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Collective Information Acquisition

Ran Eilat� and K�r Eliazy

September 2020

Abstract

We consider the problem faced by a group of players who need to collectively

decide what public signal to acquire, and how to share its cost, before voting on

whether to take some action, when each player is privately informed about his

state-dependent payo¤s from the action. We characterize the welfare maximizing

mechanism for information acquisition taking into account the subsequent voting

game. We identify novel distortions that arise from the information asymmetry

and from the fact that after observing the signal realization, the players vote inde-

pendently of their actions in the mechanism.

Keywords: Collective decision-making, Mechanism-design, Information-design,

Rational inattention, Public good provision.

1 Introduction

Consider a group of individuals who need to make a collective decision. For instance, the

board of directors of a �rm who need to vote on a merger or an acquisition, a committee

that needs to vote on whether to hire a candidate, or a congressional committee that votes

on a proposal for a regulation. The optimal action depends on the state of nature which

is uncertain. All group members want to take the right decision, and hence, to reduce

their uncertainty, they may wish to have some evidence or analysis presented to them

before reaching a decision. For example, the board of directors may hire a consulting �rm

to collect and analyze information about the market, the hiring committee may invest

�Economics Dept., Ben Gurion University, eilatr@bgu.ac.il.

ySchool of Economics, Tel-Aviv University and Eccles School of Business, the University of Utah,
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time in evaluating the candidate�s prior work, and the congressional committee may call

on expert witnesses. These means of reducing uncertainty are all costly in terms of e¤ort,

time and money. However, the group members may di¤er in the cost they incur when a

wrong decision is made, and furthermore, this cost may be private information. In light

of this, how should the group decide on the amount of information to acquire? How is

this decision a¤ected by the fact that the group members will base their collective action

on the acquired information?

To address these questions, we study the following model. A group of n players is

faced with a binary decision. There are two states of nature, and all players would like

the action to match the state. However, they di¤er in their disutility from a mismatch,

and this disutility is private information. Prior to making the binary decision, the players

have the opportunity to collectively acquire a costly public signal about the state. The

players then proceed in two steps. First, they have to agree on which signal to acquire

and how to distribute its cost. Second, they all observe the signal realization and take

a supermajority vote on the binary decision. The default action is the one chosen when

no signal is acquired. To explore the bounds on the social surplus that the group can

achieve, we abstract from the particular details of the bargaining over information in the

�rst step, and take a mechanism-design approach. That is, we characterize the optimal

feasible mechanism for deciding which signal to acquire, taking into account the incentive

and participation constraints as well as the second stage voting game.

Our group decision problem may be viewed as a variant of rational inattention à la

Sims (2003). In contrast to the single player case on which this literature has focused,

we study a model of collective rational inattention: A group needs to agree on which

signal to acquire, taking into account the trade-o¤ between the cost and bene�t of more

precise information. There are three key di¤erences between the problem we study and

the problem of individual rational inattention. First, the �nal decision following a signal

realization is determined by an equilibrium in a game. Second, the group members may

disagree on the bene�t from each signal. Finally, in order to aggregate the individuals�

willingness to pay for signals, the individuals need to disclose their private information.

A signal can be represented by a probability distribution over the posteriors it induces.

Following the rational inattention literature (in particular, the posterior-based approach

of Caplin, Dean and Leahy, 2020), we assume that a signal�s cost is proportional to

the expected KL-divergence between the prior belief and the induced posteriors (or the

mutual information between the state and the signal realization), which represents the

reduction in uncertainty caused by the signal. This captures situations where there is

an overwhelming amount of information available and the di¢ culty is in processing and
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understanding that information (see, e.g., Máckowiak, Matµejka and Wiederholt, 2018).

While our analysis focuses on this cost speci�cation, our methodology is applicable to

a wider range of cost functions. In particular, we show in the supplementary appendix

that our results extend to the case where a signal�s cost is proportional to the variance

of the induced posteriors.

In a standard mechanism-design problem the designer is free to choose the mapping

from reports to outcomes. However, this is not the case in our environment in which the

designer cannot control the outcome of the second stage voting game. To overcome this

di¢ culty, we introduce an auxiliary direct revelation mechanism in which the players

report their types, the planner decides on the signal and then votes on their behalf

according to their reports (in other words, it is as if the players commit to vote according

to their reported types). We show that the optimal auxiliary mechanism satis�es a

property we call �non-wastefulness�. This property means that any acquired signal must

be instrumental for decision-making: It must have at least one realized posterior for

which the collective action is di¤erent than if no signal was acquired. We solve for the

optimal auxiliary mechanism and then show that its solution coincides with the solution

of the optimal �actual�mechanism (which we refer to as the �second-best�) in which the

designer does not control the players�actions in the ensuing voting game.

To solve for the optimal auxiliary mechanism we �rst establish that there is no loss

of generality in restricting attention to signals that induce only two posteriors on one of

the states: A high posterior, which is weakly above the prior, and a low posterior, which

is weakly below the prior, where the expected posterior must equal the prior. Thus, the

design problem reduces to choosing the mapping from reported types to the following

variables: The high posterior rH , the probability q of the high posterior being realized

and each player�s share in the cost. We show that the design problem can be written as a

variant of a public-good provision problem (where the signal is the public good), with the

new twist that the level of the public good a¤ects actions taken in a subsequent game.

In this reformulation of our design problem, q plays the same role as the allocation rule

in a standard public-good problem in the sense that a player reports truthfully only if

the interim expected probability q is non-decreasing in his type.

In characterizing the optimal mechanism, the crux of the proof is the argument that

establishes the monotonicity of the interim expected q, which is necessary for incentive-

compatibility. The di¢ culty arises from the fact that for some type realizations, the

optimal signal is determined by the binding non-wastefulness constraint. It turns out

that in the optimal auxiliary mechanism, q itself (and not only its interim-expected

value) is monotonic in the types. Consequently, the truthful equilibrium in the auxiliary
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mechanism can be attained in dominant strategies. This allows us to show that the

solution of the optimal auxiliary mechanism coincides with the second-best mechanism.

The second-best mechanism exhibits the following features. In one subset of the type

space, no signal is acquired. In a second subset, the acquired signal is at its optimal

interior solution. In a third subset of the type space, non-wastefulness is a binding

constraint in the sense that the high posterior is at its minimal level that induces the

non-default action in the voting game. This last subset illustrates the distortion caused

by the presence of a second stage voting game, which is outside the control of the designer.

In comparison to the solution under common knowledge of types (the ��rst-best�

solution), there is under-provision of information in the sense that whenever a signal

is not acquired in the �rst-best solution, it is not acquired in the second-best, but the

converse is not true. A second distortion that occurs in the second-best mechanism is

that for any pro�le of types, the probability q of the high posterior is lower, while the

high posterior rH is higher. This observation also means that the distortion due to the

second-stage voting game - namely, the non-wastefulness constraint - is not exacerbated

in the second-best mechanism: It is never the case that this constraint is binding in the

auxiliary mechanism but not in the �rst-best.

Our analysis combines information-design with mechanism-design in the sense that

the designer needs to elicit the players�private types in order to implement the optimal

signal structure. In a linear environment with a single player, Kolotilin et. al (2017)

showed that the optimal signal can be implemented without relying on the player�s private

information. However, it is well known that in environments with multiple interacting

players (as in Bergemann and Morris, 2013, Alonso and Câmara, 2016, Taneva, 2019,

and Mathevet, Perego, and Taneva, 2020) ignoring the players�private information is

suboptimal.

Several recent works have addressed the problem of designing information for a group

of voters. Notable papers includeWang (2013), Schnakenberg (2015), Alonso and Câmara

(2016), Bardhi and Guo (2018), Chan et al. (2019) and Arieli and Babichenko (2019).

These studies characterize the signal that maximizes the probability that in equilibrium

voters vote on the outcome favorable to the sender. They di¤er in whether the designed

signals are private or public, and in the class of voting rules that is considered. There

are two key di¤erences between these papers and ours. First, in these papers the voters�

state-dependent utilities are commonly known (i.e., voters have no private information),

and hence, in order to design the optimal signal there is no need to elicit information from

the voters. Second, in these papers signals are costless, and the problem is to �nd the

signal that induces voters to coordinate on an equilibrium which is best for the sender.

4



The question we study is also related to the problem of designing voting rules that

incentivize the voters to acquire costly information. Persico (2003) characterizes the

optimal size and voting threshold that e¢ ciently aggregates information when each voter

needs to incur a cost to acquire a private binary signal. Gershkov and Szentes (2009)

extend the analysis to a broader class of voting mechanisms. Our approach di¤ers in

that voters�willingness-to-pay for information is private and the signal they acquire is

public. We �x the voting rule and look for the optimal signal, taking into account that

this signal depends on the voters�private information, and taking into account that the

signal realization a¤ects voting behavior.

An alternative approach to the study of collective information acquisition is analyzed

by Chan et al. (2017). They consider a dynamic model where in each point in time

a group receives an exogenous signal and needs to vote on whether to stop and vote

on a binary action, or continue and receive additional signals. Unlike us, they study a

stopping problem in which the signal is exogenously given and the players�preferences

are commonly known.1

The remainder of the paper is organized as follows. Section 2 presents the model.

The mechanism-design problem is presented and analyzed in Section 3. We begin by

describing the optimization problem that stems from the optimal auxiliary mechanism

in Section 3.1 and characterize the solution in Section 3.2. In Section 3.3 we show that

the optimal auxiliary mechanism coincides with the second-best, which we compare with

the �rst-best solution in Section 3.4. Concluding remarks are presented in Section 4. All

proofs are relegated to the appendix.

2 Model

There are n players who have to jointly agree on a decision a 2 A = f0; 1g. Following
the literature on strategic voting (most notably, Feddersen and Pesendorfer, 1998), we

assume that each player�s payo¤, ui, depends on the joint action, on his type �i 2 � and
on the state of the world ! 2 
 = f0; 1g as follows:

ui(a; !; �i) =

8><>:
1 if a = !

�i if a = 1; ! = 0

1� �i if a = 0; ! = 1

1For additional related works that take a collective search approach to sequential information gath-
ering by a group, see the references in Chan et al. (2017).
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We assume that the players do not observe the realization of ! and have the common

prior belief that the probability that ! = 1 is p. In addition, each player i privately and

independently draws a type �i from a common distribution F on the interval [0; 1� p]
(we explain below why we assume that �i < 1� p). We assume that F admits a density
f that is strictly positive, continuously di¤erentiable and bounded over [0; 1� p]. Let
v (�i) � �i � 1�F (�i)

f(�i)
denote the virtual valuation of the player�s type �i. We assume that

F is regular, i.e. v (�i) is increasing in �i.

Our speci�cation of the utility function ui implies that player i weakly prefers the

joint decision a = 1 if and only if, given any information he has, his posterior belief on

! = 1 is at least 1� �i (the reason is that if the posterior belief on ! = 1 is r, then the
action a = 1 yields an expected payo¤ of r � 1 + (1� r) � �i while the action a = 0 yields
an expected payo¤ of r � (1� �i) + (1� r) � 1). From our assumption that p < 1� �i for
every �i it follows that without further information on the state each player prefers the

action a = 0.

Before making the joint decision (in a manner described below), the players have

the opportunity to acquire a public signal on the state !. A signal can be represented

by a probability distribution over posterior beliefs on ! = 1, such that the expected

posterior belief on ! = 1 equals the prior p. To simplify the exposition we assume that

the distribution is discrete, with countably many possible realizations. We denote by

qj the probability that the posterior belief on the state ! = 1 is rj and by J the total

number of posteriors (where J can be in�nite). We then have:X
j2f1;:::;Jg

qj � rj = p. (1)

where 0 < qj � 1 and 0 � rj � 1 for all j 2 f1; :::; Jg, and
P

j2f1;:::;Jg qj = 1.

The players can decide to acquire no information. Note that this option is equivalent

to choosing the degenerate signal that puts all the probability mass on a single posterior

belief which is equal to the prior p (i.e. J = 1, q1 = 1 and r1 = p).

Signals are costly. The cost of acquiring a signal f(qj; rj)gJj=1 is proportional to the
expected KL-divergence (or relative entropy) between the posteriors and the prior:2

c
�
f(qj; rj)gJj=1

�
= � �

PJ
j=1qjDKL(rj; p) (2)

2While the details of our results depend on the particular form of this cost function, the qualitative
features of our characterization are not limited to it. In the supplementary appendix we show that
our results extend to an alternative cost function that is proportional to the variance of the induced
posteriors on the high state.
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where � is some positive constant, and:3

DKL(r; r
0) � r log r

r0
+ (1� r) log 1� r

1� r0 . (3)

The cost needs to be shared among the players. We denote by ti player i�s share in

covering the cost of the signal so that
Pn

i=1ti = c
�
f(qj; rj)gJj=1

�
. The net payo¤ of type

�i from action a in state ! is therefore given by ui(a; !; �i)� ti.
Player i�s share in the signal�s cost ti can be interpreted either as his share in the

collective e¤ort of processing the acquired information (e.g., the amount of documents

he needs to summarize, or the time involved in organizing the data), or as his share

in the monetary cost of the signal (e.g., when di¤erent departments in an organization

use their budgets to pitch in for the cost of hiring a consultant). As is common in the

examples described in the introduction, we assume the group members cannot make any

monetary transfers that are conditional on their votes. This can follow from institutional

constraints that prohibit such vote buying, or because the votes are secret, or because

such monetary arrangements cannot be enforced.

As mentioned in the Introduction, the problem of deciding on which signal to acquire

is akin to the problem of choosing the optimal level of a non-excludable public good.

Following this literature (see, e.g. Mailath and Postlewaite, 1990, and Hellwig, 2013) we

assume that participation is voluntary in the sense that each player can veto the public

signal from being provided at all. Alternatively, one can view a player who refuses to

participate as one who leaves the group and does not bene�t from the collective action.

In that case we normalize the outside option�s payo¤ to zero.

After the players agree on the signal to acquire, they all observe its realization. The

players then vote on the collective decision using an m�majority rule: the action a = 1
is chosen if, and only if, at least m players vote for this option. Otherwise, the default

action a = 0 is chosen. We assume that the players do not choose weakly dominated

strategies. Thus, player i votes for a = 1 if and only if the realized posterior belief that

the state is ! = 1 is above 1 � �i. Consequently, the alternative a = 1 is chosen if and
only if the realized posterior belief that the state is ! = 1 is above 1 � �(n�m+1), where
�(k) is the kth smallest element in �. For example, if choosing the non-default action a = 1

requires unanimity, i.e. m = n, then for this action to be chosen the realized posterior

belief has to be larger than 1 � �(1), where �(1) is the smallest element in �. Note that,

3Since there are only two states, we represent a distribution over the states by the probability on
! = 1. Thus, the divergence between two distributions can be written as a function of the probabilities
that each distribution puts on the state ! = 1.
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Figure 1: Feasible signals

given � = f�1; :::; �ng, a signal induces a probability distribution over the outcomes of the
vote.

The players� objective is to choose the signal that maximizes the ex-ante surplus,

taking into account the voting stage that takes place after the signal is realized. Our

�rst observation is that because there are only two available collective actions, signals

that induce only two posterior beliefs on ! = 1 (one on either side of the prior belief)

dominate signals with more posterior beliefs on ! = 1:

Lemma 1 For any signal that induces more than two posterior beliefs, there exists a
signal that induces only two posterior beliefs, generates the same distribution over actions

for each realization of state and types and has a strictly lower cost.

This result is straightforward in standard information design problems where signals

are costless. In such settings all that matters is the distribution over the actions in each

state, and this distribution can be replicated by signals that induce two posterior beliefs

when there are only two actions. In our setup, signals are costly and the cost depends

on the entire distribution of posteriors. However, the convexity of our cost function

implies that the optimal mechanism does not need to employ signals with more than two

posteriors (for an analogous result in a model of individual rational inattention see, e.g.,

Lemma 1 in Matµejka and McKay, 2015).

In light of this result, we restrict attention to signals that induce at most two posterior

beliefs. Thus, a signal can be represented by a pair (q; rH), where q 2 [0; 1] is the

probability that the posterior belief on ! = 1 is rH � p. Equation (1) then implies

that with probability 1 � q the other posterior belief induced by the signal is rL �
(p � qrH)=(1 � q) � p. Thus, when the realized posterior belief is rL all players agree
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that the optimal action is a = 0. When the realized posterior belief is rH there are m

players who prefer a = 1 over a = 0 if and only if rH � 1� �(n�m+1). Notice that, since
rL � 0, then it must be the case that p � qrH . Figure (1) illustrates the set of all possible
signals, depicted on the plane of q and rH .

Choosing q = 0 or q = 1 is equivalent to purchasing no signal (the cost in this case is

0, by Equation 2). We say that a signal is informative if q 2 (0; 1). We say that a signal
is instrumental for a type pro�le � if at least for one of the signal�s realizations there

is an m�majority for the non-default action a = 1. This means that a signal (q; rH) is
instrumental for � if rH � 1� �(n�m+1).

3 A mechanism for information acquisition

By the revelation principle there is no loss of generality in restricting attention to direct

revelation mechanisms in the �rst stage of the players�interaction, i.e., when they decide

on which signal to acquire. We de�ne an actual direct mechanism to be a vector of

functions hq; rH ; t1; :::; tni, where q : �n ! [0; 1] ; rH : �
n ! [p; 1] and ti : �n ! R for

every i 2 f1; ::; ng. Thus, following a pro�le of reports �̂ = (�̂1; :::; �̂n), with probability
q(�̂) the players end up with the posterior probability rH(�̂) on the state ! = 1 and with

probability 1�q(�̂) they end up with the posterior probability rL(�̂) on that state, where
rL(�̂) � (p� q(�̂) � rH(�̂))=(1� q(�̂)). In addition, each player i pays his share ti(�̂).
In the actual mechanism the designer cannot directly control the outcome of the

second stage voting game. Thus, a player who misreports his true type to the mechanism

(say, in order to reduce his share in the cost) retains his ability to vote according to his true

preferences in the second stage. As a step towards characterizing the optimal mechanism,

we proceed by considering auxiliary (direct) mechanisms in which, in addition to choosing

which signal to acquire and how to distribute the costs, the mechanism also votes in the

name of the players in the second stage. Thus, an auxiliary mechanism e¤ectively chooses

the collective action a = 1 whenever rH > 1 � �(n�m+1), and the collective action a = 0
otherwise. In other words, we assume that the players commit to vote according to their

reported types and not their true types. Our focus on direct auxiliary mechanisms follows

from the revelation principle which holds in this environment.

Formally, an auxiliary mechanism is an actual mechanism augmented by two decision

functions, aH(�̂) and aL(�̂), which are the collective actions chosen by the mechanism
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when the posterior beliefs rH and rL are realized. We then have:

aH(�̂) =

(
1 rH(�̂) > 1� �̂(n�m+1)

0 otherwise
(4)

aL(�̂) = 0 (5)

Our next result establishes that the surplus-maximizing auxiliary mechanism does at

least as well as the surplus-maximizing actual mechanism:

Proposition 1 The highest expected surplus achievable by an auxiliary mechanism is

weakly higher than the highest expected surplus achievable by an actual mechanism.

This result is not as straightforward as it might seem, because it is not immediately

clear that restricting the mechanism to vote according to the �rst stage reports does

not limit the set of implementable outcomes. Nevertheless, in the proof we show that

any equilibrium play path in the actual mechanism and the ensuing voting game can be

replicated by the auxiliary mechanism. The reason is that deviations from truth-telling

in the auxiliary mechanism are more costly than in the actual mechanism.

In light of Proposition 1 we begin by looking for the auxiliary mechanism that attains

the highest social surplus. We will then show that the equilibrium that attains this

surplus can be replicated by the actual mechanism and the ensuing voting game.

Fix a player i and suppose that the remaining players report their types truthfully.

The expected utility of player i of type �i who reports �̂i is then given by:

V
�
�i; �̂i

�
= E��i

h
q(�̂i; ��i) � [rH(�̂i; ��i) � u(aH(�̂i; ��i); 1; �i) + (1� rH(�̂i; ��i)) � u(aH(�̂i; ��i); 0; �i)]

+ (1� q(�̂i; ��i)) � [rL(�̂i; ��i) � u (0; 1; �i) + (1� rL(�̂i; ��i)) � u (0; 0; �i)]

�ti(�̂i; ��i)
i

(6)

where ��i 2 �n�1 represents the vector of true types of all players other than i, and E��i
is evaluated according to the probability distribution of the true types ��i.

Since we are interested in the auxiliary mechanism that maximizes the total surplus,

it is useful to represent the players�payo¤s as the expected gain from information (rather

than the utility per-se) compared to the case in which the players do not participate in

the mechanism and no information is acquired. Note that in the latter case, the default

action a = 0 is chosen and type �i�s payo¤ is p � (1� �i) + (1� p). Thus, the gain from
information of type �i of player i who reports �̂i is given by:

U(�i; �̂i) = V (�i; �̂i)� (p � (1� �i) + (1� p)) (7)
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To simplify the exposition, when all players report truthfully, we use the shorter notation

U (�i) � U(�i; �i).
The objective of the mechanism is to maximize the total ex-ante expected gain from

signals under truthful reporting. Since the players�preferences are quasi linear, this is

equivalent to maximizing the sum:

nX
i=1

E�iU (�i) . (OBJ)

The auxiliary mechanism has to be ex-post budget balanced: the cost of any signal

that is acquired has to be fully covered by the players. In what follows we slightly weaken

this requirement and allow the auxiliary mechanism to be balanced only ex-ante, so that

the cost of the acquired signal has to be covered only on average (that is, we allow the

mechanism to have a budget de�cit in some cases, so long as on average the costs are

fully covered):

E�
nX
i=1

ti (�) = E� [c (q (�) ; rH (�))] (BB)

However, as is well known (see, e.g., Borgers, 2015, p.47), if a mechanism is ex-ante

budget balanced, one can modify the transfers to satisfy ex-post budget balanceness

without a¤ecting the interim expected transfers or the incentives for truthful reporting.

That is, if a mechanism is incentive-compatible, individually rational and ex-ante budget

balanced, then there is another mechanism that achieves the same allocation of types to

signals, and which is also incentive-compatible and individually rational but is ex-post

budget balanced. In light of this, we will focus on ex-ante budget-balance in the analysis

that follows.

The players cannot be forced to participate in the mechanism. Since no information

is acquired when a player opts out, the gain from participation must be non-negative for

any type �i of any player i:

U (�i) � 0. (IR)

Finally, to guarantee that truthtelling is indeed an equilibrium, the following incentive

compatibility condition must hold:

U (�i) � U(�i; �̂i) (IC)

for any type �i of any player i, and for any report �̂i.

In sum, we look for an auxiliary mechanism that maximizes (OBJ) subject to the

constraints (IR), (IC) and (BB).
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3.1 The optimization problem

Fix a player i and suppose that all other players �i report truthfully ��i 2 �n�1. If
player i�s report is such that rH(�̂) � 1 � �̂(n�m+1), where �̂ = (�̂i; ��i), then player

i�s utility is given by q(�̂) � (�i � (1 � rH(�̂))) � ti(�̂).4 If player i�s report is such that
rH(�̂) � 1� �̂(n�m+1) then no signal is acquired and player i�s utility is �ti(�̂). Thus, we
can rewrite the utility of type �i of player i who reports �̂i when all other players report

truthfully (Equation 7) as follows:

U(�i; �̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q
�
�̂i; ��i

�
�
h
�i �

�
1� rH

�
�̂i; ��i

��i
dF n�1 (��i)

�
Z
��i

ti(�̂i; ��i)dF
n�1 (��i)

To express U(�i; �̂i) more compactly, we introduce the following notations. Given a

report �̂i, denote by Q(�̂i) the expected probability that the auxiliary mechanism chooses

the action a = 1. Denote byM(�̂i) the expected probability that the auxiliary mechanism

chooses a = 1 but the state is ! = 0 (this is the probability that the auxiliary mechanism

deviates from the default action when it shouldn�t). Denote by Ti(�̂i) the expected

payment of player i. Thus:

Q(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i)dF
n�1 (��i)

M(�̂i) =

Z
��ijrH(�̂i;��i)�1�(�̂i;��i)(n�m+1)

q(�̂i; ��i) �
�
1� rH(�̂i; ��i)

�
dF n�1 (��i)

Ti(�̂i) =

Z
��i

ti(�̂i; ��i)dF
n�1 (��i)

The expected utility of player i with type �i who reports �̂i is then given by:

U
�
�i; �̂i

�
= Q(�̂i) � �i �M(�̂i)� Ti(�̂i) (8)

Note that our speci�cation of the players�utility has the convenient feature that it is as

if a player gets a payo¤ of �i every time the collective action 1 is chosen, but he pays a

penalty (M(�̂i)) that is equal to the probability that this is the wrong collective action.

4To see this, plug in equations (4), (5) and (6) into equation (7) and simplify.
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The designer�s objective function (OBJ) can therefore be written as

nX
i=1

Z 1�p

0

[Q (�i) � �i �M (�i)� Ti (�i)] dF (�i) (9)

while incentive compatibility (i.e., Equation IC) requires

Q(�i) � �i �M(�i)� Ti(�i) � Q(�̂i) � �i �M(�̂i)� Ti(�̂i)

for all �̂i and �i and every player i. Note that U (�i) is the upper envelope of a family

of a¢ ne functions in �i, and is therefore convex. If follows that an auxiliary mechanism

satis�es incentive compatibility if and only if Q(�i) is non-decreasing and U 0 (�i) = Q (�i)

(see, e.g. Krishna, 2010, p. 64). Thus U (�i) =
R �
0
Q (x) dx�M(0)� Ti(0) and therefore

Ti(�i) = Q(�i) � �i �M(�i)�
Z �

0

Q (x) dx+M(0) + Ti(0). (10)

Player i�s ex-ante expected utility is given by
R 1�p
0

U(�i)dF (�i). Applying integration by

parts we obtain:Z 1�p

0

U(�i)dF (�i) =

Z 1�p

0

Q(�i)[
1� F (�i)
f(�i)

]dF (�i)� Ti(0)�M(0)

Plugging in U (�i) = Q(�i) � �i �M(�i)� Ti(�i) and rearranging yields:Z 1�p

0

Ti(�i)dF (�i) = Ti(0) +M(0) +

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i) (11)

where v(�i) is the virtual valuation of type �i.

Substituting Equation (11) into Equation (9) yields that the designer�s problem is to

maximize
nX
i=1

Z 1�p

0

�
1� F (�i)
f(�i)

Q(�i)

�
dF (�i)�

nX
i=1

Ti(0)�
nX
i=1

M(0) (12)

subject to the following ex-ante budget balance constraint (which is obtained by plugging

Equation 11 into Equation BB):Z
�

c(q(�); rH(�))dF
n(�) =

nX
i=1

Ti(0) +

nX
i=1

M(0) +

nX
i=1

Z 1�p

0

[v(�i)Q(�i)�M(�i)] dF (�i)

(13)

where individual rationality requires �M(0)�Ti(0) � 0 for every player i, and therefore
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0 � �
Pn

i=1 [Ti(0) +M(0)]. Since the constants T1 (0) ; : : : ; Tn (0) enter the objective

function and the constraint only through the aggregate
Pn

i=1 Ti(0), we can assume that

they are all equal. We therefore denote T (0) = T1 (0) = : : : = Tn (0).

We use the ex-ante budget-balance constraint to substitute for�
Pn

i=1 Ti(0)�
Pn

i=1M(0)

in Equation (12) and rewrite the design problem as �nding q(�) and rH (�) that maximize

the aggregate surplus,

nX
i=1

Z 1�p

0

[�i �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�), (14)

subject to the following constraints: (i) Q(�i) is monotone and (ii) the aggregate virtual

surplus is non-negative,

nX
i=1

Z 1�p

0

[v(�i) �Q(�i)�M(�i)] dF (�i)�
Z
�

c(q(�); rH(�))dF
n(�) � 0 (15)

The above inequality is a necessary condition for individual rationality and ex-ante

budget balance. To show that this is also a su¢ cient condition, �rst denote by q� and

r�H the solution to the above optimization problem. Let 	
� denote the aggregate virtual

surplus (the left-hand side of Equation 15) evaluated at q� and r�H . Second, compute

M� (0) using the q� and r�H . Third, set T
� (0) = �M�(0)� 1

n
	�. This guarantees ex-ante

budget balance according to Equation (13). Since the aggregate virtual surplus 	� is non-

negative by Equation (15) then individual rationality is satis�ed (i.e. �T � (0)�M�(0) �
0). Finally, to complete the description of the mechanism it remains to de�ne the transfer

functions (t�i (�))
n
i=1 such that for each player i; E��i(t�i (�i; ��i)) = T �i (�i). One way to do

this is to simply let t�i (�i; ��i) = T
�
i (�i).

We have therefore transformed the design problem of acquiring the (ex-ante) welfare

maximizing signal and sharing its cost into a problem of choosing a welfare maximizing

public good and sharing its cost but with the following �twists�. First, the public good

is multi-dimensional: it is a distribution over posterior beliefs, which can be summarized

by a pair of numbers, the high posterior rH and the probability q of realizing it: Second,

unlike a standard problem of public good provision, the characteristics of the public good

a¤ect the players�actions in a game that is played after the good is provided. Third,

both in our environment and in a standard public good set-up, the marginal utility from

the public good is increasing in types. In the latter case, the cost of the optimal level

of the public good typically also increases in the types. However, this is not true in our

set-up: Even when types are known, the cost of the optimal signal is not monotonic in
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the types.5

3.2 Characterization

Assigning a type pro�le � to an informative signal that is not instrumental is wasteful:

The players�incur a cost, but do not change their behavior relative to having no signal.

We therefore introduce the following property:

De�nition 1 (Non-wastefulness) An auxiliary mechanism is non-wasteful if almost

every informative signal that it acquires is instrumental, i.e., q (�) 2 (0; 1) implies

rH (�) � 1� �(n�m+1) for almost all �.

We then have that:

Lemma 2 The optimal auxiliary mechanism is non-wasteful.

Note the e¤ect of the supermajority requirement on the distortion of the signal: In

one extreme, if one vote for a = 1 is enough to make that decision, then non-wastefulness

is never binding; in the other extreme, if n is large and a unanimous decision is required,

then rH will be very high such that any information may be too costly.

By Lemma 2, an optimal auxiliary mechanism solves the constrained optimization

problem of the previous subsection subject to an additional constraint that the mechanism

is non-wasteful. Since q (�) = 0 whenever rH (�) < 1 � �(n�m+1), we can simplify the
expressions of Q(�i) and M(�i) as follows:

Q(�i) =

Z
��i

q(�i; ��i)dF
n�1 (��i) (16)

M(�i) =

Z
��i

(1� rH(�i; ��i)) � q(�i; ��i)dF n�1 (��i) (17)

5For example, suppose that n = 20, � = 3, p = 0:4 and that the players�types are commonly known.
In Section 3.4 we explain how the optimal signal is determined in this case. It is easy to verify that when
all players�types are 0:4 then the cost of the optimal signal is ~1:45, when all players�types are 0:55
then the cost of the optimal signal is ~1:58 and when all players�types are 0:6 the cost of the optimal
signal is ~1:56 (regardless of the required supermajority). This non-monotonicity is not an artifact of
our particular cost speci�cation since it also arises when the cost is equal to the variance of the posterior
beliefs.
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Consider the Lagrangian associated with maximizing Equation (14) under the con-

straint (15):6

L =
Z
�

�
w (�; �) � q(�)� (1� rH(�)) � q(�)�

1

n
� c(q(�); rH(�))

�
dF n(�) (18)

where

w(�; �) =
1

n

nX
i=1

�
1

1 + �
�i +

�

1 + �
v(�i)

�
.

The characterization of the optimal solution is given in the following proposition.

Proposition 2 There exists �� > 0 for which the optimal auxiliary mechanism is char-

acterized as follows. First,7

r�H (�; �
�) = max

�
e
n
� � en�w(�;��)

e
n
� � 1

; 1� �(n�m+1)
�

(19)

Second, r�L (�; �
�) is determined such that

DKL(r
�
H (�; �

�) ; r�L (�; �
�)) =

n

�
[r�H (�; �

�)� (1� w (�; ��))] (20)

provided a solution exists and is in (0; p); otherwise, r�L (�; �
�) = p:

Third,

q� (�; ��) =
p� r�L (�; ��)

r�H (�; �
�)� r�L (�; ��)

(21)

Finally, both r�H (�; �
�) and r�L (�; �

�) are decreasing in each player�s type, and q� (�; ��)

is increasing in each player�s type.

At an interior solution in which r�H (�; �
�) > 1 � �(n�m+1) (i.e., non-wastefulness has

slack), the low posterior is given by

r�L (�; �
�) = min

�
e
n
�
(1�w(�;��)) � 1
e
n
� � 1

; p

�
.

6To obtain the Lagrangian L (�), write the aggregate surplus given by Equation (14) plus � times
the aggregate virtual surplus given by Equation (15). Now plug in the expressions for Q(�i) and M(�i)
given by Equations (16) and (17) and divide by (1 + �) � n.

7We do not restrict rH(�) to be at most one if no signal is acquired (i.e., if q(�) = 0). Indeed,
r�H(�) > 1 whenever w(�; �) < 0: But in this case, r

�
L(�) = p, and hence, q(�) = 0. Also notice that since

�i � 1� p, it follows that 1� �(n�m+1) � p:
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Our proof proceed as follows. First, for any � � 0 and �; we �nd q�(�; �) and r�H(�; �)
that maximize L under the non-wastefulness constraint. Then, we show that the solution
(q�(�; �); r�H(�; �)) is unique for every � and � and satis�es that q

�(�; �) is increasing in

any �i and that r�H (�; �) and r
�
L (�; �) are decreasing in any �i, for any � � 0. Finally, we

establish the existence of some �� > 0 for which (q�(�; ��); r�H(�; �
�)) is a feasible solution

for all �, which guarantees that q� and r�H are indeed optimal.

One can view the signal purchased by the mechanism as a binary classi�cation test

of whether departing from the default action is desirable. Under this view, the ratio
rH
1�rH is proportional to the positive likelihood ratio (PLR), that is, conditional on the

test recommending the non-default action, PLR is the ratio between the probability that

departing from the default is the right thing to do, to the probability that this is a mistake.

Similarly, rL
1�rL is proportional to the negative likelihood ratio (NLR), that is, conditional

on the test recommending the default action, NLR is the ratio between the probability

that choosing the default is the right thing to do, to the probability that this is a mistake.

Our results show that when types are higher, the two likelihood ratios are lower. Thus,

the �quality�of the recommendation to depart from the default action decreases with

the types, but the quality of the recommendation to take the default action increases.

However, the ratio between the two likelihood ratios, also known as the diagnostic odds

ratio is constant at an interior solution and equal to en=�. In the statistical literature

(mainly in the context of medical experiments) this measure is sometimes considered as

a measure of the e¤ectiveness of the classi�cation test (See, e.g. Glas et al., 2003).

Note that Proposition 2 established that q�(�) is increasing in each of its components.

An immediate corollary of this is the following (see Mookherjee and Reichelstein, 1992):

Corollary 1 There exists an optimal auxiliary mechanism in which truthtelling is a dom-
inant strategy equilibrium.

3.3 From the auxiliary mechanism to the actual mechanism

Up to now we analyzed an auxiliary mechanism in which the players commit to vote

for the collective action according to their reported types. When a player considers

misreporting in the auxiliary mechanism he takes into account that in the subsequent

voting game, his vote will not be cast according to his true preferences. For instance,

if a player reports a type higher than his true one, any signal that is acquired will be

non-wasteful relative to his report. If, in addition, the high posterior rH realizes, then

the mechanism votes for a = 1 on his behalf even though according to his true type the

player would have preferred to vote for a = 0. However, in the actual mechanism that

17



�2

0

1� p

No Signal

Non-Wastefulness is binding

Interior solution

0 1� p�1

�W1

�;1

Figure 2: Projection of the second-best mechanism�s regions on the type space

will be run, a player is free to vote according to his true preferences. In that case, a

player may have an incentive to a¤ect the choice of signal, knowing that he can vote in

favour of the default action in the ensuing voting game.

Consider now the �actual�mechanism, which di¤ers from the auxiliary mechanism

in that the players�reports a¤ect only the signal acquisition but have no e¤ect on the

ensuing voting game. The question is whether the mapping from reports to signals of the

optimal auxiliary mechanism, q� and r�H , remain incentive-compatible, budget-balanced

and individually rational when players vote on the collective action according to their

true preferences?

Proposition 3 The optimal actual mechanism is characterized by Equations (19)-(21).

We refer to the optimal actual mechanism as the �second-best�. Its characterization

highlights three cases. First, there may be realizations of � in which no signal is pur-

chased, i.e. q� (�) = 0. Second, there are realizations of � for which the non-wastefulness

constraint is binding, i.e. r�H (�) = 1 � �(n�m+1). Finally, for other realizations, the sig-
nal that is purchased is given by the interior solution to the optimization problem, i.e.

r�H (�) =
e
n
� �e

n
�w(�;�

�)

e
n
��1

.

To illustrate the projection of these three cases on the players�type space, we consider

two players who need a unanimous vote in order to depart from the status-quo and choose

a = 1 (i.e., m = n = 2). We also place additional structure on F by assuming that the

inverse failure rate (1 � F (�i))=f(�i) is concave.8 Figure 2 shows how the above three
cases map onto three regions in (�1; �2) space. By symmetry, it is su¢ cient to consider

only the type realizations �1 � �2, i.e., only the �top-left�triangle. The other triangle is a
mirror image. The following observation summarizes the key features of the second-best

mapping from type realizations to signals.

8For example, the uniform and exponential distributions satisfy this property.
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Proposition 4 Consider the type realizations (�1; �2) for which �1 � �2. In the second-
best mechanism, for any type �2 there exist two unique cuto¤s, �;1 (�2) and �

W
1 (�2), such

that:

(i) A signal is acquired if and only if �1 > �;1 (�2),

(ii) The cuto¤ �;1 (�2) is decreasing in �2,

(iii) If a signal is acquired and �1 < �W1 (�2) then the non-wastefulness constraint is

binding, but if �1 > �W1 (�2) then the constraint holds with slack, and

(iv) The cuto¤ �W1 (�2) is increasing in �2.

The characterization for the case that �1 > �2 is symmetric.

3.4 Comparison with the e¢ cient mechanism

To better understand the distortions that are introduced by the players� private in-

formation, it is instructive to compare the optimal mechanism to the ex-ante e¢ cient

acquisition of information when the players�types are known and the only constraint is

that they collectively cover the cost of the signal. We maintain the assumption that the

players are free to vote on their desired action after they observe the signal realization.

An e¢ cient acquisition rule maps every pro�le of types � to a signal qe (�), reH (�), r
e
L (�)

that maximizes the objective function that is given by (OBJ) above. Obviously, it cannot

be e¢ cient to purchase a signal that leads to the same outcome as acquiring no signal at

all. Hence, an e¢ cient rule must also be non-wasteful.

From the proof of Proposition 2 it follows that the e¢ cient acquisition rule is obtained

by simply replacing the termw(�; ��) in equations (19)-(21) (which is due to the incentive-

compatibility constraint) with w(�; 0); which is the average (across players) type realiza-

tion. Since w(�; �) is increasing in each �i, decreasing in � and w((1�p; :::; 1�p); �) = 1�p
for any �, it follows that

w (�; ��) < w (�; 0) � w ((1� p; :::; 1� p); 0) = 1� p

Since w(�; ��) is a continuous function in each �i, there exists �0 � � (i.e., �0i � �i for all i,
with at least one strict inequality) such that w (�0; ��) = w (�; 0). This has the following

implications.

Observation 1. If � is such that in both the �rst-best and second-best mechanisms a
signal is acquired and the non-wastefulness constraint has slack, then reL (�) < r�L (�),

reH (�) < r
�
H (�) and q

e (�) > q� (�).
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Since q(�) is the probability of taking the non-default action, this observation means

that in the second-best this action will be taken with a lower probability. However, since

reH(�) < r�H(�) then whenever the non-default action is taken in the second-best, it is

taken with greater con�dence. On the other hand, since reL(�) < r�L(�) then whenever

the default action is taken in the second-best, it is taken with lower con�dence.

To see why this observation is true, note that when the posterior probabilities are all

interior, the fact that w(�; ��) < w(�; 0) implies that both the low and high posteriors in

the e¢ cient mechanism are lower than the corresponding posteriors in the second-best.

In addition, since w(�0; ��) = w(�; 0) then q� (�0) = qe (�). By the monotonicity of q� in

each �i; we have that q� (�) < q� (�0) and therefore qe (�) > q� (�). This last argument

also implies the following:

Observation 2. If qe(�) = 0 then q�(�) = 0; but the converse is not true.

Put di¤erently, there are realizations of � for which the e¢ cient rule acquires a signal

but the second-best rule does not. Hence, the fact that players do not observe each

other�s type can lead to under-provision of information for the collective decision.

Observation 3. Whenever non-wastefulness is binding in the second-best mechanism, it
is also binding in the e¢ cient mechanism.

The fact that players vote after they observe the realization of the acquired signal

introduces an ex-ante distortion even when players�types are known. This occurs when

the signal (q; rH) that maximizes ex-ante welfare subject to only budget balance and

individual rationality satis�es q > 0 and p < rH < 1 � �(n�m+1). In this case, the
acquired signal will be distorted such that rH will increase to 1� �(n�m+1). Observation
3 establishes that introducing private types does not exacerbate this distortion.

4 Concluding remarks

This paper is concerned with the question of how groups who want to make an informed

collective decision bargain over which information to acquire. Instead of committing to

a particular bargaining protocol, we took a mechanism-design approach that looks for

the signal that maximizes the players�expected sum of utilities, taking into account that

(i) players must be willing to participate in the mechanism, (ii) they must be willing

to disclose their private willingness-to-pay for information, and (iii) players vote on the

outcome after they jointly observe the realization of the acquired signal.

The optimal mechanism exhibits two types of distortions in information acquisition.

First, the fact that the group members vote on the basis of the signal realization means
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that the signal that maximizes the net expected surplus is not necessarily the signal that

is acquired (even when types are commonly known). This stems from the fact that it is

wasteful to purchase a signal that will not persuade a supermajority to vote against the

default. Second, the fact that players need to be incentivized to disclose their types (as

this determines what the optimal signal is), further distorts the type of information that

is acquired: the probability of acquiring the signal decreases while the induced posterior

beliefs increase (i.e., when the players vote for a = 1 they do so with higher con�dence,

but when they vote for a = 0 the do so with lower con�dence).

These distortions suggest that relative to a single individual who acquires costly

information before acting, a group of individuals (say, committees, boards or households)

that collectively chooses what information to acquire, will be more inattentive: for the

same cost of information, the group is less likely to acquire any signal. Moreover, even

when information is acquired, the group is more likely to stick with the default.

In real life there are many situations in which a group of individuals with con�icting

interests need to design their information structure and choose how to respond to it.

We take a �rst step in analyzing these situations by identifying novel properties of this

set-up relative to the single information designer problem that is studied in the litera-

ture. Our paper opens the door to explore additional aspects of this new information-

design/acquisition problem.
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5 Appendix: Proofs

Proof of Lemma 1

Let � 2 [0; p]n be the players� types. Consider a signal that induces a probability

distribution q over a set R 2 [0; 1]J of posterior beliefs (on state ! = 1) such that the

expected posterior equals p, i.e.
P

r2R q (r) � r = p. Let �R (respectively, R) be the set of
posterior beliefs above (respectively, below) 1 � �(n�m+1). Suppose that �R contains (at
least) two distinct elements r0 and r00, where r0 < r00. Both r0 and r00 lead to the same

collective action a = 1 in the voting game.

Consider now a modi�ed signal that induces a distribution q̂ over a set of posterior

beliefs R̂. The set R̂ is identical to R, with one di¤erence: The posteriors r0 and r00 are

replaced by the posterior r̂ � q(r0)
q(r0)+q(r00)r

0 + q(r00)
q(r0)+q(r00)r

00. The distribution q̂ is de�ned

such that q̂(r) = q(r) for all r 2 Rnfr0; r00g, while q̂(r̂) = q(r0) + q(r00). Note that since
r̂ 2 (r0; r00), then r̂ is above 1 � �(n�m+1) and so it induces the collective action a = 1,

which is the same as the collective action induced by r and r0. Thus, the modi�ed signal

q̂ (over R̂) induces the same distribution over outcomes as the original signal q (over R).

By construction, the modi�ed signal also satis�es
P

r2R̂ q̂ (r) � r = p.
To show that the modi�ed signal is cheaper than the original one, we de�ne the

function h (r) � DKL (r; p), where DKL is de�ned in Equation (3). Note that the costs of

the two signals, as computed by Equation (2), di¤er only in the summands q(r0) �h (r0)+
q(r00) �h (r00) that appear in the cost of the original signal (and not in that of the modi�ed
one) and the summand q̂ (r̂) � h (r̂) that appear in the cost of the modi�ed signal (and
not in that of the original one). However, since h is a convex function,9 then we have:

q(r0)

q(r0) + q(r00)
h (r0) +

q(r00)

q(r0) + q(r00)
h (r00) > h

�
q(r0)

q(r0) + q(r00)
r0 +

q(r00)

q(r0) + q(r00)
r00
�

or, equivalently,

q(r0) � h (r0) + q(r00) � h (r00) > q̂ (r̂) � h (r̂) .

Thus, the modi�ed signal induces the same distribution over outcomes as the original

one but it is cheaper. The proof for the case in which there are more than two elements

in R is analogous. �

9To see this note that d
2h

(dr)2
= 1

r(1�r) > 0.
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Proof of Proposition 1

Consider the two stage game in which players �rst participate in the actual direct mech-

anism, and then following the signal realization (if a signal was acquired) they play the

voting game. Consider a perfect Bayesian equilibrium of this game in which the players

report truthfully in the �rst stage. Call this the �original� truthful equilibrium. Since

the players do not choose weakly dominated actions in the voting game, each player i

votes for the action a = 1 if and only if rH(�) � 1 � �i: Hence, in this equilibrium, the
collective action 1 is chosen in the second stage if and only if this inequality holds for at

least m players.

Consider next an auxiliary mechanism that has the same hq; rH ; t1; :::; tni as the actual
mechanism, and where aH(�̂) and aL(�̂) are de�ned as in (4)-(5). Suppose all players other

than i report truthfully in the auxiliary mechanism. If player i also reports truthfully,

then his expected payo¤ would be the same as in the original truthful equilibrium. If i

deviates and misreports �0i 6= �i, the induced distribution over signals would be exactly
the same as if he had deviated in the same way from the original truthful equilibrium.

However, the auxiliary mechanism�s decision on which collective action to take is weakly

suboptimal for player i. This is because in the auxiliary mechanism player i is �forced�

to vote for the action a = 1 if and only if the realized posterior is above 1 � �0i (and
not above 1 � �i, which is the preferred threshold for player i). Thus, deviations from
truthtelling are less pro�table in the auxiliary mechanism. Therefore, truthtelling must

also be an equilibrium in the auxiliary mechanism. It follows that under truthtelling,

aH(�) and aL(�) replicate the mapping from types to collective decisions in the original

equilibrium. In light of this, any surplus that is attainable in the original equilibrium

can also be attained in a truthful equilibrium of the auxiliary mechanism. �

Proof of Lemma 2

Suppose that hq; rH ; t1; :::; tni is an auxiliary mechanism that satis�es incentive com-

patibility, individual rationality and ex-ante budget balance, but does not satisfy non-

wastefulness. We show a modi�cation that increases the expected payo¤ to the players

without a¤ecting the constraints. Therefore, the given mechanism is not optimal.

Since the mechanism does not satisfy non-wastefulness, there exist a non-zero measure

of type realizations (�i; ��i) for which q(�) > 0 and rH(�) < 1 � �(n�m+1). Suppose we
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modify q into q0 as follows:

q0(�) =

(
q(�) if rH(�) � 1� �(n�m+1)

0 if rH(�) < 1� �(n�m+1)
.

That is, whenever the original mechanism purchases a non instrumental signal, the mod-

i�ed mechanism does not purchase a signal. Notice that

Q0(�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

q(�i; ��i)dF (��i) = Q(�i)

M 0 (�i) =

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q0(�i; ��i)dF (��i)

=

Z
��ijrH(�i;��i)>1�(�i;��i)(n�m+1)

(1� rH(�i; ��i)) � q(�i; ��i)dF (��i)

=M (�i) .

Denote the expected decrease in the cost of purchasing signals by

� =

Z
�jrH(�)<1��(n�m+1)

c(q(�); rH(�))dF (�) > 0.

For every i 2 f1; : : : ; ng de�ne
t0i(�̂) = ti(�̂)�

�

n
.

The new mechanism satis�es incentive compatibility and individual rationality be-

cause Q0 = Q and M 0 = M , and the transfers decreased by a constant for all types (so

that �M (0)�T (0) � 0). By construction the mechanism is budget-balanced, and since
the expected payment of type 0 decreased, then by Equation (12) the expected surplus

increased. �

Proof of Proposition 2

The proof consists of three parts. First, we �nd three functions, r�H (�; �) ; r
�
L (�; �) and

q� (�; �), that satisfy non-wastefulness and maximize the Lagrangian that is given by

Equation (18), for any multiplier � and any pro�le of types �. Second, we show that

for any � � 0, the function q� (�; �) is increasing in each player�s type while r�H (�; �)

and r�L (�; �) are decreasing in each player�s type. Hence, the function Q
� (�i; �) that
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is induced by q� (�; �) (according to Equation 16) is monotone. Third, an argument of

Hellwig (2013) guarantees the existence of some �� � 0 for which the mechanism de�ned
by r�H (�; �

�) ; r�L (�; �
�) and q� (�; ��) has a non-negative virtual surplus. Thus, by the

Lagrange Su¢ ciency Theorem (see, e.g., Theorem C.1 in Kelly and Yudovina, 2014),

the functions r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) de�ne the mechanism that attains the

maximal aggregate surplus (Equation 14) subject to (i) Q (�i) is monotone and (ii) the

aggregate virtual surplus (Equation 15) is non negative.

PART I. Fix a pro�le of types � and a multiplier �. The part of the Lagrangian

(Equation 18) that is a¤ected by q and rH is:

L (q; rH ; w) = q(rH � (1� w))�
1

n
� c(q; rH) (22)

where rH ; w and q are used for brevity instead of rH (�; �) ; w(�; �) and q (�; �). Note that

� and � a¤ect the values of the maximizers q and rH only through w. Di¤erentiating

L (q; rH ; w) with respect to q and rH and equating to zero yields:

L1 (q; rH ; w) = rH � (1� w)�
1

n
� c1 (q; rH) = 0, (FOCq)

L2 (q; rH ; w) = q �
1

n
� c2 (q; rH) = 0. (FOCr)

where c1(q; rH) is the derivative of the function c(q; rH) with respect to its �rst argument

q, and c2(q; rH) is the derivative of c(q; rH) with respect to its second argument rH .

We begin by looking for a pair (~q; ~rH) that solves (FOCq) and (FOCr). Plugging in

c2 (q; rH) (for the derivation of c2 and all other partial derivatives of the cost function see

the supplementary appendix B) into (FOCr) and simplifying yields:

ln

�
~rH
~rL

1� ~rL
1� ~rH

�
=
n

�
. (23)

where ~rL =
p�~q~rH
1�~q . Plugging c1 (q; rH) into (FOCq), and using Equation (23) we obtain:

ln

�
1� ~rL
1� ~rH

�
=
n

�
(1� w) .
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We therefore have that:

~rL =
e
n
�
[1�w(�;�)] � 1
e
n
� � 1

; (24)

~rH =
e
n
� � en�w(�;�)

e
n
� � 1

; (25)

~q =
p� ~rL (�)

~rH (�)� ~rL (�)
(26)

We say that the solution (~q; ~rH) is interior if ~q 2 (0; prH ) and ~rH 2 (p; 1) and we say
it is non-wasteful if ~rH � 1� �(n�m+1).
Since L is not a concave function in general, it is not a priori guaranteed that (~q; ~rH)

is a maximizer of L. Note, however, that the corner solutions rH = 1 or q = p
rH
(or,

equivalently, rL = 0) never maximize L. This is because limrH!1 c2 (q; rH) = 1 and

therefore L2 (q; 1 ; w) < 0 for any q � 0 and w. Hence rH = 1 is not a maximizer of L.
Similarly, limq! p

rH
c1 (q; rH) =1, and therefore L1

�
p
rH
; rH ; w

�
< 0 for any rH and w.

Hence q = p
rH
is not a maximizer of L. Thus, the only candidates for a corner solution

are q = 0 or ~rH = p, i.e. solutions in which no signal is acquired.

Our next result establishes that although L is not concave, if (~q; ~rH) is interior and
non-wasteful then it is indeed a maximizer of L.

Lemma 3 For any w, if (~q; ~rH) is interior and non-wasteful, then it maximizes L (q; rH ; w).

Proof. Given w, suppose that (~q; ~rH) is interior and that it is non-wasteful (i.e. ~rH �
1 � �(n�m+1)). We prove the lemma in two steps. First, we show that (~q; ~rH) is a local
maximizer of L (q; rH ; w). Then, we show that L (~q; ~rH ; w) is greater than the value
of L in the corner solution in which no signal is acquired.
To show that (~q; ~rH) is a local maximum it su¢ ces to show that L11 (q; rH ; w) < 0

and that the determinant of the Hessian matrix of L (q; rH ; w) is positive when evaluated
at (~q; ~rH). The former is true because L11 (~q; ~rH ; w) = � 1

n
� c11 (~q; ~rH) < 0. To see the

latter, note that the determinant of the Hessian matrix of L (q; rH ; w) is given by:

D � L11 (~q; ~rH ; w) � L22 (~q; ~rH ; w)� (L12 (~q; ~rH ; w))2

=

�
� 1
n
� c11 (~q; ~rH)

�
�
�
� 1
n
� c22 (~q; ~rH)

�
�
�
1� 1

n
� c12 (~q; ~rH)

�2
Plugging in c11; c22 and c12, and using Equation (23), we obtain:

D =
��
n

�2
� q

(1� q) �
1

rH
� 1
rL
� (rH � rL)2

(1� rH) (1� rL)
> 0.
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It remains to show that L (~q; ~rH ; w) is greater than zero, which is the value of L in the
corner solution in which no information is acquired. For any rH and w, de�ne q̂ (rH ; w)

to be the value of q for which (FOCq) is satis�ed (whenever such a value exists), and

de�ne

r̂L (rH ; w) :=
p� rH � q̂ (rH ; w)
1� q̂ (rH ; w)

to be value of rL that is uniquely determined by rH and q̂ (rH ; w). By de�nition we have

that ~q = q̂ (~rH ; w) and ~rL = r̂L (~rH ; w). Let L̂ (rH ; w) be the value of the Lagrangian
when q is computed according to q̂ (rH ; w):

L̂ (rH ; w) � L (q̂ (rH ; w) ; rH ; w) = q̂ (rH ; w) �
1

n
�c1 (q̂ (rH ; w) ; rH)�

1

n
�c(q̂ (rH ; w) ; rH).

Substitute the expressions for c (�) and c1 (�) into the right-hand side and simplify to
obtain:

L̂ (rH ; w) =
1

n
�
�
p � ln

�
p

r̂L (rH ; w)

�
+ (1� p) � ln

�
1� p

1� r̂L (rH ; w)

��
. (27)

Inspection of Equation (27) reveals that the value of L̂ (rH ;w) is decreasing in r̂L (rH ; w)
when r̂L (rH ; w) � p.10 This means that L̂ attains its minimal value when r̂L (rH ; w) = p,
in which case L̂ is zero. Note, however, that since (~q; ~rH) is interior, then ~rL = p�~rH �~q

1�q < p.

This means that L̂ (~q; ~rH ; w) > 0, which completes the proof.

Suppose that (~q; ~rH) is interior but wasteful. Since we look for maximizers of L that
satisfy non-wastefulness, and since L is not in general a concave function, the question
is whether rH should be �corrected�so that non-wastefulness exactly binds or should it

attain an even higher value. Our next result shows that in this case non-wastefulness

should bind, i.e. r�H = 1 � �(n�m+1). The values of r�L and q� that maximize L are

determined according to (FOCq), whenever possible.

Lemma 4 Given w, suppose that (~q; ~rH) is interior but is wasteful. Let r�H = 1 �
�(n�m+1). Let r�L be the solution to DKL (r

�
H ; rL) =

n
�
(r�H � (1� w)) if a solution exists

in [0; p], and r�L = p otherwise. Then, r
�
H and q

� =
p�r�L
r�H�r�L

are maximizers of L (q; rH ; w).

Proof. Suppose �rst that r�H is given. We begin by �nding the value of q
� that maximizes

L (q; r�H ; w). The fact that L11 (q; r�H ; w) = � 1
n
� c11 (q; r�H) < 0 implies that q� satis�es

10This is because d
drL

�
p ln

�
p
rL

�
+ (1� p) ln

�
1�p
1�rL

��
= � p�rL

rL(1�rL) .
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r�L(1� �0(n�m+1); w0)

r�L(1� �(n�m+1); w)

Figure 3: r̂L(�; w)

(FOCq) whenever possible. Since c1 (q; r�H) = � �DKL (r
�
H ; rL), we can rewrite (FOCq),

when evaluated at r�H , as follows:

r�H � (1� w)�
�

n
�DKL (r

�
H ; rL) = 0 (28)

Thus, r�L is the solution to this equation, whenever the solution is in [0; p]. The value of

q� is then uniquely determined such that q� = p�r�L
r�H�r�L

.

If there is no solution to Equation (28) within the range [0; p], then r�L = p and q
� = 0.

This is because when there is no solution to Equation (28) then it must be the case that

its left-hand side is negative for all rL 2 [0; p].11 In this case, decreasing q increases L,
hence q� = 0.

We proceed to show that if ~rH < 1 � �(n�m+1); then the optimal solution is r�H =

1 � �(n�m+1). To achieve this, we use the notation de�ned in the proof of Lemma 3 to
show the following three properties of the function r̂L (rH ; w) (whenever this function is

de�ned), which are depicted in Figure 3.

(P1) For any w, the function r̂L (rH ; w) attains a minimum at ~rH . Recall that the

function L̂ (rH ;w), de�ned in Equation (27), is decreasing in r̂L (�). Therefore, for any
w, the function L̂ (rH ;w) attains a maximum when r̂L (rH ;w) is at its minimum value.

Since L̂ (rH ;w) is maximized at ~rH , is follows that r̂L (rH ; w) attains a minimum at ~rH .

11To see this, note that DKL (r�H ; 0) =1 and therefore the left-hand side of Equation (28) is negative
for rL = 0. If there is a value rL 2 [0; p] for which the left-hand side is positive, then the fact that
DKL is continuous implies, by the intermediate value theorem, that there must also be a solution to the
equation within [0; p].
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(P2) For any w, the function r̂L (rH ; w) is convex in rH . De�ne

g (rH ; rL) �
1

n
� c1
�
p� rL
rH � rL

; rH

�
� rH

so that (FOCq) can be written as:

g (rH ; rL) = w � 1:

Substituting for c1 we obtain:

g (rH ; rL) =
�

n

�
(1� rH) ln

�
1� rH
1� rL

�
+ rH ln

�
rH
rL

��
� rH .

The function g (rH ; rL) is decreasing in its second argument (rL) and strictly convex. The

former property follows from the fact that g2 = ��
n
1
rL

rH�rL
1�rL < 0 while the latter follows

from the fact that g11 = 1
rH(1�rH) > 0 and that the determinant of the Hessian of g is

positive.12

To see that r̂L (rH ; w) is convex in rH , denote x � (rH ; r̂L (rH ; w)) and x0 � (r0H ; r̂L (r0H ; w))
for some two values rH and r0H such that 1 � r0H > rH � p. For any � 2 (0; 1), convexity
of g implies that:

g(�x+ (1� �)x0) < �g(x) + (1� �)g(x0)

or, equivalently,

g(�rH+(1��)r0H ; �r̂L (rH ; w)+(1��)r̂L (r0H ; w)) < �g (rH ; r̂L(rH ; w))+(1��)g (r0H ; r̂L(r0H ; w)) :
(29)

Since g (rH ; rL(rH)) = g (r0H ; rL(r
0
H)) = w � 1, the right-hand side of (29) equals w � 1.

Denote r00H := �rH+(1��)r0H and recall that, by de�nition, we have that g(r00H ; rL (r00H)) =
w � 1. It therefore follows that

g(r00H ; �r̂L(rH ; w) + (1� �)r̂L(r0H ; w)) < g(r00H ; r̂L (r00H ; w)).

And since g is decreasing in its second argument we obtain:

r̂L (r
00
H ; w) = r̂L(�rH + (1� �)r0H ; w) < �r̂L(rH ; w) + (1� �)r̂L(r0H ; w).

12This is because g12 = ��
n

1
rL(1�rL) and g22 =

�
n
r2L�2rHrL+rH
r2L(1�rL)

2 and therefore (g11) (g22) � (g21)2 =�
�
n

�2 1
rHr2L

(rH�rL)2
(1�rH)(rL�1)2

> 0
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Thus, for any w, the function r̂L(rH ; w) is convex in rH .

(P3) For any rH , the function r̂L (rH ; w) is decreasing in w: Suppose that w0 >

w. Then, by de�nition, for every rH we have that g (rH ; r̂L (rH ; w)) = w � 1 and
g (rH ; r̂L (rH ; w

0)) = w0 � 1. Therefore:

g (rH ; r̂L (rH ; w
0)) > g (rH ; r̂L (rH ; w)) .

Since g is decreasing in its second argument (as we showed in P2 above) it immediately

follows that r̂L (rH ; w0) < r̂L (rH ; w).

(P1) and (P2) establish that for any w, the function r̂L (rH ; w) is convex in rH and

attains minimum at ~rH . We therefore deduce that for all values of rH � 1��(n�m+1) > ~rH
the function r̂L (rH ; w) is increasing in rH . Since L̂ is decreasing in r̂L (see Equation 27)
it follows that if rH is restricted to the domain

�
1� �(n�m+1); 1

�
, so that non-wastefulness

is satis�ed, then the maximum of L̂ is attained at rH = 1� �(n�m+1). Thus, r�H (�1; �2) =
1� �(n�m+1), which completes Part I of the proof.

PART II. We now turn to show that q� (�; �) is increasing in each player�s type while
r�H (�; �) and r

�
L (�; �) are decreasing in each player�s type, where � � (�i; ��i). Fix ��i

and �. Suppose that �0i > �i and denote w � w (�i; ��i; �) and w0 � w (�0i; ��i; �) so that
w0 > w. We also denote �0 � (�0i; ��i).
If (~rH (�; �) ; ~q (�; �)) is not interior, then no signal is acquired when the players report

�, i.e q� (�; �) = 0 and r�L (�; �) = p. Without loss of generality we can assume that

in this case r�H (�; �) = 1, and it immediately follows that q� (�0; �) � q� (�; �) and

r�L (�
0; �) � r�L (�; �) and r�H (�0; �) � r�H (�; �).
For the rest of Part II we then assume that (~rH (�; �) ; ~q (�; �)) is interior. This also

implies that (~rH (�0; �) ; ~q (�0; �)) is interior. To see why, note that assigning the signal

~rH (�; �) and ~q (�; �) whenever the type realization is �0 yields a total surplus which

is higher than the total surplus attained by the same signal when the realization is �

(which is positive). Hence, the corner solution in which no signal is acquired (i.e., the

only possible corner solution) cannot be optimal when the type realization is �0.

We divide the analysis into four cases:

Case 1: Suppose that ~rH (�; �) � 1�(�i; ��i)(n�m+1) and ~rH (�0; �) � 1�(�0i; ��i)
(n�m+1).

In this case both (~rH (�; �) ; ~q (�; �)) and (~rH (�0; �) ; ~q (�0; �)) are interior and non-wasteful.

Since ~rH and ~rL (as given by Equations 25 and 24) are decreasing in w (�i; ��i; �) and
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w (�i; ��i; �) is increasing in �i, then:

r�L (�
0; �) = ~rL (�

0; �) =
e1�

n
�
w0 � 1

e� 1 <
e1�

n
�
w � 1

e� 1 = ~rL (�; �) = r
�
L (�; �) ,

r�H (�
0; �) = ~rH (�

0; �) =
e� en�w0
e� 1 <

e� en�w
e� 1 = ~rH (�; �) = r

�
H (�; �) .

And since ~q is decreasing in ~rL and decreasing in ~rH for all ~rL � p � ~rH we obtain:13

q� (�0; �) = ~q (�0; �) =
p� ~rL (w0)

~rH (w0)� ~rL (w0)
>

p� ~rL (w)
~rH (w)� ~rL (w)

= ~q (�; �) = q� (�; �) .

Case 2: Suppose that ~rH (w) � 1 � (�i; ��i)(n�m+1) and ~rH (w0) � 1 � (�0i; ��i)
(n�m+1).

In this case both (~rH (�; �) ; ~q (�; �)) and (~rH (�0; �) ; ~q (�0; �)) are interior but wasteful.

Therefore, by Part I of the proof, we have that r�H (�
0
i; �i; �) = 1 � (�0i; ��i)

(n�m+1) and

r�H (�i; ��i; �) = 1� (�i; ��i)
(n�m+1). Since (�0i; ��i)

(n�m+1) � (�i; ��i)(n�m+1) we deduce:

r�H (�i; ��i; �) � r�H (�0i; ��i; �) � ~rH (�0i; ��i; �)

and therefore r�H (�i; ��i; �) is decreasing in each player�s type.

Next, recall that in the proof of Lemma (4) we showed that due to (P1) and (P2) the

function r̂L (rH ; w0) is increasing in rH when rH > ~rH (�
0
i; ��i; �). Hence,

r̂L (r
�
H (�

0
i; ��i; �) ; w

0) < r̂L (r
�
H (�i; ��i; �) ; w

0) .

In that proof we also established (P3), by which for any rH the function r̂L (rH ; w) is

decreasing in w. Since w0 > w we have that r̂L (r�H (�i; ��i; �) ; w
0) < r̂L (r

�
H (�i; ��i; �) ; w)

and therefore:

r�L (�
0
i; ��i; �) = r̂L (r

�
H (�

0
i; ��i; �) ; w

0) < r̂L (r
�
H (�i; ��i; �) ; w) = r

�
L (�i; ��i; �) .

Finally, since q� = p�r�L
r�H�r�L

is decreasing in r�L and decreasing in r
�
H for all r

�
L � p � r�H

then q� (�0i; ��i; �) > q
� (�i; ��i; �).

Case 3: Suppose that ~rH (�i; ��i; �) < 1 � (�i; ��i)(n�m+1) and ~rH (�
0
i; ��i; �) � 1 �

(�0i; ��i)
(n�m+1). The functions ~rH (x; ��i; �) and 1� (x; ��i)(n�m+1) are both continuous

13This is because d
drL

�
p�rL
rH�rL

�
= � rH�p

(rH�rL)2
and d

drH

�
p�rL
rH�rL

�
= � p�rL

(rH�rL)2
.
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in x. Hence, there must be at least one value �00i 2 (�i; �0i) for which

~rH (�
00
i ; ��i; �) = 1� (�00i ; ��i)

(n�m+1) .

According to Case 2 above we know that q� (�00i ; ��i; �) > q� (�i; ��i; �). According

to Case 1 above we know that q� (�0i; ��i; �) > q� (�00i ; ��i; �). We thus conclude that

q� (�0i; ��i; �) > q
� (�i; ��i; �). Analogous arguments show that r�L (�

0
i; ��i; �) < r

�
L (�i; ��i; �)

and that r�H (�
0
i; ��i; �) < r

�
H (�i; ��i; �).

Case 4: Suppose that ~rH (�i; ��i; �) > 1�(�i; ��i)(n�m+1) and ~rH (�0i; ��i; �) � (�0i; ��i)
(n�m+1).

As in Case 3 above we can �nd a value �00i 2 (�i; �0i) for which

~rH (�
00
i ; ��i; �) = 1� (�00i ; ��i)

(n�m+1) .

According to Case 1 above we know that q� (�00i ; ��i; �) > q� (�i; ��i; �). According to

Case 2 above we know that q� (�0i; ��i; �) > q� (�00i ; ��i; �). We thus again conclude

that q� (�0i; ��i; �) > q� (�i; ��i; �). Analogous arguments show that r�L (�
0
i; ��i; �) <

r�L (�i; ��i; �) and that r
�
H (�

0
i; ��i; �) < r

�
H (�i; ��i; �).

Part III. From the above two lemmas, it follows that for any � � 0 and for each pro�le
of types �; the values q�(�; �) and r�H(�; �) that maximize L (q; rH ; �) are such that
q�(�; �) is unique and r�H(�; �) is unique whenever q

�(�; �) > 0 (i.e., whenever a signal is

purchased). It remains to verify that there exists �� � 0 for which q�(�; ��) and r�H(�; ��)
induce a non-negative expected aggregate virtual surplus (i.e., there exists �� � 0 for

which q�(�; ��) and r�H(�; ��) are feasible). Let S(�) denote the ex-ante expected virtual
surplus (that is given by Equation 15) as a function of � :

S(�) = E�

"
nX
i=1

(v(�i)q
�(�; �)� (1� r�H(�; �)) q�(�; �))� c(q�(�; �); r�H(�; �))

#

Lemmas 1 and 2 in Hellwig (2003) guarantee that S(�) is continuous in � and that

S(�) � 0 for a su¢ ciently large �. This completes the proof. �

Proof of Proposition 3

By Corollary 1, there exists an optimal auxiliary mechanism in which truthtelling is a

dominant strategy. Consider an actual mechanism with the same functions q�, r�H and

r�L and the same transfer rules (the only di¤erence between the auxiliary and actual

mechanisms is that in the latter the players are not bound by their report in the ensuing
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voting game). We will show that truthtelling is a dominant strategy also in the actual

mechanism.

Assume, by contradiction, that truthtelling is not a dominant strategy in the actual

mechanism. This means that there is a type �i of player i that prefers to report some

�0i 6= �i in the actual mechanism, but not in the auxiliary mechanism, when the other

players report some ��i (which may not coincide with their true types).

It cannot be that q�(�0i; ��i) = 0 (to simplify the notation we omit throughout this

proof the dependence of q�, r� and r�L on the value of �
�). To see why, note that when

no information is acquired (i.e., q�(�0i; ��i) = 0) player i prefers the action a = 0 in the

voting game that follows the actual mechanism. But this is precisely the action that

the auxiliary mechanism chooses when q�(�0i; ��i) = 0. Since player i does not want to

deviate and report �0i in the auxiliary mechanism, he has no incentive to do so in the

actual mechanism.

Suppose that q�(�0i; ��i) > 0. When the posterior belief r�L(�
0
i; ��i) is realized, the

auxiliary mechanism votes for a = 0 on player i�s behalf. But since r�L(�
0
i; ��i) < p

this is also the action that player i prefers in the voting game that follows the actual

mechanism. Suppose then that the posterior r�H(�
0
i; ��i) is realized. Recall that since

signals that are purchased in the optimal auxiliary mechanism are non-wasteful then

r�H(�
0
i; ��i) � 1 � (�0i; ��i)

(n�m+1) � p. If for such a posterior, player i votes for a = 1 in
the second stage game following the actual mechanism, then again his action coincides

with the action that the auxiliary mechanism chooses for him. Therefore, for i to have

a pro�table deviation in the actual mechanism but not in the auxiliary mechanism, it

must be the case that after r�H(�
0
i; ��i) > 1 � (�0i; ��i)

(n�m+1) player i prefers to vote

for a = 0. This means that player i of type �i strictly gains by increasing the chances

of the default action. He may further increase his utility if m(�0i; ��i) + ti(�
0
i; ��i) <

m(�i; ��i) + ti(�i; ��i). Since by monotonicity of q� we have q� (0; ��i) � q� (�i; ��i), and
since m(0; ��i) + ti(0; ��i) � m(�i; ��i) + ti(�i; ��i) (which immediately follows from the

fact that type 0 does not want to report �i in the auxiliary mechanism), then the most

pro�table deviation is to report �0i = 0.

If q� (0; ��i) < q� (�i; ��i) or m(0; ��i) + ti(0; ��i) < m(�i; ��i) + ti(�i; ��i) then player

i has a pro�table deviation already in the auxiliary mechanism by reporting that his

type is 0. This contradicts truth-telling being a dominant strategy. Otherwise, player i

is indi¤erent between reporting the truth and his most pro�table deviation in the actual

mechanism, contradicting our initial assumption that player i has a pro�table deviation

in the actual mechanism. We have therefore established that truthtelling is a dominant

strategy in the actual mechanism.
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Figure 4: The functions ~rH(�1; �2; ��) and 1�minf�1; �2g for some �xed �2

Finally, note that in the optimal auxiliary mechanism in which truthtelling is a dom-

inant strategy the budget balance constraint is satis�ed only ex-ante. Therefore, the

budget of the actual mechanism de�ned above is also balanced only ex-ante. However,

since truthtelling is a dominant strategy in the actual mechanism then it is also a Bayesian

Nash equilibrium. Thus, by Borgers (2015, p.47), we can modify the transfers to satisfy

ex-post budget balanceness without a¤ecting the interim expected transfers, and hence,

truthtelling remains a Bayesian Nash equilibrium. Furthermore, the individual ratio-

nality of the auxiliary mechanism also carries over to the real mechanism. Thus, the

resulting actual mechanism satis�es incentive compatibility, individual rationality and it

is budget-balanced ex-post. Since, by Proposition 1, the expected surplus that is achiev-

able by the optimal actual mechanism is bounded above by the expected surplus that is

achievable by the optimal auxiliary mechanism, it follows that the actual mechanism we

de�ned above is the optimal one. �

Proof of Proposition 4

We use the notation de�ned in the proof of Proposition 2. Let �� be the value that is

determined by Proposition 2.

(i) Fix �2. For any type �1, a signal is purchased in the second best mechanism whenever

r�L (�1; �2; �
�) < p. By Proposition 2, we know that r�L (�1; �2; �

�) is decreasing in �1.14

14We are also guaranteed that r�L (�1; �2; �) > 0 for any �1 because, as we discuss in the proof of
Proposition (2), the corner solution in which rL is 0 (or, equivalently, rH = p=q) never maximizes the
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Thus, for any �01 > �1 we have that r
�
L (�

0
1; �2; �

�) < r�L (�1; �2; �
�) < p, implying that if a

signal is purchased in the second best mechanism for some �1 then it is purchased also

for �01 > �1. It follows that for any �2 there is a unique cuto¤ �
;
1 (�2) for which a signal is

purchased if and only if �1 > �;1 (�2).

(ii) Suppose that �1 and �2 are such that r�L (�1; �2; �
�) < p, so that a signal is purchased

in the second best mechanism. By Proposition 2, r�L (�1; �2; �
�) is decreasing in �2, and

therefore r�L (�1; �
0
2; �

�) < p for any �02 > �2. Thus, the cuto¤ �
;
1 (�2), below which a signal

is not purchased for any �1 < �;1 (�2), is decreasing in �2.

(iii) Fix �2. Since w(�1; �2; ��) is increasing in �1 then ~rH (�2; �2; ��) = e
2
��e

2
�w(�1;�2;�

�)

e
2
��1

is

decreasing in �1. In addition, our assumption that
1�F (�1)
f(�1)

is concave in �1 implies that

~rH (�2; �2; �
�) is also concave in �1.15 Also note that 1 � minf�1; �2g is decreasing and

convex in �1. Figure (4a) illustrates the functions ~rH (�2; �2; ��) and 1 �minf�1; �2g for
some �2, where the values if �1 are depicted on the horizontal axis.

When �1 = �2 we know that ~rH (�2; �2; ��) > 1 � �2. The reason is that by (FOCq)
we have ~rH (�2; �2; ��)� (1� w (�2; �2; ��)) = c1 (~q (�2; �2; ��) ; ~rH (�2; �2; ��)), and since

c1 (~q (�2; �2; �
�) ; ~rH (�2; �2; �

�)) = DKL (~rH (�2; �2; �
�) ; ~rL (�2; �2; �

�)) > 0,

where ~rL (�2; �2; ��) =
p�~q(�2;�2;��)�~rH(�2;�2;��)

1�~q(�2;�2;��) , then ~rH (�2; �2; ��)� (1� w (�2; �2; ��)) > 0.
Since w (�2; �2; ��) � �2 we obtain that ~rH (�2; �2; ��) > 1� �2.
Thus, holding �2 �xed, the functions ~rH (�1; �2; ��) and 1 � minf�1; �2g cross each

other at most once in the range �1 2 [0; �2]. If the functions never cross each other, i.e.
~rH (�1; �2; �

�) > 1�minf�1; �2g for all �1 2 [0; �2], then non-wasefulness is never binding
and in that case �W1 (�2) = �

;
1 (�2). If the functions cross each other exactly once, then

�W1 (�2) is the value of �1 at the point of crossing. Thus, ~rH (�1; �2; �
�) > 1�minf�1; �2g

for any �1 > �W1 (�2) and ~rH (�1; �2; �
�) < 1�minf�1; �2g for any �1 < �W1 (�2).

(iv) Suppose that for some �2 we have �W1 (�2) > �
;
1 (�2), so non-wastefulness is binding

for some values of �1. From (iii) we know that �W1 (�2) < �2. Pick some �02 > �2. If

�W1 (�
0
2) > �2 then �

W
1 (�2) < �

W
1 (�

0
2) and the proof is complete. Otherwise, in the range

�1 2 [0; �02] we have that 1�minf�1; �02g = 1��1, as illustrated in Figure (4b). In addition,
since ~rH (�1; �2; ��) is decreasing in �2 then ~rH

�
�W1 (�2) ; �

0
2; �

�� < ~rH
�
�W1 (�2) ; �2; �

�� =
(partial) Lagrangian that is given by Equation (22).

15This is bacuase: (i) ~rH is decreasing and concave in w, and (ii) w is convex in �1, due to our

assumption that 1�F (�1)f(�1)
is concave. Thus, d2~rH

(d�1)
2 =

d2~rH
(dw)2

�
�
dw
d�1

�2
+ d2w

(d�1)
2 � d~rHdw < 0.
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1 � �W1 (�2) (note that in Figure (4b) ~rH (�1; �2; ��) and 1 � minf�1; �2g are the dashed
lines). From (iii) we also know that ~rH (�02; �

0
2; �

�) > 1 � �02. Therefore, continuity of ~rH
implies that there exists x 2

�
�W1 (�2) ; �

0
2

�
for which ~rH (x; �02; �

�) = 1 � x. The cuto¤
�W1 (�

0
2) is then given by x, implying that �

W
1 (�

0
2) � x > �W1 (�2).
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1 The variance cost function

In this appendix we show that our analysis extends to the case in which the cost of a

signal f(qj; rj)gJj=1 is proportional to the variance of the posteriors on the state ! = 1,
where the mean posterior is the prior (i.e.,

PJ
j=1 qj � rj = p.). I.e.,

c
�
f(qj; rj)gJj=1

�
= � �

JX
j=1

qj (rj � p)2 .

Note that Lemma 1 extends to this cost function. To see why, de�ne h (r) � (r � p)2

and note that this function is convex in r. Then, the same arguments in the proof of

Lemma 1 readily apply to the newly de�ned function h (r).

It follows that we can restrict attention to signals that are represented by the triplet

(q; rH ; rL) as in the main text. We therefore consider the cost function

c (q; rH ; rL) = � �
�
q � (rH � p)2 + (1� q) (rL � p)2

�
.

�Economics Dept., Ben Gurion University, eilatr@bgu.ac.il.

ySchool of Economics, Tel-Aviv University and Eccles School of Business, the University of Utah,
k�re@tauex.tau.ac.il.
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Substituting rL =
p�qrH
1�q , we can rewrite the cost as a function of only q and rH :

c (q; rH) = �
q

1� q (rH � p)
2 .

To simplify the exposition, we focus on the case where � > n: This guarantees that

information is never "too cheap" so that removing all the uncertainty (i.e., rH = 1 and

rL = 0) becomes optimal (the KL-divergence cost function in our main text satis�es this

for all (n; �)). The analysis remains essentially the same when � � n, but the exposition
is more cumbersome since we have to take care of more corner solutions in the designer�s

optimization problem.

To establish that the qualitative analysis in the main text extends to the above

cost function, we mimic the steps in the proof of Proposition 2. First, we �nd three

functions, r�H (�; �) ; r
�
L (�; �) and q

� (�; �), that satisfy non-wastefulness and maximize

the Lagrangian that is given by Equation (18), for any multiplier � and any pro�le of

types �. Second, we show that for any � � 0, the function q� (�; �) is increasing in each
player�s type while r�H (�; �) and r

�
L (�; �) are decreasing in each player�s type. Hence, the

function Q� (�i; �) that is induced by q� (�; �) (according to Equation 16) is monotone.

Third, we apply an argument in Hellwig (2013) that guarantees the existence of some

�� � 0 for which the mechanism de�ned by r�H (�; �
�) ; r�L (�; �

�) and q� (�; ��) has a

non-negative virtual surplus. It then follows that the functions r�H (�; �
�) ; r�L (�; �

�) and

q� (�; ��) de�ne the mechanism that attains the maximal aggregate surplus (Equation

14) subject to (i) Q (�i) is monotone and (ii) the aggregate virtual surplus (Equation 15)

is non negative.

PART I. The �rst-order condition with respect to q for an interior solution (~q; ~rH) that
maximizes the Lagrangian L (q; rH ; �) is

rH � (1� w)�
1

n
� � �

�
rH � p
1� q

�2
= 0 (FOCq)

while the �rst-order condition with respect to rH is

q � 1

n
� 2
�
�

q

1� q (rH � p)
�
= 0 (FOCr)

where w is as de�ned in the main text. From the second equation we have that rH�p
1�q =

n
2�
.

Plugging this into the �rst equation yields:

rH � (1� w)�
1

n
� � �

� n
2�

�2
= 0

2



Hence,

~rH(w) =
n

4�
+ 1� w (1)

Using rH�p
1�q =

n
2�
again we can solve for ~q :

~q(w) =
1

2
+
2�

n
(w � (1� p)) (2)

Finally, from rL =
p�qrH
1�q it follows that

~rL(w) = 1� w �
n

4�
(3)

Since L is not a concave function in general, it is not a priori guaranteed that (~q; ~rH)
is a maximizer of L. Our �rst result establishes that although L is not concave, if (~q; ~rH)
is interior and non-wasteful then it is indeed a maximizer of L.

Lemma A0. For any value of rH and w, de�ne q̂ (rH ; w) to be the value of q that satis�es
L1 (q; rH ;w) = 0 (i.e. FOCq) and de�ne r̂L (rH ; w) � p�rH �q̂(rH ;w)

1�q̂(rH ;w) to be value of rL that

is determined by rH and q̂ (rH ; w). Then, L̂ (rH ; w) � L (q̂ (rH ; w) ; rH ; w) = �(p� rL)2.
Proof. By de�nition we have that

L̂ (rH ; w) = q̂ (rH ; w) � c1 (q̂ (rH ; w) ; rH)� c (q̂ (rH ; w) ; rH)

Substituting

q̂ (rH ; w) =
p� r̂L (rH ; w)
rH � r̂L (rH ; w)

c1 (q̂ (rH ; w) ; rH) = � �
�

rH � p
1� q̂ (rH ; w)

�2
= � �

�
rH � p+ q̂ (rH ; w) rH � q̂ (rH ; w) rH

1� q̂ (rH ; w)

�2
= � � (rH � r̂L (rH ; w))2

c(rH ; r̂L (rH ; w)) = � �
�
q̂ (rH ; w) � (rH � p)2 + (1� q̂ (rH ; w)) (r̂L (rH ; w)� p)2

�
= � � [ p� r̂L (rH ; w)

rH � r̂L (rH ; w)
� (rH � p)2 +

rH � p
rH � r̂L (rH ; w)

� (p� r̂L (rH ; w))2]

= �(rH � p)(p� r̂L (rH ; w))

3



We obtain that

L̂ (rH ; w) =
p� r̂L (rH ; w)
rH � r̂L (rH ; w)

� � � (rH � r̂L (rH ; w))2 � �(rH � p)(p� r̂L (rH ; w))

= �(p� r̂L (rH ; w))2. �

Lemma A1. For any w, if (~q; ~rH) is interior and non-wasteful, then it maximizes

L (q; rH ; w).

Proof. First, we show that (~q; ~rH) is a local maximum of L (q; rH ;w). Then, we show
that L (~q; ~rH ;w) is greater than the value of L in any corner solution.
To show that (~q; ~rH) is a local maximum it su¢ ces to show that (i) L11 (q; rH ;w) < 0

and (ii) the determinant of the Hessian of L (q; rH ;w) is positive, when evaluated at
(~q; ~rH). To establish (i), note that

L11 (q; rH ;w) =
d

dq

 
rH � (1� w)�

1

n
� � �

�
rH � p
1� q

�2!
= � 2

n
�
(p� rH)2

(1� q)3
< 0

To establish (ii) note that

L22 (q; rH ;w) =
d

drH

�
q � 1

n
� 2
�
�

q

1� q (rH � p)
��

= � 2
n
q
�

1� q

L12 (q; rH ;w) =
d

dq

�
q � 1

n
� 2
�
�

q

1� q (rH � p)
��

= 1� 2� (rH � p)
n (q � 1)2

The determinant of the Hessian is equal to L11 (q; rH ;w) �L22 (q; rH ;w)�(L12 (q; rH ;w))2;
which reduces to�

2�

n
� rH � p
1� q

�2
� q

(1� q)2 �
�
1� 1

1� q �
2�

n
� rH � p
1� q

�2
At (~q; ~rH) we have

~rH�p
1�~q =

n
2�
, and hence, the determinant reduces to

~q

(1� ~q)2 �
~q2

(1� ~q)2 > 0.

We now turn to show that L (~q; ~rH ;w) is (weakly) greater than the value of L in any

4



corner solution. To see this, recall that q can take any value from 0 to p
rH
and that

L (q; rH ;w) = q[rH � (1� w)]�
1

n
� c(q; rH)

If q = 0; then no signal is acquired and hence, L (0; rH ;w) = 0: On the other hand,

L (~q; ~rH ;w) can be written as�
p� ~rL
~rH � ~rL

� �
n
� (~rH � ~rL)2 �

1

n
�(~rH � p)(p� ~rL)

�
= �(p� ~rL)2 � 0 (4)

Suppose next that L (~q; ~rH ;w) < maxrH2(p;1] L
�
p
rH
; rH ;w

�
: Since by (4), L (~q; ~rH ;w) �

0 while

L
�
p

rH
; rH ;w

�
=
p

rH
[rH � (1� w)]�

�

n
� p

rH � p
(rH � p)2 (5)

it must be that any r0H 2 argmaxrH L
�
p
rH
; rH ;w

�
is greater or equal to 1�w (otherwise,

maxrH2(p;1] L
�
p
rH
; rH ;w

�
< 0;a contradiction). The expression on the R.H.S. of (5) has

a unique maximizer equal to
p

n
k
(1� w): For this to be greater or equal to 1�w it must

be that n � �; a contradiction.
The only remaining corner solution is rH = 1: Recall that by Lemma A0, L̂(rH ; w) =

�(p � r̂L(rH ; w))2. The fact that L̂ is maximized at ~rH implies that r̂L(rH ; w) attains a
minimum at ~rH(w) < 1. It follows that

L̂(1; w) = �(p� r̂L(1; w))2 < �(p� r̂L(~rH ; w))2 = L̂(~rH ; w).

Since L̂(~rH ; w) and L̂(1; w) are the values of the Lagrangian when rH attains the values
~rH and 1, respectively (where q is optimally determined according to FOCq) the proof is

complete. �

Lemma A2. If an interior solution (~q; ~rH) exists but is wasteful, then in the optimal
solution, r�H = 1� �(n�m+1).

Proof. For any value of rH and w, de�ne q̂ (rH ; w) to be the value of q that satis�es

L1 (q; rH ;w) = 0 and de�ne r̂L (rH ; w) � p�rH �q̂(rH ;w)
1�q̂(rH ;w) to be value of rL that is determined

by rH and q̂ (rH ; w). Therefore,

rH � (1� w)�
�

n
�
�

rH � p
1� q̂ (rH ; w)

�2
= 0

5



Solving for q̂(rH ; w) yields

q̂(rH ; w) = 1�
rH � pp

n
�
� (rH + w � 1)

Since r̂L(rH ; w) = (p� q̂(rH ; w) � rH)=(1� q̂(rH ; w)) the above equation is equivalent
to

rH � (1� w)�
�

n
(rH � r̂L(rH ; w))2 = 0

We can therefore solve for r̂L to obtain

r̂L(rH ; w) = rH �
r
n

�
[rH � (1� w)] (6)

From (6) we can derive the following three properties of the function r̂L (rH ; w):

(P1) For any w, the function r̂L (rH ; w) attains a minimum at ~rH . Since

@

@rH
r̂L(rH ; w) = 1�

1

2

r
n

�
(rH + w � 1)�

1
2

we have that

@

@rH
r̂L(rH ; w) = 0() 1 =

n

4�
� 1

rH + w � 1
() rH =

n

4�
+ 1� w = ~rH(w)

Since
@2

@rH@rH
r̂L(rH ; w) =

1

4
(rH + w � 1)�

3
2 � 0

we have that ~rH(w) is a minimum point.

(P2) For any w, the function r̂L (rH ; w) is convex in rH . This follows from @2

@rH@rH
r̂L(rH ; w) �

0:

(P3) For any rH , the function r̂L (rH ; w) is decreasing in w. This follows from the

R.H.S. of (6).

We have thus established that for any w, the function r̂L (rH ; w) is convex in rH and

attains minimum at ~rH . Hence, for all values of rH � 1 � �(n�m+1) > ~rH the function

r̂L (rH ; w) is increasing in rH . Recall that L̂(rH ; w) = �(p� r̂L(rH ; w))2 where L̂(rH ; w)
is the value of the Lagrangian for any rH , when q is determined according to (FOCq). It

follows that when rH is restricted to the domain
�
1� �(n�m+1); 1

�
the maximum of L̂ is

6



attained when rH = 1 � �(n�m+1). Thus, r�H (�1; �2) = 1 � �(n�l+1), which completes the
proof. �

PART II. We now turn to show that q� (�; �) is increasing in each player�s type while
r�H (�; �) and r

�
L (�; �) are decreasing in each player�s type. Fix ��i and �. Suppose that

�0i > �i and denote w � w (�i; ��i; �) and w0 � w (�0i; ��i; �) so that w0 > w.
If (~rH (�; �) ; ~q (�; �)) is not interior, then no signal is acquired when the agents report

�, i.e. q� (�; �) = 0 and r�L (�; �) = p. Without loss of generality we can assume that

in this case r�H (�; �) = 1, and it immediately follows that q� (�0; �) � q� (�; �) and

r�L (�
0; �) � r�L (�; �) and r�H (�0; �) � r�H (�; �).
We therefore assume that (~rH (�; �) ; ~q (�; �)) is interior. As we explain in the main

text, this also implies that (~rH (�0; �) ; ~q (�0; �)) is interior. Note that: (1) ~rH and ~rL,

as given by Equations (1) and (3) are decreasing in w (�i; ��i; �), (2) w (�i; ��i; �) is

increasing in �i and (3) ~q is decreasing in ~rL and decreasing in ~rH for all ~rL � p � ~rH .

These properties, together with Lemmas A1 and A2, ensure that the remainder of the

proof is the the same as in the proof of Proposition 2, with the obvious adjustments to

the case of the variance cost.

PART III. From the Lemmas A1 and A2, it follows that for any � � 0 and for each

pro�le of types �; the values q�(�; �) and r�H(�; �) that maximize L (q; rH ;w) satisfy that
q�(�; �) is unique and r�H(�; �) is unique whenever q

�(�; �) > 0 (i.e., whenever a signal is

purchased). We have also established that q�(�; �) is monotone in any �i. It remains to

show there exist � � 0 for which q�(�; �) and r�H(�; �) induce a non-negative expected

aggregate virtual surplus. This follows from the same arguments given in the proof of

Proposition 2.

This completes our proof.
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2 Properties of the cost function

c (q; rH)

�
= q

�
rH log

rH
p
+ (1� rH) log

1� rH
1� p

�
+ (1� q)

 
p� q � rH
1� q log

p�q�rH
1�q

p
+

�
1� p� q � rH

1� q

�
log

1� p�q�rH
1�q

1� p

!

= q

�
rH log

rH
p
+ (1� rH) log

1� rH
1� p

�
+ (1� q)

�
rL log

rL
p
+ (1� rL) log

1� rL
1� p

�
c1 (q; rH)

�
= rH

 
ln

rH
p�qrH
(1�q)

!
+ (1� rH)

 
ln

1� rH
1� p�qrH

(1�q)

!

= rH

�
ln
rH
rL

�
+ (1� rH)

�
ln
1� rH
1� rL

�
c2 (q; rH)

�
= �q

 
ln
1

rH
(rH � 1)

p�qrH
(1�q)

p�qrH
(1�q) � 1

!
= q

�
ln
rH
rL

1� rL
1� rH

�
c11 (q; rH)

�
=

(p� rH)2

(1� q)3
�
1� p�qrH

(1�q)

�
(p�qrH)
(1�q)

=
(p� rH)2

(1� q)3 (1� rL) rL
=
1

rL

(rH � rL)2

(1� rL) (1� q)

c22 (q; rH)

�
=

q

rH (1� rH)
� (p�qrH)

(1�q) �
(1�q)qrH(1�rH)

(1�q)2 + (p�qrH)2

(1�q)2

(p�qrH)
1�q

�
p�qrH
1�q � 1

�
=

q

rH (1� rH)
+

q

rL (1� rL)
� q

1� q

c12 (q; rH)

�
=

0@ln rH
�
p�qrH
(1�q) � 1

�
(rH � 1) (p�qrH)(1�q)

1A+ q (p� rH)
(1� q)2

�
p�qrH
(1�q)

��
p�qrH
(1�q) � 1

�
=

�
ln
rH
rL

1� rL
1� rH

�
+

q (p� rH)
(1� q)2 (rL) (rL � 1)

=

�
ln
rH
rL

1� rL
1� rH

�
+

q

rL (1� rL)
rH � rL
(1� q)
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