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1 Introduction

Motivation

From a theoretical and empirical viewpoint alike, it has been well understood for a long time

that agents have strong incentives to free-ride on others’ efforts to find out which alternative

should be implemented for the common good (Downs, 1957). Incentives to become informed

before voting are low because a single individual bears the cost of acquiring the information, but

his/her probability of affecting the outcome (i.e., his/her probability of being pivotal) is small,

particularly in large populations. The problem that there is too little information at both the

individual and the aggregate level is pervasive both in politics (Borgonovi et al., 2010; Elenbaas

et al., 2012; Stephenson, 2010) and in corporate governance (Alam et al., 2014; De Haan and

Vlahu, 2016; Reid, 1984; Yeoh, 2000). It is also salient for numerous panels of appointed experts

such as scientific referees, juries, public procurement committees, monetary policy committees,

and hiring committees (see e.g. Gersbach and Hahn, 2012; Persico, 2004; Reis, 2013). How

should committees of (expert) decision-makers be designed to ensure that a sufficiently high

level of information is acquired and later expressed through voting?

Committee delegation and monetary payments

An intuitive way of remedying the underinvestment in information in all of the above scenarios is

to increase the chances for agents to be pivotal and/or to reduce the private costs associated with

information acquisition. In exploring this double avenue our main goal is to advance knowledge

about the design of committees of decision-makers appointed from a larger population. To

do so, we investigate a family of mechanisms that first determine a committee with a certain

size and second set a suitable reward scheme for its members. A committee is a (randomly)

chosen subset of agents, all of whom are given the exclusive right to vote. A reward scheme is a

population-wide, budget-balanced vector of (positive and negative) monetary transfers.

While it is obvious that monetary payments can have a positive effect on agents’ incentives to

acquire information, little is known about how reward schemes and committee size should be

optimally selected jointly by a community to learn what alternative is the best for the common

good. Hence, this is the focus of the paper. This means that we abstract from all other variables

that can influence optimal committee design (see e.g., Gerling et al., 2005; Persico, 2004). For

instance, we do not consider the voting rule as a design variable, and stick to the widely used

majority rule. Assuming neutrality, i.e., treating both alternatives equally, is often a requirement

in many voting situations, especially in the absence of a status quo. Although we proceed with a

polity as our default setup, our insights readily extend to any of the situations described above.

Our setup

For the analysis we build on Martinelli (2006). We assume that there are two ex-ante equally

likely alternatives, A and B, and that each agent (of the committee) receives an informative
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signal of quality 1
2

+ x about the state of the world (i.e., the signal about the state of the world

is correct with probability 1
2

+ x). Variable x is chosen by the agent himself or herself and

has an associated cost in utility terms equal to c(x). Conditional on knowing the state of the

world, either all agents of the entire population would like to implement A, or all of them would

like to implement B. Hence, while all the agents share the same preferences, they differ in the

information they possess. This has major consequences for outcomes, as it may affect which

alternative the agents will vote for. We do not consider the possibility of communication, so

voting (through the majority rule) is the only way in which agents can act on their information.

This is a reasonable assumption for a number of setups, including, but not limited to, groups of

citizens who have been randomly chosen from the citizenry, nodes in a blockchain, and scientific

reviewers. In general, the feature that committee members cannot communicate with each

other can be adopted as part of the committee design. We also assume informative voting, i.e.,

individuals do not strategize in the use of the information they get, but simply translate it into

a vote.1

A preview of our results

We consider two distinct approaches, which serve as polar cases for the analysis of committee

design with side payments. First, we assume that although information costs are privately in-

curred, they are verifiable and contractible. Assuming in addition that all incurred information

costs are divided equally among all agents independently of the individual effort exerted by

each of them and regardless of whether the agents belong to the committee or not, we show

that optimal committee size is one, i.e., one-member committees implement the right alterna-

tive with highest probability. This result holds provided that the information acquisition cost

function is a monomial of degree two at most. For information acquisition cost functions that

are monomials of a degree higher than two, optimal committees have more than one member.

For general information acquisition cost functions, these results mean that high (low) convexity

of the information acquisition cost function is associated with large (small) committees.

In our second approach, we assume that contracts cannot be written that are contingent on

the information costs incurred by the agents. We also assume that it is impossible to condition

rewards on the correct state of the world.2 This means that rewards can only be conditioned

on the voting pattern. To channel the incentives of the agents and avoid them free-riding on

each other, we then show that it suffices to consider the following class of reward schemes:

Each member of the committee will receive a (positive or negative) transfer that depends on

1For most of our analysis this can be done without loss of generality. From Austen-Smith and Banks (1996)
we know that informative voting is rational when the prior is symmetric and the voting rule is simple majority.
Some papers have analyzed the validity of informative voting (see e.g. Grosser and Seebauer, 2016) from an
empirical perspective.

2This typically occurs when the correct state of the world is revealed much later than payments need to be
executed or when it is never revealed independently of the committee decision, since it is precisely the task of an
expert committee to find out the state of the world. Moreover, even if the state of the world may be observable,
it may not be contractible, as has been argued in the incomplete contract literature.
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the vote tally difference between the two alternatives obtained after all committee members

have cast their votes. The particular structure of the reward scheme to be chosen depends on

whether c′(1/2) is finite or infinite, and hence on whether full learning is possible or not. In either

case we require the rewards to be uniformly financed by all members of the population. Then

we show that an adequate reward scheme guarantees that the right alternative is implemented

with probability one (when full learning is possible) or that such probability converges to one

with population size (when full learning is impossible). As with cost sharing, committees must

be small, whether in absolute terms (when full learning is possible) or in relative terms (when

full learning is impossible). At all events, committee size can never be smaller than three.

Our results thus rationalize the use of monetary transfers in small committees whose members

are appointed from a larger population and care about the common good. Financing is easily

guaranteed when taxation can be enforced (whether de jure by some external authority or de

facto using some standard folk-theorem argument), in which case we do not need to be concerned

with participation incentive constraints (i.e., with individual rationality). Even if such concerns

matter, we show that provided there are enough citizens individuals who are not committee

members will prefer to take part in the mechanism (at the interim stage in which they do not

know the state of the world but know that they are not part of the committee) rather than

leaving the problem altogether. At the interim stage, committee members for their part are

content with being part of the committee.3

Extensions and further results

The results we derive in our baseline setup carry over to more general setups that include

asymmetric priors, asymmetric preferences, and private values. Additionally, the good properties

of our family of mechanisms can be maintained under the restriction that all citizens—and

not just committee members—must keep their right to vote. To show this, we add a second

voting stage to the mechanisms considered, which therefore take the form of Assessment Voting

(Gersbach et al., 2019). This is a two-round mechanism that splits the population into two

groups that vote sequentially, with all the individuals in one group voting simultaneously; the

first voting group can be thought of as the committee (or assessment group, AG). All individuals

cast one vote, members of the second voting round know the outcome of the first voting round

before they vote, and the alternative that receives more votes in the two voting rounds combined

is implemented. To be consistent with our framework, we allow all citizens to acquire costly

information about the state of the world, no matter which round they vote in. Finally, we also

investigate different cost sharing rules for setups in which costs are verifiable and can be shared,

and compare them to the cost sharing rule according to which citizens who do not belong to the

committee uniformly finance the information acquisition costs incurred by committee members.

3Under cost sharing, all individuals expect the same positive utility, which is never lower than the utility
when each alternative is chosen with the same probability. Hence, if the outside option entails a lower utility
than the latter, all the citizens will participate in the mechanism.
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Organization of the paper

The paper is organized as follows: In Section 2 we discuss the papers that are most relevant for

our model. In Section 3 we introduce our model and set up notation. In Section 4 we discuss

the case of cost sharing. In Section 5 we discuss the case in which cost sharing is not feasible

and reward schemes are used. In Section 6 we consider that citizens cannot be deprived of their

right to vote and discuss different cost sharing rules. In Section 7 we investigate some extensions

of our baseline setup. Section 8 concludes. The proofs are in the Appendix.

2 Literature

Our paper is related to several strands of the literature.

Condorcet jury theorem

The broad literature on the Condorcet jury theorem (see Austen-Smith and Banks, 1996; Cas-

tanheira, 2003; Condorcet, 1785; Feddersen and Pesendorfer, 1996; Gratton, 2014; Krishna and

Morgan, 2012; Ladha, 1992; Martinelli, 2006; Persico, 2004; Razin, 2003; Triossi, 2013; Young,

1995) investigates whether elections can aggregate the information that is dispersed in the elec-

torate. We contribute to this literature by showing how monetary transfers and vote delegation

to a committee can be used jointly to overcome low levels of information acquisition arising when

the accuracy of information is determined endogenously by each individual at variable cost.

Rational ignorance and the common good in elections

From the above literature, the paper that is closest to ours is Martinelli (2006). Its main re-

sult is that for suitable cost acquisition functions, rational voters reluctant to incur information

acquisition costs are still able to make good electoral decisions collectively in the case of large

populations. Although each individual acquires very little information (i.e., individuals are ra-

tionally ignorant), the aggregate level of information is much higher (i.e., the community of

individuals is not ignorant) and with high probability leads to the implementation of the right

alternative. We complement Martinelli (2006) in that we focus on societies (and committees) of

any size that are unable to implement the correct alternative with high probability through nor-

mal elections. In such cases, our results suggest (a) delegating the voting power to a committee

made up of a small number of citizens and (b) channeling adequate transfers to the committee

members from the rest of society that incentivize the former to acquire high levels of information

and express them through voting.4

Delegating to a committee

Our family of mechanisms is characterized by the feature that voting power is fully delegated to

4The possibility that vote delegation to a small committee could be better than one-round universal suffrage
has already been pointed out by Martinelli (2006) through an example with a quadratic cost function. However,
he does not consider side-payments to sustain the desirable outcome in equilibrium.
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a committee. The rationale for doing this is that it increases the committee members’ pivotality.

At least since Gilligan and Krehbiel (1987), it is well known that the parent body (in this case, the

rest of the population) should have limited rights to amend the decision taken by a committee.

This is in line with our insights. Yet, we also show that as long as committee members vote

before the rest of the population exclusive voting rights may not be necessary. Other potential

benefits associated with higher pivotality, and hence with our family of mechanisms, includes

protection against special interests (see e.g. Louis-Sidois and Musolff, 2020).5

Monetary transfers and reward schemes

The second main feature of the family of mechanisms we consider is that they incorporate

monetary transfers. It is intuitive that monetary transfers can affect voters’ behavior in voting

and, more generally, any agent’s behavior in a strategic situation. Winter (2004) argues that

even if all agents are ex ante equal, monetary transfers in the form of asymmetric reward schemes

can prompt agents to exert socially efficient effort levels (see also Bernstein and Winter, 2012).

Our paper shares this insight in the case of voting: Giving rewards to members of the committee

only may be desirable for the common good. More recently, Azriele (2018) has considered a

setup that is similar to ours, except that he is not constrained by voting with the majority rule.

He then shows that optimal contracts between the experts and a decision-maker discriminate

between the experts and entail transfers that cannot be contingent on the true state of the world.

We share this view in our analysis of reward schemes (see also Dal Bo, 2007).

Acquiring costly information that benefits everybody and can be used later via voting is a pub-

lic good. Hence the positive externalities associated with acquiring information may lead to an

underprovision of information. For general public goods, it is known that introducing monetary

transfers from some agents to others can introduce negative externalities that compensate the

positive externalities set out above (Morgan, 2000). For committee design, Persico (2004) ana-

lyzes how (huge) side-payments can be used to ensure full information acquisition in committees,

when this is feasible. We complement his results by (i) emphasizing that large punishments are

only needed off equilibrium, (ii) focusing on arbitrary information acquisition cost functions, and

(iii) considering reward schemes that feature the minimal monetary transfers needed—together

with the incentives linked to pivotality—to ensure high levels of information acquisition.6 The

latter is important for practical implementation, as high monetary transfers can crowd out the

direct price effect provided by monetary transfers (see e.g. Gneezy et al., 2011; Meier, 2007).

Optimal committee size

Some papers have examined optimal committee size by analyzing how voting rules should be

5When small committees are exposed to external influence, outside payments trying to sway (voting) behavior
may be directed at committee members. This has been thoroughly studied both from a theoretical and empirical
perspective in the case of lobbying groups trying to buy the vote of legislators (see e.g. Austen-Smith and Wright,
1994; Felgenhauer and Grüner, 2008; Wright, 1990).

6From a technical perspective, our model and approach are very different from that of Persico (2004). For
instance, we impose the use of the majority rule and provide a full account of symmetric equilibria for this case.
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designed not only to aggregate dispersed information efficiently but also to induce agents to

acquire sufficient information. By letting the vote threshold vary that is needed to upset a

status quo, Persico (2004) also shows that both the threshold and the committee size relative to

the total population should be determined by the information level acquired in (the symmetric)

equilibrium and thus be generically above a half, but typically lower than one. Like Persico

(2004), we focus on environments where information is a public good and investigate a family

of mechanisms characterized by an additional design variable beyond committee size. While

Persico (2004) considers the voting threshold, we stick to the majority rule and introduce transfer

schemes as part of the design. Our results are then in sharp contrast. With either cost sharing

or reward schemes, it is typically optimal to have committees that are small, at least in relative

terms.

Committees are paramount for the functioning of representative democracies, and their (optimal)

size depends on a number of variables, e.g., representativeness. In the case of the US Senate,

for instance, the size of standing committees typically ranges from 12 to 29, while in the House

of Representatives it ranges between 11 and 61.7 In the corporate world, a board of directors

often takes the most important decisions for a firm. The size of such a board ranges from 3 to

more than 30.8 Its size (and composition) also depends on several variables, e.g., disciplining

its members and providing them with the incentives not to exploit private information (Raheja,

2005). In general, there is mixed evidence about whether larger boards of directors lead to

better firm performance (Wang et al., 2009). For their part, juries typically range from 3 jurors

to 12, editors usually ask for a report about a submitted paper from between 1 and 5 reviewers,

while hiring committees can entail a few members of a firm/department or, on occasion, many

more. According to Erhart and Vasquez-Paz (2007), the optimal size for monetary committees

is between 5 and 9 (see also Blinder, 2007). In turn, larger public procurement committees

may yield better (financial) decisions (Zábojńıková, 2016). From a general perspective, different

optimal sizes for panels of experts obey different rationales, e.g., minimizing the impact of career

concerns on decisions (see e.g., Hahn, 2017; Levy, 2007). Our results rationalize the use of small

committees when side-payments are possible and committee members are given the exclusive

right to vote.

Mechanism design

Our paper is also related to a strand of the mechanism design literature that studies opti-

mal information acquisition mechanisms for committees. In Gerardi and Yariv (2008), there is

the possibility of communication and the mechanism designer who participates in the decision

chooses both the optimal size of a committee and the way individual decisions translate into

the final outcome. Gershkov and Szentes (2009) characterize the optimal stopping rule in a se-

quential mechanism in which a randomly selected voter is asked in each round to acquire some

7See https://www.llsdc.org/assets/sourcebook/crs-93-920.pdf, retrieved 29 January 2020.
8See https://www.investopedia.com/articles/analyst/03/111903.asp, retrieved 29 January 2020.

7



information.9 Koriyama and Szentes (2009) study the minimum size of committees that guaran-

tees ex-ante efficiency. We differ from these papers in that we allow side-payments and consider

different (continuous) levels of information acquisition. This leads to results about optimal size

that are not in accord with the above papers, as we suggest a lower size.

Agency problems

For the analysis of the static game(s) underlying our family of mechanisms, we assume that there

is preference homogeneity—within the committee and between the committee and the rest of

population.10 Hence there are no incentives for committee members to manipulate or withhold

information. The latter feature is common in agency models in which one or several principals

try to influence the decision of a body of voters through information transmission (see e.g.

Alonso and Câmara, 2016; Chan et al., 2019; Hagenbach et al., 2014; Jackson and Tan, 2013).

Our paper contrasts with these articles. In our common-value setup introducing side-payments

can be welfare-enhancing.

Experimental evidence for committees

In our setup, all citizens vote according to their signal, regardless of accuracy; this is called

informative voting. From an empirical perspective, many papers have analyzed the validity of

this behavior (we refer to Grosser and Seebauer, 2016). Very recently, Kawamura and Vlaseros

(2017) have shown that some voters tend to disregard the (private) signals they have obtained

and use public signals (expert opinions). This, in turn, decreases information aggregation.

The two approaches we consider, cost sharing and rewards, increase individual signal precision.

This could help voters to ignore (noisy) public signals and lead to higher levels of aggregate

information.

Real-world applications and computer science

The mechanism we propose—vote delegation to a committee, coupled with a transfer scheme—

could be used instead of population-wide referenda (as an online voting procedure) in the case

of large populations if committee members were chosen at random from the entire population.

Thus we contribute to the growing strand of research attempting to find mechanisms for collec-

tive democratic decisions that can correct some inefficiencies of the decision-making procedures

currently in place (see e.g. Gersbach et al., 2019; Lalley and Weyl, 2018).11 As far as side-

payments are concerned, central (governmental) authorities have the power to execute them.

Alternatively, payments could be implemented via Smart Contracts in the absence of such an

authority. As for the composition of the committee, it is clear that its members should be chosen

in accordance with a fair randomization device. Micali and Cheng (2017) argue that a verifiable

random function can be implemented via the blockchain.

9A more general setting of multiparty computation is analyzed in Smorodinsky and Tennenholtz (2006).
10According to Cai (2009), preference heterogeneity within the committee calls for larger committees.
11In Section 6.1, we analyze how Assessment Voting (Gersbach et al., 2019) would work in a common-value

setup in which information about the state of the world is costly.
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In the computer science literature, assigning full voting power to a fraction of the population

is known as random sample voting (RSV)—see Chaum (2016). The latter paper suggests such

a voting procedure and proposes a protocol for implementing it that ensures the randomness

of voter selection, non-manipulability, verifiability, and anonymity. Subsequently, Basin et al.

(2018) have developed a provably secure protocol for RSV, which could also be adapted to our

mechanism. A recent paper by Meir et al. (2020) studies the performance of random committees

of representatives with arbitrary population size that must vote on a number of binary issues.

Our paper shows that when coupled with schemes that ensure payments, RSV can yield good

decisions even when citizens must exert effort to become informed.

Another distinct application of our mechanism with a random committee could be blockchains

(Atzori, 2015; Beck et al., 2018; Paech, 2017). Governance has become a central issue for

any blockchain because its participants not only have to achieve consensus on the validity of

transactions, but the evolution of the blockchain itself requires repeated collective decisions

beyond the decisions that are taken implicitly by forks. Our paper suggests a simple mechanism

that could be used to improve the governance of blockchains.

3 Model

For our analysis we build on Martinelli (2006). There is a population of 2n + 1 individuals (or

agents) who must choose between two alternatives, say A and B. One alternative is the right

one, i.e., it yields higher utility for all individuals than the other alternative. For simplicity, we

normalize the utility obtained from the right alternative to one, and the utility obtained from

the wrong alternative to zero. However, the right alternative is unknown, as it depends on the

(unknown) state of the world. If the state of the world w is A (B), then A (B) is the right

alternative. We assume that the ex-ante probabilities that either alternative is the right one

are equal to 1
2
. Individuals can nonetheless obtain a signal about the likelihood of the right

alternative, i.e., a signal about the state of the world. Specifically, there is an (information

acquisition) cost function

c :

[
0,

1

2

]
→ R+ ∪ {∞},

where c(x) must be interpreted as the cost in utility units for each voter of receiving a signal

si ∈ {A,B} about the state of the world of quality 1/2 + x (x ∈ [0, 1
2
]). The latter means that

for y ∈ {A,B},
Prob

[
si = y|w = y

]
=

1

2
+ x.

We assume that signals are stochastically independent across individuals and that c(x) is in-

creasing. Note that c(x) can be infinity, in which case an individual cannot inform himself or

herself with certainty about the state of the world.
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There is also a committee, which is a subset of 2m + 1 individuals chosen randomly from the

general population. This means that m ≤ n. Each member i of the committee can decide about

his/her own level of information, which we denote by xi. Once committee members have received

their signals, all of them simultaneously vote for one of the alternatives. The alternative that

receives at least m+ 1 votes is implemented. We also assume that no abstention occurs. While

this is a very strong assumption to impose on the entire population if n is large, it is not very

demanding for low values of m.12 With no abstention, the alternative with the largest number

of votes is implemented.

Finally, there is a monetary transfer scheme (to be specified later) according to which total

payoffs are realized. A transfer scheme is a vector (vi)
2n+1
i=1 ∈ R2n+1 for all members of the

population, with the property that it is budget balanced, i.e.,
∑2n+1

i=1 vi = 0. We assume that

individuals have linear utility in money. This means that when alternative y is implemented and

the right alternative is alternative z the total utility that individual i derives is

ui(z, y, xi, vi) := 1z(y)− c(xi) + vi,

where 1z(y) = 1 if z = y and 1z(y) = 0 otherwise.

To sum up, we analyze a mechanism that specifies the following sequence of events:

1. The committee is formed.

2. Committee members decide how much information they want to acquire.

3. Committee members cast a vote.

4. The state of the world is realized.

5. A transfer scheme is applied, and total payoffs are realized.

We assume that individuals always vote in favor of the alternative that is interim most likely,

given their signal. If both alternatives are equally likely, they vote according to their signal.

When the signal is informative, voting in favor of the other alternative is weakly dominated (in

expected terms). When the signal is uninformative (i.e., the only information the agents have

is the prior), this assumption rules out implausible equilibria.13

Following all the above, the (static) game we consider is one in which all committee members

compose the player set and the strategy set of each player is the interval [0, 1/2]. We denote

this game by Gm, as the committee is made up of 2m + 1 members. For the analysis, we focus

12Abstention in a costly information acquisition setting with continuous signals and cost functions is discussed
in McMurray (2013) and Oliveros (2013).

13This assumption is of a technical nature and differs from Martinelli (2006). It rules out undesirable equilibria,
with or without transfer schemes, such as the one where no agent procures information and all agents vote for a
given alternative.
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on symmetric Nash equilibria, i.e., we assume that all players choose the same information

level x, with x ∈ [0, 1/2].14 We stress that a citizen chooses the level of information s/he

wants to acquire, but s/he does not choose the alternative s/he votes for. This follows from the

assumption that after each agent i has received a (possibly uninformative) signal, s/he simply

follows the recommendation given by the signal.

Finally, we make some assumptions on the cost function c(·) beyond the fact that is strictly

increasing in (0, 1/2). First, c(·) is twice continuously differentiable in the interval (0, 1
2
). This

assumption is of a technical nature and simply facilitates the analysis. Second, c(·) is strictly

convex. This rules out multiplicity of symmetric equilibria with cost sharing. Third, c(0) = 0,

so acquiring zero information is costless. Fourth, c′(0) = 0. This last assumption guarantees the

existence of equilibria with positive information acquisition.15

4 Cost Sharing

In this section we examine perfect cost sharing, i.e., we consider that for each i ∈ {1, . . . , 2n+1},

vi = c(xi)−
1

2n+ 1
·
2m+1∑
j=1

c(xj), (1)

where we assume that xj = 0 if individual j does not belong to a committee. This means that

regardless of how much costly information one member of committee acquires, the cost of doing so

is distributed equally among all members of the population, not just committee members. Thus,

it must be the case that such costs are observable (and contractible). For some applications,

observability of costs is a realistic assumption, blockchains, for example. Information costs are

also (approximately) observable if members of the committee must produce a written assessment

(audit or software tool) about which alternative they think is desirable. This is the case for

scientific referees and, often, for members of a hiring committee.

Let us consider the decision of a committee member i about what effort level xi to exert in

order to increase the precision of his/her signal, which comes at cost c(xi). Due to our focus

on symmetric equilibria, let any other member j of the committee choose x, with x ∈ [0, 1/2].

Then, according to Equation (1), the expected payoff of individual i, which depends on variable xi

14We assume that transfers are made from individuals who are not committee members to committee members.
This means that a symmetric equilibrium of our game does not necessarily correspond to a (non-symmetric)
equilibrium of the game underlying the mechanism in which all individuals of the society can acquire information
and all of them have the right to vote.

15The mechanisms we propose are still useful if c′(0) > 0, as they could be used to increase the pivotality of
the committee members in order to generate positive information acquisition in equilibrium. However, we do not
address such cost functions or investigate the extent to which our mechanism can improve outcome precision.
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(given x), is equal to

Ui(xi|x) = Px[tie] ·
(

1

2
+ xi

)
−
c(xi) +

∑2m+1
j=1,j 6=i c(x)

2n+ 1
+ χ. (2)

In the above equation, Px[tie] is the probability that the vote of all other committee members

will yield a tie. This is the only case in which i’s vote matters for the outcome and hence

for expected utility from the implementation of the decision. The third term in Equation (2),

denoted by χ, captures the expected utility of the outcome when there is no tie. This part is

independent of x. Accordingly, for all xi ∈ (0, 1/2)

U ′i(xi) = Px[tie]− c′(xi)

2n+ 1
(3)

and

U ′′i (xi) = − c
′′(xi)

2n+ 1
< 0. (4)

When all committee members other than individual i choose information level x, the probability

that their votes yield a tie is equal to

Px[tie] =

1 if m = 0,(
2m
m

)
·
(
1
2
− x
)m · (1

2
+ x
)m

if m > 0.
(5)

From Equations (3)–(5), if we take xi = x, we obtain the first-order condition that is necessary

and sufficient for a strategy profile (x, . . . , x), with x ∈ (0, 1/2), to be a symmetric equilibrium

of Gm, namely,

c′(x)

2n+ 1
=

1 if m = 0,(
2m
m

)
·
(
1
4
− x2

)m
if m > 0.

(6)

Since c′(0) = 0, it is clear that the strategy profile in which no citizen acquires information,

namely (0, . . . , 0), cannot be an equilibrium of Gm for any m ≥ 0. Then, if m = 0, either

Equation (6) has one solution, say x ∈ (0, 1/2), or none. In the former case, the strategy

profile (x, . . . , x) is a symmetric equilibrium. In the latter case, the strategy profile in which all

committee members acquire full information, namely (1/2, . . . , 1/2), is an equilibrium. In either

case, G0 has no more equilibria since c′′(·) > 0. As for case m ≥ 1, if we let

θ(x) :=

(
2m

m

)
·
(

1

4
− x2

)m
− c′(x)

2n+ 1
,

we then obtain θ(0) > 0, θ(1/2) < 0, and θ′(x) < 0. Thus Equation (6) has a unique solution,

which in turn determines the only symmetric equilibrium of game Gm. Henceforth, we use x∗m(n)

to denote the unique symmetric equilibrium of Gm when the committee is made up of 2m + 1

voters and the population consists of 2n+ 1 individuals, with 0 ≤ m ≤ n.
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Here an important remark is enabling us to connect our results to those of Martinelli (2006).

Our setup in this section—but not the one in Section 5—is in a one-to-one correspondence with

a setup in which a society of 2m + 1 individuals have the right to vote and each of them must

individually bear the information acquisition costs using the cost function c̃(x) := c(x)/(2n+1).

In this case, an interior equilibrium without cost sharing is pinned down by

c̃′(x) =

1 if m = 0,(
2m
m

)
·
(
1
4
− x2

)m
if m > 0.

(7)

This means that an increase in the total number of citizens in our setup is equivalent to an

across-the-board decrease of information acquisition costs in a setup without cost sharing. We

stress that the homogeneous decrease of c̃(x) for all x ∈ [0, 1/2] does not alter the shape of the

information acquisition cost function c̃(·) compared to c(·). In a similar vein, one could consider

a variant of our mechanism in which costs are shared only among members of the committee and

not among all members of the society. In such a case, it suffices to consider the cost function

ĉ(x) := c(x) · (2m + 1)/(2n + 1) and then the analogue of Equation (7). This and other cost

sharing rules are analyzed in Section 6.2.

Focusing on our setup with cost sharing among all individuals of the population, we start by

showing that the equilibrium individual information acquisition level is decreasing in the number

of members of the committee, and that it typically converges to zero as the number of committee

members goes to infinity. Recall that it must be the case that m ≤ n at all times, i.e., committee

size can never be larger than total population size.

Lemma 1. For any m,n ∈ N such that m+ 1 ≤ n, x∗m+1(n) < x∗m(n).

Proof. See Appendix.

Lemma 2. There is a subsequence (x∗m(f(m)))∞m=0 of ((x∗m(n))nm=0)
∞
n=1 that converges to zero,

provided that f(m)/
√
m is sub-exponential.

Proof. See Appendix.

We stress that for the above lemmas to hold, it suffices for c(·) to be convex (besides the other

technical assumptions that we made). On the one hand, Lemma 1 is not surprising. As we

increase the number of committee members, the probability that an individual member will be

pivotal (and will thus break a tie) becomes smaller, all else being equal. Since c(·) is convex,

this translates into a lower value of the information acquisition equilibrium level for each of the

committee members. One can then easily verify that for one-member committees (m = 0), full

information acquisition is not generically attained, at least for low values of n. One example

is given in Table 1 below. For their part, committees with more than one agent will never

reach full information about the state of the world at the aggregate level, no matter how many
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members there are in the entire society and even if full information can be attained at a finite

(disutility) cost. This is because in these situations, a single individual is never pivotal if all

other individuals agree with each other about what the best alternative is and vote accordingly.

On the other hand, because the probability of being pivotal converges to zero as the number

of committee members goes to infinity, the information acquisition equilibrium level also goes

to zero. For the latter to happen, however, it is essential that committee size relative to total

population does not converge to zero too fast, as required by the condition on f(m). Otherwise,

due to equal sharing, the effective costs of acquiring information for a single committee member

become so small that positive levels of information acquisition can be sustained in equilibrium.

For example, consider the extreme case in which m is kept constant at zero while n converges to

infinity. Then, for sufficiently large n, there is no interior solution for the maximization problem

faced by the only committee member, who will inform himself/herself to the maximum level

(i.e., s/he will choose x∗ = 1/2).

Lemma 1 shows that reducing the size of the committee but keeping total population size con-

stant prompts every committee member to acquire higher levels of information. This is because

the chances of being pivotal increase for each committee member, all else being equal. Another

possibility is to keep the size of the committee constant and increase the size of the population.

Doing so also prompts every committee member to acquire higher levels of information. The

reason is that information acquisition costs decline for each member of the committee, all else

being equal. This result follows easily from Equation (6) and the fact that c(·) is a strictly

convex function and is formalized next without a proof.

Lemma 3. For any m,n ∈ N such that m ≤ n, x∗m(n) < x∗m(n+ 1).

Lemmas 1 and 3 identify two ways of increasing the level of information a single member of the

committee acquires. The following lemma compares both ways in terms of the extent to which

the individual information level increases.

Lemma 4. For any m,n ∈ {2, 3, . . .}, it holds that x∗m−1(n) > x∗m(n+ 1), provided that

n ≥ 2m. (8)

Proof. See Appendix.

Consider a society with a committee made up of at least three members but involving fewer

than half of the individuals of the society. Lemma 4 shows that, for such a society, the effect on

the individual information level acquired of removing two members from the committee (but not

from the society) is larger than the effect of adding two individuals to the society (but not to the

committee). That is, the pivotality increase that results from having committee size go down

from 2m+ 1 to 2m− 1 dominates the decrease in costs that results from having population size
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go up from 2n+ 1 to 2n+ 3. It is worth noting that we cannot relax Condition (8) in Lemma 4.

This is shown in the following example:

Example 1. Consider m = 4, n = 5, and c(x) = 4x2. Then,

x3(5) ≈ 0.22215 < 0.236881 ≈ x4(6).

What are the implications of Lemmas 1–4 for the likelihood of taking the right decision and

for welfare? To answer these questions, we focus for simplicity on cost functions of the kind

c(x) = axb, with a, b > 0, although our insights extend to more general specifications of the

information acquisition cost function. Parameter a measures information acquisition costs in

(dis)utility terms. The higher it is, the more costly it is for an individual to inform himself or

herself. For its part, parameter b measures the degree of convexity of the cost function. The

higher b is, the more convex such a function will be. Note that c′′(1/2) < ∞, so that full

information is possible, and that

c′′(0) = 0⇔ b > 2. (9)

If c′′(0) = 0, which happens when the information acquisition function is sufficiently convex,

then the information acquisition costs are very low for levels of information very close to zero.

According to Martinelli (2006) (see also Downs, 1957), this could the case when the costs of

“paying a little attention” are low because citizens (or committee members) are “involuntarily

exposed to a flow of political information in the course of everyday activities”. If c′′(0) > 0,

which happens when the information acquisition function is not sufficiently convex, these costs

are significantly higher.

First, let us use Qm to denote the probability that the right alternative is implemented if the

committee is made up of 2m+ 1 individuals. One can easily verify that

Qm = Qm(x∗m) :=
2m+1∑
i=m+1

(
2m+ 1

i

)
·
(

1

2
+ x∗m

)i
·
(

1

2
− x∗m

)2m+1−i

. (10)

It then turns out that Qm is maximal for m = 0 if the cost function is moderately convex.

Theorem 1. Let the information acquisition cost function be c(x) = axb, with 0 < a and

1 < b ≤ 2. Then Q0 > Qm for all m > 0.

Proof. See Appendix.

The above result shows that the probability of choosing the right alternative for m = 0 (in which

case the committee is made up of one individual) is larger than for any m > 0 (in which case the

committee consists of at least three individuals). Theorem 1 thus suggests that as far as cost

functions that are moderately convex are concerned and provided that cost sharing is feasible,

the committee should be made up of only one member if the goal is to implement the right
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alternative with the highest possible probability.16 The proof of Theorem 1 is based on finding

a suitable upper bound derived for the function Qm(x).

The next proposition shows that the result of Theorem 1 is not a property of information

acquisition cost functions being convex.

Proposition 1. Let the information acquisition cost function be c(x) = axb, with a > 0 and

b > 2. Then,

(i) there exist a∗(b) > 0 and m∗(b) > 0 such that for any a > a∗(b) and m > m∗(b),

Q0 < Qm.

(ii) if, moreover, 2
b

b−1 < 3, then there exists a∗(b) > 0 such that

Q0 < Q1 ⇐⇒ a > a∗(b).

Proof. See Appendix.

The proof of Proposition 1 is based on a suitable lower bound for function Qm(x). On the one

hand, Part (i) of Proposition 1 is concerned with the comparison between a one-member com-

mittee and committees with sufficiently many members, and it is therefore only informative in

situations where the latter are feasible. In such cases, a sufficient condition for large committees

to outperform a one-member committee in the implementation of the correct alternative is that

parameter b be larger than two—so c′′(0) = 0, see (9)—and parameter a be sufficiently large. The

former condition requires that the information acquisition cost function is sufficiently convex,

while the latter condition requires information costs to be sufficiently large in their extent.

On the other hand, note that 2
b

b−1 < 3 if and only if b > log2 3
log2 3−1

≈ 2.71. Using the equivalence

in (9), it then follows from Part (ii) of Proposition 1 that for Q0 to be larger than Q1 it is not

necessary that c′′(0) = 0. This result is important when committees must be small, say, for

operational reasons. For instance, this is the case of reviewers in the refereeing process, all of

which need to produce a report that will be read by the editor in charge.

To sum up, Theorem 1 and Proposition 1 suggest that, in general, moderate convexity of the

information acquisition cost function is not only sufficient for one-member committees to be

optimal regarding implementation of the correct alternative, but it is also necessary if information

acquisition costs are large.

It is interesting to compare these results with Martinelli (2006). To do so, let c(x) = axb. First,

consider that b ≤ 2. Martinelli (2006) shows that the probability that the right alternative

is implemented by a large population of individuals is bounded away from one. Theorem 1

16Of course, there are reasons (outside of our model) to be concerned with one-member committees, such as
the possibility that the only committee member acts as a dictator.
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complements this result for all population sizes by showing that full delegation of voting power

to a one-member committee can overcome the difficulties that normal voting has in implementing

the right alternative with (arbitrarily) high probability. If costs can be further shared among all

members of the population, the only committee member attains much higher levels of information

acquisition and even inform herself/himself perfectly if the population is very large (and full

learning is possible). Second, consider that b > 2, which guarantees c′′(0) = 0 and disregards all

information acquisition functions that are either linear or moderately convex. Martinelli (2006)

shows that despite the fact that the level of information acquired by each individual goes to zero,

the probability of selecting the right alternative converges to one as the number of voters tends

to infinity. Our results offer new insights. If committee size cannot become arbitrarily large, the

turning point determining whether or not delegating all voting power to a single voter is optimal

(in terms of the probability of implementing the right alternative) may not be c′′(0) = 0.17

It is also useful to interpret Theorem 1 and Proposition 1, as well as Lemmas 1–4, in the context

of the Condorcet Jury Theorem. According to the latter, if jury size increases, the probability

that the right alternative is chosen converges to one, provided that each member is not completely

uninformed. This does not necessarily occur in our model because we endogenize the information

acquisition level, which becomes smaller as we increase committee size (i.e., jury size), all else

being equal.

In our previous analysis, we have focused on the probability of choosing the right alternative

and disregarded the societal costs of acquiring the information that are necessary to achieve

this. Incurring very large information costs might be objectionable from a welfare perspective.

To discuss whether committee size should be chosen from a welfare perspective as prescribed by

Theorem 1 and Proposition 1, consider now the expected average per-capita utility under our

mechanism, which we define as welfare and denote as18

Wm = Qm −
2m+ 1

2n+ 1
· c(x∗m). (11)

The above definition of welfare takes into account both the probability of selecting the right

alternative and the information acquisition costs that have to be incurred. To find the optimal

size of the committee from the perspective of a social planner seeking to maximize welfare, we

have to solve

arg max
m∈N

Wm.

Finding the general solution to the above problem is difficult. Yet we can prove a result that

shows that under cost sharing maximizing the probability of choosing the right alternative and

maximizing welfare can lead to different committee size.

17As discussed in Martinelli (2006), welfare-optimal committee size depends generically on the shape of c(·)
for all information levels.

18To avoid cumbersome notation, we drop the dependence on n.
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Theorem 2. Let the information acquisition cost function be c(x) = axb, with b > 1. Then

there is a∗(b) > 0 such that if 0 < a ≤ a∗(b), W0 > Wm for any integer 0 < m ≤ n.

Proof. See Appendix.

Accordingly, for a given population, if costs are very low, choosing a committee of one member

maximizes welfare, regardless of the degree of convexity of the information acquisition function

as captured by parameter b. This contrasts with the choice of committee size when the goal is

to maximize the probability of choosing the right alternative regardless of the costs of acquiring

information. As shown in Theorem 1 and Proposition 1, the value of parameter b capturing

the degree of convexity of the information acquisition function can have major consequences for

optimal committee size if the goal is to maximize the probability of implementing the right alter-

native no matter the costs needed to acquire information. Depending on the context, information

acquisition costs may be relevant or not for the design of the committee.

As an immediate corollary from Theorem 2 we obtain the following result by using Equation (7).

Corollary 1. Let the information acquisition cost function be c(x) = axb, with b > 1. Then,

for every δ > 0 there is ñ(δ) such that if n ≥ ñ(δ),

|W0 −W ∗
m(n)| < δ,

where

W ∗
m(n) = max

0≤m≤n
Wm.

That is, for arbitrarily large populations, delegating to a committee made up of one member

yields the highest welfare (asymptotically) that any committee size can attain. In fact, doing so

implements the right alternative with probability one, while total—and, hence, average—costs

converge to zero with population size.

Next, we consider an example designed to illustrate the extent of the effect of committee vote

delegation and cost sharing on information acquisition levels. The number of voters is 2n+1 = 21

and the cost function is c(x) = 30x2 (see Table 1). We see that welfare is maximal when the size

of the committee is minimal, i.e., when m = 0 and the committee consists of only one member.

Moreover, the likelihood of selecting the right alternative is monotonically decreasing in the size

of the committee, and so is welfare.19,20 The example also illustrates the differences between

19A proof of the general statement that welfare is maximized for one-member committees would require better
lower and/or upper bounds for function Qm(x). The bounds used in the proofs of Theorem 1 and Proposition 1
do not suffice.

20It is not necessarily the case that Qm is either monotonically increasing or monotonically decreasing as
a function of m, even when Q0 < 1. For instance, let n = 7, a = 48, b = 4.1. Then, one can verify that
(Qm)7m=0 = (0.935889, 0.897275, , 0.906207, 0.914927, 0.922109, 0.928004, 0.932914, 0.937072). In this same exam-
ple, (Wm)7m=0 = (0.829575, 0.827072, 0.84285, 0.85566, 0.865888, 0.874251, 0.881252, 0.887226). That is, welfare
is neither monotonic.
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our setup and that of Martinelli (2006). Assume that m (and, hence, n) becomes arbitrarily

large but that no cost sharing is possible and all individuals vote simultaneously after each

of them has acquired the equilibrium information level. Then the probability that the right

alternative is implemented converges to 0.69. With 21 members and cost sharing, by contrast,

such probability is 0.85. The difference between the two cases arises because (a) pivotality is

higher in a committee than in the entire population and (b) information acquisition costs are

spread across all citizens.

Committee size
(2m+ 1)

Prob. of right alter-
native (Qm)

Information level
(x∗m)

Welfare (Wm)

1 0.85 0.35 0.675
3 0.728586 0.157611 0.622124
5 0.711866 0.117219 0.61372
7 0.705144 0.097392 0.610292
9 0.701521 0.085089 0.608433
11 0.699256 0.0765101 0.607268
13 0.697706 0.0700913 0.606469
15 0.696579 0.0650562 0.605887
17 0.695723 0.0609701 0.605444
19 0.69505 0.0575681 0.605096
21 0.694508 0.0546785 0.604815

Table 1: Cost function 30x2 and total number of individuals 21.

Finally, let (x, . . . , x) be an equilibrium of our setup with vote delegation and cost sharing,

Then consider the case in which no delegation occurs and information acquisition costs are fully

incurred privately. Can there be an asymmetric equilibrium in the latter setup in which 2m+ 1

individuals out of the total 2n + 1 individuals of the population incur information acquisition

costs x and the latter do not inform themselves and either abstain or vote according to their

(uninformative) signal? Since c′(0) = 0, the answer is trivially negative. This means that vote

delegation to a committee (and cost sharing) modifies the outcomes that can be attained through

normal elections, and we have argued that these two features combined can in fact significantly

improve upon normal elections.

5 Reward Schemes

In this section we assume that the costs incurred by individuals to acquire information are

private. This makes it impossible to use the cost sharing scheme that we have analyzed in

the previous section, as ceteris paribus every individual has the incentive to claim the highest

possible cost. In such circumstances, alternative ways that can induce members of the committee

to acquire information have to be found. If voting takes place privately, as is customary in

democratic societies, the only public information that is available is the voting tally, i.e., the
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number of votes for alternatives A and B. As we argued in the Introduction, we proceed with the

assumption that conditions on whether the correct state of the world occur are not possible.21

In the following, we show that adequately contracting on the vote tally suffices to prompt

the committee members to either inform themselves fully or ensure that the aggregate level

of information converges to the highest possible one. Roughly speaking, contracting on such

information guarantees that, on equilibrium, the incentives linked to pivotality are either zero

or go to zero with committee size. The only incentives that matter then are those linked to the

side-payments contingent on vote tally, which then lead to desirable outcomes.

To elaborate, let k denote henceforth the vote tally difference between alternatives A and B,

with k ∈ {−2m− 1, . . . , 2m+ 1}. That is, if k > 0, alternative A received k more votes from

the committee members than alternative B in the voting round. For each m we then consider

functions of the following type:

tm : {−2m− 1, . . . , 2m+ 1} → R

k → tm(k),

with

tm(k) = tm(−k) for k ∈ {−2m− 1, . . . , 2m+ 1} . (12)

Any such function assigns a (positive or negative) reward to any outcome based on the absolute

difference in terms of votes between alternatives, and hence regardless of which alternative

receives the most votes. We stress that because there is no abstention, only odd numbers of the

set {−2m− 1, . . . , 2m+ 1} can occur as vote tally difference.

In Section 4 we considered transfer schemes based on the observed information acquisition costs,

and then analyzed the resulting mechanisms based on such transfer schemes. Here we consider

transfer schemes which are not based on the unobservable information acquisition costs. More

specifically, for each i ∈ {1, . . . , 2n+ 1}, we let

vi =

tm(k) if i is committee member,

−2m+1
2n+1

· tm(k) if i is not committee member.
(13)

That is, if the vote difference between alternatives is k in absolute value, all the members of the

committee are given the same reward tm(k). If tm(k) > 0, this reward is financed homogeneously

by the rest of the population. If tm(k) < 0, the committee members subsidize the rest of the

population.

Next we analyze our mechanism—vote delegation to a committee plus transfers—when the

transfer scheme is defined as in (13). The latter is generically called threshold scheme, or TS

21Our analysis sidesteps career concerns and places the focus on the incentives for acquiring costly information
for the common good.
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for short. The only information a TS uses beyond the vote tally is whether a given individual

belongs to the committee or not. We show that if we choose tm(·) in a certain way, these

incentives induce individuals to acquire sufficiently informative signals about the state of the

world so that the right alternative is implemented with probability (close to) one. This means

that a TS can act as a device coordinating committee members to acquire a higher level of

information.

With a TS, the expected utility of any member i of the committee (for a given size 2m + 1)

when s/he chooses information acquisition level xi ∈ [0, 1/2] and all the other 2m members of

the committee choose x ∈ [0, 1/2], as demanded by our notion of symmetric equilibrium, is

Ui(xi|x) =

(
2m

m

)
·
(

1

2
+ x

)m(
1

2
− x
)m(

1

2
+ xi

)
− c(xi) + χ

+
m∑
k=1

(
2m

m+ k

)(
1

2
+ x

)m+k (
1

2
− x
)m−k [(

1

2
+ xi

)
· tm(2k + 1) +

(
1

2
− xi

)
· tm(2k − 1)

]

+
m∑
k=1

(
2m

m+ k

)(
1

2
+ x

)m−k (
1

2
− x
)m+k [(

1

2
+ xi

)
· tm(2k − 1) +

(
1

2
− xi

)
· tm(2k + 1)

]
+

(
2m

m

)(
1

2
+ x

)m(
1

2
− x
)m
· tm(1). (14)

where χ is independent of xi. If tm(k) = 0 for all k ∈ {0, . . . ,m}, Equation (14) reduces to

the case of standard voting with turnout equal to 2m + 1.22 Recall that we are assuming (12).

Therefore, if we define

φm(k) := tm(2k + 1)− tm(2k − 1) for all k ∈ {0, . . . ,m}

and

φm(0) := tm(1) = tm(−1),

it follows that for all xi ∈ (0, 1/2),

U ′i(xi|x) =

(
2m

m

)
·
(

1

4
− x2

)m
− c′(xi)

+
m∑
k=1

(
2m

m+ k

)
· φm(k) ·

(
1

4
− x2

)m−k
·

[(
1

2
+ x

)2k

−
(

1

2
− x
)2k
]

and

U ′′i (xi|x) = −c′′(xi) < 0.

Accordingly, a necessary and sufficient condition for a strategy profile (x, . . . , x), with x ∈

22Note that this is the case analyzed by Martinelli (2006).
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(0, 1/2), to be an equilibrium of Gm is that

c′(x) =

:=A(x)︷ ︸︸ ︷(
2m

m

)
·
(

1

4
− x2

)m
+

m∑
k=1

(
2m

m+ k

)
· φm(k) ·

(
1

4
− x2

)m−k
·

[(
1

2
+ x

)2k

−
(

1

2
− x
)2k
]

︸ ︷︷ ︸
:=B(x)

. (15)

If m > 0 two important observations follow readily from the above expression. First, since

c′(0) = 0, if φm(k) = 0 for all k ∈ {1, . . . ,m}, then Equation (15) has exactly one solution,

say x. The reason is that c′(·) is increasing and A(·) is decreasing. In fact, (x, . . . , x) is the

only symmetric equilibrium of Gm. This captures one-round voting within a committee. When

φm(k) 6= 0 for some k ∈ {1, . . . ,m}, by contrast, neither uniqueness nor existence of (interior)

symmetric equilibria are guaranteed in general. Clearly, because c′(0) = 0 and A(0) +B(0) > 0,

the strategy profile where no committee member acquires information, namely (0, . . . , 0), cannot

be an equilibrium. If

A(x) +B(x) > c′(x) for all x ∈ (0, 1/2), (16)

the only symmetric equilibrium of Gm is the strategy profile in which all committee agents

acquire full information, namely (1/2, . . . , 1/2). If Equation (16) does not hold, then there is at

least one (interior) symmetric equilibrium (x, . . . , x), with x ∈ (0, 1/2). But there may be other

equilibria, including (1/2, . . . , 1/2).

The second important observation from (15) is that a TS matters for equilibrium up to a constant,

since the value of φm(0) does not affect the incentives of the committee members to acquire

information. This is because in the event that a citizen breaks a tie, s/he will create a difference

of one vote no matter which alternative s/he votes for. While this is relevant for the utility

citizens derive from the alternative implemented, it does not affect the incentives to be informed

conditional on being pivotal. This is reminiscent of the swing voters’ curse (Feddersen and

Pesendorfer, 1996; Herrera et al., 2019a,b). Henceforth, for each integer m ≥ 0, we consider

functions such as

φm : {0, 1, . . . ,m} → R

k → φm(k).

On the one hand, φm(k), with k > 0, rewards (or punishes) a marginal vote even if it does not

break a tie. Such rewards may arise in normal elections if voters care about the victory margin,

and they might be significant (Herrera et al., 2019b). In our case, these rewards are chosen by

design. Breaking a tie, on the other hand, is rewarded (or punished) by φm(0), which is added

to the benefits associated with pivotality.

22



For the subsequent analysis we proceed with a general information acquisition cost function c(·)
and distinguish two cases, depending on the value of c′(1/2).

5.1 Full information

First we consider the case where c′(1/2) < ∞. This means that it is theoretically possible to

find out with full precision what the right alternative is (at a finite cost). For this case, we start

by considering the following reward scheme:

φm(k) =

c′(1/2) if k = m,

0 otherwise.
(17)

The TS defined in (17) only rewards decisions that are reached unanimously within the commit-

tee. If they reach unanimity, each of the committee members is given a reward that amounts

to c′(1/2). A unanimous decision can opt for the correct alternative or the incorrect one. Un-

less all the members of the committee inform themselves perfectly, both options will occur in

equilibrium.

We start by showing the following result:

Proposition 2. Suppose that the reward scheme is defined by (17) for a given integer m ≥ 1.

Then the strategy profile in which all members of the committee acquire complete information,

(1/2, . . . , 1/2), is an equilibrium of Gm.

Proof. See Appendix.

As a matter of fact, from the proof of Proposition 2 one immediately sees that provided that

c′(1/2) < ∞, a necessary and sufficient condition for (1/2, . . . , 1/2) to be an equilibrium of Gm

is

φm(m) ≥ c′
(

1

2

)
. (18)

That is, the TS must reward the marginal effort of acquiring another piece of information

beyond x, which is highest when x is (infinitely) close to 1/2 since c(·) is convex. Hence, full

information can be attained in equilibrium if and only if inequality (18) holds. Assuming that

φm(k) ≥ 0 for all k ∈ {0, . . . ,m − 1}, this means that the transfers that members who are

not part of the committee must pay to the members of the committee in order to ensure full

information acquisition can never be lower than

2m+ 1

2(n−m)
· c′
(

1

2

)
. (19)

In Proposition 2 we have assumed m ≥ 1, so the committee consists of at least three members.

If m = 0, and hence the committee consists of only one member, the reward scheme defined
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in (17) has no bearing on the unique committee member’s calculus for maximizing his/her utility

(see Equation (14)), which is accordingly

maxx∈[0,1/2][2x− c(x)].

The solution to the above problem is generically different from 1/2. Why is the case with more

committee members different? If there are at least three members in the committee, all the

incentives for becoming informed due to (voting) pivotality disappear in the strategy profile of

Proposition 2 is played. This is because all individuals inform themselves perfectly, so they all

vote for the right alternative. As a consequence, no single individual can change the voting

outcome (which uses the majority rule). The only incentives left for informing oneself are those

linked to the TS. If φm(m) ≥ c′(1/2), the convexity of c(·) guarantees that the strategy profile of

Proposition 2 is an equilibrium. Note that in this equilibrium all three members of the committee

inform themselves fully, so the equilibrium is inefficient in that duplicate information is acquired.

While Proposition 2 ensures that full information acquisition is an equilibrium, there may be

other equilibria with partial information acquisition. This is shown next and warns us that

ill-designed transfer may have serious consequences for outcomes.

Example 2. Consider that c(x) = 3x3 +2x2 and m = 2, and assume that the TS defined in (17)

is used. Then game Gm has two equilibria: one equilibrium in which all citizens choose x = 1
2

and

another equilibrium in which all citizens choose x ≈ 0.24. Figure 1 illustrates this multiplicity of

equilibria by plotting function c′(x) − (A(x) + B(x))—see Equation (15)—when the TS defined

in (17) is used, as well as when other rewards for unanimity are considered.

Figure 1: Function (A(x)+B(x))−c′(x)—see Equation (15)—when φ2(0) = φ2(1) = 0 and the re-
ward for unanimity, φm(k), takes different values. The blue curve corresponds to φ2(2) = 2c′(1

2
),

the green curve corresponds to φ2(2) = c′(1
2
) (see Example 2), the yellow curve corresponds

to φ2(2) = 1
2
c′(1

2
), and the red curve corresponds to no rewards, i.e., φ2(2) = 0. An interior

equilibrium exists when the curve intersects the x-axis between 0 and 1/2. A full information
equilibrium exists when the curve is not negative at x = 1/2.
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To deal with uniqueness of (symmetric) equilibria, consider now the following reward scheme:

φm(k) =

4m−1

m
· rm if k = m,

0 otherwise,
(20)

where (rm)nm=0 is a certain increasing finite sequence that depends on c(·) satisfying that the

infinite sequence ((rm)nm=0)
∞
n=0 is bounded from above, say by some r > 0, and that for all

m ≥ 1,23

4m−1

m
· rm ≥ c′

(
1

2

)
.

We obtain the following result:

Theorem 3. Suppose the reward scheme is defined by (20) for a given integer m ≥ 1. Then the

strategy profile in which all members of the committee acquire complete information, (1/2, . . . , 1/2),

is the only symmetric equilibrium of Gm.

Proof. See Appendix.

The above theorem shows that regardless of the size of the committee, one can always find finite

rewards for its members that induce each of them to acquire full information. While this is

intuitive for arbitrarily large rewards, Theorem 3 does more, as it gives an upper bound to the

reward that must be given to each committee member for reaching a unanimous decision. Using

the fact that (rm)m≥1 is bounded from above by r, the bound to individual rewards is

4m−1

m
· r.

This means that the amount that each individual who is not a member of the committee needs

to contribute is, in turn, bounded by
4m−1 · r

2(n−m)
.

Hence, as long as m can be chosen so that m = Θ(lnn), individual contributions to the rewards

for committee members do not grow unbounded. This means that if full information acquisi-

tion is possible, a sufficient condition for committees to implement the correct alternative with

probability one through a feasible reward scheme is that the size of the committee grow logarith-

mically with the total population. This is a result that is valuable from a positive perspective,

since committees formed from a parent body may have many different sizes based on a variety

of rationales. On the other hand, it is straightforward to see that as far as the TS defined

in (20) is concerned, it is always preferable from a welfare perspective to choose m = 1 over any

m > 1. The reason is that both options set committees that implement the correct alternative

23See the proof of Theorem 3 for details about sequence ((rm)nm=0)∞n=0 .
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with probability one, but m = 1 involves the lowest aggregate information costs and hence the

lowest transfers, all else being equal.24

In the following we show that it is possible to compensate the committee members for the costs

associated with acquiring full information and, at the same time, attain the bound given in (18).

To this end, consider the following reward scheme:

φm(k) =



c′
(
1
2

)
+ ε if k = m,

tm > 0 if k = k′,

−tm < 0 if k = 0,

0 otherwise,

(21)

where k′ ∈ {1, . . . ,m− 1} and ε > 0, and tm is a parameter that needs to be determined. Note

that this requires m ≥ 2, i.e., the committee must consist of at least five members.

We obtain the following result:

Proposition 3. Suppose that the reward scheme is defined by (21) for a given integer m ≥ 2.

Then the strategy profile in which all members of the committee acquire complete information,

(1/2, . . . , 1/2), is the only symmetric equilibrium of Gm provided that parameter tm is chosen to

be sufficiently large.

Proof. See Appendix.

The above result guarantees that the bound defined by (18) is attainable in the limit, so it is

(asymptotically) tight if we take ε → 0. This means, in turn, that there is no other TS that is

more efficient than the one defined by (21) given that, in any equilibrium, (i) it implements the

right alternative with higher probability, (ii) it entails lower transfers to committee members

that cover their information acquisition costs, and (iii) it gives zero transfers if unanimity is

short by two votes. The latter occurs if one individual deviates from full information or makes

a mistake, and can be seen as a fairness property that ensures that unilateral deviations from

the desired outcome have dramatic consequences. In fact, note that we can set k′ = 1, in

which case the committee members must only pay tm if the difference between the votes cast

for either alternative is one. This is very unlikely for large committees even when its members

make mistakes. It remains for future research to establish whether the same efficiency result can

be attained without fines (i.e., without the possibility of committee members making monetary

transfers to the rest of the population).

We emphasize that to ensure the outcome of Proposition 3, the committee must consist of at

least five members. Then the TS defined by (21) works by setting very large punishments if slim

24If there are arbitrarily low, but positive deadweight redistribution costs, transfers should be kept to a
minimum, all else being equal.
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majorities are reached. While this will not be the case on the equilibrium path (of the unique

equilibrium), such a promise is crucial off the equilibrium path to make sure that other equilibria

do not exist beyond the full information acquisition equilibrium.

Proposition 3 bears some resemblance to a finding by Persico (2004), but it differs in some

important respects.25 Both results show that arbitrarily large rewards or punishments can

trivially ensure full information, provided that it is feasible. This is because in such cases,

incentives related to pivotality vanish altogether (in the limit), and individuals focus entirely

on avoiding such punishments. While in Persico (2004) these large rewards must be given in

equilibrium, we show that large punishments are only needed off equilibrium. Proposition 3

can then be seen as a complement of Persico (2004) in that it determines a tight bound for

the transfers to be given to the committee members, and it does so for arbitrary information

acquisition functions. Another noteworthy difference from Persico (2004) is that we consider

transfers between the committee members and the rest of the population, and not between the

majority members of the committee and the minority members of the committee.

As set out above, the extent of transfers also plays an important role not only for welfare but

also for the incentives of citizens to participate in the mechanism. Recall that for a given m ≥ 1,

the committee consists of 2m + 1 members. Let us now assume that each of the committee

members is given a positive transfer in equilibrium, say rm, satisfying

rm ≥ c′
(

1

2

)
. (22)

Because of (13), this means that every other individual in the society must incur a disutility

equal to − (2m+1)rm
2(n−m)

. Then consider a mechanism based on a TS that guarantees the unique full

information equilibrium outcome.26 In such a case, every individual of the population expects

utility 1 from the alternative being implemented.

We proceed on the assumptions that (i) not participating in the mechanism requires abandon-

ing the population altogether, which yields utility u < 1, and (ii) refusing to be a committee

member but not a member of the population simply entails another citizen being a committee

member. Part (i) prevents individuals from free-riding completely on the alternative eventu-

ally implemented. In democratic societies, to name but a paramount example of where our

mechanism can be applied, taxation can be enforced by law, so participation constraints can be

ignored. Part (ii) ensures that leaving the mechanisms does not affect the probability that the

right alternative is implemented, and it therefore provides the higher incentives (if any) for a

citizen who is a member of the committee to exit the committee (but not the population), all

else being equal in the case of full information.

25See Section 7 in Persico (2004).
26A limit argument based on the logic for full information equilibria can be applied for the case of asymptot-

ically full information equilibria.
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Accordingly, for those who are not committee members to be willing to participate in the mech-

anism and not leave the population altogether, the interim participation condition (i.e., the

participation condition after the committee has been constituted but before the state of the

world is realized) is

u < 1− 2m+ 1

2(n−m)
· rm.

The above individual rationality condition is satisfied if n is large enough for a given m ≥ 1. As

for the committee members, they neither want to exit the committee nor the population from

an interim perspective. From (22) it follows that

1− c
(

1

2

)
+ rm ≥ 1 + c

(
1

2

)
> 1 > u.

The first inequality is due to the fact that c′(·) is increasing and c(0) = 0, so

1

2
· c′
(

1

2

)
= c(0) + c′

(
1

2

)
· 1

2
> c

(
1

2

)
.

Finally, from an ex ante perspective (i.e., before the committee is formed), it is hence also

clear that all individuals will want to participate in the mechanism, provided of course that the

population is large enough.

5.2 Partial information

Next we consider c′(1/2) = ∞, in which case one single individual cannot inform himself or

herself perfectly about the state of the world. This implies, in turn, that no population with

a finite number of individuals can learn about the state of the world with probability one.

Accordingly, only asymptotic results are possible. For this case, we assume that

c′′(0) <∞. (23)

This (weak) condition guarantees that positive levels of information acquisition can in principle

be attained. Then, for any ε > 0, we consider the following reward scheme:

φm(k) =

m
1
2
+ε · gn(m) if k = 1,

0 otherwise,
(24)

where for all n, with m ≤ n,

gn(m) ≤ gn(m− 1) <∞. (25)

and

lim
m,n→∞

gn(m) = c′′(0) <∞. (26)
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The TS just defined rewards equally any difference in votes that is larger than one. We refer

to the proof of Proposition 4 (see below) for more details. Here it suffices to note that thanks

to (23) the reward scheme defined in (24) is well defined. If (23) did not hold, then (25) and (26)

would require that committee members receive an infinite amount of money.

The next result shows that the above reward scheme guarantees that, as m (and hence n) goes

to infinity, the mechanism chooses the right alternative with probability one asymptotically.

Because we are concerned with a limit result, we assume that for any given m ∈ N such that the

committee consists of 2m + 1 members, total population amounts to 2f(m) + 1, with f(m) ≥
m. Then statements about convergence when m grows require n to grow exactly as described

by f(m). In particular, we can assume that

lim
m→∞

m

f(m)
·m

1
2
+ε = lim

m→∞

m
1
2
+ε

2f(m)+1
2m+1

= λ, (27)

with 0 ≤ λ < 1. In particular, relative committee size converges to zero as total population

grows. Assuming (27), we also obtain

0 ≤ lim
m→∞

(2m+ 1) · φm(1)

2(f(m)−m)
= λ · c′′ (0) < c′′(0),

where the last inequality holds due to (23). The latter condition specifies the (limit) amount

that individuals who are not members of the committee need to pay in the case of very large

populations when the reward scheme defined by (24) is used.

We can now present the next result.

Theorem 4. Assume that (23) holds and that the reward scheme is defined by (24) for any

integer m ≥ 1. Then, for any sequence (xm(f(m)))m≥1 where (xm(f(m), . . . , xm(f(m)) is a

symmetric equilibrium of Gm,

lim
m→∞

Qm = 1.

Proof. See Appendix.

That is, although the information level acquired in any symmetric equilibrium tends to zero as

committee size tends to infinity, it remains large enough to ensure that the probability of the

right alternative being chosen by a majority within the committee converges to one. This result

holds regardless of the relative size of the committee compared to total population. Yet, in the

particular case where n = f(m), the corresponding TS sets transfers that are bounded, regardless

of the size of the committee. For any information acquisition cost function c(·), adequate reward

schemes can therefore be used to ensure that large populations attain (close to) full information.

As for welfare, one can easily verify from the proof of Theorem 4 that provided the committee is

sufficiently large in absolute terms (but not in terms relative to total population), then the right
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alternative is implemented with any desirably high probability. Moreover, if we assume (27)

individual transfers made by agents who do not belong to the committee converge to zero if we

take arbitrarily large populations and keep the size of the committee constant.27 This means that

there is no other mechanism of the type considered in this section that is more (asymptotically)

efficient for large populations than the one that uses the TS defined by (24).

6 Assessment Voting and Other Cost Sharing Rules

In this section we do two things. First, we discuss how to take account of the fact that in some

circumstances citizens cannot be deprived of their voting rights. Second, we discuss different

cost sharing rules when information acquisition costs are observable and contractible.

6.1 Two voting rounds

Suppose that, in order to implement an alternative, every individual must be given the right

to vote. Departing from the setup in the previous sections, one possible way to do so is for

individuals who are not part of the committee to (simultaneously) vote in a voting round after

the result of the first voting round by committee members has been made public. The votes

collected by each alternative in both rounds are added, and the alternative with more votes is

implemented (recall that there cannot be ties if all citizens vote). This mechanism is called

Assessment Voting (in short AV, Gersbach et al., 2019). An additional assumption is that

committee members are chosen randomly from the population. AV is particularly appealing

in our setup when standard democratic desiderata—such as one person, one vote—need to be

imposed on the voting procedure.

We claim that if a strategy profile (x, . . . , x), with x ∈ (0, 1/2], is an equilibrium of the static

game where only committee members vote, the strategy profile in which (i) all members of the

committee choose x information acquisition and (ii) all other citizens choose zero information

acquisition and vote for the alternative that collected more votes in the first round is a sequential

equilibrium of the dynamic game underlying AV, provided that total population is sufficiently

large and that any individual with the same information in the second round votes in favor

of the same alternative (with probability one). This means that with AV in the case of very

large population, committee members become the only experts in the population. The citizens

who are not committee members anticipate that they will not be pivotal and do not acquire

any information. This result on AV holds both when cost sharing (see Section 4) and TS (see

Section 5) are used for the first voting round. As for the second voting round in AV, we rule out

the possibility of side-payments.28

27In this case, λ as defined in (27) is arbitrarily close to zero.
28The payments made in the first voting round are sunk when the second voting round starts.
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We now need to show that the above claim is correct. Assuming behavior of the second-round

citizens as described above, the problem faced by the first-round citizens—the (expert) commit-

tee members—is the same as in the baseline setup with only one round. This is because the

right alternative is implemented if and only if it obtains the most votes in the first voting round.

As for the second round, note that the individuals with the right to vote in this round must use

Bayes’ rule to find the posterior probability that alternative A is the right one. This posterior

belief, denoted by q, depends on x and m (the committee size) as well as on the difference in

votes between the two alternatives d (with d ∈ {−2m− 1, . . . , 2m+ 1}), and it satisfies

q = q(x,m, d)

> 1
2

if d > 0,

< 1
2

if d < 0.
.

The above inequalities hold because the initial prior is 1/2, committee size is odd, and we are

assuming that committee members vote informatively. We stress that d > 0 (d < 0) means that

alternative A received more (less) votes than alternative B in the first voting round.

Then we have the following result:

Proposition 4. Given x, m, q, d, in any Nash equilibrium of the game underlying the second

round of AV, it must be the case that if n is sufficiently large, all citizens with the right to vote

in the second round (a) gather zero information and (b) vote for the alternative that received

more votes in the first (committee) voting round.

Proof. See Appendix.

This demonstrates that our previous claim was correct and accordingly that our insights from the

previous sections carry over to AV. Proposition 4 adds to the (nice) properties of AV (Gersbach

et al., 2019) as a potential decision-making procedure.

6.2 Cost sharing rules

In this section we consider different cost sharing rules that further highlight the role of informa-

tion acquisition in committees. Assume that if a committee member acquires information level x,

with x ∈ [0, 1/2], the costs s/he privately incurs are g · c(x). We assume that the individuals

who are not part of the committee uniformly finance the subsidies to the committee members.

The cost sharing setup analyzed in Section 4 assumes g = 1/(2n + 1), while Martinelli (2006)

assumes g = 1. Assuming that cost sharing is only done by individuals in the committee entails

g = 1/(2m + 1). For a general g ∈ [(1/(2n+ 1), 1], the information level associated with the
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only symmetric equilibrium can be identified by considering the following equation:

g · c′(x) =

1 if m = 0,(
2m
m

)
·
(
1
4
− x2

)m
if m > 0.

(28)

We use x∗m(n, g) to denote the solution to the above equation for the above example—see Table 1.

The graph of x∗m(n, g) for different (positive) values of g is depicted in Figure 2.
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Figure 2: Different values of information acquisition x∗(m, g), for g = 1/(2n + 1) (blue line),
g = 1/(2m+ 1) (red line), and g = 1 (green line).

Sharing individual information acquisition costs among all the members of a larger community

triggers the acquisition of information for each individual more than other cost sharing rules

prescribing that individuals incur a higher share of their private costs. This is why the three

curves of Figure 2 do not cross (they coincide at some points). A second observation from Figure 2

figure is that sharing costs has a dramatic effect on the individual information acquisition levels.

This is because the equation that pins down this level—see Equation (28)—is highly non-lineal

in g. Particularly for small committees, but also for large ones, being able to share costs among all

individuals is a desirable property as far as the probability of implementing the right alternative

is concerned.

A third remarkable feature of Figure 2 concerns the case where g = 1/(2m + 1). In this case,

increasing committee size has two (partial equilibrium) effects: On the one hand, it reduces

the chances for every committee member to be pivotal; on the other, it reduces the individual

costs of information acquisition. In the above example, the latter effect dominates over the

former, and hence the red line is increasing in committee size. However, as shown in Figure 3,

this is not a general property of this particular cost sharing scheme. According to this figure,

individual information levels when costs are highly convex and are shared only among members

of the committee are not monotonic in the size of the committee. Whether non-monotonicity of

information acquisition levels in committee size is a general property of highly convex information
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acquisition cost functions would require further scrutiny.
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Figure 3: Information acquisition level x∗(m, g) for g = 1/(2m+ 1) when c(x) = 30x3.

The rule used for sharing the costs of acquiring information can significantly affect the incentives

for individuals to acquire information and thus the optimal design of the committee, in particular

its size. Figure 3 also reveals that particular cost sharing rules, such as g = 1/(2m+ 1), can lead

to a setup that cannot be subsumed into that of Martinelli (2006). It is also worth noting that

unlike the cost sharing rule g = 1/(2n+1), using g = 1/(2m+1) to share the costs of information

acquisition affects the (individual rationality) incentives to become part of the committee. If

this cannot be enforced by other means, using g = 1/(2m+ 1) may not be feasible.

Finally, it is worth discussing what happens with negative or zero values of g. If g < 0, in

particular, an individual not only does not incur a disutility cost for acquiring information, but

s/he is rewarded for any marginal increase in the information level s/he acquires.29 There are

at least two drawbacks associated with such payment schemes. First, unlike g = 1/(2n + 1), it

does not treat all individuals of the society equally from an ex-post perspective. All else being

equal, this is a desirable property for a population of identical individuals. Second, suppose that

c(1/2) =∞. In this case, all individuals of the (finite) population must be committed to making

an infinite monetary payment to the committee members, which is obviously unfeasible. As an

alternative, one can impose a cap on such transfers. However, if the same payment scheme must

be used for different information acquisition cost functions, imposing such a cap might yield

worse outcomes than the case where the cost-sharing rule g = 1/(2n+ 1) is used.30

29Similar criticisms apply when g = 0.
30In Section 5 we use transfer schemes that resemble cost sharing with g < 0 because costs are unobservable.

With observable costs, one can aim at goals such ex post fairness.
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7 Extensions

In this section we analyze some extensions of our baseline setup and discuss how they affect our

results both for cost sharing (see the analysis in Section 4) and TS (see the analysis in Section 5).

7.1 Asymmetric priors

Let us assume that the ex ante probability that A is the right alternative is p, with p ∈ [1/2, 1).

In our baseline setup we have assumed p = 1/2. In general, if committee member i receives a

signal of quality 1
2

+xi, which comes at private cost c(xi), then the posteriors that alternative A

is the right alternative are as follows: If the private signal that citizen i receives is A,

Prob
[
w = A

∣∣∣si = A
]

=
yi · p

yi · p+ (1− yi) · (1− p)
,

where yi := 1/2 + xi. If the private signal that citizen i receives is B,

Prob
[
w = A

∣∣∣si = B
]

=
(1− yi) · p

yi · (1− p) + (1− yi) · p
.

For our analysis of asymmetric priors, we assume informative voting. That is, committee mem-

bers vote for implementing alternative A (alternative B) if their posterior in favor of alternative A

(alternative B) is higher than 1/2, with ties being broken in favor of the private signal. This

means that if committee member i receives signal A, s/he votes for alternative A. By contrast,

if committee member i receives signal B, s/he votes for alternative B if and only if xi ≥ p− 1
2
.

The consequences of the above remarks are as follows: First, if committee member i chooses

quality signal xi ∈ [0, 1/2] such that

xi < p− 1

2
,

s/he always votes for alternative A, no matter what signal is received. Because signals are

costly, this means that acquiring any such information level is dominated (in expected terms) by

acquiring zero information. Second, if committee member i chooses quality signal xi ∈ [0, 1/2]

such that

xi ≥ p− 1

2
,

then s/he always follows the recommendation of the signal. As far as the analysis of our (family

of) mechanisms is concerned, this means that the actual action space for committee member i

is

{0} ∪
[
p− 1

2
,
1

2

]
.

instead of [0, 1/2]. Accordingly, if full information acquisition is the only symmetric equilibrium

of the underlying game with symmetric priors, it is also the only symmetric equilibrium with
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asymmetric priors. This property applies for TS when full information is attainable (see the

analysis in Section 5.1).

Now consider that there is an interior symmetric equilibrium (x, . . . , x) with symmetric priors.

Then it is an equilibrium for asymmetric priors too, provided that x ≥ p − 1/2. The latter

condition holds if priors are not very asymmetric.31 If x < p− 1/2, by contrast, either (0, . . . , 0)

or (p−1/2, . . . , p−1/2) are symmetric equilibrium, depending on c(·) and the scheme regulating

the side-payments.32 In the following, we elaborate on the cases of cost sharing and TS.

First, in the case of cost sharing (see Section 4), either (0, . . . , 0) or (p − 1/2, . . . , p − 1/2)

must be the only symmetric equilibrium with asymmetric priors. This means that asymmetric

priors can induce committee members not to gather any information at all, despite the fact that

c(0) = c′(0) = 0. Such a property of priors is not surprising. If, from an ex-ante perspective,

there is agreement that one alternative is much more likely than the other, citizens may not

acquire further information to achieve more certainty about the state of the world if doing so is

sufficiently costly.

Second, for the TS analyzed in Section 5, the probability that the right alternative is implemented

is one (when full information is attainable, see Section 5.1) or arbitrarily close to one if we increase

committee size m sufficiently (when full information is not attainable, see Section 5.2). Hence, in

equilibrium the probability of a tie must either be zero or converge to zero with m, respectively.

Therefore the incentives related to pivotality then vanish on and off equilibrium, and only those

associated with the TS survive (in the limit). Accordingly, if the rewards given to committee

members are sufficiently large (taking into account the value of p), it must be the case that

(p − 1/2, . . . , p − 1/2) is the only equilibrium. We stress that p is exogenously given, so it is

independent of c(·) and m.

7.2 Asymmetric preferences

Suppose that for any individual i of the population,

Ui(A|w = A) = 1 and Ui(B|w = A) = 0,

while

Ui(B|w = B) = θ and Ui(A|w = B) = 0,

where θ ∈ (0, 1]. That is, the error of choosing alternative B when A is the right alternative

is equally or more serious than choosing alternative A when B is the right alternative. In the

baseline setup, we have assumed θ = 1, i.e., both error types are equally serious.

Suppose now that some individual i’s belief that A is the right alternative is ρ, with ρ ∈ [0, 1].

31Note that p is an exogenous parameter and that x is determined independently of the actual value of x.
32It could be the case that neither of the two strategy profiles are equilibria.
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Then s/he (individually) prefers to choose alternative A if and only if

ρ · 1 + (1− ρ) · 0 ≥ ρ · 0 + (1− ρ) · θ,

which can be rearranged as

ρ ≥ θ

1 + θ
:= θ∗.

Parameter θ∗ is usually called the (individual) threshold of reasonable doubt (Feddersen and

Pesendorfer, 1998). If θ = 1, we have θ∗ = 1/2. If θ = 0, we have θ∗ = 0.

To see how our results depend on the value of θ∗ (or θ), we maintain our focus on symmetric

equilibria. Let (x, . . . , x), with x ∈ (0, 1/2), be a strategy profile in which all citizens choose

information level x.33 Then for any committee member i, the benefits linked to pivotality (i.e.,

excluding the side-payments) when s/he chooses xi and everybody else chooses x are

1

2
· Px[tie|w = A] ·

(
1

2
+ xi

)
+

1

2
· Px[tie|w = B] ·

(
1

2
+ xi

)
· θ.

Given that the probability of a tie is the same in both states of the world, the above expression

can be rewritten as
1

2(1− θ∗)
· Px[tie] ·

(
1

2
+ xi

)
.

To see the effect of introducing θ 6= 1 on equilibrium behavior, we distinguish the case of cost

sharing from the case where a TS is used. On the one hand, in the case of cost sharing (see

Section 4), introducing θ∗ is equivalent to having each individual care equally about the right

alternative in both states of the world and multiplying the cost function by 2(1 − θ∗). In this

case, preferences are symmetric and the cost function would be

ĉ(x) = 2(1− θ∗) · c(x). (29)

This follows from (6). Hence, lower reasonable doubts (i.e., lower values of θ∗) yield lower levels

of information acquisition, all else being equal. In fact, note that in Equation (29), changing θ∗

does not change the shape of the cost function. The effect of changes of this kind on whether

one-member committees yield the highest probability of implementing the right alternative has

been indicated in Proposition 1.

On the other hand, in the case where some reward scheme tm is used, introducing θ∗ is equivalent

to having each individual care equally about the right alternative in both states of the world,

considering ĉ(·) as defined in (29), and additionally considering a reward scheme

t̂m(k) = 2(1− θ∗) · tm(k) for all k ∈ {1, . . . , n}.

33For full information equilibria, there are no incentives linked to pivotality if the committee consists of at
least three members. This means that asymmetric preferences have no bearing on our results in such cases.
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This follows from (15). One can verify that the statements of Propositions 2–4 remain valid

in this setup, regardless of the value of θ∗. This is because pivotality is either zero (when full

information is attainable) or the incentives that it carries for committee members are ignored

as is shown in the proof of our (sufficient) results. Hence, lower reasonable doubts—i.e., lower

values of θ∗—do not affect information acquisition levels when the TS considered in Section 5

are used, all else being equal.

7.3 Private values

Suppose that an individual can be of three types, A-partisan, B-partisan, and non-partisan.

Assuming that types are private, let pA (pB) be the ex-ante probability that an individual is

A-partisan (B-partisan), while an individual is non-partisan with probability 1− pA − pB. The

ex-ante distribution of types is assumed to be common knowledge. Partisan voters always vote

for their preferred alternative, so they do not acquire any information because doing so is costly.

For our analysis, we assume that members of the committee are randomly chosen from the

population. Then, from the perspective of a committee member i who is non-partisan, the

probability that all other members of the committee yield a tie (assuming that non-partisans

choose information acquisition level x) is

Px [pivotal] =
∑

nA,nB≤m
0≤nA+nB≤2m

F (nA, nB, pA, pB)

2
·
(

1

2
+ x

)m−nA

·
(

1

2
− x
)m−nB

+
∑

nA,nB≤m
0≤nA+nB≤2m

F (nA, nB, pA, pB)

2
·
(

1

2
− x
)m−nA

·
(

1

2
+ x

)m−nB

,

where

F (nA, nB, pA, pB) :=

(
2m

nA

)
·
(

2m− nA
nB

)
· pnA

A · p
nB
B · (1− pA− pB)2m−nA−nB ·

(
2m− nA − nB

m− nA

)
.

Accordingly,

Px [pivotal] = G(nA, nB, pA, pB, x) ·
(

2m

m

)
·
(

1

4
− x2

)m
,

where

G(nA, nB, pA, pB, x)

:=
1(
2m
m

) · ∑
nA,nB

0≤nA+nB≤2m

F (nA, nB, pA, pB)

2

((
1

2
+ x

)−nA
(

1

2
− x
)−nB

+

(
1

2
− x
)−nA

(
1

2
+ x

)−nB

)
.
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One can verify that for m ≥ 1, P 1
2

[pivotal] = 0 if pA = pB = 0, while P 1
2

[pivotal] > 0 if

pA, pB > 0. Hence, introducing partisan voters increases the chances that an equilibrium with

full information acquisition exists, all else being equal (and assuming that the majority rule is

used). This is because partisan voters introduce incentives to inform linked to pivotality that are

otherwise absent when there are only non-partisan voters who inform themselves fully. Whether

other equilibria can be introduced with partisan voters would require a more thorough analysis

of the above expressions.

8 Conclusion

We have analyzed the problem of acquiring costly information and expressing it through voting

with the majority rule in a common-value setup. The main novelty of our approach is that we

have simultaneously introduced monetary transfers and vote delegation to a committee formed

from a parent body, say, the electorate. We have distinguished two main scenarios, depending

on whether it is feasible to share the information acquisition costs among all agents of the

population (when it is not, we must consider certain reward schemes). The two scenarios reflect

two distinct (and polar) cases. Our main insight for both scenarios is that if it is possible to

reward committee members adequately it might be better to delegate information acquisition

and voting rights to small committees instead of the entire electorate. This maximizes the

probability of implementing the right alternative.

It is intuitive that using side-payments can incentivize agents to acquire (more) costly informa-

tion. Yet our thorough analysis not only sheds new light on the optimal (and suboptimal) use of

monetary incentives in combination with variable committee size but also yields insights about

the role of monetary transfers that are relevant from a positive perspective.

Finally, there are avenues for future research. For instance, one could characterize all reward

schemes that maximize the probability of selecting the socially optimal alternative.
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Appendix

Proof of Lemma 1. Throughout the proof, we let m,n ≥ 0 be integer numbers such that m+1 ≤
n, and denote x∗m := x∗m(n) and x∗m+1 := x∗m+1(n). Then recall the first-order condition (6) that

pins down an interior equilibrium solution, namely

c′(x)

2n+ 1
=

1 if m = 0,(
2m
m

)
·
(
1
2
− x
)m · (1

2
+ x
)m

if m > 0.
(30)

If x = 0 (x = 1/2), i.e., if there is a corner solution, then the left-hand side of (30) must be

larger than or equal to (smaller than or equal to) the right-hand side. Because c′(x), c′′(x) > 0

and c′(0) = 0, we have

0 < x0 ≤
1

2

and, for all m > 0,

0 < xm <
1

2
.

If x∗0 = 1/2, the result of the lemma holds immediately. Hence, let m ≥ 0 and assume that

0 < x∗m, x
∗
m+1 < 1/2. (31)

Suppose now that

x∗m ≤ x∗m+1. (32)

Then (31) implies that(
2m

m

)
·
(
1/4− (x∗m)2

)m ≤ c′(x∗m)

2n+ 1
≤
c′(x∗m+1)

2n+ 1
≤
(

2m+ 2

m+ 1

)
·
(
1/4− (x∗m+1)

2
)m+1

,

where the second inequality holds since c(·) is a convex function and therefore c′(·) is increasing.

Because x∗m ≤ x∗m+1, the above inequality implies

4 ≤ (2m+ 1)(2m+ 2)

(m+ 1)2
.

However, the latter inequality does not hold for any m ≥ 0, since 4(m + 1)(m + 1) ≤ (2m +

1)(2m + 2) is equivalent to 2m + 2 ≤ 0. Hence, (32) cannot hold, and it must therefore be the

case that x∗m+1 < x∗m. This completes the proof of the lemma.

Proof of Lemma 2. For a fixed n ∈ N, we know from Lemma 1 that (x∗m(n))nm=0 is decreasing.

We stress that we are assuming that m ≤ n, since the committee cannot be larger than the total
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population. Consider now the following sequence (of sequences):

((x∗m(n))nm=0)
∞
n=1.

For each m ∈ N, let f(m) be any (weakly) increasing function such that

m ≤ f(m) (33)

and for any ε > 0,

lim
m→∞

[
f(m)√

m · (1 + ε)m

]
= 0. (34)

Then we can define the following sub-sequence

(zm)∞m=0 := (x∗m(f(m)))∞m=0 .

If (zm)∞m=0 is bounded from below by a constant x∗ > 0, then it must be the case that for all

m > 0 (see (30) in the proof of Lemma 1),

0 < c′(x∗) < (2f(m) + 1) ·
(

2m

m

)
·
(

1

2
− x∗

)m
·
(

1

2
+ x∗

)m
, (35)

where the inequalities hold because no committee member will choose in equilibrium either

the minimum level of information acquisition, namely 0, or the maximum level, namely 1/2,

respectively. Then note that

lim
m→∞

[
(2f(m) + 1) ·

(
2m

m

)
·
(

1

2
− x∗

)m
·
(

1

2
+ x∗

)m]
=

√
2

π
· lim
m→∞

[
(2f(m) + 1) · 4m√

m
·
(

1

2
− x∗

)m
·
(

1

2
+ x∗

)m]
=

√
2

π
· lim
m→∞

[
2f(m) + 1√

m
·
(
1− (2x∗)2

)m]

=
2
√

2

π
· lim
m→∞

 f(m)
√
m ·
(

1
1−(2x∗)2

)m
 = 0,

where the first equality holds by Stirling’s approximation and the last equality is implied by (33)

and (34). However, this contradicts (35), so (zm)∞m=0 is not bounded from below by a strictly

positive real number. Accordingly, there is a subsequence of (zm)∞m=0 that converges to zero.

This completes the proof of the lemma.
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Proof of Lemma 4. The proof is by contradiction. Hence, suppose that

x∗m−1(n) ≤ x∗m(n+ 1). (36)

Recall that for given ñ, m̃, with 1 < m̃ ≤ ñ, we know from (6) that

c′(x∗m̃(ñ))

2ñ+ 1
=

(
2m̃

m̃

)
·
(

1

4
− (x∗m̃(ñ))2

)m̃
. (37)

Because c′(·) is increasing, it must be the case that

c′(x∗m−1(n)) ≤ c′(x∗m(n+ 1)),

which, by using (37), is equivalently written as

(2n+ 1) ·
(

2(m− 1)

m− 1

)
·
(

1

4
−
(
x∗m−1(n)

)2)m−1 ≤ (2n+ 3) ·
(

2m

m

)
·
(

1

4
− (x∗m(n+ 1))2

)m
. (38)

However, we claim (and show below) that inequality (38) cannot hold. This implies that (36)

cannot hold either, so

x∗m−1(n) > x∗m(n+ 1).

The latter proves the statement of the lemma. To show the above claim, note on the one hand

that

(2n+ 3) ·
(

2m

m

)
·
(

1

4
− (x∗m(n+ 1))2

)m
<(2n+ 3) ·

(
2(m− 1)

m− 1

)
· (2m− 1)(2m)

m2
·
(

1

4
− (x∗m(n+ 1))2

)m−1
· 1

4

≤(2n+ 3) ·
(

2(m− 1)

m− 1

)
· (2m− 1)(2m)

m2
·
(

1

4
−
(
x∗m−1(n)

)2)m−1 · 1

4
(39)

where the first inequality holds since x∗m(n+ 1) > 0 and the second inequality holds by (36). On

the other hand, assuming that m > 1 and n > 2m, one can verify that it must be the case that

4(2n+ 1)m2 ≥ (2n+ 3)(2m− 1)(2m). (40)

Combining (39) and (40) shows that inequality (38) cannot hold. This completes the proof of

the lemma.

Proof of Theorem 1. Throughout the proof, we let m,n ≥ 0 be integer numbers such that m +

1 ≤ n, and then denote x∗m := x∗m(n) and x∗m+1 := x∗m+1(n). We also use the notation Qm(x) to

denote the probability that the right alternative is implemented when all the committee members
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incur information cost x ∈ [0, 1/2]. That is,

Qm(x) :=
2m+1∑
i=m+1

(
2m+ 1

i

)
·
(

1

2
+ x

)i
·
(

1

2
− x
)2m+1−i

. (41)

Recall from (41) that Qm = Qm(x∗m) considers the case where x∗m is the information acquisition

level chosen in (the unique) equilibrium. We assume that Q0 < 1, since otherwise the statement

of the proposition holds trivially due to Lemma 1. This means, in particular, that we can focus

henceforth on the case where, for all m ≥ 0,

1

2
> x∗m > x∗m+1 > 0.

Now consider Equation (6) when c(x) = axb, which determines the level x∗m of information that

is acquired by each member of the committee in the unique equilibrium, namely

ab · xb−1

2n+ 1
=

1 if m = 0,(
2m
m

)
·
(
1
2
− x
)m · (1

2
+ x
)m

if m > 0.
(42)

Then

x∗0 =

(
2n+ 1

ba

) 1
b−1

<
1

2
(43)

and, for m > 0,

x∗m =

(
2n+ 1

ab

(
2m

m

)
·
(

1

2
− x∗m

)m(
1

2
+ x∗m

)m) 1
b−1

. (44)

At times it will be convenient to use the variable z := 1
2

+x instead of x, as well as zm := 1
2

+xm,

and furthermore to introduce function

Tm(z) := Qm(z − 1/2) (45)

The reason is that dTm(z)
dz

and dQm(x)
dx

have the same sign, which is what we are interested in.

That is,

Tm(z) :=
2m+1∑
i=m+1

(
2m+ 1

i

)
· zi(1− z)2m+1−i. (46)
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Then, using (46), we obtain that for all m ≥ 0,

dTm(z)

dz
=

2m+1∑
i=m+1

(
2m+ 1

i

)
·
(
izi−1(1− z)2m−i+1 + (2m+ 1− i)(−1)zi(1− z)2m−i

)
=

2m+1∑
i=m+1

(2m+ 1)!

(i− 1)!(2m+ 1− i)!
· zi−1(1− z)2m−i+1 −

2m∑
j=m+1

(2m+ 1)!

j!(2m− j)!
· zj(1− z)2m−j

= (2m+ 1) ·
2m+1∑
i=m+1

(2m)!

(i− 1)!(2m+ 1− i)!
· zi−1(1− z)2m−i+1

− (2m+ 1)
2m∑

j=m+1

(2m)!

j!(2m− j)!
· zj(1− z)2m−j

= (2m+ 1) ·
2m∑
j=m

(2m)!

j!(2m− j)!
· zj(1− z)2m−j

− (2m+ 1)
2m∑

j=m+1

(2m)!

j!(2m− j)!
· zj(1− z)2m−j = (2m+ 1) ·

(
2m

m

)
· zm(1− z)m, (47)

where the penultimate equality is obtained by the change of variables j = i − 1. From (47) it

follows that

0 <
dTm(z)

dz
≤ (2m+ 1) ·

(
2m

m

)
·
(

1

2

)2m

︸ ︷︷ ︸
:=lm

(48)

for any z ∈ [1/2, 1], since z(1− z) ≤ 1/4. Because function Tm(z) is continuously differentiable

on [1/2, 1], by the mean value theorem there exists z∗ ∈ [1/2, zm] such that

dTm(z∗)

dz
=
Tm(zm)− Tm(1/2)

zm − 1/2
. (49)

Using (48)–(49), it follows that

Tm(zm) ≤ Tm(1/2) +

(
zm −

1

2

)
· (2m+ 1) ·

(
2m

m

)
·
(

1

2

)2m

=
1

2
+ (2m+ 1) · x∗mlm. (50)

We note that for the last equality we have used the fact that Tm(1/2) = Qm(0) = 1/2, which

follows from the symmetry of the binomial distribution. It is straightforward to verify that

T0(z0) =
1

2
+ x∗0.

Together with (50), it follows from the above equation that a sufficient condition for Q0 > Qm

(m > 0) is that
1

2
+ (2m+ 1) · x∗mlm <

1

2
+ x∗0,
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which, using equations (43) and (44), can be rewritten as

(2m+ 1)b−1 ·
(

2m

m

)
·
(

1

2
− x∗m

)m(
1

2
+ x∗m

)m
· lb−1m < 1. (51)

Moreover, since x∗m > 0, (
2m

m

)
·
(

1

2
− x∗m

)m(
1

2
+ x∗m

)m
< lm.

Hence, inequality (51) is implied by the following inequality

(2m+ 1)b−1 · lbm < 1.

or, equivalently, by

l
b

b−1
m · (2m+ 1) < 1. (52)

It therefore remains to prove inequality (52), which we turn to in the remainder of the proof.

Since b− 1 ≤ 1, a sufficient condition for inequality (52) is

l2m <
1

2m+ 1
. (53)

Then note that

lm =
(2m)!

m!m!
·
(

1

2

)2m

≤ e(2m)2m+0.5e−2m√
2πmm+0.5e−m

√
2πmm+0.5e−m

1

22m
=

e

π
√

2m
, (54)

where the inequality holds by using the following lower and upper bounds of factorial num-

bers (see Robbins, 1955), √
2πjj+0.5e−j ≤ j! ≤ ejj+0.5e−j. (55)

In turn, using (54), a sufficient condition for (57) is( e
π

)2
<

2m

2m+ 1
. (56)

If m > 1, then ( e
π

)2
<

4

5
≤ 2m

2m+ 1
,

and hence,

Q0 > Qm for all m > 1.

It thus remains to show that Q0 > Q1. Since l1 = 1/2,

l21 =
1

4
<

1

3
, (57)
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and thus (57) holds. This completes the proof of the Theorem.

Proof of Proposition 1. We consider c(x) = axb and assume b > 2. We use the following short-

cuts:

t(a) :=
2n+ 1

ab
and α :=

1

b− 1
.

Hence,

b > 2⇐⇒ 0 < α < 1. (58)

and

t′(a) < 0 and lim
a→∞

tα(a) = 0. (59)

Using (6), we obtain

x0 = tα(a) > 0

and that xm solves the following equation:

xm = tα(a) ·
[(

2m

m

)
·
(

1

2
− xm

)m
·
(

1

2
+ xm

)m]α
= x0 ·

[(
2m

m

)(
1

4
− x2m

)m]α
. (60)

In particular, using implicit derivation, we obtain

∂xm
∂x0

=

[(
2m
m

) (
1
4
− x2m

)]α
1 + 2αxm ·

[(
2m
m

) (
1
4
− x2m

)]α−1 > 0. (61)

Using b > 2 and (58), the claim of the proposition can be equivalently stated as requiring that

for any α with the property that α < 1, there exists t∗(α) > 0 such that

Q0 =
1

2
+ x0 <

2m+1∑
k=m+1

(
2m+ 1

k

)(
1

2
+ xm

)k (
1

2
− xm

)2m+1−k

= Qm for any t(a) < t∗(α).

(62)

From (45) and (47)—see the proof of Theorem 1—, we know that for any integer m ≥ 0,

Q′m(x) = (2m+ 1) ·
(

2m

m

)
·
(

1

4
− x2

)m
.

Clearly, for all x ∈ (0, 1/2), it is the case that Q′m(x) > 0 and Q′′m(x) < 0. Hence,

1

2
+ xm · (2m+ 1) ·

(
2m

m

)
·
(

1

4
− x2m

)m
= Qm(0) + xm ·Q′m(xm) < Qm(xm).
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This means that inequality (62) is implied by

x0 < xm · (2m+ 1) ·
(

2m

m

)
·
(

1

4
− x2m

)m
. (63)

Using (60), inequality (63) is equivalent to

1 < (2m+ 1) ·
[(

2m

m

)
·
(

1

4
− x2m

)m]α+1

.

We stress that if the above inequality holds, so does inequality (62). Now let

f(x) := (2m+ 1) ·
[(

2m

m

)
·
(

1

4
− x2

)m]α+1

.

Clearly, f ′(x) < 0. In addition, we claim that there is a positive integer m∗ such that for all

m ≥ m∗,

f(0) = (2m+ 1) ·
[(

2m

m

)
·
(

1

4

)m]α+1

> 1. (64)

On the one hand, from (55)—see the proof of Theorem 1—, we obtain(
2m

m

)
·
(

1

4

)m
≥
(

2
√
π

e2
√
m

)
. (65)

On the other hand, (58) implies α < 1, so we have

lim
m→∞

(2m+ 1) ·
(

2
√
π

e2
√
m

)1+α

= +∞. (66)

The combination of (65) and (66) yields

lim
m→∞

f(0) =∞.

Therefore the claim in (64) is correct. Next, assume that

lim
a→0

xm = L > 0.

Then, by using (59) and (60) we obtain

0 < L = 0 ·
[(

2m

m

)(
1

4
− L2

)]α
= 0,

which is a contradiction. Hence,

lim
a→0

xm = 0. (67)

Finally, from (59), (64), and (67), we obtain that inequality (62) holds.
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Next, if we assume

3 > 2
b

b−1 . (68)

we can obtain its equivalent (
1

2

)α
3

2
> 1. (69)

Using (6), we obtain

x0 = tα(a) > 0

and that x1 solves the following equation:

x1 = tα(a) ·
(

2

(
1

2
+ x1

)(
1

2
− x1

))α
= x0 ·

(
1

2
− 2x21

)α
. (70)

In particular, using implicit derivation, we obtain

∂x1
∂x0

=

(
1
2
− 2x21

)α
1 +

(
1
2
− 2x21

)α−1 · 4x1 > 0. (71)

Using (68) and (69), the claim of the proposition can be equivalently stated as requiring that

for any α with the property that (
1

2

)α
3

2
> 1,

there exists t∗(α) > 0 such that

Q0 =
1

2
+ x0 < 3

(
1

2
+ x1

)2(
1

2
− x1

)
+

(
1

2
+ x1

)3

= Q1 for any t(a) ≤ t∗(α). (72)

The latter inequality is equivalent to

x0 < x1 ·
(

3

2
− 2x21

)
. (73)

Using (70) and (73), we obtain a further equivalent formulation of (73), namely

1 <

(
1

2
− 2x21

)α(
3

2
− 2x21

)
.

Now let

f(x) :=

(
1

2
− 2x2

)α(
3

2
− 2x2

)
Clearly, f ′(x) < 0. Moreover, note that (68) and (69) imply that

f(0) =

(
1

2

)α
3

2
> 1. (74)
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Next, assume that

lim
a→0

x1 = L > 0.

Then, by using (70) we obtain

0 < L = 0 ·
(

1

2
− 2L2

)α
= 0,

which is a contradiction. Hence,

lim
a→0

x1 = 0. (75)

Finally, from (74), and (75), we obtain that inequality (72) holds. Together with (71), this

completes the proof of the proposition.

Proof of Theorem 2. Recall that for each m ≥ 0, welfare is defined (in Equation (11)) as

Wm = Qm(x∗m(n))− 2m+ 1

2n+ 1
· c(x∗m(n)), (76)

where Qm := Qm(x∗m) is the equilibrium probability of implementing the right alternative and

x∗m := x∗m(n) is the equilibrium acquisition level. From Equation (6) we know that if c(x) = axb,

then

x∗0 = min

{
1

2
,

(
2n+ 1

ab

) 1
b−1

}
(77)

and if m > 0,
ab(x∗m)b−1

2n+ 1
=

(
2m

m

)
·
(

1

4
− (x∗m)2

)m
(78)

First, it is clear that if parameter a is sufficiently low, Equation (77) implies

x∗0 =
1

2
(79)

and hence

Q0 = 1. (80)

On the other hand, for each m > 0 define

Lm := lim
a→0

x∗m ≤
1

2
.

By Lemma 3, the limit is well defined (we stress that decreasing a is the same as increasing n).

Then Equation (78) implies

0 =

(
2m

m

)
·
(

1

4
− L2

m

)m
,
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so

Lm =
1

2
for all m > 0. (81)

Using Equation (76) and Equations (79)–(81), it follows that for each m > 0

lim
a→0

[
W0 −Wm

]
= lim

a→0
(1−Qm) + lim

a→0
a · lim

a→0

1

2n+ 1
·

(
(2m+ 1) · (x∗m)b −

(
1

2

)b)

≥ lim
a→0

a · lim
a→0

1

2n+ 1
·

(
(2m+ 1) · (x∗m)b −

(
1

2

)b)

= lim
a→0

a · 2m

2n+ 1
·
(

1

2

)b
≥

[
2

2n+ 1
·
(

1

2

)b]
· lim
a→0

a.

This means that there is a∗(b) > 0 such that

W0 −Wm > 1 for all m > 0.

Proof of Proposition 2. Consider any committee member i. Then suppose that all other 2m

members of the committee acquire precise information about the right alternative, that is, they

all choose information level x = 1/2. Then, provided that m ≥ 1, individual i’s utility simplifies

to (see Equation (14))

Ui(xi) =

(
1

2
+ xi

)
· r − c(xi).

Note that m ≥ 1 guarantees that the committee consists of at least three members, so individual

i is not pivotal in the voting round because the other two committee members are perfectly

informed and thus vote for the same alternative. Then,

U ′i(xi) = r − c′(xi) ≥ r − c′
(

1

2

)
≥ 0,

where the first inequality holds because c(·) is a convex function and the second inequality holds

by assumption. This means that the derivative Ui(xi) is positive in the interval [0, 1/2], so Ui(xi)

is maximized for x∗ = 1
2
.

Proof of Theorem 3. Recall that we focus on the case m ≥ 1. Consider some committee mem-

ber i, and let all the other 2m members of the committee use strategy x ∈ [0, 1/2], as demanded

by our notion of symmetric equilibrium. Then individual i’s expected utility when s/he chooses
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xi ∈ [0, 1/2] is

Ui(xi) =

(
2m

m

)
·
(

1

2
+ x

)m(
1

2
− x
)m(

1

2
+ xi

)
− c(xi)

+

(
1

2
+ x

)2m(
1

2
+ xi

)
· rm +

(
1

2
− x
)2m(

1

2
− xi

)
· rm + χ. (82)

We stress that rm ≥ 0 is some constant that depends on m (to be determined below) which is

independent of x. Then,

U ′i(xi) =

(
2m

m

)
·
(

1

2
+ x

)m(
1

2
− x
)m

+ rm ·

[(
1

2
+ x

)2m

−
(

1

2
− x
)2m

]
︸ ︷︷ ︸

:=Dm(x)

−c′(xi). (83)

Since, by assumptions, c′(0) = 0, then

U ′i(0) =

(
2m

m

)
·
(

1

2

)2m

− c′(0) =

(
2m

m

)
·
(

1

2

)2m

> 0.

This means that the (symmetric) strategy profile where committee members acquire no infor-

mation cannot be an equilibrium. If there is an (interior) symmetric equilibrium defined by x∗m

with less than full information acquisition, i.e.,

0 < x∗m <
1

2
, (84)

then it must be the case that U ′i(x
∗
m) = 0, or, equivalently, that

Dm(x∗m) = c′(x∗m). (85)

Now let y∗m ∈ (0, 1/2) denote the (interior) equilibrium information acquisition level if there were

no rewards (or cost sharing), i.e. if rm = 0, namely(
2m

m

)
·
(

1

2
− y∗m

)m(
1

2
+ y∗m

)m
= c′(y∗m). (86)

From the regularity assumptions made on c(·), we know that y∗m is well-defined and unique.

Then note that for all x < y∗m,

Dm(x)− c′(x) ≥
(

2m

m

)
·
(

1

2
+ x

)m(
1

2
− x
)m
− c′(x)

>

(
2m

m

)
·
(

1

2
+ y∗m

)m(
1

2
− y∗m

)m
− c′(y∗m) = 0,

where the first inequality holds since rm ≥ 0 and x ≥ 0, and the second inequality holds because

c′(·) is a strictly increasing function. Note that for the second inequality we have used the fact
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that (
2m

m

)
·
(

1

2
+ x

)m(
1

2
− x
)m

=

(
2m

m

)
·
(

1

2
− x2

)m
is decreasing for x ∈ [0, 1/2]. To sum up, it must be the case that

x∗m ≥ y∗m. (87)

Moreover, for all x ∈ [0, 1/2],

Dm(x) ≥ r ·

[(
1

2
+ x

)2m

−
(

1

2
− x
)2m

]
= r ·

(
m−1∑
j=0

(
2m

2j + 1

)
·
(

1

2

)2(m−j)−1

x2j+1

)

≥ r · 2m

22m−1 · x. (88)

Next, define sm such that

sm ∈ arg max
q≥y∗m

c′(q)

q

and

sm ≤ y for all y ∈ arg max
q≥y∗m

c′(q)

q
.

Due to the assumptions on c(·) and the fact that y∗m > 0, it must be the case that sm is

well-defined and unique. From (87) and the definition of sm it follows, in particular, that

c′(x∗m)

x∗m
≤ c′(sm)

sm
. (89)

Similarly to the proof of Lemma 1, one can verify that y∗m decreases with m (and converges to

zero), and hence sm also decreases with m. This means that (sm)∞m=1 has a limit, which we

denote by s. We recall that it must always be the case that n ≥ m, i.e., the number of citizens

is at least as large as the number of committee members. If s > 0, then for any integer m ≥ 1,

c′(sm)

sm
≤ c′(s)

s
<∞

If s = 0, then for any integer m ≥ 1,

c′(sm)

sm
≤ lim

s→0

c′(s)

s
= c′′(0) <∞,

where the latter inequality holds by assumption. In either case, the sequence(
c′(sm)

sm

)
m≥1

is bounded from above by a constant (that depends only on c(·)).
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Finally, let

rm :=
22m−1

2m
· c
′(sm)

sm
.

From (83), (84), and (88), we obtain

Dm(x∗m) > rm ·
2m

22m−1 · x
∗
m = x∗m ·

c′(sm)

sm
≥ c′(x∗m).

However, this contradicts (85). Hence there cannot be a symmetric equilibrium in which com-

mittee members inform themselves partially. It therefore remains to show that x∗m = 1/2 is an

equilibrium. This follows from Proposition 2, if we define

tm := max

{
rm, c

′
(

1

2

)}
.

Proof of Proposition 3. Let k′ ∈ {1, . . . ,m − 1}, and hence assume that m > 1. From (15), we

know that the strategy profile (x, . . . , x), with x ∈ (0, 1/2), is an equilibrium of Gm only if

c′(x) =

(
2m

m

)
·
(

1

4
− x2

)m
+φm(m) ·

[(
1

2
+ x

)2m

−
(

1

2
− x
)2m

]

+

(
2m

m+ k′

)
· φm(k′) ·

(
1

4
− x2

)m−k′
·

[(
1

2
+ x

)2k′

−
(

1

2
− x
)2k′

]
, (90)

where

φm(m) = c′(1/2) + ε,

for some ε > 0, and we let

φm(k′) = zl,

for some l ≥ 1. We assume that (zl)l≥1 is any increasing sequence such that

lim
l→∞

zl =∞, (91)
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and that (90) has a solution for each l ≥ 1, which we denote as xl, with xl ∈ (0, 1/2). Then

lim
l→∞

c′(xl)︸ ︷︷ ︸
:=L0

= lim
l→∞

(
2m

m

)
·
(

1

4
− x2l

)m
︸ ︷︷ ︸

:=L1

+ lim
l→∞

φm(m) ·

[(
1

2
+ xl

)2m

−
(

1

2
− xl

)2m
]

︸ ︷︷ ︸
:=L2

+ lim
l→∞

(
2m

m+ k′

)
· φm(k′) ·

(
1

4
− x2

)m−k′
·

[(
1

2
+ xl

)2k′

−
(

1

2
− xl

)2k′
]

︸ ︷︷ ︸
:=L3

. (92)

Clearly, L0, L1, L2, L3 ≥ 0. On the one hand, assume that

lim
l→∞

xl = xL > 0. (93)

Then, by our regularity assumptions,

L0 = c′(xL) <∞,

which implies

L3 <∞.

Due to (94),

lim
l→∞

[(
1

2
+ xl

)2k′

−
(

1

2
− xl

)2k′
]

=

[(
1

2
+ xL

)2k′

−
(

1

2
− xL

)2k′
]
> 0,

so it must be the case that

lim
l→∞

zl · lim
l→∞

(
1

4
− x2l

)m−k′
<∞.

A necessary condition for the above inequality to hold is

lim
l→∞

(
1

4
− x2l

)m−k′
= 0,

which holds only if

xL =
1

2
.

But this implies

L0 = c′
(

1

2

)
< c′

(
1

2

)
+ ε ≤ L1 + L2 + L3,
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which is in contradiction to (92). On the other hand, assume that

lim
l→∞

xl = xL = 0. (94)

Since c′(0) = 0,

0 = L0 <

(
2m

m

)
·
(

1

4

)m
= L1 ≤ L1 + L2 + L3,

which is also in contradiction to (92). That is, we have proved that a sequence (zl)l≥1 with the

properties imposed above cannot exist. This means that if φm(k′) is sufficiently large, there is

no symmetric equilibrium in which individuals choose x ∈ (0, 1/2). Since c′(0) = 0, we also

know that there is no equilibrium in which no information is acquired. Finally, Theorem 3

guarantees that full information can be sustained in equilibrium. This completes the proof of

the proposition.

Proof of Theorem 4. From (24) we know that the strategy profile (x, . . . , x), with x ∈ (0, 1/2),

is an equilibrium of Gm if and only if

c′(x) =

(
2m

m

)
·
(

1

4
− x2

)m
+

(
2m

m+ 1

)
· φm(1) ·

(
1

4
− x2

)m−1
· 2x, (95)

where φm(1) is a constant that will be determined below and does not depend on x. Since

c′(0) = 0 and c′(1/2) = ∞, there is no equilibrium with zero information acquisition and/or

with full information acquisition for any m ≥ 1. Also for any m ≥ 1, there is (at least one

equilibrium). Let (xm)m≥1 by any sequence where xm is a solution of Equation (95) (for the

corresponding m).

The remainder of the proof proceeds in several steps. First, suppose that for all sufficiently large

committee sizes m,

xm ≥ xm :=

√
dm logm

m
, (96)

where (dm)m≥0, with dm > 0 for all m ≥ 1, are defined below. We claim that if the elements of

the sequence (dm)m≥0 are chosen to be sufficiently low but positive, the probability of the right

alternative being implemented goes to one as committee size m grows unboundedly, i.e.,

lim
m→∞

Qm(xm) = 1. (97)

Clearly, because Qm(x) is increasing in x (for a given m), it suffices to assume xm = xm for

sufficiently large m (see below). To show the claim, for any m ≥ 1, let X1, · · · , X2m+1 be i.i.d.

Bernoulli random variables with parameter 1
2

+ xm. In addition, define

Sm :=
2m+1∑
l=1

Xl.
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Then the probability that the right alternative is not implemented is equal to

P [Sm ≤ m] .

By linearity of expectation,

E(Sm) = (2m+ 1) ·
(

1

2
+ xm

)
, (98)

so

m− E(Sm) = m− (2m+ 1) ·
(

1

2
+ xm

)
< −2m · xm < 0. (99)

Then,

P [Sm ≤ m] ≤ P
[
Sm − E(Sm) ≤ −2m · xm

]
≤ P

[∣∣Sm − E(Sm)
∣∣ ≥ 2m · xm

]
≤ 2 exp

(
−

2
(
2m · xm

)2
2m+ 1

)
= 2 exp

(
− 8m2

2m+ 1
·
(
dm logm

m

))
≤ 2m−ε,

where the second inequality holds due to (98) and (99), the third inequality is Hoeffding’s

inequality (see Hoeffding, 1963), the equality follows from the definition of xm (see (96)), and

the last inequality is explained as follows: Given ε > 0, there is large enough m∗(ε) such that if

we let

dm = d :=
ε

4
, for all m ≥ m∗(ε), (100)

it must be the case that

mε ≤ exp

(
8m2

2m+ 1
·
(
d logm

m

))
for any m ≥ m∗(ε). (101)

This is because

lim
m→∞

exp

(
8m2

2m+ 1
·
(
d logm

m

))
/mε = lim

m→∞
m4d/mε = 1.

We have therefore proved that the above claim is correct: It suffices to take ε→ 0.
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Second, on the one hand,

lim
m→∞

(
1
4
− dm logm

m

)m−1(
1
4

)m−1 mε = lim
m→∞

(
1− 4dm logm

m

)m−1
mε

= lim
m→∞

(
1− 4dm logm

m

)m
· lim
m→∞

(
1− 4dm logm

m

)−1
mε

= lim
m→∞

(
1− 4dm logm

m

)m
mε = lim

m→∞

(
1− 4dm logm

m

) m
4dm logm

·4dm logm

mε

= lim
m→∞

(
1

e

)4dm logm

= lim
m→∞

m−4dmmε = 1. (102)

On the other hand, by applying Stirling’s approximation

lim
m→∞

(
2m

m+ 1

)(
1

4

)m−1
= lim

m→∞

(2m)!

(m+ 1)!(m− 1)!

(
1

4

)m−1
= lim

m→∞

1√
π
·
√

m

m2 − 1
· m2m

(m+ 1)m+1(m− 1)m−1

=
1√
π
· lim
m→∞

1√
m
. (103)

By combining (102) and (103), we therefore obtain

lim
m→∞

(
2m

m+ 1

)(
1

4
− dm logm

m

)m−1
= lim

m→∞

(
2m

m+ 1

)(
1

4

)m−1
· lim
m→∞

(
1
4
− dm logm

m

)m−1(
1
4

)m−1
=

1√
π
· lim
m→∞

m−ε · lim
m→∞

1√
m

=
1√
π
· lim
m→∞

1

m
1
2
+ε
. (104)

Third and last, for each ε > 0, let

φm(1) :=
c′(sm)

sm
·m

1
2
+ε

where

sm ∈ arg max
q≤xm

c′(q)

q

and

sm ≤ y for all y ∈ arg max
q≤xm

c′(q)

q
.

In particular, it must be the case that

c′(xm)

xm
≤ c′(sm)

sm
<∞. (105)
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The strict inequality holds because

lim
s→0

c′(s)

s
= c′′(0) <∞.

Additionally, note that (xm)m≥m∗(ε) is decreasing, and therefore so is (sm)m≥m∗(ε). Then,

lim
m→∞

(
2m

m

)
·
(

1

4
− x2m

)m
+

(
2m

m+ 1

)
· φm(1) ·

(
1

4
− x2m

)m−1
· 2xm

≥ lim
m→∞

(
2m

m+ 1

)
·
(

1

4
− x2m

)m−1
· 2 lim

m→∞
m

1
2
+ε · lim

m→∞

c′(sm)

sm
· xm

≥ lim
m→∞

(
2m

m+ 1

)
·
(

1

4
− x2m

)m−1
· 2 lim

m→∞
m

1
2
+ε · 2 lim

m→∞
c′(xm)

=
2√
π
· lim
m→∞

c′(xm) > lim
m→∞

c′(xm), (106)

where the second inequality holds by (105) and the equality holds by (104). However, (106)

contradicts the fact that xm satisfies (95) for sufficiently large m. That is, for any m ≥ m∗(ε),

it must be the case that

xm ≥ xm.

Finally, taking ε→ 0 and using Equation (97) completes the proof of the Theorem.

Proof of Proposition 4. Here we focus on the decision of the second voting round, in which 2n−
2m individuals vote after the outcome of the first voting round by the committee has been made

public. We let d denote the difference in votes that alternative A received from the committee

members compared to alternative B. Note that d is an odd number (assuming all the committee

members vote) and that it may be positive or negative (d ∈ {−2m − 1, . . . , 2m + 1}). This

means that in the second voting round alternative A must receive at least d + 1 more votes

than alternative B if it is to be implemented. Like in the first voting round, we focus in the

second round on symmetric equilibrium. That is, we assume that all individuals acquire the

same level of information x∗∗(n) ∈ [0, 1] and that, conditional on the signal they obtain (and

given their posterior q obtained after the first voting round), they vote for the same alternative

(with probability one). We also assume that there is no abstention in the second round and that

2n− 2m ≥ 2m+ 4, (107)

which is clearly satisfied if n is large enough. Condition (107) ensures that individuals who are

not members of the committee can undo any decision taken by members of the committee (for

appropriate voting behavior which does not require unanimity). Without loss of generality, we

assume that d > 0, and hence q > 1/2. That is, A received more votes in the first round and
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individuals with the right to vote in the second round believe that alternative A is the right

alternative with probability larger than 1/2.

Recall that if x < 1/2, in equilibrium all individuals in the second round must equate the pivotal

probability with the increases in disutility derived from acquiring more information than x—see

Equation (6) (for cost sharing) and Equation (15) (for TS). We distinguish two cases. First,

assume that given x, m, d, and q, all voters in the second round vote for the same alternative.

Due to (107), no single individual is pivotal, so it must be the case that x = 0. This means

that individuals voting in the second round receive no informative signal, so the only voting

behavior that is consistent with equilibrium is to vote according to the posterior q > 1
2

in favor

of alternative A.

Second, assume that given x, m, d, and q, all voters in the second round vote for different alter-

natives depending on the signal. That is, those who receive an A signal vote for alternative A,

those who receive a B signal vote for alternative B. Now let i denote one individual with the

right to vote in the second round. One can easily see that (excluding i’s vote) the probability

that there is a tie is then

Px[tie] = q ·

[(
2(n−m)− 1

(n−m)− d+1
2

)
·
(

1

2
+ x

)(n−m)− d+1
2

·
(

1

2
− x
)(n−m)+ d−1

2

]

+ (1− q) ·

[(
2(n−m)− 1

(n−m)− d+1
2

)
·
(

1

2
− x
)(n−m)− d+1

2

·
(

1

2
+ x

)(n−m)+ d−1
2

]
. (108)

One can easily verify that for fixed x, m, d, and q,

lim
n→∞

Px[tie] = 0.

Hence,

lim
n→∞

x∗∗(n) = 0.

Then using the same logic as in Section 7.1, we can see that if n is sufficiently large, any individual

with the right to vote in the second round believes, given the posterior q and his/her own signal

of accuracy x∗∗(n) ≈ 0, that A is the right alternative with probability higher than 1/2. This

is because q > 1/2 is independent of n. But this contradicts the assumption that individuals

acquire positive levels of information in equilibrium.

To sum up, for large n, in any equilibrium of the game underlying AV, it must be the case that

all individuals in the second round acquire zero information and simply vote for the alternative

that received more votes in the committee voting round, provided that its members chose a

positive level of information acquisition.
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