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We are like dwarfs sitting on the shoulders of giants. We see more, and things that

are more distant, than they did, not because our sight is superior or because we are

taller than they, but because they raise us up, and by their great stature add to ours.

— John of Salisbury

1. Introduction

Knowledge spillovers have been the driving engine of technological advancements. A pronounced

feature of technology development nowadays is the cross-disciplinary application of knowledge. For

instance, the development of new techniques such as X-ray diffraction and chromatography in chem-

istry have been applied to the analysis of metabolic pathways of the cell in biology. At the same time,

studies on molecular biology, in turn, promote a better understanding of the chemistry of the cell,

which then benefits research in medicine. Technological advancements in one area depend on break-

throughs in other areas. For example, Acemoglu et al. (2016b) empirically show that patent growth

in upstream technology fields has strong predictive power on future downstream innovation given the

preexisting network structure measured by intersectoral patent citations. Despite this empirical find-

ing, several important questions remain: How does the structure of the innovation network relate to

the behavior of the economy? How can we measure the importance of a sector given that each sector

contributes to not only their own but also to others’ development? What is the implication of the

interdependence of different sectors’ technological progress for policy design? This paper provides

one of the first attempts to answer these questions.

We develop an endogenous growth model a la Romer (1990) with multiple sectors in the economy.

Individual firms specialize in one sector, and try to apply preexisting knowledge from their own

sectors as well as other sectors to conduct innovation. Consequently, aggregate knowledge flows

from one sector to another depending on the strength of intersectoral knowledge spillovers and the

resources devoted to innovation, which are endogenously determined in equilibrium. In this setup,

the whole economy can be perceived as an innovation network with each sector representing a node

and intersectoral knowledge flows representing directed edges.

The first theoretical finding of our paper shows the equivalence between the growth rate of the

total knowledge stock and the spectral radius of the innovation network. This finding provides a

parsimonious way for us to analyze the network economy because we can relate the impact of any

change in the network structure to changes in the spectral radius. We apply this idea to examine the

importance of nodes and edges in the network. The importance of a(an) node(edge) is measured by

the reduction of the spectral radius if a(an) node(edge) is removed from the network. We find that a
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node’s importance is related to both its centrality in the upstream innovation network and its central-

ity in the downstream innovation network. Higher centrality, which implies more central positions,

in either the downstream network or the upstream network for a sector indicates that this sector is

of great importance in the network. The intuition is that each sector serves as a knowledge distrib-

utor in the upstream innovation network and a knowledge consumer in the downstream innovation

network. A sector with high centrality in the upstream network produces knowledge flows to other

important sectors. On the other hand, a sector with high downstream centrality functions like a hub of

knowledge applications, which absorbs and consumes knowledge from other sectors. The removal of

either type of sectors will severely impair the production of knowledge, thus leading to a substantial

slowdown of knowledge growth. We show that the importance of an edge is determined by the source

sector’s centrality in the upstream network, the target sector’s centrality in the downstream network

and the knowledge flows from the source sector to the target sector.

The complex interaction of sectoral innovation gives rise to the challenge of policy design. To see

this, we solve a social planning problem where a planner optimally allocate labor between innovation

and production within a sector and across sectors. The decentralized equilibrium of the baseline

model features a constant ratio of the number of innovation workers to the number of production

workers, which is the same for every sector. In contrast, this ratio is sector-specific in the centralized

economy, which depends on the product of the upstream centrality and the downstream centrality,

and a sector’s output share. Consequently, optimal policies involve sector-specific subsidies (taxes).

Our paper contributes to several strands of literature. First, it is related to the large literature

on endogenous growth.1 Most of the previous studies on endogenous growth have focused on a

representative sector and ignored the potential heterogeneous intersectoral knowledge spillovers. The

only exception is Cai and Li (2019). Their paper explicitly models intersectoral knowledge linkages

and uses the model to explain stylized facts such as research firms’ choices of entry into different

industries and heterogeneous research intensities across sectors. Our paper has a distinct focus. We

aim to disentangle the connection between the structural property of each sector in the innovation

network and their importance in the process of knowledge accumulations. This is, to the best of our

knowledge, the first study that tries to investigate this relationship in the literature.

Our paper is also related to the large literature on social and economic networks.2 Among them,

Ballester et al. (2006) propose a measure, based on a player’s centrality and her contribution to

1See, for example, Aghion and Howitt (1992), Aghion et al. (1997), Grossman and Helpman (1991), Kortum (1997),

Klette and Kortum (2004), Romer (1990), Jones (1995), Acemoglu et al. (2018), Cai and Li (2019) and Akcigit and Kerr

(2018). For an overview, see Acemoglu (2009).
2For overviews, see Jackson (2008), Jackson and Zenou (2015) and Jackson et al. (2017).
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the centrality of the others, to capture the key players in a network. We obtain a similar result

since we also demonstrate that the centrality of a sector is related to its importance in the network.

However, our paper examines an innovation network whose structure is endogenously determined by

the equilibrium allocation of innovation workers across sectors, while their paper treats the network

structure as given and builds their analysis upon this premise.

Finally, our paper is related to the growing theoretical and empirical literature on the role of

production networks in macroeconomics.3 The network is described through input–output linkages

and this literature has developed the theoretical foundations for the role of input–output linkages

as a shock propagation channel and as a mechanism for transforming microeconomic shocks into

macroeconomic fluctuations. The seminal paper by Acemoglu et al. (2012) characterizes the condi-

tions under which input–output linkages in the economy can generate sizable aggregate fluctuations

from purely idiosyncratic shocks. Some of these results have been tested empirically at the firm

level (Barrot and Sauvagnat (2016), Carvalho et al. (2020)) and the industry level (Acemoglu et al.

(2016a)). More recently, a small but growing literature has focused on developing a joint theory of

production and endogenous network formation so that, after the shocks, firms can respond to changes

in economic conditions by altering their trading partners (see e.g., Atalay et al. (2011) and Ace-

moglu and Azar (2020)). Our paper is related to this literature since we also endogeneize the network

structure in a macroeconomic framework. However, there are many differences. First, instead of an

input–output network, we have an innovation network where we study knowledge spillovers between

and within sectors. Second, we have a dynamic model as we examine how the network structure

affects the growth of the economy. Third, we determine the key sectors by studying the economic

consequences in terms of growth rate if these sectors would disappear. We believe that we are among

the first to introduce an explicit network analysis in an endogeneous growth model.

The rest of the paper is organized as follows. Section 2 presents the basic economic environment

and characterize the equilibrium. Section 3 analyzes the main theoretical results by determining the

growth of of the innovation network, the key sectors and the key technological linkages for growth.

In Section 4, we present some numerical results. Finally, Section 5 cncludes. All proofs can be found

in the Appendix.

3For overviews of this literature, see Carvalho (2014) and Carvalho and Tahbaz-Salehi (2019).
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2. Model

2.1. Preferences and Final Good Production

There is a representative household who consumes a final consumption good C(t) at each period of

time t and has logarithmic preferences given by:

U =

∫ ∞
0

e−ρt lnC(t)dt, ρ > 0, (1)

where ρ is the discount rate. The household is made of a continuum of individuals of measure

one. Each member is endowed with one unit of labor that is supplied inelastically either to produce

intermediate goods or to conduct R&D. The division of labor will be discussed in detail below.

Individuals have access to a risk-free bond with interest rate r(t), subject to the following lifetime

household budget constraint ∫ ∞
0

q(t)C(t)dt = x(0) +

∫ ∞
0

q(t)w(t)dt, (2)

where q(t) ≡ exp(−
∫ t

0
r(s)ds) is the intertemporal interest rate, x(0) is the initial wealth that this

household holds, and w(t) is the wage rate that the household earns. The representative household

chooses C(t) that maximizes (1) under the budget constraint (2). This leads to the standard consump-

tion Euler equation:
Ċ(t)

C(t)
= r(t)− ρ. (3)

The economy consists of N technological sectors denoted by N = {1, 2, · · ·N}. The final

good C(t) consumed by the representative household at time t is produced by a producer and is an

aggregate of the N sectoral goods according to the following CES function:

Y (t) =

[
N∑
k=1

αkYk(t)
σ−1
σ

] σ
σ−1

, (4)

where αk refers to the relative importance of sector k in the production of final good, and σ is the

elasticity of substitution across sectors. Yk(t) represents a composite of different varieties produced

by sector k at time t. The final good producer maximizes the following profit function by choosing

the quantity of the sectoral good Yk(t), that is

Y (t)−
N∑
k=1

Pk(t)Yk(t), (5)

where Pk(t) is the price index for sector k. As it is standard, from this maximization problem, we

obtain an inverse demand function in sector k, which is equal to:

Yk(t) =

[
αk
Pk(t)

]σ
Y (t). (6)
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In each sector k, there is a monopolistic competition between a continumm of firms. We refer to

firm ki the firm i that produces a variety i in sector k. The composite good in sector k is given by

Yk(t) =

[∫ Ak(t)

0

yki(t)
η−1
η di

] η
η−1

, ∀k ∈ N , (7)

where yki(t) is the quantity of variety i demanded in sector k at time t and η > 1 is the elasticity

of substitution within sector k.4 When η → ∞, varieties are perfect substitutes. We follow Romer

(1990) to interpret Ak(t) as the number of designs for different varieties in sector k at time t, which

can grow over time without bound. Conceptually, Ak(t) captures the knowledge stock in sector k, the

dynamics of which will be discussed in the next section.

Firms produce with labor only. Each firm/individual ki has access to a linear production technol-

ogy, given by:

yki(t) = lki(t), ∀i ∈ Ak(t), ∀k ∈ N (8)

where lki(t) is the labor input that each firm ki needs to produce yki(t) at time t. Firm ki needs one

unit of labor to produce one unit of its variety i. Given the wage rate w(t), each firm ki, at time t,

chooses the price pki(t) of their product/variety that maximizes her profit:

πki(t) = pki(t)yki(t)− w(t)lki(t), (9)

subject to the inverse demand function

yki(t) =

[
Pk(t)

pki(t)

]η
Yk(t), (10)

where

Pk(t) =

(∫ Ak(t)

0

pki(t)
1−ηdi

) 1
1−η

. (11)

The price that a firm ki charges is a constant markup over the marginal cost of production, i.e.,

pki(t) = η
η−1

w(t). Thus,

Pk(t) =
η

η − 1
w(t)[Ak(t)]

1
1−η . (12)

Plugging the value of pki(t) into the profit (9) yields:

πki(t) =
1

η − 1
w(t)lki(t). (13)

4We use the subscripts k, l,m for sectors and subscripts i, j for firms/varieties.
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2.2. Research and Development

Besides producing intermediate goods, individuals/firms/entrepreneurs also engage in R&D in order

to expand the existing knowledge stock and, thereby, facilitate innovations. Specifically, innova-

tors benefit from two types of knowledge: knowledge in the sector they conduct innovation and

knowledge from other sectors. Put differently, an increase in knowledge in a given sector leads to

intrasectoral as well as intersectoral knowledge spillovers. The average strength of knowledge inter-

sectoral spillovers from sector l to sector k is denoted by skl while skk > 0 referred to as the average

strength of intrasectoral knowledge spillovers for sector k. Note that skl ≥ 0, ∀k, l, and in general

skl 6= slk,∀i 6= j, as knowledge spillovers from sector l to sector k may be different from those from

sector k to sector l.

Denote by LAk (t), the number of firms that conduct innovations in sector k at time t. Then, the

evolution of the knowledge stock Ak(t) in sector k is assumed to be

Ȧk(t) = θkL
A
k (t)

N∑
l=1

sklAl(t), ∀k ∈ N , (14)

where θk captures the sectoral research productivity that governs the difficulty of conducting R&D in

sector k. The sectoral labor input for innovations LAk (t) will be determined in equilibrium, and as we

will show later, without population growth, LAk (t) will be constant. In (14), Ȧk(t) is the growth rate

of new ideas for the whole sector k. This formulation of knowledge accumulation is an extension

of Romer (1990), by including the sectoral differentials and the possibility of knowledge spillovers

across sectors. It is useful to rewrite equation (14) by dividing both sides by Ak(t). We obtain:

gAk (t) = θkL
A
k (t)

N∑
l=1

skl
Ml(t)

Mk(t)
, ∀k ∈ N , (15)

where gAk (t) := Ȧk(t)/Ak(t), Mk(t) := Ak(t)/A(t) and A(t) :=
∑N

k=1Ak(t). As we will discuss

later, Mk(t), which is sector k’s share of the total knowledge stock, is constant in equilibrium, and so

is the growth rate.

Let us, now, define the innovation network Γ, whose weighted and asymmetric adjacency (N×N)

matrix is denoted by Γ5 with elements γkl := θksklL
A
k indicate the average knowledge flows from

sector l to sector k, resulting from endogenous research efforts to applying innovations from sector

l to sector k. This innovation network captures both the exogenous bilateral knowledge linkages

(skl) and sectoral research productivity (θk) and the endogenous allocation of human resources for

innovations across sectors (LAk ). Since skl may be different from slk, the network is directed. The

5For simplicity, we denote by Γ both the innovation network and its adjacency matrix.
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upstream network for a sector k is defined by all sectors that produce knowledge spillovers to sector

k and is captured by skl, for all l 6= k. . The downstream network for a sector k is defined by all

sectors that receive knowledge spillovers from sector k and is captured by slk, for all l 6= k.

The structure of the innovation network Γ determines the speed of knowledge accumulation for

every sector. This implies that equation (15) can be written as:

gAk (t) =
N∑
l=1

γkl
Ml(t)

Mk(t)
, ∀k ∈ N . (16)

We are looking for an equilibrium featuring the balanced growth path where knowledge in all sectors

grows at the same rate. Such an equilibrium cannot exist without conditions. A simple example is

when the innovation network reduces to a diagonal matrix. This corresponds to an economy where

sectoral growth is independent of each other. In this paper, we rule out this possibility. Instead,

we want to investigate a model where all sectors have either a direct or indirect impact on all other

sectors. The following definition formalizes this idea.

Definition 1. An innovation network Γ is strongly connected if, ∀k, l, there exists a sequence of edges

such that γkm1γm1m2 · · · γmnl > 0.

A strongly connected network ensures that intersectoral knowledge spillovers affect all sectors

directly or indirectly. Indeed, even if a sector does not directly benefit from the knowledge advance-

ment of another sector, the knowledge spillovers from the latter still pass through to the former via a

third sector (or a sequence of sectors). The assumption of strongly connected innovation network is

a sufficient condition to guarantee the existence of this higher-order effect, which is summarized by

the following lemma.

Lemma 1. Assume that the innovation network Γ is strongly connected. Then, in equilibrium, the

knowledge stock of each sector grows at the same rate and is equal to the growth rate of the total

knowledge stock of the economy, that is

gA = gAk , ∀k ∈ N . (17)

For the rest of this paper, we maintain the assumption of a strongly connected innovation network.

To close the economy, we still need to specify the entry of new firms. In our model, any indi-

vidual/entrepreneur can create a new firm by conducting R&D and designing a new blueprint for a

product. A firm ki that designs a new blueprint will enjoy the monopoly rights forever. The value of

a blueprint vki(t) of firm ki introduced at t is thus

vki(t) =

∫ ∞
t

q(τ)

q(t)
πki(τ)dτ, τ ≥ t. (18)
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where πki(t) denotes the flow profit of firm ki (i.e., firm producing variety i in sector k) at date t

and is given by (13), and q(τ)/q(t) discounts the flow profit from τ to t. Given the free mobility

of labor between the production sector and the research sector, an individual/entrepreneur should be

indifferent between working and innovating. Thus, for each period of time t, the free-entry condition

is equal to:

vki(t)
N∑
l=1

θksklAl(t) = w(t), ∀k ∈ N . (19)

When a firm/person enters a sector k at time t producing variety i, the expected benefit of participat-

ing in innovation is equal to her lifetime discounted profit vki(t) times the benefits of the intra and

intersectoral spillover effects of the innovation
∑N

l=1 θksklAl(t). The last term is obtained by dividing

the right-hand side of (14), which gives the growth rate of new ideas for a whole sector k, by LAk , in

order to obtain the per person innovation rate. The free-entry condition (19) at time t captures the

fact that a person/firm should be indifferent between working in the manufacturing sector and obtain

a wage w(t) and engaging in innovation. Note that we assume positive entry in equilibrium.

2.3. Equilibrium

Let us, now, characterize the equilibrium of this economy. We focus on the steady state where

knowledge in all sectors grows at the constant rate gA.

In equilibrium, all firms in a given sector k produce the same amount of intermediate goods, and,

therefore, hire the same number of workers at any point of time t. Thus, using (8), all firms in sector

k will have the same production technology, which is given by:

yki(t) = lki(t) =
LYk
Ak(t)

. (20)

where LYk is the total labor used in sector k, and, as above, Ak(t) is the knowledge stock in sector k

at time t. Plugging this firm labor input into the sectoral output (7) yields

Yk(t) = [Ak(t)]
1

η−1 LYk . (21)

In equilibrium, the output growth in sector k is proportional to the growth of the knowledge stock,

that is gYk = 1
η−1

gAk = 1
η−1

gA. The output growth is simply the knowledge growth adjusted for the

within sector elasticity of substitution. Using (4), we can derive the growth rate of the final output,

which is equal to the growth rate of the sectoral output gYk , that is

gY =
1

η − 1
gA. (22)
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Since the final good sector is perfectly competitive, producers make zero profit, which implies

that Y (t) =
∑N

k=1 Pk(t)Yk(t). Using this relationship together with sectoral price index (12) and

(21), we obtain:

Y (t) =
η

η − 1
w(t)LY , (23)

where LY =
∑N

k=1 L
Y
k . A direct implication of this result is that the output growth is equal to the

wage growth, gY = gw.

For the goods market to clear, we need to have that the final output equals total consumption, that

is Y (t) = C(t). From the consumption Euler equation (3), we have

gY = gC = r − ρ (24)

where gC is consumption growth. Now, we can characterize the evolution of the value of a new

blueprint for a firm. First, recall that, in equilibrium, all firms within a sector employ the same

amount of labor LAk /Ak(t) at time t. Therefore, the profit of a firm ki is given by:

πki(t) =
1

(η − 1)

w(t)LYk
Ak(t)

(25)

As a result, in equilibrium, the growth rate of the profit per product is equal to the difference between

the growth rate of the wage and the growth rate of the sectoral knowledge stock. That is,

gπ = gw − gA = gY − gA =
1

η − 1
gA − gA =

(
2− η
η − 1

)
gA, η > 1 (26)

Notice that when there is relatively low substitution between different varieties within a sector, i.e.,

1 < η < 2, the per-product profit growth rate is positive. On the other hand, when there is relatively

high substitution between varieties, i.e., η > 2, the per-product profit experiences negative growth.

Along the balanced growth path, the per-product profit grows at the same rate gπ. Combining this

with (18), the value of a new product i introduced at time t in sector k can be written as

vki(t) =

∫ ∞
t

e−r(τ−t)πki(t)e
gπ(τ−t)dτ =

πki(t)

r − gπ
, τ ≥ t (27)

where r − gπ = ρ+ gA.

It remains to determine the allocation of labor across sectors and within a sector for production

and innovation. First, combining the free-entry condition (19) with (25) and (27), we obtain:

w(t)LYk
(η − 1)Ak(t)(ρ+ gA)

N∑
l=1

θksklAl(t) = w(t). (28)

Taking into account the fact that gA/LAk =
∑N

l=1 θksklAl(t)/Ak(t), the above equation can be written

as
1

η − 1

LYk
LAk

gA

ρ+ gA
= 1, ∀k ∈ N . (29)
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A higher growth rate of the knowledge stock gA is associated with a higher innovation to production-

labor ratio LAk /L
Y
k . Moreover, as varieties become more substitutable, that is, a higher η, the profit

generated from a new variety declines. As a result, individuals/firms have less incentive to engage in

innovations, and thus, allocate more labor for production.

Next, we characterize the division of labor among sectors for production and innovation. Equa-

tion (29) shows that the ratio of production to innovation labor is sectoral independent and is the

same across sectors. Thus, the allocation of production workers across sectors is proportional to the

allocation of innovation workers across sectors.

Lemma 2. Along the balanced growth equilibrium, the ratio of labor allocation across sectors for

production is equal to the ratio of labor allocation across sectors for innovation. We have:

LYk
LYl

=
LAk
LAl

, ∀k 6= l. (30)

In addition, it can be shown that

LYk
LYl

=

(
αk
αl

)σ (
Mk

Ml

) 1−σ
1−η

, (31)

LAk
LAl

=

∑N
m=1 θlslmMm/Ml∑N
m=1 θkskmMm/Mk

, (32)

whereMm = Am/A is sectorm’s share of total knowledge stock, and the vectorM(t) = {Mk(t)}k∈N
are solutions to the following system of equations(

αk
α1

)σ (
Mk

M1

) η−σ
η−1

=

∑N
m=1 θkskmMm∑N
m=1 θ1s1mMm

, ∀k 6= 1, (33)

and
N∑
k=1

Mk = 1. (34)

We can now state the definition of equilibrium of this economy.

Definition 2. (Balanced Growth Path Equilibrium) A balanced growth path (BGP) of this economy

is an equilibrium path in which consumption and final output grow at the same rate, which is propor-

tional to the knowledge growth rate. It consists of the following time paths C(t), Y (t), {lki(t)}k∈N ,

{yki(t)}k∈N , {pki(t)}k∈N , {πki(t)}k∈N , {vki(t)}k∈N , {LYk (t)}k∈N , {LAk (t)}k∈N , {Mk(t)}k∈N , {Ak(t)}k∈N ,

{Pk(t)}k∈N , {piki(t)}k∈N , {vki(t)}k∈N , gAk , gA, gY such that:

1. The representative household chooses C(t) that maximizes utility (1) under the budget con-

straint (2).
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2. Each final good producer k chooses sectoral good Yk(t) that maximizes profit (5) subject to the

production function (4) and the sectoral price index Pk(t) given by (12).

3. Each individual firm ki chooses lki(t) the amount of labor for production, yki(t) the quantity

of variety i produced and pik(t) the price of this variety that maximize her profit (9) subject to

the production technology (8) and the inverse demand (10). Equations (13) and (18) determine

πki(t) and vki(t), respectively.

4. The allocation of labor satisfies (29), (30), (31), (32), and the aggregate labor market clearing

condition
∑N

k=1(LAk + LYk ) = 1.

5. The shares of sectoral knowledge stock {Mk(t)}k∈N satisfy (33) and (34).

6. The sectoral knowledge stocks {Ak(t)}k∈N satisfy (14).

7. The good market clears, that is C(t) = Y (t).

8. The growth rate of the sectoral knowledge stock gAk , total knowledge stock gA, and output gY

satisfy (15), (17) and (22), respectively.

3. Network growth

3.1. Growth in the innovation network

We would, now, like to characterize the relationship between the equilibrium growth rate of the

knowledge stock and the structure of the innovation network. We provide a sufficient statistics that

summarizes the impact of the innovation network on the knowledge accumulation. First, we can

rewrite equation (14) in a matrix form

Ȧ(t) = ΓA(t), (35)

where A(t) = {Ak(t)}i∈N denotes the vector of sectoral knowledge stocks, and Γ is the (N × N)

weighted and asymmetric adjacency matrix representative of the innovation network whose elements

are γkl := θksklL
A
k . Equation (35) highlights the intrinsic nature of interdependence of knowledge

accumulations across sectors. Specifically, the evolution of the knowledge stock in any sector depends

on the dynamics of their neighboring sectors, which themselves are dependent of the dynamics of

their own neighbors, and so forth.
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Proposition 1. Given that the spectral radius of Γ is non-zero, the equilibrium growth rate of the

total knowledge stock is

gA = λ∗, (36)

where λ∗ is the spectral radius of Γ. Further, the equilibrium sectoral knowledge shares M =

{Mi}i∈N satisfy

λ∗MT = ΓMT , (37)

whereMT = (M1, M2 · · · MN)T is the transpose ofM.

This proposition sheds light on how the structure of the innovation network shapes the econ-

omy. To understand the first part of this proposition, notice that (35) is a system of linear differential

equations. Given that the spectral radius (or dominant eigenvalue) of Γ is non-zero, this system of

equations admits a solution that expresses the knowledge stock in any sector as a function of a linear

combination of exponential functions with power terms equal to the eigenvalues of Γ. In the limit,

when t goes to infinity, the spectral radius dominates the process of knowledge accumulations, and,

thus, the growth rate converges to λ∗. This result offers an elegant and simple way of summariz-

ing the information required from the innovation network to determine the speed of the knowledge

accumulation.

The second part of this proposition reveals a profound connection between the relative size of a

sector and its position in the downstream innovation network. First, notice thatM = (M1, · · · MN),

where Mk := Ak/A, represents the generalized eigenvector centrality in the innovation network.6

The generalized eigenvector centrality measures the importance of a node in a network (see Jackson

(2008) for a definition and discussion). In particular, a node gets higher scores if it is connected

with other high score nodes. In our context, sectors consume knowledge from both their own sectors

and others to conduct innovation. The eigenvector centrality of a sector reflects its position in the

innovation network that determines the knowledge inflows to the sector, which then determines the

size of the sector.

3.2. Key sectors for growth

We have so far demonstrated how different sectors’ positions in the innovation network are related to

their relative sizes. We would, now, like to analyze how much a sector contributes to gA the growth

of the total knowledge stock. The way by which the contribution of a sector is measured here is by

6The usual eigenvector centrality is associated with the undirected adjacency network; the notion of generalized

eigenvector centrality here is adjusted for our weighted directed network.
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calculating the proportional reduction of the economic growth rate upon the removal of the sector.

This is similar to the key player concept (Zenou, 2016). Specifically, we re-calculate the growth

rate of the total knowledge stock holding everything constant except shutting down all channels of

knowledge spillovers associated with this sector, be it knowledge spillovers into or from this sector.

This involves changing the entries of the corresponding sector’s row and column in matrix Γ into

zeros. So, basically, the “key” sector is the sector whose removal leads to the highest reduction in

economic growth.

In an economy with intersectoral knowledge spillovers, a sector’s importance goes beyond its size.

Specifically, a sectors plays two distinct roles. On the one hand, a sector absorbs and use knowledge

from neighboring sectors for its own innovation, thereby serving as a knowledge consumer. As

shown in Proposition 1, the relative size of a sector is captured by the centrality of the sector in

the downstream innovation network. On the other hand, different sectors also produce knowledge

that is used for innovation by other sectors. In this sense, each sector is a knowledge producer and

its importance is captured by how much knowledge each sector produces and contributes to other

sectors’ innovations. These two functions together determine the total contribution of each sector to

aggregate growth, as stated in the following proposition.

Proposition 2. Define the importance of sector k as

Tk = −∆λ∗k
λ∗

, (38)

where ∆λ∗k is the change of the aggregate growth rate when sector k is removed. For large enough

N ,

Tk =
(λ∗ − γkk)VkMk

λ∗(VMT − VkMk)
, (39)

where V = {Vk}k∈N satisfies

λ∗V = VΓ, (40)

andM = {Mk}k∈N is defined by (37).

This proposition puts forward the fact that a sector’s position in both the upstream and the down-

stream innovation network matter for its contribution to the accumulation of the total knowledge

stock. From (40), V is the vector of eigenvector centralities of individual sectors in the upstream inno-

vation network. A key sector in the upstream innovation network is a sector that produces knowledge

to other key sectors. In other words, a key sector in the upstream innovation network is at the origin

of knowledge spillovers. We can compare this withM, which captures the importance (in terms of

centrality) of sectors in the downstream innovation network. As a knowledge consumer, sectors with
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higher centrality are the hub of knowledge application, and are more active in applying knowledge

from other sectors for innovations. These two forces jointly determine the contribution of individual

sectors to aggregate growth and determine which are the key sectors.

In summary, the upstream network for a sector k is the source of knowledge flowing into this

sector while the upstream centrality Vk of sector k is the contribution of this sector to its downstream

sectors; it is the left eigenvector centrality of the innovation network (see (40)). The former (upstream

network) refers to all sectors that produce knowledge spillovers to a given sector, while the latter

(upstream centrality) refers to the position of this sector in the network. Since what matters in the

upstream network is outward spillovers, the centrality of a sector in upstream network is defined as

its contribution to all other sectors. Similarly, the downstream network for a sector k is defined by all

sectors that receive knowledge spillovers from sector k while the downstream centrality Mk of sector

k is the contribution of this sector to its upstream sectors; it is the right eigenvector centrality of the

innovation network (see (37)). In this way, downstream centrality captures the role of a sector as a

knowledge hub. A central sector should be one that benefits from either lots of other sectors or a few

important sectors. Therefore, what matters is the inflow of knowledge to this sector.

To better understand this proposition, we can decompose (39) into two parts. The first part is given

by λ∗−γkk
λ∗

while, the second one, is VkMk

VMT−VkMk
. The first part reflects how intrasectoral knowledge

flows affect the sector’s contribution to aggregate growth, while the second part captures the impact

of the position of a sector in the upstream and the downstream innovation networks. Ceteris paribus,

sectors with higher overall centrality in the upstream and downstream innovation network are more

important contributors to the knowledge accumulation in the economy. On the other hand, for two

sectors with the same overall centrality, sectors that are more self-contained (higher γkk) are less

important in the network. This seems counter-intuitive. Shouldn’t a sector with higher within sector

knowledge flows also contributes more to the overall knowledge accumulation, holding everything

else equal? This intuition is not correct because the contribution of the intrasectoral knowledge

flows to growth has already been endogenized by the sector’s centrality. In fact, both the upstream

centrality and the downstream centrality are functions of γkk. Given a sector’s overall centrality,

higher γkk implies that a sector is more isolated in the network, thus contributes less to knowledge

accumulation.

It is worth noting that, if the innovation matrix Γ was symmetric, that is γkl = γlk, ∀k 6= l, then

the two types of centrality would be the same. In that case, each sector’s downstream centrality would

be equal to its upstream centrality. However, this is unlikely to be the case in general. Heterogeneity

of bilateral knowledge spillovers is frequently documented by the past studies.7

7For example, semiconductor is commonly thought as an important technology that underlines the development of
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3.3. Key technological linkages for growth

We, now, characterize the importance of a directed technological linkage.

Proposition 3. Define the importance of a directed technological linkage from sector k to l by

Tkl ≡ −
∆λ∗kl
λ∗

, (41)

where ∆λkl is the change in the aggregate growth rate when the edge kl is removed. For large enough

N ,

Tkl =
γklVkMl

λ∗VMT
(42)

The importance of a specific technological linkage depends on the positions of the source sec-

tor and the target sector associated with this linkage as well as the strength of this technological

linkage. Specifically, the contribution of a technological linkage to the knowledge accumulation is

determined by three factors: the source sector’s centrality in the upstream innovation network, Vk,

which determines the origin of knowledge outflows; the target sector’s centrality in the downstream

innovation network, Ml; the strength of knowledge spillovers from the source sector to the target sec-

tor, γkl ≡ θksklL
A
k . The technological linkages associated with either higher source sector centrality

or higher target sector centrality or stronger knowledge spillovers are the most important edges in the

innovation network, and affect the rate of knowledge accumulation the most.

Proposition 3 provides a way to think about individual sectors’ outward and inward knowledge

spillovers. Indeed, by using the fact that
∑N

l=1 γklMl = λ∗Mk, we can see that the contribution of

the inward knowledge spillovers to sector k to the overall knowledge accumulation is
∑

l 6=k Tkl =

(λ∗−γkk)VkMk

λ∗VMT . Note that we do not include sector k in the summation to highlight that this formula

captures the intersectoral spillovers. Similarly, combining the equivalence condition
∑N

l=1 Vlγlk =

λ∗Vk with equation (42) yields
∑

l 6=k Tlk = (λ∗−γkk)VkMk

λ∗VMT . This is the contribution of sector k’s total

outward knowledge spillovers to overall growth. Note that the total inward-knowledge spillovers to a

sector and the total outward-knowledge spillovers from the sector contribute the same to the growth

of the knowledge stock. It turns out that a sector’s upstream centrality and downstream centrality are

two sufficient statistics that summarize all the information required to determine a sector’s outward-

knowledge spillovers and inward-knowledge spillovers.

3.4. Changes in the network structure

We, now, explore how changes in the network structure affect the downstream and upstream

centrality of sectors. In particular, we investigate the impact of an increase in skl on the different cen-

information technology, and not vice versa.
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tralities. This can be interpreted as some random scientific discovery that increases the applicability

of knowledge in a sector to innovation in another sector.

Proposition 4. Given that η > 1 and 0 < σ < 1, an increase in the strength of knowledge spillovers

from sector l to sector k, that is s
′

kl > skl, leads to:

(a) M
′

k > Mk and M
′

k/Mk > M
′
m/Mm, ∀m 6= k;

(b) LA
′

k /L
A′
m < LAk /L

A
m, ∀m 6= k;

(c) V
′

l > Vl and V
′

l /Vl > V
′
m/Vm, ∀m 6= l;

(d) gA
′
> gA and LA

′
/LY

′
> LA/LY .

The first part of this proposition demonstrates heterogeneous changes of sectors’ positions in-

duced by a change of the network structure. Specifically, the strengthening of knowledge spillovers

from sector l to sector k makes the target sector a more central one in the downstream network. Re-

call that the downstream centrality of a sector is equal to its share of the total knowledge stock, the

higher centrality of sector k implies that this sector benefits from stronger knowledge spillovers.

Part (a) of this proposition highlights that growth in sector k’s share is most pronounced among

all sectors. At the same time, innovation labor reallocates relatively from sector k to other sectors,

as shown in part (b). This result is more subtle than it appears at first glance. The increase in the

knowledge spillovers from sector l to sector k leads to an increase in the growth rate of sector k,

which results in an increase in sector k’s knowledge stock share. A higher growth rate of sector

k promotes the competition among incumbents in this sector, thus reducing the lifetime profit of a

new patent. However, since sector k becomes more efficient in utilizing knowledge and conducting

innovation due to higher capacity in absorbing knowledge from sector l, the arrival rate of new patents

in sector k increases. The first effect dominates the second, and, therefore, the expected value of a

new patent in sector k decreases. Consequently, entrants have less incentive to innovate in this sector.

The free-entry condition compels entrepreneurs to innovate more intensively in other sectors. During

this process, sector k generates additional knowledge spillovers to its neighboring sectors, which spill

over knowledge to other sectors further away. In the new equilibrium, all sectors restore the same

growth rate.

Part (c) constitutes the upstream counterpart of part (a). Sector l, the source sector of skl, expe-

riences the largest percentage increase in upstream centrality, leading to the fact that the importance

of sector l as an origin of knowledge spillovers rises. The last part of Proposition 4 states that a

strengthening of knowledge spillovers from one sector to another increases the speed of knowledge
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accumulation, and reallocates labor from production to innovation. Indeed, a higher skl increases

the productivity of sector k in innovation, which, then, produces higher intersectoral knowledge

spillovers, and benefit all the other sectors in the network. Due to the higher productivity in in-

novation, to maintain the free-entry condition, labor has to flow from the production sector to the

innovation sector. This reduces the expected value of innovation and makes sure that people are

indifferent between working in the production sector and engaging in innovation.

3.5. Social optimal allocation of labor

The previous section characterizes the decentralized equilibrium of our multisectoral growth

model. As demonstrated by Romer (1990), the model presented here may feature too little hu-

man capital devoted to research due to the externality created from the knowledge spillovers and

the monopoly power in the intermediate good sector. In addition, the misallocation of human capital

across sectors generates another channel that makes the equilibrium allocation of labor not optimal.

Let us, now, determine the socially optimal allocation of labor.

The basic setup here is the same to what we had before, except for the fact that there is no private

market for the intermediate goods. The social planner maximizes the representative household’s

lifetime utility subject to the output production, the knowledge production function and the resource

constraint in the labor market. The planner’s problem can, thus, be written as:

max

∫ ∞
0

e−ρt logC(t)dt,

subject to

Y (t) =

 N∑
k=1

αk

(∫ Ak(t)

0

y
η−1
η

ki di

) η
η−1

σ−1
σ


σ
σ−1

,

Ȧ(t) = ΓA(t),

L =
N∑
k=1

(
LAk + LYk

)
,

C(t) = Y (t).

This optimization problem involves two steps. First, given the total sectoral labor input, the social

planner determines the optimal allocation of labor between production and innovation within a sector.

Second, the allocation of labor across sectors for innovation is determined. Given the results of the

first step, the division of labor for innovation across sectors thus reveals the allocation of production
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labor across sectors. Denote the downstream centrality and the upstream centrality of this problem

as M̃ = {M̃k}k∈N and Ṽ = {Ṽk}k∈N , respectively.

Proposition 5. For the social planner problem, the optimal labor allocation between innovation and

production within a sector satisfies

LAk
LYk

=
λ∗sGk

ρ(η − 1)αkQ
σ−1
σ

k

, ∀k ∈ N , (43)

where λ∗s = gA
′

is the new growth rate of the knowledge stock, Qk = Yk/Y is the equilibrium output

share of sector k, and Gk = ṼkM̃k

ṼM̃T
. The optimal labor allocation of innovation across sectors satisfies

LAk
LAl

=
ṼkM̃k

ṼlM̃l

, ∀k 6= l. (44)

The optimal labor allocation for innovation across sectors is such that the marginal contribution of

an additional unit of labor devoted to innovation to growth should be the same for all sectors. In this

economy, such an outcome is achieved when the ratio of the number of innovation workers between

two sectors is equal to the ratio of their corresponding centrality products. The ratio of the number

of innovation workers to the number of production workers for a given sector is positively related

with this sector’s relative positions in both the upstream technology network and the downstream

technology network, while inversely related with this sector’s output share.

The allocation of labor chosen by the social planner deviates from that in the decentralized econ-

omy. To see this, compare equations (43) and (29). In the decentralized equilibrium, the free-entry

condition forces the ratio of the number of innovation workers to the number of production workers

to be the same across sectors, as shown in (29). This is, in general, not the case for the socially opti-

mal outcome. The social planner weighs the cost of reducing one unit of production labor against the

benefit of increasing one unit of innovation labor. The optimum is achieved when the marginal cost

is equal to the marginal benefit. Under this situation, the innovation to production labor ratio is sector

dependent. Higher centrality or lower output share implies a higher innovation to production labor

ratio for a sector. Therefore, to achieve the first-best allocation of labor in a decentralized economy,

one needs to impose sector-specific subsidies (or taxes) that take into account the sector’s positions

in the innovation network.

4. Numerical examples

In this section, we implement some numerical exercises to illustrate the key properties of our

model. In order to focus on the impact of the different network structures on each sector’s centrality,
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we set all sector-specific parameters to be the same and equal to 1 in all sectors, that is, αk = 1 and

θk = 1, ∀k ∈ N . In addition, we assume that the intrasectoral elasticity of substitution to be equal

to η = 1.5, and the intersectoral elasticity of substitution to be equal to σ = 0.5. Finally, we set the

discount rate to be ρ = 0.1. For simplicity, we set skl = 1 if there exists knowledge spillovers from

sector l to sector k, and 0 otherwise, so that the network is unweighted and the adjacency matrix only

consists of 1 and 0.8 Consider the following two innovation networks Γ1 and Γ2:

5

1

2

4 3

Network 1 (Γ1)

5

1

2

4 3

Network 2 (Γ2)

FIGURE 1

Network 1 is an undirected symmetric network, where each sector is connected to two neighbor-

ing sectors. In this case, all sectors are equally important, and thus have the same downstream and

upstream centrality and, consequently, have the same contribution to the knowledge accumulation.

On the contrary, network 2 is directed, asymmetric and denser. The only difference with network 1 is

that there is a direct link from sector 3 to sector 1, thereby indicating upstream knowledge spillovers

for sector 1 and downstream knowledge spillovers for sector 3. This change of the network structure

substantially alters each sector’s positions in both the downstream and upstream network.

Table 1 displays the key outcome variables for each sector/node of these two networks. Compared

to network 1, when we add the link between sectors 3 and 1, that is s13 = 1, we see that, in the first

and second row of network 2, the target sector, sector 1, experiences an increase in the downstream

centrality Mk, from 0.2 to 0.2257, that is an increase of 11.38%, while all other sectors experience a

decrease in their downstream centrality Mk. However, sectors 2 and 5 experience a lower decrease

than sectors 3 and 4 because the former have a direct link to sector sector 1, the most central node in

the downstream network, while, the latter have only an indirect link (distance 2) to sector 1. Consider,

now the upstream network. Adding s13 = 1 leads to the largest increase in the upstream centrality Vk

for the source sector, sector 3. Now, sectors 1 ane 5 are the ones that experience the highest decrease

in centrality because they are the farthest away (distance 2) from sector 3. Notice that, in the upstream

8These choices of parameter value will not affect the qualitative results of our simulation.
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network, despite the fact that sectors 2 and 4 have symmetric positions, their upstream centrality is

different. This is because there are more innovation workers reallocated into sector 4 than sector 2

(see the fifth row of Table 1 ), which makes sector 4 a more important source of knowledge spillovers

than sector 2. Consequently, sector 4 displays higher upstream centrality than sector 2.

In row 3, we determine the key sector Tk of each network, as given by (39), in both the upstream

and downstream network. In network 2, we see that the key sector is sector 3. Even though it has the

lowest centrality Mk in the downstream network (but not a big difference compared to sectors 2, 4,

5), it is the key sector because it has the highest centrality Vk in the upstream network since sector 3

is the one that produces the highest knowledge to other central sectors. In other words, sector 3 is the

most important contributor to the knowledge accumulation of this economy.

TABLE 1

Network 1 Network 2
node 1 2 3 4 5 1 2 3 4 5

Mk 0.2 0.2 0.2 0.2 0.2 0.2257 0.1964 0.1907 0.1907 0.1964
Vk 0.2 0.2 0.2 0.2 0.2 0.1615 0.1946 0.2642 0.2109 0.1687
Tk 0.1667 0.1667 0.1667 0.1667 0.1667 0.1623 0.1621 0.2281 0.1703 0.1362
gA 0.3667 0.3667 0.3667 0.3667 0.3667 0.3886 0.3886 0.3886 0.3886 0.3886
LAk 0.1222 0.1222 0.1222 0.1222 0.1222 0.1084 0.1245 0.1283 0.1283 0.1245
LYk 0.0778 0.0778 0.0778 0.0778 0.0778 0.0681 0.0783 0.0806 0.0806 0.0783

Finally, when the network becomes denser (i.e., more connected), the spectral radius increases,

which implies a higher growth rate gA of knowledge stock (row 4). At the same time, labor is reallo-

cated from more central sectors in the downstream network to less central ones, and from production

sector to innovation sector (rows 5 and 6), as shown in Proposition 4.

5. Conclusion

This paper investigates a multi-sectoral endogenous growth model with both intrasectoral and inter-

sectoral knowledge spillovers. Individual firms specialize in a particular technology sector and apply

knowledge from both their own sector as well as other sectors to conduct innovation. Consequently,

the accumulation of knowledge in every sector is endogenously determined by pairwise knowledge

spillovers, which constitutes the innovation network in this paper. There is a deep connection be-

tween the structure of the innovation network and the behavior of the economy. In particular, we

show that the spectral radius of the innovation network determines the growth rate of the total knowl-

21



edge stock. Moreover, the positions of sectors in the innovation network determine their contribution

to the knowledge accumulation in the economy. Specifically, a sector is more important for knowl-

edge growth if it occupies more central positions in either the downstream innovation network or the

upstream innovation network. We also demonstrate that the importance of a directed edge in the inno-

vation network is determined by the source sector’s centrality in the upstream innovation network, the

target sector’s centrality in the downstream network and the strength of knowledge spillovers from

the source sector to the target sector. Finally, we show that the equilibrium is not socially optimal

and, in order to restore the first best, one needs to impose sector-specific subsidies (or taxes) that take

into account the sector’s centrality in the innovation network.
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APPENDIX

A. Proof of all results

Proof of Lemma 1. Suppose that, in equilibrium, sectors diverge in their growth rates. Let’s denote

the fastest growing sector by sectorm. For any other sector k that receives direct knowledge spillovers

from sector m, using (16), we have:

gAk (t) =
∑
l 6=m

γkl
Ml(t)

Mk(t)
+ γkm

Mm(t)

Mk(t)
, ∀γkm 6= 0.

If sector m grows faster than any other sector, then limt→∞Mm(t) → 1 and limt→∞Mk(t) → 0.

Thus, limt→∞Mm(t)/Mk(t) → ∞. However, this implies that gAk (t) explodes, and will eventually

exceed the growth rate of sector m, which contradicts our initial assumption. Therefore, these sectors

must grow at the same rate as sector m.

For any sector, say l, which does not directly receive knowledge spillovers from sector m, the

strongly connected innovation network γ guarantees the existence of a sequence of sectors such that

at least one of these sectors directly receives knowledge spillovers from sector m, and another sector

produces knowledge spillovers to sector l. Then, we can apply the same argument as above to show

that sector l will also grows at the same rate as sector m.

This completes the proof.

Proof of Lemma 2. Rewrite (29) as

LYk
LAk

=
ρ+ gA

gA
(η − 1), ∀k ∈ N .

Note that the above equality applies to all sectors. Therefore, we have:

LYk
LAk

=
LYl
LAl

,

which lead to (30).

Next, recall that Yk(t) =
[

αk
Pk(t)

]σ
Y (t). Combining this equation with (21) leads to:

[Ak(t)]
1

η−1LYk =

[
αk
Pk(t)

]σ
Y (t).

The labor ratio of sector k over sector l for production is, thus, given by:

LYk
LYl

=

(
αk
αl

)σ (
Ak(t)

Al(t)

) 1
1−η
[
Pl(t)

Pk(t)

]σ
.
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Notice that

Pk(t) =

(∫ Ak(t)

0

[pki(t)]
1−ηdi

) 1
1−η

=

(∫ Ak(t)

0

(
η

η − 1
w(t)

)1−η
) 1

1−η

=
η

η − 1
w(t)[Ak(t)]

1
1−η ,

which is (12). Therefore, Pl(t)/Pk(t) = [Al(t)/Ak(t)]
1

1−η . Substituting this ratio back to the labor-

ratio equation yields:

LYk
LYl

=

(
αk
αl

)σ (
Ak(t)

Al(t)

) 1−σ
1−η

=

(
αk
αl

)σ (
Ak(t)/A(t)

Al(t)/A(t)

) 1−σ
1−η

=

(
αk
αl

)σ (
Mk(t)

Ml(t)

) 1−σ
1−η

The last equality is equation (31) given in the lemma.

Now, if we use the fact that sectors grow at the same rate, we have

LAk (t)θk

N∑
m=1

skm
Mm(t)

Mk(t)
= LAl (t)θl

N∑
m=1

slm
Mm(t)

Ml(t)
.

By rearranging this equation, we obtain (32).

Now, we can use (30), (31) and (32), and fix l = 1 to obtain (33). The last equation (34) in

the lemma is true by construction. Equations (31) and (32) form a system of N equations with N

unknowns {Mk}k∈N . The solutions, in turn, determine the equilibrium level of labor division across

sectors for production and innovation.

Proof of Proposition 1. Recall that the accumulation of knowledge stocks across sectors are deter-

mined by (35), that is

Ȧ(t) = ΓA(t),

By the fundamental existence and uniqueness theorem of Picard and Lindelöf of differential equations

(also known as the CauchyLipschitz theorem; see e.g. Coddington and Levinson (1955)), which gives

a set of conditions under which an initial value problem has a unique solution, the above system

admits the following solution:

A(t) = A(0)eΓt, given A(0).

Given that the dominant eigenvalue (spectral radius) of the innovation network Γ is positive, we can

decompose eΓt as follows

eΓt = VeTtV−1,

where

T =


λ1 0 · · · 0

0 λ2 · · · 0
... . . . ...
0 0 · · · λN

 , V = (V1,V2, · · · ,VN)
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where {λk}k∈N are the eigenvalues of the matrix Γ, and {Vk}i∈N are the corresponding eigenvectors.

According to the Perron-Frobenius theorem, there is a dominant eigenvalue λ∗ such that λ∗ > λk,

∀k ∈ N . Therefore, we can express the knowledge stock of sector k at time t as

Ak(t) =
N∑
l=1

cle
λlt = eλ

∗t
N∑
l=1

cle
(λl−λ∗)t,

where cl is a function of elements from V, V−1 and A(0). As t → ∞, Ak(t) = eλ
∗t
∑N

l=1 cl. The

growth rate of sector k is thus equal to gAk = λ∗, ∀k ∈ N . Since all sectors grow at the same rate, so

does the total knowledge. This completes the first part of the proof.

To prove the second part of the proposition, we divide both sides of (35) by the total knowledge

stock A(t) and expand the system of equations to obtain: Ȧ1(t)/A(t)
...

ȦN(t)/A(t)

 =

γ11 · · · γ1N

... . . . ...
γN1 · · · γNN


M1(t)

...
MN(t)

 ,
which can be manipulated as follows

Ȧ1(t)
A1(t)

A1(t)
A(t)

...
ȦN (t)
AN (t)

AN (t)
A(t)

 =

γ11 · · · γ1N

... . . . ...
γN1 · · · γNN


M1(t)

...
MN(t)

 .
In the equilibrium, gA = gAk ≡ Ȧk(t)/Ai(t), ∀k. Therefore, the above system of equations can be

written as g
AM1

...
gAMN

 =

γ11 · · · γ1N

... . . . ...
γN1 · · · γNN


M1

...
MN

 .
This can be expressed in a compact form as

λ∗M = ΓM.

This completes the proof.

Proof of Proposition 2 . The proof of this proposition and that of Proposition 3 is based on Restrepo

et al. (2006). Assume that, following the removal of a sector k, the perturbation of the innovation

matrix Γ, the associated dominant eigenvalue λ∗, and the right eigenvector centralityM are denoted

by ∆Γ, ∆λ∗ and ∆M, respectively. Instead of (37), we have:

(Γ + ∆Γ)(MT + ∆MT ) = (λ∗ + ∆λ∗)(MT + ∆MT ).
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where

∆Γ =



0 · · · ∆γ1k · · · 0
... . . . ... . . . ...

∆γk1 · · · ∆γkk · · · ∆γkN
... . . . ... . . . ...
0 · · · ∆γN1 · · · 0


∆γkl = −γkl , l 6= k

∆γlk = −γlk , l 6= k

∆γkk = −γkk

and

∆MT =
[
∆M1 · · · ∆Mi · · · ∆MN

]T
,

where ∆Mk = −Mk, and, for large enough N , ∆Mk → 0.

If we left multiply the above equation by V , we obtain:

V(Γ + ∆Γ)(MT + ∆MT ) = V(λ+ ∆λ∗)(MT + ∆MT ).

We can now expand this equation and rearrange terms to obtain:

V(ΓMT − λ∗MT ) + (VΓ− Vλ∗)∆MT + V∆ΓMT + V∆Γ∆MT = VMT∆λ∗ + V∆MT∆λ∗.

Note that, by definition, ΓMT − λ∗MT = 0 and VΓ− Vλ∗ = 0. Thus, this equation reduces to:

V∆ΓMT + V∆Γ∆MT = (VMT + V∆MT )∆λ∗

With some algebra, it can be shown that

V∆ΓMT = −Vk
N∑
l=1

γklMl −Mk

N∑
l=1

γlkVl + γkkMkVk,

= −2λ∗VkMk + γkkVkMk,

and, for large enough N ,

V∆Γ∆MT ≈ λ∗VkMk.

By combining the above two equations, we obtain:

V∆ΓMT + V∆Γ∆MT = −(λ∗ − γkk)VkMk.

Lastly, we have:

VMT + V∆MT ≈ VMT − VkMk.

Therefore, we can express the importance of a sector k as

Tk ≡ −
∆λ∗k
λ∗

=
(λ∗ − γkk)VkMk

λ∗(VMT − VkMk)
, .

which is equation (39) in the theorem.
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Proof of Proposition 3. Following the proof of Proposition 2 , we define the perturbation of the

innovation matrix Γ, the associated dominant eigenvalue λ∗, and the right eigenvector centralityM,

upon the removal of an edge kl, as ∆Γ, ∆λ∗kl and ∆M, respectively. We have

(Γ + ∆Γ)(MT + ∆MT ) = (λ∗ + ∆λ∗kl)(MT + ∆MT ),

where [∆Γ]ss′ = −γkl, if s = k and s′ = l, and 0 otherwise. For large enough N , ∆MT captures the

small perturbation of the right eigenvector centrality so that ∆Mk → 0. Left multiply this equation

and after some algebra, we obtain:

∆λ∗kl = V∆ΓMT/VMT .

It can be shown that

V∆ΓMT = −γklVkMl,

which can be substituted back to the previous equation to get

Tkl ≡ −
∆λ∗kl
λ∗

=
γklVkMl

λ∗VTM
.

This completes the proof.

Proof of Proposition 4.

Part (a): We use proof by contradiction to prove this part. The share of each sector’s knowledge stock

{Mm}m∈N is a function of skl, thus a change in skl induces changes of {Mm}m∈N . This implies that

∃ O ⊂ N such that M ′
o > Mo ∀o ∈ O, since

∑N
m=1Mm =

∑N
m=1 M

′
m = 1. Let õ ∈ O be such that

M
′
õ/Mõ ≥ M

′
m/Mm ∀m ∈ N . Note that the inequality holds for at least one m. Similarly, ∃h ⊂ N

such that M ′

h < Mh. Let h̃ ∈ H be such that M ′

h̃
/Mh̃ ≤ M

′
m/Mm ∀m ∈ N . Again the inequality

holds for at least one m.

Suppose that k 6= õ. Recall that LY
h̃
/LYõ = (αh̃/αõ)

σ(Mh̃/Mõ)
1−σ
1−η , since M ′

h̃
< Mh̃, and M ′

õ >

Mõ, given M ′

h̃
, Mh̃, M ′

õ, Mõ ∈ (0, 1), we have M ′

h̃
/M

′
õ < Mk/Mõ. Since 0 < σ < 1, η > 1, the

above result implies that (M
′

h̃
/M

′
õ)

1−σ
1−η > (Mh̃/Mõ)

1−σ
1−η , which then implies that LY ′

h̃
/LY

′
õ > LY

h̃
/LYõ .

Now, recall that in the new equilibrium gA
′

h̃
= gA

′
õ , which implies that

LA
′

h̃

LA
′

õ

=

∑N
m=1 θõsõmM

′
m/M

′
õ∑N

m=1 θh̃sh̃mM
′
m/M

′

h̃

.

Since M ′
õ/Mõ ≥M

′
m/Mm ∀m ∈ N , and the inequality holds for at least one m, we have M ′

m/M
′
õ ≤

Mm/Mo ∀m ∈ N , which implies that

N∑
m=1

θõsõmM
′

m/M
′

õ <

N∑
m=1

θõsõmMm/Mõ.
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Similarly, we can infer from M
′

h̃
/Mh̃ ≤M

′
m/Mm ∀m ∈ N that

N∑
m=1

θh̃sh̃mM
′

m/M
′

h̃
>

N∑
m=1

θh̃sh̃mMm/Mh̃.

Combining the above two results leads to LA
′

h̃
/LA

′
õ < LA

h̃
/LAõ , which implies that LA′

h̃
/LA

′
õ <

LA
h̃
/LAõ = LY

h̃
/LYõ < LY

′

h̃
/LY

′
õ .A contradiction with the free entry condition that states thatLA′

h̃
/LA

′
õ =

LY
′

h̃
/LY

′
õ .

To see why it can only be the case that k = õ, note that

LA
′

h̃

LA
′

k

=

∑
m 6=l θkskmM

′
m/M

′

k + θks
′

klM
′

l /M
′

k∑N
m=1 θh̃sh̃mM

′
m/M

′

h̃

.

To ensure that LA′
h̃
/LA

′
õ > LA

h̃
/LAõ , we require that

N∑
m=1

θõsõmM
′

m/M
′

õ >
N∑
m=1

θõsõmMm/Mõ.

The only way this can happen is that the increase in skl dominates the decrease in Mm/Mk ∀m 6= k,

so that overall ∑
m6=l

θkskmM
′

m/M
′

k + θks
′

klM
′

l /M
′

k >
N∑
m=1

θksklMl/Mk.

Part (b): From part (a), we know that when s
′

kl > skl, M
′

k/Mk > M
′
m/Mm ∀m 6= k. By the

free-entry conditions in the original and the new equilibrium, we have:

LA
′

k

LA′m
=
LY

′

k

LY ′m
=

(
αk
αm

)σ (
M
′

k

M ′
m

) 1−σ
1−η

<

(
αk
αm

)σ (
Mk

Mm

) 1−σ
1−η

=
LYk
LYm

=
LAk
LAm

, ∀m 6= k

where the inequality follows from M
′

k > Mk and M ′

l < Ml. This finishes the proof of this part.

Part (c): Let h̃ ∈ H be such that M ′

h̃
/Mh̃ ≤ M

′
m/Mm, ∀m ∈ N . Again the inequality holds for at

least one m. Then, we have:

gA
h̃

=
N∑
m=1

θh̃L
A
h̃
sh̃mMm/Mh̃.

Let ō be such that V ′ō/Vō ≥ V
′
m/Vm, ∀m ∈ N , with the inequality holds for at least one m. Suppose

that ō 6= l, then:

gAõ =
N∑
m=1

θmsmōL
A
mVm/Vō

In equilibrium, we have gA
h̃

= gAō , which implies that

N∑
m=1

θh̃L
A
h̃
sh̃mMm/Mh̃ =

N∑
m=1

θmsmōL
A
mVm/Vō.
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This equation can be rearranged into

N∑
m=1

sh̃m
Mm

Mh̃

=
N∑
m=1

θm
θh̃
smō

LAm
LA
h̃

Vm
Vō
.

Since M ′

h̃
/Mh̃ ≤M

′
m/Mm, ∀m ∈ N with the inequality holds for at least one m. We have:

N∑
m=1

sh̃m
M
′
m

M
′

h̃

>
N∑
m=1

sh̃m
Mm

Mh̃

Since V ′ō/Vō ≥ V
′
m/Vm ∀m ∈ N with the inequality holds for at least one m, we have V ′m/V

′
ō ≤

Vm/Vō. From part (b), we have shown that LA′m /L
A′

h̃
≤ LAm/Lh̃. By combining this with the previous

result, we obtain:
N∑
m=1

θm
θh̃
smō

LAm
LA
h̃

Vm
Vō

>

N∑
m=1

θm
θh̃
smō

LA
′

m

LA
′

h̃

V
′
m

V
′
ō

.

The above results imply that

N∑
m=1

sh̃m
M
′
m

M
′

h̃

>
N∑
m=1

θm
θh̃
smō

LA
′

m

LA
′

h̃

V
′
m

V
′
ō

.

Note that in the new equilibrium, gA′
h̃

= gA
′

ō , which implies that

N∑
m=1

sh̃m
M
′
m

M
′

h̃

=
N∑
m=1

θm
θh̃
smō

LA
′

m

lA
′

h̃

V
′
m

V
′
ō

,

a contradiction with the previous result.

Part (d): Suppose that gA′ < gA. Since we have shown in part (a) that M ′

k > Mk and M ′

l < Ml,

∃D ⊂ N such that M ′

d < Md, ∀d ∈ D. Let d̃ ∈ D be such that∑N
m=1 sd̃mM

′
m/M

′

d̃∑N
m=1 sd̃mMm/Md̃

≥
∑N

m=1 slmM
′
m/M

′

l∑N
m=1 slmMm/Ml

,∀l ∈ N .

Note that gA′
d̃

= gA
′

m and gA
d̃

= gAm ∀m ∈ N , we have LA′
d̃
/LA

d̃
≤ LA

′
m /L

A
m ∀l ∈ N . From the proof in

part (a), we know thatM ′

k > Mk, and since d̃ ∈ D,M ′

d̃
< Md̃, which implies thatM ′

d̃
/Md̃ < M

′

k/Mk,

which can be rearranged to get M ′

d̃
/M

′

k < Md̃/Mk.

Recall that
LA
′

d̃

LA
′

k

=

(
αd̃
αk

)σ(M ′

d̃

M
′
k

) 1−σ
1−η

>

(
αd̃
αk

)σ (
Md̃

Mk

) 1−σ
1−η

=
LA
d̃

LAk
.

This result contradicts the previous result that LA′
d̃
/LA

d̃
≤ LA

′
m /L

A
m, ∀l ∈ N . Therefore, gA′ > gA.

Next, we show that LA′/LY ′ > LA/LY . From the free entry condition, we have:

1

η − 1

LYk
LAk

gA

ρ+ gA
= 1, ∀k ∈ N .
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It is easy to see that LYk /L
A
k is constant for all sectors, which implies that LY /LA should be constant

as well and should be inversely related to gA. Since we have shown that gA′ > gA, LY ′k /L
A′

k < LYk /L
A
k

follows.

Proof of Proposition 5 . The social planner aims to maximize the representative household’s lifetime

utility along the balanced growth path

U =

∫ ∞
0

e−ρt logC(t)dt

=

∫ ∞
0

e−ρt log
(
C(0)eg

C′ t
)
dt

=

∫ ∞
0

e−ρt
(

logC(0) + gC
′
t
)
dt

=

∫ ∞
0

e−ρt
(

logC(0) +
gA
′

η − 1
t

)
dt

=
logC(0)

ρ
+

gA
′

ρ2(η − 1)
.

The second equality follows the fact that consumption grows at the constant rate gC′ in equilibrium,

and the forth equality follows from (22) and (24). In addition,

logC(0) = log Y (0)

=
σ

σ − 1
log

(
N∑
k=1

αkYk(0)
σ−1
σ

)

=
σ

σ − 1
log

[
N∑
k=1

αk

(
Ak(0)

1
η−1LYk

)σ−1
σ

]
The social planner maximizes the representative household’s lifetime utility through two steps. First,

for a given level of sectoral labor Lk = LAk + LYk , the social planner equals the marginal utility of an

additional unit of production labor and the marginal utility of an additional unit of innovation labor

as follows
∂ logC(0)

∂LYk
=

1

ρ(η − 1)

∂gA
′

∂LAk
.

Use the fact that C(0) = Y (0), we have

∂ logC(0)

∂LYk
=

αk

(
Ak(0)

1
η−1LYk

)σ−1
σ

∑N
k=1 αk

(
Ak(0)

1
η−1LYk

)σ−1
σ
LYk

=
αkYk(0)

σ−1
σ

Y (0)
σ−1
σ

1

LYk

=
αkQ

σ−1
σ

k

LYk
.
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The last equality uses the fact that along the balanced growth path, the sectoral output share is con-

stant, i.e. Qk(0) = Qk.

Next, denote the new innovation matrix as Γ̃. Then, recall that

Γ̃M̃T = λ∗sM̃T ,

where λ∗s = gA
′ . Take the partial derivative with respect to LAk from both sides of the above equation

to obtain:
∂Γ̃

∂LAk
M̃T + Γ̃

∂M̃T

∂LAk
=

∂λ∗s
∂LAk
M̃T + λ∗s

∂M̃T

∂LAk
,

where

∂Γ̃

∂LAk
=



0 · · · 0
... · · · ...

θksk1 · · · θkskN

0 · · · 0
... · · · ...
0 · · · 0


.

Left multiply both sides of the above equation by Ṽ to get

Ṽ
∂Γ̃

∂LAk
M̃T + Ṽ Γ̃

∂M̃T

∂LAk
=

∂λ∗s
∂LAk

Ṽ M̃T + λ∗sṼ
∂M̃T

∂LAk

By simplifying and rearranging, we obtain:

∂λ∗s
∂LAk

=
Ṽ ∂Γ̃
∂LAk
M̃T

ṼM̃T

=
Ṽk
∑N

l=1 θksklM̃l

ṼM̃T

=
Ṽk
∑N

l=1 γ̃klM̃l/L
A
k

ṼM̃T

=
λ∗sṼkM̃k

VMTLAk
.

Therefore, we have
αkQ

σ−1
σ

k

LYk
=

1

ρ(η − 1)

λ∗sṼkM̃k

VMTLAk
.

By rearranging the above equation, we obtain (43).

The social planner then decides the optimal allocation of innovation workers across sectors to

ensure that the marginal contribution of one additional unit of innovation labor to growth is the same

across sectors. This requires that
∂λ∗s
∂LAk

=
∂λ∗s
∂LAl

, ∀k 6= l.
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By plugging in what we have derived before and rearranging, we obtain:

LAk
LAl

=
ṼkM̃k

ṼlM̃l

, ∀k 6= l,

which is (44).
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