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1 Introduction

It is common in the applied literature to examine how output or employment dynam-

ically respond to a government expenditure increase, see e.g., Nakamura and Steinnson

[2014],Chodorow-Reich [2019], or to analyze how banks’ lending policy dynamically evolves

in response to a monetary policy change, see e.g., Jimenez, Ongena, Peydro’, and Saurina

[2014], Chakraborty, Goldstein, and MacKinlay [2020], using ”cross-sectional” methods.

Researchers employing these methods often highlight the advantages of the approach rel-

ative to a conventional time series methodology. For example, it is often emphasized that

the latter requires exogenous conditioning variables but, typically, both fiscal and mone-

tary variables adjust to the trajectory of the economy. Thus, one needs to eliminate their

endogenous variations prior to the computation of dynamic effects. To purge fiscal expen-

diture variables from endogenous variations one could focus attention, for instance, on war

financing or employing narrative information, see Ramey [2019] for a review; to eliminate en-

dogenous variations in monetary policy variables, one can employ, instead, financial market

movements or other high frequency proxies, see Gertler and Karadi [2015].

This literature also stresses that policy variables tend to move together. For example, if

government expenditure increases, taxes, debt, or the term structure of nominal rates may be

simultaneously affected. Thus, the quantities one computes with a time series methodology

have to be interpreted as average dynamic responses across different policy regimes. A

cross-sectional approach is said avoid both problems because the use of a time effect in the

regression eliminates endogeneity and absorbs, to a large extent, the comovements present

in other policy variables. In addition, meaningful estimates can be obtained by exploiting

random variations across units, that are easier to justify from an economic point of view

than random changes across time.

The contribution. This paper highlights the problems that mechanical application of

cross sectional methods display when computing macroeconomic objects in spatial settings.

When the dynamic evolution of the cross-section is homogeneous, that is, when unit dy-

namically comove in response to the policy change, the approach works but under a set of

stringent assumptions; when these are violated, distortions in the magnitude and the sig-

nificance of propagation effects emerge. When the evolution of the cross-section is, instead,
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dynamically heterogeneous, as it is generally the case with cross country or cross regional

macroeconomic data, the approach fails to consistently measure the average dynamic effects

of interest.

I discuss two alternative procedures, one which is appropriate when time time series

dimension T is large and one which is appropriate when T is small, both of which may

provide superior estimates of the average dynamic effects of a policy change when dynamic

heterogeneity is important.

I run a Monte Carlo experiment to measure the magnitude of the distortions different

approaches display in different situations. I confirm that the alternative methods have a

hedge whenever the dynamic evolution of the cross-section is heterogeneous. I also demon-

strate they work well and are competitive with cross sectional approaches with a dynamically

homogeneous cross-section.

I compute the average local fiscal multiplier for US states using different methodologies.

When cross-sectional methods are employed the average multiplier is estimated to be zero,

if not negative; with one of the alternative approaches, it is statistically indistinguishable

from one, making policy conclusions quite different. I show that differences emerge because

the dynamic evolution of gross state product is far from homogeneous.

The rest of the paper is organized as follows. Section 2 briefly describes cross-sectional

approaches. Section 3 discusses the assumptions needed for the methodology to work when a

conventional spatial data generating process is assumed. Section 4 shows the problems faced

by the approach when dynamic heterogeneity is present. Section 5 provides two alternative

procedures. Section 6 computes average local fiscal multipliers for US states. Section 7

concludes.

2 The cross-sectional methodology in a nut-shell

The methodology advocated to measure the average dynamic effects of a fiscal or a monetary

policy change is simple. Assume that a vector of time series for unit i = 1, . . . , N is available

and that the sample size T is common to all units; if not let T = miniTi. Rather than

exploiting time series variations to estimate the dynamic causal effects of an unexpected

policy change, unit by unit, as it is done, for instance, in the comparative VAR literature,

see Kim and Roubini [2000], the methodology estimates average dynamic effects exploiting
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cross-unit variations at a particular point in time. Thus, the typical regression one runs is:

Yi,t+h − Yi,t = αh,t + βhPi,t + γhXi,t,h + ei,t+h (1)

where Pi,t is the policy variable and Xi,t,h is a vector of controls. The dependent variable is

the h = 1, . . . , H period change in the endogenous variable Yi,t for the unit i, a scalar for each

t and i, αh,t, is a time effect, h is the horizon of interest, and βh is the multiplier (elasticity,

pass-through) at horizon h. It is a cross-sectional object because, given αh,t, its identification

comes from variations in the policy variable across i, for a fixed t. Note that in equation (1),

there is a βh for each horizon h and that the specification permits control variables Xi,t,h to

change with h, even though this option is seldomly used in the cross-sectional literature.

Variations on equation (1) are possible. For example, Nakamura and Steinnson [2014] use

Pi,t+h − Pi,t as the policy variable; per-capita variables may be employed; and fixed effects

may be included if Yi,t is not demeaned. In addition, when computing fiscal multipliers,

Yi,t+h − Yi,t and Pi,t may be scaled by Yi,t, see Dupour and Guerrero [2017] or by its trend

component, as suggested in Ramey and Zubairy [2018]. The interpretation of βh differs, but

the estimation approach is the same for all specifications.

When (1) is the data generating process, consistent estimation of βh requires, conditional

on Xi,t, that variations in Pi,t at each t are uncorrelated with the trajectory of the Yi,t+h−Yi,t
vector across units. Because Pi,t is not necessarily strictly exogenous, even after a time

effect is included, OLS estimation of (1) is invalid. Hence, one typically looks for one or

more instruments Zi,t,h satisfying the standard orthogonality (Et[Zi,t,hei,t+h|Xi,t] = 0) and

relevance [Zi,t,hPi,t|Xi,t] > 0) conditions and employs a IV (2SLS) methodology. Note that

the instruments Zi,t,h may also be horizon dependent.

Often researchers aggregate (1) across horizons to estimate cummulative dynamic effects

using the regression:

H∑
h=1

(Yi,t+h − Yi,t) = αt + βPi,t + γXi,t +
H∑
h=1

ei,t+h (2)

where αt =
∑H

h=1 αh,t, β =
∑H

h=1 βh, γ =
∑H

h=1 γh. While βh gives the dynamic response of

Yi,t+h−Yi,t to a change in Pi,t, β represents the cumulative change in the endogenous variable

for horizons up to H.
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3 The conditions needed for the methodology to work

Equation (1) is a legitimate empirical model, but unlikely to represent the data generating

process (DGP) of spatial macroeconomic data. It neglects the presence of interdependences

across the endogenous variables and units; it disregards general equilibrium effects within a

unit; and restricts the dynamic response of Yi,t+h − Yi,t to a change in Pi,t to be the same

across units.

An alternative DGP. Suppose instead that the data has been generated by a conven-

tional time series specification:

yi,t = ai + biyi,t−1 + cipi,t + dixi,t + ui,t (3)

where ai captures deterministic components in unit i, yi,t−1 absorbs endogenous lag dynamics,

and pi,t is the policy variable. Here xi,t = [yj,t−1, j 6= i;wt, wt−1, . . .] is a vector of controls,

which may include lagged values of variables of other units, j 6= i, as well as global (aggregate)

variables, and accounts for static and dynamic interdependences that may cause yi,t (and

pi,t) to comove across i. When i is small, xi,t can be taken to be strictly exogenous with

respect to yi,t. We also assume that, for each i, yi,t is a G × 1 vector and that pi,t is a

one-dimensional process; thus, if pi,t represents government expenditure, yi,t may include

output, employment, debt, and deficit variables, and wt variables controlled by monetary

policy, e.g., the real rate of interest, or aggregate (global) variables.

It is worth stressing that even though xi,t contains lagged cross unit effects, lagged unit

specific effects yi,t−1 could be potentially important to explain the dynamics of yi,t. For

instance, if yi,t includes employment, its lags could matter, conditional on pi,t, the lagged

employment of other units and any aggregate variables. The error term ui,t is assumed to

be uncorrelated over time and across units; thus it is an innovation vector and its covariance

matrix is denoted by Σi.
1

1(3) assumes that the coefficients are constant over time and the variance of the innovation process is
also time invariant. Extensions to situations where the parameters depend on time (or state) are possible,
but omitted here because they simply add to the problems I discuss. Also, the policy variable, pi,t, may be
allowed to be endogenously reacting to some of the components of yi,t. Thus, to complete the specification,
one would need to add another set of equations relating pi,t to pi,t−τ , τ > 1, and to current and lagged values
of yi,t and wt. Because this set of equations is never explicitly described in the cross-sectional literature, I
omit it from the specification.
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The problems Moving (3) forward h periods and solving backward one obtains:

yi,t+h = ai

h−1∑
m=0

bmi + bhi yi,t + ci(1 + biL+ b2iL
2 + . . . bh−1i Lh−1)pi,t+h

+ di(1 + biL+ b2iL
2 + . . . bh−1i Lh−1)xi,t+h + (1 + biL+ b2iL

2 + . . . bh−1i Lh−1)ui,t+h(4)

Matching (4) with (1) one finds the conditions needed to insure that a cross-sectional method-

ology appropriately measures the average dynamic effect of a policy change at horizon h.

In particular, when estimating (1), a researcher implicitly assumes that domestic inter-

actions do not matter when evaluating the magnitude of the policy effect (and thus G = 1);

that the time effect αh,t captures well the evolution of other units’ endogenous variables and

of the global variables; that process generating the data for each unit is non-stationary, but

displays no drift (bi = 1, ai = 0); and that the impact effect of the policy and of the control

variables is identical across i, (ci = c, di = d).

Perhaps more importantly, the cross-sectional estimate of βh captures the average effect

of (discounted) cumulative changes in pi,t from t to t + h, because Pi,t = (1 + biL + b2iL
2 +

. . . + bh−1i Lh−1)pi,t+h. Thus, unless pi,t = p̄i, for h=0, and pi,t+h = 0, for h > 0, that is, a

policy impulse is considered, the estimated effect overestimates the true effect of a policy

change at time t, for each horizon h, whenever pi,t is positively serially correlated. Note that

using Pi,t+h − Pi,t is unlikely to improve the situation, unless pi,t is an exogenous, unit root

process.

Furthermore, because the regression error in (4) has a moving average structure of order

h−1, et+h = (1+biL+b2iL
2+. . . bh−1i Lh−1)ui,t+h, a HAC correction is needed when computing

the standard errors of the βh estimates. The presence of a moving average structure in et+h

may also jeopardize IV estimation. For example, any Zi,t,h which is uncorrelated with ui,t+h

will not be necessarily uncorrelated with ei,t+h. For the property to hold one needs to select

instruments sufficiently lagged in the past, e.g. Zi,t−τ,h, τ > h. While this problem could be,

in part, reduced by including sufficient lags of the dependent variable in (1), this option is

rarely used in the cross-sectional literature.

Finally notice that, unless lagged variables of units different from i (for example, lagged

deficit of unit j when the dependent variable is output of unit i) appear in Xi,t, instruments

with the right timing protocol may become invalid, as they will be correlated with the error

term of (1) due to variable omission.
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Because the argument I make is conditional on (3), can one it be taken to be a reasonable

representation for the DGP? It is well known that any vector of time series of dimension

GN × 1 (the number of variables times the number of units), can be written in vector

autoregressive format under standard linearity, stationarity and invertibility, see Canova

[2007]. Once such a representation is obtained, (3) is a reparameterization of a the sub-

block of equations belonging to unit i, which exclude the policy equation. (3) is also a

reparameterization of the linear solution of a large class of equilibrium models. Thus, the

DGP I consider is generic.

4 Another, more important problem

Even when Pi,t represents an innovation in a policy variable at time t for each i, instruments

are carefully selected, the controls span the space of cross-sectional interdependences, and

standard errors are correctly computed, there is another issue that makes cross sectional

estimates of the dynamic effects potentially misleading.

As (3) indicates, the model linking the policy variable pi,t to the vector of endogenous

variables yi,t may be different for each i. In other words, a policy change of similar sign

and size may have different dynamic repercussions in different units. However, to employ a

cross-sectional methodology, dynamic homogeneity needs to be assumed. Alternatively, for

the methodology to be meaningful, it is necessary to restrict attention to the subset of the

units which are similar in their dynamic responses to policy impulses. If M dynamically ho-

mogeneous groups can be constructed, one can measure the average effect within each group,

but not the average dynamic effect across groups. Note that grouping based on economic or

geographical characteristics (rich vs. poor, northern vs. southern, etc.) may not be enough

to generate a dynamically homogeneous groups of units. For example, Altavilla, Canova, and

Ciccarelli [2020] show that the dynamic pass-through of monetary policy changes on banks’

lending rates differ, even for units located in the same country, facing similar legislation,

and lending to the same type of firms. Because dynamic heterogeneity is a feature of spatial

macroeconomic data, neglecting it causes biases and interpretation problems.

As mentioned, it is common to include fixed effects in (1) to control for time invariant

differences across units (the ai in equation (3)). Adding fixed effects is not enough to

account for the dynamic differences one should worry about: conditional on time invariant
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characteristics, a policy change may propagate differently in different units because, e.g.,

bi 6= bj. Including fixed effects would also be insufficient to account for different dynamic

propagation when the policy disturbances have different cross-sectional volatilities.

Cross-sectional IV estimation with dynamic heterogeneity What happens when

the dynamic evolution of the cross-section in response to policy changes is heterogeneous? It

is not hard to guess that cross-sectional IV estimation fails. To provide a simple analytical

illustration, I restrict attention to the situation when bi 6= 1 and bi 6= b,∀i. Thus, suppose

that ci = c, di = d,∀i but that bi = b + vi, where b is the common component and vi

the idiosyncratic unit specific component iid ∼ (0, σ2). This is a simple reparameterization

of the DGP and has no economic or statistical implication. For example, if N = 2, and

b1 = 0.98, b2 = 0.90, one can always choose b = 0.94 and set v1 = −0.04, v2 = 0.04. σ2 plays

an important role because it captures the degree of cross-sectional heterogeneity; when σ2 = 0

the dynamic are identical across units; when σ2 = ∞, they are completely heterogeneous.

With this reparameterization, equation (4) becomes

yi,t+h − bhyi,t = ai

h−1∑
m=0

bmi + c(1 + bL+ b2L2 + . . . bh−1Lh−1)pi,t+h

+ d(1 + bL+ b2L2 + . . . bh−1Lh−1)xi,t+h + ζi,t+h (5)

where

ζi,t+h = vhi yi,t + c(1 + viL+ v2iL
2 + . . . vh−1i Lh−1)pi,t+h + di(1 + viL+ v2iL

2 + . . . vh−1i Lh−1)xi,t+h

+ (1 + biL+ b2iL
2 + . . . bh−1i Lh−1)ui,t+h (6)

To further simplify, assume that pi,t = 1, pi,t+h = 0, h > 0. Would OLS applied to (5)

consistently estimate cbh? Clearly, OLS will be invalid as the regressors of (5) are correlated

with the composite error ζi,t+h. Would a IV approach work? Inspection of (5) indicates that

it would not. Proper instruments will be hard to find because both xi,t+h and pi,t+h appear

as regressors and in the composite error.

One may argue that some form of long-run balanced response to policy changes is a basic

feature of spatial economic models and that it should be imposed in estimation, even though

an applied researcher is not able to prove that it holds. It turns out that cross-sectional

8



estimation of equation (1) via OLS or IV will be hard to justify even if we assume bi = b,∀i,
but allow heterogeneity in the instantaneous responses, i.e., ci 6= cj, for i 6= j. In this

situation, the path of yi,t+h in response to the policy change is proportional across i but the

impact effect is unit specific and the problems remain, because it is hard to find instruments

correlated with the policy variable and uncorrelated with the composite error term.

Taking stock It is useful at this point to summarize the conclusions of these two sections.

A cross-sectional methodology appropriately measures the average dynamic effects of a policy

change if the units are dynamically homogeneous or if dynamically homogeneous groups can

be created prior to estimation, but only under a set of stringent conditions. In particular,

the policy variable should represent a policy impulse, otherwise the dynamic effects are

incorrectly measured; the instruments should be sufficiently lagged relative to the horizon of

interest, and appropriately chosen to avoid contamination from omitted variables, otherwise

IV estimation fails; and standard errors should be corrected for moving average components

in the regression error, otherwise the significance of the dynamic effects is overstated. When

dynamic heterogeneity is instead present, cross-sectional IV estimates carry no information

about the true average dynamic effects of the policy change.

5 How to proceed when dynamic heterogeneity is present?

One obvious solution to the biases I discussed in the previous section is to use machine

learning algorithms to group units with similar dynamic features. However, as far as I

know, such approaches have not been yet used in the macroeconomic multiplier/pass-through

literature.

An average time series estimator. There is alternative and simpler approach one can

employ to avoid the biases, which works regardless of the dynamic features of the cross

section, and is appropriate when T is sufficiently large. The approach involves employing

standard time series methods to measure the dynamic effect at horizon h, separately for each

i. Thus, one needs to identify policy impulses for each i, and to get rid of the endogenous

feedback, the techniques mentioned in the introduction can be used. The estimates obtained

will be consistent since the estimated regression coefficients are consistent and dynamic
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effects are a continuous functions of these coefficients. The cross-sectional mean will then

consistently estimate the common component of the dynamic effect at horizon h. This

average estimate will be the time series counterpart of βh in equation (1).

Apart from giving a consistent estimate, such an approach also provides an estimate

of the cross-sectional distribution of the effects at each h, which is useful in many applied

settings. For example, when considering fiscal (monetary) impulses unit specific estimates

could be clustered using economic indicators or type of budget restrictions (banks balance

sheet or regulatory information). One could also compute counterfactuals, for example,

imposing that the policy impulse has same impact effect across units, but allow the dynamic

propagation to be unit specific. None of this information can be obtained with cross-sectional

estimates.

Unfortunately, when T is moderate or small, time series estimate of the individual dy-

namic effects are likely to be biased, and an average of biased estimates is, in general, biased.

If the biases happen to be sufficiently idiosyncratic, they will cancel out when computing a

cross-sectional average. However, in any relevant policy context, this is unlikely to be the

case.

An average estimator for small T. Pooling units in groups which are dynamically

homogeneous generally helps when T is small, since the effective sample size becomes T×Nm,

where Nm is the size of group m. But, for ungrouped macroeconomic data featuring dynamic

heterogeneity, complete pooling is not an option because estimates are more precise but

biased.

When T is small, one can exploit the structure of heterogeneity to partially pool units

in estimation and thus gain degrees of freedom without introducing obvious biases. The ap-

proach is appealing because it works when units are dynamically homogeneous and when they

are not, and has a long history in econometrics. One relevant application of the methodology

with spatial macroeconomic data is Canova and Pappa [2007].

How does the approach work? Let φi be the vector of estimated coefficients and assume

that the process generating the data is as in (3). Parametrize the heterogeneity as in section

4, i.e. assume that φi = φ+vi, where vi a vector of iid random variables, normally distributed,

with zero mean and covariance Σv. Again, Σv measures the extent of dynamic heterogeneity
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and for Σv = 0 the cross section is dynamic homogeneous. If eit are also normally distributed

with zero mean and variance σ2
i , the DGP and the parametric representation of the hetero-

geneity imply that φi is normal with mean φ̃i = ( 1
σ2
i
x′ixi + Σ−1v )−1( 1

σ2
i
x′ixiφ̂i + Σ−1v φ), where

φ̂i is the estimator of φi computed using unit i data. In words, a partial pooling estimator

of the parameters is a weighted average of the information contained in unit i data and of

the average φ assumed, with weights given by the precision of the two types of information.

Clearly, if Σv is large, that is, when the parameters of the model are very different across

units, φ̃i → φi and an average partial pooling estimator reproduces the average time series

estimator discussed above. On the contrary, if Σv tends to zero, φ̃i → φ and if φ when

is appropriately chosen, the average partial pooling estimator will come close to a pooled

estimator. For any intermediate value of Σ, the average partial pooling estimator will be a

linear combination of these two extremes.

The formulas assume that φ,Σv and σ2
i are known or estimable. σ2

i can be estimated,

unit by unit, on a pre-sample of data. φ and Σv can be selected in a number of ways; they

could reflect pre-sample time series information, spatial information, or aggregate informa-

tion. For instance, if one has T1 extra observations, she could employ them to estimates

φi, unit by unit. φ will measure the cross sectional mean of φi and Σv the cross sectional

dispersion. Alternatively, estimates of φ and Σ could be constructed using spatial informa-

tion. For example, when measuring the effects of fiscal surprises on output and prices in EU

countries, for which they had only 16 quarters of data, Canova and Pappa [2007] construct

a partial pooling estimator combining each country information with the average effects of

fiscal surprises on output and prices for US states. Finally, φ and Σ could be estimated

with aggregate macroeconomic data. In this case, α̃i combines unit specific and aggregate

information using the relative precision of the two types of information as weights.

6 Some experimental evidence

To quantitative measure the relative distortions that various estimators produce, I run a

small Monte Carlo exercise, using N=50, T=40, and Q=1000 replications. The data for each
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i = 1, . . . , N is generated by:

y1,i,t = a1,i + b1,iy1,i,t−1 + b2,iy2,i,t−1 + d1,ixt + e1,i,t + 0.5e2,i,t + c1,ie3,i,t (7)

y2,i,t = a2,i + b2,iy1,i,t−1 + c2,ivi,t + d2,ixt + e2,i,t + 0.5e1,i,t + c2,ie3,i,t (8)

pi,t = a3,i + b3,ipi,t−1 + c3,ie1,i,t + e3,i,t (9)

xt = 0.95 xt−1 + 0.1 ui,t (10)

zi,t = b4,ipi,t + vi,t (11)

where ei,t, ui,t, vi,t are assumed to be iid with zero mean, with unit variance, and zero co-

variance. Thus, the DGP features two interdependent autoregressive endogenous variables

yj,i,t, j = 1, 2, driven by an exogenous autoregressive variable xt, by the policy variable pi,t,

and by two variable specific disturbances. The policy variable is endogenous and responds

to the innovations in y1,i,t; the instrument zi,t is randomly related to the policy variable.

The vector of parameters φi = (ai = (a1,i, a2,t, a3,t), bi = (b1,i, b2,i, b3,i, b4,i), di = (d1,i, d2,i), ci =

(c1,i, c2,i, c3,i) is assumed to be normally distributed. In the baseline specification the mean is

φ0 = ((0, 0, 0), (0.6, 0.3, 0.9, 0.2), (1.6, 0.05), (1.0, 0.8, 0.7)) and the covariance matrix is ω ∗ I,

where ω = (ω1, ω2). ω1 applies to all the components of φi except to c1,i and d1,i for which ω2

is used instead. ω dictates the amount of dynamic heterogeneity: for ω1 = ω2 = 0 the cross-

section is dynamically homogeneous; for ω1 = 0, ω2 = 2.5 the cross section is instantaneous

heterogeneous but the lag dynamics are homogeneous; for ω1 = 0.1, ω2 = 0 it is instanta-

neously homogeneous but lagged dynamics are heterogeneous; and for ω1 = 0.1, ω2 = 1.5,

the cross-section displays both instantaneous and lagged heterogeneity. b1, b3 are selected to

match the persistence of output and government spending in the sample of US states used in

the next section, while c1 is chosen so that the cross-sectional distribution of instantaneous

output (which I take to be y1,t) response has a mean of about 0.8.

I am also interested in examining the robustness of the conclusions when the persistence

of the autoregressive process for y1,t is reduced (the mean of b1,i drops from 0.6 to 0.2); the

correlation between the policy variable and the instrument is increased (the mean of b4,i

increases from 0.2 to 0.8); cross variable feedbacks are reduced (the mean of b2,i drops from

0.3 to 0.15); and the policy variable is less endogenous (the mean of c3,i drops from 0.7 to

0.1).

I assume that the data is annual and I report results for the two-year horizon. I estimate

12



equation (1) in a number of ways. In the first (model A), there are fixed and time effects

and the equation is estimated by cross-sectional IV methods with zi,t as instrument; in the

second (model B), there are fixed and time effects, cross-sectional IV methods are employed

but the policy variable enters in first difference (pi,t − pi,t−1) and the instrument is also

differenced ((zi,t − zi,t−1)); in the third (model C) equation (1) is estimated with cross-

sectional methods allowing for fixed effects, one lag of the dependent variable, while the policy

variable and instruments remain in first difference; in the fourth (model D) the specification

and estimation are as in model C, but the instruments are lagged enough to insure that they

are uncorrelated with the composite error term.

I also estimate (4), unit by unit (Model E), compute unit specific effects using m̂i =

ĉi
∑2

h=1 b̂
h
i and take the cross-sectional average m̂ = 1

N

∑
m̂i as an estimate of the mean

effect. I also generate data for N1 = 20 additional units, estimate model (4) with this

data, unit by unit, obtain a cross-sectional mean and the dispersion matrix and use them

to construct a partial pooling estimator (Model F). For models E and F, an IV approach is

also used, with zi,t as instrument. I report the mean square error (MSE) computed as the

difference between the estimate and the true effect, on average across replications. Other

summary statistics, such as the mean absolute deviation, give similar conclusions.

Results for the baseline cases. Table 1 presents the results. With instantaneous and

lagged heterogeneity (row 1), all four cross-sectional estimators fail and the MSEs are 50

percent larger than with the alternative estimators. Because T is short, using additional

information helps in regularising average estimates. Given the dispersion of MSE estimates,

one can not reject the hypothesis that the partial pooling estimator is unbiased.

When only instantaneous heterogeneity is present (row 2), the average partial pooling es-

timator is the best and the average time series estimator is also superior to all cross-sectional

estimators. When only lagged heterogeneity is present (row 3), the ranking is reversed: the

average time series estimator is superior to the average partial pooling estimator. The four

cross-sectional estimators are roughly equivalent in MSE terms and lag behind. Finally, when

the cross section is dynamically homogeneous (row 4), the estimator obtained with model

C is best. Thus, when the cross-section is dynamically homogeneous, properly accounting

for general equilibrium interrelationship seems preferable to employing an all-purpose time
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Table 1: Two years ahead MSE
DGP Model A Model B Model C Model D Model E Model F

Baseline exercises
ω1 = 0.1, ω2 = 1.5 0.3418 0.3605 0.3359 0.3388 0.2303 0.2299

(0.1351) (0.3988) (0.1279) (0.1277) (0.1325) (0.1199)
ω1 = 0.0, ω2 = 2.5 0.1816 0.4067 0.2141 0.8879 0.18032 0.1467

(0.1183) (0.2746) (0.1842) (1.2788) (0.2242) (0.1397)
ω1 = 0.1, ω2 = 0.0 0.33472 0.34773 0.33323 0.33552 0.28133 0.28491

(0.0392) (0.3325) (0.0404) (0.0349) (0.0507) (0.0432)
ω1 = 0.0, ω2 = 0.0 0.1654 0.3591 0.1191 0.7000 0.2343 0.2366

(0.0304) (0.0758) (0.0472) (0.6444) (0.0357) (0.0249)
Additional exercises

ω1 = 0.1, ω2 = 1.5 0.0278 0.0278 0.0278 0.0280 0.0155 0.0113
b10 = 0.2 (0.0071) (0.0073) (0.0073) (0.0073) (0.0226) (0.0140)

ω1 = 0.0, ω2 = 0.0 0.0063 0.6056 0.4593 1.0795 0.0113 0.0055
b10 = 0.2 (0.0049) (0.1371) (0.1274) (1.1427) (0.0197) (0.0092)

ω1 = 0.1, ω2 = 1.5 0.3418 0.3564 0.3358 0.3386 0.2320 0.2201
b40 = 0.8 (0.1350) (0.3396) (0.1282) (0.1277) (0.2015) (0.1495)

ω1 = 0.0, ω2 = 0.0 0.1638 0.3619 0.1763 0.7059 0.2170 0.2161
b40 = 0.8 (0.0164) (0.0284) (0.0180) (0.2070) (0.0990) (0.0524)

ω1 = 0.1, ω2 = 1.5 0.2633 0.2625 0.2618 0.2640 0.1948 0.1967
b20 = 0.15 (0.1113) (0.1121) (0.1118) (0.1114) (0.1087) (0.0996)

ω1 = 0.0, ω2 = 0.0 0.1329 0.3801 0.1546 0.7063 0.1769 0.1792
b20 = 0.15 (0.0262) (0.0801) (0.0567) (0.6720) (0.0305) (0.0206)

ω1 = 0.1, ω2 = 1.5 0.3423 0.3958 0.3365 0.3391 0.2360 0.2361
b30 = 0.1 (0.1375) (1.0938) (0.1274) (0.1281) (0.1470) (0.1219)

ω1 = 0.0, ω2 = 0.0 0.1695 0.3292 0.0934 0.8648 0.2381 0.2411
b30 = 0.1 (0.0435) (0.1613) (0.0767) (1.0589) (0.0403) (0.0310)

Notes: In parenthesis is the dispersion of MSE estimates across replications. In the first row
the DGP displays instantaneous and lagged heterogeneity; the second only instanta-
neous heterogeneity; the third only lagged heterogeneity; in the fourth row the DGP
is dynamic homogeneous. The fifth and sixth rows report results when the DGP is
fully heterogeneous or homogenous cases and low persistence in the process for y1,i,t;
the seventh and eight rows results when stronger instruments are used; the ninth
and tenth rows results when there is less interdependences in the data; and the last
two rows results when the policy variable is more exogenous.
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effects, see also Ramey [2020]. With dynamic homogeneity, the two alternative estimators

perform well and are superior to two cross-sectional estimators.

Two additional points regarding the performance of cross-sectional estimators are useful.

First, model B estimator is never the best of the four cross-sectional estimators and displays

a lot of cross-replication dispersion. Its poor performance is due to the fact that, with time

effects and the policy variable in difference, misspecification is important (the policy variable

is over-differenced). Second, model D always produce worse MSE estimates than model C.

Because the only difference between the two specifications is the timing of the instruments,

there is an important trade-off between making the instruments more exogenous and reducing

their relevance for the policy variable.

Robustness The ranking of estimators does not change significantly with the specification

of the design. When there is dynamic heterogeneity, proceeding unit by unit and averaging

is preferable, and this is true regardless of whether instantaneous or lagged heterogeneity,

or both are present. When instead the cross section is dynamic homogeneous, a standard

specification with time and fixed effects is the least distorting. Quantitatively, the magni-

tudes of the MSE reported in the first part of the table are also not substantially affected

by changes in the parameters of the design.

7 Local fiscal multipliers in US states

To show that the differences found in the experimental exercise are also important in practical

situations and lead to opposite economic conclusions, I employ US state data to construct

a measure of the average local government expenditure multiplier. The data is annual and

goes from 1980 to 2017. Because the BEA currently publishes only data from 1993, I splice

the data with the one used by Canova and Pappa [2007] to have a longer time series. I

compute one- and two-years multipliers. The same patterns I present also hold when h = 3

or 4.

The alternative specifications. The first specification I estimate is similar to Chodorow-

Reich [2019]. The cumulative difference in the real gross state product between t+ h and t

is regressed on fixed and time effects, and the level of state government expenditure at t. No
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additional controls are included. Given the endogeneity of government expenditure, cross-

sectional IV estimation is performed, using contemporaneous federal government transfers as

instrument (Model A). The second specification is similar Nakamura and Steinnson [2014].

Here the percentage growth rate of the real state product between t+h and t is regressed on

fixed and time effects, and the cumulative change in state government expenditure, scaled

by gross state product at t. I use a cross-sectional approach and instrument the cumula-

tive change in the scaled expenditure variable with the cumulative change in scaled federal

government transfers (MODEL B). The third specification adds to model B a lag of the

dependent variable. Estimation is by cross-sectional IV methods (MODEL C). The fourth

specification omits the time effect and uses the lagged values of state taxes, the current oil

price growth, and the US real rate of interest as controls. Estimation is also conducted with

cross-sectional IV techniques using one lag of the cumulative change in scaled federal govern-

ment transfers as instrument. At the two years horizon, the cumulative change in the scaled

expenditure variable is instrumented with the cumulative change in scaled federal transfers

lagged two periods, to eliminate the correlation between the instruments and the composite

error term (MODEL D). Since models A-D include either a time effect or aggregate variables

supposed to capture the US cycle, the coefficients on the instrumented expenditure variable

are estimates of the average cross-sectional multipliers.

I consider two additional specifications. In both cases, the regressors are the same as in

model D. In Model E, I estimate the specification unit by unit for each h, compute a cross-

sectional mean and a measure of dispersion (MODEL E). In model F, I first estimate model D

using aggregated US data. I then assume that the coefficients of the state regressions θi have

mean equal to θUS,h and covariance matrix λh ∗ cov(θUS,h), where λh is a scalar controlling

cross-sectional heterogeneity. I set λh as a function of the horizon (λ1 = 0.02, λ2 = 0.003)

to account for the fact that, with short data, estimates at longer horizons are likely to be

poorer.

The results. Table 2 reports the results. Average cross-sectional multipliers are generally

negative and their standard errors are large. Thus, with most specifications, one cannot

reject the hypothesis that they are zero. The exception is model A. However, since the

policy regressor is the level of expenditure rather than its innovation (or a proxy for it), an
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upward bias in the estimate is likely to be present, given that local spending is positively

serially correlated. Specifications which include macroeconomic variables rather than time

effects and properly lagged instruments, produce point estimates of the average multipliers

which are generally larger in absolute value. Thus, having controls rather than time effects

and proper instruments matters.

Table 2: Average US state government expenditure multipliers
Horizon Model A Model B Model C Model D Model E Model F
1 year 0.079 -0.282 -0.251 -0.498 0.588 0.920

(0.004) (0.295) (0.286) (0.295) (0.364) (0.130)
2 years 0.223 -0.284 -0.097 -1.487 0.965 1.0207

(0.012) (0.228) (0.186) (1.898) (1.760) (0.077)

Notes: In parenthesis are the standard errors of the estimates.

Why are cross-sectional multipliers generally negative? One possibility is that dynamic

heterogeneity matters. Figure 1, which plots the cross-sectional distribution of estimates of

the AR(1) coefficient of gross state output, shows that, indeed, dynamic heterogeneity is

important. Thus, none of the cross-sectional average estimate should trusted.

The average multipliers obtained with Models E and F are positive. However, because

of the considerable heterogeneity, there is a large dispersion of individual estimates in model

E and local government spending multipliers exceeding 2 or falling below -1 are possible.

Because the sample is short, partial pooling may help to regularize both the distribution of

single unit multiplier estimates and its average. The last column of table 1 shows that, indeed,

the information helps: multiplier estimates at both horizons are larger and insignificantly

different from one.

The policy conclusions one draws depend on the methodology employed. While cross-

sectional estimates indicate that the average local spending multiplier is zero (if not negative),

a partially pooled estimate suggests that it is around one. Thus, even though local fiscal

policy is unlikely to have large private sector effects, it may help to stabilize gross state

product, when needed.
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Figure 1: Distribution of gross state output persistence parameter
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8 Conclusions

The recent practice of computing fiscal multipliers or monetary policy pass-through with

a cross-sectional methodology is justified only under stringent statistical requirements and

dynamic homogeneity in the evolution of the cross-section. When dynamic heterogeneity is

present, the estimates obtained are invalid, even when IV is employed.

With dynamic heterogeneity, and T sufficiently large, one could estimate the effect of a

policy change in time, unit by unit, and then compute a cross-sectional average. When T

is short, one can regularize the average estimate by combining unit specific and extraneous

information, coming from time series or spatial information, or aggregate data, using partial

pooling techniques.

When dynamic homogeneity is questionable, we recommend researchers to estimate the

model using time series variations, unit by unit, and plot distribution of the AR(1) coefficient

and of the instantaneous policy impact, both of which provide a sense of the importance of

dynamic heterogeneity in the data employed.

Spatial analyses can inform macroeconomists about the quality of their models and the

effects of government policies, adding a new dimension to standard time series analyses. A
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cross-sectional methodology to compute macroeconomic objects is nowadays popular, but

by no means, a free lunch. Understanding the trade-offs and minimizing the chance of

incorrect conclusions is important to make empirical research on monetary and fiscal policies

trustworthy.
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