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1 Introduction

1.1 Overview

Employees in a wide variety of careers and industries receive on-the-job training. Surgical

residency programs revolve around a progressive increase in residents’ responsibilities in the

operating room.1 Law firms routinely assign clients to associates on track to become part-

ners. In such settings, employers face an ongoing allocation problem: which tasks or clients

to allocate to more experienced and senior employees, and which to junior ones. Experienced

providers typically offer more reliable service, but junior employees are often more available and

require hands-on practice to become seniors later on. Existing (one-sided) matching protocols

presume agents’attributes– here, providers’quality– are fixed over time; see, e.g., Echenique,

Immorlica, and Vazirani (2021). However, in the presence of on-the-job training, the allocation

of tasks within an organization affects future providers’expertise.

We propose a new and tractable framework to address the task-allocation problem when

agents’ types are endogenously determined through training. At the heart of the allocation

problems we study is a trade-off between clients’ immediate and future service quality. We

characterize optimal protocols by which a social planner would assign clients to service pro-

viders. We also identify how organizations perform in discretionary settings, where it is the

clients who select their service providers. This allows us to analyze conditions under which

organizations would especially benefit from centralizing the task-allocation process.

Our results indicate that welfare gains from centralization are greater for larger institutions,

where tasks arrive more rapidly, and for improved training technologies. Thus, mergers of

hospitals, law firms, etc. make centralized rules for client-provider assignments particularly

beneficial. Monitoring seniors’ backlog of clients always increases welfare. Nonetheless, we

illustrate that improved monitoring may decrease the scope of training within the organization.

As common in many applications, we focus on settings in which the organization cannot price

services based on providers’seniority. The allocation protocol is therefore the only instrument

by which the organization can impact both the quality of immediate service and the expertise of

providers in the future. If an organization insists on providing only senior service, the quality of

service is high, but there is no training. Natural attrition, through retirement or job changes,

would then result in a scarcity of experienced personnel, leading to prolonged wait times.2

1The American Board of Surgery specifies precise training requirements measured both through the number
of surgeries and the trainee’s role in them (see http://www.absurgery.org)

2Wait times are critical in determining organizations’performances. Elit, O’Leary et al. (2014), Wijeysun-
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This trade-off between immediate and future service quality cannot be analyzed using standard

tools offered by the matching literature. Extant models generally consider agents’“types”as

exogenously given, rather than as the result of past assignments.

In our model, clients seeking service arrive over time at a Poisson rate. The organization is

comprised of junior and senior service providers. Service by juniors is immediate. Senior service

quality is higher, but entails a costly wait. We assume clients who seek senior service form a

queue. For example, medical patients may have to wait for a consultation with an experienced

specialist and appointments for legal counsel are often provided on a first-come-first-served

basis. We assume the processing speed of clients by seniors depends on the seniors’volume in

the organization. The more seniors available, the speedier the rate at which clients in the queue

are served.

The organization’s composition evolves over time. Specifically, juniors who perform service

become seniors via a training technology. In steady state, the fraction of clients directed at

seniors affects wait times through two distinct channels. The more clients join the senior

queue, the longer the wait times. That is the direct channel. But, there is also an indirect

channel through training. Fewer clients served by juniors leads to less training and slower

senior processing speeds. The queueing literature offers a rich analysis of models in which

servers varying in speed cater to clients that arrive over time (see, for instance, Leon-Garcia,

2008). However, in that literature, service quality or speed are fixed and independent of prior

experience– there is no indirect channel. We introduce techniques for incorporating the link

between evolving expertise and service quality, allowing for endogenous client arrival speeds.

We consider two alternative information environments. First, we study the case in which

decision makers– the social planner in the centralized setting or individual clients in the discre-

tionary environment– observe the current state of the queue when selecting service providers.

This constitutes what we refer to as the perfect-monitoring case. For instance, academic de-

partment chairs could link the assignment of faculty members to various committees based on

their existing workloads. Likewise, individuals seeking help from an attorney may be informed

of the length of the wait time they will experience. While the perfect-monitoring case serves

as a natural benchmark, in many environments queues cannot be consistently tracked. There-

fore, the second information environment we consider is one in which decision makers cannot

dera et al. (2014), and Kaltenmeier et al. (2019) are all studies that quantify increased risks of complications
and mortality associated with a longer wait between diagnosis and various surgical procedures. In judiciary
systems, trial delays often result in detainees waiting for a decision in prison, causing higher costs, overcrowding
and worse living conditions. As of 2019, 18.9% of the prison population in Europe consisted of detainees waiting
for a final decision on their case, see the annual reports available at http://www.prisonobservatory.org/ .
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monitor the queue over time and cannot condition their choices on its current state. This is

the limited-monitoring case. For example, when drafting a curriculum for all surgical residents

in the U.S., policy makers need to establish a required level of involvement in the operating

room, which does not depend on the current logistical needs of any specific hospital. Similarly,

patients with an urgent condition may not know the volume of others currently waiting in line

when choosing which local emergency room to drive to.

In the perfect-monitoring setting, we focus on symmetric threshold-based allocation policies:

clients are served by readily available juniors if and only if the queue for senior service has

reached a certain threshold. Our first set of results fully characterize the optimal as well as

the equilibrium thresholds clients utilize. The social planner accounts for the full distribution

of wait times and the training constraint. As we show, modifications of the classical queueing

model allow us to transform the social planner’s objective into a static constrained optimization

problem that can be readily solved. In contrast, the equilibrium discretionary threshold is set

so that the last client willing to wait for senior service is roughly indifferent between the two

types of service.

Our characterizations allow for natural comparative statics. Certainly, a greater relative

value for senior service, or lower wait costs, lead to greater training and higher quality of service.

The impacts of changes in clients’ arrival rate or improvements in the training technology

are more subtle. More clients arriving, as a consequence of, say, a merger between hospitals

or firms, could potentially cause more congestion, but at the same time presents additional

training opportunities. Improved technology, due to the introduction of online training options,

simulated activities such as surgeries for doctors or mock trials for lawyers, can help generate

more seniors, but potentially cause fewer clients to turn to juniors. We show that both increased

clients’arrival rate and improved training technologies lead to higher expected service quality

and a greater mass of seniors, both in equilibrium and under the optimal policy. The impacts

on expected wait times are non-monotonic, with maximal expected wait times occurring for

intermediate values of arrival rates and training effi cacy.

In the limited-monitoring case, decision makers, the social planner or the clients themselves,

choose the probability with which they enter the seniors’queue, without seeing its status. Our

second set of results characterizes the optimal and equilibrium probability of seeking senior ser-

vice with limited monitoring. As in the perfect-monitoring case, the optimal policy maximizes

the expected welfare subject to the training constraint, and we provide a modification of the

classical queueing model to identify a unique solution. In the discretionary equilibrium, the

3



fraction of clients joining the queue for senior service makes any client indifferent between the

two types of service.

Some of the comparative statics corresponding to the limited-monitoring case resemble

those of the perfect-monitoring case. Both increased clients’arrival rate and improved training

technologies yield increases in average service quality. However, their effects on expected wait

times are different. An increase in either leads to monotonically decreased wait times for senior

service in the centralized setting, and no change in wait times in the discretionary setting. With

limited monitoring, the welfare gap between the optimal and discretionary settings increases as

clients’arrival rate grows or the training technology improves– such changes in the environment

make centralized interventions unequivocally more impactful on clients’welfare.

Centralization naturally increases overall welfare, regardless of monitoring precision. Discre-

tionary settings feature higher average service quality at the cost of longer wait times. Indeed,

in discretionary settings, each client waiting in line for senior service imposes two types of ex-

ternalities. First, she imposes a longer wait on those that follow her in the queue. Second, she

deprives the organization from potential training opportunities, resulting in longer future wait

times for senior service.

Our last set of results evaluates the effects of monitoring precision on centralized and dis-

cretionary processes. Perfect monitoring allows decision makers to utilize the senior queue only

when it is suffi ciently short. In contrast, with limited monitoring, agents can only rely on

expectations of queue length.

In the discretionary setting, the impacts of monitoring are nuanced. If the training tech-

nology is relatively ineffi cient, a higher fraction of clients seek senior service under perfect

monitoring than under limited monitoring. Improved monitoring then increases the average

service quality but decreases training. The reverse holds if the training technology is highly

effi cient. Nonetheless, regardless of the training technology’s effi cacy, the equilibrium welfare

is always higher under perfect monitoring.

In the centralized setting, monitoring is always beneficial. With perfect monitoring, the

social planner can emulate the fraction of clients sent to seniors in the limited-monitoring case,

but do so more effi ciently, directing clients to the senior queue only when it is short enough.

Such a policy maintains service quality and reduces wait times. As we show, in the optimal

policy, the social planner chooses a higher threshold than that. Namely, in the centralized

setting, monitoring leads to higher quality and less training.

Taken together, our results suggest the value of centralization, particularly when clients’
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arrival rate is high and training is effi cient. They also indicate the value of monitoring in

such allocation problems. Nonetheless, the benefits of monitoring come at a cost organizations

should be aware of. While monitoring always increases clients’overall welfare, it can result

in less training. This is the case in centralized settings and, when the training technology is

relatively ineffi cient, also in discretionary environments.3 We hope the new methodology we

introduce opens the door for future work that allows agents’characteristics, in our case service

providers’expertise, to evolve with their market experiences.

1.2 Related Literature

Different aspects of our model are reminiscent of work in several areas. The problem of how an

organization should optimally juggle tasks arriving over time has been studied in the context

of judicial systems by Coviello, Ichino, and Persico (2014) and Bray, Coviello, Ichino, and

Persico (2016). Gavazza and Lizzeri (2007) consider a model of queueing for services and study

service providers who maximize their free time and can increase their service speed at a cost.

Increasing transparency, by revealing wait times to clients, is then detrimental to effi cient servers

and reduces servers’incentives to invest in service speed. Nonetheless, the training component,

and the heterogeneity of service providers it generates, is absent from these papers.

Settings related to supervised training, absent a task-allocation decision or considerations

of service delays, are explored in several papers. Lizzeri and Siniscalchi (2008) consider parents

who decide how much to shelter their children from mistakes, which are risky but provide useful

learning opportunities. The result is that parental intervention occurs as differences between

parents and children grow. Fudenberg, Georgiadis, and Rayo (2021) study a dynamic principal-

agent interaction in which the agent’s productivity, as well as her outside options, increase with

projects completed over time. See also references there.4

Work in organization theory has studied how to allocate opportunities to heterogeneous

individuals who may have comparative advantages in exploiting them. This question has in-

spired insights on the optimal way to design knowledge-based organizations by, among others,

3Certainly, one could consider centralized solutions that account for the amount of training per se in their
objective. We return to this point in our conclusions.

4There is also a vast literature on workers’training in general equilibrium models of human capital accu-
mulation (see, for example, Acemoglu, 1997, and Acemoglu and Pischke, 1999). This work abstracts from the
task-allocation problem with on-the-job training. It typically focuses on how market frictions can explain why
firms are willing to invest in workers’ training despite the fact that market competition and labor mobility
prevents them from reaping its full returns. Chari and Hopenhayn (1991) consider a dynamic model of techno-
logical innovation, where investment in new technologies depends on prior investments in older technologies– for
instance, through the training of employees.
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Garicano (2000) and Garicano and Rossi-Hansberg (2012). While agents’expertise evolves in

some of these models, the operating mechanism is quite different than ours.5 The idea that task

assignment may change randomly over time depending on the organization’s needs is explored

in Bird and Frug (2021). None of these papers examines the interaction between task allocation

and employees’training.

Our paper is also related to a recent and growing literature on dynamic allocation and

matching, starting from the seminal work of Ünver (2010). For a review of that literature, see

Baccara and Yariv (2021).6 In the matching context, there is little work considering monitoring

quality as a market-design instrument. One exception is Arnosti, Johari, and Kanoria (2015),

who illustrate the impact of transparency in employment markets.

Our analysis expands on techniques from the queueing literature. For a review of the relevant

models see, for example, Hassin and Haviv (2003) or Leon-Garcia (2008).

2 Setup

Our model focuses on client or task allocation with on-the-job training. Clients seeking service

arrive at the system over time t ∈ [0,∞) following a Poisson process with arrival rate λ. There

are two types of service providers: juniors and seniors. We assume that seniors are better

equipped to handle clients. Formally, we assume the value corresponding to a senior handling

a client is h, whereas the value derived from a junior handling a client is l, where h > l > 0.

The difference h− l can stand for the literal difference in the service quality provided, for the
relative risk of critical mistakes during service, and so on.

For simplicity, we assume there is an infinite pool of juniors. Therefore, clients directed

at juniors experience no wait. Clients directed at seniors form a queue and are served on a

first-in-first-out (FIFO) basis. Let µt ∈ R+ denote the mass of seniors at time t. While this
mass evolves over time, our analysis will mostly concentrate on its limit within the settings we

analyze. As the mass of senior providers increases, senior service becomes more rapid. Formally,

the completion of service provided by seniors follows a Poisson process with parameter µt.
7 ,8

5For example, Garicano and Rossi-Hansberg (2012) explore a dynamic setting in which individuals acquire
skills by experiencing exceptional problems related to new technologies. Some acquire more problem-solving
expertise than others and, over time, these “experts”can use their skills to solve problems experienced by others
by becoming managers in hierarchical organizations, or external consultants.

6In particular, several papers in that literature have utilized queueing models with exogenously-fixed agent
types: e.g., Bloch and Cantala (2017), Leshno (2021), and, Ashlagi, Burq, Jaillet, and Manshadi (2019).

7The mass µt needs not be interpreted literally as the volume of seniors. Rather, it can be any service speed
proxy that responds to the mass of seniors.

8One could consider a discrete version in which the (integer) number of seniors evolves over time and providers
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Since clients directed at seniors might experience a wait in the queue, the overall payoff

from directing a client to seniors is h − cW , where c > 0 is the waiting cost and W is the

client’s wait time in the queue. We assume that a client does not experience waiting costs while

receiving service. For the applications we consider, one’s own expected service time may affect

payoffs differentially– for example, when waiting for medical service, a patient’s appointment

duration depends on the particular doctor she meets, but her overall wait time depends on the

set of available doctors. Any additional costs entailed by the time spent receiving service are

incorporated in h and l.

We consider centralized and discretionary allocation problems. In a centralized allocation,

a planner allocates clients to seniors or juniors. The planner’s objective is to maximize the

average client payoff. In a discretionary allocation, upon their arrival, clients choose whether

to join the queue for senior service, or seek immediate service by juniors. We also consider

varying degrees of monitoring. With perfect monitoring, decision makers– the social planner or

the clients– observe the queue for senior service and allocation decisions can be contingent on

its current length. With limited monitoring, decision makers do not observe the evolving status

of the queue for senior service. Therefore, allocation decisions are independent of the current

queue status or past client allocations.9

Last, we consider a reduced-form model of training, which captures the process by which

juniors transition to senior positions. In either the discretionary or centralized setting, each

allocation policy gives rise to a time-average number of clients x directed at juniors, and to

a mass of seniors µ determined by a production function f : R+ → R+. That is, µ = f(x).

We assume that f is differentiable, (weakly) increasing, and (weakly) concave in x. We also

assume that f(0) ≤ λ so that it is not feasible for all clients to join the queue for senior service

without that queue imploding and generating arbitrarily long wait times.10 Since µ represents

the speed at which seniors process clients, any improvement in training technology corresponds

to an upward shift of the function f .

The production function we consider subsumes various features of promotion and hiring

procedures in organizations. For example, µ = f(x) can be implicitly defined as the solution of

can serve clients simultaneously, corresponding to multi-server models in the queueing literature. Such a model
would capture similar qualitative features, with more training yielding more servers, and therefore more rapid
senior service, but is far less tractable.

9In each of the settings we analyze, clients are guaranteed an expected payoff of at least l > 0. Thus,
participation constraints are satisfied ex-ante.
10By a well-known queueing theory result (see details in the Appendix), if all clients join the queue, namely

x = 0, the average waiting time in the queue with a processing rate µ(> λ) is 1
µ−λ−

1
µ , which becomes arbitrarly

large as µ approaches λ. The other potential “corner”allocation, x = λ, never occurs since h > l.
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pµ = g(x), where g is a training function and senior providers’mass decays every time unit by

a fraction of p because of exit (e.g., retirement) or skill deterioration. The training technology

can also reflect a screening process of job applicants or junior employees. In such a scenario,

applicants, new employees, or interns are assigned some clients and l represents the average

skill level in the general intern population. The production function captures the fraction of

high-quality interns that are then selected for permanent positions. The linear production

technology case, where f(x) = ax, with a > 0, is a particularly useful one to consider. While it

is in many ways special, it fits well with numerous applications. For instance, in the screening

interpretation, it reflects cases in which only a fixed fraction of juniors justify promotion. The

parameter a is then a proxy for the training effi cacy.

There are several special cases that serve as important benchmarks:

• Infinitely costly delay (c → ∞). This case captures settings in which allocations are
urgent, such as surgeries for trauma patients, emergency fire or police calls, etc.

• Costless delay (c→ 0). Routine tasks and services, such as dental check-ups, low-stakes

legal proceedings, and so on, are often characterized by very low costs of delay.

• No on-the-job training (f(x) = µ for any x). This is the case when skill acquisition on

the job is limited in scope or duration, as is arguably the case for journal editorial teams,

higher court judges, grant-allocation panels, etc. It is also the case for low-skilled labor-

intensive jobs, including, for example, many jobs in the food and construction industries.

A constant production function additionally captures settings in which training practices

are separate from hiring practices or environments in which turn-over is high. For instance,

many academic departments employ post-docs that are not destined to receive a tenure-

track position.

Several assumptions in our setting merit discussion. In our model, clients incur a fixed flow

cost for the duration of their wait. An alternative way to model waiting costs would be through

discounting. We use flow costs in our setting for two reasons. First, we believe flow costs

might be more important for design objectives in the applications we speak to. Indeed, with

discounting, once clients have waited for a very long time, their marginal contribution to welfare

becomes negligible, and a social planner can all but ignore them in allocation decisions.11 This

is hardly the case when clients are medical patients seeking treatment, students awaiting their

11Ortoleva, Safonov, and Yariv (2021) discuss how discounting impacts optimal allocations of items.
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grades, etc. As we soon discuss, FIFO protocols are commonly used in practice for these sorts

of applications. The underlying premise of FIFO is that those who waited longer should not be

punished, and is therefore antithetical to discounting in settings such as ours. The second reason

for considering flow costs is technical in nature, as it allows for far greater tractability. Indeed,

there are several diffi culties discounting presents. With discounting, the benefits of serving a

client depend on the time that client already spent in the system. As a result, the relevant state

space for a social planner is vast: each state specifies not only the number of clients waiting

in the queue, but also their precise arrival times. In addition, the randomness present in our

environment suggests that the timing of service is in itself a random variable. Keeping track of

expected exponentially discounted values then introduces non-trivial complications in itself.

We assume that the queue for senior service is governed by a FIFO protocol. While this

assumption has no impact on the characterization of the optimal centralized mechanisms, it is

important for our results pertaining to equilibrium outcomes in discretionary settings.12 The

order of arrivals is tied to the order of service in many organizations, and FIFO is commonly

used. For example, when scheduling a medical visit with a specialist, patients often have

the option to select the first available appointment on the calendar. Indeed, queues for an

assortment of, if not most, services– construction jobs, home and car improvements, etc.–

operate on a FIFO basis. Other priority protocols such as last-in-first-out (LIFO) are well-

known to reduce negative externalities in discretionary settings, but at the same time involve

significant implementation challenges.13

Our model assumes an infinite supply of juniors available at any time. Consequently, clients

seeking junior service experience no wait. This assumption is designed to capture the idea

that, in many settings, unskilled labor is more readily available than more experienced labor.

Certainly, one could assume that juniors are available in limited supply as well and that clients

seeking their service wait in a separate queue. The model would then be less tractable. We

view such an extension as an interesting direction for future analysis.

12In a centralized setting, the social planner’s objective function incorporates the average wait experienced
by the clients. Therefore, because of waiting costs’linearity, the planner’s optimal policy is unaffected by the
priority protocol.
13In particular, they are subject to manipulation as they introduce incentives to leave and re-enter queues.

They are also sometimes considered “unfair” in that individuals who just entered the system are served first,
while others, who have been waiting, remain in the queue. See Margaria (2019) and references therein.
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3 Perfect Monitoring

We start by analyzing the case in which the volume of clients queueing to be served by seniors

is observed: by the social planner in the centralized setting, and by entering clients in the

discretionary setting. This analysis serves as a useful benchmark for quantifying the impact

of monitoring technology improvements (see Section 6). In addition, this information environ-

ment fits numerous applications well. For example, in many organizations, administrators are

assigned duties based on their current workload. Analogously, patients may call clinics to learn

about their expected wait times in advance of deciding which provider to seek service from.

Moreover, in some settings in which clients have discretion over service choice, new technolo-

gies allow monitoring of the line prior to a decision– e.g., apps such as No Wait or Yelp allow

patrons to observe the line at restaurants before arriving on the premises. In what follows, we

analyze the outcomes such monitoring yields.

3.1 Threshold-Based Allocations

Both in the discretionary and in the centralized settings, we focus on symmetric threshold-based

allocation policies: clients are served by readily available juniors if and only if the queue for

senior service, including those waiting or being served, has reached a threshold k.14

Formally, we consider a continuous-time Markov chain for the number of clients waiting

in the queue or currently being served. With fixed arrival and service rates, the processes we

analyze correspond to those referred to as M/M/1/k queues in the queueing literature (see our

primer in the Appendix). In our setting, however, both the seniors’service rate and the arrival

rate into their queue are determined endogenously by the chosen threshold.

Without loss of generality, we assume that k ≥ 1 throughout our analysis. Whenever the

seniors queue is empty, it is optimal for any individual client and the planner to seek senior

service, which comes at a higher quality. The queue size is bounded above by k, and the unique

steady-state distribution across the relevant states of the queue, {0, 1, . . . , k}, is as follows.15

Lemma 1 (Steady-state Distribution under a Threshold Policy) Given µ > 0 and k ≥
1, the probability pj of having j clients in the queue for senior service in the unique steady

14Since the length of service is distributed exponentially, the expected time of service completion is independ-
ent of the time at which service has begun. It follows that the relevant statistic for a newly-arrived client is the
number of clients in the senior queue, including any client currently being served.
15The state j = 0 corresponds to no clients present, j = 1 corresponds to one client currently being served,

j = 2 corresponds to one client being served and one waiting for service, and so on.
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state is

pj =

{
1

k+1
if µ = λ

(λ/µ)j(1−(λ/µ))
1−(λ/µ)k+1 if µ 6= λ.

∀j = 0, 1, . . . , k. (1)

Let Q denote the number of clients waiting in the senior queue, excluding those being served.

E[Q] =

k∑
j=1

(j − 1)pj =

k∑
j=1

(j − 1)(λ/µ)jp0.

After algebraic manipulation (see details in the Appendix), we can write:

E[Q] =


k(k−1)
2(k+1)

if λ = µ

1
1−(λ/µ)k+1

(
(λ/µ)2−(λ/µ)k+1

1−(λ/µ) − (k − 1)(λ/µ)k+1
)
if λ 6= µ.

(2)

Clients seek junior service when the state is j = k. Denote the average fraction of clients

served by seniors by q ≡ 1 − pk. In steady state, the time-average number of clients seeking
senior and junior service are qλ and (1− q)λ, respectively.16

Let E[W ] denote these clients’average waiting time before being served by seniors, condi-

tional on joining the (possibly empty) queue. As we show in the Appendix, there is a close

link between the expected wait time and the expected length of the queue, denoted by E[Q].

Namely, by Little’s formula,

E[Q] = λqE[W ].

The mass of seniors is governed by the training technology and given by µ = f((1 − q)λ).

This formulation of the mass of seniors could be micro-founded by modeling the evolution of

training explicitly.17

For exposition sake, it is convenient to relax the integer constraints on k.18 In Lemma 2, we

establish the one-to-one correspondence between any real-valued threshold k and the associated

fraction of clients served by seniors q (i.e., the service quality) for any given µ.

16The arrival of clients assigned to juniors or seniors does not follow a Poisson process. Indeed, a client
assigned to juniors suggests the senior queue is long. Hence, a client served by juniors is likely to be closely
followed by another.
17Consider a setting in which every T periods, the number of seniors adjusts as follows. A fraction is lost to

decay– reflecting retirement, job transitions, etc.– and a random number of seniors is added through training,
which naturally depends on the training technology in place. Under standard assumptions, this Markov process
is ergodic and, for any fixed T , converges to a steady-state distribution over the number of seniors. As the size
of the adjustment window T grows, the steady-state distribution converges to a degenerate distribution centered
at some µ, which is the focus of our analysis.
18For any given λ and µ, the formulas for pk, E[Q], and E[W ] are defined for any real-valued k ≥ 1. One can

readily derive the corresponding formulations that take the integer constraint into account. In the next footnote
we discuss the implications of relaxing the integer constraint on the resulting policies.
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Lemma 2 (Service Quality under a Threshold Policy) For all µ,

q(k;µ, λ) ≡ 1− pk =

{
k
k+1

if λ = µ,
1−(λ/µ)k

1−(λ/µ)k+1 if λ 6= µ
(3)

is strictly increasing in k ∈ [1,∞), with values in [ µ
µ+λ

, µ
λ
).

Lemma 2 allows us to describe any outcome in terms of either (k, µ) or (q, µ). In what

follows, we characterize solutions in terms of (q, µ) as it facilitates a direct comparison of

solutions under perfect and limited monitoring, which we consider later. For a given pair (q, µ),

the corresponding threshold k is identified by the inverse of (3):

k(q;µ, λ) ≡
{

q
1−q if λ = µ
log(1−q)−log(1−(qλ/µ))

log(λ/µ)
if λ 6= µ.

(4)

3.2 Discretionary and Centralized Allocations

Consider first the case in which clients have discretion over which service to seek upon entering

the market. A symmetric equilibrium (k, µ) is defined through two constraints. First, each

client optimizes her expected payoff, which we soon spell out, given the size of the queue she

observes upon entry and the mass µ of seniors. In particular, each client prefers to join the

seniors’queue as k-th in line, but not as (k + 1)-th in line. Second, the mass µ of seniors is

consistent with the training opportunities governed by the threshold k. Namely, for the induced

fraction q of clients seeking senior service and characterized in Lemma 2, the remaining fraction

1 − q of clients is served by juniors. Therefore, it must be that µ = f((1 − q)λ). We call this

last equality the training constraint.

When all clients use the threshold k, any client who arrives when there are m ≥ k clients

in the senior queue approaches juniors, who are immediately available. Since the senior queue

follows a FIFO protocol, the position of any client waiting can only improve over time. In

particular, a client who decides to wait for senior service has no reason to leave the queue and

get served by juniors at a later point. As service times are distributed exponentially, a client

who joins as m-th in the queue for senior service experiences an expected wait time of m−1
µ
. Her

expected payoff from joining the senior queue is then h − cm−1
µ
. Ignoring integer constraints,

at the threshold k, the agent is indifferent between receiving that expected payoff, or receiving

service immediately from juniors. That is, an equilibrium is defined by two restrictions: the

indifference condition h− ck−1
µ

= l and the training constraint µ = f((1− q)λ).

12



In what follows, we assume an integer-threshold environment. That is, we assume there

exists a solution that is consistent with an integer threshold. This assumption greatly simplifies

our exposition, but is not crucial qualitatively.19

From the social planner’s perspective, threshold-based policies are optimal within the set

of stationary policies that depend only on the number of clients waiting or being served in the

senior queue.20 We now characterize the optimal centralized threshold mechanism. The planner

maximizes the clients’average payoff:

max
k,µ

pkl + (1− pk)(h− cE[W ]).

subject to the training constraint µ = f(λpk). Let θ ≡ h−l
c
denote the quality differential per

unit cost. This problem is equivalent to:

max
q,µ

qλθ − E[Q] s.t. µ = f((1− q)λ).

In the linear-production case, f(x) = ax, the training constraint µ = a(1− q)λ implies that
E[Q] can be directly described as a function of q.

Lemma 3 Suppose f(x) = ax, for some a > 0. The expected number of clients waiting in the

queue, E[Q], is described as follows:

E[Q] =


q(2q−1)
2(1−q) , if q = 1− 1

a
,

1
a(1−q)−1

[
q

a(1−q) − (1− q) log(1−
q

a(1−q) )−log(1−q)
log a+log(1−q)

]
otherwise.

It follows that the planner’s problem in the linear-production case can be written as

max
q∈[q, a

1+a
)
qλθ − E[Q],

19Without this assumption, an equilibrium could be defined similarly. Let k ≡ max{k : l ≤ h− ck−1µk
}. Hence,

l > h − c k
µk+1

. If l < h − c kµk , when all other clients use threshold k, each one wants to use threshold k + 1
instead. An equilibrium would be defined by k together with a randomization, such that some fraction of clients,
when finding k others in the queue, still join the queue as k + 1-th in line. While all our analysis’qualitative
features remain, such randomization requires a custom modification to the steady state of M/M/1/k queues.
20Consider the set of all, both deterministic and random, stationary policies. No optimal policy would require

holding an indefinitely large number of clients in the queue. Therefore, it is without loss of generaility to assume
that the maximum number of clients in the queue must be finite, implying a finite state space. Let µ be the
mass of seniors that an optimal stationary policy yields. By Theorem 7.1.9 of Puterman (2005), holding µ fixed
and ignoring the training constraint, an optimal policy is identified by a threshold k, where k+1 is the smallest
queue length under which the policy directs an arriving client to juniors. See the Appendix of Baccara, Lee,
and Yariv (2020) for details of a similar derivation of an optimal threshold policy.
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where q corresponds to the case k = 1. Specifically, if k = 1, then q = 1 − pk = µ
µ+λ

and

µ = aλ(1 − q), so q is the solution of q = a(1−q)
a(1−q)+1 . The upper bound q <

a
1+a

is required to

ensure that qλ < µ = a(1− q)λ.21 In the Appendix, we show that the objective is continuously
differentiable and single-peaked. Therefore, we can use a first-order condition approach.

We have the following characterization of allocations under perfect monitoring.

Proposition 1 (Perfect Monitoring)

1. In the discretionary setting, the unique equilibrium is governed by (qeP , µ
e
P ) that

solves:

k(q, µ;λ) = µθ + 1 and µ = f((1− q)λ). (5)

2. In the centralized setting, when f(x) = ax, for some a > 0, any interior optimal

policy (q∗P , µ
∗
P ) solves:

λθ =
dE[Q]

dq
and µ = a(1− q)λ. (6)

3.3 Comparative Statics

The characterizations of the equilibrium and the optimal policies in Proposition 1 can be used

to derive some comparative statics with respect to θ, λ, and the training technology. Naturally,

as θ increases, either through an increase in the relative benefit h−l of senior service, or through
a decrease in waiting costs c, queueing for senior service becomes relatively more attractive,

translating into higher average quality and lower training both in discretionary and centralized

settings. In particular, when c → ∞, there is no delay. In this case, in both the centralized
and discretionary settings, waiting is minimized and clients choose junior service. This yields

qeP , q
∗
P → 0 and µeP , µ

∗
P → f(λ). In contrast, as c approaches 0, more clients naturally seek

senior service. Consequently, if keP and k∗P denote the equilibrium and optimal thresholds

respectively, keP , k
∗
P →∞ and wait times can be arbitrarily large.

We now turn to the impacts of changes in arrival rates and the training technology on out-

comes in our perfect-monitoring settings. Changes in arrival rates can reflect market shifts for

the demand of particular services. For instance, the introduction and dissemination of electric

cars could increase the demand for electricians installing home-charging units. Changing arrival

21This is effectively a budget constraint that guarantees there are suffi cient seniors to serve all those seeking
their service in steady state.
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rates can also reflect mergers of different service units: hospitals, law firms, etc. The resulting

overall arrival rate of clients in the post-merger organization would presumably be higher than

the arrival rate at each of the original organizations. Exit of service-providing organizations

from the market can also increase arrival rates at surviving organizations. Higher arrival rates

can potentially cause more congestion, but they also represent more training opportunities.

Improved training corresponds to technological advances. For example, the introduction of

the Internet offers a multitude of opportunities for training in various tasks, from carpentry, to

professional conduct. Similarly, technological advances in the medical world– e.g., the intro-

duction of patient simulation dummies– improve training effi cacy of young nurses and doctors.

The impacts of the training effi cacy can also be relevant for the comparison of industries that

differ in their training features or their training expenditures.22 The following proposition

provides comparative statics in the perfect-monitoring environment.23

Proposition 2 (Perfect Monitoring —Comparative Statics) When f(x) = ax, for some

a > 0, the following comparative statics hold:

1. As λ increases, keP , µ
e
P , q

e
P , q

∗
P , and µ

∗
P increase. Furthermore, as λ approaches 0,

both E[W e
P ] and E[W ∗

P ] tend to 0, while when λ grows indefinitely, E[W e
P ] tends to

θ and E[W ∗
P ] tends to 0.

2. As a increases, keP , µ
e
P , q

e
P , and µ∗P increase. Furthermore, as a approaches 0 or

grows indefinitely, both E[W e
P ] and E[W ∗

P ] tend to 0.

Consider first the discretionary setting with linear training technology, f(x) = ax, with

a > 0. When λ or a increase, in the space of (q, µ), the graph corresponding to the indifference

condition for each λ, G1 = {(q, µ) : k(q, µ;λ) = µθ + 1} shifts up as λ increases and does not
respond to changes in a, see Figure 1. The graph G2 = {(q, µ) : µ = aλ(1− q)}, corresponding
to the training constraint, shifts up with increases in both λ and a, also depicted in Figure

1. Consequently, qeP and µ
e
P increase in a. The indifference condition then implies that k

e
P

increases. Furthermore, with increases in λ, the figure demonstrates that µeP , and therefore k
e
P ,

must increase. As we show in the proof, qeP increases as well. We also demonstrate that similar

conclusions hold for the centralized setting.

22See https://trainingmag.com/ for annual reports on training expenditures across industries in the U.S.
23We use E[W e

P ] and E[W
∗
P ] for equilibrium and optimal expected wait times, respectively, in the perfect-

monitoring case.
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Figure 1: Comparative statics for discretionary settings with perfect monitoring

Turning to expected wait times, when either the arrival rate or the technology’s effi cacy are

very low, senior service is slow. Thus, whether decisions are discretionary or centralized, no

client will be placed in the seniors’queue if a wait is required. Consequently, conditional on

seeking senior service, clients face no wait. When arrival rates are very high, or the training

technology is very effi cient, a positive fraction of clients sent to juniors yields extremely rapid

senior service. Thus, when decisions are centralized, expected wait times would be vanishing.

The impacts are more nuanced in the discretionary setting. Greater arrival rates or superior

training technology increases the effi ciency of senior service. As a consequence, however, more

clients seek senior service. As we show in the proof, this trade-off is resolved differently for high

arrival rates and effective training technology.

For intermediate levels of arrival rates or training effi cacy, expected wait times in all our

settings are strictly positive. Thus, the proposition implies a non-monotonicity of the expected

wait times with respect to both clients’arrival rate and the technology’s effi cacy.

Proposition 2 illustrates the importance of training in our environment. Without training,

suppose the mass of seniors is exogenously fixed at µ– that is, f(x) = µ for any x. It is easy

to verify that any increase in λ would cause q to decrease and E[W ] to increase in both the

discretionary and centralized settings. The effects are quite different when non-trivial training

takes place.
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4 Limited Monitoring

In this section we assume that the length of the queue is not observed by decision makers: the

clients in the discretionary setting or the planner in the centralized setting. In the discretionary

setting, this corresponds to environments in which clients are not informed of the queue’s

length– namely, the number of clients ahead of them– when deciding which service to seek.

For instance, patients needing urgent care may select a clinic to drive to without knowing

its current load, graduate students selecting an advisor may have limited information on how

busy various professors are, etc. In the centralized setting, limited monitoring corresponds to

organizations in which general allocation rules are established without detailed monitoring. For

example, medical associations and hospitals need to set policies on the involvement of trainees

in procedures, academic departments may set rules on the number of undergraduate theses each

faculty advises, and so on.

4.1 Discretionary and Centralized Allocations

We focus on stationary and symmetric strategies by both the clients (in the discretionary

setting) and the planner (in the centralized setting). The characterization in both settings with

limited monitoring boils down to the fraction q ∈ [0, 1] of clients that are served by seniors.

Therefore, seniors serve clients at a rate µ that is determined, as in the perfect-monitoring case,

by the training constraint µ = f((1− q)λ).24

Discretionary or centralized allocation policies in the limited-monitoring case are character-

ized by a pair (q, µ). Specifically, a discretionary equilibrium is defined through two constraints.

First, each client optimizes her expected payoff, given all other clients’strategy of seeking senior

service with probability q and the mass µ of available seniors. In particular, whenever the equi-

librium is interior, q ∈ (0, 1), each client is indifferent between junior and senior service. Second,

the induced (q, µ) pair satisfies the training constraint. The centralized solution is identified

by a constrained optimization: the social planner selects the probability q with which each

client independently joins the seniors’queue to maximize clients’expected payoff, subject to

the training constraint.

24One could also model the training evolution explicitly. Our analysis corresponds to dynamics of the form:

dµt
dt

= −δµt + g(x),

where x = (1 − q)λ, and δ ∈ (0, 1) is a decay parameter, reflecting retirement, job transitions, and so on. The
resulting limit of µt is the unique steady state µ =

g(x)
δ .
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In both discretionary and centralized allocations, when each client is directed to seniors with

probability q, the arrival of clients at the senior queue follows a Poisson process with arrival

rate qλ. In the limited-monitoring case, the utilization of senior workers, given by qλ
µ
, is always

in (0, 1). Otherwise, with 0 utilization, allocating clients to senior workers would be strictly

superior due to no wait; with utilization weakly greater than 1, allocating clients to seniors

would be strictly inferior due to excessively long waits.

Since both arrival and service at the seniors’ queue follow a Poisson process, the setup

corresponds to what is often termed an M/M/1 queue in the queueing literature. As we detail

in the Appendix’primer, the average waiting time in the queue, conditional on entry, is

E[W ] =
1

µ− qλ −
1

µ
=

qλ

µ(µ− qλ)
.

Intuitively, as the mass of seniors grows, their service becomes more rapid and expected wait

time declines. On the other hand, as the arrival rate qλ of clients in the seniors’queue grows,

the expected wait time increases.25 This, together with the training constraint µ = f((1− q)λ),

determine an implicit trade-offbetween quality provided, determined by q, and the average wait,

E[W ]. Intuitively, as q increases, there are two effects on wait times: more clients are sent to

seniors, which tends to increase the wait for senior service, and fewer providers are trained, which

reduces µ and therefore increases the wait further. The marginal rate of substitution between

quality and expected wait depends on the training technology: the flatter the technology, the

more sacrifices in terms of quality are needed to decrease wait by a small amount.

The training constraint yields the feasible set of (q, µ) pairs:

C ≡ {(q, µ) | q ∈ (0, µ/λ) and µ = f((1− q)λ)} .

The planner seeks to maximize the average client’s utility, with the objective:

max
(q,µ)∈C

q(h− cE[W ]) + (1− q)l.

25The first term in the expression for E[W ] captures a geometric wait time when service occurs at a rate of µ,
while clients arrive at a rate of qλ. This term includes a client’s own service time. Since in our setting clients’
wait times do not incorporate their own service, which occurs at a rate of µ, we deduct 1/µ in this formulation.
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Proposition 3 (Limited Monitoring)

1. In the discretionary setting, the unique equilibrium is governed by (qeL, µ
e
L) that

solves:

θ =
λq

µ(µ− qλ)
and µ = f((1− q)λ). (7)

2. In the centralized setting, the planner has a unique optimal policy governed by (q∗L, µ
∗
L)

that solves:

θ =
qλ

µ

2µ− qλ
(µ− qλ)2

(
qλ

µ
f ′ + 1

)
and µ = f((1− q)λ). (8)

For the discretionary setting, in equilibrium, q must be set so that each client is indifferent

between the two service options. Thus, we have:

θ =
h− l
c

= E[W ].

The proposition’s claim then follows directly from the formula for E[W ].

To see the intuition for the centralized solution, notice that the objective of the planner can

equivalently be written as qθ−qE[W ]. In the proof of Proposition 3, we show that the first-order

approach is valid for optimizing this objective. At the optimum, we then have θ = d(qE[W ])
dq

,

which translates into:

λ(h− l) = c

(
λE[W ] + (qλ)

(
∂E[W ]

∂q
+

∣∣∣∣∂E[W ]

∂µ

∣∣∣∣ ∣∣∣∣dµdq
∣∣∣∣)) . (9)

Indeed, consider an infinitesimal increase in q. The benefit in terms of service quality is

λ(h−l), the left-hand side of this condition. The right-hand side corresponds to the overall costs
of waiting. The first term, λE[W ], captures the additional wait experienced by clients diverted

from juniors to seniors. The remaining terms capture the negative externality on other clients

directed at seniors. There is qλ inflow of such clients. Additional waiting results from (i) more

clients occupying seniors, corresponding to ∂E[W ]
∂q

; and (ii) fewer trained providers corresponding

to
∣∣∣∂E[W ]

∂µ

∣∣∣ ∣∣∣dµdq ∣∣∣ =
∣∣∣∂E[W ]

∂µ

∣∣∣ (λf ′). Since E[W ] can be expressed analytically as a function of µ, q,

and λ, simple calculus generates the characterization appearing in the proposition.

By Little’s formula, E[Q] = λqE[W ]. We can therefore write the first-order condition as

λθ = d(E[Q])
dq

, which is the formulation we used in Proposition 1 for the perfect-monitoring case.

19



4.2 Comparative Statics and Welfare Comparisons

We now turn to some comparative statics resulting from our characterization of the limited-

monitoring case. As in the perfect-monitoring case, it is immediate to see that, as θ grows,

either through an increase in the relative benefit h−l of service by seniors, or through a decrease
in waiting costs c, queueing for senior service becomes relatively more attractive. Consequently,

under both the centralized and discretionary settings, the fraction q of clients seeking senior

service increases, the mass of seniors decreases, and expected wait times increase.

As in the perfect-monitoring setting, when waiting costs are arbitrarily large, there is no

delay. In this case, in both the centralized and discretionary settings, waiting is minimized

and clients choose junior service. This yields qeL, q
∗
L → 0 and µeL, µ

∗
L → f(λ). In contrast, as

c approaches 0, clients naturally seek senior service more. Note, however, that as q increases,

the rate of arrivals to the queue, qλ, increases, the mass of seniors µ = f((1 − q)λ) decreases,

and E[W ] grows arbitrarily large. As such, the solution q of qλ = f((1−q)λ) is an upper bound

on q. In fact, qeL, q
∗
L → q and µeL, µ

∗
L → f((1− q)λ).

4.2.1 Clients’Arrival Rate and Training Technology

We now turn to the impacts of changes in arrival rates and the training technology on outcomes

in our limited-monitoring settings. In general, an increase in clients’arrival rate λ always leads

to an increase in the mass of seniors and could lead to either an increase or a decrease in the

fraction of clients served by seniors in both discretionary and centralized settings. Similarly,

changes in training technology have an ambiguous impact when considered generally. Nonethe-

less, the case of linear training technology yields clear comparative statics with respect to both

the arrival rate λ and the effi cacy of training.26

Proposition 4 (Limited Monitoring —Comparative Statics) Suppose f(x) = ax, for

some a > 0. Increases in both λ and a are associated with increases in qeL,q
∗
L,µ

e
L, and

µ∗L. Furthermore, E[W e
L] is constant in both λ and a, while E[W ∗

L] decreases in both λ

and a.

The consequences of changes in arrival rates or training effi cacy can be intuitively understood

as follows. Suppose clients’arrival rate is doubled, while the same fraction q of clients is served

by seniors. For a linear training technology, the fraction of seniors exactly doubles. Therefore,

26We use E[W e
L] and E[W

∗
L] for equilibrium and optimal expected wait times, respectively, in the limited-

monitoring case.
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the expected waiting time is half the original waiting time, making senior service more desirable,

and leading to an increase in the optimal fraction of clients to be served by seniors in both the

discretionary and centralized settings.

In terms of training effi cacy, consider a small improvement, namely a small increase in a. For

a fixed fraction q of clients directed at senior service, the mass of seniors grows due to improved

training. Thus, senior service is quicker and the marginal benefit from serving clients by seniors

increases. Consequently, more clients are directed at seniors, in both the discretionary and

centralized settings.

As for waiting times, in the discretionary setting, since agents’indifference conditionE[W ] =

θ does not depend on arrival rates or the training technology, as long as the effective value of

being served by seniors relative to juniors is fixed, wait times remain fixed. This is in stark

contrast with the perfect-monitoring case, where the indifference condition is based on the utility

from entering the queue at the equilibrium threshold. Indeed, as Proposition 2 illustrated, with

perfect monitoring, expected wait times are non-monotonic in both λ and a.

In the centralized setting, with linear training technology, we have:

E[W ] =

(
1

a(1− q)− q −
1

a(1− q)

)
· 1

λ
≡ z(q; a)

λ
.

The planner’s optimal choice of q satisfies (8), tantamount to θ = d(qE[W ])
dq

, which becomes

θ =
z(q; a)

λ
+
qz′(q; a)

λ
. (10)

It is easy to verify that each term on the right-hand side of (10) increases in q (due to the

convexity of E[W ]) and strictly decreases in a. Thus, if either λ or a increase, q∗L has to

increase. Moreover, since (8) can be also written as

θ = E[W ]

(
aλE[W ] +

2

1− q

)
, (11)

and we established that q increases in a and λ, E[W ∗
L] must decrease in a and λ.

Figure 2 summarizes our discussion, where (λ̃, ã) > (λ, a) implies that λ̃ ≥ λ, ã ≥ a, and

at least one of the inequalities is strict.27 It depicts wait times as functions of q for two values

of arrival rates and training effi cacies, the unique discretionary equilibrium choices– points at

27The graph of E[W ] as a function of q asymptotes at a/(1 + a). In particular, the asymptote changes with
changes in a, but not with changes in λ.
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Figure 2: Impacts of changes in arrival rates or training effi cacy on quality and wait times with
limited monitoring

which expected times coincide with θ, and the resulting optimal solutions– points at which the

slope of qE[W ] is fixed at θ.

To conclude, Proposition 4 implies that, despite the potential for additional congestion, an

increase in clients’arrival rate yields unambiguously positive consequences to the organization’s

average performance, as quality always increases and wait times (weakly) decrease. The pres-

ence of training plays a crucial role in this result. To see this, consider an organization in which

training is absent and the mass of seniors is exogenously fixed at µ– that is, f(x) = µ for any

x. It is easy to verify that any increase in λ would cause q to decrease and E[W ] to remain

unchanged in both the discretionary and centralized settings.

4.2.2 Welfare Comparison

We now turn to the impact of some parameters of our limited-monitoring case on clients’

expected welfare. The average welfare per client can be written as:

V = q (h− cE[W ]) + (1− q)l = l + q(h− l)− qcE[W ].

Denote by V e
L and V

∗
L the average utility per client under the discretionary equilibrium and

under the optimal policy, respectively. In the discretionary setting, since in equilibrium clients

are indifferent between junior and senior service, V e
L = l. In particular, the welfare gap, V ∗L−V e

L ,

exhibits the same comparative statics as those of the welfare generated by the socially optimal

protocol, V ∗L .
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Suppose the value for senior service increases from h1 to h2, h2 > h1, while all other

parameters stay fixed. The planner can certainly emulate whatever optimal policy she was

following when the value from senior service was h1. This would yield the same expected

waiting costs but increase service quality. Thus, V ∗L , and thereby V
∗
L − V e

L , increase in h. A

similar argument holds for an increase in the waiting cost c.

The impacts of an increase in arrival rates is more subtle. More rapid arrivals yield more

opportunities for training, but also generate more congestion. In general, the effects of increases

in λ could go either way. However, for linear training technologies, Proposition 4 indicates that

wait times decrease, implying that all clients served by seniors are better off, and that the

optimal fraction of clients served by seniors increases. Consequently, V ∗L , and thus V
∗
L − V e

L ,

increase in λ. Similar comparative statics follow for the training effi cacy. We therefore have

the following corollary.

Corollary 1 (Welfare Gap Comparative Statics) Suppose f(x) = ax, for some a > 0.

The relative welfare gain from centralization, V ∗L − V e
L , is increasing in both λ and a.

Our discussion above considers the average welfare. One may also wish to consider the

volume of clients served, thereby focusing on λ (V ∗L − V e
L). The comparative statics of Corollary

1 would continue to hold. However, as arrival rates increase, the benefits of centralization would

become even more pronounced as more clients are impacted.

This discussion implies that, with limited monitoring, organizations obtain greater advant-

ages from centralization when the quality of senior service improves, when waiting costs de-

crease, or when either the arrival rate or the training technology effi cacy increase.

5 The Impacts of Centralization

We can now compare the impacts of centralization on outcomes for each of our monitoring

scenarios. Intuitively, for both the limited- and the perfect-monitoring settings, since fewer

clients are served by seniors in the centralized setting, the average quality of service each client

faces is lower. This implies shorter wait times that generate higher overall welfare. Formally,

assume q∗P >
µ∗P

µ∗P+λ
, so that k∗P > 1.

Corollary 2 (Impacts of Centralization) q∗X < qeX and µ
∗
X > µeX for X = L, P . In partic-

ular, there is more training, a greater mass of seniors, lower average quality, and a lower

wait in centralized relative to discretionary settings.
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Technically, regardless of the monitoring level, the feasibility constraint takes the same

form for the centralized and discretionary settings. The corollary’s proof then stems from a

comparison of the optimization constraints that govern each of the solutions.

The inverse link between service quality and wait times is the consequence of two extern-

alities at play. One pertains to training– clients who select the queue for senior service forgo

the training opportunities for juniors. The second pertains to the added wait times imposed on

others selecting the seniors’queue. Both these externalities push clients to seek senior service

more than is optimal, thereby generating fewer seniors and longer wait times than ideal.

6 The Impacts of Monitoring

We now turn to a comparison of outcomes with and without monitoring. Intuitively, monitoring

allows clients, or the planner, to condition the decision to seek senior service on the length of

the queue. In this section, we show that this increases welfare and yields greater welfare in both

the discretionary and centralized settings. We also identify how monitoring affects outcomes in

terms of quality, training, and wait times.

Perfect monitoring enables either clients or the planner to condition entry to the queue on

its current length, which allows for lower expected wait times even when the same fraction of

clients receives senior service. This is captured by the following lemma.

Lemma 4 (Impacts of Monitoring on Wait Times) For any choice of (q, µ),

E[WP ] < E[WL].

Lemma 4 suggests that, when expected wait times are similar with limited or with perfect

monitoring, the quality of service afforded by perfect monitoring is higher.

6.1 Discretionary Settings

As it turns out, the indifference conditions governing the discretionary equilibria under both

limited and perfect monitoring exhibit a single-crossing property. As we demonstrate, this

feature implies that training can go up or down with improved monitoring, depending on

training effi cacy. Nonetheless, we show that allowing agents to monitor the state of the queue

before deciding what service to seek always increases clients’expected welfare in equilibrium.
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Figure 3: Impacts of monitoring on service quality and training

Formally, consider the indifference graphs, representing the mass of seniors as a function of

the share of clients seeking senior service, for limited and perfect monitoring:

GL ≡
{

(q, µ) : θ =
qλ

µ(µ− qλ)

}
, and

GP ≡
{

(q, µ) : θ =
k(q, µ;λ)− 1

µ

}
,

respectively. Since both graphs are upward-sloping, we say that GP strictly single crosses

GL from below if there exists a unique (q′, µ′) ∈ GL ∩ GP such that, if (q′′P , µ
′′) ∈ GP and

(q′′L, µ
′′) ∈ GL with µ′′ 6= µ′, then either µ′′ < µ′ and q′′L < q′′P , or µ

′ < µ′′ and q′′P < q′′L.

Proposition 5A (Impacts of Monitoring in Discretionary Settings) GP strictly single

crosses GL from below. Furthermore, welfare is greater when monitoring is perfect.

Proposition 5A, the intuition for which we soon describe, implies that the comparison of qeL
and qeP depends on the training technology. Consider the linear training characterized by f(x) =

ax for a > 0. Single crossing of the indifference curves under limited and perfect monitoring

indicates that the ranking of equilibrium training under limited and perfect monitoring depends

on the training effi cacy, as depicted in Figure 3. For suffi ciently low parameters a, more clients

seek senior service under perfect monitoring, which therefore yields fewer trained seniors. This

pattern is reversed when the effi cacy parameter a is suffi ciently high. Figure 3 illustrates the

threshold a∗ at which the impact of monitoring reverses. We therefore have the following.
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Corollary 3 (Training Effi cacy and Monitoring in Discretionary Settings) There ex-

ists a∗ > 0 such that if f(x) = ax, then for 0 < a < a∗, qeL < qeP and µ
e
L > µeP , while for

a > a∗, qeL > qeP and µ
e
L < µeP .

A similar conclusion to that of Corollary 3 can be derived for other classes of training

technologies that dominate one another. If f(·) and g(·) are two training technologies such
that f(x) > g(x) for all x, then whenever perfect monitoring generates higher service quality

under f , it also does so under g. Similarly, whenever perfect monitoring generates lower service

quality under g, it also does so under f .28

The corollary suggests that the design of monitoring policies should be sensitive to the

effi cacy of the training technology in place– the impact on the fraction of clients receiving

senior service crucially depends on training effectiveness.

To gain some intuition for Proposition 5A and Corollary 3, suppose that the number of

clients waiting in the queue is exogenous. For simplicity, suppose that at any point in time, with

probability p, no one is waiting, and with the remaining probability 1− p, one client is waiting.
Consider first the case in which the training technology is very ineffi cient so that senior service is

suffi ciently slow that any waiting, even if for one other client, is not worthwhile. Under limited

monitoring, if p is low enough, joining the senior queue is excessively risky. Consequently,

all clients would seek junior service. In contrast, under perfect monitoring, regardless of p,

clients who arrive when no one is in the seniors’ queue would join it. In particular, more

clients seek senior service under perfect monitoring. In contrast, suppose technology is fairly

effi cient, so that waiting for one person to be served by seniors yields a payoff that is lower than

that generated by immediate junior service, but by a very small margin. For suffi ciently high

p, the expected value of senior service, accounting for the potential waiting costs, would still

be higher than that generated by junior service. Thus, under limited monitoring, all clients

would approach the senior queue. In contrast, with perfect monitoring, clients who arrive when

someone is waiting for senior service would select junior service instead. The comparison then

reverses and perfect monitoring generates fewer clients being served by seniors.

Why is welfare greater when monitoring is perfect? In the limited-monitoring environment,

the expected wait time is such that clients are indifferent between the two service types. As

already mentioned, this implies that the expected welfare is l. In contrast, with perfect monitor-

ing, it is the clients who wait maximally in the queue that are indifferent. Those clients achieve
28A similar corollary would hold for more general training technologies of the form f(x) = ag(x), with a

threshold parameter a∗ determining the impacts of monitoring on service quality.
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an expected payoff of l. So do clients who arrive when the senior queue is so long that junior

service is sought. However, clients who arrive at a shorter senior queue accomplish a higher

expected payoff. For instance, clients who arrive at an empty senior queue enjoy immediate

senior service and receive a payoff of h. Overall, then, the resulting expected welfare must be

strictly higher than l.

6.2 Centralized Settings

For centralized settings, we continue to assume a linear production technology. As we show,

monitoring impacts are conclusive in this case and independent of the training effi cacy.

Proposition 5B (Impacts of Monitoring in Centralized Settings) Suppose f(x) = ax

for some a > 0. Then, q∗L < q∗P and µ∗L > µ∗P . Furthermore, welfare is greater when

monitoring is perfect.

Intuitively, when monitoring is perfect, the planner can always implement a threshold that

emulates the same fraction of clients directed at seniors as in the limited-monitoring case.

While the expected quality of service would then coincide with that achieved under limited

monitoring, from Lemma 4, the expected wait time would be lower. In particular, the resulting

welfare, even under this potentially sub-optimal policy, is greater when monitoring is perfect.

With limited monitoring, the planner equates the marginal benefit of directing more clients to

senior service with the marginal costs in terms of wait times– due to both reduced training and

increased volume of clients waiting in queue. In the perfect-monitoring case, when using that

same policy, the marginal benefit of directing more clients to senior service coincides with that

in the limited-monitoring case. However, the marginal cost is lower. That last point requires

proof and follows from the fact that perfect monitoring allows for “more effi cient”addition of

clients to the senior queue. Specifically, there is a bound on how long each client is allowed to

wait, which leads to a smaller expected cost of adding clients to the senior queue.

The analysis here suggests that, at least when the planner governs clients’ allocation to

services, improving monitoring of the senior queue is beneficial to clients. The increase in

welfare, however, comes at the cost of training, as fewer seniors are available under perfect

monitoring. If a planner’s objective balances concerns about clients’welfare and the distribution

of expertise among service providers– due to a concern about wage inequality, fragility of the

system, etc.– the design problem could naturally become more nuanced.
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7 Conclusions

We study a dynamic task-allocation setting and explore the trade-offbetween service quality and

wait times in organizations. In our environment, junior providers need experience to improve

their future service, so service providers’characteristics are endogenous. We characterize the

equilibrium outcomes in discretionary settings and the social planner’s optimal policy, with

perfect and limited monitoring of the seniors’queue.

Externalities imply that when clients can choose whom to seek service from, the average

service quality is ineffi ciently high and queues are too long. Several insights follow from our

analysis. First, as clients’arrival rate or the training technology’s effi cacy increase, both service

quality and the scope of training increase. Second, when designing general allocation guidelines

in organizations, the welfare gains from centralization are greater for larger institutions, better

training technologies, and lower waiting costs. Finally, we evaluate the impacts of monitoring,

giving decision-makers the ability to condition decisions on the state of the seniors’queue. We

show that improved monitoring always increases welfare, but can decrease training. Methodo-

logically, our framework provides a tractable dynamic matching model in which agents’types

are endogenous. It also illustrates a set of techniques, grounded in tools developed within

queueing theory, which can be employed to study the link between quality and wait times in

organizations.

There are several directions in which our study can be extended. Throughout the paper,

we focus on settings in which the planner’s objective pertains only to clients’welfare. However,

many organizations may be concerned with training per se and aim at different objectives,

which would be useful to analyze.

Our analysis pertains to only two levels of seniority: our providers are either juniors or

seniors. While this simplification allows us to identify a rich set of comparisons, it would be

interesting to explore the impacts of finer gradations of evolving “status”in organizations.

We focus on environments in which pricing cannot be utilized to determine allocations:

hospitals cannot discriminate patients, administrative tasks assigned to internal staff are rarely

priced. We stress that simple pricing mechanisms may not yield the centralized solutions. To

see that, consider the limited-monitoring setting and suppose that access to juniors comes at a

cost of pj while access to seniors comes at a cost of ps. Such a setting would be equivalent to our

baseline setting with a value from junior service of l′ = l− pj and a value from senior service of
h′ = h− ps. Equilibrium indifference conditions would then imply an expected welfare of l′ ≤ l

regardless of prices. A more elaborate analysis of dynamic pricing mechanisms would be an
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interesting angle for future research. We hope the tools we introduce are useful for inspecting

such environments.

8 Appendix

8.1 Primer on Queueing

The limited-monitoring case in Section 4 employs what is termed the M/M/1 queue in the

queueing literature, while the perfect-monitoring case in Section 3 employs an M/M/1/k queue.

Here we provide a summary of the results relevant to our analysis. For more details, see, for

example, Leon-Garcia (2008).

8.1.1 M/M/1 Queue

Clients seeking service arrive at the market over time t ∈ [0,∞) according to a Poisson process

with arrival rate ρ. One provider can serve at most one client at any given time. Service

completion times are independent across clients and follow an exponential distribution with

parameter µ. Upon arrival, each client joins a queue until the provider becomes available. If

the provider is not busy helping other clients, the client is served immediately. There is no limit

on the possible length of the clients’queue. Clients are served according to a first-in-first-out

(FIFO) protocol.

The total number of clients in the system, either waiting in the queue or being served, at

time t, Nt, is a continuous-time Markov chain and takes values in {0, 1, . . . , }. When Nt = 0,

there are no clients being served or waiting. When Nt = 1, the system has only one client who

is being served. When Nt ≥ 2, at least one client is waiting in the queue. The number of clients

Nt increases by one when a client arrives, which occurs at a rate ρ. It decreases by one when the

service of a client is completed, which occurs at a rate µ. The ratio ψ ≡ ρ
µ
denotes the provider’s

utilization. As long as ψ < 1, Nt has a stationary distribution denoted by {p0, p1, . . . } such that
exactly i clients are in the system with probability pi.29 The inflow-outflow equalities, known

as the global balance equations, are

ρp0 = µp1,

(ρ+ µ)pj = ρpj−1 + µpj+1, ∀j = 1, 2, . . .

29The restriction ψ < 1 is necessary because, if ψ → 1, the average wait time, which we address shortly,
diverges.
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They yield the stationary distribution

pj = (1− ψ)ψj, j = 0, 1, 2, . . .

The average number of clients waiting in the queue, excluding the client currently being

served, is

E[Q] ≡
∞∑
j=1

(j − 1)pj =
ψ

1− ψ − p0 =
ψ2

1− ψ.

Let E[W ] be the average waiting time in the queue. Little’s formula guarantees that

E[W ] =
E[Q]

ρ
=

1

µ− ρ −
1

µ
.

The intuition behind the formula is the following. Take any time interval, say [s, s+ t), during

which the system is at the steady state. The total time clients spend waiting in the queue is

approximately ρtE[W ], so the average number of clients waiting in the queue at any given time

is E[Q] = ρE[W ].

8.1.2 M/M/1/k Queue

An M/M/1/k queue is similar to an M/M/1 queue but constrains the service provider to

accommodate up to k clients, with one client being served, and at most k− 1 clients waiting in

the queue. If a client finds k others present upon arrival, she is turned away. As before, clients’

arrival follows a Poisson distribution with parameter ρ, and the provider completes each client’s

service at times following an exponential distribution with parameter µ. Since, by construction,

the length of the queue is bounded, ψ ≡ ρ
µ
need not be lower than 1.

The total number Nt of clients in the system at time t follows a continuous-time Markov

chain over {0, 1, 2, . . . , k}. The inflow-outflow equalities, which we omit, yield the following

restrictions on the stationary distribution:

pj = ψjp0, ∀j = 1, . . . , k.

Since

1 =
k∑
j=0

pj = p0

k∑
j=0

ψj =

{
p0(k + 1) if ψ= 1,

p0

(
1−ψk+1
1−ψ

)
if ψ 6= 1,
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the stationary distribution is given by:

pj =

{
1

k+1
if ψ= 1,

ψj(1−ψ)
1−ψk+1 if ψ 6= 1.

∀j = 0, 1, . . . , k

Similarly, the average number of clients in the queue is

E[Q] =
k∑
j=1

(j − 1)pj =

k∑
j=1

(j − 1)ψjp0

=

{
k(k−1)
2(k+1)

if ψ= 1,

p0
(
ψ2 + 2ψ3 + · · ·+ (k − 1)ψk

)
if ψ 6= 1.

In particular, if ψ 6= 1, the above expression can be written as:

E[Q] =
1

1− ψk+1
(
ψ2 − ψk+1

1− ψ − (k − 1)ψk+1
)
.

Finally, in the steady state, since a new client is turned away only when Nt = k, the average

number of clients that join the queue over a unit of time is ρ(1 − pk). Let E[W ] denote those

clients’average waiting time. By Little’s formula, we have E[W ] = E[Q]
ρ(1−pk) .

8.2 Proofs for Perfect Monitoring

In the following proofs, we let φ ≡ λ
µ
. When λ is fixed, φ and µ uniquely determine one another.

In the case of linear training technology, where f(x) = ax for some a > 0, we have µ = a(1−q)λ
and φ = 1

a(1−q) .

The proof of Lemma 1 follows from our derivations above.

Proof of Lemma 2: We omit a trivial proof for the case of φ = 1. If φ 6= 1, then 1 − pk =

1 − 1−φ
φ−k−φ . If either φ > 1 or φ < 1, the expression 1 − pk is strictly increasing in k. When

k = 1, 1− pk = 1− φ
1+φ

= 1
1+φ
, and limk→∞

1−φk
1−φk+1 = limk→∞

kφk−1

(k+1)φk
= 1

φ
. �

Proof of Lemma 3: We take the expression for E[Q] in (2) and apply (3) and (4). If φ = 1

(i.e., q = 1− 1
a
), then

E[Q] =
k(k − 1)

2(k + 1)
=
q(2q − 1)

2(1− q) .
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If φ 6= 1, then q = 1− pk = 1−φk
1−φk+1 and

(1−q)φ
1−φ = pkφ

1−φ = φk+1

1−φk+1 . Thus,

E[Q] =
1

1− φk+1
(
φ2 − φk+1

1− φ − (k − 1)φk+1
)

=
qφ2

1− φ −
(1− q)φ

1− φ

(
log(1− q)− log(1− qφ)

log φ

)
.

�
Proof of Proposition 1:

1. We ignore the integer constraint on k and find a solution (q, µ) ∈ G1 ∩G2, where

G1 ≡ {(q, µ) : µ = f((1− q)λ)} and G2 ≡ {(q, µ) : k(q, µ;λ) = µθ + 1}.

The graph G1 is continuous and downward sloping: as q increases from 0 to 1, µ decreases

from f(λ) to f(0).

Consider the graph G2. The function k(q, µ;λ) is continuous in q and µ, and strictly

increasing in q, see Lemma 2 and (4). Also,

sgn

(
∂k(q, µ;λ)

∂µ

)
= −sgn

[
q

1− qφ log φ− 1

φ
log

(
1− q

1− qφ

)]
.

Since x−1
x
< log x < x− 1, for any x 6= 1,

q

1− qφ log φ− 1

φ
log

(
1− q

1− qφ

)
>

q

1− qφ
φ− 1

φ
− 1

φ

(
1− q

1− qφ − 1

)
= 0.

Thus, ∂k(q,µ;λ)
∂µ

< 0 for every φ 6= 1. That is, k(q, µ;λ) is strictly decreasing in µ. Therefore,

the graph G2 is continuous and upward sloping: as q increases from 0 to 1, µ increases

from −1
θ
to ∞. It follows that G1 and G2 cross each other once, at qeP ∈ (0, 1) and

µeP ∈ (f(0), f(λ)).

2. The planner’s problem is

[P ] max
q∈[q, a

1+a
)
qλθ − E[Q]

where

E[Q] =


q(2q−1)
2(1−q) , if q = 1− 1

a
,

qφ2

1−φ −
(1−q)φ
1−φ

(
log(1−q)−log(1−φq)

log φ

)
otherwise,

and φ = 1
a(1−q) . Given the one-to-one relation between q and φ while λ is held fixed, the
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planner’s problem [P ] is equivalent to

[P ′] max
φ∈[φ,1+1/a)

(
1− 1

aφ

)
λθ − E[Q]

where

E[Q] =

{
(a−1)(a−2)

2a
, if φ = 1,

1
a

+ 1
1−φ

(
φ2 + log(a(1−φ)+1)

a log φ

)
otherwise.

The lower bound on φ corresponds to the choice of k = 1. Then, from q = 1− pk = 1
1+φ

and the linear constraint φ = 1
a(1−q) , we can obtain φ as the unique (positive) solution of

φ = 1+φ
aφ
, or equivalently of aφ2 − φ− 1 = 0. Namely, φ = 1+

√
1+4a
2a

.

In the rest of the proof, we show that the objective in [P ′] is continuously differentiable

and strictly concave in the single choice variable φ. Then, the objective of the original

problem [P ] is continuously differentiable and single-peaked in the single choice variable

q, which concludes the proof. We divide our arguments into two steps. The first step

shows that E[Q] is continuously differentiable at φ = 1, which allows us to focus on the

functional form for the case of φ 6= 1, by taking the value at φ = 1 as limφ→1E[Q], and

similarly for dE[Q]
dφ

at φ = 1. The second step shows that E[Q] is strictly convex.

Step 1: E[Q] is continuously differentiable at φ = 1.

To show Step 1, we first present Lemmas A-C below. To ease expositions, we denote

z ≡ a(1−φ)+1 and note that dz/dφ = −a, limφ→1 z = 1, and limφ→1
log z
1−φ = limφ→1

a
z

= a.

Lemma A E[Q] is continuous at φ = 1.

Proof of Lemma A: Using L’Hopital’s rule, we obtain

lim
φ→1

E[Q] =
1

a
+ lim

φ→1

1

1− φ

(
(φ2 − 1) + 1 +

log z

a log φ

)
=

(a− 1)(a− 2)

2a
.

�

Lemma B Let εφ ≡ φ
φ−1 −

1
log φ
− 1

2
. Then, limφ→1

εφ
log φ

= 1
12
.

Proof of Lemma B: The proof follows directly from repeat applications of L’Hopital’s

rule. �
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Lemma C limφ→1
dE[Q]
dφ

exists in R.

Proof of Lemma C: For φ 6= 1, we have

dE[Q]

dφ
=

d

dφ

(
φ2

1− φ +
log z

a(1− φ) log φ

)
=

2φ− φ2

(1− φ)2
+

−a/z
a(1− φ) log φ

− log z

a(1− φ)2(log φ)2

(
− log φ+

1− φ
φ

)
= −1 +

1

(1− φ)2
− 1

z(1− φ) log φ
− log z

aφ(1− φ) log φ

(
3φ+ 1

2(φ− 1)
− εφ

)
.

It follows from limφ→1
log z
1−φ = a and Lemma B that

lim
φ→1

εφ log z

aφ(1− φ) log φ
= lim

φ→1

1

aφ

log z

1− φ
εφ

log φ
=

1

12
.

Therefore,

lim
φ→1

dE[Q]

dφ
= −11

12
+ lim

φ→1

(
log φ

1− φ

)2
· lim
φ→1

h(φ) = −11

12
+ lim

φ→1
h(φ),

where

h(φ) ≡ 1

(log φ)3

[
log φ− 1− φ

z
+

(
3φ+ 1

2aφ

)
log z

]
.

Using L’Hopital’s rule repeatedly,

lim
φ→1

h(φ) = lim
φ→1

φ

3(log φ)2

[
1

φ
+

1

z2
+
−2a

4a2φ2
log z +

3φ+ 1

2aφ

(−a)

z

]
=

2a2 + (3/2)a− 1

6
.

Therefore, limφ→1
dE[Q]
dφ

exists in R, which proves Lemma C. �

By Lemma A, E[Q] is continuous at φ = 1. It is also differentiable at every φ 6= 1.

The Mean Value Theorem implies that, for any φ 6= 1, there exists xφ ∈ (1, φ) such

that E[Q](φ)−E[Q](1)
φ−1 =

dE[Q](xφ)

dφ
. As φ → 1, we have xφ → 1. Hence, by Lemma C,

dE[Q](1)
dφ

≡ limφ→1
E[Q](φ)−E[Q](1)

φ−1 = limxφ→1
E[Q](xφ)

dφ
exists in R. That is, E[Q] is continu-

ously differentiable at φ = 1, which concludes the proof of Step 1.

Step 2: E[Q] is strictly convex.

To show Step 2, we first present the Lemmas D-G below.
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Lemma D The function r(x) = x
log(1−x) is increasing in x and strictly convex on (−∞, 0)

and (0, 1).

Proof of Lemma D: Derivating,

r′(x) =
1

log(1− x)
+

x

(1− x) log2(1− x)
=

1

log2(1− x)

(
log(1− x) +

x

1− x

)
> 0.30

Derivating again,

r′′(x) =

(
1

log(1− x)
+

x

(1− x) log2(1− x)

)′
=

(2− x) log(1− x) + 2x

(1− x)2 log3(1− x)
.

If x < 0, we have (2− x) log(1− x) + 2x > 0, so r′′(x) > 0. If 0 < x < 1, we have g(x) ≡
log(1− x) + 2x

2−x < 0, because g(0) = 0 and g′(x) = −1
1−x + 4

(2−x)2 = (−x2+4x−4)+4(1−x)
(1−x)(2−x)2 < 0.

Thus, r′′(x) > 0. �

Lemma E The function (a(φ+ 1)−1) φ−1
log(a(1−φ)+1) is strictly convex on [φ, 1) and (1, 1 +

1/a).

Proof of Lemma E: Let r(φ) = a(φ+ 1)− 1 and g(φ) = φ−1
log(a(1−φ)+1) . Note that aφ ≥ 1

because of the training constraint a(1 − q)φ = 1. Thus, r(φ) > 0. Moreover, Lemma D

implies that g is increasing and strictly convex (using x = a(φ− 1)). Therefore,

(r(φ)g(φ))′′ = r′′(φ)g(φ) + 2r′(φ)g′(φ) + r(φ)g′′(φ) ≥ r(φ)g′′(φ) > 0.

�

Lemma F The function r(φ) = 1
log(a(1−φ)+1)+

1
a log φ

is strictly convex on [φ, 1) and (1, 1+

1/a).

Proof of Lemma F: Recall that z ≡ a(1− φ) + 1, and that z′ ≡ dz
dφ

= −a. The second

30For any y 6= 1, − log y < 1
y − 1, which implies that log y >

1−y
y . We substitute 1− x for y.
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derivative of r(φ) follows from(
1

log φ

)′′
= −

(
1

φ log φ

)′
=

1

φ2 log2 φ
+

2

φ2 log3 φ
, and(

1

log(a(1− φ) + 1)

)′′
= a2

(
1

log z

)′′
= a2

(
1

z2 log2 z
+

2

z2 log3 z

)
.

Thus,

r′′(φ) =
a2

z2 log2 z

(
1 +

2

log z

)
+

1

aφ2 log2 φ

(
1 +

2

log φ

)
=⇒ (log2 φ)r′′(φ) =

a2

z2

(
log φ

log z

)2(
1 +

2

log z

)
+

1

aφ2

(
1 +

2

log φ

)
.

We make two claims:

Claim 1 : − log φ
log z

> 1 for every φ 6= 1.

Proof of Claim 1: By the training constraint, a(1− q)φ = 1, so aφ ≥ 1. Hence, if φ > 1,

then (aφ)(1 − φ) > (1 − φ) and φ > 1
a(1−φ)+1 . If φ < 1, then (1 − φ) > (aφ)(1 − φ), so

1
φ
> a(1− φ) + 1.

Claim 2: limφ→1− log z
log φ

= a and is increasing in φ.

Proof of Claim 2: First, limφ→1− log z
log φ

= limφ→1
a/(a(1−φ)+1)

1/φ
= a. For any φ 6= 1, define

h(φ) ≡ φ

(
− log z

log φ

)′
=

aφ log φ

a(1− φ) + 1
+ log(a(1− φ) + 1).

Then,

h′(φ) =
a log φ

a(1− φ) + 1
+

a2φ log φ

(a(1− φ) + 1)2
,

which is strictly negative for φ < 1 and strictly positive for φ > 1. Thus, for any φ 6= 1,

h(φ) > limφ→1 h(φ) = 0, which concludes the proof of Claim 2.

If φ ∈ [φ, 1), then log φ < 0, log z > 0, and

(log2 φ)(log x)r′′(φ) =
a2

z2

(
log φ

log z

)2
(log z + 2) +

1

aφ2

(
log z +

2 log z

log φ

)
>

(
a2

z2
+

1

aφ2

)
log x+ 2

(
a2

z2
+

1

aφ2
log z

log φ

)
>

(
a2

z2
+

1

aφ2

)
log x+ 2

(
a2

z2
− 1

φ2

)
,
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where the first inequality follows from Claim 1 and the second from Claim 2. Since

φ ≥ φ = 1+
√
1+4a
2a

implies (aφ)2− z2 = (aφ)2− (a(1− φ) + 1)2 = (2aφ− a− 1)(a+ 1) > 0,

we obtain r′′(φ) > 0.

If φ ∈ (1, 1 + 1/a), then log φ > 0, log z < 0, and

(log2 φ)φ2r′′(φ) =

(
aφ log φ

z(− log z)

)2(
1 +

2

log z

)
+

1

a

(
1 +

2

log φ

)
.

Suppose that 1 + 2
log z

< 0, as for otherwise it is clear that r′′(φ) > 0. It must be

that aφ log φ + z log z > 0 since the left-hand-side is zero at φ = 1, and the derivative

a(log φ+ 1)− a(log z + 1) = a(log φ− log z) > 0. Thus, by Claim 1 above,

(log2 φ)φ2r′′(φ) >

(
1 +

2

log z

)
+

1

a

(
1 +

2

log φ

)
= 1 +

1

a
+ 2

(
1

log z
+

1

a log φ

)
> 0,

and r′′(φ) > 0, which concludes the proof of Lemma F. �

Lemma G Suppose that r : R → R, is positive and decreasing in x and satisfies

g(x)r(x) = h(x), with h(x) strictly convex and g(x) strictly positive, concave, and

decreasing in x. Then, r(x) is strictly convex.

Proof of Lemma G: Take any x1, x2 ∈ R and x̄ = βx1 + (1− β)x2 for some β ∈ (0, 1).

Then,

g(x̄) · (βr(x1) + (1− β)r(x2))

≥ (βg(x1) + (1− β)g(x2)) · (βr(x1) + (1− β)r(x2))

= β2g(x1)r(x1) + (1− β)2g(x2)r(x2) + β(1− β)(g(x1)r(x2) + g(x2)r(x1)),

where the first inequality is guaranteed by the concavity of g. Since r(x) is increasing and

g(x) is decreasing in x,

g(x1)r(x2) + g(x2)r(x1) ≥ g(x1)r(x1) + g(x2)r(x2).

=⇒ g(x̄) · (βr(x1) + (1− β)r(x2)) ≥ βg(x1)r(x1) + (1− β)g(x2)r(x2)

= βh(x1) + (1− β)h(x2) > h(x̄) = g(x̄)r(x̄),

which implies βr(x1) + (1− β)r(x2) > r(x̄). �
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We are now ready to show that

E[Q] =
1

a
+

1

1− φ

(
φ2 +

log(a(1− φ) + 1)

a log φ

)
,

where the value at φ = 1 is given by limφ→1E[Q] is strictly convex in φ.

For any φ ∈ [φ, 1) ∪ (1, 1 + 1/a), we have(
1− φ

log(a(1− φ) + 1)

)
E[Q] = (a(φ+1)−1)

φ− 1

a log(a(1− φ) + 1)
+

(
1

log(a(1− φ) + 1)
+

1

a log φ

)
.

By Lemma D, 1−φ
log(a(1−φ)+1) is decreasing and concave. By Lemmas E and F, the right-hand

side is strictly convex. It follows from Lemma G that E[Q] is strictly convex on [φ, 1) and

(1, 1 + 1/a). Last, by Lemmas A and C, we know that E[Q] is continuously differentiable

at φ = 1, which completes the proof of Step 2, and therefore of Proposition 1. �

Proof of Proposition 2:

In Part I of the proof, we address the comparative statics of the threshold, kP , the training,

µP , and the quality, qP , in both the discretionary and centralized settings with respect to

changes in λ and a. In Part II, we address the expected waiting times, E[WP ], in both the

discretionary and centralized settings with respect to changes in λ and a.

Part I: Impact of changes in λ and a on kP , µP , and qP .

First, consider the discretionary setting. When f(x) = ax, a > 0, the equilibrium (qeP , µ
e
P )

is identified as the intersection of two graphs:

G1 = {(q, µ) : µ = a(1− q)λ} and G2 = {(q, µ) : k(q, µ;λ) = µθ + 1}.

In the proof of Proposition 1, we have shown that G1 is downward sloped and G2 is upward

sloped. The graph G1 shifts to the right if either λ or a increase. Since the threshold k(q, µ, λ) is

strictly decreasing in µ and strictly increasing in q and λ, the graph G2 shifts to the left with an

increase in λ, and remains unchanged with an increase in a. Therefore, µeP and q
e
p are increasing

in a. Thus, from the equilibrium indifference condition, keP increases as well. Similarly, k
e
P and

µeP are increasing in λ. To show that q
e
p increases in λ, observe that φ ≡ λ

µ
= 1

a(1−q) and Lemma

2 implies

k =
log(1− q)− log(1− qφ)

log φ
= − log(a(1− φ) + 1)

log φ
− 1, (12)

38



for φ 6= 1, and k = a− 1 for φ = 1, which is the limit of (12) as φ approaches 1. Then, by the

indifference condition,

k − 1

µ
= θ ⇐⇒ φ(k − 1) = λθ (13)

⇐⇒ φ

(
− log(a(1− φ) + 1)

log φ
− 1

)
= λθ.

The left-hand side of the last equality strictly increases in φ. Hence, the solution φeP increases

in λ. Last, φeP = 1
a(1−qeP )

implies that qeP also increases in λ.

Next, consider the centralized setting. We focus on the space of (q, φ), where φ ≡ λ
µ

= 1
a(1−q)

does not depend on λ. From the proof of Proposition 1, recall that E[Q] in [P ′] is continuously

differentiable at φ = 1, and φ is restricted to be in [φ, 1 + 1/a). It is straightforward to show

that the first-order condition corresponding to an interior optimal solution is dE[Q]
dφ

= λθ
aφ2
.

Since E[Q] is a convex function of φ, the derivative dE[Q]
dφ

increases in φ. Thus, if λ increases,

φ∗P increases. Similarly, if θ increases, µ
∗
P = λ/φ∗P decreases. To see the impact of increases in

λ on the mass of seniors and fraction of clients served by them, rewrite the first-order condition

above as
(
dE[Q]
dφ

)
φ = λθ

aφ
= µθ

a
. Since φ∗P increases, the left-hand side of the equality increases,

which implies that µ∗P increases. The fraction q∗P increases as well because of the training

constraint φ∗P = 1
a(1−q∗P )

.

Last, we show that φ∗P decreases in a, implying that µ
∗
P increases in a. Consider any a such

that φ∗P 6= 1 is an interior solution. The optimal φ∗P satisfies the first-order condition:

λθ

aφ2
− φ(2− φ)

(1− φ)2
− log(a(1− φ) + 1))(− log φ+ (1/φ)− 1)

a(1− φ)2(log φ)2
= 0 (14)

⇐⇒ w(φ; a) ≡ λθ

φ2
− aφ(2− φ)

(1− φ)2
− log(a(1− φ) + 1))(− log φ+ (1/φ)− 1)

(1− φ)2(log φ)2
= 0.

By the Implicit Function Theorem, dφ
da

= − dw/da
dw/dφ

. Also, we showed in the proof of Proposition

1 that the objective function of [P ′] is strictly concave in φ. That is, dw(φ,a)
dφ

< 0 at every

φ ∈ (φ, 1) ∪ (1, 1 + 1/a). Hence, to complete the proof of Part I of Proposition 2, it suffi ces to

show that, for any (φ, a) such that φ ∈ (φ, 1) ∪ (1, 1 + 1/a), we have dw(φ,a)
da

< 0.

Observe that

φ ≥ φ =
1 +
√

1 + 4a

2a
⇐⇒ (2aφ− 1)2 ≥ 1 + 4a ⇐⇒ a ≥ 1 + φ

φ2
.
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From (14), we get

dw(φ, a)

da
=− φ(2− φ)

(1− φ)2
+

1

(1− φ)(log φ)(a(1− φ) + 1)

− a

(log φ)(a(1− φ) + 1)2
+
−(log φ) + (1/φ)− 1

(1− φ)2(log φ)2
1− φ

a(1− φ) + 1

=− φ(2− φ)

(1− φ)2
− a

(log φ)(a(1− φ) + 1)2
+

1

φ(log φ)2(a(1− φ) + 1)
.

To show that dw(φ,a)
da

< 0, we distinguish between three cases. First, if φ ≥ 2, we multiply
dw(φ,a)
da

by −(1− φ)(log φ)(a(1− φ) + 1) > 0, and obtain

− (1− φ)(log φ)(a(1− φ) + 1)
dw

da

= aφ(2− φ)(log φ) +
φ(2− φ)(log φ)

1− φ +
a(1− φ)

a(1− φ) + 1
− 1− φ
φ(log φ)

,

which is strictly decreasing in a. Hence, we obtain an upper bound of the above expression by

substituting a with its lower bound 1+φ
φ2
. The upper bound, which is a function of φ only, is

less than −2.278 for every φ ≥ 2.

If 1 < φ < 2, we have

(a(1− φ) + 1)2
dw

da
= −φ(2− φ)(a(1− φ) + 1)2

(1− φ)2
− a

log φ
+
a(1− φ) + 1

φ(log φ)2

=

(
−a2φ(2− φ)− 2aφ(2− φ)

1− φ − φ(2− φ)

(1− φ)2

)
− a

log φ
+

(
a(1− φ)

φ(log φ)2
+

1

φ(log φ)2

)
= −a2φ(2− φ)− a

(
2φ(1− φ)

1− φ +
1

log φ
− 1− φ
φ(log φ)2

)
− φ(2− φ)

(1− φ)2
+

1

φ(log φ)2
.

For any 1 < φ < 2, 2φ(1−φ)
1−φ + 1

log φ
− 1−φ

φ(log φ)2
> 2.435, so the above expression is strictly decreasing

in a. Substituting a with its lower bound 1+φ
φ2

results in an upper bound that is a function of

φ only, and is lower than −0.82.

Finally, if φ < 1, we have

(a(1− φ) + 1)2

a

dw

da
= −φ(2− φ)

(1− φ)2

(
a(1− φ)2 + 2(1− φ) +

1

a

)
− 1

log φ
+

1

φ(log φ)2

(
1− φ+

1

a

)
= −aφ(2− φ) +

1

a

(
1

φ(log φ)2
− φ(2− φ)

(1− φ)2

)
− 2φ(2− φ)

1− φ − 1

log φ
+

1− φ
φ(log φ)2

.

For any φ < 1, 1
φ(log φ)2

− φ(2−φ)
(1−φ)2 > 13

12
, so the above expression is strictly decreasing in a.

Substituting a with its lower bound 1+φ
φ2
results in an upper bound that is a function of φ, and
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less than −47
24
. This concludes the proof of Part I.

Part II: Impact of changes in λ and a on expected wait times.

We focus on the discretionary setting first. If a client joins the senior queue when the

state is j (i.e., when j other clients are either waiting or being served), then her expected wait

time is j
µ
. The probability for a client to join the senior queue in state j conditional on ever

joining is pj
1−pk . Thus, the expected wait is E[W ] =

∑k−1
j=0

j
µ

pj
1−pk . Our formulation implies that

pj = (1−φ)φj
1−φk+1 and

1
1−pk = 1−φk

1−φk+1 . Thus,

E[W ] =
1− φ

µ(1− φk)

k−1∑
j=0

jφj =
1− φ

µ(1− φk)
φ

1− φ

(
1− φk−1

1− φ − (k − 1)φk−1
)
.

In equilibrium, k
e
P−1
µeP

= θ. Hence,

E[W e
P ] =

1

µeP (1− φeP )

φeP − (φeP )k
e
P

(1− (φeP )k)
− θ (φeP )k

e
P

1− (φeP )k
e
P
.

We first show that lima→∞E[W e
P ] = 0. If a increases, the right hand side of (12) diverges.

From (13), it follows that φeP must decrease to 0. Since φeP = λ
µeP
, we have lima→∞ µ

e
P =∞, and

lima→∞E[W e
P ] = 0 from the above equality.

We now show that limλ→∞E[W e
P ] = θ. Note that φeP = λ

µeP
is bounded by φ = 1+

√
1+4a
2a

and φ = 1 + 1
a
. Thus, limλ→∞ µ

e
P = ∞. The boundedness of φeP also implies from (13)

that a(1 − φeP ) + 1 approaches 0 as λ increases indefinitely. Hence, by (13), limλ→∞ (φeP )k
e
P =

limλ→∞
1

φeP (a(1−φeP )+1)
=∞, which implies that limλ→∞E[W e

P ] = θ.

To show that lima→0E[W e
P ] = limλ→0E[W e

P ] = 0, we observe that as a or λ approach 0, µ

tends to 0 for any q ∈ [0, 1]. Hence, the indifference condition yields a threshold of 1, implying

that agents seek senior service only if there is no other agent in line (agents experience no

waiting cost while being served). The result follows.

We focus on the centralized setting next.

For lima→∞E[W ∗
P ], we compare the welfare under perfect monitoring with the welfare under

limited monitoring. The first-order condition with limited monitoring implies (11). Then, as a

grows indefinitely, E[W ∗
L] has to approach 0, which implies that q∗L tends to the upper bound

a
a+1
→ 1. Thus, as a grows indefinitely, the planner is able to achieve the maximum average

welfare of h. Since the planner can achieve higher welfare with perfect monitoring than limited

monitoring (Proposition 5B, which we prove below), E[W ∗
P ]must vanish as well when a increases

41



indefinitely.

For limλ→∞E[W ∗
P ], we consider the planner’s problem presented after Lemma 3:

[P ] max
q∈[q, a

1+a
)
qλθ − E[Q] ⇐⇒ λ

c

[
max

q∈[q, a
1+a

)
q

(
h− E[Q]

qλ
c

)
+ (1− q)l

]
.

Note that E[Q]
qλ

= E[W ]. Under linear training, the expected number of clients waiting, E[Q],

is independents of λ (Lemma 3). Then, for any fixed q ∈ (0, a
1+a

), as λ increases indefinitely,

the average welfare approaches qh+ (1− q)l. Thus, the planner can achieve welfare arbitrarily
close to a

1+a
h+ 1

1+a
l, which implies that limλ→∞E[W ∗

P ] = 0.

Finally, to see that lima→0E[W ∗
P ] = limλ→0E[W ∗

P ] = 0, observe that µ tends to 0 as a or λ

approach 0, regardless of q ∈ [0, 1]. When µ∗P is suffi ciently small so that h− c
µ∗P

> l, a planner

sends a client to the senior queue only when no waiting is necessary (k∗P = 1). Hence, the

expected wait vanishes to zero. �

8.3 Proofs for Limited Monitoring

Proof of Proposition 3:

1. For any given mass of seniors µ and q ∈ (0, 1), each client’s expected payoff from entering

the seniors’queue is h− cE[W ], while it is l if served by a junior. A client is indifferent

between the two options when

l = h− cE[W ] ⇐⇒ θ = E[W ] =
λq

µ(µ− λq) .

As µ = f((1−q)λ) and f is differentiable, strictly increasing, and f(0) = 0, the right-hand

side of the indifference condition is continuous and strictly increasing in q from 0 to ∞.
A unique solution qeL of the indifference condition exists, and µ

e
L = f((1− qeL)λ) follows.

2. We write the planner’s problem as follows:

max
q∈(0,µ/λ)

q (h− cE[W ]) + (1− q)l ⇐⇒ max
q∈(0,µ/λ)

qθ − λq2

µ(µ− λq) ,

subject to

µ = f((1− q)λ).

The first term of the objective (qθ) is linear in q. The second term (− λq2

µ(µ−λq)) is a strictly
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quasi-concave function of (q, µ) for qλ < µ. To see this, let g(q, µ) ≡ − λq2

µ(µ−λq) = − λ
µ
q
(µ
q
−λ)

and observe that the function − λ
x(x−λ) is increasing in x if x > λ. Consider (q1, µ1) and

(q2, µ2) such that λ <
µ1
q1
≤ µ2

q2
. For any γ ∈ [0, 1], we have µ1

q1
≤ µ

q
≡ γµ1+(1−γ)µ2

γq1+(1−γ)q2 ≤
µ2
q2
.

Then, g(q, µ) ≥ min{g(q1, µ1), g(q2, µ2)}, and the strict quasi-concavity of g(q, µ) follows.

The feasible set of (q, µ) is convex because f is (weakly) concave. Also, there is no corner

solution. Indeed, if q → 0, a client joining the queue gains θ = h−l
c
> 0, while the waiting

time E[W ] converges to zero; on the other hand, as q increases to q, defined as the solution

of qλ = f((1 − q)λ), the average waiting time explodes. Hence, the first-order condition

is necessary and suffi cient for the solution of the planner’s problem:

λθ − q(λ/µ)2(2−q(λ/µ))
(1−q(λ/µ))2

(λ/µ)q2(2−q(λ/µ))
(1−q(λ/µ))2

=

(
λ

µ

)2
f ′ ⇐⇒ θ =

qλ

µ

2µ− qλ
(µ− qλ)2

(
qλ

µ
f ′ + 1

)
.

Taking the training constraint into account, the right-hand side is strictly increasing in

q. A unique solution q∗L exists, and µ
∗
L = f((1− q∗L)λ) follows. �

Proof of Proposition 4: Given f(x) = ax, the expected wait time becomes

E[W ] =

(
1

a(1− q)− q −
1

a(1− q)

)
· 1

λ
≡ z(q; a)

λ
,

and the feasibility condition qλ < µ = f((1− q)λ) becomes q < a(1− q).
Observe that z(q; a) is strictly increasing in q, and strictly decreasing in a because, for any

al < ah,

z(q; al) > z(q; ah) ⇐⇒
1

al(1− q)− q
− 1

ah(1− q)− q
>

1

al(1− q)
− 1

ah(1− q)
⇐⇒ alah(1− q)2 > (al(1− q)− q)(ah(1− q)− q),

which clearly holds, and

z′(q; a) =
a+ 1

(a(1− q)− q)2 −
a

(a(1− q))2

=
1

(a(1− q)− q)2 + a

(
1

a(1− q)− q +
1

a(1− q)

)
z(q; a) > 0. (15)

In the discretionary setting, the equilibrium (qeL, µ
e
L) solves θ = E[W ]. It is immediate to

see that qeL and µ
e
L are increasing in λ and in a, while E[W ] is unaffected by λ and a.
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In the centralized setting, the planner’s optimal choice q∗L solves (9), which becomes

θ =
z(q; a)

λ
+
qz′(q; a)

λ
. (16)

Each term of (15) is strictly increasing in q < a(1 − q) and strictly decreasing in a. Thus, if
either λ or a increase, q has to increase to satisfy (16).

In fact, the first-order condition (16) can be written as

λθ =
1

a(1− q)− q −
1

a(1− q) +
(a+ 1)q

(a(1− q)− q)2 −
aq

(a(1− q))2

=
a

(a(1− q)− q)2 −
a

(a(1− q))2

=

(
1

a(1− q)− q −
1

a(1− q)

)(
a

a(1− q)− q +
a

a(1− q)

)
,

or equivalently as

θ = E[W ]

(
aλE[W ] +

2

1− q

)
.

We showed that q increases in a and λ. Since the left-hand side of the first-order condition is

held fixed at θ, E[W ] must decrease in a and λ. �

8.4 Proofs for Impacts of Centralization

Proof of Corollary 2: Consider (7) and (8) in Proposition 2 for the limited-monitoring setting.

Since f ′ ≥ 0,
qλ

µ

2µ− qλ
(µ− qλ)2

(
qλ

µ
f ′ + 1

)
≥ qλ

µ

2µ− qλ
(µ− qλ)2

>
λq

µ(µ− qλ)
.

The result q∗L < qeL (hence µ
∗
L > µeL) follows.

Next, consider the perfect-monitoring setting, where the solution (q∗P , µ
∗
P ) determines φ∗P =

λ/µ∗P and k∗P = k(q∗P ;µ∗P , λ) by (4). The proof of Corollary 2 is trivial if k∗P = 1, which

corresponds to a corner solution, i.e., the lower bound of any feasible q. Hence, assume an

interior solution k∗P > 1. Then, q∗P > 1
φ∗P+1

by (3) and the first-order condition of Proposition

1 holds. It is convenient to consider

E[Q] =


q(2q−1)
2(1−q) , if q = 1− 1

a
,

qφ2

1−φ −
(1−q)φ
1−φ

(
log(1−q)−log(1−φq)

log φ

)
otherwise.

as a function of (q, φ), with φ = 1
a(1−q) , a function of q. Then, the first-order condition (6)
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corresponds to

λθ =
∂E[Q]

∂q
+
∂E[Q]

∂φ

dφ

dq
.

Observe that dφ
dq
> 0, and ∂E[Q]

∂φ
> 0 because an increase of φ ≡ λ

µ
, while holding q, a, and λ

fixed, corresponds to a decrease in µ, which increases E[Q]. Thus, at the optimal solution,

λθ ≥ ∂E[Q]
∂q
.

If µ∗P = λ, implying, φ∗P = 1,

µ∗P θ = λθ ≥ ∂E[Q]

∂q
= −1 +

1

2(1− q∗P )2
>

q∗P
1− q∗P

= k∗P ,

where the last equality follows from (4).

Suppose µ∗P 6= λ, implying φ∗P 6= 1. If φ 6= 1,

∂E[Q]

∂q
=

φ2

1− φ +
φ

(1− φ) log φ

(
log

(
1− q

1− qφ

)
+

1− φ
1− qφ

)
,

and, by exploiting (4), we have

∂E[Q]

∂q
− k(q, φ)φ =

φ2

1− φ +

(
1

1− φ − 1

)
φ

log φ
log

(
1− q

1− qφ

)
+

φ

(1− φ) log φ

1− φ
1− qφ

=
φ2

(1− φ) log φ

(
log

(
φ(1− q)
1− qφ

)
+

1− φ
φ(1− qφ)

)
.

Since log x ≤ x− 1 for every x ∈ R, for φ < 1,

log

(
φ(1− q)
1− qφ

)
+

1− φ
φ(1− qφ)

≤ φ(1− q)
1− qφ − 1 +

1− φ
φ(1− qφ)

≤ 1− φ
1− qφ

(
1

φ
− 1

)
< 0.

If φ > 1, we have limφ→1 log
(
φ(1−q)
1−qφ

)
+ 1−φ

φ(1−qφ) = 0 and

∂
(

log
(
φ(1−q)
1−qφ

)
+ 1−φ

φ(1−qφ)

)
∂φ

=
(2qφ− 1)(1− φ)

φ2(1− qφ)2
< 0,

where the inequality is guaranteed by the fact that q > 1
φ+1

implies 2qφ−1 > 2φ
φ+1
−1 = φ−1

φ+1
< 0.

Thus, log
(
φ(1−q)
1−qφ

)
+ 1−φ

φ(1−qφ) < 0. Therefore,

µ∗P θ =
λθ

φ∗P
≥
(
∂E[Q]

∂q

)
1

φ∗P
> k∗P .

Overall, we conclude that k∗P < µ∗P θ + 1 = keP . It follows that q
∗
P < qeP and µ

∗
P > µeP . �
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8.5 Proofs for Impacts of Monitoring

Proof of Lemma 4: For any choice of (q, µ), the average wait times in the limited- and

perfect-monitoring settings are

E[WL] =
1

µ− qλ −
1

µ
=

qλ

µ(µ− qλ)
, and

E[WP ] =
E[QP ]

(1− pk)λ
=

{
k−1
2λ

if λ = µ
1
µ

(
λ

µ−λ − k
λk

µk−λk

)
if λ 6= µ

,

respectively, where k is given by (4).

If λ = µ, then E[WP ]
E[WL]

= 2q−1
2q

< 1. If λ 6= µ (i.e., φ 6= 1), then µE[WL] = qφ
1−qφ and we have

φk = 1−q
1−qφ from (4), which implies

µE[WP ] =
φ

1− φ −
1− q

q(1− φ) log φ
log

(
1− q

1− qφ

)
<

φ

1− φ −
1− q

q(1− φ) log φ

(
1− q

1− qφ − 1

)
=

φ

1− φ +
1− q

log φ(1− qφ)
,

where the inequality follows from (1 − φ) log φ < 0 and log x < x − 1 for any x 6= 1. Observe

that

E[WL] < E[WP ] ⇐=
φ

1− φ +
1− q

log φ(1− qφ)
<

qφ

1− qφ

⇐⇒ 1− q
log φ

< qφ− φ(1− qφ)

1− φ =
−φ(1− q)

1− φ
⇐⇒ φ log φ+ 1− φ > 0,

and the last inequality holds for every φ 6= 1. Hence, E[WL] < E[WP ]. �

Proof of Proposition 5A: By Propositions 1 and 3, (qeL, µ
e
L) solves θ = qλ

µ(µ−qλ) and µ =

f((1− q)λ), while (qeP , µ
e
P ) solves k(q, µ;λ) = µθ + 1 and µ = f((1− q)λ). The graphs

GL ≡
{

(q, µ) : θ =
qλ

µ(µ− qλ)

}
and GP ≡

{
(q, µ) : θ =

k(q, µ;λ)− 1

µ

}
represent the indifference conditions under limited and perfect monitoring, respectively. It is

easy to verify that both graphs are upward sloping. We show that GP strictly single-crosses

GL from below. Formally, if (q′L, µ
′) ∈ GL, (q′P , µ

′) ∈ GP , and q′P ≤ q′L, then for any µ
′′ > µ′

with (q′′P , µ
′′) ∈ GP and (q′′L, µ

′′) ∈ GL, we have q′′P < q′′L.
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Step 1: If µ ≤ λ, GP lies below GL– if (qL, µ) ∈ GL, and (qP , µ) ∈ GP , then qL < qP .

Take any µ ≤ λ and q ∈ [0, 1] such that qλ < µ. If µ = λ, then

qλ

µ(µ− qλ)
=

1

λ

q

1− q >
1

λ

(
q

1− q − 1

)
=
k(q, µ;λ)− 1

µ
.

If µ < λ, then

qλ

µ(µ− qλ)
>
k(q, µ;λ)− 1

µ
=

1

µ

(
1

log(λ/µ)
log

(
1− q

1− (qλ/µ)

)
− 1

)
⇐⇒ qλ

µ− qλ >
1

log(λ/µ)

(
1− q

1− (qλ/µ)
− 1

)
− 1 (∀x 6= 1, log x < x− 1)

⇐⇒ (λ/µ) log(λ/µ)

(λ/µ)− 1
>
qλ

µ
,

which holds since, for any x > 1, x log x
x−1 > 1 > qλ

µ
. Therefore, if µ ≤ λ, (qL, µ) ∈ GL, and

(qP , µ) ∈ GP , then qL < qP , which concludes the proof of Step 1.

Step 2: If µ > λ, GP strictly single-crosses GL from below.

Take any µ′ > λ such that (q′L, µ
′) ∈ GL and (q′P , µ

′) ∈ GP for some q′P ≤ q′L. Then,

θ =
q′Lλ

µ′(µ′ − q′Lλ)
and θ =

1

µ′

(
1

log(λ/µ′)
log

(
1− q′P

1− (q′Pλ/µ
′)

)
− 1

)
.

Take any µ′′ > µ′ and let q′′L, q
′′
P , be such that (q′′P , µ

′′) ∈ GP and (q′′L, µ
′′) ∈ GL. Also, define q

such that q
µ′′ =

q′L
µ′ ≡ δ. We first compare q and q′′L.

qλ

µ′′(µ′′ − qλ)
=

δλ

µ′′(1− δλ)
<

δλ

µ′(1− δλ)
=

q′Lλ

µ′(µ′ − q′Lλ)
= θ.

Thus, q < q′′L. We compare q and q
′′
P using the following auxiliary result:

Claim 4: For any 0 < y < x < 1, the ratio log(1−y)−log(1−x)
x(log x−log y) is strictly increasing in x.

Proof of Claim 4 : For any 0 < y < x < 1, the derivative of log(1−y)−log(1−x)
x(log x−log y) is strictly positive

if and only if
x

1− x log

(
x

y

)
> log

(
1− y
1− x

)(
log

(
x

y

)
+ 1

)
.

If x = y, both sides of the above inequality are equal to 0. If x 6= y, the left-hand side is

strictly increasing in x. Hence, it is suffi cient to show that the derivative of the right-hand side
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is strictly negative, or equivalently,

− log(x/y)− 1 +

(
1

x
− 1

)
log

(
1− y
1− x

)
< 0.

The last inequality holds at x = y, and the derivative of the left-hand side is

−1

x
− 1

x2
log

(
1− y
1− x

)
+

(
1

x
− 1

)
1

1− x = − 1

x2
log

(
1− y
1− x

)
< 0,

which completes the proof of Claim 4.

To conclude the proof of Step 2, observe that λ < µ′. The definition of q, and q < q′′L ≤ 1

imply that λδ < q′L < q(≤ 1). Claim 4 implies

1

µ′′ log(λ/µ′′)
log

(
1− q

1− (qλ/µ′′)

)
=
δ(log(1− λδ)− log(1− q))

q(log q − log(λδ))

>
δ(log(1− λδ)− log(1− q′L))

q′L(log q′ − log(λδ))
=

1

µ′ log(λ/µ′)
log

(
1− q′L

1− (q′Lλ/µ
′)

)
,

Hence,

1

µ′′

(
1

log(λ/µ′′)
log

(
1− q

1− (qλ/µ′′)

)
− 1

)
>

1

µ′

(
1

log(λ/µ′)
log

(
1− q′L

1− (q′Lλ/µ
′)

)
− 1

)
≥ θ,

which implies q > q′′P .
31 Therefore, q′′L > q > q′′P . �

Proof of Proposition 5B:

We compare the solutions (q∗L, µ
∗
L) and (q∗P , µ

∗
P ). In the proof of Proposition 1, we wrote the

planner’s problem under perfect monitoring as:32

[PM ] max
φ∈[ 1

a
,1+ 1

a
)

(
1− 1

aφ

)
λθ − E[QP ],

where E[QP ] =

{
(a−1)(a−2)

2a
, if φ = 1,

1
a

+ 1
1−φ

(
φ2 + log(a(1−φ)+1)

a log φ

)
otherwise,

which is strictly convex and continuously differentiable in φ, including at φ = 1. The planner’s

problem under limited monitoring is

[LM ] max
φ∈[ 1

a
,1+ 1

a
)

(
1− 1

aφ

)
λθ − E[QL],

31From our analysis before, recall that 1
log(λ/µ) log

(
1−q

1−(qλ/µ)

)
is strictly increasing in q.

32Recall that φ = 1
a(1−q) ≥

1
a , and the steady-state constraint qλ < µ (i.e., qφ < 1) implies that φ < 1 + 1

a .
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where, by Little’s formula,

E[QL] = qλE[WL] =
(qλ)2

µ(µ− qλ)
=

(qφ)2

1− qφ =
(aφ− 1)2

a(a(1− φ) + 1)
.

The following Lemmas H and I ultimately guarantee that dE[QL]
dφ

> dE[QP ]
dφ

. Since both E[QL]

and E[QP ] are continuously differentiable, including at φ = 1, it is without loss of generality to

consider φ ∈ ( 1
a
, 1 + 1

a
)\{1}.

Lemma H For any φ 6= 1, a(1−φ)2
log2(a(1−φ)+1) is strictly positive and strictly decreasing in φ and

−1
log(a(1−φ)+1)

(
1 + 1−φ

log φ

)
is increasing in φ.

Proof of Lemma H: Let g(φ) ≡ −a(1−φ)
log(a(1−φ)+1) , which is strictly negative for any φ 6= 1. By

Lemma D, we have g′(φ) > 0. Thus, (g(φ)2

a
= a(1−φ)2

log2(a(1−φ)+1) is strictly positive and strictly

decreasing in φ 6= 1.

Next, let h(φ) ≡ 1
1−φ + 1

log φ
. For any φ 6= 1, log φ < φ−1 and (1−φ) log φ < 0, which imply

h(φ) = log φ+1−φ
(1−φ) log φ > 0. Note that

h′(φ) < 0 ⇐⇒ 1

(1− φ)2
<

1

φ log2 φ
⇐⇒ φ log2 φ < (1− φ)2.

We differentiate each side of the last inequality. The first derivatives are equal at φ = 1. For

every φ 6= 1, since log φ < φ−1, the second derivative of the left-hand side is smaller than that of

the right-hand side: 2(log φ)(1/φ)+2/φ < 2. Thus, if φ > 1, we have log2 φ+2 log φ < −2(1−φ),

and if φ < 1, we have log2 φ + 2 log φ > −2(1 − φ). Therefore, we obtain φ log2 φ < (1 − φ)2,

and h′(φ) < 0. Hence, Lemma H follows from(
− 1

log(a(1− φ) + 1)

(
1 +

1− φ
log φ

))′
=
g′(φ)h(φ) + g(φ)h′(φ)

a
> 0.

�

Lemma I For any φ 6= 1, E[QL]− E[QP ] is strictly increasing in φ.

Proof of Lemma I: We have

E[QL]− E[QP ] =
(aφ− 1)2

a(a(1− φ) + 1)
− 1

a
− 1

1− φ

(
φ2 +

log(a(1− φ) + 1)

a log φ

)
.

Since

(aφ− 1)2

a(a(1− φ) + 1)
− 1

a
− φ2

1− φ =
aφ2 − φ− 1

a(1− φ) + 1
− φ2

1− φ =
−1

(a(1− φ) + 1)(1− φ)
,
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we get

E[QL]− E[QP ] =
−1

(a(1− φ) + 1)(1− φ)
− log(a(1− φ) + 1)

a(1− φ) log φ
.

Therefore,(
a(1− φ)2

log2(a(1− φ) + 1)

)
(E[QL]− E[QP ])

=

(
−a(1− φ)

(a(1− φ) + 1) log2(a(1− φ) + 1)
+

1

log(a(1− φ) + 1)

)
− 1

log(a(1− φ) + 1)

(
1 +

1− φ
log φ

)
.

The right-hand side of the last equation is increasing in φ (see the expression r′′(x) in the proof

of Lemma D, where we substitute −a(1− φ) for x, and Lemma H). From E[QL]− E[QP ] > 0

and Lemma H, it follows that E[QL] − E[QP ] is strictly increasing in φ, which concludes the

proof of Lemma I. �

We are now ready to show Proposition 5B. Lemma I implies that

λθ

aφ∗L
=
dE[QL](φ∗L)

dφ
>
dE[QP ](φ∗L)

dφ
, and

λθ

aφ∗P
=
dE[QP ](φ∗P )

dφ
.

From the strict convexity of E[QP ] that we showed in the proof of Proposition 1, we obtain

that φ∗L < φ∗P . Therefore, q
∗
L < q∗P . �
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