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Abstract

We establish the out-of-sample predictability of monthly exchange rate changes via
machine learning techniques based on 70 predictors capturing country characteristics,
global variables, and their interactions. To guard against overfitting, we use the elas-
tic net to estimate a high-dimensional panel predictive regression and find that the
resulting forecast consistently outperforms the näıve no-change benchmark, which has
proven difficult to beat in the literature. The forecast also markedly improves the
performance of a carry trade portfolio, especially during and after the global financial
crisis. When we allow for more complex deep learning models, nonlinearities do not
appear substantial in the data.
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1 Introduction

The specter of Meese and Rogoff (1983) continues to haunt international finance: despite an

array of theoretical models linking fundamentals to exchange rates, it is difficult to consis-

tently outperform the näıve random walk without drift (or no-change) exchange rate forecast

on an out-of-sample basis, especially at short horizons. Of course, it is not surprising that it is

difficult to predict exchange rate changes. Developed-country currencies are traded in quite

liquid and institutional investor-dominated markets, which are reasonably efficient; we thus

expect that exchange rate fluctuations will contain at most only a small predictable compo-

nent. The same, however, is true for equities, and while we also expect a small predictable

component in equity returns, the apparent consensus in the literature is that short-horizon,

out-of-sample stock return predictability exists to a statistically and economically signifi-

cant degree (Rapach and Zhou 2013). Such a consensus does not prevail with respect to

exchange rate changes, as the empirical evidence for short-horizon, out-of-sample exchange

rate predictability appears considerably weaker and more precarious (Rossi 2013).

In this paper, we investigate the ability of machine learning techniques to improve

monthly out-of-sample forecasts of US dollar exchange rates for 14 developed countries.1 To

predict exchange rates, we use a rich information set comprised of ten country characteristics

and six global variables. The country characteristics capture a diversity of information that

is potentially relevant to foreign exchange market participants. The characteristics include

various macroeconomic and financial variables, such as inflation, unemployment gap, interest

rate, and financial valuation ratio differentials, which can be motivated by the Taylor (1993)

rule, uncovered interest parity (UIP), and uncovered equity parity (UEP), among other theo-

ries. The global variables include economic and monetary policy uncertainty indices (Baker,

Bloom, and Davis 2016), a geopolitical risk index (Caldara and Iacoviello 2018), as well as

1Machine learning is becoming popular in finance for analyzing equity returns with large information sets
(e.g., Rapach, Strauss, and Zhou 2013; Feng, Giglio, and Xiu 2020; Freyberger, Neuhierl, and Weber 2020;
Gu, Kelly, and Xiu 2020; Han et al. 2020; Kozak, Nagel, and Santosh 2020).
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measures of global foreign exchange volatility, illiquidity, and correlation (Menkhoff et al.

2012a; Mueller, Stathopoulos, and Vedolin 2017). To allow for the predictive relationships

between the country characteristics and exchange rate changes to vary with global condi-

tions, we interact the country characteristics with the global variables, producing a set of

70 predictors. The predictors serve as explanatory variables in a predictive regression for

(proportional) exchange rate changes.

Given our high-dimensional setting with 70 predictors, it is vital to guard against over-

fitting when estimating the predictive regression. The need to alleviate overfitting is made

more urgent by the inherently large unpredictable component in monthly exchange rate

changes, which means that we need to contend with noisy data when estimating predictive

relationships. To guard against overfitting, we estimate the predictive regression via the

elastic net (ENet, Zou and Hastie 2005), a refinement of the popular least absolute shrinkage

and selection operator (LASSO, Tibshirani 1996) from machine learning. By construction,

conventional ordinary least squares (OLS) estimation maximizes the fit of the model over

the estimation (or training) sample, which can lead to overfitting the model to the training

sample and thus poor out-of-sample performance, especially for high-dimensional models

and noisy data. The ENet is a penalized regression technique that shrinks the estimated co-

efficients toward zero, thereby alleviating overfitting. The penalty term in the ENet includes

both an `1 component—as in the LASSO—and an `2 component—as in ridge regression (Ho-

erl and Kennard 1970); the former permits shrinkage to zero, so that the ENet also performs

variable selection. We further guard against overfitting by estimating the predictive regres-

sion in a panel framework, in which we pool the data. Pooling substantially reduces the

number of parameters that we need to estimate, thereby helping to improve out-of-sample

performance in light of the bias-variance tradeoff.

In implementing the ENet, a key issue is selecting (or tuning) the regularization param-

eter, which controls the degree of shrinkage. Although K-fold cross validation is the most

popular method for tuning the regularization parameter, the number and construction of
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the folds are largely arbitrary. To better ensure a sufficient degree of shrinkage, we tune the

regularization parameter using variants of the Bayesian information criterion (BIC, Schwarz

1978), including those developed by Wang, Li, and Leng (2009), Fan and Tang (2013), and

Hui, Warton, and Foster (2015) for machine learning.

Simulating the situation of a forecaster in real time, we generate monthly out-of-sample

forecasts based on the 70 predictors by recursively estimating the panel predictive regression

via the ENet. Based on data availability and after allowing for a ten-year initial training

sample, the out-of-sample period spans 1995:01 to 2019:03. We compute forecasts for the

entire out-of-sample period for the United Kingdom, Switzerland, Japan, Canada, Australia,

New Zealand, Sweden, Norway, and Denmark; for the Euro area, the out-of-sample period

begins in 2000:02. We refer to the exchange rates for these ten countries as the G10.2 For

Germany, Italy, France, and the Netherlands, the out-of-sample period ends in 1998:12,

corresponding with their adoption of the Euro.

We find that the ENet exchange rate forecasts generally outperform the näıve no-change

benchmark forecast over the 1995:01 to 2019:03 out-of-sample period. The ENet forecast

that tunes the regularization parameter via the extended regularization information crite-

rion (ERIC; Hui, Warton, and Foster 2015)—and which imposes the strongest degree of

shrinkage—performs the best overall, demonstrating the importance of guarding against

overfitting. The ENet-ERIC forecast outperforms the no-change benchmark in terms of

mean squared forecast error (MSFE) for 13 of the 14 countries, including all of the G10

countries.3 According to the Clark and West (2007) statistic, the improvement in MSFE

is significant for most of the countries. Based on the Campbell and Thompson (2008) out-

of-sample R2 statistic, the improvements in forecast accuracy are also quantitatively large

in the context of the extensive literature surveyed by Rossi (2013), with the monthly out-

2The G11 currencies are the US dollar, Euro, British pound, Swiss franc, Japanese yen, Canadian dollar,
Australian dollar, New Zealand dollar, Swedish krona, Norwegian krone, and Danish krone. With the US
dollar serving as the base currency, we label our set of ten exchange rates the G10.

3The conventional OLS forecast is plagued by overfitting and substantially underperforms the no-change
benchmark in terms of MSFE.
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of-sample R2 statistic reaching as high as 5.32% for the United Kingdom. For the entire

group of 14 countries taken together, the out-of-sample R2 statistic is 2.04%, which consti-

tutes a significant improvement in MSFE vis-à-vis the no-change benchmark according to

the Clark and West (2007) test (at the 1% level). Based on the graphical device of Goyal

and Welch (2003, 2008), the ENet-ERIC forecast outperforms the no-change benchmark on

a reasonably consistent basis over time. The outperformance is especially strong during the

worst phase of the global financial crisis in late 2008. Overall, by utilizing a rich information

set—while adequately guarding against overfitting—the ENet-ERIC approach makes consid-

erable progress in solving the Meese and Rogoff (1983) no-predictability puzzle and provides

among the best short-horizon exchange rate forecasts available to date.

By performing variable selection, the ENet is a machine learning tool that facilitates

model interpretation. We examine the recursive ENet coefficient estimates to identify the

most relevant predictors of US dollar exchange rates for our group of developed countries.

Among the individual country characteristics, financial valuation ratio differentials (espe-

cially the dividend yield differential) are among the most frequently selected predictors.

The ENet also frequently selects a number of predictors involving interactions between the

country characteristics and global variables. In particular, the interactions of inflation, the

unemployment gap, and government bill and bond yield differentials with global foreign

exchange volatility are relevant predictors according to the ENet. When we examine the

recursive coefficient estimates, an interesting pattern emerges: the predictive relationships

implied by theory (e.g., UIP) often become stronger as global foreign exchange volatility

increases.

A spate of recent papers (e.g., Engel and Wu 2019; Jiang, Krishnamurthy, and Lustig

2019; Kremens and Martin 2019; Adrian and Xie 2020; Lilley et al. forthcoming) finds evi-

dence of exchange rate predictability around the global financial crisis using variables related

to the US dollar’s “safe-haven” status. Based on data availability, these studies use relatively

short samples and/or analyze medium- to long-horizon predictability (horizons of one quar-

4



ter to multiple years). In contrast, we consider a lengthy out-of-sample period (beginning

well before the global financial crisis) and focus on short-horizon (monthly) predictability,

which has proven even more difficult to uncover in the literature (e.g., Mark 1995; Rossi

2013). Nevertheless, our results appear to capture exchange rate predictability during the

crisis corresponding to the US dollar’s safe-haven role. First, as mentioned previously, our

monthly ENet forecasts generate strong out-of-sample gains during the crisis, consistent

with the US dollar’s safe-haven status contributing to increased exchange rate predictability

around the crisis as global risk tolerance declined. Second, we find that, as a group, the

predictors selected by the ENet are significantly related to the change in US holdings of

foreign bonds, which Lilley et al. (forthcoming) use to measure capital flows. They find that

their capital flow measure (which is available at the quarterly frequency) reflects global risk

appetite and is significantly related to the change in a broad US dollar exchange rate index

after 2006. After aggregating our monthly predictors over time to the quarterly frequency

and across countries, we find that the most relevant predictors according to the ENet are

significantly related to the Lilley et al. (forthcoming) capital flow measure. In sum, our

evidence of monthly out-of-sample exchange rate predictability for the 1995:01 to 2019:03

period appears to capture the predictability stemming from the US dollar’s safe-haven role

around the crisis.

We also explore the implications of out-of-sample exchange rate predictability for carry

trade investment strategies. The popular carry trade entails going long (short) currencies

with relatively high (low) interest rates. Consider a US investor who goes long (short)

the currency for country i (US dollar). Based on covered interest parity (CIP), we can

approximate the excess return for the investment as

RXi,t+1 ≈ (ri,t − rUS,t)− δi,t+1, (1.1)
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where ri,t (rUS,t) is the month-t government bill yield for country i (the United States),

δi,t+1 = (Si,t+1/Si,t) − 1 is the (proportional) change in the exchange rate, and Si,t is the

spot exchange rate expressed as the number of country-i currency units per US dollar.

Beginning with Hansen and Hodrick (1980), Bilson (1981), and Fama (1984), a voluminous

literature finds that UIP does not hold and that the conditional expectation of RXi,t+1

is positive in Equation (1.1) when ri,t − rUS,t > 0.4 Compared to a variety of investment

strategies, conventional carry trade portfolios deliver impressive Sharpe ratios (e.g., Burnside,

Eichenbaum, and Rebelo 2011; Lustig, Roussanov, and Verdelhan 2011).5 However, carry

trade strategies suffered large losses in late 2008 , and their performance has deteriorated in

the wake of the global financial crisis (e.g., Melvin and Taylor 2009; Jordà and Taylor 2012;

Daniel, Hodrick, and Lu 2017; Melvin and Shand 2017).6

From the perspective of Equation (1.1), if an investor’s forecast of δi,t+1 is zero—in the

spirit of Meese and Rogoff (1983)—then the investor’s forecast of RXi,t+1 is simply the bill

yield differential (ri,t− rUS,t)—in the spirit of the carry trade. We first construct an optimal

portfolio for a mean-variance investor who allocates across the 14 foreign currencies in our

sample by relying on the bill yield differential to forecast the foreign currency excess return.

We label this a Basic Optimal (Basic-Opt) carry trade portfolio, as the investor ignores

exchange rate predictability when forecasting the excess return. The Basic-Opt portfolio

delivers impressive performance before the global financial crisis. However, it suffers large

losses in late 2008, and its cumulative return is essentially flat thereafter.7

We then construct a Smart Optimal (Smart-Opt) carry trade portfolio, where the mean-

variance investor augments the bill yield differential with the ENet-ERIC forecast of the

4See Froot and Thaler (1990), Taylor (1995), and Burnside (2018) for surveys of UIP.
5Studies that explore risk-based explanations for carry trade returns include Burnside et al. (2011), Lustig,

Roussanov, and Verdelhan (2011), Menkhoff et al. (2012a), Dobrynskaya (2014), Jurek (2014), Lettau,
Maggiori, and Weber (2014), and Dahlquist and Hasseltoft (2020).

6Brunnermeier, Nagel, and Pedersen (2009) provide a explanation for carry trade crashes based on
funding-constrained speculators.

7Daniel, Hodrick, and Lu (2017) also construct an optimal carry trade portfolio for a mean-variance
investor who uses the interest rate differential to forecast the currency excess return; our Basic-Opt portfolio
performs similarly to theirs. A conventional carry trade portfolio that sorts currencies based on the bill yield
differential and goes long (short) the fifth (first) quintile performs even worse than the Basic-Opt portfolio.
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exchange rate change to forecast the currency excess return.8 Like the Basic-Opt portfolio,

the Smart-Opt portfolio delivers impressive performance before the crisis. In sharp contrast

to the Basic-Opt portfolio, it also performs impressively thereafter. Specifically, the Smart-

Opt portfolio experiences a smaller loss in September of 2008, generates large gains in the

last three months of 2008, and performs well subsequently. Consistent with a loss of risk

appetite during the crisis and the US dollar’s safe-haven role, the ENet forecast predicts a

substantial depreciation for many foreign currencies in late 2008, which leads to markedly

different allocations for the Smart-Opt vis-à-vis the Basic-Opt portfolio. The Smart-Opt

portfolio also generates substantial alpha before and after the crisis in the context of the

Lustig, Roussanov, and Verdelhan (2011) currency factor model.

Finally, we use deep neural networks (DNNs) to explore the relevance of complex nonlin-

ear relationships for out-of-sample exchange rate prediction.9 Our baseline panel predictive

regression allows for a type of nonlinearity via the interactions of the country characteris-

tics with the global variables; the model, however, remains linear in the predictors. DNNs

are popular machine learning tools that allow for complex nonlinear predictive relationships

via a network architecture with multiple hidden layers containing neurons activated by pre-

dictive signals. In order to approximate general predictive relationships, DNNs are highly

parameterized, which makes them susceptible to overfitting, and the hyperparameters for

the algorithms used to estimate DNNs can be set to better guard against overfitting. We

investigate the performance of DNNs for forecasting exchange rates based on our set of 70

predictors. Although the DNN forecasts outperform the no-change benchmark for most

countries, they do not generally perform as well as the ENet-ERIC forecast. Using the vari-

able importance measure (Greenwell, Boehmke, and McCarthy 2018) and partial dependence

plot (Friedman 2001) to peer inside the “black box” of the fitted DNNs, we find that the

8The results are similar when the investor uses the other ENet forecasts. Della Corte, Sarno, and Tsiakas
(2009) construct mean-variance optimal portfolios for a US investor who allocates across US, British, German,
and Japanese bonds using a handful of fundamentals to forecast exchange rates. Jordà and Taylor (2012) use
a small number of fundamentals to improve carry strategies (but not in a mean-variance optimal framework).

9Gu, Kelly, and Xiu (2020) recently find some success in using DNNs to forecast monthly stock returns
based on a large number of firm characteristics.
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nonlinearities are relatively weak. When it comes to exchange rate forecasting, nonlinearities

thus do not appear strong enough to offset the risk of overfitting associated with estimating

a highly parameterized DNN in a noisy data environment.

The remainder of the paper is organized as follows. Section 2 describes the data. Section 3

discusses the specification and estimation of the panel predictive regression used to generate

the out-of-sample exchange rate forecasts. Section 4 provides results for forecast accuracy.

Section 5 discusses the construction of the Basic-Opt and Smart-Opt carry trade portfolios

and analyzes their performance. Section 6 focuses on the DNN forecasts. Section 7 concludes.

2 Data

This section describes the data used in our analysis. Section A1 of the Internet Appendix

provides further information on the construction of the variables and data sources.

2.1 Exchange Rates

We begin with daily exchange rate data from Barclays and Reuters via Datastream, and

we convert daily spot exchange rates to a monthly frequency using end-of-month values

(e.g., Burnside et al. 2011; Lustig, Roussanov, and Verdelhan 2011). Our sample consists

of the following 14 countries: the United Kingdom, Switzerland, Japan, Canada, Australia,

New Zealand, Sweden, Norway, Denmark, the Euro area, Germany, Italy, France, and the

Netherlands.10 Germany, Italy, France, and the Netherlands are replaced by the Euro area

after the Euro’s introduction in 1999. We refer to the group of ten countries excluding

Germany, Italy, France, and the Netherlands as the G10.

As in Section 1, we use Si,t to denote the month-t spot exchange rate, expressed as the

number of country-i currency units per US dollar (e.g., Lustig, Roussanov, and Verdelhan

10Our universe of exchange rates is similar to the sample of developed countries employed in other studies
(e.g., Lustig, Roussanov, and Verdelhan 2011; Menkhoff et al. 2012a), with the exception of Belgium, which
we exclude due to a lack of data availability for the country characteristics in Section 2.2.
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2011; Menkhoff et al. 2012a,b). An increase in Si,t thus represents an appreciation of the

US dollar. The country-i (proportional) change in the exchange rate is given by δi,t =

(Si,t/Si,t−1)− 1.

Table 1 reports summary statistics for the 14 exchange rate changes. The second column

reports the sample period for each country. With the exceptions of four countries, the sample

ends in 2019:03; for France, Germany, Italy, and the Netherlands, the sample ends in 1998:12,

the last month for which these countries had their own currencies. Based on data availability

for the predictors, the sample begins in 1985:01 for all countries, with the exception of the

Euro area, where the sample begins in 1999:02, corresponding to the introduction of the

Euro in January of 1999.

The annualized means in the third column of Table 1 are generally small in magnitude. In

fact, none of the means is significant at conventional levels, so that, following many studies,

we treat the average exchange rate change as zero for each country in our empirical modeling.

The annualized volatilities in the fourth column are typically sizable; apart from Canada

(7.39%), they range from 9.80% (Euro area) to 12.18% (New Zealand). The autocorrelations

in the last column are all relatively small in magnitude. Overall, the summary statistics in

Table 1 reflect well-known empirical features of exchange rates.

2.2 Country Characteristics

We consider ten monthly country characteristics computed using macroeconomic and finan-

cial data from Global Financial Data and the Organization for Economic Cooperation and

Development:

Inflation differential (INFi,t) Difference in consumer price index (CPI) inflation rates for

country i and the United States.

Unemployment gap differential (UNi,t) Difference in unemployment gaps for country

i and the United States. The unemployment gap is the cyclical component of the
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unemployment rate computed using the Christiano and Fitzgerald (2003) band-pass

filter for periodicities between six and 96 months.11

Bill yield differential (BILLi,t) Difference in three-month government bill yields for coun-

try i and the United States.

Note yield differential (NOTEi,t) Difference in five-year government note yields for coun-

try i and the United States.

Bond yield differential (BONDi,t) Difference in ten-year government bond yields for coun-

try i and the United States.

Dividend yield differential (DPi,t) Difference in dividend yields for country i and the

United States.

Price-earnings differential (PEi,t) Difference in price-earnings ratios for country i and

the United States.

Stock market momentum (SRETi,t) Difference in the cumulative twelve-month stock

market return for country i and the United States.

Idiosyncratic volatility (IVi,t) Integrated volatility computed for the fitted residuals from

the Lustig, Roussanov, and Verdelhan (2011) two-factor model estimated using daily

data for month t for country-i currency excess returns.

Idiosyncratic skewness (ISi,t) Integrated skewness computed for the fitted residuals from

the Lustig, Roussanov, and Verdelhan (2011) two-factor model estimated using daily

data for month t for country-i currency excess returns.

11We compute the unemployment gap only using data available at the time of forecast formation. The
Hodrick and Prescott (1997) filter is often used to compute output and unemployment gaps; however, it tends
to perform poorly at the right-hand endpoint. Because we are interested in out-of-sample forecasting, we
use the Christiano and Fitzgerald (2003) band-pass filter, which performs better at the right-hand endpoint.
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The country characteristics include a variety of macroeconomic and financial measures,

all of which are based on data readily available to foreign exchange market participants.12

The inflation and unemployment gap differentials constitute Taylor (1993) rule fundamen-

tals (e.g., Engel and West 2005; Molodtsova and Papell 2009), which appear to perform

better for exchange rate prediction than fundamentals based on the traditional monetary

model (Frenkel 1976; Mussa 1976). The bill yield differential relates to the voluminous UIP

literature, while longer-term yield differentials are considered by Ang and Chen (2011) and

Chen and Tsang (2013) in the context of yield curves. Hau and Rey (2006) and Cenedese

et al. (2016), among others, employ valuation ratio differentials to analyze UEP. The other

country characteristics represent additional financial measures that are potentially relevant

to market participants.

2.3 Global Variables

We consider six global variables:

Economic policy uncertainty (EPUt) Baker, Bloom, and Davis (2016) economic policy

uncertainty index based on coverage frequencies in ten major US newspapers.

Monetary policy uncertainty (MPUt) Baker, Bloom, and Davis (2016) monetary policy

uncertainty index based on coverage frequencies in ten major US newspapers.

Geopolitical risk (GRt) Caldara and Iacoviello (2018) geopolitical risk index based on

newspaper coverage.

Global foreign exchange volatility (GVOLt) Following Menkhoff et al. (2012a), global

foreign exchange volatility is the average for the month of the daily cross-sectional

averages of the absolute values of currency returns.

12We account for the publication lag in the CPI and unemployment rate, so that INFi,t and UNi,t corre-
spond to data for month t− 1 that are reported in month t.
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Global foreign exchange illiquidity (GILLt) Following Menkhoff et al. (2012a), global

foreign exchange illiquidity is the average for the month of the daily cross-sectional

averages of the bid-ask spreads for currency returns.

Global foreign exchange correlation (GCORt) Similarly to Mueller, Stathopoulos, and

Vedolin (2017), we measure global foreign exchange correlation as the average of the

realized covariances for all currency pairs computed using daily returns for the month.

The global variables capture general economic conditions that potentially affect the predic-

tive ability of the country characteristics.13

3 Panel Predictive Regression

This section specifies the panel predictive regression and describes the construction of the

out-of-sample forecasts.

3.1 Specification

We collect the month-t characteristics for country i and the month-t global variables in the

following vectors:

zi,t
(Z×1)

= [ INFi,t UNi,t BILLi,t NOTEi,t BONDi,t DPi,t PEi,t SRETi,t IVi,t ISi,t ]′, (3.1)

gt
(G×1)

= [ EPUt MPUt GRt GVOLt GILLt GCORt ]′, (3.2)

respectively, for i = 1, . . . , N and t = 1, . . . , T , where N (T ) is the number of countries

(time-series observations). The vector of predictors for country i is comprised of the country

13We follow Menkhoff et al. (2012a) and Mueller, Stathopoulos, and Vedolin (2017) by measuring GVOLt,
GILLt, and GCORt as the residuals from fitted first-order autoregressive processes. We only use data avail-
able at the time of forecast formation when fitting the autoregressive processes and computing the residuals.
Bakshi and Panayotov (2013) and Filippou and Taylor (2017) use aggregated country characteristics and
global variables to predict conventional carry trade portfolio returns, while we forecast individual exchange
rate changes.
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characteristics and the characteristics interacted with each global variable:

xi,t
(K×1)

= [ z′i,t h′i,t ]′, (3.3)

where

hi,t
(ZG×1)

= zi,t ⊗ gt, (3.4)

⊗ is the Kronecker product, and K = Z(G+ 1). Since Z = 10 and G = 6 in Equations (3.1)

and (3.2), respectively, we have K = 70 predictors for each country. We express the country-i

predictors in deviations from country-specific means:

x̃i,t = xi,t − x̄i·, (3.5)

where x̄i· = (1/T )
∑T

t=1 xi,t. The panel predictive regression is given by

δi,t = x̃i,t−1b+ εi,t for i = 1, . . . , N ; t = 1, . . . , T, (3.6)

where b = [ b1 · · · bK ]′ is the K-vector of slope coefficients and εi,t is a zero-mean dis-

turbance term. Because we set the country-specific mean for δi,t to zero, Equation (3.6) is

tantamount to a fixed-effects specification.14

It is convenient to express the panel predictive regression in matrix notation as

δ = X̃b+ ε, (3.7)

where

δ
(NT×1)

= [ δ′1· · · · δ′N · ]′, (3.8)

14Hjalmarsson (2010) predicts global stock returns using a low-dimensional panel predictive regression,
while Gu, Kelly, and Xiu (2020) forecast individual stock returns using a high-dimensional panel predictive
regression estimated using a variety of machine learning techniques.
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δi·
(T×1)

= [ δi,1 · · · δi,T ]′, (3.9)

X̃
(NT×K)

= [ X̃ ′1· · · · X̃ ′N · ]′, (3.10)

X̃i·
(T×K)

= [ x̃i,0 · · · x̃i,T−1 ]′, (3.11)

ε
(NT×1)

= [ ε′1· · · · ε′N · ]′, (3.12)

εi·
(T×1)

= [ εi,1 · · · εi,T ]′. (3.13)

For simplicity, we assume a balanced panel in the notation. When we estimate b in Equa-

tion (3.7) using our data, we have an unbalanced panel; it is straightforward to adjust the

notation accordingly.

We include many more predictors than existing studies of exchange rate predictability,

which typically consider a only limited number of country characteristics. In addition to

numerous country characteristics, we include interactions of the country characteristics with

a set of global variables.

3.2 Forecast Construction

An out-of-sample forecast of δi,T+1 based on the panel predictive regression in Equation (3.6)

and data available through T is given by

δ̂PPRi,T+1|T = x̃′i,T b̂1:T , (3.14)

where b̂1:T is an estimate of b in Equation (3.6) based on data through T . Because the

predictable component in monthly exchange rate changes is inherently small and the panel

predictive regression is high dimensional, conventional OLS estimation of b is susceptible to

overfitting.
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The LASSO (Tibshirani 1996) is a popular machine learning technique based on penalized

(or regularized) regression. It mitigates overfitting by including an `1 penalty term in the

objective function for estimating b in Equation (3.7):

arg min
b∈RK

1

2NT
‖δ − X̃b‖22 + λ‖b‖1, (3.15)

where λ ≥ 0 is a regularization parameter that governs the degree of shrinkage and

‖v‖1 =
J∑
j=1

|vj|, (3.16)

‖v‖2 =

(
J∑
j=1

v2j

)0.5

(3.17)

are the `1 and `2 norms, respectively, for a generic J-dimensional vector, v = [ v1 · · · vJ ]′.

When λ = 0, there is no shrinkage, so that the LASSO and OLS objective functions coincide.

Unlike the `2 penalty in ridge regression, the `1 penalty in Equation (3.15) permits shrinkage

to zero (for sufficiently large λ), so that the LASSO performs variable selection.

The LASSO is adept at selecting relevant predictors in some settings (e.g., Zhang and

Huang 2008; Bickel, Ritov, and Tsybakov 2009; Meinshausen and Yu 2009). However, it

tends to arbitrarily select one predictor from a group of highly correlated predictors. The

ENet (Zou and Hastie 2005) alleviates this tendency by including both `1 (LASSO) and `2

(ridge) components in the penalty term for the objection function:

arg min
b∈RK

1

2NT
‖δ − X̃b‖22 + λPα(b), (3.18)

where

Pα(b) = 0.5(1− α)‖b‖22 + α‖b‖1 (3.19)

15



and α is a blending parameter for the `1 and `2 components of the penalty term. When

α = 1, Pα = ‖b‖1 in Equation (3.19), so that the ENet reduces to the LASSO. We follow

the recommendation of Hastie and Qian (2016) and set α = 0.5.15

An important aspect of ENet estimation is the tuning of the regularization parameter,

λ, in Equation (3.18). Tuning λ entails estimating Equation (3.18) for a grid of λ values

and selecting the value that minimizes some criterion. Although K-fold cross validation is

the most popular method for tuning λ, a drawback to the approach is that the number and

construction of the folds are largely arbitrary. Instead, we tune the regularization parameter

using information criteria. Specifically, to help to prevent overfitting in our noisy data

environment, we use versions of the Bayesian information criterion (BIC, Schwarz 1978).

We begin with the conventional BIC, as suggested by Zou, Hastie, and Tibshirani (2007):

BIC = NT log

(
SSRλ

NT

)
+ dfλ log(NT ), (3.20)

where SSRλ (dfλ) is the sum of squared residuals (effective degrees of freedom) for the ENet-

fitted model based on λ. Next, we consider the modified BIC proposed by Wang, Li, and

Leng (2009), who modify the BIC to make it more stringent for a diverging number of

predictors:

MBIC = NT log

(
SSRλ

NT

)
+ dfλ log(NT ) log[log(K)]. (3.21)

We also use the generalized information criterion of Fan and Tang (2013), who adjust the

BIC for the case where the number of predictors grows exponentially with the sample size:

GIC = NT log

(
SSRλ

NT

)
+ dfλ log[log(NT )] log(K). (3.22)

15See Hastie, Tibshirani, and Wainwright (2015) for a textbook exposition of the LASSO and ENet.
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Finally, we consider a version of the extended regularization information criterion (ERIC;

Hui, Warton, and Foster 2015), which refines the BIC by incorporating the value of λ:

ERIC = NT log

(
SSRλ

NT

)
+ dfλ log

(
NTσ̂2

λ

λ

)
, (3.23)

where σ̂2
λ = SSRλ/(NT ).

The information criteria in Equations (3.20) to (3.23) reflect the familiar fit-parsimony

tradeoff for model selection. In our context, the BIC-based criteria exert a strong shrinkage

effect; in terms of the relative strength of shrinkage, the general ranking of the criteria (from

least to most stringent) is BIC, GIC, MBIC, and ERIC.16

4 Out-of-Sample Performance

This section analyzes the accuracy of the out-of-sample forecasts. It also discusses the

benefits of the pooling restriction in Equation (3.6), as well as the relevance of individual

predictors as identified by the ENet.

4.1 Beating the Näıve Benchmark

Simulating the situation of a forecaster in real time, we generate exchange rate forecasts for

the 1995:01 to 2019:03 out-of-sample period as follows. Reserving the first ten years of data

for the initial training sample, we estimate the panel predictive regression in Equation (3.7)

using data from the beginning of the available sample through 1994:12. We then use the fitted

panel predictive regression and the 1994:12 predictor values for each country to compute

forecasts of exchange rate changes for each available country for 1995:01. Next, we re-

estimate the panel predictive regression using data through 1995:01; we then use the fitted

16As in Flynn, Hurvich, and Simonoff (2013) and Taddy (2017), we also consider the Hurvich and Tsai
(1989) corrected version of the Akaike information criterion (AIC, Akaike 1973). However, the corrected AIC
does not induce sufficient shrinkage, as it fails to outperform the näıve no-change benchmark. In addition,
five-fold cross validation rarely outperforms the näıve benchmark. The complete results for five-fold cross
validation and the corrected AIC are reported in Table A1 of the Internet Appendix.

17



panel predictive regression and the 1995:01 predictor values for each country to generate

forecasts for each available country for 1995:02. We continue in this fashion through the

end of the sample, which provides us with a set of exchange rate forecasts for the available

countries for each of the 291 months comprising the out-of-sample period. We generate

forecasts based on OLS and ENet estimation of the panel predictive regression.

For Germany, Italy, France, and the Netherlands, there are only 48 monthly forecasts

(1995:01 to 1998:12) available for evaluation, due to those four countries joining the Euro

area in 1999:01. After imposing a minimum requirement of twelve monthly observations

before a currency is included in the panel predictive regression, there are 230 forecasts

(2000:02 to 2019:03) available for the Euro area. For the remaining nine countries, forecasts

are available for the entire 1995:01 to 2019:03 out-of-sample period (291 observations). In

addition to reporting results for each individual country, we report results for the entire

collection of forecasts taken together (9× 291 + 230 + 4× 48 = 3, 041 observations).

To provide perspective on the degree of shrinkage induced by the different forecasting

strategies, Table 2 reports the standard deviation for each of the panel predictive regression

forecasts divided by the standard deviation of the realized exchange rate change for the

out-of-sample period. Theoretically, monthly exchange rate changes are likely to have only

a small predictable component, so that a “large” volatility ratio is a sign of overfitting. The

volatility ratios for the conventional OLS forecast in the third column range from 0.31 to

0.54; the ratio for the entire set of countries is 0.41 in the last row of Table 2. Such large

values suggest that the OLS forecast—which does not induce any shrinkage—misinterprets

much of the noise in the data for a predictive signal. The strong shrinkage induced by the

ENet forecasts is evident in the fourth through seventh columns of Table 2, as the volatility

ratios are always lower than the corresponding values for the OLS forecast. With respect to

the different criteria for tuning the regularization parameter, we have the following ranking

in terms of the degree of shrinkage (from weakest to strongest): ENet-BIC, ENet-GIC,

ENet-MBIC, and ENet-ERIC. For the ENet-ERIC forecast, the volatility ratios in the last
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column range from 0.03 to 0.20, which indicate that the forecast is considerably less prone

to over-responding to noise.

Figure 1 provides further evidence on the degree of shrinkage induced by the various

ENet forecasts. The figure shows the number of predictors selected each month by the ENet

when we recursively estimate the panel predictive regression to generate the out-of-sample

forecasts. According to the figure, the BIC-based criteria select a relatively limited number

of predictors (20 or less) each month, so that the fitted panel predictive regressions are fairly

sparse. The ENet-ERIC nearly always selects the most parsimonious model.

The relatively strong shrinkage effect exerted by the ENet-ERIC forecast can be directly

seen in Figure 2, which depicts the OLS and ENet-ERIC forecasts, along with the actual

exchange rate change.17 In line with the volatility ratios in the third and seventh columns of

Table 2, Figure 2 shows that the ENet-ERIC approach substantially stabilizes the exchange

rate forecasts vis-à-vis the conventional OLS approach. The more extreme forecasts produced

by OLS estimation of the panel predictive regression are clearly evident in Figure 2 and

point to substantive overfitting; ENet-ERIC estimation induces considerable shrinkage in

the forecast, thereby helping to guard against overfitting.

Next, we assess the accuracy of the exchange rate forecasts in terms of MSFE. We can

conveniently compare the relative accuracy of the forecast based on the panel predictive

regression in Equation (3.14) to the näıve no-change benchmark forecast using the Campbell

and Thompson (2008) out-of-sample R2 statistic:

R2
OS = 1−

∑T2
t=T1+1

(
êPPRi,t|t−1

)2
∑T2

t=T1+1

(
êbenchi,t|t−1

)2 , (4.1)

where

êPPRi,t|t−1 = δi,t − δ̂PPRi,t|t−1, (4.2)

17Corresponding figures for the ENet-BIC, ENet-MBIC, and ENet-GIC forecasts are provided in Figures
A1 through A3 of the Internet Appendix.
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êbenchi,t|t−1 = δi,t − δ̂benchi,t|t−1, (4.3)

δ̂benchi,t|t−1 = 0 is the no-change benchmark forecast, T1 is the last observation for the initial

in-sample period, and T2 is the last available observation.18 The R2
OS statistic measures the

proportional reduction in MSFE for a competing forecast vis-à-vis the benchmark. Because

the predictable component in monthly exchange rate changes is inherently small, the R2
OS

statistic will necessarily be small. Nevertheless, even a seemingly small degree of exchange

rate predictability can be economically meaningful, as we show in Section 5 below and as

is the case for stock return predictability (Campbell and Thompson 2008). To get a sense

of whether the competing forecast provides a statistically significant improvement in MSFE

relative to the benchmark, we compute the Clark and West (2007) adjusted version of the

Diebold and Mariano (1995) and West (1996) statistic.19

Table 3 reports R2
OS statistics for the OLS and ENet forecasts. The R2

OS statistics are all

negative in the third column of Table 3, so that the OLS forecast always fails to outperform

the no-change benchmark in terms of MSFE. The negative R2
OS statistics are often sizable

in magnitude for the individual countries, and the statistic is −8.03% for all of the countries

taken together in the last row. The overfitting in the OLS forecast detected in Table 2

and Figures 1 and 2 thus translates into poor out-of-sample performance when it comes to

forecast accuracy in Table 3.

As shown in the fourth through seventh columns of Table 3, the ENet forecasts evince

markedly better out-of-ample performance. For the ENet-BIC forecast in the fourth column,

the R2
OS statistics are positive for eight of the G10 countries (which have at least 230 available

out-of-sample observations); the R2
OS statistics are significant at conventional levels for all

eight of those counties. The positive R2
OS statistics range from 1.30% to 4.79%, which are

18For our application, T1 and T2 correspond to 1994:12 and 2019:03, respectively.
19As shown by Clark and McCracken (2001) and McCracken (2007), the Diebold-Mariano-West statistic

has a non-standard asymptotic distribution when comparing forecasts from nested models (as is the case
for our application). In particular, the Diebold-Mariano-West statistic can be severely undersized when
comparing nested forecasts, meaning that it can have little power to detect a significant improvement in
forecast accuracy.
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quite large in the context of the literature surveyed by Rossi (2013). For the complete set of

countries in the last row, the R2
OS statistic is 1.72% (significant at the 1% level).

The ENet-MBIC and ENet-GIC forecasts (see the fifth and sixth columns, respectively,

of Table 3) both produce positive R2
OS statistics for ten of the 14 countries, as well as eight

of the G10 countries; for the latter group, the R2
OS statistics are significant for seven (all

eight) of the countries with positive R2
OS statistics for the ENet-MBIC (ENet-GIC) forecast.

Many of the R2
OS statistics are sizable, reaching as high as 4.09% (4.85%) for the ENet-

MBIC (ENet-GIC) forecast in the case of the United Kingdom. For all of the countries

taken together, the ENet-MBIC and ENet-GIC forecasts generate R2
OS statistics of 1.38%

and 1.60%, respectively, both of which are significant at the 1% level.

The ENet-ERIC forecast in the final column of Table 3 displays the best overall perfor-

mance: 13 of the 14 R2
OS statistics are positive for the individual countries, including all

ten of the R2
OS statistics for the G10 countries; eight of those statistics are significant at

conventional levels. Many of the R2
OS statistics are again sizable—seven are greater than or

equal to 1.95%, including 5.32% for the United Kingdom. For the entire group of countries,

the R2
OS statistic is 2.04% (significant at the 1% level) for the ENet-ERIC forecast, which is

the highest value in the last row of Table 3.

Overall, Table 3 demonstrates that the ENet is an effective machine learning device for

forecasting exchange rates using large information sets, provided that we use stringent BIC-

based information criteria to tune the regularization parameter. The ENet-ERIC forecast—

which employs the most stringent criterion—consistently outperforms the no-change bench-

mark and provides among the most accurate short-horizon exchange rate forecasts available

to date.

To examine the performance of the ENet-ERIC forecast over time, Figure 3 employs

the graphical device of Goyal and Welch (2003, 2008). The figure portrays the cumulative

difference in squared forecast errors for the no-change benchmark vis-à-vis the ENet-ERIC
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forecast.20 Each curve conveniently allows for a comparison of forecast accuracy (in terms of

MSFE) for any subsample: we compare the height of the curve at the beginning and end of

the segment corresponding to the subsample; if the curve is higher (lower) at the end of the

segment, then the ENet-ERIC (no-change) forecast has a lower MSFE for the subsample. A

forecast that always outperforms the benchmark will have a curve with a uniformly positive

slope. Of course, given that exchange rate changes have a large unpredictable component,

this ideal is unattainable in practice. Realistically, we seek a forecast with a curve that is

predominantly positively sloped and that does not have extended segments with negative

slopes.

According to Figure 3, the curves are positively sloped for much of the time for the United

Kingdom, Switzerland, Australia, New Zealand, Sweden, Norway, Denmark, the Euro area,

Germany, and France, so that the ENet-ERIC forecast generates out-of-sample gains on a

consistent basis over time. The gains are less consistent over time for Japan, Canada, and

the Netherlands. A striking feature of Figure 3 is the improvement in accuracy provided by

the ENet-ERIC forecast vis-à-vis the no-change benchmark during the worst phase of the

global financial crisis in late 2008. As we show in Section 5, this has important implications

for carry trade investment strategies.

4.2 Benefits From Pooling with Many Predictors

The panel predictive regression in Equation (3.6) imposes the pooling restriction that the

slope coefficients are homogeneous across countries. From an out-of-sample forecasting per-

spective, imposing such a restriction is potentially beneficial in light of the bias-variance

tradeoff: although the pooling restriction likely introduces bias in the coefficient estimates,

this can be offset by the gain in precision associated with having fewer parameters to esti-

mate. The precision gain is germane in our high-dimensional and noisy data environment.

In essence, pooling helps to further alleviate overfitting.

20Corresponding figures for the ENet-BIC, ENet-MBIC, and ENet-GIC forecasts are provided in Figures
A4 through A6 of the Internet Appendix.
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We find that pooling substantially improves out-of-sample exchange rate forecasts based

on our set of 70 predictors. As shown in Table A2 of the Internet Appendix, forecasts

based on predictive regressions estimated at the country level (i.e., without imposing the

slope homogeneity restriction) rarely outperform the no-change benchmark, whether the

regressions are estimated via OLS or the ENet. In no case is the R2
OS statistic higher than

the corresponding value for the ENet-ERIC forecast in the last column of Table 3.

To determine if it is beneficial to use the information in a large number of predictors,

we generate out-of-sample forecasts based on univariate predictive regressions, where each

of the ten individual country characteristics appear in turn as predictors.21 In addition, we

generate forecasts based on a predictive regression with INF and BILL appearing jointly as

predictors, in line with Taylor rule fundamentals. The results, reported in Tables A3 and

A4 of the Internet Appendix, reveal that it is advantageous to utilize a large information

set when forecasting exchange rates (provided that we guard against overfitting): forecasts

based on individual characteristics and Taylor rule fundamentals typically fail to outperform

the no-change benchmark, and the R2
OS statistics are rarely larger than the corresponding

values for the ENet-ERIC forecast in Table 3.

In sum, by imposing the slope homogeneity restriction and estimating a panel predictive

regression with 70 predictors via the ENet (and using a stringent criterion to tune the

regularization parameter), we can utilize the information in a large number of potentially

relevant predictors to consistently outperform the näıve no-change forecast, which has proven

stubbornly difficult to beat, especially at the monthly horizon.

4.3 Which Predictors Matter?

Because it performs variable selection, the ENet is a machine learning device that facilitates

model interpretation in high-dimensional settings. We investigate the relevance of the indi-

vidual predictors through the lens of the ENet-ERIC recursive slope coefficient estimates.

21We also use the difference between the log CPIs for country i and the United States, in accord with
purchasing power parity.
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To shed light on which predictors are selected in the fitted panel predictive regressions on av-

erage over time, Figure 4 provides a heatmap for the selection frequencies for the individual

predictors selected by the ENet-ERIC.22

The first column of Figure 4 indicates that, among the country characteristics on their

own (i.e., not interacted with the global variables), DP is selected much of the time, followed

by PE and IV. According to the remaining columns, a number of the predictors based

on the interactions of the country characteristics with the global variables are relevant for

predicting exchange rates. In particular, predictors based on the interactions of INF, UN,

BILL, and NOTE with GVOL appear germane. The interaction of SRET with MPU also

appears important. In addition, the interactions of DP with EPU; PE with EPU, GR, and

GILL; and UN, DP, and IV with GCOR are selected fairly frequently. From a practical

standpoint, we cannot know ex ante which of 70 predictors are the most relevant. The

ENet-ERIC provides a data-driven method for selecting the relevant predictors from a large

set of potential predictors.

Figure 5 depicts the recursive OLS and ENet-ERIC coefficient estimates for the panel

predictive regression.23 The figure illustrates the strong shrinkage effect induced by ENet-

ERIC estimation. The OLS estimates are highly volatile; indeed, a given OLS coefficient

estimate often changes sign over time. Such behavior reflects the substantial imprecision

associated with conventional OLS estimation in our high-dimension setting, a manifestation

of overfitting. In contrast, the ENet-ERIC coefficient estimates are much more stable over

time, and the nonzero estimates never change sign for a given predictor. As expected, the

ENet-ERIC coefficient estimates are often considerably smaller in magnitude than their OLS

counterparts.

INF, UN, and BILL are popular predictors in the exchange rate literature. The first

column in Figure 4 shows that these predictors are rarely selected on their own; however,

22Heatmaps for the selection frequencies for the ENet-BIC, ENet-MBIC, and ENet-GIC are provided in
Figures A7 through A9 of the Internet Appendix.

23Corresponding figures for the ENet-BIC, ENet-MBIC, and ENet-GIC are available as Figures A10
through A12 of the Internet Appendix.
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as shown in the fifth column of Figure 4, they are frequently selected when interacted with

GVOL. The ENet-ERIC recursive coefficient estimates for the interactions of INF, UN,

and BILL with GVOL (INF.GVOL, UN.GVOL, and BILL.GVOL, respectively) in Figure 5

reveal an interesting pattern. According to Taylor rule logic, an increase (decrease) in INF

(UN) leads to an increase in expected US dollar appreciation. The nonzero ENet-ERIC

recursive coefficient estimates for INF.GVOL (UN.GVOL) are always positive (negative), so

that the expected US dollar appreciation in response to an increase in INF (UN) becomes

larger (smaller) as GVOL increases; in other words, as global foreign exchange volatility

increases, Taylor rule predictions become more relevant. Similarly, the nonzero ENet-ERIC

recursive coefficient estimates for BILL.GVOL are uniformly positive. UIP predicts that

an increase in BILL corresponds to an increase in expected dollar appreciation, meaning

that the relationship predicted by UIP holds to a greater degree as global foreign exchange

volatility increases (as it does, e.g., during the global financial crisis).

An emerging literature (e.g., Engel and Wu 2019; Jiang, Krishnamurthy, and Lustig 2019;

Kremens and Martin 2019; Adrian and Xie 2020; Lilley et al. forthcoming) finds evidence

of exchange rate predictability around the global financial crisis based on the US dollar’s

perception as a safe-haven currency. Due to data availability, these studies analyze medium-

to long-horizon predictability (i.e., at a quarterly horizon or longer) and/or employ relatively

short samples. Although we focus on short-horizon predictability and consider a longer out-

of-sample period, our ENet-ERIC forecast appears to capture exchange rate predictability

around the crisis relating to the US dollar’s safe-haven status. Specifically, the forecasts

in Figure 2 portend a relatively strong depreciation for many countries’ currencies in late

2008 during the worst phase of the crisis; as shown in Figure 3, the ENet-ERIC forecast

substantially outperforms the no-change benchmark during that time. To the extent that

the out-of-sample gains around the crisis are due to a dash to the US dollar resulting from a
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decline in global risk tolerance, the predictors selected by the ENet-ERIC appear to capture

the effect.24

We also examine links between the set of predictors selected by the ENet-ERIC and the

Lilley et al. (forthcoming) capital flow measure, which is available at the quarterly frequency

and is based on the change in US holdings of foreign bonds. Lilley et al. (forthcoming)

find that their measure is significantly related to various proxies of global risk appetite, as

well as the change in a broad US dollar index from 2007 to 2017, which they interpret as

evidence of the US dollar’s role as a safe-haven currency during the crisis. We investigate

links between the predictors selected by the ENet-ERIC and the change in US foreign bond

holdings. We begin with the group of ten predictors selected by the ENet-ERIC from the

last set of recursive coefficient estimates in Figure 5 (which uses the largest sample size).25

We then average the predictors over the three months comprising a quarter, as well as across

countries. Finally, we regress the change in US foreign bond holdings on the set of ten time-

and country-aggregated predictors for 2007:1 to 2019:2.26

Figure 6 shows the (standardized) change in US foreign bond holdings, together with

the fitted values for the regression. As a group, the predictors selected by the ENet-ERIC

are significantly related to the change in US foreign bond holdings at the 1% level, and the

predictors collectively explain 44.33% of the variation in the capital flow measure. The fitted

values track the actual values quite closely during the crisis, providing further evidence that

the relevant predictors identified by the ENet-ERIC contain information pertaining to the

US dollar’s safe-haven status.

24Section 5.3 provides additional evidence in this regard.
25The ten predictors are DP, PE, INF.GVOL, UN.GVOL, UN.GCOR, BILL.GVOL, DP.GCOR, PE.GILL,

SRET.MPU, and IV.GCOR.
26Data for the change in US foreign bond holdings from Lilley et al. (forthcoming) are available from the

Global Capital Allocation Project website.
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5 Carry Trade Portfolios

In this section, we analyze the economic value of the ENet forecasts in the context of carry

trade portfolios.

5.1 Portfolio Construction

We consider a US investor with mean-variance preferences who allocates funds across all

available foreign currencies. At the end of T , the investor’s objective function is given by

arg min
wT+1

w′T+1µ̂T+1|T − 0.5γw′T+1Σ̂T+1|TwT+1, (5.1)

where

µ̂T+1|T = [ R̂X1,T+1|T · · · R̂XN,T+1|T ]′, (5.2)

R̂X i,T+1|T = (ri,T − rUS,T )− δ̂i,T+1|T (5.3)

is the investor’s excess return forecast for country i’s currency, δ̂i,T+1|T generically denotes an

exchange rate change forecast, Σ̂T+1|T is the investor’s estimate of the variance-covariance

matrix for the currency excess returns, wT+1 = [ w1,T+1 · · · wN,T+1 ]′ is the N -vector of

portfolio weights that will be in effect for T + 1, and γ is the coefficient of relative risk

aversion.

We consider two cases, which differ with respect to the exchange rate forecast used to

compute R̂X i,T+1|T in Equation (5.3). In the first case, the investor uses the no-change

benchmark forecast:

R̂X
bench

i,T+1|T = (ri,T − rUS,T )− δ̂benchi,T+1|T︸ ︷︷ ︸
0

= ri,T − rUS,T . (5.4)
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For this case, the investor assumes that the exchange rate change is unpredictable, so that

the currency excess return forecast coincides with the bill yield differential (BILLi,t, which

is known at T ). As is common among practitioners, we assume that the investor uses an

exponentially weighted moving average (EWMA) estimator for Σ̂T+1|T .27 Furthermore, we

assume that γ = 5; the results are qualitatively similar for reasonable alternative γ values.

Finally, to keep each portfolio weight in a plausible range, we impose the restriction that

−0.5 ≤ wi,T+1 ≤ 0.5 for i = 1, . . . , N . The carry trade portfolio based on Equation (5.4),

Basic-Opt, is the optimal portfolio for the mean-variance investor when they simply use the

bill yield differential to forecast each currency excess return.

For the second case, the investor uses the exchange rate forecast in Equation (3.14) based

on ENet-ERIC estimation of the panel predictive regression to compute the currency excess

return forecast:

R̂X
PPR

i,T+1|T = (ri,T − rUS,T )− δ̂PPRi,T+1|T . (5.5)

For this case, the investor assumes that the exchange rate change is predictable and relies

on the ENet-ERIC forecast. Otherwise, we again assume that the investor uses an EWMA

estimator for Σ̂T+1|T , sets γ equal to five, and imposes the portfolio weight restriction.

The carry trade portfolio based on Equation (5.5), Smart-Opt, seeks to improve upon the

Basic-Opt portfolio by using the ENet-ERIC forecast to refine the currency excess return

forecast.28

We construct out-of-sample portfolio weights as follows. We first use data through 1994:12

to compute the EWMA estimate of the variance-covariance matrix and ENet-ERIC exchange

rate forecasts for 1995:01. We then solve Equation (5.1) using the no-change (ENet-ERIC)

exchange rate forecasts to compute the Basic-Opt (Smart-Opt) portfolio weights for 1995:01.

Next, we use data through 1995:01 to generate the EWMA variance-covariance matrix esti-

27We use a value of 0.94 for the decay parameter in the EWMA variance-covariance matrix estimator, a
value often used in practice.

28The results are similar for Smart-Opt portfolios based on the ENet-BIC, ENet-MBIC, and ENet-GIC
forecasts. The complete results are reported in Tables A5 through A7 of the Internet Appendix.
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mate and ENet-ERIC forecasts for 1995:02; we then compute the Basic-Opt and Smart-Opt

portfolio weights for 1995:02. We proceed in this fashion through the end of the out-of-sample

period, so that we simulate the situation of an investor in real time.29 By comparing the

performance of the Basic-Opt portfolio (which assumes that the exchange rate change is not

predictable) to that of the Smart-Opt portfolio (which relies on the ENet-ERIC forecast of

the exchange rate change), we can gauge the economic value of exchange rate predictability

for an investor.

5.2 Portfolio Performance

Table 4 reports annualized means, volatilities, and Sharpe ratios for the Basic-Opt and

Smart-Opt portfolio excess returns. In additional to the full 1995:01 to 2019:03 out-of-

sample period, the table reports results for the 1995:01 to 2008:08 and 2008:09 to 2019:03

subsamples, which we refer to as the pre- and post-crisis subsamples, respectively. The start

of the second subsample coincides with the bankruptcy of Lehman Brothers on September

15, 2008 at the height of the global financial crisis.

We report results for different assumptions regarding transaction costs. First, we ignore

transaction costs by using mid-quotes for the bid-ask spreads from Datastream for the rel-

evant forward and spot exchange rates to compute the currency excess returns. We also

compute portfolio excess returns using the bid and ask quotes from Datastream for the rele-

vant forward and spot rates (e.g., Lustig, Roussanov, and Verdelhan 2011), thereby assuming

that the investor has to pay the bid and ask prices reported in Datastream. A number of

studies document that the bid-ask spreads offered by Datastream are unrealistically high

(e.g., Lyons 2001; Neely, Weller, and Ulrich 2009; Menkhoff et al. 2012b; Neely and Weller

2013). Specifically, investors trade the best quoted price at each point in time, making the

full spread in Datastream considerably higher than the effective spread for foreign exchange

29Equations (1.1) and (5.3) are approximately equal to the excess return corresponding to US dollar
accumulation, which is given by RXi,t+1 =

(
Sd
i,t+1 − F d

i,t

)
/Sd

i,t, where Sd
i,t = 1/Si,t and F d

i,t = 1/Fi,t. We use
the relevant forward and spot exchange rates to compute the exact excess return for each foreign currency
when calculating the Basic-Opt and Smart-Opt portfolio excess returns for a US investor.
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market participants.30 To more accurately reflect the relevant transaction costs faced by

traders, we follow Goyal and Saretto (2009) and Menkhoff et al. (2012b) and also report re-

sults for currency excess returns computed using 25%, 50%, and 75% of the quoted bid-ask

spreads from Datastream.

Panel A of Table 4 reports performance measures for the full out-of-sample period. The

second through fourth columns provide results for the Basic-Opt portfolio. Ignoring transac-

tion costs, the annualized mean and volatility for the portfolio excess return are 7.47% and

10.22%, respectively, which yield an impressive annualized Sharpe ratio of 0.73 (significant

at the 1% level). For reasonable transaction costs of 25% and 50% of the quoted bid-ask

spreads, the Sharpe ratios remain sizable at 0.56 and 0.49, respectively (significant at the

1% and 5% levels, respectively); for the full bid-ask spread, the Sharpe ratio declines to 0.34

(significant at the 10% level).

The results for the Basic-Opt portfolio in Panel A of Table 4 mask stark differences in the

portfolio’s performance over time. For the first subsample in Panel B, the average returns

and Sharpe ratios are considerably higher than those for the full sample, with the average

returns (Sharpe ratios) ranging from 6.83% to 11.88% (0.64 to 1.13, significant at the 5% or

1% levels) for the different assumptions regarding transaction costs. As shown in Panel C,

beginning in September of 2008, the average returns and Sharpe ratios decline dramatically,

ranging from −1.04% to 1.76% and −0.11 to 0.18, respectively; none of the Sharpe ratios

are significant at conventional levels for the 2008:09 to 2019:03 subsample.

We also construct a conventional carry trade portfolio that sorts currencies into quintiles

according to interest rate differentials and then takes equally weighted long (short) positions

in the currencies in the fifth (first) quintile. This is tantamount to the carry trade risk factor

in Lustig, Roussanov, and Verdelhan (2011). The conventional carry portfolio generally does

not perform as well as the Basic-Opt portfolio; for example, ignoring transaction costs, the

30The foreign exchange market is one of the most liquid markets, with low transaction costs and no natural
short-selling constraints. According to the 2016 Bank for International Settlements Triennial Survey, average
daily turnover in the foreign exchange market is five trillion US dollars.
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conventional portfolio generates annualized Sharpe ratios of 0.49, 0.75, and 0.23 for the full

out-of-sample period and pre- and post-crisis subsamples, respectively.31

The fifth through seventh columns of Table 4 report performance metrics for the Smart-

Opt portfolio, which utilizes the ENet-ERIC exchange rate forecasts when computing the

currency excess return forecasts. For the full out-of-sample period, in the absence of transac-

tion costs, the annualized average return and volatility are 12.94% and 12.80%, respectively,

which translate into a quite sizable annualized Sharpe ratio of 1.01 (significant at the 1%

level). With transaction costs of 25% and 50% of the quoted bid-ask spread, the Sharpe ra-

tios remain large (0.82 and 0.76, respectively, both of which are significant at the 1% level).

The results for the Smart-Opt portfolio for the pre-crisis subsample in Panel B are similar to

those for the Basic-Opt portfolio, while they differ markedly for the post-crisis subsample in

Panel C. Unlike the Basic-Opt portfolio, the Smart-Opt portfolio continues to deliver sizable

average returns and Sharpe ratios in Panel C. Ignoring transaction costs, the Sharpe ratio

for the Smart-Opt portfolio is 0.87 (significant at the 1% level) for the post-crisis subsample;

the Sharpe ratios range from 0.63 to 0.75 (all of which are significant at the 5% level) for

the various assumptions regarding transaction costs.

Overall, Table 4 shows that the Basic-Opt portfolio performs impressively through the

summer of 2008; however, it subsequently suffers a pronounced deterioration in performance.

By utilizing the ENet-ERIC forecasts, the Smart-Opt portfolio delivers impressive perfor-

mance consistently over time.

To provide additional perspective on relative performance, Figure 7 depicts log cumulative

excess returns for the Basic-Opt, Smart-Opt, and conventional carry trade portfolios. The

Basic-Opt and Smart-Opt portfolios perform similarly through the summer of 2008, although

the Smart-Opt portfolio fares better in the wake of the Asian financial and Long-Term Capital

Management crises in 1998. While both portfolios experience losses in September of 2008

during the Lehman bankruptcy, their subsequent performances differ markedly, in line with

31The complete results are available in Table A8 of the Internet Appendix.
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Panel C of Table 4. The Basic-Opt portfolio suffers more sizable losses later in 2008 in

Figure 7, and its cumulative return essentially “flatlines” thereafter. The conventional carry

portfolio, which is not based on an optimization framework, suffers an even larger drop in

late 2008 compared to the Basic-Opt portfolio and also flatlines subsequently. In contrast,

the Smart-Opt portfolio makes a strong recovery in late 2008 and continues to produce

gains thereafter. The relatively strong performance of the Smart-Opt portfolio in late 2008

and subsequently translates into a substantive gain in terminal wealth: for the Smart-Opt

portfolio, a US investor who begins with $1 at the end of 1994:12 ends up with $18.76 at

the end of 2019:03, compared to only $5.35 for the Basic-Opt portfolio (and $2.87 for the

conventional carry portfolio).

The relatively strong performance of the Smart-Opt portfolio in late 2008 also aligns with

the large out-of-sample gains accruing to the ENet-ERIC forecast vis-à-vis the no-change

benchmark during that time in Figure 3. The Basic-Opt portfolio simply uses the bill yield

differential to forecast the currency excess return—in line with the no-change benchmark

forecast—while the Smart-Opt portfolio incorporates the information in the predictors via

the ENet-ERIC forecast. The statistical gains generated by the ENet-ERIC forecast relative

to the näıve benchmark in late 2008 and beyond in Figure 3 translate into economic gains

in the form of improved portfolio performance in Figure 7.

Further evidence on the links between exchange rate predictability and the carry port-

folios is furnished by Figure 8, which portrays the currency weights for the Basic-Opt and

Smart-Opt portfolios. As the figure illustrates, the ENet-ERIC forecasts often lead to sub-

stantially different allocations. The differences in allocations produced by the ENet-ERIC

forecast vis-à-vis the no-change benchmark in Equation (5.1) deliver improved carry trade

portfolio performance in Table 4 and Figure 7.
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5.3 A Closer Look at Late 2008

Figure 7 shows that late 2008 is a perilous time for the Basic-Opt portfolio (as well as the

conventional carry portfolio). Figures 9 and 10 provide additional insight into the sources of

the poor performance of the Basic-Opt portfolio in late 2008, as well as how the Smart-Opt

portfolio improves performance. Figure 9 shows the currency excess return forecasts that

serve as inputs in the portfolio optimization problem in Equation (5.1), along with the actual

excess returns, for September through December of 2008. Because the Basic-Opt portfolio

uses the no-change exchange rate forecast, the benchmark currency excess return forecast is

simply the bill yield differential; the Smart-Opt portfolio augments the bill yield differential

with the ENet-ERIC forecast of the exchange rate change, as in Equation (5.5). Figure 10

displays the currency weights for the portfolios.

In September of 2008, the benchmark and ENet-ERIC currency excess return forecasts

in Panel A of Figure 9 lead to allocations of the same sign (and typically similar magnitude)

in Panel A of Figure 10 for Switzerland, Canada, Australia, New Zealand, Sweden, Norway,

and Denmark. The ENet-ERIC currency excess return forecasts generate notable differences

in allocations for the other countries: for the United Kingdom and Euro area, the Basic-Opt

(Smart-Opt) portfolio takes long (short) positions; for Japan, the Basic-Opt (Smart-Opt)

portfolio takes a short (long) position. As shown in Panel A of Figure 9, with the exception of

Japan, all of the actual currency excess returns are negative in September 2008, consistent

with the US dollar (as well as the Japanese yen) being viewed as a safe-haven currency;

the negative returns are large in magnitude for Australia, New Zealand, Sweden, Norway,

Denmark, and the Euro area. On the basis of the allocations and actual excess returns,

the Basic-Opt portfolio suffers a loss of −8.02% in September of 2008, while the loss is

less than half as large (−3.84%) for the Smart-Opt portfolio. The differences in allocations

signaled by the ENet-ERIC forecast—especially for the United Kingdom, Japan, and the

Euro area—limit portfolio losses in the month of the Lehman bankruptcy.
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The currency excess return forecasts differ sharply during October of 2008 in Panel B of

Figure 9: with the exception of Japan, all of the benchmark currency excess return forecasts

are positive, while the ENet-ERIC forecasts are negative for all ten of the countries. The

differences in currency excess return forecasts correspond to a number of markedly differ-

ent allocations in Panel B of Figure 10; most notably, the Basic-Opt (Smart-Opt) portfolio

exhibits sizable long (short) positions for the United Kingdom, New Zealand, Norway, Den-

mark, and the Euro area. With the exception of Japan, all of the actual currency excess

returns are again negative in Panel B of Figure 9, and the negative returns are larger in

magnitude than those in Panel A.32 The different allocations prompted by the ENet-ERIC

forecast vis-à-vis the no-change benchmark enable the Smart-Opt portfolio to substantively

outperform the Basic-Opt portfolio during October of 2008: the latter suffers a loss of

−13.53%, while the former enjoys a massive gain of 27.01%. The situation in terms of the

currency excess return forecasts and allocations is similar in November of 2008 in Panel C

of Figures 9 and 10. Because fewer of the currency excess returns are negative and most are

smaller in magnitude, the Basic-Opt experiences a gain of 1.53% during the month; however,

the information in the ENet-ERIC forecasts leads to a much larger gain of 14.22% for the

Smart-Opt portfolio.

The environment appears to normalize to an extent in December of 2008, as the discrep-

ancies between the benchmark and ENet-ERIC forecasts in Panel D of Figure 9, as well as

those between the Basic-Opt and Smart-Opt portfolio weights in Panel D of Figure 10, are

more muted, although important differences remain (e.g., the portfolio weights for Switzer-

land). In addition, with the exception of the United Kingdom, all of the currency excess

returns are positive in December of 2008. The Basic-Opt portfolio realizes a gain of 5.56% for

the month, while the gain for the Smart-Opt portfolio is more than twice as large (12.01%).33

32Note the difference in the scales for the vertical axes across Panels A and B.
33For September through December of 2008, the excess returns for the conventional carry portfolio are
−5.96%, −13.57%, −2.99%, and −5.54%, in line with the sharp drop in the portfolio’s cumulative excess
return in Figure 7.
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Figures 9 and 10 help to explain how exchange rate predictability—as captured by our

ENet-ERIC forecast—is especially valuable to an investor during the worst part of the global

financial crisis in late 2008. By anticipating a depreciation in many foreign currencies, the

ENet-ERIC forecast leads to sizable negative positions in many currencies, enabling the

Smart-Opt portfolio to avoid the large losses suffered by a basic carry strategy and even

realize large gains. In essence, the Smart-Opt portfolio shorts the traditional carry strategy

to a significant extent during the tumult of the global financial crisis.

5.4 Alphas

Next, we examine whether the Basic-Opt and Smart-Opt portfolios generate alpha in the

context of the Lustig, Roussanov, and Verdelhan (2011) currency factor model. The model

includes dollar and carry trade risk factors, denoted by MKTFX and HMLFX, respectively.

The dollar factor is an equally weighted average of the available currency excess returns

for the month, while the carry trade risk factor is the conventional carry portfolio defined

previously. Table 5 reports factor model estimation results for the Basic-Opt and Smart-Opt

portfolios. We again report results for the full out-of-sample period, as well as the pre- and

post-crisis subsamples.

For the full 1995:01 to 2019:03 out-of-sample period, the Smart-Opt portfolio generates

a large annualized alpha of 10.83% in the sixth column, which is almost three times greater

than that for the Basic-Opt portfolio (3.82%) in the second column. The former (latter) is

significant at the 1% (5%) level. The more limited alpha for the Basic-Opt portfolio is due to

its essentially zero exposure to the dollar factor and substantive exposure to the carry factor

(0.75, significant at the 1% level). The Smart-Opt portfolio evinces exposures of −0.52 and

0.48 to the dollar and carry factors, respectively, both of which are significant at the 1%

level. The two factors together explain substantially more of the return variation for the

Basic-Opt vis-à-vis the Smart-Opt portfolio (adjusted R2 statistics of 52.19% and 16.90%,

respectively).
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Table 5 reveals important differences in performance for the Basic-Opt portfolio across the

two subsamples. For the pre-crisis subsample, the Basic-Opt portfolio exhibits near unitary

exposure to the carry trade factor (0.96, significant at the 1% level), and it generates a sizable

annualized alpha of 5.17% (significant at the 1% level). Reminiscent of Table 4 and Figure 7,

the Basic-Opt portfolio’s performance deteriorates sharply during the post-crisis subsample.

It continues to display substantial exposure to the carry factor (0.59, significant at the

1% level), while its annualized alpha declines to only 0.25% (insignificant at conventional

levels). In contrast, the Smart-Opt portfolio delivers impressive annualized alphas of 8.54%

and 11.41% for the first and second subsamples, respectively (significant at the 1% and 5%

levels, respectively). While the Smart-Opt portfolio exhibits a sizable exposure of 0.88 to

the carry factor (significant at the 1% level) for the first subsample, its exposure is only 0.05

(insignificant at conventional levels) for the second subsample. The information contained in

the ENet-ERIC forecast thus leads the investor to effectively disconnect from a conventional

carry strategy in the second subsample.34

6 Deep Learning

To this point, we permit a limited degree of nonlinearity in the predictive regression via the

interaction terms involving the country characteristics multiplied by the global variables;

however, the panel predictive regression, Equation (3.6), remains linear. In this section, we

allow for more complex predictive relationships through artificial neural networks (or nets),

a popular machine learning tool for prediction.

6.1 Architecture and Training

We consider feedforward neural nets, the most well-known type of neural net. Gu, Kelly,

and Xiu (2020) recently find that feedforward neural nets are useful for improving time-series

34Tables A9 and A10 of the Internet Appendix report results for Basic-Opt and Smart-Opt portfolios for
non-US domestic investors. The results are qualitatively similar to those for a US domestic investor.
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forecasts of individual stock returns using firm characteristics (as well as firm characteristics

interacted with macroeconomic variables). We explore whether neural nets are useful for

forecasting exchange rate changes based on our set of 70 predictors.

A neural net architecture is comprised of multiple layers. The first is the input layer,

which is simply the set of predictors, which we denote by x1, . . . , xK0 . One or more hidden

layers are next. Each hidden layer l contains Kl neurons, each of which takes predictive

signals from the neurons in the previous hidden layer to produce another signal:

h(l)m = g

(
ω
(l)
m,0 +

Kl−1∑
j=1

ω
(l)
m,jh

(l−1)
j

)
for m = 1, . . . , Kl; l = 1, . . . , L, (6.1)

where h
(l)
m is the signal corresponding to the mth neuron in the lth hidden layer;35

ω
(l)
m,0, ω

(l)
m,1, . . . , ω

(l)
m,Kl−1

are weights (ω
(l)
m,0 is known as the bias term); and g(·) is an acti-

vation function. The output layer is an affine function that translates the signals from the

last hidden layer into a prediction:

δ̂ = ω
(L+1)
0 +

KL∑
j=1

ω
(L+1)
j h

(L)
j , (6.2)

where δ̂ denotes the forecast of the target variable. For the activation function, we use the

popular rectified linear unit (ReLU) function:36

g(x) =


0 if x < 0,

x otherwise.

(6.3)

Intuitively, the activation function activates a neuronal connection in response to a suffi-

ciently strong signal, thereby relaying the signal forward through the network.

35For the first hidden layer, h
(0)
j = xj for j = 1, . . . ,K0.

36Gu, Kelly, and Xiu (2020) also use the ReLU activation function
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The following diagram provides a schematic for a relatively simple feedforward neural

net architecture with five predictors and two hidden layers, where the hidden layers contain

four and two neurons, respectively. The diagram shows that the five predictors in the input

layer feed through to provide signals to each of the four neurons in the first hidden layer; the

neurons in the first hidden layer subsequently feed through to provide signals to each of the

two neurons in the second hidden layer. The neurons in the second hidden layer provide a

final set of signals for the output layer. There are (5 + 1)4 = 24 weights for the first hidden

layer, (4 + 1)2 = 10 weights for the second layer, and 2 + 1 = 3 weights for the output layer,

for a total of 37 weights.

x1

x2

x3

x4

x5

Input

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden(1)

h
(2)
1

h
(2)
2

Hidden(2)

δ̂

Output

There is substantial judgment involved in specifying a neural net architecture. Theoret-

ically, a neural net with a single hidden layer and sufficiently large number of neurons can

approximate any smooth function under a reasonable set of assumptions (e.g., Cybenko 1989;

Funahashi 1989; Hornik, Stinchcombe, and White 1989; Hornik 1991; Barron 1994). How-

ever, neural nets with one or two hidden layers—shallow neural nets—and a large number

38



of neurons in each layer are often difficult to reliably fit (or train). In practice, neural nets

with three or more hidden layers—deep neural nets (DNNs)—and a more limited number

of neurons in each layer often perform better than shallow neural nets. DNNs can typically

be trained more effectively than shallow neural nets, especially in the presence of a large

number of predictors (as in our application).37 Training a DNN for prediction is known as

deep learning.

We consider two DNN architectures for predicting exchange rate changes, where our

set of 70 predictors serves as the input layer for each network. The first, DNN3, contains

three hidden layers with 16, eight, and four neurons, respectively, while the second, DNN4,

contains four hidden layers with 16, eight, four, and two neurons, respectively.38 DNN3 and

DNN4 include 1,313 and 1,321 weights, respectively.

Training a DNN entails estimating the weights. We estimate the weights by minimiz-

ing an objective function based on mean squared prediction error for the training sample

augmented by an `1 penalty term to better guard against overfitting. Computationally effi-

cient algorithms based on stochastic gradient descent (SGD) are available for estimating the

DNN weights; we use the recently developed Adam SGD algorithm (Kingma and Ba 2015).

To implement the algorithm, we need to specify a number of hyperparameters, such as the

dropout rate (Hinton et al. 2012; Srivastava et al. 2014), number of epochs, and batch size.

Section A2 of the Internet Appendix provides details for the values that we use for the hyper-

parameters, which are set with an eye toward mitigating overfitting in our high-dimensional

and noisy data environment.39

37See Rolnick and Tegmark (2018) and references therein for theoretical explanations of the advantages of
deep over shallow neural nets.

38Our specification of 16 neurons in the first hidden layer is a compromise between two popular rules of
thumb, namely, half or the square root of the number of predictors.

39Although it may be advantageous to use a validation sample to select the DNN architecture and hyperpa-
rameter values, this quickly becomes computationally impractical (e.g., Gu, Kelly, and Xiu 2020), especially
since we train the DNNs recursively as more data become available.
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6.2 Empirical Results

We generate the DNN forecasts analogously to the ENet forecasts. We first train the DNN

using data through 1994:12 and use the fitted DNN to compute a forecast for each of the

available exchange rates for 1995:01. Next, we train the DNN using data through 1995:01

and use the fitted DNN to compute a forecast for 1995:02. We continue in this manner

through the end of the out-of-sample period.

Table 6 reports volatility ratios and R2
OS statistics for the DNN3 and DNN4 forecasts.

According to the third and fifth columns, the DNN3 forecasts are more volatile than the

DNN4 forecasts. Nevertheless, both forecasts outperform the näıve no-change benchmark in

terms of MSFE for the majority of countries. From the R2
OS statistics in the fourth column

of Table 6, we see that the DNN3 forecast outperforms the no-change benchmark for ten of

the 14 countries—including eight of the G10 countries—and most of the improvements are

significant. The R2
OS statistics are sizable in many cases, with values of 2.25% or more for

seven countries. For the entire group of countries, the R2
OS statistic is 1.44% (significant at

the 1% level). However, the negative R2
OS statistics are sizable in magnitude for Canada,

Germany, and the Netherlands (−2.24%, −4.89%, and −6.28%, respectively), so that the

performance of the DNN3 forecast is somewhat erratic.

According to the last column of Table 6, the DNN4 forecast also outperforms the no-

change benchmark for ten of the 14 countries. Among the G10 countries, it only fails to

outperform the benchmark for Japan. A number of the R2
OS statistics are again significant

and sizable in magnitude. Overall, compared to those for the DNN3 forecast, the results for

the DNN4 forecast are more stable, and the R2
OS statistics are typically smaller in magnitude

for the latter vis-à-vis the former. For the 14 countries taken together, the R2
OS statistic is

1.00% for the DNN4 forecast (significant at the 1% level).

Comparing the R2
OS statistics in the fourth and sixth columns of Table 6 with those in

the last column of Table 3, the ENet-ERIC forecast appears to perform better overall than
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the DNN forecasts. Although the DNN forecasts produce a larger R2
OS statistic in some

instances, they also underperform the no-change benchmark for some countries by a sizable

margin. These results suggest that the degree of nonlinearity in the predictive relationships

is generally not strong enough in our application to outweigh the greater susceptibility to

overfitting inherent in the DNNs, given the need to estimate a very large number of weights.

Section 6.3 presents further evidence in support of this interpretation.40

6.3 Peering into the Black Box

The partial dependence plot (PDP, Friedman 2001) can be used to examine the relationship

between the expected value of the target variable and a given predictor for any fitted model,

including black box models like DNNs. Let f̂(x) denote the prediction function for a fitted

model, such as a DNN. The PDP for xq is defined as

fq(xq) = ExC(q)

[
f̂
(
xq,xC(q)

)]
=

∫
xC(q)

f̂
(
xq,xC(q)

)
pC(q)

(
xC(q)

)
dxC(q),

(6.4)

where xC(q) = x \ xq, and

pC(q)

(
xC(q)

)
=

∫
xq

p(x) dxq (6.5)

is the joint marginal probability density for xC(q). Equation (6.4) is typically estimated via

Monte Carlo integration using the training data, which in our panel data setting is given by

f̄q(xq) =
1

NT

N∑
i=1

T∑
t=1

f̂
(
xq,xi,t,C(q)

)
. (6.6)

It is common to plot the PDP for the training sample values of the predictor of interest (i.e.,

xi,t,q for i = 1, . . . , N and t = 1, . . . , T ) or specific quantiles for the training sample.

40We also constructed Smart-Opt portfolios based on the DNN3 and DNN4 forecasts. The portfolios
typically outperform the Basic-Opt portfolio, but they do not perform as well as the Smart-Opt portfolio
based on the ENet-ERIC forecast; see Tables A11 and A12 of the Internet Appendix.
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Greenwell, Boehmke, and McCarthy (2018) propose a partial dependence-based measure

of predictor importance. In our panel framework, it is given by

I(xq) =

 1

NT − 1

N∑
i=1

T∑
t=1

[
f̄q(xi,t,q)−

1

NT

N∑
i=1

T∑
t=1

f̄q(xi,t,q)

]2
0.5

. (6.7)

Intuitively, Equation (6.7) uses the sample standard deviation of the PDP to measure its

“flatness.” If the expected value of the target does not change as the predictor changes, then

the PDP is flat, so that the variable importance measure is zero. As the variability of the

PDP increases, the importance measure in Equation (6.7) likewise increases.

The leftmost panel of Figure 11 shows the Greenwell, Boehmke, and McCarthy (2018)

variable importance measure for each predictor for the linear panel predictive regression,

Equation (3.6), estimated via the ENet-ERIC; the center and rightmost panels show the

measures for the fitted DNN3 and DNN4. The fitted models correspond to the final recursive

estimates (which use the most data). The importance measures are exactly zero in the

leftmost panel for the predictors that are not selected by the ERIC-ENet. Many of the

same predictors evince spikes across the three panels of Figure 11, so that there is relatively

strong commonality in the importance of the predictors across the fitted models (especially

BILL.GVOL, INF.GVOL, IV.GCOR, DP, PE.GILL, PE, and SRET.MPU). The predictors

that are not selected by the ENet-ERIC are often of limited importance in the fitted DNNs.

Figure 12 depicts PDPs for the fitted models. For the linear model, the plots have a

constant slope (by construction); the plots are horizontal lines at zero for the predictors

that are not selected by the ENet-ERIC. For the predictors selected by ENet-ERIC, the

PDPs for the fitted DNNs frequently lie close to those for the fitted linear model, so that

the predictors exhibit mild nonlinearities in the DNNs (e.g., DP, INF.GVOL, UN.GCOR,

PE.EPU, PE.GILL, SRET.MPU, and IV.GCOR). When the plots exhibit more obvious

nonlinearities for the fitted DNNs, the nonlinearities often appear quantitatively modest.41

41Note the different scales for the vertical axes in Figure 12.
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Figures 11 and 12 allow us to peer into the black box of the fitted DNN models to

investigate the importance of individual predictors and the strength of nonlinearities in

the predictive relationships. The figures indicate that many of the same predictors appear

important in the fitted linear and DDN models and that the nonlinearities in the latter are

relatively weak. The fitted models thus appear fairly “close” to one another, with the DNNs

including a plethora of additional—and relatively weak—predictive relationships that likely

result from the difficulty in training a model with a plethora of weights in a noisy data

environment. Overall, in our context, the nonlinearities in the fitted DNNs do not appear

strong enough to reliably improve out-of-sample performance vis-à-vis the linear ENet-ERIC

forecast.

7 Conclusion

Short-horizon exchange rate prediction has posed an enduring challenge to researchers in

international finance. In this paper, we make considerable progress in resolving the Meese

and Rogoff (1983) no-predictability puzzle by showing that monthly US dollar exchange rate

forecasts can significantly outperform the näıve no-change benchmark forecast over a lengthy

out-of-sample period for a group of 14 developed countries. There are three key elements

in our forecasting approach. First, we consider a rich information set, which includes ten

country characteristics and six global variables; after interacting the country characteristics

with the global variables, we have 70 predictors. It is important to consider a large number

of potential predictors, rather than only a few fundamentals, as we cannot know ex ante

which predictors are the most relevant. Second, we employ the ENet, a machine learning

device for implementing penalized regression, to guard against overfitting the panel predictive

regression that we use to generate the forecasts. Our high-dimensional setting with 70

predictors and the substantial unpredictable component (i.e., noise) in monthly change rate

changes make it vital to guard against overfitting; indeed, the ENet-ERIC forecast—which
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imposes the strongest degree of shrinkage—performs the best overall. Third, we impose

the pooling restriction when estimating the panel predictive regression, which substantially

reduces the number of parameters that we need to estimate, thereby further alleviating

overfitting.

In addition to improving out-of-sample prediction in terms of MSFE, we show that the

ENet-ERIC forecast provides substantive economic value to a US investor. Specifically,

the performance of an optimal portfolio for a mean-variance investor who allocates across

foreign currencies improves markedly when the investor utilizes the ENet-ERIC forecast

of the exchange rate change when predicting the currency excess return. The ENet-ERIC

forecast is especially valuable to the investor during and after the global financial crisis.

During the worst phase of the crisis in late 2008, the ENet-ERIC forecast generates sizable

improvements in portfolio performance by anticipating a sharp devaluation in many foreign

currencies, which likely results from a decrease in global risk tolerance around the crisis and

the US dollar’s safe-haven role.

We use another machine learning technique, deep learning, to allow for more complex

predictive relationships when forecasting exchange rates. Although the DNN forecasts out-

perform the no-change benchmark for most countries, they generally do not perform as well

as the ENet-ERIC forecast. Variable importance measures and partial dependence plots

reveal that the nonlinearities in the fitted DNNs are relatively modest. The nonlinearities

thus appear too weak to improve out-of-sample performance compared to the ENet-ERIC

forecast, given the challenges in training forecasting models with a plethora of parameters

(like DNNs) in a noisy data environment.

Our fresh evidence of out-of-sample exchange range predictability raises fundamental

issues in international finance. What are the theoretical underpinnings of exchange rate

predictability? To what extent does predictability reflect rational time-varying risk premia

or mispricing in the foreign exchange market? Do arbitrage frictions play a significant role,
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even though transactions costs are relatively small in major currency markets? In light of

our new evidence, we view these questions as important topics for future research.
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Jordà, Ò. and A. M. Taylor (2012). The Carry Trade and Fundamentals: Nothing to Fear

but FEER Itself. Journal of International Economics 88:1, 74–90.

Jurek, J. W. (2014). Crash-Neutral Currency Carry Trades. Journal of Financial Economics

113:3, 325–347.

Kingma, D. P. and J. Ba (2015). Adam: A Method for Stochastic Optimization. Third Annual

International Conference on Learning Representations. San Diego.

Kozak, S., S. Nagel, and S. Santosh (2020). Shrinking the Cross Section. Journal of Financial

Economics 135:2, 271–292.

Kremens, L. and I. Martin (2019). The Quanto Theory of Exchange Rates. American Eco-

nomic Review 109:3, 810–843.

Lettau, M., M. Maggiori, and M. Weber (2014). Conditional Risk Premia in Currency Mar-

kets and Other Asset Classes. Journal of Financial Economics 114:2, 197–225.

50



Lilley, A., M. Maggiori, B. Neiman, and J. Schreger (forthcoming). Exchange Rate Recon-

nect. Review of Economics and Statistics.

Lustig, H., N. Roussanov, and A. Verdelhan (2011). Common Risk Factors in Currency

Markets. Review of Financial Studies 24:11, 3731–3777.

Lyons, R. K. (2001). The Microstructure Approach to Exchange Rates. Cambridge, MA: MIT

Press.

Mark, N. C. (1995). Exchange Rates and Fundamentals: Evidence on Long-Horizon Pre-

dictability. American Economic Review 85:1, 201–218.

McCracken, M. W. (2007). Asymptotics for Out of Sample Tests of Granger Causality.

Journal of Econometrics 140:2, 719–752.

Meese, R. A. and K. Rogoff (1983). Empirical Exchange Rate Models of the Seventies: Do

They Fit Out of Sample? Journal of International Economics 14:1–2, 3–24.

Meinshausen, N. and B. Yu (2009). Lasso-Type Recovery of Sparse Representations for High-

Dimensional Data. Annals of Statistics 37:1, 246–270.

Melvin, M. and D. Shand (2017). When Carry Goes Bad: The Magnitude, Causes, and

Duration of Currency Carry Unwinds. Financial Analysts Journal 73:1, 121–144.

Melvin, M. and M. P. Taylor (2009). The Crisis in the Foreign Exchange Market. Journal of

International Money and Finance 28:8, 1317–1330.

Menkhoff, L., L. Sarno, M. Schmeling, and A. Schrimpf (2012a). Carry Trades and Global

Foreign Exchange Volatility. Journal of Finance 67:2, 681–718.

Menkhoff, L., L. Sarno, M. Schmeling, and A. Schrimpf (2012b). Currency Momentum Strate-

gies. Journal of Financial Economics 106:3, 660–684.

Molodtsova, T. and D. H. Papell (2009). Out-of-Sample Exchange Rate Predictability with

Taylor Rule Fundamentals. Journal of International Economics 77:2, 167–180.

Mueller, P., A. Stathopoulos, and A. Vedolin (2017). International Correlation Risk. Journal

of Financial Economics 126:2, 270–299.

51



Mussa, M. (1976). The Exchange Rate, the Balance of Payments and Monetary and Fiscal

Policy under a Regime of Controlled Floating. Scandinavian Journal of Economics 78:2,

229–248.

Neely, C. J. and P. A. Weller (2013). Lessons from the Evolution of Foreign Exchange Trading

Strategies. Journal of Banking and Finance 37:10, 3783–3798.

Neely, C. J., P. A. Weller, and J. M. Ulrich (2009). The Adaptive Markets Hypothesis:

Evidence from the Foreign Exchange Market. Journal of Financial and Quantitative

Analysis 44:2, 467–488.

Rapach, D. E., J. K. Strauss, and G. Zhou (2013). International Stock Return Predictability:

What Is the Role of the United States? Journal of Finance 68:4, 1633–1662.

Rapach, D. E. and G. Zhou (2013). Forecasting Stock Returns. In Handbook of Economic

Forecasting. Ed. by G. Elliott and A. Timmermann. Vol. 2A. Amsterdam: Elsevier,

pp. 328–383.

Rolnick, D. and M. Tegmark (2018). The Power of Deeper Networks for Expressing Natural

Functions. Sixth Annual International Conference on Learning Representations. Vancou-

ver.

Rossi, B. (2013). Exchange Rate Predictability. Journal of Economic Literature 51:4, 1063–

1119.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics 6:2, 461–464.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014). Dropout:

A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learn-

ing Research 15:56, 1929–1958.

Taddy, M. (2017). One-Step Estimator Paths for Concave Regularization. Journal of Com-

putational and Graphical Statistics 26:3, 525–536.

Taylor, J. B. (1993). Discretion Versus Policy Rules in Practice. Carnegie-Rochester Confer-

ence Series on Public Policy 39:1, 195–214.

52



Taylor, M. P. (1995). The Economics of Exchange Rates. Journal of Economic Literature

33:1, 13–47.

Tibshirani, R. (1996). Regression Shrinkage and Selection via the LASSO. Journal of the

Royal Statistical Society. Series B (Methodological) 58:1, 267–288.

Wang, H., B. Li, and C. Leng (2009). Shrinkage Tuning Parameter Selection with a Diverging

Number of Parameters. Journal of the Royal Statistical Society. Series B (Statistical

Methodology) 71:3, 671–683.

West, K. D. (1996). Asymptotic Inference about Predictive Ability. Econometrica 64:5, 1067–

1084.

Zhang, C.-H. and J. Huang (2008). The Sparsity and Bias of the Lasso Selection in High-

Dimensional Linear Regression. Annals of Statistics 36:4, 1567–1594.

Zou, H. and T. Hastie (2005). Regularization and Variable Selection via the Elastic Net.

Journal of the Royal Statistical Society. Series B (Statistical Methodology) 67:2, 301–320.

Zou, H., T. Hastie, and R. Tibshirani (2007). On the ‘Degrees of Freedom’ of the Lasso.

Annals of Statistics 35:5, 2173–2192.

53



Table 1: Summary statistics for exchange rate changes

(1) (2) (3) (4) (5)

Annualized Annualized
Country Sample period mean volatility Autocorrelation

United Kingdom 1985:01–2019:03 0.16% 10.05% 0.07

Switzerland 1985:01–2019:03 −2.16% 11.29% −0.01

Japan 1985:01–2019:03 −1.78% 11.02% 0.04

Canada 1985:01–2019:03 0.30% 7.39% −0.04

Australia 1985:01–2019:03 1.12% 11.80% 0.05

New Zealand 1985:01–2019:03 −0.31% 12.18% −0.03

Sweden 1985:01–2019:03 0.71% 11.16% 0.11

Norway 1985:01–2019:03 0.43% 10.92% 0.03

Denmark 1985:01–2019:03 −1.00% 10.44% 0.03

Euro area 1999:02–2019:03 0.54% 9.80% 0.04

Germany 1985:01–1998:12 −3.87% 11.64% 0.03

Italy 1985:01–1998:12 −0.48% 11.54% 0.10

France 1985:01–1998:12 −3.27% 11.18% 0.02

Netherlands 1985:01–1998:12 −3.89% 11.59% 0.04

The table reports summary statistics for monthly exchange rate changes measured
against the US dollar. The country-i exchange rate change is defined as (Si,t/Si,t−1)− 1,
where Si,t is the month-t spot exchange rate for country i (number of country-i currency
units per US dollar). The annualized mean (volatility) in the third (fourth) column is
the monthly mean (standard deviation) multiplied by 12

(√
12
)
.



Table 2: Volatility ratios

(1) (2) (3) (4) (5) (6) (7)

Country Obs. OLS ENet-BIC ENet-MBIC ENet-GIC ENet-ERIC

United Kingdom 291 0.54 0.18 0.16 0.18 0.14

Switzerland 291 0.39 0.14 0.12 0.14 0.10

Japan 291 0.31 0.12 0.09 0.11 0.08

Canada 291 0.51 0.21 0.20 0.21 0.16

Australia 291 0.36 0.16 0.14 0.15 0.12

New Zealand 291 0.40 0.15 0.14 0.15 0.12

Sweden 291 0.38 0.15 0.14 0.14 0.12

Norway 291 0.41 0.18 0.16 0.18 0.14

Denmark 291 0.41 0.15 0.13 0.15 0.12

Euro area 230 0.49 0.24 0.22 0.24 0.20

Germany 48 0.33 0.04 0.03 0.03 0.03

Italy 48 0.31 0.08 0.04 0.07 0.04

France 48 0.49 0.08 0.03 0.04 0.03

Netherlands 48 0.39 0.06 0.05 0.06 0.05

All 3,041 0.41 0.17 0.15 0.16 0.13

The table reports volatility ratios for monthly out-of-sample forecasts of exchange rate
changes based on a panel predictive regression estimated via ordinary least squares (OLS)
and the elastic net (ENet). The regularization parameter for the elastic net is tuned via the
Bayesian information criterion (BIC), modified BIC (MBIC), generalized information crite-
rion (GIC), or extended regularization information criterion (ERIC). The forecast is based
on a panel predictive regression with 70 predictors formed from ten country characteristics
and interactions of the ten country characteristics with six global variables. The volatil-
ity ratio is the standard deviation for the forecast divided by the standard deviation for
the actual exchange rate change. The second column reports the number of out-of-sample
observations.



Table 3: R2
OS statistics (in percent)

(1) (2) (3) (4) (5) (6) (7)

Country Obs. OLS ENet-BIC ENet-MBIC ENet-GIC ENet-ERIC

United Kingdom 291 −10.83 4.79∗∗ 4.09∗ 4.85∗∗ 5.32∗∗

Switzerland 291 −11.78 1.55∗ 0.76 1.24∗ 1.95∗

Japan 291 −10.53 −0.34 −0.70 −0.92 0.31

Canada 291 −18.76 −1.19 −1.07 −1.14 0.06

Australia 291 −3.57 1.30∗∗ 0.69∗ 1.02∗∗ 1.34∗

New Zealand 291 −5.41 3.26∗∗ 2.41∗ 3.09∗∗ 2.61∗

Sweden 291 −2.60 2.15∗∗ 2.95∗∗ 2.30∗∗ 2.83∗∗

Norway 291 −1.88 2.38∗∗ 2.14∗∗ 2.16∗∗ 3.03∗∗

Denmark 291 −6.22 2.36∗∗∗ 1.42∗∗ 2.22∗∗∗ 1.99∗∗∗

Euro area 230 −10.76 1.87∗∗ 1.42∗ 1.71∗∗ 2.15∗

Germany 48 −11.59 −0.35 0.18 0.25 0.25

Italy 48 −12.53 −0.50 −0.16 −0.43 −0.33

France 48 −36.64 −1.36 −0.03 −0.45 0.39

Netherlands 48 −21.81 −1.69 1.29 1.36 1.05

All 3,041 −8.03 1.72∗∗∗ 1.38∗∗∗ 1.60∗∗∗ 2.04∗∗∗

The table reports out-of-sample R2 (R2
OS) statistics for monthly out-of-sample forecasts of

exchange rate changes based on a panel predictive regression estimated via ordinary least
squares (OLS) and the elastic net (ENet). The regularization parameter for the elastic net
is tuned via the Bayesian information criterion (BIC), modified BIC (MBIC), generalized
information criterion (GIC), or extended regularization information criterion (ERIC). The
R2

OS statistic is the percent reduction in mean squared forecast error (MSFE) for a competing
forecast vis-á-vis the no-change benchmark forecast. The competing forecast is based on a
panel predictive regression with 70 predictors formed from ten country characteristics and
interactions of the ten country characteristics with six global variables. For a positive R2

OS

statistic, we use the Clark and West (2007) MSFE-adj statistic to test the null hypothesis that
the benchmark MSFE is less than or equal to the competing MSFE against the alternative
hypothesis that the benchmark MSFE is greater than the competing MSFE; ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels, respectively. The second column reports
the number of out-of-sample observations.



Table 4: Portfolio performance

(1) (2) (3) (4) (5) (6) (7)

Basic-Opt portfolio Smart-Opt portfolio

Transaction Annualized Annualized Annualized Annualized Annualized Annualized
costs mean volatility Sharpe ratio mean volatility Sharpe ratio

Panel A: Full sample (1995:01 to 2019:03)

Mid-quotes 7.47% 10.22% 0.73∗∗∗ 12.94% 12.80% 1.01∗∗∗

25% 5.69% 10.13% 0.56∗∗∗ 10.54% 12.81% 0.82∗∗∗

50% 4.92% 10.11% 0.49∗∗ 9.71% 12.80% 0.76∗∗∗

75% 4.16% 10.11% 0.41∗∗ 8.89% 12.80% 0.69∗∗∗

Bid-ask spread 3.39% 10.10% 0.34∗ 8.06% 12.80% 0.63∗∗∗

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

Mid-quotes 11.88% 10.56% 1.13∗∗∗ 13.82% 12.18% 1.13∗∗∗

25% 9.80% 10.58% 0.93∗∗∗ 10.99% 12.47% 0.88∗∗∗

50% 8.81% 10.59% 0.83∗∗∗ 9.93% 12.47% 0.80∗∗∗

75% 7.82% 10.59% 0.74∗∗∗ 8.88% 12.47% 0.71∗∗∗

Bid-ask spread 6.83% 10.59% 0.64∗∗ 7.82% 12.48% 0.63∗∗

Panel C: Post-crisis subsample (2008:09 to 2019:03)

Mid-quotes 1.76% 9.55% 0.18 11.81% 13.60% 0.87∗∗∗

25% 0.39% 9.32% 0.04 9.96% 13.28% 0.75∗∗

50% −0.09% 9.32% −0.01 9.43% 13.27% 0.71∗∗

75% −0.57% 9.31% −0.06 8.90% 13.26% 0.67∗∗

Bid-ask spread −1.04% 9.31% −0.11 8.37% 13.25% 0.63∗∗

The table reports annualized summary statistics for the portfolio excess return for a US investor with
mean-variance preferences and a relative risk aversion coefficient of five who invests in 14 foreign cur-
rencies. The Basic-Opt (Smart-Opt) portfolio assumes that the investor uses the no-change (elastic net)
exchange rate forecast. The elastic net forecast is based on elastic net estimation of a panel predictive
regression with 70 predictors formed from ten country characteristics and interactions of the ten country
characteristics with six global variables, where the regularization parameter is tuned via the extended
regularization information criterion. Mid-quotes ignore transaction costs. We account for transaction
costs using bid-ask spreads from Datastream. Because the full bid-ask spreads likely overstate transac-
tion costs, we compute results assuming 25%, 50%, and 75% of the full bid-ask spreads. We test the
significance of the Sharpe ratios using t-statistics based on Bao (2009) standard errors; ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels, respectively.



Table 5: Alphas and currency factor exposures

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Basic-Opt portfolio Smart-Opt portfolio

Ann. Ann.
Sample alpha MKTFX HMLFX R̄2 alpha MKTFX HMLFX R̄2

1995:01 to 2019:03 3.82% −0.001 0.75 52.19% 10.83% −0.52 0.48 16.90%
[2.29]∗∗ [−0.01] [9.96]∗∗∗ [3.18]∗∗∗ [−2.80]∗∗∗ [2.75]∗∗∗

1995:01 to 2008:08 5.17% 0.17 0.96 65.20% 8.54% −0.42 0.88 47.77%
[5.27]∗∗∗ [1.78]∗ [12.11]∗∗∗ [3.13]∗∗∗ [−2.42]∗∗ [8.86]∗∗∗

2008:09 to 2019:03 0.25% −0.04 0.59 41.93% 11.41% −0.31 0.05 1.83%
[0.11] [−0.29] [4.49]∗∗∗ [2.41]∗∗ [−1.40] [0.19]

The table reports Lustig, Roussanov, and Verdelhan (2011) currency factor model estimation results for the
portfolio excess return for a US investor with mean-variance preferences and a relative risk aversion coefficient
of five who invests in 14 foreign currencies. The Basic-Opt (Smart-Opt) portfolio assumes that the investor uses
the no-change (elastic net) exchange rate forecast. The elastic net forecast is based on elastic net estimation of
a panel predictive regression with 70 predictors formed from ten country characteristics and interactions of the
ten country characteristics with six global variables, where the regularization parameter is tuned via the extended
regularization information criterion. MKTFX (HMLFX) is the dollar (carry trade) risk factor. Brackets report
t-statistics based on robust standard errors; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively.



Table 6: Out-of-sample results for deep neural network forecasts

(1) (2) (3) (4) (5) (6)

DNN3 DNN4

Country Obs. Volatility ratio R2
OS (%) Volatility ratio R2

OS (%)

United Kingdom 291 0.30 0.87∗ 0.13 2.26∗∗

Switzerland 291 0.21 2.25∗∗ 0.10 0.21

Japan 291 0.18 0.21∗ 0.09 −1.38

Canada 291 0.29 −2.24 0.13 0.92∗

Australia 291 0.21 1.09∗∗∗ 0.09 0.70

New Zealand 291 0.19 2.54∗∗ 0.09 2.15∗∗∗

Sweden 291 0.19 3.35∗∗∗ 0.09 2.51∗∗∗

Norway 291 0.22 2.70∗∗∗ 0.11 1.25∗

Denmark 291 0.21 2.90∗∗∗ 0.11 1.35∗∗

Euro area 230 0.27 −0.14 0.12 1.90∗∗

Germany 48 0.13 −4.89 0.05 −4.41

Italy 48 0.22 5.35∗ 0.12 1.29

France 48 0.17 2.91 0.09 −0.14

Netherlands 48 0.12 −6.28 0.05 −3.89

All 3,041 0.22 1.44∗∗∗ 0.11 1.00∗∗∗

The table reports out-of-sample results for monthly forecasts of exchange rate changes
based on deep neural networks (DNNs). For each DNN, 70 predictors formed from ten
country characteristics and interactions of the ten country characteristics with six global
variables serve as the input layer. DNN3 contains three hidden layers with 16, eight, and
four neurons, respectively; DNN4 contains four hidden layers with 16, eight, four, and two
neurons, respectively. The volatility ratio is the standard deviation for the forecast divided
by the standard deviation for the actual exchange rate change. The out-of-sample R2 (R2

OS)
statistic is the percent reduction in mean squared forecast error (MSFE) for a competing
forecast vis-á-vis the no-change benchmark forecast. For a positive R2

OS statistic, we use the
Clark and West (2007) MSFE-adj statistic to test the null hypothesis that the benchmark
MSFE is less than or equal to the competing MSFE against the alternative hypothesis
that the benchmark MSFE is greater than the competing MSFE; ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively. The second column reports the
number of out-of-sample observations.
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Figure 1: Number of predictors selected by the elastic net

The figure shows the number of predictors selected by the elastic net for recursive estimation of a panel predictive
regression with 70 predictors. Results are shown for different criteria for tuning the regularization parameter. Vertical
bars delineate business-cycle recessions as dated by the National Bureau of Economic Research.
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Figure 2: OLS and ENet-ERIC forecasts

Each panel shows monthly out-of-sample forecasts of exchange rate changes based on recursive ordinary least squares
(OLS) and elastic net (ENet) estimation of a panel predictive regression with 70 predictors, where the regularization
parameter for the elastic net is tuned via the extended regularization information criterion. Vertical bars delineate
business-cycle recessions as dated by the National Bureau of Economic Research.
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Figure 3: Cumulative difference in squared forecast errors

The figure shows the cumulative difference in squared forecast errors for the no-change benchmark forecast vis-à-
vis the ENet-ERIC forecast. Vertical bars delineate business-cycle recessions as dated by the National Bureau of
Economic Research.
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Figure 4: Heatmap for predictors selected by the elastic net

The figure shows the frequencies for predictors selected by the elastic net when the regularization parameter is tuned
via the extended regularization information criterion. The Z column gives the frequencies for the individual country
characteristics; the other columns give the frequencies for the country characteristics interacted with the global
variables.
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Figure 5: Recursive coefficient estimates

The figure shows recursive ordinary least squares (OLS) and elastic net (ENet) slope coefficient estimates for a
panel predictive regression with 70 predictors, where the regularization parameter for the elastic net is tuned via the
extended regularization information criterion (ERIC). Vertical bars delineate business-cycle recessions as dated by
the National Bureau of Economic Research.



−0.3
−0.2
−0.1

0.0
0.1
0.2

2000 2010 2020

OLS ENet−ERIC

BILL.GVOL

−0.2

−0.1

0.0

0.1

2000 2010 2020

OLS ENet−ERIC

BILL.GILL

−0.2
−0.1

0.0
0.1
0.2

2000 2010 2020

OLS ENet−ERIC

BILL.GCOR

−4
−2

0
2

2000 2010 2020

OLS ENet−ERIC

NOTE.EPU

0

1

2

2000 2010 2020

OLS ENet−ERIC

NOTE.MPU

−1.0
−0.5

0.0
0.5
1.0

2000 2010 2020

OLS ENet−ERIC

NOTE.GR

0.0

0.5

1.0

1.5

2000 2010 2020

OLS ENet−ERIC

NOTE.GVOL

−0.75
−0.50
−0.25

0.00
0.25

2000 2010 2020

OLS ENet−ERIC

NOTE.GILL

−2.0
−1.5
−1.0
−0.5

0.0

2000 2010 2020

OLS ENet−ERIC

NOTE.GCOR

−2

0

2

2000 2010 2020

OLS ENet−ERIC

BOND.EPU

−1.5
−1.0
−0.5

0.0

2000 2010 2020

OLS ENet−ERIC

BOND.MPU

−1.0
−0.5

0.0
0.5

2000 2010 2020

OLS ENet−ERIC

BOND.GR

−1.0

−0.5

0.0

2000 2010 2020

OLS ENet−ERIC

BOND.GVOL

−0.25
0.00
0.25
0.50
0.75

2000 2010 2020

OLS ENet−ERIC

BOND.GILL

0.0
0.5
1.0
1.5
2.0

2000 2010 2020

OLS ENet−ERIC

BOND.GCOR

0.0

0.5

1.0

2000 2010 2020

OLS ENet−ERIC

DP.EPU

−0.5
−0.4
−0.3
−0.2
−0.1

0.0

2000 2010 2020

OLS ENet−ERIC

DP.MPU

−0.3
−0.2
−0.1

0.0

2000 2010 2020

OLS ENet−ERIC

DP.GR

0.00
0.05
0.10
0.15

2000 2010 2020

OLS ENet−ERIC

DP.GVOL

−0.05

0.00

0.05

2000 2010 2020

OLS ENet−ERIC

DP.GILL

−0.15
−0.10
−0.05

0.00

2000 2010 2020

OLS ENet−ERIC

DP.GCOR

0.0

0.5

1.0

1.5

2000 2010 2020

OLS ENet−ERIC

PE.EPU

−0.6

−0.4

−0.2

0.0

2000 2010 2020

OLS ENet−ERIC

PE.MPU

−0.1

0.0

0.1

2000 2010 2020

OLS ENet−ERIC

PE.GR

0.0

0.1

0.2

0.3

2000 2010 2020

OLS ENet−ERIC

PE.GVOL

Figure 5 (continued)
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R−squared = 44.33% 

 F−stat. = 3.03 (p−value = 0.007)
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Figure 6: Fitted and Actual Values

The figure shows fitted and actual values for a regression of the Lilley et al. (forthcoming) change in US foreign
bond holdings on the ten predictors selected by the elastic net, where the regularization parameter is tuned via the
extended regularization information criterion. The change in US foreign bond holdings is quarterly. The monthly
predictors are aggregated over the three months comprising a quarter and across countries. The sample is 2007:1 to
2019:2. The variables are standardized before estimating the regression. The vertical bar delineates the most recent
business-cycle recession as dated by the National Bureau of Economic Research.
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Figure 7: Log cumulative excess returns

The figure shows log cumulative portfolio excess returns for a US investor with mean-variance preferences and a
relative risk aversion coefficient of five who invests in 14 foreign currencies. The Basic-Opt (Smart-Opt) portfolio
assumes that the investor uses the no-change (elastic net) exchange rate forecast, where the regularization parameter
for the elastic net is tuned via the extended regularization information criterion. The conventional portfolio goes long
(short) currencies with the highest (lowest) bill yield differentials. Vertical bars delineate business-cycle recessions as
dated by the National Bureau of Economic Research.
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Figure 8: Portfolio weights

The figure shows portfolio weights for a US investor with mean-variance preferences and a relative risk aversion
coefficient of five who invests in 14 foreign currencies. The Basic-Opt (Smart-Opt) portfolio assumes that the investor
uses the no-change (elastic net) exchange rate forecast, where the regularization parameter for the elastic net is tuned
via the extended regularization information criterion. Vertical bars delineate business-cycle recessions as dated by
the National Bureau of Economic Research.
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Figure 9: Currency excess return forecasts for late 2008

The figure shows currency excess return forecasts for the final four months of 2008. The ENet (benchmark) forecast
uses the elastic net (no-change) exchange rate forecast in conjunction with the bill yield differential to forecast the
currency excess return. The regularization parameter for the elastic net is tuned via the extended regularization
information criterion (ERIC).
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Figure 10: Portfolio weights for late 2008

The figure shows portfolio weights for the final four months of 2008 for a US investor with mean-variance preferences
and a relative risk aversion coefficient of five who invests in ten foreign currencies. The Smart-Opt (Basic-Opt)
portfolio assumes that the investor uses the elastic net (no-change) exchange rate forecast, where the regularization
parameter for the elastic net is tuned via the extended regularization information criterion.
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Figure 11: Variable importance

The figure shows variable importance measures for 70 predictors for fitted models used to generate forecasts based
on a panel predictive regression estimated via the elastic net (ENet) and deep neural networks with three and four
hidden layers (DNN3 and DNN4, resepctively), where the regularization parameter for the elastic net is tuned via
the extended regularization information criterion (ERIC).
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Figure 12: Partial dependence plots

The figure shows partial dependence plots for 70 predictors for fitted models used to generate forecasts based on
a panel predictive regression estimated via the elastic net (ENet) and deep neural networks with three and four
hidden layers (DNN3 and DNN4, resepctively), where the regularization parameter for the elastic net is tuned via
the extended regularization information criterion.
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Figure 12 (continued)
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A1 Data

A1.1 Exchange Rates

Daily bid and ask spot and forward exchange rates are from Barclays and Reuters via Datas-

tream. Datastream country mnemonics are as follows: United Kingdom, GBP; Switzerland,

CHF; Japan, JPY; Canada, CAD; Australia, AUD; New Zealand, NZD; Sweden, SEK; Norway, NOK;

Denmark, DKK; Euro area, EUR; Germany, DEM; Italy, ITL; France, FRF; Netherlands, NLG.

Bid spot price Ticker BB***SP(EB), where “***” indicates the country mnemonic.

Ask spot price Ticker BB***SP(EO).

Bid forward price Ticker BB***1F(EB).

Ask forward price Ticker BB***1F(EO).

A1.2 Country Characteristics

Country characteristics are computed using data from Global Financial Data (GFD) and the

Organization for Economic Cooperation and Development (OECD). Country mnemonics are



as follows: United Kingdom, GBR; Switzerland, CHE; Japan, JPN; Canada, CAN; Australia, AUS;

New Zealand, NZL; Sweden, SWE; Norway, NOR; Denmark, DNK; Euro area, EUR; Germany, DEU;

Italy, ITA; France, FRA; Netherlands, NLD; United States, USA.

Inflation differential (INF) Inflation rates are computed from consumer price index (CPI)

data from GFD (ticker CP***M); CPI data for the Euro area (EA19) are from the OECD

(available at https://data.oecd.org/price/inflation-cpi.htm).

Unemployment gap differential (UN) Unemployment rates are from GFD (ticker

UN***M); the unemployment rate for the Euro area (EA19) is from the OECD (available

at https://data.oecd.org/unemp/unemployment-rate.htm).

Bill yield differential (BILL) Bill yields are three-month Treasury bill yields from GFD

(ticker IT***3D; for the Euro area, IBEUR3D).

Note yield differential (NOTE) Note yields are five-year government bond yields from

GFD (ticker IG***5D).

Bond yield differential (BOND) Bond yields are ten-year government bond yield data

from GFD (ticker IG***10D).

Dividend yield differential (DP) Dividend yields are from GFD (ticker SY***YM; for the

United Kingdom, _DFTASD, for Canada, SYCANYTM; for the Netherlands, SYNLDYAM).

Price-earnings differential (PE) Price-earnings ratios are from GFD (ticker SY***PM;

for the United Kingdom, _PFTASD; for Japan, SYJPNPTM; for Canada, SYCANPTM).

Stock market momentum (SRET) Twelve-month cumulative returns are computed

from total return indices from GFD (tickers are as follows: United Kingdom, _TFTASD;

Switzerland, _SSHID; Japan, _TOPXDVD; Canada, _TRGSPTSE; Australia, _AORDAD; New

Zealand, _NZGID; Sweden, _OMXSBGI; Norway, _OSEAXD; Denmark, _OMXCGID; Euro

2



area, _DMIEU0D; Germany, _CDAXD; Italy, _BCIPRD; France, TRSBF250D; Netherlands,

_AAXGRD; United States, _SPXTRD).

Idiosyncratic volatility (IV) Following Filippou, Gozluklu, and Taylor (2018), we com-

pute daily currency excess returns using daily spot and forward rates from Datastream

for the 14 countries that we analyze. We construct a daily dollar risk factor (MKTFX)

as the cross-sectional average of the daily currency excess returns. To construct a daily

carry trade risk factor (HMLFX), we first create six portfolios by sorting on the previous

daily forward discount; the carry trade factor is the return for the long-short portfolio.

Each month, we regress daily currency excess returns for country i on a constant and

the MKTFX and HMLFX factors:

RX i
t,d = αi + βi

MKTFX,tMKTFX,t,d + βi
HMLFX,tHMLFX,t,d + εit,d, (A1.1)

where RX i
t,d is the day-d currency excess return for country i for month t and MKTFX,t,d

(HMLFX,t,d) is the day-d return for month t for the dollar (carry trade) factor. Idiosyn-

cratic volatility is defined as

IVi,t =

 1

Ti,t

Ti,t∑
d=1

(
ε̂it,d
)2

0.5

, (A1.2)

where ε̂it,d is the fitted ordinary least squares residual for Equation (A1.1) and Ti,t is

number of daily currency excess return observations available for country i for month

t.

Idiosyncratic skewness (IS) Defined as

ISi,t =

(
1

Ti,t − 2

)∑Ti,t

d=1

(
ε̂it,d
)3

(IVi,t)
3 , (A1.3)
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where IVi,t is given by Equation (A1.2).1

A1.3 Global Variables

Economic policy uncertainty (EPU) Available from the Economic Policy Uncertainty

website at https://www.policyuncertainty.com/us_monthly.html.

Monetary policy uncertainty (MPU) Available from the Economic Policy Uncertainty

website at https://www.policyuncertainty.com/monetary.html.

Geopolitical risk (GR) Available from the Economic Policy Uncertainty website at

https://www.policyuncertainty.com/gpr.html.

Global foreign exchange volatility (GVOL) As in Menkhoff et al. (2012), month-t global

foregin exchange volatility is defined as

GVOLt =
1

Tt

∑
d∈Tt

 ∑
k∈Kt,d

(
|∆skt,d|
Kt,d

), (A1.4)

where ∆skt,d is the day-d change in the log exchange rate for country k and month t,

Tt is the number of days in month t, and Kt,d is the number of currencies available for

day d in month t.

Global foreign exchange illiquidity (GILL) As in Menkhoff et al. (2012), month-t global

foreign exchange illiquidity is defined as

GILLt =
1

Tt

∑
d∈Tt

 ∑
k∈Kt,d

(
|BASk

t,d|
Kt,d

), (A1.5)

where BASk
t,d is the day-d bid-ask exchange rate spread (in percent) for country k and

month t.

1The construction of idiosyncratic volatility and skewness follows Goyal and Santa-Clara (2003), Fu
(2009), Boyer, Mitton, and Vorkink (2010), and Chen and Petkova (2012).
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Global foreign exchange correlation (GCOR) Similarly to Mueller, Stathopoulos, and

Vedolin (2017), month-t foreign exchange currency correlation is defined as

GCORt =
1

N comb
t

Nt∑
i=1

(∑
j>i

RCi,j
t

)
, (A1.6)

where RCi,j
t is the realized correlation between currency excess returns for countries

i and j based on daily data for month t, N comb
t is the number of combinations of

currencies (i, j), and Nt is the number of available currencies.

A2 Training the Deep Neural Networks

We estimate the deep neural networks (DNNs) in Python using the keras package. In

implementing the Adam algorithm (Kingma and Ba 2015) to estimate the weights of the

DNNs, we use the following hyperparameter values:

• dropout rate (Hinton et al. 2012; Srivastava et al. 2014) of 0.5 for each hidden layer;

• shrinkage parameter of 0.01 for `1 regularization;

• reduce the learning rate by a factor of 0.05 when the validation loss stops improving;

• epochs equal 100;

• batch size of 32;

• training (validation) sample split of 0.8 (0.2).

We also use batch normalization (Ioffe and Szegedy 2015). The hyperparameter values are

designed to better guard against overfitting.
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Table A1: R2
OS statistics (in percent), five-fold cross

validation and AICc tuning

(1) (2) (3) (4) (5)

Country Obs. OLS ENet-CV ENet-AICc

United Kingdom 291 −10.83 −0.24 −5.19

Switzerland 291 −11.78 −2.08 −7.23

Japan 291 −10.53 −2.93 −8.08

Canada 291 −18.76 −8.99 −13.02

Australia 291 −3.57 −2.17 −2.68

New Zealand 291 −5.41 −0.65 −4.38

Sweden 291 −2.60 −1.05 −1.07

Norway 291 −1.88 −1.00 −1.23

Denmark 291 −6.22 0.55 −3.31

Euro area 230 −10.76 −4.18 −10.38

Germany 48 −11.59 −5.78 −4.50

Italy 48 −12.53 −5.09 −9.06

France 48 −36.64 −16.34 −18.31

Netherlands 48 −21.81 −7.04 −12.78

All 3,041 −8.03 −2.32 −5.40

The table reports out-of-sample R2 (R2
OS) statistics for monthly

out-of-sample forecasts of exchange rate changes based on a
country-level predictive regression estimated via ordinary least
squares (OLS) and the elastic net (ENet), where the regular-
ization parameter for the elastic net is tuned via five-fold cross
validation (CV) or the corrected AIC (AICc). The R2

OS statistic
is the percent reduction in mean squared forecast error (MSFE)
for a competing forecast vis-á-vis the no-change benchmark fore-
cast. The competing forecast is based on a country-level pre-
dictive regression with 70 predictors formed from ten country
characteristics and interactions of the ten country characteris-
tics with six global variables. For a positive R2

OS statistic, we
use the Clark and West (2007) MSFE-adj statistic to test the
null hypothesis that the benchmark MSFE is less than or equal
to the competing MSFE against the alternative hypothesis that
the benchmark MSFE is greater than the competing MSFE;
0.00 indicates less than 0.005 in absolute value; ∗, ∗∗, and ∗∗∗ in-
dicate significance at the 10%, 5%, and 1% levels, respectively.
The second column reports the number of out-of-sample obser-
vations.



Table A2: R2
OS statistics (in percent), country-level estimation and all predictors

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Country Obs. OLS ENet-CV ENet-AICc ENet-BIC ENet-MBIC ENet-GIC ENet-ERIC

United Kingdom 291 −211.07 −0.98 0.79 −0.10 − − −
Switzerland 291 −184.96 0.91∗∗ −4.23 − − − −
Japan 291 −122.88 −0.30 −0.77 − − − −
Canada 291 −67.50 −0.64 −1.66 0.35 0.39 0.43 0.41

Australia 291 −121.89 1.92∗∗∗ −1.70 0.60∗∗ 0.26∗∗ 0.67∗∗∗ 0.07∗

New Zealand 291 −521.56 −3.87 −1.60 − − − −
Sweden 291 −86.74 0.14 −2.43 − − − −
Norway 291 −92.52 0.03 2.43∗∗ −0.14 −0.02 −0.08 −0.02

Denmark 291 −98.33 −4.18 −6.84 −0.11 − −0.11 −
Euro area 122 −411.34 −1.68 −5.58 −4.09 − − −
Germany 48 −168.39 0.00 −1.08 − − − −
Italy 48 −724.13 −0.86 −0.81 − − − −
France 48 −356.45 0.88 −5.14 − − − −
Netherlands 48 −521.56 −3.87 −1.60 − − − −

The table reports out-of-sample R2 (R2
OS) statistics for monthly out-of-sample forecasts of exchange rate changes based

on a country-level predictive regression estimated via ordinary least squares (OLS) and the elastic net (ENet). The
regularization parameter for the elastic net is tuned via five-fold cross validation (CV), the corrected AIC (AICc),
Bayesian information criterion (BIC), modified BIC (MBIC), generalized information criterion (GIC), or extended
regularization information criterion (ERIC). The R2

OS statistic is the percent reduction in mean squared forecast error
(MSFE) for a competing forecast vis-á-vis the no-change benchmark forecast. The competing forecast is based on a
country-level predictive regression with 70 predictors formed from ten country characteristics and interactions of the
ten country characteristics with six global variables. For a positive R2

OS statistic, we use the Clark and West (2007)
MSFE-adj statistic to test the null hypothesis that the benchmark MSFE is less than or equal to the competing MSFE
against the alternative hypothesis that the benchmark MSFE is greater than the competing MSFE; 0.00 indicates
less than 0.005 in absolute value; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively; −
indicates that no predictor is ever selected by the elastic net. The second column reports the number of out-of-sample
observations.



Table A3: R2
OS statistics (in percent), panel estimation and individual characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Country Obs. INF UN BILL NOTE BOND DP PE SRET IV IS CPI TR

United Kingdom 291 −0.19 −0.42 −0.34 −0.03 0.02 0.14 −0.42 1.12∗∗ 0.94∗∗ −0.04 −1.44 −0.64

Switzerland 291 −0.04 −0.02 −0.05 0.39 0.22 −3.05 0.09 0.33 0.93 −0.13 −1.29 −0.05

Japan 291 −0.01 0.42∗ −0.32 −0.29 −0.29 −2.09 0.06 0.04 −0.62 0.01 −0.25 0.42∗

Canada 291 −0.06 0.54 −0.42 −0.12 −0.06 −2.77 0.06 −0.38 −2.23 −0.02 −0.43 0.46

Australia 291 −0.40 0.59∗ 0.04 0.36∗ 0.12 −0.72 0.07 0.92∗∗ −0.46 0.00 0.04 0.19

New Zealand 291 −0.71 0.44∗ −0.03 0.08 0.16 0.21 −0.25 1.02∗∗∗ 0.08 −0.03 0.38 −0.28

Sweden 291 −0.09 0.15 −0.13 0.17 −0.04 −1.03 0.06 0.16 −0.80 −0.08 0.17 0.04

Norway 291 −0.25 0.18 −0.09 0.24 0.13 −0.88 0.05 −0.05 −1.19 −0.11 0.31 −0.02

Denmark 291 −0.29 −0.27 −0.38 −0.07 −0.15 −1.48 0.03 0.08 1.19∗∗ −0.03 0.00 −0.53

Euro area 230 −0.10 −0.22 −0.20 −0.40 −0.08 −1.65 −0.10 0.44 0.20 −0.05 0.01 −0.24

Germany 48 0.39 −0.37 −0.80 −0.14 −0.01 −0.30 −1.77 0.41 3.06∗ −0.23 0.54 −0.17

Italy 48 −0.49 −0.18 −2.74 −2.10 −1.96 −0.03 0.18 −1.23 −1.48 0.63 −2.21 −0.41

France 48 −0.79 −0.72 −1.26 −0.94 −1.26 −4.09 0.96 −0.80 1.59 −1.16 −0.44 −1.38

Netherlands 48 −0.69 −0.26 −1.11 −0.23 −0.12 −0.23 0.84 −3.73 3.55∗∗ −0.24 0.33 −0.88

All 3,041 −0.26 0.16∗∗ −0.22 0.03∗ −0.02 −1.23 −0.02 0.33∗∗∗ −0.10 −0.06 −0.17 −0.08

The table reports out-of-sample R2 (R2
OS) statistics for monthly out-of-sample forecasts of exchange rate changes based on a panel predictive

regression estimated via ordinary least squares. Each predictive regression uses the characteristic in the column heading as a predictor; CPI is the
difference between the country-i and US log consumer price index; TR indicates that the predictive regression uses INF and UN. The R2

OS statistic
is the percent reduction in mean squared forecast error (MSFE) for a competing forecast vis-á-vis the no-change benchmark forecast. For a positive
R2

OS statistic, we use the Clark and West (2007) MSFE-adj statistic to test the null hypothesis that the benchmark MSFE is less than or equal to
the competing MSFE against the alternative hypothesis that the benchmark MSFE is greater than the competing MSFE; 0.00 indicates less than
0.005 in absolute value; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The second column reports the number of
out-of-sample observations.



Table A4: R2
OS statistics (in percent), country-level estimation and individual characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

Country Obs. INF UN BILL NOTE BOND DP PE SRET IV IS CPI TR

United Kingdom 291 −0.42 −0.94 −1.30 −0.29 −0.24 −0.20 −2.37 0.95∗∗ 0.50∗ −0.61 −0.86 −1.52

Switzerland 291 −1.66 −0.51 0.05 −0.24 −0.54 −4.86 −1.42 −0.01 0.12 −0.28 −5.25 −2.28

Japan 291 −0.24 0.13 −0.79 −1.30 −0.85 −2.67 −2.30 −0.40 −2.00 −0.64 −4.76 −0.04

Canada 291 0.27 0.28 −0.82 −0.67 −0.53 −0.71 −0.37 −0.43 −0.36 0.22 −0.88 0.62

Australia 291 −0.90 0.49 0.19 0.68∗ 0.41 −0.54 0.33 0.60∗∗ −0.29 −0.10 −0.37 −0.46

New Zealand 291 −2.08 0.32 −0.25 −0.21 −0.11 −0.08 −0.35 1.60∗∗∗ −0.92 −0.28 −0.57 −1.78

Sweden 291 −1.63 0.05 −2.15 −0.16 −0.14 −4.04 −0.29 −0.02 −1.35 −0.21 −2.18 −1.58

Norway 291 0.04 −0.04 −0.96 0.25 0.28 −0.12 0.01 −0.18 −0.63 −1.15 −0.88 0.01

Denmark 291 −1.28 −0.35 −0.49 −0.41 −1.13 −1.13 −0.10 −0.38 −0.01 −0.86 −1.94 −1.59

Euro area 122 0.77 −0.22 −0.14 −2.52 −2.71 −0.99 0.84 −1.03 −0.69 −1.58 −0.42 1.06∗

Germany 48 1.56 0.33 −1.56 −1.01 −0.24 −1.52 2.16 −0.31 3.98∗ −0.45 −0.50 1.88

Italy 48 −0.64 −1.13 −24.29 −14.71 −10.27 −2.59 −0.05 −6.64 −3.69 0.03 −9.02 −1.89

France 48 −0.90 −0.32 −1.58 −0.19 −0.70 −6.14 −1.48 −1.36 0.88 6.07∗ −6.88 −1.10

Netherlands 48 −0.38 −1.74 −0.90 −0.67 −0.40 −0.06 −0.37 −1.42 5.20∗∗ −2.61 −1.17 −1.93

The table reports out-of-sample R2 (R2
OS) statistics for monthly out-of-sample forecasts of exchange rate changes based on a country-level predictive

regression estimated via ordinary least squares. Each predictive regression uses the characteristic in the column heading as a predictor; CPI is the
difference between the country-i and US log consumer price index; TR indicates that the predictive regression uses INF and UN. The R2

OS statistic
is the percent reduction in mean squared forecast error (MSFE) for a competing forecast vis-á-vis the no-change benchmark forecast. For a positive
R2

OS statistic, we use the Clark and West (2007) MSFE-adj statistic to test the null hypothesis that the benchmark MSFE is less than or equal to
the competing MSFE against the alternative hypothesis that the benchmark MSFE is greater than the competing MSFE; ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively. The second column reports the number of out-of-sample observations.



Table A5: Portfolio performance, ENet-BIC forecast

(1) (2) (3) (4) (5) (6) (7)

Basic-Opt portfolio Smart-Opt portfolio

Transaction Annualized Annualized Annualized Annualized Annualized Annualized
costs mean volatility Sharpe ratio mean volatility Sharpe ratio

Panel A: Full sample (1995:01 to 2019:03)

Mid-quotes 7.47% 10.22% 0.73∗∗∗ 13.01% 13.40% 0.97∗∗∗

25% 5.69% 10.13% 0.56∗∗∗ 10.48% 13.40% 0.78∗∗∗

50% 4.92% 10.11% 0.49∗∗ 9.62% 13.39% 0.72∗∗∗

75% 4.16% 10.11% 0.41∗∗ 8.76% 13.39% 0.65∗∗∗

Bid-ask spread 3.39% 10.10% 0.34∗ 7.91% 13.38% 0.59∗∗∗

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

Mid-quotes 11.88% 10.56% 1.13∗∗∗ 13.81% 12.35% 1.12∗∗∗

25% 9.80% 10.58% 0.93∗∗∗ 10.79% 12.62% 0.85∗∗∗

50% 8.81% 10.59% 0.83∗∗∗ 9.70% 12.62% 0.77∗∗∗

75% 7.82% 10.59% 0.74∗∗∗ 8.62% 12.61% 0.68∗∗

Bid-ask spread 6.83% 10.59% 0.64∗∗ 7.53% 12.61% 0.60∗∗

Panel C: Post-crisis subsample (2008:09 to 2019:03)

Mid-quotes 1.76% 9.55% 0.18 11.99% 14.69% 0.82∗∗∗

25% 0.39% 9.32% 0.04 10.09% 14.39% 0.70∗∗

50% −0.09% 9.32% −0.01 9.52% 14.38% 0.66∗∗

75% −0.57% 9.31% −0.06 8.95% 14.38% 0.62∗∗

Bid-ask spread −1.04% 9.31% −0.11 8.39% 14.37% 0.58∗

The table reports annualized summary statistics for the portfolio excess return for a US investor with
mean-variance preferences and a relative risk aversion coefficient of five who invests in 14 foreign cur-
rencies. The Basic-Opt (Smart-Opt) portfolio assumes that the investor uses the no-change (elastic
net, ENet) exchange rate forecast. The ENet forecast is based on ENet estimation of a panel predictive
regression with 70 predictors formed from ten country characteristics and interactions of the ten country
characteristics with six global variables, where the regularization parameter is tuned via the Bayesian
information criterion (BIC). Mid-quotes ignore transaction costs. We account for transaction costs using
bid-ask spreads from Datastream. Because the full bid-ask spreads likely overstate transaction costs, we
compute results assuming 25%, 50%, and 75% of the full bid-ask spreads. We test the significance of the
Sharpe ratios using t-statistics based on Bao (2009) standard errors; ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels, respectively.



Table A6: Portfolio performance, ENet-MBIC forecast

(1) (2) (3) (4) (5) (6) (7)

Basic-Opt portfolio Smart-Opt portfolio

Transaction Annualized Annualized Annualized Annualized Annualized Annualized
costs mean volatility Sharpe ratio mean volatility Sharpe ratio

Panel A: Full sample (1995:01 to 2019:03)

Mid-quotes 7.47% 10.22% 0.73∗∗∗ 11.70% 13.04% 0.90∗∗∗

25% 5.69% 10.13% 0.56∗∗∗ 9.40% 13.06% 0.72∗∗∗

50% 4.92% 10.11% 0.49∗∗ 8.57% 13.06% 0.66∗∗∗

75% 4.16% 10.11% 0.41∗∗ 7.75% 13.05% 0.59∗∗∗

Bid-ask spread 3.39% 10.10% 0.34∗ 6.92% 13.05% 0.53∗∗∗

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

Mid-quotes 11.88% 10.56% 1.13∗∗∗ 13.27% 12.13% 1.09∗∗∗

25% 9.80% 10.58% 0.93∗∗∗ 10.51% 12.43% 0.85∗∗∗

50% 8.81% 10.59% 0.83∗∗∗ 9.46% 12.43% 0.76∗∗∗

75% 7.82% 10.59% 0.74∗∗∗ 8.41% 12.43% 0.68∗∗

Bid-ask spread 6.83% 10.59% 0.64∗∗ 7.36% 12.43% 0.59∗∗

Panel C: Post-crisis subsample (2008:09 to 2019:03)

Mid-quotes 1.76% 9.55% 0.18 9.67% 14.15% 0.68∗∗

25% 0.39% 9.32% 0.04 7.96% 13.87% 0.57∗

50% −0.09% 9.32% −0.01 7.42% 13.86% 0.54∗

75% −0.57% 9.31% −0.06 6.89% 13.86% 0.50

Bid-ask spread −1.04% 9.31% −0.11 6.35% 13.85% 0.46

The table reports annualized summary statistics for the portfolio excess return for a US investor with
mean-variance preferences and a relative risk aversion coefficient of five who invests in 14 foreign cur-
rencies. The Basic-Opt (Smart-Opt) portfolio assumes that the investor uses the no-change (elastic
net, ENet) exchange rate forecast. The ENet forecast is based on ENet estimation of a panel predictive
regression with 70 predictors formed from ten country characteristics and interactions of the ten country
characteristics with six global variables, where the regularization parameter is tuned via the modified
Bayesian information criterion (MBIC). Mid-quotes ignore transaction costs. We account for trans-
action costs using bid-ask spreads from Datastream. Because the full bid-ask spreads likely overstate
transaction costs, we compute results assuming 25%, 50%, and 75% of the full bid-ask spreads. We test
the significance of the Sharpe ratios using t-statistics based on Bao (2009) standard errors; ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels, respectively.



Table A7: Portfolio performance, ENet-GIC forecast

(1) (2) (3) (4) (5) (6) (7)

Basic-Opt portfolio Smart-Opt portfolio

Transaction Annualized Annualized Annualized Annualized Annualized Annualized
costs mean volatility Sharpe ratio mean volatility Sharpe ratio

Panel A: Full sample (1995:01 to 2019:03)

Mid-quotes 7.47% 10.22% 0.73∗∗∗ 12.77% 13.42% 0.95∗∗∗

25% 5.69% 10.13% 0.56∗∗∗ 10.27% 13.42% 0.77∗∗∗

50% 4.92% 10.11% 0.49∗∗ 9.42% 13.41% 0.70∗∗∗

75% 4.16% 10.11% 0.41∗∗ 8.58% 13.41% 0.64∗∗∗

Bid-ask spread 3.39% 10.10% 0.34∗ 7.73% 13.40% 0.58∗∗∗

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

Mid-quotes 11.88% 10.56% 1.13∗∗∗ 13.83% 12.46% 1.11∗∗∗

25% 9.80% 10.58% 0.93∗∗∗ 10.87% 12.74% 0.85∗∗∗

50% 8.81% 10.59% 0.83∗∗∗ 9.80% 12.74% 0.77∗∗∗

75% 7.82% 10.59% 0.74∗∗∗ 8.72% 12.73% 0.69∗∗

Bid-ask spread 6.83% 10.59% 0.64∗∗ 7.65% 12.73% 0.60∗∗

Panel C: Post-crisis subsample (2008:09 to 2019:03)

Mid-quotes 1.76% 9.55% 0.18 11.40% 14.60% 0.78∗∗

25% 0.39% 9.32% 0.04 9.50% 14.29% 0.67∗∗

50% −0.09% 9.32% −0.01 8.94% 14.29% 0.63∗∗

75% −0.57% 9.31% −0.06 8.38% 14.28% 0.59∗

Bid-ask spread −1.04% 9.31% −0.11 7.82% 14.28% 0.55∗

The table reports annualized summary statistics for the portfolio excess return for a US investor with
mean-variance preferences and a relative risk aversion coefficient of five who invests in 14 foreign cur-
rencies. The Basic-Opt (Smart-Opt) portfolio assumes that the investor uses the no-change (elastic
net, ENet) exchange rate forecast. The ENet forecast is based on ENet estimation of a panel predictive
regression with 70 predictors formed from ten country characteristics and interactions of the ten country
characteristics with six global variables, where the regularization parameter is tuned via the generalized
information criterion (GIC). Mid-quotes ignore transaction costs. We account for transaction costs using
bid-ask spreads from Datastream. Because the full bid-ask spreads likely overstate transaction costs, we
compute results assuming 25%, 50%, and 75% of the full bid-ask spreads. We test the significance of the
Sharpe ratios using t-statistics based on Bao (2009) standard errors; ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels, respectively.



Table A8: Portfolio performance, conventional carry

(1) (2) (3) (4)

Transaction cost Ann. mean Ann. volatility Ann. Sharpe ratio

Panel A: Full sample (1995:01 to 2019:03)

Mid-quotes 4.84% 9.82% 0.49∗∗

25% 3.98% 9.82% 0.41∗∗

50% 3.58% 9.82% 0.36∗

75% 3.18% 9.82% 0.32

Bid-ask spread 2.78% 9.81% 0.28

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

Mid-quotes 6.65% 8.87% 0.75∗∗∗

25% 5.70% 8.86% 0.64∗∗

50% 5.22% 8.86% 0.59∗∗

75% 4.74% 8.86% 0.54∗∗

Bid-ask spread 4.27% 8.86% 0.48∗

Panel C: Post-crisis subsample (2008:09 to 2019:03)

Mid-quotes 2.51% 10.94% 0.23

25% 1.76% 10.94% 0.16

50% 1.46% 10.94% 0.13

75% 1.16% 10.94% 0.11

Bid-ask spread 0.86% 10.93% 0.08

The table reports annualized summary statistics for the excess return
for a conventional carry trade portfolio. The investor sorts foreign
currencies according to the bill yield differential and goes long (short)
the fifth (first) quintile portfolio. Mid-quotes ignore transaction costs.
We account for transaction costs using bid-ask spreads from Datas-
tream. Because the full bid-ask spreads likely overstate transaction
costs, we compute results assuming 25%, 50%, and 75% of the full
bid-ask spreads. We test the significance of the Sharpe ratios using
t-statistics based on Bao (2009) standard errors; ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively.



Table A9: Portfolio performance, non-US domestic investors

(1) (2) (3) (4) (5) (6) (7)

Basic-Opt portfolio Smart-Opt portfolio

Domestic Annualized Annualized Annualized Annualized Annualized Annualized
country mean volatility Sharpe ratio mean volatility Sharpe ratio

Panel A: Full sample (1995:01 to 2019:03)

United Kingdom 6.87% 10.66% 0.64∗∗∗ 10.28% 12.18% 0.84∗∗∗

Switzerland 7.96% 11.75% 0.68∗∗∗ 8.52% 15.06% 0.57∗∗∗

Japan 8.79% 11.62% 0.76∗∗∗ 11.24% 14.15% 0.79∗∗∗

Canada 6.68% 10.55% 0.63∗∗∗ 9.73% 11.93% 0.82∗∗∗

Australia 7.28% 10.79% 0.67∗∗∗ 9.21% 11.97% 0.77∗∗∗

New Zealand 5.94% 11.82% 0.50∗∗ 11.08% 15.38% 0.72∗∗∗

Sweden 7.81% 10.17% 0.77∗∗∗ 10.62% 11.70% 0.91∗∗∗

Norway 7.51% 11.12% 0.68∗∗∗ 11.21% 12.62% 0.89∗∗∗

Denmark 7.33% 11.18% 0.66∗∗∗ 7.92% 12.12% 0.65∗∗∗

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

United Kingdom 11.16% 11.46% 0.97∗∗∗ 12.97% 13.29% 0.98∗∗∗

Switzerland 13.62% 12.70% 1.07∗∗∗ 11.00% 13.82% 0.80∗∗∗

Japan 14.54% 13.03% 1.12∗∗∗ 13.70% 14.91% 0.92∗∗∗

Canada 11.03% 10.97% 1.01∗∗∗ 10.68% 12.01% 0.89∗∗∗

Australia 11.27% 10.86% 1.04∗∗∗ 11.48% 12.12% 0.95∗∗∗

New Zealand 9.63% 12.70% 0.76∗∗∗ 10.20% 15.87% 0.64∗∗

Sweden 12.11% 10.30% 1.18∗∗∗ 12.47% 12.26% 1.02∗∗∗

Norway 13.20% 11.74% 1.12∗∗∗ 14.69% 12.60% 1.17∗∗∗

Denmark 11.46% 10.15% 1.13∗∗∗ 10.24% 11.34% 0.90∗∗∗

Panel C: Post-crisis subsample (2008:09 to 2019:03)

United Kingdom 1.32% 9.33% 0.14 6.80% 10.55% 0.64∗∗

Switzerland 0.65% 10.06% 0.06 5.32% 16.53% 0.32

Japan 1.37% 9.12% 0.15 8.06% 13.09% 0.62∗

Canada 1.07% 9.79% 0.11 8.51% 11.86% 0.72∗∗

Australia 2.14% 10.56% 0.20 6.29% 11.76% 0.53∗

New Zealand 1.17% 10.48% 0.11 12.20% 14.78% 0.83∗∗∗

Sweden 2.26% 9.82% 0.23 8.23% 10.94% 0.75∗∗

Norway 0.17% 9.92% 0.02 6.71% 12.58% 0.53∗

Denmark 1.99% 12.26% 0.16 4.93% 13.04% 0.38

The table reports annualized summary statistics for the portfolio excess return for a non-US domestic
investor with mean-variance preferences and a relative risk aversion coefficient of five who invests in 14
foreign currencies. The Basic-Opt (Smart-Opt) portfolio assumes that the investor uses the no-change
(elastic net) exchange rate forecast. The elastic net forecast is based on elastic net estimation of a panel
predictive regression with 70 predictors formed from ten country characteristics and interactions of the
ten country characteristics with seven global variables, where the regularization parameter is tuned via the
extended regularization information criterion. We test the significance of the Sharpe ratios using t-statistics
based on Bao (2009) standard errors; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,
respectively.



Table A10: Alphas and currency factor exposures, non-US domestic investors

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Basic-Opt portfolio Smart-Opt portfolio

Domestic
country α MKTFX HMLFX R̄2 α MKTFX HMLFX R̄2

Panel A: Full sample (1995:01 to 2019:03)

United Kingdom 0.27%∗ −0.25 0.73∗∗∗ 50.42% 0.69%∗∗∗ −0.37 0.43∗∗ 16.56%

Switzerland 0.27%∗∗ 0.86∗∗∗ 0.65∗∗∗ 60.27% 0.47%∗∗ 0.95∗∗ 0.34∗ 24.69%

Japan 0.24% 0.42∗∗∗ 0.74∗∗∗ 54.92% 0.59%∗ 0.20 0.59∗∗∗ 16.76%

Canada 0.24%∗ 0.27∗∗∗ 0.80∗∗∗ 51.91% 0.63%∗∗∗ 0.48∗∗∗ 0.47∗∗∗ 16.89%

Australia 0.39%∗∗∗ −0.36∗∗∗ 0.64∗∗∗ 51.05% 0.65%∗∗∗ −0.40∗∗∗ 0.30 18.83%

New Zealand 0.15% −0.66∗∗∗ 0.55∗∗∗ 56.20% 0.62%∗∗ −0.99∗∗∗ 0.11 35.76%

Sweden 0.33%∗∗ 0.34∗∗∗ 0.75∗∗∗ 52.49% 0.65%∗∗∗ 0.59∗∗∗ 0.46∗∗∗ 20.22%

Norway 0.37%∗∗ −0.36∗∗∗ 0.70∗∗∗ 45.13% 0.71%∗∗∗ 0.48∗∗∗ 0.45∗∗∗ 18.18%

Denmark 0.27% −0.19 0.76∗∗∗ 42.93% 0.45%∗ 0.25 0.42∗∗ 12.84%

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

United Kingdom 0.32%∗∗ −0.84∗∗∗ 0.87∗∗∗ 74.45% 0.48%∗∗ −1.25∗∗∗ 0.79∗∗∗ 69.42%

Switzerland 0.33%∗ 0.83∗∗∗ 0.90∗∗∗ 67.44% 0.09% 1.17∗∗∗ 0.81∗∗∗ 68.23%

Japan 0.28%∗ 0.82∗∗∗ 0.79∗∗∗ 76.19% 0.14% 0.92∗∗∗ 0.83∗∗∗ 69.50%

Canada 0.30%∗∗ 0.40∗∗∗ 1.08∗∗∗ 64.81% 0.30% 0.41∗∗∗ 1.03∗∗∗ 48.97%

Australia 0.31%∗ −0.08 1.05∗∗∗ 63.73% 0.31%∗ −0.15 1.07∗∗∗ 57.66%

New Zealand 0.19% −0.81∗∗∗ 0.75∗∗∗ 65.54% 0.15% −1.04∗∗∗ 0.82∗∗∗ 59.62%

Sweden 0.44%∗∗∗ −0.01 0.94∗∗∗ 65.50% 0.43%∗∗ 0.51∗∗∗ 0.98∗∗∗ 53.45%

Norway 0.51%∗∗ −0.66∗∗∗ 0.86∗∗∗ 46.17% 0.71%∗∗∗ 0.21 0.83∗∗∗ 39.25%

Denmark 0.33%∗∗∗ −0.41∗∗ 1.01∗∗∗ 67.53% 0.26%∗ 0.39 0.95∗∗∗ 62.65%

Panel C: Post-crisis subsample (2008:09 to 2019:03)

United Kingdom −0.04% 0.25∗ 0.53∗∗∗ 47.71% 0.48%∗∗ 0.41∗∗ 0.01 8.21%

Switzerland 0.02% 0.74∗∗∗ 0.46∗∗∗ 54.11% 0.54%∗ 0.52 −0.03 4.03%

Japan −0.13% 0.02 0.74∗∗∗ 54.42% 0.55%∗ −0.47∗ 0.47∗∗∗ 19.60%

Canada −0.00% 0.19 0.58∗∗∗ 42.86% 0.62%∗∗ 0.90∗∗∗ 0.05 22.82%

Australia 0.17% −0.80∗∗∗ 0.20 53.43% 0.49%∗∗ −0.70∗∗∗ −0.39 14.08%

New Zealand −0.07% −0.54∗∗∗ 0.36∗∗∗ 49.82% 0.64%∗ −0.99∗∗∗ −0.48∗ 36.12%

Sweden 0.01% 0.66∗∗∗ 0.61∗∗∗ 50.66% 0.60%∗∗ 0.52∗∗∗ 0.02 7.28%

Norway −0.03% −0.13 0.61∗∗∗ 50.40% 0.38% 0.55∗ 0.14 8.03%

Denmark 0.04% −0.15 0.57∗∗∗ 26.36% 0.46% −0.28 −0.04 −0.39%

The table reports Lustig, Roussanov, and Verdelhan (2011) currency factor model estimation results for the port-
folio excess return for a non-US domestic investor with mean-variance preferences and a relative risk aversion
coefficient of five who invests in 14 foreign currencies. The Basic-Opt (Smart-Opt) portfolio assumes that the
investor uses the no-change (elastic net) exchange rate forecast. The elastic net forecast is based on elastic net esti-
mation of a panel predictive regression with 70 predictors formed from ten country characteristics and interactions
of the ten country characteristics with six global variables, where the regularization parameter is tuned via the
extended regularization information criterion. MKTFX (HMLFX) is the dollar (carry trade) risk factor. Brackets
report t-statistics based on robust standard errors; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%
levels, respectively.



Table A11: Smart-Opt portfolio performance, DNN forecasts

(1) (2) (3) (4) (5) (6) (7)

DNN3 forecast DNN4 forecast

Transaction Annualized Annualized Annualized Annualized Annualized Annualized
costs mean volatility Sharpe ratio mean volatility Sharpe ratio

Panel A: Full sample (1995:01 to 2019:03)

Mid-quotes 12.51% 14.89% 0.84∗∗∗ 7.92% 12.86% 0.62∗∗∗

25% 10.15% 14.99% 0.68∗∗∗ 5.73% 12.86% 0.45∗∗

50% 9.27% 14.98% 0.62∗∗∗ 4.89% 12.85% 0.38∗

75% 8.40% 14.97% 0.56∗∗∗ 4.05% 12.86% 0.32

Bid-ask spread 7.52% 14.96% 0.50∗∗ 3.21% 12.86% 0.25

Panel B: Pre-crisis subsample (1995:01 to 2008:08)

Mid-quotes 14.12% 14.62% 0.97∗∗∗ 8.40% 13.33% 0.63∗∗

25% 11.60% 14.80% 0.78∗∗∗ 6.01% 13.45% 0.45∗

50% 10.49% 14.78% 0.71∗∗∗ 4.95% 13.45% 0.37

75% 9.37% 14.77% 0.63∗∗ 3.89% 13.45% 0.29

Bid-ask spread 8.26% 14.76% 0.56∗∗ 2.83% 13.45% 0.21

Panel C: Post-crisis subsample (2008:09 to 2019:03)

Mid-quotes 10.43% 15.26% 0.68∗∗ 7.30% 12.27% 0.60∗

25% 8.28% 15.27% 0.54∗ 5.38% 12.10% 0.44

50% 7.71% 15.27% 0.50 4.82% 12.10% 0.40

75% 7.14% 15.27% 0.47 4.27% 12.09% 0.35

Bid-ask spread 6.56% 15.27% 0.43 3.71% 12.09% 0.31

The table reports annualized summary statistics for the portfolio excess return for a US investor with
mean-variance preferences and a relative risk aversion coefficient of five who invests in 14 foreign curren-
cies. The Smart-Opt portfolio assumes that the investor uses the deep neural network (DNN) exchange
rate forecast. The DNN forecast is based on 70 predictors formed from ten country characteristics and
interactions of the ten country characteristics with six global variables. DNN3 (DNN4) contains three
(four) hidden layers. Mid-quotes ignore transaction costs. We account for transaction costs using bid-
ask spreads from Datastream. Because the full bid-ask spreads likely overstate transaction costs, we
compute results assuming 25%, 50%, and 75% of the full bid-ask spreads. We test the significance of the
Sharpe ratios using t-statistics based on Bao (2009) standard errors; ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels, respectively.



Table A12: Smart-Opt portfolio alphas and currency factor exposures, DNN forecasts

(1) (2) (3) (4) (5) (6) (7) (8) (9)

DNN3 forecast DNN4 forecast

Ann. Ann.
Sample alpha MKTFX HMLFX R̄2 alpha MKTFX HMLFX R̄2

1995:01 to 2019:03 12.05% −0.22 0.11 0.80% 6.38% 0.03 0.31 5.41%
[2.99]∗∗∗ [−1.66] [0.67] [1.82]∗ [0.18] [2.11]∗∗

1995:01 to 2008:08 11.43% −0.08 0.42 5.57% 3.39% 0.35 0.68 22.55%
[2.37]∗∗ [−0.28] [2.42]∗∗ [0.85] [1.44] [4.28]∗∗∗

2008:09 to 2019:03 10.75% −0.15 −0.18 2.12% 7.12% −0.06 0.05 −1.42%
[1.80]∗ [−0.60] [−0.69] [1.60] [−0.32] [0.26]

The table reports Lustig, Roussanov, and Verdelhan (2011) currency factor model estimation results for the
portfolio excess return for a US investor with mean-variance preferences and a relative risk aversion coefficient
of five who invests in 14 foreign currencies. The Smart-Opt portfolio assumes that the investor uses the deep
neural network (DNN) exchange rate forecast. The DNN forecast is based on 70 predictors formed from ten
country characteristics and interactions of the ten country characteristics with six global variables. DNN3
(DNN4) contains three (four) hidden layers. Mid-quotes ignore transaction costs. MKTFX (HMLFX) is the
dollar (carry trade) risk factor. Brackets report t-statistics based on robust standard errors; ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels, respectively.
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Figure A1: OLS and ENet-BIC forecasts

Each panel shows monthly out-of-sample forecasts of exchange rate changes based on recursive ordinary least squares
(OLS) and elastic net (ENet) estimation of a panel predictive regression with 70 predictors, where the regularization
parameter for the elastic net is tuned via the Bayesian information criterion (BIC). Vertical bars delineate business-
cycle recessions as dated by the National Bureau of Economic Research.
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Figure A2: OLS and ENet-MBIC forecasts

Each panel shows monthly out-of-sample forecasts of exchange rate changes based on recursive ordinary least squares
(OLS) and elastic net (ENet) estimation of a panel predictive regression with 70 predictors, where the regularization
parameter for the elastic net is tuned via the modified Bayesian information criterion (MBIC). Vertical bars delineate
business-cycle recessions as dated by the National Bureau of Economic Research.
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Figure A3: OLS and ENet-GIC forecasts

Each panel shows monthly out-of-sample forecasts of exchange rate changes based on recursive ordinary least squares
(OLS) and elastic net (ENet) estimation of a panel predictive regression with 70 predictors, where the regularization
parameter for the elastic net is tuned via the generalized information criterion (GIC). Vertical bars delineate business-
cycle recessions as dated by the National Bureau of Economic Research.
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Figure A4: Cumulative difference in squared forecast errors for ENet-BIC forecast

The figure shows the cumulative difference in squared forecast errors for the no-change benchmark forecast vis-à-vis
the ENet-BIC forecast. Vertical bars delineate business-cycle recessions as dated by the National Bureau of Economic
Research.
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Figure A5: Cumulative difference in squared forecast errors for ENet-MBIC forecast

The figure shows the cumulative difference in squared forecast errors for the no-change benchmark forecast vis-à-
vis the ENet-MBIC forecast. Vertical bars delineate business-cycle recessions as dated by the National Bureau of
Economic Research.



0

25

50

75

2000 2010 2020

 

 

Panel A: United Kingdom

0

20

40

2000 2010 2020

 

 

Panel B: Switzerland

−20

0

20

2000 2010 2020

 

 

Panel C: Japan

−20

−10

0

10

2000 2010 2020

 

 

Panel D: Canada

0

20

40

60

2000 2010 2020

 

 

Panel E: Australia

0

50

100

2000 2010 2020

 
 

Panel F: New Zealand

−25

0

25

50

75

2000 2010 2020

 

 

Panel G: Sweden

0

20

40

60

80

2000 2010 2020

 

 

Panel H: Norway

0

20

40

60

2000 2010 2020

 

 

Panel I: Denmark

0

20

40

60

80

2000 2010 2020

 

 
Panel J: Euro area

−3
−2
−1

0
1
2
3

2000 2010 2020

 

 

Panel K: Germany

−4

−2

0

2

2000 2010 2020

 

 

Panel L: Italy

−7.5

−5.0

−2.5

0.0

2.5

2000 2010 2020

 

 

Panel M: France

0

5

10

2000 2010 2020

 

 

Panel N: Netherlands

Figure A6: Cumulative difference in squared forecast errors for ENet-GIC forecast

The figure shows the cumulative difference in squared forecast errors for the no-change benchmark forecast vis-à-vis
the ENet-GIC forecast. Vertical bars delineate business-cycle recessions as dated by the National Bureau of Economic
Research.
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Figure A7: Heatmap for predictors selected by the elastic net via BIC tuning

The figure shows the frequencies for predictors selected by the elastic net when the regularization parameter is
tuned via the Bayesian information criterion (BIC). The Z column gives the frequencies for the individual country
characteristics; the other columns give the frequencies for country characteristics interacted with the global variables.
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Figure A8: Heatmap for predictors selected by the elastic net via MBIC tuning

The figure shows the frequencies for predictors selected by the elastic net when the regularization parameter is tuned
via the modified Bayesian information criterion (MBIC). The Z column gives the frequencies for the individual country
characteristics; the other columns give the frequencies for country characteristics interacted with the global variables.
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Figure A9: Heatmap for predictors selected by the elastic net via GIC tuning

The figure shows the frequencies for predictors selected by the elastic net when the regularization parameter is
tuned via the generalized information criterion (GIC). The Z column gives the frequencies for the individual country
characteristics; the other columns give the frequencies for country characteristics interacted with the global variables.
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Figure A10: OLS and ENet-BIC recursive coefficient estimates

The figure shows recursive ordinary least squares (OLS) and elastic net (ENet) slope coefficient estimates for a
panel predictive regression with 70 predictors, where the regularization parameter for the elastic net is tuned via
the Bayesian information criterion (BIC). Vertical bars delineate business-cycle recessions as dated by the National
Bureau of Economic Research.
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Figure A10 (continued)
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Figure A11: OLS and ENet-MBIC recursive coefficient estimates

The figure shows recursive ordinary least squares (OLS) and elastic net (ENet) slope coefficient estimates for a
panel predictive regression with 70 predictors, where the regularization parameter for the elastic net is tuned via the
modified Bayesian information criterion (MBIC). Vertical bars delineate business-cycle recessions as dated by the
National Bureau of Economic Research.
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Figure A11 (continued)
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Figure A12: OLS and ENet-GIC recursive coefficient estimates

The figure shows recursive ordinary least squares (OLS) and elastic net (ENet) slope coefficient estimates for a
panel predictive regression with 70 predictors, where the regularization parameter for the elastic net is tuned via the
generalized information criterion (GIC). Vertical bars delineate business-cycle recessions as dated by the National
Bureau of Economic Research.
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