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1 Introduction

Microeconomic theory has informed the design of many markets and other institutions. Many

new mechanisms have been proposed to allocate resources in environments in which agents

have single-unit demands and transfers are not used or are prohibited. These environments

include the allocation and exchange of transplant organs, such as kidneys (Roth, Sönmez,

and Ünver, 2004); the allocation of school seats in Boston, New York City, Chicago, etc.

(Abdulkadiroğlu and Sönmez, 2003); and the allocation of dormitory rooms at US colleges

(Abdulkadiroğlu and Sönmez, 1999). The mechanisms used elicit ordinal preferences of

participants.1

The central concerns in the development of allocation mechanisms are incentives and

efficiency.2 The literature focused on Pareto efficiency: a matching is Pareto efficient if there

exists no other matching that makes everybody weakly better off and at least one agent

better off.3 Pareto efficiency however is a weak efficiency concept; while interpersonal utility

comparisons are not needed for Pareto efficiency, it only gives a lower bound for what can

be achieved through desirable mechanisms. In consequence, welfare economics—starting

with Bergson (1938), Samuelson (1947), and Arrow’s (1963)—have long looked at stronger

efficiency concepts requiring an efficient outcome to be the maximum of a social ranking

of outcomes; an idea later named as resoluteness.4 For instance, Arrow (1963), pp. 36-37,

discusses the partial ordering of outcomes given by Pareto dominance, and observes:

But though the study of maximal alternatives is possibly a useful preliminary

to the analysis of particular social welfare functions, it is hard to see how any policy

recommendations can be based merely on a knowledge of maximal alternatives. There

is no way of deciding which maximal alternative to decide on.

Our paper is the first to carry out this program of analyzing stronger welfare criteria in

1In the context of deterministic mechanisms without transfers eliciting ordinal information is all we can
do. In addition, eliciting ordinal preferences is considered simpler and more practical (see Bogomolnaia and
Moulin, 2001).

2For instance, Bogolomania and Moulin (2004) discuss “a recent flurry of papers on the deterministic
assignment of indivisible goods” and state that “the central question of that literature is to characterize
the set of efficient and incentive compatible (strategy-proof) assignment mechanisms.” The prior theoretical
literature on single-unit-demand allocation without transfers has focused on characterizing mechanisms that
are strategy-proof and efficient alongside other properties (see below for examples of such characterizations).
In contrast, our characterization of strategy-proofness and efficiency does not rely on additional assumptions.

3Relatedly, constrained Pareto efficiency is also studied, e.g. stable matchings that are not Pareto domi-
nated by other stable matchings.

4Resoluteness has been a standard property in social choice since its conception; in addition to Arrow’s
discussion see e.g. Austen-Smith and Banks (1999) for the role of resoluteness in political science, and
Zwicker (2016) for a recent survey of canonical social choice results such as Gibbard (1973)-Satterthwaite
(1975) Theorem that implicitly or explicitly involve resoluteness. The failure of resoluteness is also at the
core of the Condorcet paradox, see e.g. Black (1948) and Campbell and Kelly (2003).
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the context of allocation of discrete resources without transfers.5 We analyze both social

choice functions as well as social welfare functions satisfying Arrow’s postulates. A so-

cial choice function (SCF) determines what unique alternative should be implemented for

each preference profile, while social welfare function (SWF) determines a societal ranking

of outcomes for each profile of individual preference rankings. Allowing for partial societal

rankings, we can treat an SCF as an SWF in which the outcome of SCF is ranked above

all other outcomes.6 Following Arrow (1963), we say that an SWF is Arrovian if, and only

if, it satisfies the standard resoluteness, Pareto, and independence-of-irrelevant-alternatives

postulates. An SWF is resolute if it has a unique social maximum for each profile of pref-

erences; in particular, every SCF is resolute. An SWF satisfies the Pareto postulate if two

socially and Pareto-comparable matchings are ranked so that the Pareto-dominant matching

is ranked above the Pareto-dominated one. An SWF satisfies the independence of irrelevant

alternatives if, given any two profiles of preferences and any two matchings that are socially

comparable under both profiles, if all agents rank the two matchings in the same way under

both profiles, then the social ranking of the two matchings is the same under both profiles.

When we want to highlight the positive rather than normative aspects of an SCF we refer to

it as a mechanism; we allow here both Arrovian and not Arrovian SCFs. We call a mecha-

nism efficient with respect to an SWF if, for every preference profiles, the resulting matching

is a maximum of the SWF.7 We say that a mechanism is Arrovian efficient if it is efficient

with respect to some Arrovian SWF. Finally, we say that a mechanism is strategy-proof if,

for any reports by other agents, reporting the true ranking leads to the mechanism outcome

being weakly better for an agent than any other report.

We provide a new motivation for Arrovian efficiency by showing that it is equivalent to

a mild auditability requirement that in order to falsify a proposed mechanism outcome, it

is sufficient to verify pairwise comparison of agents’ preferences of the outcome with only

one alternative (challenger) outcome. This auditability property is attractive as it allows

to falsify the mechanism outcome with a limited amount of information and thus largely

preserves the privacy of participants’ information. Restricting attention to strategy-proof

mechanisms, we also show that Arrovian independence of irrelevant alternatives is equivalent

5We study the canonical environment with finite numbers of agents and indivisible objects, dubbed as
“houses” (Shapley and Scarf, 1974). Each agent has a strict preference relation over objects. An outcome—or
a matching—specifies for each agent an object the agent is matched with in such a way that no object is
matched with two different agents.

6For analysis of welfare with partial orderings, see e.g. see Sen (1970,1999) and Weymark (1984).
7There is a rich social choice literature on the correspondence between choice and the maximum of the

SWF ranking in the context of social choice (see below). This literature is interested in rationalizing social
choice rather than the efficiency of allocation mechanisms, and hence it talks about mechanisms “rationalized
by an SWF” rather than “efficient with respect to an SWF.”

3



to non-bossiness of Satterthwaite and Sonnenschein (1981), which allows us to leverage the

results of Pycia and Ünver (2017) to fully characterize the class of auditable and efficient

mechanisms as the class of Trading Cycles mechanisms. This characterization provides a

no-transfer counterpart of Akbarpour and Li (2020) insight that classical auctions are the

“credible” mechanisms in their sense.8

We use this characterization to show that almost sequential dictatorships are the only

mechanisms that are individually strategy-proof and Arrovian efficient with respect to an

SWF that ranks all matchings. An almost sequential dictatorship combines the ideas of se-

quential dictatorship and majority voting between only two possible outcomes. Dictatorships

are the benchmark strategy-proof and efficient mechanisms in many areas of economics. For

instance, Gibbard (1973) and Satterthwaite (1975) have shown that all strategy-proof and

unanimous voting rules are dictatorial. Moreover, for this result to hold we need more than

two alternatives. With two alternatives there are other mechanisms that are strategy-proof

and unanimous (majority voting being the primary example), very much like our class of

almost sequential dictatorships.9 Still, we find it surprising that this theorem is true in our

environment because — in contrast to the environments where this question was previously

studied — ours allows many individually strategy-proof (and even group strategy-proof) and

Pareto-efficient mechanisms that are not dictatorial.

The present paper is the first to connect the literature on allocation and exchange of

discrete resources and the literature on Arrovian preference aggregation. In particular, we

seem to be the first to recognize the equivalence of Theorem 1. However, stronger equiva-

lence results — which do not hold true in our setting — are familiar from studies of voting.

In voting — unlike in our problem — all agents have strict preferences among all outcomes.

In the class of Pareto-efficient mechanisms, individual strategy-proofness is then equiva-

lent to group strategy-proofness (Gibbard, 1973, and Satterthwaite, 1975).10 This stronger

equivalence fails in our setting, as it admits individually strategy-proof and Pareto-efficient

8See also Woodward (2020) for an analysis of a more general concept of auditability in multi-unit auctions.
For the literature on privacy in mechanism design see the recent survey Pai and Roth (2018).

9Dasgupta, Hammond, and Maskin (1979) extended this result to more general social choice models,
Satterthwaite and Sonnenschein (1981) extended it to public goods economies with production, Zhou (1991)
extended it to pure public goods economies. In exchange economies, Barberà and Jackson (1995) showed
that strategy-proof mechanisms are Pareto inefficient.

10The equivalence of Theorem 1 has counterparts in the social choice literature on restricted preference
domains—such as single-peaked preferences—in which there are non-dictatorial strategy-proof and Arrow
efficient rules. For instance, Moulin (1988) extends a result by Blair and Muller (1983) and shows that in
environments such as single-peaked voting, if an Arrovian SWF is monotonic, then the mechanism picking
its unique maximal element is group strategy-proof. In particular, this implies that in single-peaked voting
individual strategy-proofness and group strategy-proofness are equivalent, with no need to restrict attention
to efficient mechanisms. In contrast, in allocation environments the equivalence results from the conjunction
of incentive and efficiency assumptions, and the equivalence of incentive assumptions alone is not true.
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mechanisms that fail group strategy-proofness. As far as we know, this is also the first paper

that provides a joint approach to mechanism design and Arrovian preference aggregation.

Our paper also contributes to the literature on characterizations of dominant strat-

egy mechanisms for house allocation. Ehlers (2002) characterizes group-strategy-proof and

Pareto-efficient mechanisms in a maximal domain of weak preferences for which such mecha-

nisms exist and proves a general impossibility result for the domain of all weak preferences.11

Note that our concept of partial social ranking is different from Ehlers’ allowing only certain

weak preferences over assigned houses; Ehlers’ work is not concerned with social rankings of

outcomes. Pycia and Ünver (2017) characterizes group-strategy-proof and Pareto-efficient

mechanisms in the standard domain of strict preferences and Root and Ahn (2020) char-

acterize properties of these mechanisms allowing for constraints and providing a synthetic

treatment of many social choice domains; see also Barberà (1983) and Pápai (2000) who laid

the foundations for this line of research. Ma (1994) characterized the class of strategy-proof,

individually rational, and Pareto-efficient mechanisms, and his characterization has been ex-

tended by Pycia and Ünver (2017) and Tang and Zhang (2015) to richer single-unit demand,

by Pápai (2007) to multi-unit demand models, and by Pycia (2016) to settings with network

constraints.12

At the heart of the above characterizations is David Gale’s idea of Top Trading Cycle

(TTC) mechanism, first reported in Shapley and Scarf (1974). This mechanism was extended

beyond the house exchange domain of Shapley and Scarf (1974) by Abdulkadiroğlu and

Sönmez (1999) (allowing for a mixture of allocation and exchange, see also Sönmez and

Ünver, 2010), Abdulkadiroğlu and Sönmez (2003) (allowing for copies), Pápai (2000), Pycia

and Ünver (2017), Pycia and Ünver (2011) (making the mechanism more flexible by allowing

for richer classes of property rights), Jaramillo and Manjunath (2012) (allowing for weak

preferences), Hakimov and Kesten (2014) and Morrill (2015) (making the mechanism more

equitable), and Pycia (2016) (allowing for constraints).

Sequential dictatorships have not been studied extensively with unit demand for goods,

although their special cases have been. In a serial dictatorship (also known as a priority

11Most of the literature on house allocation—including our paper—is not affected by Ehlers’ impossibility
result because it analyzes environments in which agents’ preferences are strict.

12Other contributions characterize dominant strategy and efficient mechanisms that satisfy selected addi-
tional assumptions include Ehlers, Klaus, and Pápai (2002) and Ehlers and Klaus (2003) who characterized
strategy-proof mechanisms with population and resource monotonicity properties, respectively. Karakaya,
Klaus, and Schlegel (2019) replaced group strategy-proofness by individual strategy-proofness together with
other properties such as consistency. Abdulkadiroğlu, Che, Pathak, Roth, and Tercieux (2020) characterized
strategy-proofness and a minimum envy generalization of individual rationality. Characterization results
with multiple copies of objects were obtained by Liu and Pycia (2011), Morrill (2013), Pycia (2019), and
Pycia and Troyan (2019). The core mechanism in more complex exchange markets was characterized by
Pápai (2007).
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mechanism), the same agent chooses next regardless of which house the current agent picks.

Svensson (1994) formally introduced and studied serial dictatorships first; Abdulkadiroğlu

and Sönmez (1998) studied a probabilistic version of them where the order of agents is

determined uniformly randomly; Svensson (1999) and Ergin (2000) characterized them using

plausible axioms. Allowing for outside options, Pycia and Ünver (2007) characterized a

subclass of sequential dictatorships different from serial dictatorships. With multiple-house

demand under responsive preferences, Hatfield (2009) showed that sequential dictatorships

are the only strategy-proof, non-bossy, and Pareto-efficient mechanisms, and Pápai (2001)

characterized the sequential dictatorships through the properties of strategy-proofness, non-

bossiness, and citizen sovereignty (see also Klaus and Miyagawa, 2002). In a general model

allowing both the cases with and without transfers, Pycia and Troyan (2019) showed that

a broad class closely resembling sequential dictatorships are precisely the mechanisms that

are strongly obviously strategy-proof in their sense; see also Li (2015) and Pycia (2019). For

characterizations of random serial dictatorships in terms of incentives, efficiency, and fairness

see Liu and Pycia (2011) and Pycia and Troyan (2019). Root and Ahn (2020) characterize

the constrained social choice domains in which generalized sequential dictatorships are the

only group strategy-proof and Pareto-efficient mechanisms. As an application of their general

theorem, they characterize sequential dictatorships as the only mechanisms which are group

strategy-proof and Pareto efficient in the roommates problem.

2 Model

2.1 House Allocation Problems

Let I be a set of agents and H be a set of objects that we often refer to as houses,

following the standard terminology of the literature. We use letters i, j, k to refer to agents

and h, g, e to refer to houses. Each agent i has a strict preference relation over H, i.e., a

complete, anti-symmetric, and transitive binary relation, denoted by �i.13 Let Pi be the set

of strict preference relations for agent i, and let PJ denote the Cartesian product ×i∈JPi for

any J ⊆ I. Any profile �= (�i)i∈I from P ≡ PI is called a preference profile. For every

�∈ P and J ⊆ I, let �J= (�i)i∈J ∈ PJ be the restriction of � to J . A house allocation

problem is the triple 〈I,H,�〉 (see Hylland and Zeckhauser, 1979).

Throughout the paper, we fix I and H, and thus a problem is identified with its preference

profile. We follow the tradition adopted by many papers in the literature (e.g., Svensson,

13We denote its induced weak-preference relation by �i, that is, for any g, h ∈ H, g �i h ⇐⇒ g = h or
g �i h.
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1999) and assume that |H| ≥ |I| so that each agent is allocated a house.

An outcome of a house allocation problem is a matching. To define a matching, let

us start with a more general concept that we will use frequently. A submatching is an

allocation of a subset of houses to a subset of agents, such that no two different agents get

the same house. Formally, a submatching is a one-to-one function σ : J → H; where for

J ⊆ I, using the standard function notation, we denote by σ(i) the assignment of agent

i ∈ J under σ, and by σ−1(h) the agent that got house h ∈ σ(J) under σ. Let S be the

set of submatchings. For each σ ∈ S, let Iσ denote the set of agents matched by σ and

Hσ ⊆ H denote the set of houses matched by σ. For every h ∈ H, let S−h ⊂ S be the set of

submatchings σ ∈ S such that h ∈ H −Hσ, i.e., the set of submatchings at which house h is

unmatched. By virtue of the set-theoretic interpretation of functions, submatchings are sets

of agent-house pairs and are ordered by inclusion. A matching is a maximal submatching;

that is, µ ∈ S is a matching if Iµ = I. Let M ⊂ S be the set of matchings. We will write

Iσ for I − Iσ and Hσ for H −Hσ for short. We will also write M for S −M.

A mechanism or a social choice function is a mapping ϕ : P → M that assigns a

matching for each preference profile (or, equivalently, for each allocation problem).14 Denot-

ing by PM the set of strict partial orderings over matchings, where a strict partial ordering

is a binary relation that is anti-symmetric and transitive. We refer to elements of PM as

social rankings. A social welfare function (SWF) Φ : P→ PM maps agents’ preference

profiles to strict social rankings. If a matching µ is ranked higher than some other matching

ν under Φ(�), we denote this as µ Φ(�) ν. An SWF Φ is resolute if: for every preference

profile � there exists a matching µ ∈ M such that µ Φ(�) ν for every ν ∈ M − {µ}.
We assume SWFs we consider are resolute. A mechanism can be identified with a special

instance of a resolute SWF in which the mechanism outcome is the unique maximal outcome

of the SWF and no comparisons between non-maximal outcomes are made.

2.2 Efficiency, Auditability, and Strategy-Proofness

A matching is Pareto efficient if no other matching would make everybody weakly better

off and at least one agent better off. That is, a matching µ ∈ M is Pareto efficient if

there exists no matching ν ∈ M such that for every i ∈ I, ν(i) �i µ(i), and for some

i ∈ I, ν(i) �i µ(i). An SWF Φ satisfies the Pareto postulate (or is unanimous) if: for

every preference profile � and any two matchings µ, ν ∈M that are comparable by Φ(�), if

µ(i) �i ν(i) for every i ∈ I, with at least one strict preference, then µ Φ(�) ν. In particular,

a mechanism is Pareto efficient if it finds a Pareto-efficient matching for every problem.

14We study direct mechanisms.
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Pareto efficiency is a weak efficiency requirement and, as discussed in the introduction,

Arrow criticized it for its failure to uniquely determine the best outcome; that is for not

being resolute.15

An SWF Φ satisfies the independence of irrelevant alternatives (IIA) if: for every

�,�′∈ P and µ, ν ∈ M, if all agents rank µ and ν in the same way and both Φ (�) and

Φ (�′) rank µ and ν, then µ Φ(�′) ν ⇐⇒ µ Φ(�) ν.

We say that a matching µ is efficient with respect to a social ranking �M ∈ PM

if it maximizes the social welfare, that is µ �M ν for every ν ∈ M− {µ}. A mechanism

ϕ is efficient with respect to an SWF Φ if for any profile of agents’ preferences �, the

matching ϕ[�] is efficient with respect to Φ (�). If ϕ is efficient with respect to some SWF

that satisfies the Arrovian postulates of resoluteness, Pareto, and IIA, then we say that ϕ

is Arrovian efficient. The next section offers two examples illustrating the concept of

Arrovian efficiency.

A mechanism ϕ is auditable (or one-comparison auditable) if for any preference

profile � and any matching ν 6= ϕ[�] and any other preference profile �′ such that the

comparisons of ν and ϕ[�] are the same under � and �′, we have ϕ[�′] 6= ν. This concept

captures the idea that, in order to falsify a proposed matching as being the outcome of

the mechanism, it is sufficient to find one challenger outcome and to verify the pairwise

comparisons of the proposed outcome with the challenger. We can thus falsify an outcome

with a limited amount of information; one of the reasons this is an attractive feature of a

mechanism is that it allows challenges that rely on relatively little information and largely

preserve agents’ privacy.

A mechanism is individually strategy-proof if truthful revelation of preferences is a weakly

dominant strategy for any agent: a mechanism ϕ is individually strategy-proof if for every

�∈ P, there is no i ∈ I and �′i∈ Pi such that

ϕ[�′i,�−i](i) �i ϕ[�](i).

A mechanism is group strategy-proof if there is no group of agents that can misstate their

preferences in a way such that each one in the group gets a weakly better house and at

least one agent in the group gets a better house, irrespective of the preference ranking of the

agents not in the group. Formally, a mechanism ϕ is group strategy-proof if for every

15In particular, when imposed on group strategy-proof mechanisms (defined below), Pareto efficiency is
equivalent to assuming that the mechanism maps P onto the entire set of matchings M. This surjectivity
property is known as citizen sovereignty, or full range. Notice also that Pareto dominance is a non-resolute
SWF.
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�∈ P, there exists no J ⊆ I and �′J∈ PJ such that

ϕ[�′J ,�−J ](i) �i ϕ[�](i) for every i ∈ J,

and

ϕ[�′J ,�−J ](j) �j ϕ[�](j) for at least one j ∈ J.

3 Equivalence

In Theorem 1, we study individually strategy-proof and Pareto-efficient mechanisms and

establish for them equivalence between Arrovian efficiency, auditability, and group strategy-

proofness.16 Thus, the three resulting classes of mechanisms coincide, and in particular, each

class consists of Trading Cycle mechanisms of Pycia and Ünver (2017), who constructed the

class of group strategy-proof and Pareto-efficient mechanisms. In addition, Example 1 below

demonstrates that the class of individually strategy-proof and Pareto-efficient mechanisms is

a strict superset of the mechanisms satisfying any of the equivalent conditions of the theorem.

Theorem 1. Suppose that a mechanism is individually strategy-proof and Pareto efficient.

Then the following three conditions are equivalent for this mechanism: Arrovian efficiency,

auditability, and group strategy-proofness.

Our proof establishes that some of the implications in this theorem are satisfied without

restricting attention to strategy-proof and Pareto-efficient mechanisms:

Proposition 1. If a mechanism is Arrovian efficient, then it is Pareto efficient, non-bossy,

and auditable.

To illustrate the equivalence of the theorem and our concepts, let us look at the setting

with three agents 1, 2, and 3, three houses A, B, and C, and no outside options. In the

Appendix, we give an example of a more elaborate incomplete Arrovian SWF, here let us

consider two examples of mechanisms illustrating the conditions we study.

Example 1. The serial dictatorship ϕ in which 1 chooses first and 2 chooses second is well-

known to be group strategy-proof and Pareto efficient. It is straightforward to see that this

serial dictatorship is Arrovian efficient with respect to the following SWF: µ is ranked above

ν if and only if (a) 1 prefers µ to ν, or (b) 1 is indifferent and 2 prefers µ to ν.

16In fact, our proof shows something more: for the mechanisms we study, auditability (or group strategy-
proofness) is also equivalent to Arrovian efficiency with respect to an SWF in which if matching µ Pareto
dominates matching µ′ then these two matchings are comparable.
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As ϕ treats all objects in a symmetric (neutral) way, to establish the serial dicta-

torship’s auditability, it is sufficient to look at a preference profile � such that ϕ[�] =

{(1, A) , (2, B) , (3, C)}, a different matching ν and any preference profile �′ such that �′i
keeps the same ranking as � between ϕ[�] and ν for each agent i and to show that ϕ[�′] 6= ν.

To verify this inequality consider two cases:

• A 6= ν(1). Then A �1 ν(1) because 1 being the first dictator chose her top choice

under �i. Hence, A �′1 ν(1). 1 is not choosing ν (1) when having preference ranking

�′1 and thus ϕ[�′] 6= ν.

• A = ν(1). Then either :

? B 6= ν(2). Then, B �2 ν(2) by an argument similar to the previous case. If ϕ[�′

](1) = B then ϕ[�′] 6= ν, and the auditability inequality obtains. If ϕ[�′](1) 6= B

then either ϕ[�′](1) 6= A = ν(1) and the auditability inequality obtains, or ϕ[�′

](1) = A = ν(1) and hence B is available when 2’s assignment is determined, and

thus, ϕ[�′] %′2 B �′2 ν(2), and hence, ϕ[�′] 6= ν and the auditability inequality

obtains.

? B = ν(2). Then C = ν(3) contrary to ν 6= ϕ[�].

Example 2. We now modify the serial dictatorship of the previous example and consider

mechanisms ψ in which 1 chooses first; then 2 chooses second if 1 prefers B over C, else

3 chooses second. This mechanism is an example of a ranking-dependent sequential dicta-

torship, and is also individually strategy-proof and Pareto efficient. However, mechanism ψ

is neither Arrovian efficient nor group strategy-proof nor auditable. To see the latter three

points, let us look at the following two preference profiles, which differ only in how agent 1

ranks objects:

�=

1 2 3

A A A

B B B

C C C

�′=

1 2 3

A A A

C B B

B C C

,

and notice that

ψ[�] = {(1, A) , (2, B) , (3, C)} ,

ψ[�′] = {(1, A) , (2, C) , (3, B)} .

Mechanism ψ fails group strategy-proofness because the coalition {1, 3} can improve by

reporting �′{1,3} instead of � {1,3}. Mechanism ψ also fails Arrovian efficiency. Indeed, by
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way of contradiction assume that ψ is Arrovian efficient with respect to some Arrovian SWF

Ψ. Then Ψ (�) ranks allocation ψ[�] above ψ[�′], and Ψ (�′) ranks ψ[�′] above ψ[�]. But,

this violates IIA, a contradiction that shows that ψ is not Arrovian efficient. Mechanism ψ

also fails auditability as we can contest the matching ψ[�] with matching ν = ψ[�′].

The proof of Theorem 1 builds on Example 1. As preparation for the proof, let us

notice three properties of group strategy-proofness. First, in the environment we study,

group strategy-proofness is equivalent to the conjunction of two non-cooperative properties:

individual strategy-proofness and non-bossiness.17 Non-bossiness (Satterthwaite and Son-

nenschein, 1981) means that no agent can misreport her preferences in such a way that her

allocation is not changed but the allocation of some other agent is changed: a mechanism ϕ

is non-bossy if for every �∈ P, there is no i ∈ I and �′i∈ Pi such that

ϕ[�′i,�−i](i) = ϕ[�](i) and ϕ[�′i,�−i] 6= ϕ[�].

The following lemma is due to Pápai (2000):

Lemma 1. Pápai (2000) A mechanism is group strategy-proof if and only if it is individually

strategy-proof and non-bossy.

Second, in the environment we study group strategy-proofness is equivalent to Maskin

monotonicity (Maskin, 1999). A mechanism ϕ is Maskin monotonic if ϕ[�′] = ϕ[�]

whenever �′∈ P is a ϕ-monotonic transformation of �∈ P. A preference profile �′∈ P is a

ϕ-monotonic transformation of �∈ P if

{h ∈ H : h �i ϕ[�](i)} ⊇ {h ∈ H : h �′i ϕ[�](i)} for every i ∈ I.

Thus, for each agent, the set of houses better than the base-profile allocation weakly shrinks

when we go from the base profile to its monotonic transformation. The following lemma was

proven by Takamiya (2001) for a subset of the problems we study; his proof can be extended

to our more general setting.

Lemma 2. A mechanism is group strategy-proof if and only if it is Maskin monotonic.

Finally, let us notice the following:

Lemma 3. If a mechanism ϕ is group strategy-proof, then no agent can change the outcome

of ϕ by changing the ranking of houses worse than the house she obtains; that is, if �′ differs

from � only in how some agent i ranks houses below ϕ[�](i), then ϕ[�′] = ϕ[�].

17Both of these properties are non-cooperative in the sense that they relate a mechanism’s outcomes under
two scenarios when a single agent makes unilateral preference-revelation deviations.
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The proof is straightforward: by individual strategy-proofness ϕ[�](i) = ϕ[�′](i) and

hence by group strategy-proofness (or by non-bossiness) ϕ[�′] = ϕ[�].

Proof of Theorem 1 and Proposition 1. We start by establishing the first equivalence

of the theorem, between Arrovian efficiency and group strategy-proofness. In proving this

result, we also establish the proof of the proposition. First, consider an Arrovian efficient

mechanism ϕ with respect to some SWF Φ. In light of Lemma 1, to establish the first

implication of the equivalence as well as the comment following the theorem, it is enough to

show that ϕ is Pareto efficient and non-bossy.

To show that ϕ is Pareto efficient, suppose that for some �∈ P, ϕ[�] is not Pareto

efficient. Then there exists some µ ∈M−{ϕ[�]} such that µ(i) �i ϕ[�](i) for every i, with

a strict preference for at least one agent. Because Φ satisfies the Pareto postulate, we have

µ Φ(�) ϕ[�], which contradicts the assumption that ϕ is Arrovian efficient with respect to

Φ.

To show that ϕ is non-bossy, let �∈ P and �′i∈ Pi be such that

ϕ[�](i) = ϕ[�′i,�−i](i).

Denote �′= (�′i,�−i). Because ϕ is Arrovian efficient with respect to Φ, the matching ϕ[�]

is ranked as the unique first by Φ (�) and the matching ϕ[�′] is ranked as the unique first by

Φ (�′). Thus, ϕ[�] and ϕ[�′] are comparable under both Φ (�) and Φ (�′), and IIA implies

that ϕ[�] and ϕ [�′] are ranked in the same way by Φ (�) and Φ (�′). We, thus, conclude

that ϕ [�] = ϕ [�′]. This establishes that ϕ is non-bossy.

Second, consider a group strategy-proof and Pareto-efficient mechanism ϕ. We define

the SWF Φ as follows: for any profile of preferences � and any matchings µ and µ′ 6= µ,

matching µ is ranked by Φ (�) above µ′ iff either (i) we have µ = ϕ[�] or (ii) for every agents

i, we have µ (i) �i µ′ (i). Note that Pareto efficiency of ϕ implies that conditions (i) and (ii)

are consistent with each other, and hence, that the SWF Φ is well-defined.

By definition, Φ satisfies the Pareto postulate. Furthermore, Φ is transitive: if Φ (�)

ranks µ1 above µ2 and it ranks µ2 above µ3 , then it ranks µ1 above µ3. Indeed, if one of the

these (for ` = 1, 2, 3) equals ϕ[�], then it must be that µ1 = ϕ[�], and the claim is proven.

If none of the µi equals ϕ[�], then agents unanimously rank µ1 above µ2 and unanimously

rank µ2 above µ3; we can conclude that the agents unanimously rank µ1 above µ3, and thus,

Φ (�) ranks µ1 above µ3.

It remains to check that Φ satisfies IIA. Take two preference profiles �1 and �2 such that

each agent ranks two matchings, say µ and µ′, in the same way under the two preference

profiles. If the two matchings are comparable under both Φ (�1) and Φ (�2), then one of
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the following cases obtains:

Case 1: One of the matchings is unanimously preferred to the other under �1; then the

same unanimous preference obtains under �2 and the claim is true.

Case 2: There is no unanimous ranking of the two matchings under �1; then unanimity

cannot obtain under �2 either. As the matchings are ranked, it must be that ϕ[�1] and

ϕ[�2] take value in {µ, µ′}. Say, ϕ[�1] = µ; then we need to check that ϕ[�2] = µ as well.

By Lemma 2, we can assume that each agent i ranks µ (i) and µ′ (i) at the top of her ranking

under both �1 and �2. Furthermore, by Lemma 3, only rankings of houses above agents’

allocations (and including their allocations) affect the outcome of a group strategy-proof

mechanism; we can thus conclude that ϕ[�1] = ϕ[�2].

To complete the proof, we need to also establish the equivalence between auditability

and the other two concepts. An inspection of the definitions shows that Arrovian efficiency

directly implies auditability; indeed, auditability is effectively IIA restricted to comparisons

involving the top alternative. Second, notice that in the proof of non-bossiness we only relied

on such restricted IIA. Hence, auditability implies non-bossiness and Lemma 1 concludes the

proof. QED

For our next section when we consider complete SWFs, we need to introduce the full

class of group-strategy-proof and Pareto-efficient mechanisms, as characterized by Pycia and

Ünver (2017). This is the class of trading-cycles mechanisms. This mechanism class is defined

through an iterative algorithm, which matches some agents in every round. Depending on

who is matched with which house in preceding rounds, the remaining houses are controlled

by the remaining agents in a round of the algorithm. We define a control-rights structure as

a function of the submatching that is fixed:

Definition 1. A structure of control rights is a collection of mappings

(c, b) =
{

(cσ, bσ) : Hσ → Iσ × {ownership,brokerage}
}
σ∈M .

The functions cσ of the control-rights structure tell us which unmatched agent controls

any particular unmatched house at a submatching σ, where at σ is the terminology we use

when some agents and houses are already matched with respect to σ. Agent i controls house

h ∈ Hσ at submatching σ when cσ(h) = i. The type of control is determined by functions

bσ. We say that the agent cσ(h) owns h at σ if bσ(h) =ownership, and that the agent cσ(h)

brokers h at σ if bσ(h) =brokerage. In the former case, we call the agent an owner and

the controlled house an owned house. In the latter case, we use the terms broker and

brokered house. Notice that each controlled (owned or brokered) house is unmatched at

σ, and any unmatched house is controlled by some uniquely determined unmatched agent.
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We need to impose certain conditions on the control-rights structures to guarantee that the

induced mechanisms are group strategy-proof and Pareto efficient.

Definition 2. A structure of control rights (c, b) is consistent if the following within-round

and across-round requirements are satisfied for every σ ∈M :

Within-Round Requirements:

(R1) There is at most one brokered house at σ, or |Hσ| = 3 and all remaining

houses are brokered.

(R2) If i is the only unmatched agent at σ, then i owns all unmatched houses at

σ.

(R3) If agent i brokers a house at σ, then i does not control any other houses at

σ.

Across-Round Requirements: Consider submatching σ′ such that σ ⊂ σ′ ∈ M, and an

agent i ∈ Iσ′ that owns a house h ∈ Hσ′ at σ. Then:

(R4) Agent i owns h at σ′.

(R5) If i′ brokers house h′ at σ, and i′ ∈ Iσ′, h′ ∈ Hσ′ , then either i′ brokers h′

at σ′, or i owns h′ at σ′. (Notice that the latter case can only happen if i is the

only agent in Iσ′ who owns a house at σ.)

(R6) If agent i′ ∈ Iσ′ controls h′ ∈ Hσ′ at σ, then i′ owns h at σ ∪ {(i, h′)}.

Each consistent control-rights structure (c, b) induces a trading-cycles (TC) mechanism

ψc,b, and given a problem �∈ P, the outcome matching ψc,b[�] is found as follows:

The TC algorithm. The algorithm starts with empty submatching σ0 = ∅
and in each round r = 1, 2, ... it matches some agents with houses. By σr−1, we

denote the submatching of agents matched before round r. If σr−1 ∈ M, then

the algorithm proceeds with the following three steps of round r:

Step 1. Pointing. Each house h ∈ Hσr−1 points to the agent who controls it at

σr−1. Each agent i ∈ Iσr−1 points to her most preferred outcome in Hσr−1 .

Step 2(a). Matching Simple Trading Cycles. A cycle

h1 → i1 → h2 → ...hn → in → h1,
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in which n ∈ {1, 2, ...} and agents i` ∈ Iσr−1 point to houses h`+1 ∈ Hσr−1 and

houses h` point to agents i` (here ` = 1, ..., n and superscripts are added modulo

n), is simple when one of the agents is an owner. Each agent in each simple

trading cycle is matched with the house she is pointing to.

Step 2(b). Forcing Brokers to Downgrade Their Pointing. If there are no simple

trading cycles in the preceding Step 2(a), and only then we proceed as follows

(otherwise we proceed to step 3).

• If there is a cycle in which a broker i points to a brokered house, and there

is another broker or owner that points to this house, then we force broker i

to point to her next choice and we return to Step 2(a).18

• Otherwise, we clear all trading cycles by matching each agent in each cycle

with the house she is pointing to.

Step 3. Submatching σr is defined as the union of σr−1 and the set of newly

matched agent-house pairs. When all agents or all houses are matched under σr,

then the algorithm terminates and gives matching σr as its outcome.

One important feature of the TC mechanisms is that we can, without loss of generality, rule

out the existence of brokers at some submatching σ if there is a single owner at σ. We

formalize this property as a remark:

Remark 1. Pycia and Ünver (2017) For each TC mechanism such that for some σ there is

only one owner and one broker, there is an equivalent TC mechanism such that at σ there

are no brokers and the same owner owns all houses.

Using Theorem 1 and Pycia and Ünver (2017)’s characterization we obtain the following

corollary:

Corollary 1. A mechanism is individually strategy-proof and Arrovian efficient if and only

if it is a TC mechanism.

4 Complete Social Welfare Functions

So far, we allowed welfare functions to incompletely rank social outcomes. We now show

that a class that we refer to as almost sequential dictatorships is exactly the mechanisms

18Importantly, broker i is unique by R1.
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that are strategy-proof and Arrovian efficient with respect to complete SWF, that is SWF

that always rank all outcomes.

First we define the following class: a top-trading-cycles (TTC) (or hierarchical ex-

change) mechanism is a TC mechanism with a control-rights structure in which no house

is ever brokered at any submatching (Pápai, 2000). A TTC mechanism ψc,b will be denoted

by dropping b from its notation as ψc.

TTC mechanisms form a strict subclass of TC mechanisms. Let us start with an example

showing that not every TTC is efficient with respect to a complete SWF.

Example 3. When |H| > |I| = 2, an agent cannot own two houses while a second

agent owns a house: Consider allocating three houses to two agents. Let ϕ be a TTC

mechanism in which agent 1 owns house A and agent 2 owns houses B and C. We will show

that there is no complete SWF such that ϕ is efficient.

Consider the preference profile

�=

1 2

B A

A B

C C

.

Consider also the following four additional preference profiles

�1=

1 2

B C

A
...

...

, �2=

1 2

B B

C C
...

...

, �3=

1 2

C A
... B

...

, �4=

1 2

A A

C C
...

...

.

Denote

µ1 = ϕ[�1] = {(1, B) , (2, C)} ,

µ2 = ϕ[�2] = {(1, C) , (2, B)} ,

µ3 = ϕ[�3] = {(1, C) , (2, A)} ,

µ4 = ϕ[�4] = {(1, A) , (2, C)} .

Now, if there is a complete SWF Φ such that ϕ is Arrovian efficient, then Φ (�1) ranks µ1

above µ4, and by IIA, this implies that Φ (�) ranks µ1 above µ4. Similarly, Φ (�2) ranks

µ2 above µ1, and by IIA, this implies that Φ (�) ranks µ2 above µ1. Further, and again

similarly, Φ (�3) ranks µ3 above µ2, and by IIA, this implies that Φ (�) ranks µ3 above µ2.

Finally, Φ (�4) ranks µ4 above µ3, and by IIA, this implies that Φ (�) ranks µ4 above µ3.
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But then Φ (�) fails transitivity, showing that there does not exist a complete SWF with

respect to which ϕ is efficient.

Observe that this example relies on the existence of more houses than agents. We will

use this example to prove a theorem for the case with |H| > |I|, and we will consider

the case |H| = |I| later. To do this, we introduce sequential dictatorships formally. A

sequential dictatorship is a TTC mechanism ψc such that for every σ ∈M and h, h′ ∈ Hσ,

ch(σ) = ch′(σ), i.e., an unmatched agent owns all unmatched houses at σ. For notational

convenience, we will represent each ch(·) as c(·). Sequential dictatorships turn out to be the

class of Arrovian-efficient and individually strategy-proof mechanisms for this case:

Theorem 2. Suppose |H| > |I|. A mechanism is individually strategy-proof and Arrovian

efficient with respect to a complete social welfare function if and only if it is a sequential

dictatorship.

Proof of Theorem 2. If |I| = 1, the theorem is trivially true. Suppose |I| ≥ 2.

( =⇒ ) Consider a mechanism ϕ that is individually strategy-proof and efficient with

respect to a complete Arrovian welfare function. By Theorem 1 and Corollary 1, ϕ is a TC

mechanism ψc,b.

Fix an arbitrary preference profile �∈ P. We claim that at any round r of the algorithm

ψc,b, there is exactly one agent who controls all houses. We prove it in two steps. First,

let us show that there cannot be two (or more) agents who each own a house. By way of

contradiction, suppose that some agent 1 controls house A and some other agent 2 controls

house B in round r.

Suppose σ is the submatching created by the TC algorithm for ψc,b before round r at

�. Fix house C ∈ {A,B} as an unmatched house at σ. Consider four auxiliary preference

profiles �` that all share the following properties: (i) each agent matched under σ ranks

houses under �`, ` = 1, ..., 4, in the same way they rank them under �, (ii) each agent

i unmatched at σ and different from agents 1 and 2 ranks a unique σ-unmatched house

hi 6∈ {A,B,C} ∪ Hσ as her first choice (such a unique house exists as |H| > |I|), and (iii)

agents 1 and 2 each rank all houses other than A,B,C lower than A,B,C. In particular, the

four profiles differ only in how agents 1 and 2 rank houses A,B,C: the ranking of A,B,C

is the same as in the four preference profiles of Example 3 above. Notice that

ψc,b[�`] = σ ∪ µ` ∪ {(i, hi)}i∈Iσ−{1,2},

where µ`s are defined as in Example 3 above. Furthermore, the same argument we used

in the example shows that there can be no SWF that ranks all four µ`s, is transitive, and
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satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction that

implies that there cannot be two agents who own houses in a round of the algorithm.

As ψc,b never allows two owners in a round of the algorithm, by Corollary 1 and Remark

1, there are no brokers in any round, either. Hence, in each round of the algorithm there

is a single agent who controls (and owns) all houses. That means that ψc,b is a sequential

dictatorship.

(⇐=) Consider a sequential dictatorship ψc. We construct a complete SWF Φ such that

ψc is efficient with respect to Φ. Under Φ any two matchings are ranked according to prefer-

ences of the first-round dictator; if she is indifferent , then the matchings are ranked according

to the preferences of the second-round dictator, etc. Formally, for any �∈ P and any two dis-

tinct µ, ν ∈M, let µΦ(�)ν if and only if there exists k ∈ {1, ..., |I|} such that µ (i1) = ν (i1),

... and µ (ik−1) = ν (ik−1), and agent ik prefers µ (ik) over ν (ik), where agents i1, ..., ik are

defined recursively: i1 = c (∅), and in general i` = c ({(i1, µ (i1)) , ..., (i`−1, µ (i`−1))}) for

` = 1, ..., k. It is straightforward to verify that Φ is a complete SWF and that ψc is efficient

with respect to Φ. QED

Next we turn our attention to what happens when |H| = |I|. The above argument relies

on the fact that there exists one extra house that can be used to regulate the ownership

of all houses in any round of the algorithm. Suppose |H| = |I|. Then we can modify the

argument in the proof an obtain a slightly different result. For this purpose we introduce a

new class of mechanisms slightly larger than sequential dictatorships.

An almost sequential dictatorship is a TTC mechanism ψc such that for every σ ∈M
such that |Hσ| 6= 2 we have ch(σ) = ch′(σ) for every h, h′ ∈ Hσ.

Therefore, the only mechanisms that are not sequential dictatorships in this class are

mechanisms that assign to different owners each of the houses when only two houses (and

hence, two agents) are left, but otherwise a single agent owns all houses.

Our third result is as follows:

Theorem 3. A mechanism is individually strategy-proof and Arrovian efficient with respect

to a complete SWF if and only if it is an almost sequential dictatorship.

First, we modify Example 3 and show that an agent cannot own multiple houses while

one other agent owns a house, and then we show in two examples that three agents each

cannot simultaneously control a house under a TC mechanism that is efficient with respect

to a complete SWF. We will use these three examples in proving Theorem 3.

Example 4. When |H| = |I| = 3, an agent cannot own two houses while another

agent owns the third house: Let ϕ be a TTC mechanism in which agent 1 owns house
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A, agent 2 owns houses B and C, and hence, agent 3 does not control any house. Consider

5 preference profiles �,�1,�2,�3,�4, as in Example 3. Suppose the preferences of agents 1

and 2 are exactly the same as in Example 3 under the respective profiles, while agent 3 has

the same arbitrarily fixed preference relation �3=�1
3= ... =�4

3. Denote

µ1 = ϕ[�1] = {(1, B) , (2, C) , (3, A)} ,

µ2 = ϕ[�2] = {(1, C) , (2, B) , (3, A)} ,

µ3 = ϕ[�3] = {(1, C) , (2, A) , (3, B)} ,

µ4 = ϕ[�4] = {(1, A) , (2, C) , (3, B)} .

Using the exact same argument as in Example 3, we establish that Φ (�) fails transitivity,

showing that there does not exist a complete SWF with respect to which ϕ is efficient.

Example 5. When |H| = |I| = 3, one agent cannot control a house while the others

each own a house: Let ϕ be a TTC mechanism in which agent 1 owns house A, agent 2

owns house B, and agent 3 controls house C. We will show that there is no complete SWF

such that ϕ is Arrovian efficient.

Consider the preference profile

�=

1 2 3

B C A

C A B

A B C

.

Consider also the following three additional preference profiles

�1=

1 2 3

B C B

C
...

...

A

, �2=

1 2 3

C C A
... A

...

B

, �3=

1 2 3

B A A
...

... B

C

.

Regardless of whether agent 3 owns or brokers house C, we have

µ1 = ϕ[�1] = {(1, A) , (2, C) , (3, B)} ;

µ2 = ϕ[�2] = {(1, C) , (2, B) , (3, A)} ;

µ3 = ϕ[�3] = {(1, B) , (2, A) , (3, C)} .
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If there is a complete SWF Φ such that ϕ is Arrovian efficient, then Φ (�1) ranks µ1 above

µ3, and by IIA, this implies that Φ (�) ranks µ1 above µ3. Similarly, Φ (�2) ranks µ2 above

µ1, and by IIA, this implies that Φ (�) ranks µ2 above µ1. Further, and again similarly,

Φ (�3) ranks µ3 above µ2, and by IIA, this implies that Φ (�) ranks µ3 above µ2. Then

Φ (�) fails transitivity, showing that there does not exist a complete SWF with respect to

which ϕ is efficient.

Example 6. When |H| = |I| = 3, there cannot be three brokers: Let ϕ be a TTC

mechanism in which agent 1 brokers house A, agent 2 brokers house B, and agent 3 brokers

house C. We will show that there is no complete SWF such that ϕ is Arrovian efficient.

�=

1 2 3

B B C

A A B

C C A

.

Consider also the following three additional preference profiles

�1=

1 2 3

A B C

C A B
...

...
...

, �2=

1 2 3

B B C

A C A
...

...
...

, �3=

1 2 3

B A B

C C A
...

...
...

.

Denote

µ1 = ϕ[�1] = {(1, A) , (2, B) , (3, C)} ;

µ2 = ϕ[�2] = {(1, B) , (2, C) , (3, A)} ;

µ3 = ϕ[�3] = {(1, C) , (2, A) , (3, B)} .

If there is a complete SWF Φ such that ϕ is Arrovian efficient, then Φ (�1) ranks µ1 above

µ3, and by IIA, this implies that Φ (�) ranks µ1 above µ3. Similarly, Φ (�2) ranks µ2 above

µ1, and by IIA, this implies that Φ (�) ranks µ2 above µ1. Further, again similarly, Φ (�3)

ranks µ3 above µ2, and by IIA, this implies that Φ (�) ranks µ3 above µ2. Then Φ (�) fails

transitivity, showing that there does not exist a complete SWF with respect to which ϕ is

efficient.

Proof of Theorem 3. If |H| > |I|, it follows from Theorem 2. So suppose |H| = |I|. If

|I| = 1, the theorem is trivially true. So suppose |I| > 1:

( =⇒ ) Consider a mechanism ϕ that is individually strategy-proof and efficient with
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respect to a complete Arrovian welfare function. By Theorem 1 and Corollary 1, ϕ is a TC

mechanism ψc,b.

Fix �∈ P. We claim that at any round r of the algorithm for ψc,b, there is exactly one

agent who controls all houses whenever |Iσ| > 2. We prove it in three steps (in accordance

with Examples 4-6). Let σ be the submatching created by the algorithm ψc,b before round

r for �.

• First, we show that an agent cannot own two houses while another agent owns a third

house: By way of contradiction, suppose that some agent 1 owns house A and agent 2

owns houses B and C in round r. Then there exists an agent 3 who does not control

any house at round r as |H| = |I|. Consider four auxiliary preference profiles �`

that all share the following properties: (i) each agent matched under σ ranks houses

under �`, ` = 1, ..., 4, in the same way they rank them under �, (ii) each agent i

unmatched at σ and different from agents 1, 2, 3 ranks a unique σ-unmatched house

hi 6∈ {A,B,C} ∪Hσ as her first choice (such a unique house exists as |H| = |I|), (iii)

agents 1 and 2 each rank all houses other than A,B,C lower than A,B,C, and (iv)

agent 3’s preferences are the same as �i under all four profiles. In particular, the four

profiles differ only in how agents 1 and 2 rank houses A,B,C: the ranking of A,B,C

is the same as in the four preference profiles of Example 4 above. Notice that

ψc,b[�`] = σ ∪ µ` ∪ {(i, hi)}i∈Iσ−{1,2,3},

where µ`s are defined as in Example 4 above. Furthermore, the same argument we used

in Example 4 shows that there can be no SWF that ranks all four µ`s, is transitive, and

satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction.

• Next, we show that one agent cannot control a house while at least two others each

own a house in round r: Suppose, to the contrary, agent 1 owns house A, agent 2 owns

house B, and agent 3 controls house C in round r. Consider three auxiliary preference

profiles �` that all share the following properties: (i) each agent matched under σ

ranks houses under �`, ` = 1, 2, 3, in the same way they rank them under �, (ii) each

agent i unmatched at σ and different from agents 1, 2, 3 ranks a unique σ-unmatched

house hi 6∈ {A,B,C}∪Hσ as her first choice (such a unique house exists as |H| = |I|),
and (iii) agents 1,2, 3 each rank all houses other than A,B,C lower than A,B,C, and

the ranking of A,B,C is the same as in the three preference profiles of Example 5

above. Observe that

ψc,b[�`] = σ ∪ µ` ∪ {(i, hi)}i∈Iσ−{1,2,3},
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where µ`s are defined as in Example 5 above. Furthermore, the same argument we used

in Example 5 shows that there can be no SWF that ranks all three µ`s, is transitive, and

satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction.

• Finally, using a variant of Example 6, we show that there cannot be multiple brokers

at round r (as multiple brokers can only occur with 3 agents and 3 houses, where

each agent brokers a distinct house): Suppose not. Then consider three auxiliary

preference profiles �` that all share the following properties: (i) each agent matched

under σ ranks houses under �`, ` = 1, 2, 3, in the same way they rank them under �,

(ii) agents 1,2, 3, who are the only remaining unmatched agents, each rank all houses

other than A,B,C lower than A,B,C, and (iii) the ranking of A,B,C is the same as

in the three preference profiles of Example 6 above. Notice that

ψc,b[�`] = σ ∪ µ`,

where µ`s are defined as in Example 6 above. Furthermore, the same argument we used

in Example 6 shows that there can be no SWF that ranks all three µ`s, is transitive, and

satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction.

Thus, a single agent owns all houses at round r when σ is fixed for |Iσ| > 2 (by Corollary 1

and Remark 1).

This means that ψc,b is an almost sequential dictatorship, as all TC mechanisms restricted

to only two agents are almost sequential dictatorships.

(⇐=) Consider an almost sequential dictatorship ψc. If ψc is a sequential dictatorship,

then the proof of Theorem 2 works. So suppose it is not a sequential dictatorship. Hence,

|H| = |I|. We construct a complete SWF Φ such that ψc is efficient with respect to Φ. Under

Φ any two matchings are ranked according to preferences of the first-round dictator; if she is

indifferent , then the matchings are ranked according to the preferences of the second-round

dictator, etc., until only two agents remain unmatched. At this round let 1 and 2 be the two

agents and A and B be the two houses remaining unmatched. Observe that there are only

two matchings, µ and ν, in which all agents’ assignments are the same but the last two: in

one 1 gets A and 2 gets B, and in the other vice versa. Then one of these two matchings

is equal to ψc[�′], where �′ ranks the assignment of any agent other than 1 and 2 in µ (or

equivalently ν) as her first choice, and for 1 and 2, the new preferences are the same as the

original ones under �. We rank ψc[�′] ∈ {µ, ν} before the other one under Φ(�).

Formally, for every µ ∈M, let sequential dictators i1, . . . ., i|I|−2 be defined as i1 = ch (∅)
for every h ∈ H, and in general, i` = ch ({(i1, µ (i1)) , ..., (i`−1, µ (i`−1))}) for every h ∈
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H − {µ(i1), ...µ(i`−1)} and ` = 1, ..., k; then for every ν ∈ M− {µ}, we say µ Φ(�) ν if one

of the following two conditions holds:

1. there exists k ∈ {1, ..., |I| − 2} such that µ (i1) = ν (i1), ..., µ (ik−1) = ν (ik−1), and

µ(ik) �ik ν(ik);

or

2. for every ` ∈ {1, ..., |I| − 2}, µ (i`) = ν (i`), and for �′∈ P where each i` ranks µ(i`) first

while the remaining two agents have the same preferences as in � , we have ψc[�′] = µ.

By construction, Φ is complete, antisymmetric, and transitive. Moreover, it satisfies the

Pareto postulate. To see that it also satisfies IIA, consider two distinct matchings, µ and ν ∈
M, and �∈ P such that µ Φ(�) ν. Also consider another profile �̂ ∈ P such that each agent

i’s preference over the two matching assignments is the same in �̂i as in �i. If µ Φ(�) ν

because of condition 1 above, then condition 1 continues to hold for �̂ and thus µ Φ(�̂) ν.

On the other hand, if µ Φ(�) ν because of condition 2 above, then µ and ν only differ in how

the last two agents are assigned the remaining two houses. Hence, the profile constructed to

check condition 2 for µ Φ(�̂) ν, which we refer to as �̂′, would lead to ψc[�̂′] = µ because:

1. the first |I| − 2 dictators would still get their µ assignments in the first |I ` 2 rounds

of the TC algorithm for ψc[�̂′], and

2. thus, the assignment of remaining two agents under ψc[�̂′] would be identical with

that under µ as the relative ranking of their assignments under µ and ν are identical

both in � and �̂, and the ranking of the other houses do not matter for finding the

outcome of the almost serial dictatorship.

Thus, µ Φ(�̂) ν, showing Φ satisfies IIA. QED
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Barberà, S., and M. O. Jackson (1995): “Strategy-proof Exchange,” Econometrica, 63,

51–87.

Bergson, A. (1938): “A Reformulation of Certain Aspects of Welfare Economics,” Quar-

terly Journal of Economics, 52(2), 310–334.

Black, D. (1948): “On the Rationale of Group Decision-making,” Journal of Political

Economy, 56(1), 23–34.

Blair, D., and E. Muller (1983): “Essential Aggregation Procedures on Restricted

Domains of Preferences,” Journal of Economic Theory, 30, 34–53.

Bogolomania, A., and H. Moulin (2004): “Random Matching Under Dichotomous

Preferences,” Econometrica, 72, 257–279.

Bogomolnaia, A., and H. Moulin (2001): “A New Solution to the Random Assignment

Problem,” Journal of Economic Theory, 100, 295–328.

Campbell, D. E., and J. S. Kelly (2003): “A Strategy-Proofness Characterization of

Majority Rule,” Economic Theory, 22(3), 557–568.

Dasgupta, P., P. Hammond, and E. Maskin (1979): “The Implementation of Social

Choice Rules: Some General Results on Incentive Compatibility,” Review of Economic

Studies, 46, 185–216.

Ehlers, L. (2002): “Coalitional Strategy-Proof House Allocation,” Journal of Economic

Theory, 105, 298–317.

24



Ehlers, L., and B. Klaus (2003): “Resource-Monotonicity for House Allocation Prob-

lems,” International Journal of Game Theory, 32, 545–560.
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Pycia, M., and M. U. Ünver (2007): “Outside Options in Neutral Discrete Resource

Allocation,” Working paper.

(2011): “Trading Cycles for School Choice,” Working Paper Available at SSRN:

http://dx.doi.org/10.2139/ssrn.1899344.

(2017): “Incentive Compatible Allocation and Exchange of Discrete Resources,”

Theoretical Economics, 12, 287–329.

Root, J., and D. Ahn (2020): “Incentives and Efficiency in Constrained Allocation Mech-

anisms,” Working Paper.
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A An Incomplete Arrovian Social Welfare Function

The following example illustrates an incomplete Arrovian SWF.

Example 7. Consider a society (or an employer) assigning one task to each of three employ-

ees. All the tasks need to be completed, and the society would like to respect the preferences

of the employees in assigning the tasks as much as possible. As a second order concern, the

society would like to avoid assigning Task A to employee 1 (e.g. because of a belief that

employee 1 is not very good in doing this job). The society thus has an SWF that has the

maximum at a Pareto-efficient matching that does not assign Task A to employee 1 if there

exists at least one Pareto-efficient matching that does not assign Task A to employee 1.

The society’s SWF can be equivalently described in terms of a Trading Cycles mechanism

ψ in which employee 1 brokers A, employee 2 has ownership of B and employee 3 has

ownership of C: for any preference profile �{1,2,3}, the SWF Ψ(�) ranks any two distinct

matchings µ and ν if and only if µ = ψ [�] or µ Pareto dominates ν; the social ranking is

then µ Ψ(�) ν.

For instance, for the preference profile

�=

1 2 3

A A B

B B C

C C A

,

the outcome of Trading Cycles ψ is ψ[�] = {(1, B) , (2, A) , (3, C)}, and the ranking of the

matchings with respect to Ψ(�) is given in Figure 1.
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{(1,B), (2,A), (3,C )}

{(1,A), (2,C ), (3,B)} {(1,A), (2,B), (3,C )} {(1,C ), (2,A), (3,B)}

{(1,B), (2,C ), (3,A)} {(1,C ), (2,B), (3,A)}

Example 3 in the Appendix

Figure 1: Ψ(�) in Example 7. For matching µ, ν, we have µ Ψ(�) ν if and only if there is a
directed path from µ to ν in this graph.
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