74 14.63

B: Mean price, transaction quantity

Smallest 25% (of transactions) 179.21 181.03
Largest 25% 186.48 184.93

C: Mean price, buyer/manufacturer size ratio

Smallest 25% (of transactions) 190.64 191.48
Larges 25% 177.77 179.01

D: Distance (km) DSTij

Lower quartile 51.42 49.34
Median 91.62 91.22
Upper quartile 157.90 165.19

Notes: The simulated values are calculated as described in footnote 39. Statistics are for

i ∈ IJ in the full sample period.

Table 6: Fit: prices and distances

6 Markups, pricing policy and concentration

In this section we analyze market power and mergers with individualized pricing. We

calculate equilibrium markups under actual and counterfactual pricing policies and con-

centration levels. To avoid inter-year cost variation we consider a single year, 2005; in

this section the results, and set notation I and IJ , include only projects for 2005.

Elasticities, diversion ratios and surplus advantage The standard approach to

assessing market power uses demand elasticities. In the model, however, negotiated

prices vary across projects for the same product, and tend not to leave buyers marginal

between �rst-best and runner-up products. Thus, we instead compute elasticities with

respect to cost. To do this we change the component cj = γwcij of unit cost, which,

for any j, is common across i for a given year. The own-product cost elasticities in

Panel A of Table 7 are on average −12.80. To show the impact of spatial di�erentiation,

Panel A compares the cross-elasticities of product pairs with low and high inter-product

distances; as expected, those pairs with low inter-product distance have higher cross-

elasticities than those with high inter-product distance.

To measure the importance of multi-product ownership, we calculate the diversion

ratio from product j (with respect to cj) to other products of manufacturer k(j). This

diversion ratio is 0.42 on average across products. It varies quite substantially across
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A: Elasticities and diversion ratios wrt cost of product j ∈ JJ
Mean SD

Own-elasticity -12.80 1.37
Cross-product elasticity 10% of product pairs with lowest inter-product distance 0.29 -

10% of product pairs with highest inter-product distance 0.07 -

Diversion ratio to �rm k(j)'s products 0.42 0.17
to inside products 0.88 0.03

B: Surplus advantage of �rst-best ∆wi for i ∈ IJ
¿/1000 bricks Mean SD

With portfolio e�ects ∆wi = wij(i,1) − wij(i,2) 20.07 17.79
Without portfolio e�ects ∆wi = wij(i,1) −maxj∈J\j(i,1) wij 13.51 12.73

Notes In Panel A the unit of observation is the product (j ∈ JJ ). Elasticities are with respect to cj = γwcij . Cross

elasticities are for top and bottom decile of product pairs by distance between products. The two diversion ratios

are de�ned as follows, respectively: 1 − (∂sk(j)/∂cj)/(∂sj/∂cj) and 1 − (∂sJ/∂cj)/(∂sj/∂cj) where sk(j) is the

market share of manufacturer k and sJ is the market share of all inside goods. In Panel B the unit of observation

the project (i ∈ IJ ).

Table 7: Demand elasticities, diversion ratios, and surplus advantage

products, mainly because manufacturers vary in portfolio size. The mean diversion ratio

to inside products as a class, including those of manufacturer k(j), is 0.88; this exceeds

the joint market share of inside products (which is 0.728 on average across region-years,

see Section 2), which indicates that inside goods tend to be closer substitutes for each

other than for the outside good.

We now consider the model's implications for per-unit surplus advantages {∆wi}i∈IJ .
These are a key determinant of markups and for any transaction can be decomposed

into a utility and a cost di�erence as follows

∆wi ≡ wij(i,1) − wij(i,2) = [vij(i,1) − vij(i,2)]− [cij(i,1) − cij(i,2)]. (29)

The utility di�erence includes the e�ects of both spatial and non-spatial di�erentiation.

An important factor that a�ects the utility and the cost di�erences is the �rst-best

manufacturer's product portfolio Jk(i,1), which determines the residual set J \ Jk(i,1)

that are candidates to be the runner-up. With individually-negotiated prices, a portfolio

e�ect on price arises if the �rst-best manufacturer owns the �second best� product, or

�second and third best� etc., increasing the surplus di�erence with the runner-up above

the level that would be obtained with single-product manufacturers.

Panel B presents statistics for the simulated sample {∆wi}i∈IJ .40 The table shows

substantial cross-project variation. To evaluate the importance of portfolio e�ects in the

40For each i we calculate ∆wi by simulating price, cost, and j(i, 1) as in footnote 39 setting bij = 1
(as in TIOLI) and using the TIOLI result that pij(i,1) − cij(i,1) = ∆wi.
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Simulated PCMs
Expected PCMs
given locations

Expected distance minus
mean distance

{Mi}i∈IJ {E[M |li]}i∈IJ {E[DSTij(i,1)|li]− D̂ST i}i∈IJ
(1) (2) (3)

Mean, i ∈ IJ 0.080 0.082 -80.245

CV, i ∈ IJ 0.738 0.159 �
Mean, bottom 10% 0.009 0.060 -69.958

Mean, top 10% 0.205 0.106 -153.587

Notes: Expectation operator E is with respect to observed and unobserved project type (see footnote 42). Top and

bottom deciles refer to the top and bottom 10% of projects: in column (3) projects are sorted by the margin measure

in column (2) and in the other columns by the margin measure in the same column. D̂ST i = (1/|JJ |)×Σj∈JJDSTij

is mean distance from i to inside products.

Table 8: Market power: PCMs Mi.

mean and variation of the surplus advantage, we report a measure of ∆wi that subtracts

portfolio e�ects, so that the runner-up is the �second-best� product after j(i, 1), i.e. it

is selected from J \ j(i, 1) rather than J \Jk(i,1). The table shows that portfolio e�ects

substantially increase the mean of ∆wi. They also increase the variance, indicating that

their relevance varies across transactions.

Market power To measure market power we simulate a PCM, denoted Mi, for each

i ∈ IJ , conditioning on observed characteristics (xi, yi).
41 The resulting sample {Mi}i∈IJ

is described in column (1) of Table 8. PCMs have a mean of 8.0%. This is consistent with

CC (2007)'s assessment that, despite its high concentration, the industry is characterized

by average or below-average pro�t levels. PCMs do however vary a lot across projects,

with a coe�cient of variation 0.738. Project location is one of a number of factors

driving this variation. To isolate its role we obtain the expected markup conditional

on location E(M |li) for each i ∈ IJ .42 The results in column (2) show that about a

�fth of the standard deviation of PCMs can be attributed to observed location.43 To

characterize locations of high- and low-PCM transactions we sort projects by E(M |li).
We �nd in column (3) that projects that have the greatest markups tend to have a

relatively low distance to the �rst-best manufacturer, consistent with the manufacturer

leveraging its transport cost advantage, and vice versa, a pattern known as �freight

absorption� in the spatial pricing literature.

41We use the set of simulated prices and costs as simulated using the method in footnote 39.
42To do this, we integrate out, for each i ∈ IJ , variables a�ecting markups other than observed

location li. We follow the steps in footnote 39 repeatedly for each project i, where, in each repetition,
we draw a value of x from gx holding one component of x, namely li, at its observed level.

43This is a conservative estimate of the e�ect of location, since it does not account for the part of
transport cost that is unobserved and included in ε (as discussed in Section 3.3).
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Counterfactual pricing policies We now study the impact of individualized pric-

ing on market power by comparing it with a counterfactual policy of uniform pricing.

Since uniform prices do not necessarily induce the �rst-best choice, we write the choice

indicator for product j in project i in a more general form. Let τi = (xi, yi, νi, εi) denote

the type of project i and let Gτ denote its distribution in the population. We write

markups in the general form ρτ = (pτj − cτj)j∈JJ , where pτj = pj(τ) if individualized

and pτj = pj if uniform. Then the choice indicator can be written

dτj(ρτ ) = 1{wτj − ρτj ≥ max[(wτj′ − ρτj′)j′∈JJ , wτ0]}

and aggregate market share sj, pro�t Π, and buyer surplus U , are given by44

sj = Eτ [dτj(ρτ )]

Π = NΣj∈JJEτ [qτρτjdτj(ρτ )]

U = NEτ [qτ max((ωτj − ρτj)j∈JJ , wτ0)].

In the uniform-pricing case, let prices p = (pk, p−k) where pk is the vector for manufac-

turer k and p−k is the vector for the other manufacturers. We assume multi-product

Nash equilibrium so that markups are given by ρi = (pj − cij)j∈JJ where prices solve

pk(p−k) = argmax
pk

Πk(pk, p−k) ∀k ∈ K

and Πk(pk, p−k) is the function that gives �rm k's pro�ts when prices are uniform.

In Table 9 we �nd that uniform pricing results in an increase in markups on average.

Markups increase by 34% overall relative to baseline markups. The table decomposes

this change into 25% from the change to TIOLI pricing and 9% from the change from

TIOLI to uniform pricing.

Although uniform pricing increases markups on average it also reduces the variation

of markups across projects. As a consequence a large minority of projects (31%) bene�t.

Panel B presents information on the distribution of percentage price changes across

44We do not condition on choice of an inside good here, since a change to uniform pricing can
change whether a project chooses an inside good; to simulate demand and prices, we now follow the
steps in footnote 39 except that instead of using i ∈ IJ (and their observable types xi), we draw project
characteristics from the density gx. Using the GEV distribution for εi, we compute U as follows

U = Eτ̃ [qτ̃σε ln{1 + [Σj′∈JJ exp(ωτ̃ j′ − (1− I)ρij′)/σε)]
σJ}] + IΠ (30)

where τ̃ is project type up to ε and where I is an indicator for individualized pricing. When I = 0 (30)
is the standard expression for buyer surplus. When I = 1 on the other hand socially e�cient choices
are always induced and the �rst term in (30) is total welfare and the second term Π is the part of total
welfare that goes to the manufacturers.
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A: Alternative pricing policies Mean markups (ρ̄) in ¿/1000 Mean Market-level outcomes

All Min 10% Max 10% 1[p<pb] sJ U/Ub Π/Πb

[Mean pb = ¿187.45] (1) (2) (3) (4) (5) (6) (7)

Individualized (bargaining, b) 15.22 1.07 43.46 0.00 0.75 1.00 1.00

Individualized (TIOLI) 19.01 1.30 55.53 0.00 0.75 0.87 1.25

Uniform pricing 20.40 15.60 24.91 0.31 0.56 0.89 0.97

B: Percentiles of distribution of % price changes for i ∈ IJ .

P1 P10 P25 P50 P75 P90 P99

Bargaining to uniform pricing -16.94 -6.57 -1.08 4.35 9.65 14.32 21.68

Notes In Panel A, b denotes outcomes (prices pb, buyer utility Ub and manufacturer pro�t Πb) using the bargaining

model. Statistics in columns 1-4 are based on all projects where an inside good is bought. Column 4 is the

proportion of projects i ∈ IJ enjoying a lower price for the �rst-best good than the bargaining price. Column 5

is the market share of inside goods (sJ ). Columns 6 and 7 report ratios of buyer and manufacturer surplus to the

bargaining case. Panel B gives the percentiles for projects i ∈ IJ .

Table 9: Counterfactual pricing policies

projects. The median price change is 4.35% but there is considerable variation around

this: the bottom and top deciles of the price increase are -6.57% and 14.32% respectively.

The market share for inside goods sJ falls because some e�cient trades of inside goods

do not take place with uniform pricing. Aggregate buyer welfare U falls by 11% and

manufacturer surplus Π falls slightly.

Counterfactual ownership concentration: merger and demerger We now an-

alyze counterfactual mergers and demergers that reallocate product ownership. We

hold �xed the overall set of inside products JJ , their production costs, and the set

of bargaining parameters bij for each (i, j) pair. As well as merger simulations under

the (factual) policy of individualized pricing, we also run them for the (counterfactual)

policy of uniform pricing, to study the impact of pricing policy on merger e�ects.

When prices are individualized, a change in product ownership has an e�ect on

the markup for project i only if it changes i's runner-up product. This is a di�erent

mechanism from the uniform pricing case. The e�ect of a merger is therefore limited to

those projects whose �rst-best and (pre-merger) runner-up products are insiders to the

merger (i.e. a subset of the projects buying from insiders to the merger). In contrast,

with uniform pricing, outsider �rms respond by raising prices�assuming that prices are

strategic complements�and a merger a�ects all projects i ∈ IJ .
First, we demerge to single-product �rms. This counterfactual measures the market

power that derives from multi-product ownership (i.e. portfolio e�ects). Comparing

this market structure with the baseline, we see in Panel A of Table 10 that mean
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A: Alternative market structures Mean markups (ρ̄) in ¿/1000 bricks Market-level outcomes

mean ρ̄− ρ̄a k = 1 k = 2 k = 3 k = 4 pj sJ Π/Πa

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Individualized pricing

Baseline structure (a) 15.22 � 12.94 12.05 13.38 16.65 187.09 0.75 1.00
Single-product 11.55 -3.66 11.90 11.24 11.04 11.72 183.43 0.75 0.76
Merger1 k ∈ {1, 2} 15.25 0.02 13.10 12.34 13.38 16.65 187.12 0.75 1.00
Merger2 k ∈ {3, 4} 18.25 3.03 12.94 12.05 19.03 19.47 190.12 0.75 1.19
Uniform pricing

Baseline structure (a) 20.40 � 17.06 15.46 18.85 23.12 193.96 0.56 1.00
Single-product 13.46 -6.94 13.50 13.15 13.39 13.51 186.82 0.64 0.75
Merger1 k ∈ {1, 2} 20.69 0.29 17.62 16.49 18.91 23.25 194.26 0.56 1.01
Merger2 k ∈ {3, 4} 24.68 4.28 18.30 16.24 27.84 27.79 197.45 0.52 1.09
B: Percentiles of the distribution of transaction-speci�c markup changes ρ̄− ρ̄a
Individualized pricing P1 P10 P25 P50 P75 P90 P99

Single-product -0.03 -0.27 -0.89 -2.40 -5.28 -8.42 -18.03
Merger1 k ∈ {1, 2} 0 0 0 0 0 0.01 0.77
Merger2 k ∈ {3, 4} 0 0 0 1.81 4.26 7.88 18.31

Notes: Mean individualized (bargained) price in the actual structure is ¿187.45 (per 1000 bricks). Cost and markup

units in ¿/1000 bricks. ρ̄a denotes unit markup in the actual market structure. In Panel A, column (2) indicates the

change in markup relative to the actual structure. Columns (3-8) show average markups by manufacturer. Column

(7) is the average price across projects in ¿/1000 bricks. Panel B gives the percentile markup changes for projects

i ∈ IJ .

Table 10: Counterfactual market structure

markups (in ¿/1000) fall by 3.66. This is a drop of about 25%. Panel B shows that

the drop (in ¿/1000) varies across projects: the bottom decile has a minor fall of 0.27

while the top decile has a fall of 8.42, which is about 30 times greater. This highlights

that, with individualized pricing, the relevance of portfolio e�ects varies substantially

across projects, so that the harm from the high level of ownership concentration that

characterizes the industry is unequally distributed.

Second, we consider two counterfactual mergers: a merger of the two smallest k ∈
{1, 2} and the two largest manufacturers k ∈ {3, 4} respectively. The former, considered
(and approved) in CC (2007), has a very small average e�ect on markups.45 The latter,

has, unsurprisingly, a much larger average e�ect. Under individualized pricing, it is

relevant to analyze not just the mean but also the distribution of markup changes

across projects in IJ . In Panel B we see that the markup e�ects of the second merger

45Note the following caveats: (i) larger price increases would result if we allowed products for the
merged entity to inherit the bargaining skill associated with the more skilled of the insiders to the
merger, (ii) lower price increases would result if we allowed cost e�ciencies, and (iii) as discussed in
Section 2 the analysis is for national house-builders, which are a subset of the manufacturer's customers.
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Counterfactual pricing policy/market structure

Buyer's disagreement point Uniform pricing Demerger, ∆ρ̄ Merger 2, ∆ρ̄

c ρ ρu − ρ 1[ρu<ρ] P50 P90 P50 P90

Baseline (wi0) 167.89 15.22 5.18 0.31 -2.40 -8.42 1.81 7.88

Alternative (wij(i,2)) 167.39 14.81 4.18 0.22 -2.63 -9.34 2.30 9.97

Notes: Cost and markup units in ¿/1000 bricks. The �rst four columns are averages of i ∈ IJ and the

last four are percentiles of i ∈ IJ . ρu denotes markup in a uniform pricing policy. Pn denotes the nth

percentile of change in markup ∆ρ̄i from counterfactual product ownership.

Table 11: Robustness to alternative disagreement point in bargaining model

are unequally distributed, and are highly concentrated on the worst-a�ected decile.

To compare the e�ects of the same changes to ownership concentration under dif-

ferent pricing policies, we present merger and demerger results for uniform pricing in

Panel A. The comparison can be summarized in four points. First, for any given market

structure, average markups are always higher under uniform pricing (and not just at

the observed market structure as we saw in Table 9). In other words, the relationship

between average markups and concentration is shifted in a more competitive direction

by individualized pricing. Second, markups increase only for (a subset of) transactions

with insider �rms under individualized pricing, but increase for all �rms under uniform

pricing; we see this from the reported �rm-wise impacts in Panel A. Third, individual-

ized pricing abates the average markup-increasing e�ects of a concentration-increasing

merger�the average markup change in the table for any given concentration increase

is always lower under individualized than uniform pricing�suggesting that the rela-

tionship between average markups and concentration is also �attened by individualized

pricing. Fourth, despite the lower average e�ects, under individualized pricing, the dis-

tribution of e�ects from merger is much more unequal across transactions, such that

large adverse competitive e�ects can arise for targeted transactions, and for some of

these the harm can be greater than under uniform pricing.

Robustness As a robustness check, we also estimate the alternative bargaining model

(see Section 3). Estimated parameters are reported in Appendix B. Table 11 shows that

equilibrium outcomes are similar to baseline model. Columns 1 and 2 give costs and

markups at the observed market structure. Columns 3 and 4 give the mean change in

markups, and the proportion of transactions in which prices fall, under the uniform-

pricing counterfactual. The last four columns give percentiles of changes to markups in

the demerger counterfactual and the second merger counterfactual.
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7 Conclusions

In many markets buyers make a choice of product, and negotiate an individualized price.

This is particularly common in decentralized markets for intermediate goods with a small

number of agents on each side of the market. Theoretically, relative to uniform pricing,

this can have a major impact on market power and the e�ects of mergers. We develop

a model of competition in such a setting, in which the runner-up good plays a key role.

The model is founded in non-cooperative models of multi-seller bargaining, where the

buyer makes a discrete choice between alternative options, but has not previously been

applied empirically in the discrete choice demand literature. We derive a joint likelihood

for the buyer's choice and price, which gives a convenient form for use with transactions

data giving information on the chosen product and negotiated price in each transaction,

and accounts for the unobservability of the runner up good and its negotiated price.

We estimate the model for the brick industry in Great Britain. Despite its high

ownership concentration, we �nd that market power is low on average, consistent with

CC (2007), but varies across transactions depending on buyer location and whether

the manufacturer enjoys multi-product e�ects for that transaction. A uniform-pricing

counterfactual increases markups on average but not for all transactions. Pricing policy

has a major impact on merger e�ects, consistent with Cooper et al. (2005): comparing

the same merger under the two pricing policies, individualized pricing reduces the mean

price e�ect, but increases the e�ect in a small number of transactions.

The results have implications in at least two public policy areas. First, in the debate

over price discrimination�e.g. surrounding enforcement of the Robinson-Patman Act

in the US, and in the comparison of alternative pricing policies for delivered materi-

als�they provide empirical support for the view that a switch from uniform to indi-

vidualized pricing brings lower markups for most if not all buyers. Second, the results

provide empirical support for the view that individualized pricing should be accounted

for in merger policy: it can shift the relationship between market power and concen-

tration in a more competitive direction, and can abate the average markup-increasing

e�ect of mergers, although it can have adverse impacts for some buyers.

References

Ackerberg, D. A. and M. Rysman (2005). Unobserved product di�erentiation in discrete-

choice models: Estimating price elasticities and welfare e�ects. The RAND Journal

of Economics 36 (4), 771�788.

Allen, J., R. Clark, and J.-F. Houde (2014, October). The e�ect of mergers in search

39



markets: Evidence from the canadian mortgage industry. American Economic Re-

view 104 (10), 3365�96.

Allen, J., R. Clark, and J.-F. Houde (2019). Search frictions and market power in

negotiated-price markets. Journal of Political Economy 127 (4), 1550�1598.

Beckert, W. (2018). An empirical analysis of countervailing power in business-to-

business bargaining. Review of Industrial Organization, 1�34.

Berry, S., A. Gandhi, and P. Haile (2013). Connected substitutes and invertibility of

demand. Econometrica 81 (5), 2087�2111.

Berry, S., J. Levinsohn, and A. Pakes (1995). Automobile prices in market equilibrium.

Econometrica 63 (4), 841�90.

Berry, S. T. and P. A. Haile (2020). Nonparametric identi�cation of di�erentiated

products demand using micro data. Working Paper 15276, Yale University.

Binmore, K. (1985). Game Theoretic Models of Bargaining, Chapter Bargaining and

Coalitions, pp. 269�304. Cambridge University Press.

Binmore, K., M. J. Osborne, and A. Rubinstein (1992). Chapter 7 Noncooperative mod-

els of bargaining. Volume 1 of Handbook of Game Theory with Economic Applications,

pp. 179 � 225. Elsevier.

Binmore, K., A. Rubinstein, and A. Wolinsky (1986). The Nash bargaining solution in

economic modelling. The RAND Journal of Economics 17 (2), 176�188.

Binmore, K., A. Shaked, and J. Sutton (1989). An outside option experiment. The

Quarterly Journal of Economics 104 (4), 753�770.

Bolton, P. and M. D. Whinston (1993). Incomplete contracts, vertical integration, and

supply assurance. The Review of Economic Studies 60 (1), 121�148.

Brannman, L. and L. M. Froeb (2000). Mergers, cartels, set-asides, and bidding prefer-

ences in asymmetric oral auctions. Review of Economics and Statistics 82 (2), 283�

290.

CC (2007). Wienerberger Finance Service BV / Baggeridge Brick plc. TSO, London.

Chipty, T. and C. M. Snyder (1999). The role of �rm size in bilateral bargaining: A

study of the cable television industry. Review of Economics and Statistics 81 (2),

326�340.

40



CMA (2016). Aggregates, cement and ready-mix concrete market investigation. TSO,

London.

Collard-Wexler, A., G. Gowrisankaran, and R. S. Lee (2019). �Nash-in-Nash� bargaining:

A microfoundation for applied work. Journal of Political Economy 127 (1), 163�195.

Cooper, J. C., L. Froeb, D. P. O'Brien, and S. Tschantz (2005). Does price discrimination

intensify competition? implications for antitrust. Antitrust Law Journal 72 (2), 327�

373.

Corts, K. S. (1998). Third-degree price discrimination in oligopoly: all-out competition

and strategic commitment. The RAND Journal of Economics , 306�323.

Crawford, G. S., R. S. Lee, M. D. Whinston, and A. Yurukoglu (2018). The welfare

e�ects of vertical integration in multichannel television markets. Econometrica 86 (3),

891�954.

Crawford, G. S. and A. Yurukoglu (2012). The welfare e�ects of bundling in multichannel

television markets. The American Economic Review 102 (2), 643�685.

Cremer, J. and M. H. Riordan (1987). On governing multilateral transactions with

bilateral contracts. The RAND Journal of Economics 18 (3), 436�451.

D'Haultfoeuille, X., I. Durrmeyer, and P. Fevrier (2017). Automobile prices in market

equilibrium with unobserved price discrimination. Unpublished .

Draganska, M., D. Klapper, and S. B. Villas-Boas (2010). A larger slice or a larger pie?

An empirical investigation of bargaining power in the distribution channel. Marketing

Science 29 (1), 57�74.

Dubin, J. A. and D. L. McFadden (1984). An econometric analysis of residential electric

appliance holdings and consumption. Econometrica 52 (2), 345�362.

Dubois, P., A. Gandhi, and S. Vasserman (2019). Bargaining and international reference

pricing in the pharmaceutical industry. Technical report.

Ghili, S. (2018). Network formation and bargaining in vertical markets: The case of

narrow networks in health insurance.

Gowrisankaran, G., A. Nevo, and R. Town (2015, January). Mergers when prices are

negotiated: Evidence from the hospital industry. American Economic Review 105 (1),

172�203.

41



Grennan, M. (2013, February). Price discrimination and bargaining: Empirical evidence

from medical devices. American Economic Review 103 (1), 145�77.

Ho, K. and R. S. Lee (2017). Insurer competition in health care markets. Economet-

rica 85 (2), 379�417.

Ho, K. and R. S. Lee (2019, February). Equilibrium provider networks: Bargaining and

exclusion in health care markets. American Economic Review 109 (2), 473�522.

Holmes, T. J. (1989). The e�ects of third-degree price discrimination in oligopoly. The

American Economic Review 79 (1), 244�250.

Horn, H. and A. Wolinsky (1988). Bilateral monopolies and incentives for merger. The

RAND Journal of Economics , 408�419.

Manea, M. (2018). Intermediation and resale in networks. Journal of Political Econ-

omy 126 (3), 1250�1301.

Marshall, G. (2020). Search and wholesale price discrimination. The RAND Journal of

Economics 51 (2), 346�374.

McFadden, D. (1978). Modelling the choice of residential location. In F. S. A. Kar-

lqvist and J. Weibull (Eds.), Spatial Interaction Theory and Planning Models. North

Holland.

Miller, N. H. (2014). Modeling the e�ects of mergers in procurement. International

Journal of Industrial Organization 37, 201�208.

Miller, N. H. and M. Osborne (2014). Spatial di�erentiation and price discrimination

in the cement industry: evidence from a structural model. The RAND Journal of

Economics 45 (2), 221�247.

Murphy, K. M. and R. H. Topel (1985). Estimation and inference in two-step econo-

metric models. Journal of Business & Economic Statistics 3 (4), 370�379.

Nalebu�, B. (2009). Bundling: Ge-honeywell (2001). In J. Kwoka and L. White (Eds.),

The Antitrust Revolution, 5th edition. Oxford University Press, New York.

Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry. Econo-

metrica 69 (2), 307�342.

Osborne, M. and A. Rubenstein (1990). Bargaining and Markets. Academic Press.

42



Porter, R. H. and J. D. Zona (1999). Ohio school milk markets: An analysis of bidding.

The RAND Journal of Economics 30 (2), 263�288.

Rubinstein, A. (1982). Perfect equilibrium in a bargaining model. Econometrica 50 (1),

97�109.

Salz, T. (2020, August). Intermediation and competition in search markets: An empir-

ical case study. Working Paper 27700, National Bureau of Economic Research.

Stole, L. A. (2007). Chapter 34 price discrimination and competition. Volume 3 of

Handbook of Industrial Organization, pp. 2221 � 2299. Elsevier.

Sweeting, A., D. J. Balan, N. Kreisle, M. T. Panhans, and D. Raval (2020, December).

Economics at the FTC: Fertilizer, Consumer Complaints, and Private Label Cereal.

Review of Industrial Organization 57 (4), 751�781.

Thisse, J.-F. and X. Vives (1988). On the strategic choice of spatial price policy. The

American Economic Review , 122�137.

A Derivation of Results in Sections 3 and 4

Section 3

TIOLI equilibrium The two best reply functions are

ρNj(n)(ρj(n′)) = max[0, ρj(n′) + wj(n) − wj(n′) − ιn], for n ∈ {1, 2} and n′ = {1, 2} \ {n}.

We assume wj(1) − wj(2) > 0, ι2 > 0 (where ι2 is small), and ι1 = 0. Since ρNj(1)(0) =

wj(1) − wj(2) and ρ
N
j(2)(wj(1) − wj(2)) = 0, markups ρj(1) = wj(1) − wj(2) and ρj(2) = 0 are

a Nash equilibrium. To check it is unique we determine if the two best-reply functions

intersect at a positive runner-up margin. For any ρj(2) > 0, the �rst-best's best-reply

function is ρNj(1)(ρj(2)) = wj(1) − wj(2) + ρj(2). Plugging this into the runner-up's best-

reply function gives ρNj(2)(wj(1)−wj(2) + ρj(1)) = ρj(2)− ι2 which is less than ρj(2), so the

two functions do not intersect.

Bargaining equilibrium The two bargaining functions are

ρBj(n)(ρj(n′)) = min
[
bik(n)(wj(n) − w0), ρNj(n)(ρj(n′))

]
(31)

= min
[
bik(n)(wj(n) − w0),max[0, ρj(n′) + (wj(n) − wj(n′))− ιn]

]
(32)
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for n ∈ {1, 2}, n′ = {1, 2} \ {n}. We assume (wj(1) − w0) > (wj(1) − wj(2)) > 0,

(wj(1) − w0) > (wj(2) − w0) > 0, ι2 > 0 (where ι2 is small), and ι1 = 0. Since ρBj(1)(0) =

min[bik(1)(wj(1)−w0), (wj(1)−wj(2))] it follows that ρ
B
j(1)(0) ≤ (wj(1)−wj(2)) and by (32)

that ρNj(2)(ρj(1)) = 0 for all ρj(1) ≤ (wj(1)−wj(2)). Hence markups ρj(1) = min[bik(1)(wj(1)−
w0), (wj(1) − wj(2))] and ρj(2) = 0 solve the system in (31). To show this is unique we

check the bargaining functions do not intersect for markups ρj(2) > 0. We do this for

two cases. First, consider the case bij(1)(wj(1)−w0) ≥ ρj(2) +(wj(1)−wj(2)). At markups

ρj(2) > 0 satisfying this inequality, the �rst-best bargaining problem is constrained by

the outside option. Hence the bargaining function ρBj(1)(.) is identical to the best reply

function ρNj(1)(ρj(2)) = wj(1)−wj(2) +ρj(2). Plugging this into the runner-up's bargaining

function (31) we get at most ρNj(2)(wj(1) − wj(2) + ρj(2)) = ρj(2) − ι2 which is less than

ρj(2). Second, consider the case bij(1)(wj(1)−w0) < ρj(2) +(wj(1)−wj(2)). The �rst-best's

bargaining problem is unconstrained by the outside good so the bargaining function is

ρBj(1)(ρj(2)) = bij(1)(wj(1)−w0). Substituting bij(1)(wj(1)−w0) for ρj(1) in the runner-up's

bargaining function (31) we get at most ρNj(2)(bij(1)(wj(1) − w0)) = bij(1)(wj(1) − w0) +

(wj(2) − wj(1)) − ι2 < ρj(2) (where the last inequality is implied by bij(1)(wj(1) − w0) <

ρj(2) + (wj(1) − wj(2))). Thus in neither case do the bargaining functions intersect.

Contract equilibrium We show that the equilibrium markups for the TIOLI, (base-

line) bargaining, and alternative bargaining models, (in 7, 11, and 12), are all contracts

equilibria. In a contract equilibrium (Cremer and Riordan (1987)) the agents in each

bilateral problem maximize their joint surplus given the markup agreed in the other

problem, i.e. for each n ∈ {1, 2} markup ρj(n) is in the set

ρj(n)(ρj(n′)) ∈ arg max
ρ∗∈[0, wj(n)]

{
dj(n)(ρ

∗, ρj(n′))× wj(n) + dj(n′)(ρ
∗, ρj(n′))× [wj(n′) − ρj(n′)]

}
where n′ = {1, 2} \ {n}. To see that the maximand is the bilateral surplus of buyer-

manufacturer pair (i, k(n)) note that when dj(n) = 1 the maximand is joint surplus

wj(n) but when dj(n′) = 1, because k(n) makes no sales, it is limited to net utility

wj(n′) − ρj(n′). Negotiation n = 1 is bilaterally e�cient i� dj(1) = 1. This follows

because wj(1) ≥ [wj(2)−ρj(2)], ∀ρj(2) ∈ [0, wj(2)]. Therefore contracts equilibrium requires

both dj(1) = 1 and bilateral e�ciency in negotiation n = 2 and the latter obtains i�

wj(2) ≤ [wj(1) − ρj(1)] (i.e. ρj(1) ≤ [wj(1) − wj(2)]). The equilibroum prices in the TIOLI,

(baseline) bargaining, and alternative bargaining models satisfy both conditions.

Alternative bargaining model In the alternative bargaining model the negotiated

�rst-best markup solves the Nash bargaining problem in which (wj(2) − ρj(2), 0) are the
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disagreement payo�s, i.e. ρBj(1)(ρj(2)) = arg maxρ′ [(wj(1) − ρ′)−(wj(2)−ρj(2))]
bi× [ρ′]bj(1) .

Assuming ρj(2) = 0 the solution is ρj(1) = bij(1)(wj(1) − wj(2)).

Section 4

Likelihood for the alternative model In the alternative model the markup equa-

tion can be written ρij = min{[bij(wij − wij′)]j′∈J\Jk(j).} so that for ρ ≥ 0

ρij ≥ ρ ⇐⇒ wij ≥ wij′ + ρ× (b−1
ij 1[j′>0] + b−1

ij 1[j′=0]) ∀j′ ∈ J \Jk(j). (33)

Pooling the conditions in (15) and (33), and rede�ning χjj′ = 1[j′∈J\Jk(j)]b
−1
ij ,

(j = j(i, 1) and ρij ≥ ρ) ⇐⇒ wij ≥ wij′ + ρ(χjj′1[j′>0] + b−1
ij 1[j′=0]) j′ ∈ J . (34)

Using the new de�nition of χjj′ the expressions (24) and (25) follow, which in turn give

the corresponding likelihood using Proposition 1.

Proposition 1 Let S = 0 and S = 1 for the baseline and alternative speci�cations.
Suppress i subscripts. Let ωj = ω(xj, ν) and let r−k|J = Σj′∈JJ\Jkrj′|J . Then, since
∂(ωj′ + ρχjj′)/∂ρ = 1[j′∈J\Jk(j)] × b

−S
j when j′ is an inside product, de�nitions in (25),

and standard results of di�erentiation for nested logit functional forms, imply

∂rj|J
∂ρ

= −σε
σJ
b−Sj rj|Jr−k|J ,

∂R

∂ρ
=

σε
σJbSj

∑
j′∈JJ χjj′ exp{σε[ωj′ + b−Sij ρ]/σJ}∑
j′∈JJ exp{σε[ωj′ + χjj′b

−S
ij ρ]/σJ}

=
σε
σJbSj

r−k|J ,

∂rJ
∂ρ

= σJrJ
∂R

∂ρ
− exp{σJR}

∂

∂ρ

1

exp{σερ/bj}+ exp{σJR}
= σεr−k|JrJb

−S
j − σεrJ(1− rJ)b−1

j − σεr2
Jr−k|Jb

−S
j

= −σεrJ(1− rJ)[b−1
j − r−k|Jb−Sj ].

Since rj = rj|JrJ it follows that

−∂rj
∂ρ

= −rJ
∂rj|J
∂ρ
− ∂rJ

∂ρ
rj|J = σεrj(r−k|Jb

−S
j /σJ + (1− rJ)[b−1

j − r−k|Jb−Sj ])

so, using r−k|JrJ + rk + r0 = 1 and r−k|J = 1− rk|J , we have

−∂rj
∂ρ

=

{
σε[rj{(1− rk)− (1− σ−1

J )(1− rk|J)} − (1− b−1
ij )rjr0] if S = 0

σεrj[(1− rk)− (1− σ−1
J )(1− rk|J)]b−1

j if S = 1.
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B For online publication: alternative model estimates

A: Parameters in valuation vij

Same-region-produced β1 0.023 (0.004)

Within-100km-produced β2 0.043 (0.005)

North × red β3 0.048 (0.006)

North × wirecut β4 0.132 (0.007)

Absorption × rainfall β5 -0.038 (0.046)

Strength × frost β6 0.195 (0.129)

GEV nesting σJ 0.846 (0.023)

GEV scaling σε 0.167 (0.004)

Product e�ect (δ̄ is mean δj) δ̄ 0.525 (0.015)

B: Parameters in cost cij

Gas price index γ1 0.919 (0.024)

Wages (¿10k/year) γ2 0.230 (0.037)

Low-quality product (1/0)‡ γ3 -0.036 (0.007)

Fixed per-transaction cost γf 0.149 (0.029)

Scaling term for cost shock σν 0.073 (0.001)

Plant e�ect (γ̄ is median) γ̄ 1.037 (0.046)

C: Bargaining parameters

Manufacturer dummy 1[l ∈ K] η1 -0.120 (0.081)

Agent l size yl η2 0.225 (0.026)

Log likelihood -46429.863

LR test statistic v χ2(2) 93.647

D: Manufacturer relative bargaining skill bij ∈ [0, 1]

Mean 0.810

SD 0.045

Min 0.693

Max 0.908

Notes. These estimates use the alternative bargaining speci�cation

detailed in Appendix A. See notes for Table 4

Table 12: Estimated parameters: alternative bargaining speci�cation

The estimates in Table 12 use the alternative bargaining speci�cation detailed in Ap-

pendix A. The LR test statistic rejects the hypothesis of price-taking buyers at standard

signi�cance levels (as with the baseline speci�cation). The parameters are similar to

those found for the baseline model except for η1 which implies a higher mean value

across i ∈ IJ for the manufacturer's bargaining power bij (0.810 compared to 0.540).

The di�erence is a consequence of the di�erent magnitudes of bargained-over surplus:

in the baseline the bargained-over surplus is wij(i,1) − wi0, and in the alternative model

it is wij(i,1) − wij(i,2) which by de�nition is smaller. Since the markup represents the
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manufacturer's share of bargained-over surplus, a given markup for the manufacturer

corresponds to a smaller surplus share in the baseline than in the alternative model.

C For online publication: Data

C.1 Variables in the deliveries dataset

We use a data set provided to us by the four main manufacturers that records each

delivery of a brick variety within Great Britain (GB) in the period 2003-2006 from these

�rms. The smallest two of these �rms, Baggeridge Brick and Wienerberger, merged in

2007, following the investigation reported in CC (2007). The dataset used here was also

used in this investigation. The following is a complete list of the variables. We give

the exact name of the variable as it appears in the data in square brackets [], the exact

wording of the description of the variable as it appears in the data is in round brackets

(), and the unbracketed words at the end are our own description of the variable.

1. Manufacturer information: (a) [Manufacturer], (Brick manufacturer), Name of the

brick manufacturer; (b) [Plant code cat], (Plant code), Name of plant where the

bricks were manufactured and from which delivery was made.

2. Buyer information: (a) [Buyer_name], Name of buyer; (b) [Town], Town to which

delivery is made; (c) [Original postcode], Delivery postcode.

3. Delivery information: (a) [Price], (Transaction price (GBP)), The total payment

for the delivery; (b) [Volume], (Volume bricks), The number of bricks in the deliv-

ery; (c) [Date], (Transaction date), The date on which the delivery and transaction

happened; (d) [Delivery], (Delivery arrangement), Whether the delivery was ar-

ranged by buyer or manufacturer; (e) [Haulage price], (Haulage price (GBP)).

Transportation cost.

4. Characteristics of the delivered product variety: (a) [Description], (Description of

individual brick variety), The name of the product variety; (b) [Use_cat], (End

use classi�cation), Indicator variable for whether the delivered product variety is

a facing brick or some other use type; (c) [Manuf cat], (Manufacturing process

category), Classi�es bricks by the way the brick is made, e.g. wire-cut, molded.

C.2 Geocoding deliveries and classi�cation of buyer type

To obtain a grid reference we use the postcode which takes the form of two groups of

alphanumeric variables e.g. OX1 3UQ with increasing geographic precision moving from
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left to right. The Central Postcode Directory (CPD), available from the the UK Post

O�ce, gives a grid reference for each postcode. The address of each plant is public infor-

mation. The project's postcode is in the variable [Original postcode] in section C.1. In

some cases the postcode was recorded with error (a common feature of address datasets).

Where part of the postcode is reported (e.g. OX1) we take the average of the grid ref-

erence points consistent with what is reported. Where the postcode did not appear in

the CPD we search for the nearest postcode consistent with the most important letters

in the postcode, starting with alternatives to the �nal letter, followed by alternatives to

the �nal two letters, and so on, until available postcodes are found; where this results in

multiple postcodes we take the average grid reference. Where the postcode was missing

but the town in the postal address was given (i.e. the variable [Town] in section C.1)

we use the postcodes consistent with this and take an average of their grid references.

Finally, for one of the manufacturers, the delivery postcode was not recorded for 11.4%

of its deliveries to the top 16 buyers (whereas for the other three suppliers there were

very few missing address observations�1.014%, 0.004% and 0.000% respectively). To

avoid mis-representing transactions for one manufacturer we dropped delivery addresses

at random from each of the other three �rms so that the same proportion of delivery

addresses are removed for all manufacturers. We classify buyers as either a builder or

merchant using the name of the buyer (i.e. variable [Buyer_name] in section C.1) and

the business website associated with that name. The name of the same buyer some-

times appears in di�erent forms for di�erent deliveries�e.g. (i) �Taywood Homes� and

�Taylor Woodrow Developments� and (ii) �PERS01� and �Persimmon Homes�. In the

case of (i) the former is a fully owned subsidiary of the latter; in the case of (ii) the

former is a code name used for the latter �rm. We checked ownership of all �rm names

to determine those that were under the same ownership in which case they were treated

as being the same �rm. Finally, where code names were used, we identi�ed the builder

that had the most consecutive letters in common with the code; as a safeguard against

errors we checked by online search that delivery locations for code names in the data

matched known housing projects from the matched building �rm.

C.3 Products and characteristics

The deliveries dataset includes a limited number of product characteristics for each va-

riety. We supplement these using the manufacturers' catalogs.46 Figure 3 shows a page

from a manufacturer's brick catalog, giving a list of varieties and their characteristics

46We are grateful to a number of students at Oxford University who provided research assistance
obtaining product characteristics.
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Notes: The page is from the section for red bricks of a manufacturer's brick catalog. It lists 6 brick varieties and shows
pictures of three of them. In the �rst two columns the type, listing whether the brick is wirecut (W) or molded (S), and
plant location, of the brick are given and in the seventh and eighth the strength and water absorption.

Figure 3: Typical page from a brick manufacturer catalog

(along with pictures of some of the varieties). We obtain the following �ve characteris-

tics, two of which are from the deliveries dataset and three from the brick catalogs. We

have discretized the last two brick characteristics. For each product characteristic we

note the the data source, the units (if applicable), the number of discrete alternative

values, and why it is important to a buyer.

1. Color (2 colors). [Source: brick catalogs]. Important for aesthetic reasons. The

alternatives are: bu� (yellow) and red. A small number of brick varieties are

listed as orange and we class these as red since they are very close in appearance.

Di�erent types of clay and hence di�erent plants (located at di�erent clay deposits)

are associated with di�erent brick shades within any given color.

2. Plant (36 plants). [Source: deliveries data set]. Important primarily for spatial

reasons. However plant location also a�acts visual appearance of the product (as

described under color). This is lower than the total number of brick plants because

we count co-located plants of the same �rm as a single plant, we drop plants that

produce non-facing bricks or low market share bricks.

3. Manufacturing type (2 types: wire-cut and molded). [Source: deliveries data set].
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Color Shaping Strength Absorption Plant

N/m2 percent

(100s) (100s)

Number of discrete values 2 2 13 5 36

Set of categorical values {R,Y} {W,M} - - {D,E,. . . }

Discretization interval 0.05 0.05

Products [example varieties]

Product 1 [Cheshire Red Multi, Bowden Red] R W 0.40 0.15 D

Product 2 [Hadrian Bu�, Hadrian Bronze] Y W 0.60 0.10 T
...

Product 75 [Arden Red Multi, Dorset Red Stock] R M 0.20 0.20 E

Notes. Number of products: 75. Number of varieties 416. The variables strength and absorb are de�ned in the text

and are discretized to the nearest 0.05 units. D, E and T denote the Desford, Ellistow and Throckley plants; R and

Y denote the colors red and yellow; W and M denote wire-cut and molded bricks.

Table 13: Classi�cation of varieties into products by observable characteristics

The manufacturing type�i.e. the variable [Manuf_cat] in section C.1, which we

refer to in the paper as the shaping method�is the method of cutting the bricks

from clay. The two main shaping method alternatives are wire-cut and molded.

This is an aesthetic characteristic as it a�ects the appearance of the brick. We

include handmade, clamp, and softmud bricks (categories in the variable [Manuf

cat]) in molded as they use the same shaping method as molded bricks.

4. Compression strength (in N/mm2). We round strength to the nearest 5N/mm2,

giving 13 distinct levels (10, 15, . . . , 70, 75). The compression strength is the maxi-

mum load at which a brick is crushed measured in Newtons per square millimeter.

This variable, also known as durability, improves the performance of the brick in

areas with exposure to frost attack.

5. Water absorption (units: % of mass): this variable is de�ned as (m2 − m1)/m1

where m1 is the mass of the brick when dry and m2 is its mass after 24 hours of

complete immersion in water. We round this to the nearest 5 percent, giving 5

distinct levels (5, 10, . . . , 20, 25). A lower level is a higher quality: bricks with low

water absorption should be used in areas of high rainfall where there is a risk that

brickwork will be persistently wet (see C.6).

Other technical characteristics listed in the catalog do not vary across the bricks consid-

ered by house builders in our data so we do not include them.47 There are 416 distinct

47For a discussion of brick characteristics see Section 6 of Brick Development Association (2011)
Design Note at http://www.brick.org.uk/admin/resources/g-brickwork-durability.pdf.
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varieties in the transaction dataset and we classify these into 75 groups, referred to

as products, using these �ve characteristics. The product classi�cation is illustrated in

Table 13. The table gives three example products, lists some illustrative varieties in

each product, and gives their observable characteristics.

C.4 Determination of transaction dataset

The transaction dataset is obtained from the deliveries dataset in appendix C.1 as

follows. We include deliveries of facing bricks in the years 2003-2006 from GB plants to

one of the top-16 builders by volume over 2003-2006; in this appendix we refer to these

deliveries as brick sales. The top-16 builders account for 94.1% of direct deliveries by

volume in the data. We exclude pressed bricks (known as �ettons, as indicated by the

[Manuf_cat] variable, 1.2% of brick sales volume) which are not used for new houses.

(They are used in the repair, maintenance, and improvement of existing houses, see

CC (2007) paragraphs 5.8-5.10.) We drop deliveries of less than 5,000 bricks (3.1% of

brick sales volume) to remove a tail of small deliveries that are likely to correspond

to idiosyncratic requests and top-ups and which have some extreme unit prices; as a

reference point, note that the median individual delivery to builders is 10,000 which

represents both (i) approximately the number needed for an individual detached house

and (ii) the typical capacity of a brick truck. We drop deliveries of brick varieties that

are not bu� (i.e. yellow) or red (0.04% of brick sales volume). A transaction is de�ned to

be a buyer-variety-location-year (where location refers to the location of use); a variety

implies a unique production location (its plant) so a transaction is associated with

a unique pair of (production and use) locations. To remove a tail of small products

we drop products (de�ned in C.3) with less than 7.5 annual transactions on average

(which in total are 4.2% of brick sales volume). Table 14 presents information on the

aggregation of the deliveries dataset to the transactions dataset. Panel A shows the

number of deliveries and the number of transactions. Panel B shows the extent to

which transactions vary in terms of the number of deliveries (a consequence of scale

di�erences across projects) and the dominance of a modal price for deliveries within

a transaction (a consequence of the negotiation of project price at annual rather than

delivery level).

C.5 Institutional details

The prices are either agreed in a collection of concurrently-negotiated price agreements

(known as framework agreements) or isolated agreements at other times (known as ad

hoc agreements). The agreements are about conditions of trade and do not commit
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A: Counts of deliveries and transactions

Number of deliveries 110,726

Number of buyer-variety-location-years (i.e. transactions) 13,788

B: Summary statistics for deliveries in a transaction Mean SD

Number of deliveries in a transaction 8.031 7.978
Proportion (by volume) of deliveries in a transaction

(i) sold at modal price for transaction 0.860 0.201
(ii) sold within 1% of modal price for transaction 0.924 0.152

Notes. The table reports statistics from the deliveries dataset before and after aggregation to

transaction level. See text for the de�nition of a transaction

Table 14: Aggregation: deliveries to transactions

the buyer to purchase (CC (2007) para 4.65, 4.66). Buyers prefer not to hold stocks

of bricks at their project locations and thus take a number of deliveries, sometimes at

short notice, over time as the project proceeds. To facilitate this manufacturers hold

large stocks of inventory (see CC (2007) paragraphs 4.44). Negotiations result in prices

which vary across varieties, annual volumes, and locations for a given buyer as described

in Section 2 and which hold good for a year.

C.6 Weather data

We use data from the UK Meteorological O�ce's UKCP09 data series. This data series

gives weather for each 5×5 km grid cell in the UK. We take the average of the 5×5 km

grid cell values that fall within each NUTS1 region where the cell values are themselves

averages measured between 1981-2010. Rainfall is measured of daily mm per square

meter and frost by the total number of days of air frost per month.

C.7 Outside good share

The share of the outside good in region-year m is given by s0m = (Hm−Bm)/Hmwhere

Hm is the number of standardized houses needing cladding and Bm is the number that

use bricks. To calculate Bm we use Bm = kQm where k is the number of houses per

brick and Qm is the number of bricks delivered to market m by the manufacturers.

We obtain k using s0 = 1− kΣmQm/(ΣmHm) where s0 (0.238) is the national share of

the outside good in the period of the data, given by s0 = 1 − sKsN where sK (0.850)

is the share of the manufacturers in our study (CC (2007), para 5.46) and sN (0.897)

is the national proportion of new houses using facing bricks in the period of study is

given as in the English Housing Survey published by the Department for Communities
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and Local Government (2008).48 To calculate Hm we use the number of house building

completions, from the UK's O�ce for National Statistics House Price Statistics for

Small Areas (HPSSA).49 Given lumpiness in the data on completions relative values

across regions are constant for the period of the study. The relative value for region κ is

%κ = ΣtH
∗
κt/ΣκΣtH

∗
κt where H

∗
κt is completions in market m = (κ, t). Then Hm = %κH

∗
t

where H∗t is the 3-year moving average of total housing completions in Great Britain.

This method is used because the timing of completions does not coincide exactly with

the stage in a construction project's life cycle when brick delivery is needed and the data

are somewhat volatile given the large size of individual housing projects being recorded.

Similarly, we assume relative demand across regions for inside goods is stable over time

and for region κ is given by %Qκ = ΣtQ
∗
κt/ΣκΣtQ

∗
κt where Q

∗
κt is observed bricks delivered.

Then Qm = %QκQ
∗
t , where Q

∗
t is ΣκQκt. The approach adopted here is consistent with

the spatial distribution of projects detailed in footnote 32.

48This survey includes 2708 dwellings that were built recently (between 1990 and 2008) where a
physical inspection was carried out between April 2007 and March 2009. Table 1.3 of this publication
reports that the percentage of these dwellings that used facing bricks (referred to as �masonry pointing�)
as their predominant type of wall �nish is 0.897.

49These data are recorded by category: (i) detached houses (that require cladding on all four sides);
(ii) semi-detached houses (requiring cladding on three sides); (iii) terraced houses (requiring cladding
on two sides); and (iv) apartments. This breakdown is not available in Scotland, where we assume the
average proportions for the rest of Great Britain apply there. To aggregate we give a detached house
a weight of 1, a semi-detached house 0.75, a terraced house 0.5 and an apartment a weight of 0.40; the
last of these is based on CC (2007), paragraph 4.30.
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