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1 Introduction

Wealth in non-renewable natural resources (such as solid minerals and oil & gas) does not
always lead to sustained economic development. This observation has long inspired a debate
on the existence of ‘Dutch disease’, in which natural resources crowd out the traded sector and
reduce growth (The Economist, 1977; van Wijnbergen, 1984), and has led to warnings of a
seemingly incurable ‘resource curse’ (Gelb, 1988; Sachs and Warner, 2001). This literature has
recently moved away from cross-country studies in which endogeneity issues are harder to address
and started to exploit within-country variation to minimize the influence of confounding factors.*
Using detailed firm- and household-level data for the US, several studies find contrasting positive
effects of local natural resource booms, or at least no evidence for crowding out of manufacturing
firms (Black et al., 2005; Michaels, 2011; Allcott and Keniston, 2018). For developing countries,
the evidence is more mixed and ranges from an increase in real income for households after a large
open-pit gold mine in Peru increased local procurement (Aragén and Rud, 2013), to higher GDP
per capita in Brazil (Cavalcanti et al., 2019), to more conflict in Colombia (Dube and Vargas,
2013), localized negative traded-sector employment effects in emerging markets (De Haas and
Poelhekke, 2019), and an increase in municipal government spending in Brazil that does not
translate into better public goods and services (Caselli and Michaels, 2013).

The literature has typically exploited geographic variation in natural resource wealth and time
variation in world prices or giant oil discoveries, but has not distinguished explicitly between
different resources or extraction techniques. We show that resource extraction techniques vary
significantly in their labor intensity, and that this source of heterogeneity can reconcile positive
and negative outcomes found in the literature. We analyze the local effect of a booming natural
resource sector within Indonesia, which is both a major producer of a variety of natural resources
that are scattered across the country, and has a large and exporting manufacturing sector.

Combining detailed manufacturing plant-level panel data with deposit-level data, we find that
in districts where mining of minerals is more capital intensive, mining booms cause an increase
in plant-level employment. Specifically, employment rises by 2.6% in a district with average

mining intensity when local mineral prices increase by 100 log points and mining is relatively

L As surveyed in Van der Ploeg (2011) and Van der Ploeg and Poelhekke (2017).



capital intensive. In contrast, mining booms in districts where mining is labor intensive reduce
manufacturing employment by 1.2%. Further unpacking the effects, we show that the negative
employment effect is driven by producers of more heavily traded manufactured goods, whereas
producers of relatively less-traded manufactured goods can avoid a contraction of employment.
The key mechanism, which we verify empirically, is that when the mining sector is booming, it
only exerts strong upward pressure on local wages if its mining method is labor intensive. This
makes local producers of heavily-traded goods less competitive during labor-intensive mining
booms, whereas less-traded goods producers are able to pass on higher wage costs to consumers
by raising prices. From the perspective of manufacturing plants, the local extraction technique
can thus determine whether mining booms are good or bad.

Using novel well-level data, we control for oil & gas booms and show that these do not lead
to a rise in manufacturing wages or a reduction in employment, which is consistent with oil &
gas production being mostly offshore and highly capital intensive and specialized. Heterogeneity
in extraction techniques thus helps to explain why many studies that have focused on capital-
intensive natural resource extraction such as open-pit mining or oil & gas production do not
find evidence for local crowding-out effects in the manufacturing sector during natural resource
booms. In terms of magnitude, the effect of mining booms on local manufacturing in Indonesia is
much larger than the effect of oil & gas booms in the US (Allcott and Keniston, 2018). However,
we also do not find that the reallocation between sectors and reduction in activity by more-
traded goods producers leads to a reduction in total factor productivity. This speaks against
foregone ‘learning by doing’ productivity spillovers as described theoretically in Van Wijnbergen
(1984) and Arrow (1962) and confirmed empirically in other contexts by Ellison et al. (2010),
Greenstone et al. (2010) and Kline and Moretti (2014). Therefore, our findings do not provide
empirical support for Dutch disease effects in the narrow sense, in which foregone productivity
gains in non-resource tradeable goods sectors slow down overall economic growth.

Our identification strategy is to correlate exogenous shocks to the value of local natural re-
sources in Indonesia that had been discovered by the start of our sample period with local
manufacturing outcomes. Informed by the literature that has questioned the exogeneity of ex-
ploration and discoveries (Bohn and Deacon, 2000; Cotet and Tsui, 2013; Arezki et al., 2019;

Cust and Harding, 2020), we use exogenous world prices that change the value of existing and



pre-determined deposits. Based on deposit and well-level data, we compute measures of initial
endowments of minerals and oil & gas, respectively, at the district level. We interact these with
subsequent exogenous world price shocks and, in the case of mining, an indicator that captures
the labor intensity of local extraction methods. The mining engineering literature posits that
the locally applied extraction technique is determined by the exogenous geological shape of the
deposit and not by the deposits’ contained minerals or local labor market characteristics (see e.g.
Hartman and Mutmansky, 2002). Using three separate databases, we empirically establish that
different mining techniques (such as underground and open-pit mining) translate into very differ-
ent degrees of labor intensity. In addition, our empirical specification controls for any remaining
impact of local labor market characteristics and accounts for differential trends in manufacturing
across individual districts. Our manufacturing data contains annual plant-specific information
on all Indonesian manufacturing plants with 20 or more employees between 1990 and 2009. This
allows us to control for plant fixed effects, which avoids selection effects and thereby improves
identification. Furthermore, the richness of the data allows us to distinguish manufacturers of
relatively more-traded and relatively less-traded goods and thus analyze whether each suffer less
or benefit more from mining.?

We contribute to a growing literature that analyzes the impact of natural resources in within-
country settings. Data on firms and counties in the US have shown that coal, oil, and gas booms,
of which the recent boom was driven by novel shale extraction techniques, have had either small
or no negative effects on manufacturing.®> Black et al. (2005) find positive employment effects
on non-tradeable sectors during the 1970s coal boom in their analysis of local labor markets in
Kentucky, Ohio, Pennsylvania, and West Virginia, but no significant effects on the manufacturing
sector. A long-run study of the southern US by Michaels (2011) finds that as population increased
in booming regions also local public good provision increased, with positive effects on employment
in agriculture and manufacturing. Using five-yearly data, Allcott and Keniston (2018) show that
in a US-county with an additional oil & gas endowment of US$10 million per square mile, a
natural resource boom that raises national oil & gas employment by 100 log points leads to an

increase in population by 1.2%, employment by 2.8% and earnings per worker by 1.8%. The

Since the data does not contain plants with less than 20 employees, we are unable to study entry and exit.
Although more aggregate county- and state-level data suggest more evidence for negative effects, c.f. James
and Aadland (2011).
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US manufacturing sector is also procyclical with oil & gas booms in resource-abundant counties,
although there is some limited evidence that highly-traded goods producers contract. In terms
of income per capita, however, busts can more than reverse the effects of booms (Jacobsen and
Parker, 2016).

We add to this literature by distinguishing between different extraction methods used to
take natural resources out of the ground and the relative labor intensity that this implies. By
analysing a developing country with different degrees of sectoral and regional labor mobility
compared to the US, we place the results in the literature into a broader perspective. Since
we find that labor mobility across districts in Indonesia is low and because the country’s less
specialized manufacturing sector likely results in more sectoral labor mobility, there may be
more scope for crowding out of manufacturing. Moreover, in a developing country potentially
less firms are up- and downstream to the natural resource sector than in the US, where “linkages
and complementarities to the natural resource sector were vital in the broader story of American
economic success” (Wright and Czelusta, 2007).

We also contribute to another literature that has focused more on political economy and
household outcomes. Aragén and Rud (2013) analyze the expansion of a large gold mine in Peru,
and find that real income of households living within 100 kilometers of the mine only increased
after a policy change that required local procurement of services. Dube and Vargas (2013) also
study heterogeneity in the labor intensity of commodity extraction, but in a different context:
they find that an exogenous increase in the price of coffee (which is labor intensive in production)
decreases armed conflict in Colombia because it raises the opportunity cost of fighting, while an
increase in the price of capital-intensive oil production increases conflict, through increasing the
gains from appropriation of oil income. The latter is consistent with a model of social conflict by
Dal B6 and Dal B6 (2011). Caselli and Michaels (2013) show that corruption and embezzlement
drive a wedge between the amount of fiscal transfers or royalty payments derived from offshore oil
production and municipal spending in Brazil. This may reflect the fact that giant oil discoveries
are followed by reductions in democracy scores (Tsui, 2011).* Finally, we also add to a literature
that has examined a range of other related outcomes during natural resource booms, such as

increased wage, royalty and business income after new hydrofracturing oil & gas production

4 Strong institutions can also prevent negative outcomes after discovery (Mehlum et al., 2006).



(Feyrer et al., 2017), property prices that increase due to royalty payments or decrease due to
environmental risk (Muehlenbachs et al., 2015), decreased entrepreneurship in coal and heavy
industry-intensive cities (Glaeser et al., 2015), increased income leading to more health care
spending (Acemoglu et al., 2013), and increased crime rates (James and Smith, 2017).

The remainder of our paper is structured as follows. In Section 2 we develop our theoretical
hypotheses, while Section 3 provides background information for Indonesia and discusses data
sources and the construction of key variables. Section 4 presents the empirical strategy, Section

5 shows the results as well as a battery of robustness checks, and Section 6 concludes.

2 Theoretical effects of resource booms on manufacturing
employment

We are interested in two sets of hypotheses. The first are inspired by the mining engineering
literature which states that underground mining methods are most labor intensive. If this is
indeed the case then we should find that underground mines employ more workers than open-
pit or mixed-method mines of comparable size, and that mines with open-pit methods employ
the least number of workers. The second set of hypotheses derives from the seminal models of
Dutch disease at the national level by Corden and Neary (1982) and Van Wijnbergen (1984),
which have recently been adapted to a multiregion setting by Allcott and Keniston (2018). We
introduce varying degrees of labor intensity of mining to these models, to build intuition on how
mining booms can crowd out manufacturing employment depending on the labor intensity of
extraction techniques. Moreover, we treat manufacturing as not altogether traded, but allow for
different degrees of de facto tradedness of goods produced. While several studies have developed
quantitative spatial equilibrium models that analyze the welfare consequences of regional shocks
(Redding, 2016; Redding and Rossi-Hansberg, 2017; Caliendo et al., 2017; Faber and Gaubert,
2019; Fajgelbaum and Gaubert, 2020; Burstein et al., 2020), a full welfare analysis of the natural
resource sector would ideally also take resource-specific factors into account. These include policy
at the regional and national level that may affect exploration effort leading to more discoveries,

industrial policy of the development of up- and downstream industries, and macroeconomic



management of resource wealth at the national level such as fiscal rules, sovereign wealth funds,
and redistribution.

We start with a multiregion economy in which labor is (imperfectly) mobile across regions. In
some of these regions natural resource deposits occur, which are mined with varying techniques
that imply different degrees of labor intensity. We assume that the mining sector exports all
mined minerals and thus abstract from downstream effects, which is realistic in a developing
country setting. Mining is price-elastic and expands when exogenous world mineral prices in-
crease, which we call a mining boom.? Other sectors in the economy are composed of tradeable
and non-tradeable sectors, which each are impacted differently by the mining boom and respond
in different ways, depending on whether the boom takes place in a region with labor- or capital-
intensive mining. As is typically assumed, prices of tradeable goods are set on world markets
while non-tradeable prices are endogenous and vary by region.

In this setting, we expect an exogenous positive shock to global mineral prices to have the

following effects and testable hypotheses:

(i) First-order effects on the local economy

First, in regions with labor-intensive mining a mineral price increase results in stronger demand
for labor than in regions where mining is capital intensive, driving up mining wages.® The
upward pressure on mining wages is also stronger when labor supply is more inelastic across
regions, limiting labor being supplied through migration. The more inelastic is labor supply
across regions and the more workers are substitutable across sectors, sectors rather than regions
compete for labor with the mining sector. A mining boom can thus result in reallocation of
workers from other sectors to mining, and lead to upward pressure on other sectors’ wages as
well.”

Second, the mining boom results in a boost to local aggregate demand: to the extent that
higher wages are not offset by higher prices, it implies more local spending power of workers and

a larger local population, unless labor supply is perfectly inelastic across regions; and taxable

5 We establish in Online Appendix Table OA2 that this is indeed the case, using the production history of
mines in Indonesia.
We verify this empirically in Online Appendix Table OA2 using district-specific data.
Corden and Neary (1982) refer to this mechanism as the ‘resource movement effect’, and assume that workers
are perfectly substitutable across sectors, resulting in one uniform wage rate.



mining rents can boost local demand if the national government partly redistributes these to
producing regions.® The local aggregate wage-income effect is stronger in labor-intensive mining
regions, while the local aggregate demand effect of redistribution does not depend on mining

extraction techniques.”

The higher the marginal propensity to consume non-tradeables, the
more the boost to demand benefits sectors that produce non-tradeables, with the remainder
being spent on tradeables supplied locally and by producers in other regions.

Third, the mining boom creates demand for goods supplied by upstream sectors, thereby
potentially benefiting selected manufacturing industries.

A potential fourth effect is increased public spending at the local level following the redistri-
bution of nationally taxed mining rents to producing regions. This can have cost-saving effects

for other sectors, for example when these are spent on public goods such as infrastructure, as in

Michaels (2011). This channel does not depend on the labor intensity of mining.

(ii) A boost to the non-tradeable sector

A mining boom benefits local non-tradeable producers through an increase in local aggre-
gate demand, assuming that the marginal propensity to consume non-tradeables is sufficiently
positive. The spending effect occurs in all types of mining regions, but is stronger for the non-
tradeable sector if the boom occurs in a region with labor-intensive mining, because then more
miners will earn higher wages. However, in that case the non-tradeable sector also suffers more
from competition for workers, if they are at least to some degree substitutable across sectors. To
supply the increase in local demand, non-tradeable producers will have to raise wages to retain
workers. Since they sell locally to workers with higher wages, they can endogenously increase
prices to pass on the higher wage costs (a real appreciation). Non-tradeable producers are there-
fore always able to raise employment to meet the increase in demand, while remaining profitable,
as in Allcott and Keniston (2018). If the extra spending effect due to higher wages is stronger
than the extra competition for labor effect, then non-tradeable employment rises more during

labor-intensive than during capital-intensive mining booms.

Corden and Neary (1982) refer to this mechanism as the ‘spending effect’.

9 Assuming that rents per unit of output are equal between labor- and capital-intensive mining operations.



(iii) Crowding out of the tradeable sector

The tradeable goods sector is less likely to benefit from an increase in local aggregate demand,
because demand for tradeables can be supplied through imports as well. In a boom to labor-
intensive mining, tradeables producers also suffer from competition for workers, unless their
workers are less substitutable with other sectors such as through a higher skill intensity. To
retain workers, they would also have to pay higher wages. However, it is not profitable for them
to do so because they are price takers and thus cannot pass on wage costs. Instead, they are forced
to shed labor, and are thus crowded out by the labor-intensive mining boom. Competition for
labor is less strong in regions with capital-intensive mining, where the net effect of a boom may
be an expansion of tradeable employment. For example, if infrastructure spending is important
for tradeable sectors, then redistributive government spending on infrastructure can benefit the

tradeable sector.

(iv) Loss of productivity
If the positive productivity effects of learning by doing are concentrated in the tradeable
sector, then crowding out of the tradeable sector may also lead to an economy-wide loss in total

factor productivity over time.

(v) Regional spillovers

In a multi-region setting, the effects of the local mining boom may spill over into other regions.
The more elastic is labor supply across regions, the more local labor demand in mining can be
supplied by labor from other regions. This creates excess labor demand and also drives up
wages in those regions. Part of the increase in local aggregate demand in mining regions may be
supplied by tradeable sectors located in other regions. Finally, royalties may be redistributed to
non-producing regions such that higher resource rents can boost demand and public spending in

other regions as well.

Summarizing the effects on the tradeable sector, an exogenous increase in the returns to
labor-intensive mining puts upward pressure on wages, leading traded-goods sectors to reduce
employment. However, the wage effects are muted in capital-intensive mining regions where

employment can grow through spending effects. Not taking into account the heterogeneity in



the labor intensity of natural resource extraction methods masks these countervailing effects and

may lead to spurious conclusions at the aggregate level.

3 Data

3.1 Indonesian context

Indonesia ranks fourth in the world by population size, and is both a major producer of
minerals and a significant producer and exporter of manufactured goods. Therefore, the country
provides an ideal testing ground. The (non-mining) manufacturing sector (ISIC Revision 3.1,
divisions 15 to 37) represented 23% of GDP on average between 1993 and 2009. In 2009, Indonesia
exported 14% of manufacturing output, consisting mostly of food products and beverages, wood
products, rubber products, textiles, communication equipment, and garments. These sectors
alone employed 54% of manufacturing workers. Indonesia also exports a wide variety of raw
minerals, including coal, tin, nickel, gold, and bauxite. The mining sector accounted for 4.54% of
the country’s GDP in 2009, and employed up to 31% of the total workforce in mining districts.!°
The deposits occur both near the surface and deep underground, are relatively scattered across
the country, and are found on all major islands — including the populous islands of Java and
Sumatra as shown by Figure 1 in the Online Appendix. The government of Indonesia taxes
underground mining and other types of mining virtually equally: mineral producers have to pay
the same production royalty rate (which varies between 3 and 7%, depending on the mineral)

L' These royalties are partially redistributed to

irrespective of the applied mining technique.
producing districts, such that a mining boom has a large potential to spur a local spending
effect. After Indonesia’s ‘big bang’ decentralization of 1999 non-producing districts also started

to share in royalties, but 64% of land rents and 32% of royalties still go to producing districts as

10 Source: Indonesian Database for Policy and Economic Research (INDO DAPOER) for GDP; Indonesia’s
national labor force survey (SAKERNAS) for employment. See the Online Data Appendix for details on the
labor force survey. For simplicity, we refer to the set of minerals, coal and bauxite as ‘minerals’ from here
onwards. Scientifically, coal and bauxite are not minerals, but rocks, while from a legal perspective, coal is
often treated as a mineral. Source: http://www.uky.edu/KGS/education/didcoal.htm

The only slight exception is coal, for which the royalty rate ranges between 3 and 7% for open-pit mines and
between 2 and 6% for underground mines. Source: https://www.pwc.com/id/en/publications/assets/
mining-investment-and-taxation-guide-2010.pdf.
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per Law 25/1999.12

Indonesia is also an important producer of oil and natural gas. In 2009, the oil & gas sector’s
contribution to GDP was 4.55% and thus comparable to the share of the mining sector. However,
oil & gas revenues were not shared with the producing district until decentralization, and from
then on, the producing district only received 6% of total oil revenues and 12% of total gas
revenues. Most oil & gas is found offshore requiring relatively more capital and skills, and the
employment share of oil & gas was less than half the employment share of mining between 1995-
2009.13 For these reasons, we always control for oil & gas production, but focus on the mining

of minerals.

3.2 Natural resource endowments and mines

We construct a database of mining by district by combining two proprietary data sources: the
Raw Materials Data (RMD) from SNL Metals and Mining, which covers mining worldwide, and
data provided by MinEx consulting (MinEz) for Indonesia specifically. Combined with additional
sources for a few missing data points (see the Online Data Appendix), these sources provide us
with the location, mining method in use or planned, minerals produced, the quantity of resources
in the ground, and year of discovery for each deposit. RMG also provides employment per mine,
but only for a very small subset and for almost none of the Indonesian mines. We use the
global information to estimate the labor intensity of different mining methods (conditional on
country-year and mineral fixed effects).

We identify 82 mineral deposits that were discovered by 1990, spread across 40 of the 282 dis-
tricts and 21 of the 26 provinces that existed in 1990, which highlights the geographic dispersion
of mining.!* The year 1990 is chosen to fix endowments at the start of the period for which we
observe manufacturing outcomes. This greatly mitigates endogeneity concerns and is meaningful

in terms of mining activity because most discoveries were made prior to 1990.

12 The producing district’s share in royalties was 70% over 1990-1992, 64% over 1992-1999, and 32% over
1999-2009. For land rents, its share was 70% over 1990-1992 and 64% over 1992-2009. Districts in the
same province as the producing district jointly accrued 32% of royalties over 1999-2009. The province of the
producing district did not participate in royalties or land rents over 1990-1992 but received 16% of both over
1992-2009.

Source: Indonesia’s national statistical agency Badan Pusat Statistik (BPS).

Because districts in Indonesia proliferate over time we aggregate to the 1990 district borders. For the period
1990-1993 we rely on Bazzi and Gudgeon (2020) and for other years on the BPS.

13
14
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The deposits jointly contain a wide variety of minerals.'® To aggregate deposits with different
minerals by district we first compute for each deposit the remaining discovered mineral ore
resources as of 1990, measured in megatons.!® We use resources rather than reserves because the
former more closely reflects exogenous geology, since reserves are defined as “the economically
mineable part of a measured or indicated mineral resource” (Raw Materials Data Handbook,
p.58). We use ore rather than the mineral or metal content because the primary response to a
price shock is arguably an adjustment of ore production: the more ore resources a developed
deposit has, the larger its operations and the potential effects on the labor market. We sum
across deposits by district and divide by the surface area of the district in square miles such that
Ty = » 4 Rax/Areay, where Ry, stands for the ore resources of deposit d in district & in 1990.
Finally, we normalize r; by its average across all positive realizations of r; and label this 7.

The most common extraction method applied to the deposits in our sample is open-pit mining,
used in 77 deposits in 36 districts. 11 deposits in nine districts use underground mining, while
three deposits in three districts use placer mining techniques for deposits found in (former) river
beds. The extraction technique is never recorded with a time label and is thus time-invariant,
which corroborates the insight from the mining engineering literature that it is determined by a
fixed factor, namely geology. We use this information to construct an Underground, dummy for
our baseline analysis, and assign a value of one to each district k that applies underground mining
techniques in the extraction of endowment 7, and zero otherwise. In additional regressions in the
Online Appendix we further distinguish between the three districts in which only underground
mining is applied and the six districts in which both underground and open-pit mining take
place. The nine districts for which Undergroundy equals one are spread across eight provinces
and contain multiple minerals, which are also mined using other techniques in other locations.

For oil & gas endowments we digitize a novel source, the Indonesia Oil and Gas Atlas by

Courteney et al. (1988-1991). The six volumes of this source list all oil & gas fields in Indonesia

15 22 deposits contain coal (these deposits contained 72.63% of total 1990 resources in terms of volume), 20 gold

(7.31%), 12 tin (2.39%), nine copper (9.44%), eight silver (5.3%), seven nickel (1.42%), six bauxite (0.75%),
four iron ore (0.68%), two manganese (0.0006%), one cobalt (0.05%), one diamonds (0.01%), one uranium
(0.01%) and one zirconium (0.0002%).

If a deposit was mined before 1990, we deduct the mine’s pre-1990 ore production from the initial resources.
Resources are defined as “the concentration or occurrence of material of intrinsic economic interest in or
on the Earth’s crust in such form and quantity that there are reasonable prospects for eventual economic
extraction” (Raw Materials Data Handbook, p.57).
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that had been discovered at the time of publication, as well as their precise location and “current
daily production”, which equals the most recent available production figure. The benefit is that
we can include all fields without relying on an arbitrary size-cut off such as in the commonly
used database for giant discoveries (Horn, 2003). Unfortunately, field-specific oil & gas remaining
resources in the ground are not reported. Therefore, we compute a proxy for oil & gas endowment
equal to the sum over all fields within a district of reported daily production of barrels of oil
equivalent (using a standard conversion factor of 6,000 for natural gas) and divide by district size.
We normalize this proxy in the same way as rg, and denote it boej,. 37 districts spread across
14 provinces were producing oil and/or gas around 1990. Nine of these districts also contained
minerals in 1990. Online Appendix Table OA1 provides descriptive statistics on natural resource
endowments by province.

Oil and each solid mineral have their own world price, giving us in addition substantial
variation over time as shown in Online Appendix Figure 2. Prices come from a variety of
sources as described in the Online Data Appendix. We relate mineral endowments to prices by

constructing a mineral price index, which we discuss in detail in Section 4.

3.3 Manufacturing census data

We use the annual census of manufacturing plants (Survei Industri), which contains repeated
observations on 59,031 manufacturing plants between 1990 and 2009 that employ at least 20
employees. The data are collected and compiled by the BPS and contain detailed information
on performance indicators, including employment, investment, material inputs, revenue, exports,
and the district in which the plant is located. In addition, the data set contains a four-digit sector
classification. The census covers the manufacturing sector and thus excludes mining operations.
Ownership information allows us to exclude plants with (partial) government-ownership (which
may be shielded from market forces), and focus on privately-owned plants, leaving 50,693 plants

observed on average for six years. Table 1 presents the descriptive statistics.!”

17 Around 6% of plants record two or more districts over time. We cannot be sure if these events are real or

due to measurement error. This is because districts split and proliferated over time in which district codes
were reused and reassigned from time to time, and while we track these changes, some errors may remain.
We do not entirely drop such plants, but keep the longest period in which a plant reports the same district.
See the Online Data Appendix for details.
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[Table 1 about here]

Employment equals the total number of employees reported by each plant. We do not observe
individual wages nor hours worked so as a proxy for wages we divide the total wage bill by the
number of employees. Revenue as reported directly in the census is the value of goods produced.
The average unit price is equal to revenue divided by the total number of product items sold,
but is not available before 1998. Finally, we obtain total factor productivity from Javorcik and
Poelhekke (2017).®

While the manufacturing sector is usually regarded as tradeable, some manufacturing plants
produce goods that are more tradeable than others. Furthermore, a plant’s product may be
highly tradeable by its nature, but may de facto not be traded beyond the local economy. We
use the detailed sector classification to construct an indicator for whether a plant mainly sells to
local markets or whether it sells to non-local and foreign markets.

Specifically, we split plants into more-traded goods producers and less-traded goods producers.
More-traded goods producers are plants that export in at least one year in our sample period
(and thus contain all international exporters), and/or are plants that belong to a four-digit
sector with a below-median distance elasticity to trade as calculated by Holmes and Stevens
(2014). Less-traded goods producers are thus all other plants, which have an above-median
distance elasticity.!® The distance elasticity equals the percentage change in trade volume as
distance increases by one percent, using industries’ average shipment distance as reported in the
US Commodity Flow Survey.?* Our sample includes 123 four-digit ISIC Rev.3.1 manufacturing
industries, of which “Manufacture of articles of concrete, cement and plaster” is the least-traded
manufacturing sector. Five industries have an estimated distance elasticity of zero, including
for example “Publishing of newspapers, journals and periodicals”.?! The reason for using US
elasticities is that similar data are not available for Indonesia. The assumption that comes with

this choice is that the ranking of industries with respect to distance elasticity across the two

18
19

See the Online Data Appendix for details.

Alternatively, we could use solely the international exporter status of a plant, but this runs into potential
selection effects since a large fraction of tradeable goods producers may not export their output internationally
due to insufficient competitiveness or bureaucratic reasons (see e.g. McLeod, 2006).

See the Online Data Appendix for details.

Since the Holmes & Stevens measure is industry-specific, and some plants in our sample change industry
over time, it is possible that a plant changes (tradedness) status over time. As we discuss in Section 5.3, our
results are robust to dropping industry-switchers.

20
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countries is the same.?? In 2009, the less-traded sector employed 770,000 workers in 10,000
plants, while the more-traded sector employed 3.5 million workers in 14,000 plants. Of these,
8.5% and 7.5% of employment is located in districts with mineral resources, respectively.
Finally, some of the plants in our data may be upstream to the mining sector. We define
upstream plants as those plants that operate in four-digit industries that sell an above-median
share of output to the mining sector. To compute this share, we rely on Input-Output tables for

the United States, as discussed in more detail in the Online Data Appendix.

4 Empirical Strategy

Our main hypothesis is that the intensity of mining activity affects plant-level outcomes, and
that this varies by extraction technique and the degree of tradedness of produced goods. Since we
observe the location of plants at the district level we need exogenous variation in mining activity
at the district level and over time. We achieve this by interacting initial mineral endowments
with changes in exogenous world prices of local minerals.

Each district may contain several deposits, and each deposit potentially contains multiple
minerals. We thus construct a price index that captures the price level of resources found in
existing deposits in each district, using as weights the district-specific share of mineral m in total

initial resources. More precisely we define:

Rmk
Ry,

Mineral Price Indexy, = Z P, if Ry > 0, 0 otherwise

where P,,; equals the world price of mineral m in year ¢t indexed to base year 1990, R,.. =
> g Rmar and thus the sum of 1990 resources in tons of ore of mineral m across all deposits d
in district k, and Ry = Y >, Ruax, i-e. the district’s total 1990 mineral resources. Figure 2
in the Online Appendix plots the development of indexed world prices P,,; for all minerals in
our sample and shows periods with large price swings. The definition of the mineral price index
(MPI) ensures that, for example, the steep increase in the price of iron ore in 2005 will have no

effect in districts without iron ore deposits (absent spillovers), and only a substantial effect in

22 If this nonetheless introduces measurement error it will be harder to reject the null hypothesis that the effect

of mining booms differs across producers of more- versus less-traded goods producers.
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districts where iron ore makes up a large share of ore endowments. Fixing weights to the base
year 1990 and using only deposits that were discovered by 1990 ensures exogeneity with respect
to plant-level outcomes in subsequent years, conditional on plant (and district) fixed effects.?3
We further expect the labor intensity of mining to depend on the locally applied extraction
technique. We establish the relevance of this margin using a global sample of mines. For a small
subset of these mines, a cross-section of years between 2002 and 2011, we observe employment,
but unfortunately not for most mines in Indonesia. However, we can control for country C.,,
year of employment information 7} (or country-by-year) and (main) mineral fixed effects M,,.
Conditional on these fixed effects we have no reason to believe that mining in Indonesia is different
from mining in other countries. We thus regress the log of mine-level employment on a dummy
for the mining extraction technique, the log of the size of the mine in terms of deposit resources
and a set of country, time and main mineral fixed effects, and cluster standard errors at the

country level:

In(#MineEmployees) s = 01Undergroundy

+ doln(Mineral Resources)y + Ce + Ty + My, + vg (1)

Based on this novel source of heterogeneity as captured by a positive and significant coefficient
31, we relabel the district-level dummy Undergroundy, to Labor-intensive Mining,,.

We then model plant-level outcomes Y, of plant 7 in four-digit industry j in district &k in
year t as a function of f(-) and of plant fixed effects p; that capture unobserved heterogeneity of
plants within districts. f(-) is a function of the interactions of normalized mineral resources per
square mile in the local district 7, world prices of minerals contained in these deposits M Py,

and the mining technique dummy Labor-intensive Mining,,:

InYijee = f(rg, M PlIy, Labor-intensive Mining,,) + i + Vijre

23 We control for district-specific fixed effects and trends to capture any systematic differences between more

recent and older deposits.
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We first difference both sides of the equation to take care of serial correlation in the error
term v,k and to get rid of the plant fixed effects. This also absorbs district fixed effects and the

variables and interaction terms that only vary across districts k:

AlnYijre = 71 [Aln(M Ply) * 7]

+ Y2 [Aln(M Ply,) * 7, * Labor-intensive Mining,] + 1kt

[Aln(M Ply,) * 7] captures the mining boom. The boom is larger for a larger price shock, and
for a given price shock the mining boom is larger in districts with greater endowments. The price
shock Aln(M PIy;) and its interaction with Labor-intensive Mining, are not separately included
because M PI;; = 0 for districts with no mineral resources.?*

The error term 7;;,; may still be correlated with the mining boom, such as through global
commodity prices driving a simultaneous oil & gas boom. We therefore include as control vari-
ables initial oil & gas intensity interacted with the oil price [Aln(QilPrice;) x boey), four-digit
industry-times-year fixed effects 7;.5;, and district-specific trends 73 to account for the possibility
that shocks are persistent (Ciccone, 2011).2> Our approach is similar to Allcott and Keniston

(2018) for oil & gas development in the US, but we adjust for the presence of multiple minerals

and for variation in extraction techniques. The regression equation is thus:

+ Bo [Aln(M Ply,) * 73, * Labor-intensive Mining,]

+ B3 [Aln(Oil Price;) * bc;ek] +T0S; + T + €ijre (2)

Industry-year effects control for different industry compositions across mining and non-mining

24 (iven the definition of the price index, its separate inclusion would not provide additional information: the

impact of a local mining boom would then partly be captured by the coefficient on Aln(M PIy;) and partly
by the coefficient on [Aln(M PIy:) % 73] for capital-intensive mining districts, and by [Aln(M PIy) * ry, *
Labor-intensive Mining,,] for labor-intensive mining districts. This would suggest that the marginal effect of
the price shock is non-zero for 7, = 0, while it is only defined for 7} > 0.

The district-specific trends 75 absorb different trends for different values of 7y, boey,, Labor-intensive Mining,,
and [r, * Labor-intensive Mining,]. The industry-times-year fixed effects absorb the direct effect of a change
in the oil price.
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districts or global industry-specific demand shocks that may be correlated with mineral price
changes. Since first-differencing absorbs district fixed effects we control for the possibility that the
choice for a certain extraction technique in or before 1990 depended not only on geology but also
on time-invariant local labor market conditions that may also affect the manufacturing sector.
The district-specific trends 1, absorb trending local labor market conditions and control for
different trends in manufacturing outcomes in districts with labor-intensive extraction methods.

We estimate equation (2) with OLS and always cluster standard errors at the level of treatment
(the districts).?0 The main outcomes of interest are plant-level employment, (number of workers),
the total wage bill divided by the number of workers as a proxy for wages, unit prices (the
average price per unit sold), and revenue. We start with a large panel of all privately-owned
manufacturing plants and then split the sample into plants that produce goods that are more or
less heavily traded.

The main coefficients of interest are 5, and 5. When [ is significant we also calculate whether
B1 + Bo is significantly different from zero: this captures the marginal effect of the mining boom
Aln(M Ply) 7, when Labor-intensive Mining, equals one. In principle §; (or 8; + f2) measures
a relative effect: the empirical counterfactual is the change in outcome Y of a plant in the same
industry in the same year in a district that faces a smaller or no mining boom. For example,
an increase of local mineral prices by 100 log points leads to a change in outcome Y of a plant
in a district with average 1990 mineral ore resources (i.e. 7, = 1) by approximately 100 x [
percent, relative to a plant in a district with no mineral resources. We can also interpret (5, as
the differential effect of a given price increase on a plant in a district with endowments equal to
7y = 2 compared to a plant in a district with average endowments, i.e. 7, = 1. In the absence
of geographic spillovers, one can regard 3; as an absolute effect. In Section 5 we test for such

spillovers but we find these to be small and insignificant.

26 We adjust the degrees of freedom for singleton industry-year and district-year groups, i.e. plants for which

no other plant is in the same industry or same district in a given year, following Correia (2015).
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5 Results

5.1 Does labor intensity differ by extraction method?

Our data distinguishes between underground, open pit, and a range of less-used mining
techniques (placer mining, in-situ leaching, offshore mining, tailings). According to Hartman
and Mutmansky (2002), underground mining methods are most labor intensive because it is

27 Conversely, all

harder to operate and automate heavy machinery in underground tunnels.
non-underground mining methods are classified as non-labor intensive. This suggests that on
average underground mines are most labor intensive in production, and that mines that use a
combination of underground and open-pit methods are more labor intensive than pure open-pit
mines.

We test this hypothesis more formally in three different ways using three different data sources
that jointly cover mining activity globally and in Indonesia. As our first test we estimate equation
(1) using employment data of a cross-section of mines around the world from the Raw Materials
Data (RMD). While this data set lists 8,830 deposits and mines in 145 countries, employment
data are available for only 518 mines in 63 countries, and the year of employment information
varies by mine over the period 2002-2011. 230 of these mines apply only open-pit mining, 213
only underground mining, 54 both underground and open-pit mining and 21 mines apply other
or unknown mining techniques. The number of employees across the 518 mines (of which two are
located in Indonesia) ranges between 13 and 10,550 and averages at 1,084 employees. The results
are reported in Table 2 and indicate that a mine that applies underground mining uses about 65%
more labor than otherwise similar mines (column 1). Column 2 shows that the coefficient is larger
for mines that apply only underground mining and smaller for mines that apply both underground
and open-pit mining, which is consistent with the mining engineering literature. Conditional on
the control variables and fixed effects, column 3 suggests that there is no significant heterogeneity

with respect to a country’s level of development as measured by GDP per capita. The results are

2T Our data is not more specific, but in theory underground mining methods can be further broken down

into cut-and-fill stoping, stull stoping, square-set stoping, room-and-pillar mining, stope-and-pillar mining,
shrinkage stoping and sublevel stoping, where the first three methods belong to the class of “supported”
underground methods (to prevent collapse) and the latter four to the class of “unsupported” mining methods.
With the exception of stope-and-pillar mining and sublevel stoping, all of these methods are classified as
relatively labor intensive.
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robust to replacing country and year (of employment information) fixed effects by country-times-
year fixed effects, which fully absorb any potential impact of country-specific and time-varying
labor market characteristics such as mining in a ‘low-wage country’ (column 4); and to excluding
mines that neither apply underground nor open-pit mining (column 5).

In the Online Appendix we provide two additional tests (Tables OA3 and OA4): one based
on district-level data derived from Indonesia’s labor force survey (SAKERNAS), and one using
district-level (working-age) population data. These show that the number of mining workers
in underground mining districts is 114% larger than in non-underground mining districts with
the same resource endowments, and the result is robust to controlling for regional labor market
characteristics. We also show that oil & gas extraction is least labor intensive, and that an
increase in the price of local minerals spurs working-age population growth in mining districts,
but only when mining is more labor intensive. However, the magnitude of the coefficient suggests
that labor mobility is relatively low, such that there is scope for upward wage pressure.

We conclude that there are significant differences in labor intensity between extraction tech-

niques and that underground mining is most labor intensive.

[Table 2 about here]

5.2 Mining heterogeneity and manufacturing outcomes

We now turn to our main results, using the heterogeneity in the labor intensity of mining
techniques to reconcile the mixed effects that mining booms have on manufacturing outcomes.

Table 3 starts by regressing the change in log manufacturing plant employment on both mining
and oil & gas booms using a large sample of privately-owned plants between 1990 and 2009. We
control for a wide range of fixed effects, including plant fixed effects, district-specific trends, and
four-digit industry-times-year effects, absorbing unobserved potential confounding factors such
as local or industry-wide demand and labor market trends.

We do not find evidence for a general loss of employment during a mining boom, for plants
located in a district with average mineral endowments, relative to plants in districts with much
less or no mining at all. If anything, manufacturing employment appears to be positively affected

by mining booms and unaffected by oil & gas booms. The difference between mining and oil &

20



gas may be due to fiscal rules: oil & gas rents accrue mostly to the national government, while
mining rents are shared much more with local districts, creating the potential for an increase
in local aggregate demand and local government spending.?® Alternatively, there may be more
direct input-output links between the mining sector and local manufacturing, which we come
back to in Section 5.3.

Looking at other outcomes in columns 3, 5 and 7, including the change in the log ratio of the
wage bill to employment, unit price inflation of manufactured goods, and growth in plant-level
revenue, we find that only revenue increases significantly during the average of mining booms
across all extraction techniques. At the same time, there is no evidence that oil & gas booms
affect manufacturing in any way. On average, there is thus no evidence for crowding out.

This conclusion changes once we estimate equation (2) and introduce the dummy for labor-
intensive mining in columns 2, 4, 6, and 8. The results unveil that a mining boom’s effect on man-
ufacturing is fundamentally different if it applies to a district where mining uses labor-intensive
extraction techniques as opposed to capital-intensive techniques. Looking first at employment
growth, we find that when capital-intensive mining is applied, manufacturing plants expand by
2.6% in the district with average mineral endowments when mineral prices increase by 100 log
points, or when a given price increase occurs in a district with twice the average endowments.
In sharp contrast, a mining boom of equal magnitude taking place in a district where mining
uses labor-intensive extraction techniques results in a contraction of manufacturing employment,
by 1.2%, as listed in the bottom row.?? Labor-intensive mining booms also drive up average
manufacturing wages, by 13.3%. These results are consistent with labor-intensive mines bidding
up wages to attract workers (see Online Appendix Table OA2), which leads to some workers
being released by plants in the manufacturing sector that cannot afford the higher wages. Unit
prices also rise by 23% (implying a real appreciation), which likely leads to the rise in revenue

by 22%. Capital-intensive mining booms do not increase average wages (because the total wage

28 Although Cassidy (2019) finds that transitory fiscal shocks from the limited sharing of oil & gas windfalls
slowly increase expenditure of capital, infrastructure, and education, which have the potential to be beneficial
for the manufacturing sector.

In the Online Appendix (Table OA5) we show that when splitting labor-intensive mining into pure under-
ground and mixed-method mining, both these relatively labor-intensive methods have significantly different
effects on manufacturing outcomes than capital-intensive mining. Moreover, pure underground mining (which
is most labor intensive) has much larger effects on manufacturing outcomes than mixed-method mining. This
further confirms the relevance of heterogeneity in mining extraction techniques.

29
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bill increases in tandem with employment) nor do plants significantly increase prices, although
revenue does increase somewhat. We also find that oil & gas booms yield no wage response.
These results are consistent with labor being a secondary input in open-pit mining and oil &
gas extraction. They might also reflect that a higher degree of capital intensity requires workers
with more specific skills that are imperfect substitutes for manufacturing workers, or that the
elasticity of oil production to prices is relatively low (Anderson et al., 2018).3°

There are several plausible explanations for the positive effect of capital-intensive mining
booms on manufacturing employment and revenue. On the one hand, some plants may benefit by
being able to supply more intermediate capital goods to the booming resource sector directly. We
find some evidence in favor of this hypothesis in Section 5.3. On the other hand, manufacturing
plants may respond to a boom in local demand and/or larger public spending, which does not
happen through higher local wages but through redistribution of national mining revenues that
to a large extent flow back to mining districts and their provinces. District governments may use
this to lower taxes for households (increasing local private demand), lower taxes for firms, invest
directly in the local economy, or increase the provision of public goods such as infrastructure.
Using district-level expenditure data from Indonesia’s Ministry of Finance, we present supportive
evidence showing that mining booms lead to larger public spending on industry sectors as well as
trade and regional business development, both of which clearly benefit manufacturing plants (see
Online Appendix Table OA7, Panel A). In addition, panel data over 2002-2004 from the Regional
Autonomy Watchdog KPPOD reveals a positive impact of mining booms on the district-level
quality of infrastructure (Panel B). Our results therefore echo those in Michaels (2011) who
shows that Southern US counties that used natural resource wealth to improve infrastructure

did better in the long run.

[Table 3 about here]

We conclude that accounting for heterogeneity in mining extraction techniques does show

30 Anderson et al. (2018) find that drilling responds more to oil prices. This extensive margin, the exploration

phase, may be why Cust et al. (2019) find a positive response of average wages after an oil price increase
(in a sample of both private and state-owned manufacturing plants in Indonesia), in districts that explored
for oil and had success. Here, we do not observe the exploration phase and focus on the intensive margin
of extraction, and find the complementary result that an increase in the value of existing mineral deposits
raises averages wages only if mining is labor intensive.

22



evidence of crowding out of manufacturing employment, but only near labor-intensive mining.
Whether the (local) aggregate effects of resource booms are positive or negative thus depends
on the labor intensity of extraction, which is a novel result in the literature. The negative
employment effect is arguably dampened by the simultaneous rise in prices and revenue, since
this helps to compensate the rise in average wage payments. The increase in prices further
suggests that not all manufacturing plants are price takers on global markets and that many
supply the local market and can take advantage of the boost to local demand. Next, we therefore
analyze heterogeneity in the degree to which manufacturing plants produce traded goods and
are price takers on international markets. Although the manufacturing sector is often seen as
traded, we should find that crowding out is worse for plants that are producers of relatively more-
traded goods because such producers cannot simply raise prices and must find other margins of

adjustment to the local mining boom.

More-traded versus less-traded manufacturing plants

Table 4 shows results of estimating equation (2) for a sample of relatively more-traded goods
producers in Panel A, and for relatively less-traded goods producers in Panel B, for the same four
outcome variables. To split the sample, we define more-traded plants as plants that belong to
an industry with below-median distance elasticity in terms of its goods (see Holmes and Stevens,
2014), or that export internationally. Results are robust to using international exporter status
only. We report marginal effects of mining booms for labor-intensive mining in the bottom row,
but only when these are meaningful, which is when the interaction term suggests that mining
has a significantly different effect on the outcome variable when mining is labor intensive versus
when mining is capital intensive.

Panel A shows that more-traded goods producers lose even more employees than the average
manufacturing plant: a labor-intensive mining boom results in a drop of employment of 1.8%.
This can be rationalized within our theoretical framework and by looking at the results on the
other outcomes. More-traded plants also face an increase in the demand for their products
during a mining boom, but they cannot respond by raising prices because demand can also be
met through imports from elsewhere. As a consequence, more-traded goods producers are also

unable to raise wages without becoming less profitable and thus choose to shed labor instead.
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Since average wages at more-traded goods producers are about 15 percent higher than in other
plants, it is likely that they have a different skill composition. They may shed relatively low-
skilled workers at the lower end of the wage distribution, while their other workers are less perfect
substitutes for miners.

Panel A also shows that more-traded goods producers benefit from a capital-intensive mining
boom and then hire more labor, despite being more likely to sell outside of their own district.
Some more-traded plants may be upstream to the mining sector, which may choose to source
certain manufactured intermediate inputs locally to save on trade costs. We analyze more-traded
upstream plants in Section 5.3 and find supporting evidence for this hypothesis. In addition,
capital-intensive mining booms do not drive up wages, while they do generate fiscal revenue. If
part of the locally redistributed mining rents are spent on infrastructure — which is suggested by
our results using the KPPOD data — then especially more-traded plants that use infrastructure
more intensively may benefit. Indonesian exporters in manufacturing have indicated transport
infrastructure as their main constraint to global competitiveness (Winkler and Farole, 2012).
The result that mining booms lead to larger public expenditure on trade and regional business
development is also particularly relevant for more-traded goods producers, which further helps
to explain the positive employment effect on such plants.

Panel B focuses on relatively less-traded goods producers and finds that they also benefit
during capital-intensive mining booms. The magnitude of the employment effect is somewhat
smaller than for more-traded goods producers, which is in line with spending on trade and
infrastructure likely being less relevant for less-traded goods producers. The more important
difference is when mining booms are labor intensive: less-traded goods producers do not shed
employment. While they may also benefit from redistribution of mining rents, the key difference
to more-traded goods producers is that they can benefit from an increase in local demand from
miners and workers earning higher wages and consuming local goods. This is because they can at
least partly pass on higher wage costs (caused by upward wage pressure from the mining sector) to
consumers by raising prices, since their goods are harder to import and a price increase thus leads
to a smaller loss in market share. Thus, less-traded goods producers do not have to shed labor
to remain profitable, despite increased competition for labor due to the labor-intensive mining

boom. During such booms we indeed observe a strong increase in the proxy for wages and in
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unit prices for less-traded plants, and the rise in unit prices also translates into a substantial rise
in revenue.3!

The classic Corden and Neary (1982) Dutch disease mechanism is thus most clearly seen for
labor-intensive mining and when allowing for varying degrees of tradedness in manufacturing.
More-traded goods producers mostly suffer from a labor reallocation effect and reduce employ-
ment, while less-traded goods producers benefit more from a local spending effect via stronger

local demand and are able to keep employment constant.??

[Table 4 about here]

Total Factor Productivity

So far we have found evidence for a reallocation of employment away from relatively more-
traded goods producers, but only during labor-intensive mining booms. As in Corden and Neary
(1982), this reallocation effect on its own is efficient and in theory welfare-improving. However,
it is often thought that a loss in learning by doing in the more-traded manufacturing sector
could depress TFP and drive longer term negative aggregate effects as in van Wijnbergen (1984).
Columns 1-3 of Table 5 first present the results on the contemporaneous effect of mining booms
on innovations to TFP — for all plants, for more-traded plants, and for less-traded plants. While
TFP is largely unchanged during capital-intensive booms, it actually increases during labor-
intensive booms and most for less-traded goods producers. This is probably to a large extent
driven by the large increase in revenue while keeping employment constant. To gauge potential
longer-term effects we next estimate the effect on total factor productivity over a five-year period:
in columns 4-6 we replace the dependent variable by the change in TFP between ¢t and t — 5. On

the right-hand side, we replace the price shocks with respect to the previous year by the average

31 In the Online Appendix (Table OA6) we show that the heterogeneous effect on more- versus less-traded

goods producers is robust to using an alternative specification, in which we interact the more-traded goods
producer dummy with the mining boom variable and restrict our sample to districts without resources and
districts with labor-intensive mining. In this specification it becomes possible to include district-times-year
fixed effects, but we show that these do not change the results. This implies that the set of fixed effects and
trends included in our baseline specification is sufficient to absorb any remaining confounding factors at the
district-year level.

Nominal variables increase more in areas with labor-intensive mining, but that applies only to less-traded
goods producers, not to more-traded goods producers in the same districts. This speaks against general
district-level inflation driving the results.

32
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change in annual prices during the last five years. The coefficient must thus be interpreted as the
effect of an increase in mineral prices by 100 log points in each year over the five-year period. We
still find large positive effects of labor-intensive booms, implying that also at this time horizon we
find no evidence for a loss in TFP or learning by doing. On average, labor-intensive mining booms
lead to a loss in manufacturing employment, but plants appear to become more productive. This
may be due to survival bias but the employment cut-off in the data of at least 20 employees does

not allow us to analyze plant exit.
[Table 5 about here]

Regional spillovers and revenue sharing

The estimates of the impact of a mining boom can be interpreted as an absolute rather than
merely as a relative effect if geographic spillovers are absent. In Table 6 we test for regional
spillovers in two ways. In column 2 we include a variable capturing mining booms in neighboring
districts.®® In column 3 we add a variable capturing mining booms in other districts that belong
to the same province. This captures potential spillovers due to redistribution of mining rents
more directly, because Indonesia allocated 32% of mining royalties (but none of the land rents)
to non-producing districts in the same province after decentralization in 1999.3% The first result
is that none of the spillover interactions is significant and their inclusion does not change the
main results. The labor market effects are thus highly localized overall and the spillover effects
may be weak. However, it is still possible that two opposing spillover mechanisms cancel each
other out: a neighboring labor-intensive mining boom may draw out labor resulting in a loss
of local manufacturing employment, but at the same time lead to a positive spending effect via
redistribution. To disentangle these possibilities, we repeat the same specification in columns
4-6 for the years after 1999. If a spillover effect from a positive spending effect is important then
it should be more visible from 2000 onwards than during 1990-1999, while the negative labor
reallocation effect arguably remains equally relevant throughout. Thus, if redistribution to non-

producing districts matters, the coefficients in columns 4-6 should be pushed upwards. However,

33 We treat all neighbors as one single district and compute its 1990 mineral resources per square mile and

price shock realizations analogously to the single-district computation.
Since revenue sharing occurs independently of the local mining methods we do not include an interaction
with the labor-intensive mining dummy in column 3.
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we find that spillover effects are similarly non-existent after 1999. Although royalties were re-
allocated after 1999, over time other national redistribution funds were adjusted to compensate
for this, potentially resulting in a small net redistribution effect across districts.®> In the absence
of empirical evidence for spillovers, we conclude that we capture an absolute effect rather than a
relative effect of local mining booms, and that crowding out and reallocation takes place between

sectors as opposed to between districts.

[Table 6 about here]

5.3 Robustness checks

We perform a battery of robustness tests on our main results: the relevance of the labor
intensity of mining, and the crowding out effect of mining booms on more-traded goods producers.
We start in Table 7, with the sample of more-traded goods producers, to evaluate if the crowding
out effect of labor-intensive mining booms depends on the specific degree of labor intensity
of the local mining sector and whether it is different for upstream plants. Moreover, we test
for any remaining selection effects.®® We then allow for alternative clustering, market power,
mineral-specific effects, decentralization effects and re-scaling in Table 8. All of these alternative

estimates support our main conclusions.

Different labor intensities, upstream plants and testing for selection effects

For reference, column 1 in Table 7 repeats the baseline result for the sample of more-traded
goods producers. In column 2 we distinguish between mining booms in districts where only
underground methods are applied (and mining is thus most labor intensive), and booms in

districts where both underground and open-pit mining take place. As we would expect, the

35 From 2001, natural resource revenue sharing was gradually included in the formula for fiscal capacity, which

determines the gap between capacity and spending needs. This then feeds into other national transfers aimed
at addressing the fiscal gap, although large discrepancies still exist. See Kaiser et al. (2006) for details.

We do not report average wage effects because these are insignificant in the baseline and remain so in all
robustness tests.

36

27



magnitude of the crowding-out effect is strongest when mining is most labor intensive.3” In the
Online Appendix we show that also mining wages (see Table OA2) and manufacturing plants’
wage bill divided by the number of workers (see Table OA5) increase most during a boom when
only underground mining is applied. Column 3 evaluates if the crowding-in effect of capital-
intensive mining booms is driven by plants that are upstream to the mining sector. To do so, we
use US Input-Output tables to compute a variable that captures the share of sales of a plant’s
industry to the mining sector, and classify plants with an above-median realization as “upstream
plants”. We interact our mining boom variable (and its interaction with labor-intensive mining)
with this upstream dummy and include year fixed effects rather than industry-year fixed effects
in order to compare plants across industries, given that the upstream indicator is defined at the
industry level. The results suggest that the positive effect of a capital-intensive mining boom is
almost two-thirds smaller if plants are not upstream (0.013 versus 0.031), although the positive
interaction term is not precisely estimated. This suggests that the positive employment effect on
more-traded goods producers near capital-intensive mines is at least partly due to plants that
may start to supply more capital goods to local mines during mining booms. Additional evidence
in favor of an upstream effect is provided by the interactions with labor-intensive mining, where
crowding out (—0.014) is turned into crowding in (0.173) if the plant is upstream to the labor-
intensive mine.*® While the local economy is not the main output market of more-traded goods
producers, the effect may arise because of lower trade costs from the mining sector’s perspective.

Our baseline regression controls for plant fixed effects, for industry-times-year fixed effects,
and for district-specific trends. These capture a broad set of potential unobserved confounding
factors, such as sector-specific shocks, local labor market trends in a particular mining district,
and plant-specific time-invariant characteristics. However, our identification still relies on the
assumption that there are no remaining selection effects.

First, some plants switch four-digit industry over time and may thereby change their status as

more-traded goods producer, which may be due to measurement error or caused by unobserved

37 To put the large marginal effect at the bottom of column 2 into perspective, note that the average mineral

endowment in districts that only use underground methods equals 7, = 0.018; this implies that an increase
in local mineral prices by 100 log points leads to a reduction in more-traded goods producers employment
by 0.018 x (-3.410) ~ 6.1%. In the average underground & open-pit mining district, 7, = 1.844, such that
a boom makes more-traded goods producers lose 1.844 x (-0.016) ~ 3% of workers.

The average effect is nonetheless negative as per column 1 because there are relatively few upstream plants
in labor-intensive mining districts.
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confounding factors. In column 4 we drop such plants, showing that the coefficients are robust
to this change.

Second, including plant-specific trends instead of district-specific trends in column 5 does not
change the results, implying that it is sufficient to capture trends at the industry and district
level.

Third, another way to account for potential selection is to restrict our analysis to plants lo-
cated in mining districts only, at the cost of sacrificing some external validity. Applying this in

column 6 shows that the results are robust to this modification, despite the much smaller sample.

[Table 7 about here]

Alternative clustering, market power, mineral-specific effects, and decentralization

So far we always cluster by district, and column 1 in Table 8 again repeats the baseline result.
In column 2 we allow for arbitrary correlation of the errors across both space and time, by
clustering two-way on years and districts. This does not affect the main results and is consistent
with the absence of evidence for spillovers. Following best practise (Cameron and Miller, 2015;
Bertrand et al., 2004), we prefer clustering on districts because there are 19 years in the data
and thus only 19 clusters in the time dimension. In that case the asymptotic requirements of
clustering may no longer hold due to the small number of clusters. In column 3, inspired by
Adao et al. (2019), we also cluster standard errors two-ways but at the district level and at the
level of year-times-one-digit industry interactions (of which there are 57). The results are robust
to this parsimonious way of accounting for correlated errors within sectors across districts.

Column 4 addresses market power that may invalidate exogeneity of mineral price shocks.
Indonesia was the second-largest producer of tin and third-largest producer of nickel in 2009. We
thus exclude the six districts that contain tin or nickel resources, but this has no effect on our
results.

In column 5 we address the possibility that underground mining coincides with the mining
of minerals with a higher price elasticity, even though all minerals that are mined underground

(coal, gold, silver, copper and uranium) are also mined using other methods elsewhere, except
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uranium which only occurs once. If that were the case, then we may be capturing relatively
easy to mine minerals rather than a different mining technique. To address this, we restrict the
sample to districts that produce only coal or no mineral at all, such that all variation comes from
the mining technique.?® The estimated coefficients are similar to those of the main specification
and remain statistically significant, supporting the conclusion that mining methods matter.

Column 6 controls for district times post-1999 fixed effects. The post-1999 period may be
different because mineral prices started to trend upward — leading to more intense mining booms
— which coincided with decentralization, giving districts more autonomy based on the belief that
local public service delivery would improve. If that resulted in an improved business climate for
manufacturing, then the baseline may overestimate the true effect of mining booms. However,
the additional fixed effects do not alter the results.

In the last column 7, we re-scale our endowment variables by their standard deviation rather
than their mean to further interpret the economic size of the effects. Re-scaling allows a direct
comparison to a result in the literature based on US data (Allcott and Keniston, 2018), which is
that as the oil price increases by 100 log points, manufacturing employment in a county with an
additional oil and gas endowment of one standard deviation increases by 0.3%. After re-scaling,
we find that a similarly defined boom in capital-intensive mining increases manufacturing em-
ployment by 7.7%. This larger result may reflect lower spillovers across space and higher labor
mobility between manufacturing and other sectors as well as the pool of unemployed, due to
a comparatively smaller degree of specialization of Indonesian manufacturing. In addition, the
result displayed in Table 3 that oil and gas booms do not affect manufacturing employment in
Indonesia reflects the minimal oil & gas revenue sharing with producing districts and weaker link-
ages to other sectors due to the mostly offshore nature of oil & gas production in the archipelago

country.

[Table 8 about here]

39 We choose to restrict to districts producing only coal as opposed to districts only producing any other specific

mineral because this results in dropping the smallest number of mining districts from our sample.
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6 Conclusion

We estimate the impact of local mining booms on manufacturing plants in Indonesia, ex-
ploiting detailed information on natural resource deposits and introducing the different degrees
of labor and capital intensity that distinct mining methods entail. We present the novel result
that only in districts where mining operations are relatively labor intensive, global resource price
increases lead to crowding out of manufacturing employment. In line with a Corden and Neary
(1982)-type model of factor reallocation with multiple districts, producers of less-traded goods
pass on higher wage costs to local consumers by raising prices to avoid a contraction, but more-
traded goods producers who compete on national or world markets are unable to do so and react
by reducing employment. In contrast, mining booms in districts with capital-intensive mining
lead to crowding in of more-traded goods producer employment, largely driven by a positive
spending effect that is not accompanied by competition for labor with mines. From the perspec-
tive of manufacturing plants, mining booms can thus be good or bad, depending on the labor
intensity of local extraction methods. This distinction helps to explain the mixed evidence on
crowding-out effects in the literature.

Our estimated effects are much larger than in a developed economy such as the US, which
arguably reflects low factor mobility across districts, limited geographic spillovers and relatively
high labor mobility between manufacturing and other sectors due to a comparatively small degree
of specialization. Since these are common characteristics of developing countries, and our data
shows that labor-intensive mining is prevalent in many of them, our results arguably contain
important lessons for other resource-rich developing countries.

Volatility in world commodity prices thus leads to frequent reallocation shocks between mines
and manufacturing plants, but we do not find negative repercussions in terms of TFP: evidence
for a productivity-related ‘Dutch disease’ remains elusive. However, volatility creates uncertainty
and may itself have significantly dampened private investment into the manufacturing sector, at
least in natural resource-rich districts. Exploring this potential issue is a promising avenue for

future research.
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Main Tables

Table 1: Summary statistics

Variable Sample Mean p(50) s.d. Min Max N (non-
missing)
District-year data
MRes90 x Aln(Mineral Price) MRes90>0 0.040 0.000 0.775 -6.981  8.309 741
MRes90 x Aln(MPrice) x L-I Mining MRes90>0, L-I Mining ~ 0.044 0.000 0.925 -5.619  6.688 171
0&G Prod~90 x Aln(Oil Price) 0&G Prod~90 >0 0.049 0.000 0.708 -6.663 6.328 703
Mining Workers / Total Workers MRes90>0 0.040 0.017 0.053 0 0.313 351
Oil&Gas Workers / Total Workers 0&G Prod~90 >0 0.006 0.002 0.011 0 0.065 333
District data
MRes90 MRes90>0 1 0.060 2.540 0.000 11.741 39
MRes90>0, L-I Mining  1.235 0.045 3.099 0.000  9.450 9
0&G Prod~90 0&G Prod~90 >0 1 0.024 2.822 0.000 14.012 37
Plant-year data
Aln(# Employees) All 0.000 0 0.291 -4.705 5.281 261,020
More-traded producers  0.002 0 0.319 -4.705 5.281 149,759
Less traded producers -0.003 0 0.247 -4.601  4.564 111,209
Aln(Wage Bill / #Employees) All 0.130 0.096 0.573 -10.519 11.318 260,803
Aln(Unit Price) All 0.0561 0.051 1.913 -19.815 18.786 148,691
Aln(Revenue) All 0.130 0.085 0.757 -7.634 7.883 261,017
Aln(TFP) All 0.003 0.003 0.048 -0.972 0.958 172,504
AsIln(TFP) All 0.013 0.013 0.065 -0.799 0.899 83,759
Plant data
Upstream share in % MRes90>0, more-tr. pr. 0.076 0.029 0.195 0 2.221 1,554
Mine data (global sample)
In(# Mine Employees) n/a 5992 5979 1.416 1.099 10.727 464

Note: MRes90 equals Mineral Resources 1990 scaled by the district’s surface area and then by its average across
districts with mineral resources. The variable corresponds to 7 in our empirical specification. L-I Mining stands for
labor-intensive mining and restricts to districts for which a positive fraction of resources is extracted or planned to be
extracted by underground mining. O&G Prod~90 equals the production of barrels of oil equivalent around 1990 scaled
by the district’s surface area and then by its average across districts with oil & gas production. The variable corresponds
to boey, in our empirical specification. The number of districts with MRes90>0 is 39 as opposed to 40 since we are forced
to treat Bangka and Belitung as one district; see the Online Data Appendix for details. Unit Price equals total revenue
over units sold. Asln(TFP) equals the change between year t and ¢t — 5. Upstream share in % equals the industry-specific
percentage of direct and indirect sales to the local mining sector.
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Table 2: Global mine-specific evidence on the labor intensity of different mining techniques

Dependent variable — In(# Mine Employees)

Sample — All Mines

Only UG
& /or OP

(1) (2)

(3)

(4)

(5)

Underground Mining 0.646**
(0.122)
100% Underground Mining 0.715%**
(0.131)
Underground & Open-Pit Mining 0.489***
(0.139)
100% Underground Mining x High Income
Underground & Open-Pit Mining x High Income
In(Mineral Resources) 0.280**  0.285***
(0.024)  (0.024)
Country FE Yes Yes
Year of Employment Info FE Yes Yes
Country-Year of Employment Info FE No No
Main Mineral FE Yes Yes
Observations (# Mines) 464 464
# Countries 39 39

0.854*
(0.240)
0.599***
(0.159)
-0.260
(0.312)
-0.191
(0.250)
0.279%**
(0.029)

Yes
Yes
No
Yes
464
39

0.787***
(0.158)
0.456***
(0.151)

0.294***
(0.025)
No
No
Yes
Yes
404
23

0.669***
(0.132)
0.449
(0.129)

0.291***
(0.023)
Yes
Yes
No
Yes
453
38

Note: This table shows that underground mining is more labor intensive than other types of mining,
using a cross-section of individual mines around the world for which we observe employment and the
applied mining technique(s). The year as of which data are reported varies by mine, ranging from 2002
to 2011. The dependent variable is the log of the mine-specific number of employees. 100% Underground
Mining is a dummy that equals one if the mine is operated by underground mining only. Underground
& Open-Pit Mining is a dummy that equals one if both underground and open-pit mining are applied.
High Income equals one if 2011 GDP per capita of the country in which the mine is located is larger
than the median GDP per capita across our sample of mines. In(Mineral Resources) equals the log of
mine-specific mineral resources in megatons. In column 5 we exclude tailings, placer mines and mines
that use in-situ leaching, thereby restricting the sample to mines that use either underground or open-pit
mining, or both. Standard errors in parentheses are clustered at the country level. ***Significant at 1%

level; **Significant at 5% level; *Significant at 10% level.
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Table 4: More-traded versus less-traded goods producers

Panel A
Sample — More-Traded Goods Producers
Aln
Dependent variable — u Erﬁhllo cos Wage Bill / UnitAll?rice Reéehriue
Ly #Employees
(1) 2 3) (4)
Mineral Resources 1990 x Aln(Mineral Price) 0.031** -0.022 0.015 0.060*
(0.015) (0.031) (0.059) (0.035)
Mineral Resources 1990 x Aln(Mineral Price) x L-I Mining -0.049** -0.004 0.021 -0.069*
(0.017) (0.034) (0.063) (0.037)
Oil&Gas Production ~1990 x Aln(Oil Price) 0.000 0.001 -0.009 0.010*
(0.001) (0.004) (0.026) (0.005)
Observations 149,759 149,620 82,912 149,756
# Plants 24,672 24,662 16,947 24,672
# Districts 259 259 258 259
Marginal effect of mining boom for labor-intensive mining -0.018*** -0.009
(0.006) (0.011)
Panel B
Sample — Less-Traded Goods Producers
Aln
Dependent variable — ” En?l?o cos Wage Bill / UnitAlPr’lrice ReAeIEue
ploy #Employees v
(1) (2) (3) (4)
Mineral Resources 1990 x Aln(Mineral Price) 0.023*** 0.012 0.041 0.061
(0.003) (0.009) (0.041) (0.039)
Mineral Resources 1990 x Aln(Mineral Price) x L-I Mining -0.025** 0.190* 0.275  0.264™*
(0.004) (0.011) (0.043) (0.040)
Oil&Gas Production ~1990 x Aln(Oil Price) 0.002 -0.006** -0.017* 0.008
(0.001) (0.003) (0.008) (0.012)
Observations 111,209 111,132 65,746 111,209
# Plants 19,802 19,798 14,386 19,802
# Districts 270 270 264 270
Marginal effect of mining boom for labor-intensive mining -0.002 0.202%* 0.316"*  0.325"**
(0.002) (0.006) (0.015) (0.008)

Note: All regressions control for plant fixed effects, and include four-digit industry-times-year fixed effects and
district-specific linear trends. This table shows the effect of local mining booms on the annual change in manufacturing
outcomes for producers of more-traded versus producers of less-traded goods. The underlying specification is equation
(2). The sample contains formal and privately-owned manufacturing plants with at least 20 employees that are more-
traded goods producers in Panel A, and those that are less-traded goods producers in Panel B. The sample period
is 1990-2009 in columns 1, 2 and 4 and 1998-2009 in column 3, due to data availability. The marginal effect at the
bottom of the table equals the sum of the first two coefficients in the given column. Standard errors in parentheses
are clustered at the district level. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level.
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OA1 Figures and Additional Results

OA1l.1 Figures

Figure 1: Geographic distribution of minerals, oil & gas and manufacturing plants
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Note: Mineral resources and oil & gas production are organized in quartiles based on positive realizations, while
plant density is organized in quintiles. Plant density is computed as simple average across the years 1990-2009.
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Figure 2: Prices of Indonesian minerals and the oil price, 1990=In(100)
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Note: This figure shows the log of an indexed price series (Piggo = In(100)) of all minerals that had
been found in Indonesia by 1990, as well as the indexed oil price. Minerals are arranged from top left
to bottom right based on their share in total mineral resources, and oil is displayed last. See Section
OA2 for the individual price series sources.
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OA1.2 Resources summary statistics by province (Table OA1)
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OA1.3 World-price elasticity of mining output and mining wages in boom times

(Table OA2)

Table OA2 analyzes how the Indonesian mining sector responds to a change in global mineral
prices. In Panel A we study the mine-level elasticity of ore production to a change in the price
of the produced mineral(s), using annual production figures over 1990-2009 for a sub-sample of
Indonesian mines for which data are available in the RMD database.** We regress the log of
one plus ore production in megatons on the log price of the produced mineral(s), control for
mine and year fixed effects and cluster standard errors at the district level.*! As in our baseline
analysis, we normalize prices by the 1990-price before taking logs. The results show that mines
significantly increase ore production by around 33% when the price of the produced mineral(s)
rises by 100 log points. Columns 2 and 3 show that this positive effect holds across different
extraction techniques that imply different labor intensities.

In Panel B we use annual data on wages paid by the Indonesian mining sector from the labor
force survey SAKERNAS (see Section OA2 for details) to corroborate the claim that mining
wages respond to mining booms. We regress the change in the log of the typical monthly wage
received by a mining worker on the mining boom variable used in our main analysis, as well
as our labor-intensity interactions. We control for year fixed effects, include district dummies
to capture district-level trends, and cluster standard errors at the district level. The sample
period is 2007-2015 since data are representative at the district level from 2007 onwards, and
we have data until 2015. Column 2 shows that labor-intensive mines (which use underground
techniques) significantly raise wages during a mining boom. In contrast, the baseline of open-pit
mines, which are rather capital intensive in production, do not raise wages to increase production.
Column 3 shows that the wage effect is strongest for districts in which all mines exclusively apply
labor-intensive (underground) methods. Given that for the average pure labor-intensive mining
district Mineral Resources 1990 = 0.018, the reported marginal effect implies that mines in such

districts raise the wage by 0.018 x 15.292 = 27% as local mineral prices rise by 100 log points.

40 For a given mine, we only consider years that lie within the opening year and closing year (including those

years) as reported in our data. We disregard mines that do not produce at all within this period.

Table OAS reports descriptive statistics. We apply a within-transformation rather than take first differences
to avoid losing observations, given that the panel is unbalanced. For mines that produce multiple minerals
we use a weighted price, using a mineral’s share in total resources as weight; see Section OA2 for details.
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Table OA2: Response of mining sector to

Panel A

changes in mineral prices

Dependent variable —

Unit of Observation —

In(Ore Production + 1)

Mine-year

(1) (2) 3)

In(Price of produced mineral)

0.335"**  0.337°*  0.346"**
(0.093)  (0.093)  (0.099)

In(Price of produced mineral) x Labor-intensive mining -0.190
(0.168)
In(Price of produced mineral) x Pure labor-intensive mining 0.024
(0.135)
In(Price of produced mineral) x Mixed labor-intensive mining -0.300
(0.266)
Year FE Yes Yes Yes
Mine FE Yes Yes Yes
Observations 533 533 533
# Districts 29 29 29
# Mines 73 73 73
Panel B

Dependent variable —

Unit of Observation —

Aln(Mining Wage)

District-year

(1) (2) (3)

Mineral Resources 1990 x Aln(Mineral Price)

0.001  -0.023  -0.022
(0.021)  (0.018)  (0.017)

Mineral Resources 1990 x Aln(Mineral Price) x Labor-intensive mining 0.066***
(0.014)
Mineral Resources 1990 x Aln(Mineral Price) x Pure labor-intensive mining 15.314***
(4.083)
Mineral Resources 1990 x Aln(Mineral Price) x Mixed labor-intensive mining 0.066***
(0.014)
Year FE Yes Yes Yes
Linear district trends Yes Yes Yes
Observations 260 260 260
# Districts 35 35 35
Marginal effect of mining boom for labor-intensive mining 0.042%**
(0.011)
Marginal effect of mining boom for pure labor-intensive mining 15.292%**
(4.087)
Marginal effect of mining boom for mized labor-intensive mining 0.043***
(0.011)

Note: In Panel A we regress the log of one plus mine-level annual mineral ore production in megatons on the
log normalized price (P19990=100) of the produced mineral(s), between 1990 and 2009. Production data are from
the RMD database. In Panel B the dependent variable is the change in the log of annual district-specific wages
paid by the mining sector, from the labor force survey SAKERNAS, observed between 2007 and 2015. Pure
labor-intensive mining is a dummy that equals one if resources are mined with underground techniques only.
Mized labor-intensive mining equals one if both underground and open-pit mining are applied. The difference-in-
difference specification in Panel B absorbs district fixed effects. Standard errors in parentheses are clustered at
the district level. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level.
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OA1l.4 Labor intensity of mining techniques (Tables OA3 and OA4)

Fvidence using labor force survey data
We use data from Indonesia’s labor force survey (SAKERNAS) and data on district population to
further test the relative labor intensity of different mining techniques, and show that underground
mining is more labor intensive than other types of mining, not only on a global scale but also in
Indonesia.

SAKERNAS provides an estimate of the number of mining workers in each district-year be-
tween 2007 and 2015.42 We pool the annual data, use district-year-specific log mining employ-
ment as our dependent variable and regress it on mining technique dummy variables. In order
to control for a district’s mining intensity and compare districts with similarly-sized mines, we
also include the district’s total 1990 mineral resources, scaled by its average across districts with
positive mineral endowment (but not by district size). We further include year fixed effects
and cluster standard errors at the district level. The results in column 1 of Table OA3 suggest
that the number of mining workers in underground mining districts is 114% larger than in non-
underground mining districts with the same mining intensity. Column 2 shows that this result
is driven by the districts in which all deposits use only underground mining, rather than the dis-
tricts in which both underground and open-pit mining occur. In column 3 we replace year fixed
effects by province-year fixed effects to account for differential regional wages and other labor-
market characteristics. The coefficient on underground and open-pit mining is now statistically
significant (and remains positive), but the ranking in terms of labor intensity is preserved.

In column 4 we test our hypothesis that oil & gas extraction is less labor intensive than min-
ing. The dependent variable is the log sum of the number of mining and oil € gas workers in
a given district. We pool the annual data between 2007 and 2015, include the district’s total
1990 mineral resources, and additionally include its oil & gas production around 1990. Both
variables are scaled by their respective average across districts with positive realizations (but not
by district size). The results suggest that a district with two times the average 1990 mineral
resources employs 39% more mining and oil & gas workers than a district with average 1990
mineral resources. In contrast, a district with two times the average 1990 oil & gas production

employs only 7% more mining and oil & gas workers. This smaller coefficient cannot be explained

42 For very few district-years, SAKERNAS does not report data — see Section OA2 for details.
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by a difference in the overall relevance of mining compared to oil & gas extraction: an inspection
of Indonesia’s national accounts reveals that the average mining district only contributed 5%
more to total GDP than the average oil & gas district over 2007-2014. This corroborates that

oil & gas extraction is less labor intensive than mining.

Table OA3: Indonesian district-level evidence on the labor intensity of mining methods

In(# District

Dependent variable — In(# District Mining Workers) Réljﬁllglégé;lsd
Workers)
(1) (2) (3) (4)
Underground Mining 1.143*
(0.473)
100% Underground Mining 2.344* 1.953***
(0.283) (0.278)
Underground & Open-Pit Mining 0.242 1.212*
(0.548) (0.640)
Total Mineral Resources 1990 0.288**  0.381*** 0.169 0.387*
(0.133) (0.132) (0.121) (0.086)
Total Oil&Gas Production ~1990 0.072%**
(0.018)
Year FE Yes Yes No Yes
Province-Year FE No No Yes No
Observations 1,207 1,207 1,196 1,484
# Districts 247 247 243 262

Note: Data come from Indonesia’s labor force survey data (SAKERNAS), for the period
2007-2015. The unit of observation is a district-year. In columns 1-3 the dependent variable
is the log of an approximation of the number of mining workers, while in column 4 it is
the log of an approximation of the number of mining and oil & gas workers. Underground
Mining is a dummy that equals one if at least one of the 1990 deposits in the district is
operated or planned to be operated by underground mining. 100% Underground Mining
is a dummy that equals one if all 1990 deposits are operated or planned to be operated
by underground mining. Underground & Open-Pit Mining is a dummy that equals one if
both underground and open-pit mining are applied or planned to be applied to extract the
district’s 1990 mineral resources. Total Mineral Resources 1990 equals mineral ore resources
as of 1990 scaled by its mean across all districts with positive resources (but not by the
district’s surface area). Total OiléIGas Production ~1990 equals the production of barrels
of oil equivalent around the year 1990, scaled by its mean across producing districts (but not
by the district’s surface area). Standard errors in parentheses are clustered at the district
level. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level.
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Fvidence using population data
An analysis of district-specific (working-age) population data over time offers another opportunity
to test whether underground mining is more labor intensive than open-pit mining. The underlying
idea is that if indeed underground mining is more labor intensive, we would also expect a stronger
labor force response to a booming mining sector that employs more labor, relative to other mining
districts. Analyzing population data also sheds light on the overall degree of labor mobility in
Indonesia following local mining booms. If labor mobility is high, then there is less scope for
upward wage pressure during a boom.

District-level population over time is available from the TPUMS-International database of
the Minnesota Population Center (MPC).*® Tt includes the micro-data from the 2000 and the
2010 Indonesian population census, as well as the 1995 and 2005 SUPAS inter-census population
surveys, from Indonesia’s national statistical agency (BPS).** We use these data to compute total
population and working-age population (age 15-65) for the 1990-districts. Since population data
are only collected every five years we study the change in log population during four periods:
1990-1995, 1995-2000, 2000-2005, and 2005-2010. In columns 1 and 2 of Table OA4 we focus on
total population while in column 3 we look at the working-age population, which is unaffected by
changes in fertility and less affected by changes in mortality. We regress the dependent variables
on the mining boom variable and the labor-intensity interactions, with the difference that the
change in mineral prices is computed as the simple average of all five annual price changes. We
control for year fixed effects, initial population, differential trends across districts with varying
mining intensity and districts with heterogeneous oil and gas intensity, and (in columns 2-3)
differential trends across districts with varying labor intensity in the mining sector. Standard
errors are clustered at the district level.

The results suggest that while mining booms spur immigration overall, labor mobility dur-

43
44

See: https://international.ipums.org/international/

While annual population data would be preferred and is also reported by the World Bank’s Indonesia
Database for Policy and Economic Research (INDO DAPOER), these data appear unreliable since they are
derived using predicted trends in fertility, mortality and migration between provinces and are not corrected
ex-post using census or inter-census data. The IPUMS data misses population figures for Aceh in 2005 since
no inter-census population survey was held in this province due to the Indian Ocean tsunami in 2004. For
1995, data are missing for 12 provinces: South Kalimantan (includes 3 districts with positive 1990 mineral
resources), West Kalimantan (3), East Kalimantan (3), Central Kalimantan (3), South Sulawesi (1), Central
Sulawesi (2), Southeast Sulawesi (1), North Sulawesi (3), Irian Jaya (now Papua) (2), and Maluku (2). For
1990, population data are missing for one district.
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ing mining booms clearly depends on local extraction methods. When mining is more capital
intensive, booms do not affect population, and nor do oil & gas booms. When mining is more
labor intensive, population significantly increases in boom times, although the magnitude of the
estimates suggests that labor mobility across districts as a response to mining booms is not large.
Specifically, the marginal effect at the bottom of column 2 indicates that if local mineral prices
rise by 100 log points in each year over a period of five years, then district population increases
by 6%, in the district with average mineral resources and where underground mining occurs. Col-
umn 3 shows that working-age population rises by 4.8% during such a sustained labor-intensive

mining boom. The results confirm that underground mining is most labor intensive.

Table OA4: Mining booms and population growth

Dependent variable — Asln(Population)  Azln(Working-
age Population)

(1) (2) (3)

Mineral Resources 1990 x mean[Aln(Mineral Price)] 0.040™  -0.006 -0.006
(0.020)  (0.033) (0.030)
Mineral Resources 1990 x mean[Aln(Mineral Price)] x L-I Mining 0.066* 0.054*
(0.033) (0.030)
Oil&Gas Production ~1990 x mean[Aln(Oil Price)] -0.027 -0.029 -0.030
(0.038)  (0.038) (0.042)
In(Population 1990) -0.026™*  -0.027***
(0.009)  (0.009)
In(Working-age Population 1990) -0.026**
(0.009)
Observations 941 941 941
# Districts 280 280 280
Marginal effect of mining boom for labor-intensive mining=1 0.060*** 0.048***
(0.017) (0.017)

Note: L-I Mining equals Labor-intensive mining. mean[Aln(Mineral Price)] equals the simple average of the
five annual log price shocks. The unit of observation is a district-period, and the dependent variable is the change
in log population across the periods 1990-1995, 1995-2000, 2000-2005 and 2005-2010. In columns 1-2 we analyze
changes in total population, while in column 3 we focus on changes in working-age population. All specifications
contain dummies for the years 2000, 2005 and 2010, and the difference-in-difference specification absorbs district
fixed effects. We also include the linear trend controls Mineral Resources 1990, Qilé$Gas Production ~1990
and (in columns 2-3) Labor-intensive Mining, and [Mineral Resources 1990 x Labor-intensive Mining,], but
do not show their coefficients. Standard errors in parentheses are clustered at the district level. ***Significant
at 1% level; **Significant at 5% level; *Significant at 10% level.
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OA1.5 Splitting labor-intensive mining into pure underground and mixed mining

(Table OA5)

Sections 5.1 and OA1.4 showed that underground mining is more labor intensive than other
methods, and that mining is most labor intensive in districts in which all mines only use under-
ground methods. In Table OA5 we repeat Table 3 using the same sample of all plants and add
separate interactions for pure and mixed labor-intensive mining methods, to gauge whether this
finer distinction also translates into different effects on manufacturing-plant outcomes. The first
row still captures the effect of capital-intensive mining booms and is thus identical to the even-
numbered columns in the first row in Table 3. We find indeed that all interaction coefficients
are much larger in absolute magnitude for pure labor-intensive mining. While these coefficients
seem very large, they represent the effects for an endowment of Mineral Resources 1990 = 1,
while the average pure labor-intensive mining district has Mineral Resources 1990 = 0.018. The
key take-away is that if pure underground mines were as big as the average mine, then the labor

market effects would be much larger as well.

Table OAb: Pure labor-intensive mining versus mixed labor-intensive mining

Aln

Dependent variable — ” En%l?o ces Wage Bill / UnitAl}I’lrice Reﬁel?lue
proy #Employees
(1) (2) (3) (4)
MinRes 1990 x Aln(Mineral Price) 0.026** -0.003 0.032 0.062*
(0.005) (0.021) (0.044) (0.036)
MinRes 1990 x Aln(Mineral Price) x Pure L-I mining -2.079* 1.361** 15.246** 0.985
(0.185) (0.536) (2.494) (0.716)
MinRes 1990 x Aln(Mineral Price) x Mixed L-I mining -0.037** 0.136™ 0.196**  0.158***
(0.006) (0.021) (0.044) (0.036)
Observations 261,020 260,803 148,691 261,017
Marginal effect of pure labor-intensive mining boom -2.053*** 1.357** 15.278***
(0.185) (0.536) (2.494)
Marginal effect of mized labor-intensive mining boom -0.011*** 0.133*** 0.228*** 0.220***
(0.002) (0.004) (0.009) (0.005)

Note: MinRes 1990 equals Mineral Resources 1990. L-I mining equals labor-intensive mining. All regressions
control for plant fixed effects, four-digit industry-times-year fixed effects, and district-specific linear trends. Pure
labor-intensive mining equals one for districts where only underground methods are used or planned in all deposits
in 1990. Mizxed labor-intensive mining equals one for districts where both underground and open-pit methods
are used or planned in 1990. The sample contains all privately-owned manufacturing plants with 20 or more
employees, over 1990-2009. The oil & gas boom variable is included but not shown. Standard errors in parentheses
are clustered at the district level. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level.
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OA1.6 Interacting with more-traded goods producer dummy (Table OA6)

As a robustness check on the results of Table 4, we restrict the sample to districts without
mineral resources and districts with labor-intensive mining, and interact our mining boom dummy
with the more-traded goods producer dummy. This allows a more direct test of the effect of labor-
intensive mining booms on more- versus less-traded good producers without including a four-
tuple interaction term. The downside of this specification is that it loses some external validity
compared to the estimate of Table 4, but the benefit is that we can control for district-times-
year fixed effects, and thus control for all observed and unobserved effects that are district-year
specific (such as the state of the local labor market).

Since we thus drop capital-intensive mining districts, the coefficient on Mineral Resources 1990
x Aln(Mineral Price) now indicates the effect of a labor-intensive mining boom, for less-traded
goods producers. The odd-numbered columns of the first row in Table OA6 are thus comparable
to the last row of Panel B in Table 4 (the row with the marginal effects), and indeed show nearly
identical coefficients. Similarly, the coefficient sums in the odd-numbered columns in Table OA6
are comparable to the last row in Panel A of Table 4. The latter comparison shows that the
crowding-out effect is stronger when restricting the sample by dropping capital-intensive mining
districts, despite finding some upward pressure on prices.

Adding district-times-year fixed effects in the even-numbered columns, the results show that,
compared to less-traded goods producers, a mining boom results in less employment growth,
less average wage growth, less price and less output growth for more-traded goods producers.
The similarity between the coefficients in the odd- and even-numbered columns suggests that
the set of fixed effects and trends included in our baseline specification is sufficient to absorb

confounding factors at the district-year level.
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OA1.7 Mining booms and local expenditure and infrastructure (Table OAT)

In Table OAT7 we study the impact of a mining boom on local public expenditure and in-
frastructure. In Panel A we use district-level expenditure data provided by Indonesia’s Ministry
of Finance. Expenditure is indicated in current million Rupiahs and reported in two main cat-
egories: routine expenditure and development expenditure. We focus on the latter as well as
its three most important sub-categories from the perspective of (more-traded) manufacturing
plants, namely expenditure on: “Industry Sectors”; “Trade, Regional Business Development,
Regional Finance and Cooperatives”; and the “Transportation Sector”. We regress the change
in the log of these variables on our standard mining boom variable, control for year fixed effects
and differential trends across districts with varying mining intensity, and cluster standard errors
at the district level. The sample period is 2000-2004 since before 2000 the reporting period was
April 1 — March 31 and after 2004 a new reporting scheme was used.*® We restrict the sample to
districts that did not split over 1990-2005 such that we can meaningfully use the variable Mineral
Resources 1990. The results show that an increase in mineral prices by 100 log points in the
mining district with average endowments leads to an increase in overall development expenditure
by 11%, expenditure on industry sectors by 27% and expenses in the category trade, regional
business development, regional finance and cooperatives by 37%.46 These developments clearly
benefit manufacturing plants, and in particular more-traded goods producers.

In Panel B we use a data set of district-level scores on the availability and quality of local
infrastructure taken directly from the Indonesian Regional Autonomy Watchdog KPPOD. A
given score partly represents the results of a survey of the local business community and partly
concrete and measurable indicators; see https://www.kppod.org/ for details. We focus on
the panel dimension of the data, which is available for 2002-2004. We restrict the sample to
districts that did not split over 1990-2004 such that we can meaningfully use the variable Mineral
Resources 1990. In column 1 we look at the total state of infrastructure, which captures both

availability and quality, while in columns 2-3 we separate the two. We regress the change in the

45 The use of the new reporting scheme became mandatory as of 2006, but districts could volunteer to use it

already before 2006. As a consequence, the number of districts with available data decreases over time from
2000-2005, and in fact equals zero for 2005.

Since for some district-years expenditure on one or more of the sub-categories is zero, the number of obser-
vations differs across columns. The results are highly robust to accounting for zero expenditure by taking
the log of one plus expenditure rather than the log of expenditure when computing the dependent variable.

46
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log of these variables on our mining boom variable, control for year fixed effects and differential
trends across districts with varying mining intensity, and cluster standard errors at the district
level. Column 1 shows that a rise in mineral prices by 100 log points in the mining district with
average endowments leads to an improvement of local infrastructure by 5.5%. Columns 2 and
3 show that this effect is driven by an improvement in infrastructure quality, which is intuitive
given the annual horizon of our analysis. In column 4 we look at a more specific variable which
is particularly important for more-traded goods producers given the geography of Indonesia,

namely the quality of the local seaport, and again find a positive effect of a local mining boom.

Table OA7: Mining booms and local expenditure and infrastructure

Panel A
Aln Aln Aln Aln
D dent variable — Total Dev-Ex Dev-Ex Dev-Ex
ependent varlable Development Industry TradeBusFin Transport
Expenditure  Sectors Sector Sector
(1) (2) (3) (4)
Mineral Resources 1990 x Aln(Mineral Price) 0.108"** 0.274* 0.374*** 0.108
(0.037) (0.106) (0.111) (0.164)
Year FE Yes Yes Yes Yes
Observations 412 363 404 411
# Districts 182 169 181 182
Panel B
Aln Aln Aln Aln
Dependent variable — Infra- Infra: Infra: Infra:Q.
str. Avail. Qual. Seaport
(1) (2) (3) (4)
Mineral Resources 1990 x Aln(Mineral Price) 0.055"** 0.009 0.103*** 0.142*
(0.017) (0.018) (0.017) (0.085)
Year FE Yes Yes Yes Yes
Observations 190 190 190 190
# Districts 117 117 117 117

Note: In Panel A we use district-level expenditure data provided by Indonesia’s Ministry of Finance. The
sample period is 2000-2004. TradeBusF'in stands for Trade, Regional Business Development, Regional Finance
and Cooperatives. In Panel B we use district-level data on local infrastructure from the Regional Autonomy
Watchdog KPPOD. The sample period is 2002-2004. We always include Mineral Resources 1990 separately to
capture differential linear trends across districts with varying mining intensity, but do not show the coefficient.
The difference-in-difference specifications absorb district fixed effects. Standard errors in parentheses are
clustered at the district level. ***Significant at 1% level; **Significant at 5% level; *Significant at 10% level.
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OA1.8 Additional summary statistics (Table OAS)

Table OAS8: Additional summary statistics

Variable Sample is Mean p(50) sd. Min  Max N (non-
districts with: missing)

District-year data

In(Mining Workers) All 7.446 7.301 1.584 3.503 12.104 1,207
In(Mining and Oil&Gas Workers) All 7.512 7432 1.549 3.553 12.104 1,484
Ajln(Population) All 0.068 0.057 0.160 -2.224 1.088 941
MRes90>0 0.105 0.097 0.116 -0.161 0.690 109
MRes90>0, L-I Mining 0.115 0.092 0.156 -0.161 0.690 30
Aln(Mining Wage) All 0.066 0.048 0.369 -1.669 1.352 260
Aln(Development Expenditure) All 0.566 0.450 0.865 -3.128 7.762 412
Aln(Dev-Ex on Industry Sectors) All 0.537 0.420 1.353 -4.535 8.550 363
Aln(Dev-Ex on TradeBusFin Sector) All 0.745 0.607 1.228 -2.482 9.651 404
Aln(Dev-Ex on Transport Sector) All 0.514 0.417 1.100 -4.080 8.464 411
Aln(Infrastructure) All 0.068 0.065 0.340 -0.820 0.799 190
Aln(Infra: Availability) All 0.0567 0.067 0.369 -0.928 1.112 190
Aln(Infra: Quality) All 0.092 0.063 0.412 -0.841 1.156 190
Aln(Infra: Quality of Seaport) All 0.151 0 0.698 -1.642 2.335 190

District data

Total Mineral Resources 1990 MRes90>0 1 0.048 2.103 0.000 9.601 39
MRes90>0, L-I Mining 2.308 0.017 3.632 0.001 9.601 9
Total Oil&Gas Production ~1990 0&G Prod~90 >0 1 0.013 4.204 0.000 25.717 37

Mine-year data

In(Ore Production in Mt + 1) n/a 1.574 1.232 1.269 0 5.017 561

Note: This table provides summary statistics for variables that are only used in the Online Appendix. MRes90
equals a district’s mineral resources as of 1990 scaled by the district’s surface area and then by its average across
districts with mineral resources. L-I Mining stands for labor-intensive mining. O&G Prod~90 equals the production
of barrels of oil equivalent scaled by the district’s surface area and then by its average across districts with oil & gas
production. TradeBusFin stands for Trade, Regional Business Development, Regional Finance and Cooperatives.
Total Mineral Resources 1990 equals mineral ore resources in 1990 scaled by its mean across districts with positive
resources (but not by the district’s surface area). Total Oilé$Gas Production ~1990 equals the production of barrels
of oil equivalent around 1990 scaled by its mean across districts with positive production (but not by surface area).

60



OA2 Online Data Appendix
OA2.1 Mining

Combining RMD and MinEx data
The data sources we use to compute district-specific mineral resources as of 1990 are Raw Ma-
terials Data (RMD) and MinEx Consulting (MinEz). Both data sets claim full coverage, and
the majority of deposits are indeed listed in both. We double-checked the reported deposits with
public data from the Mineral Resources Data System (MRDS) of the United States Geological
Survey (USGS), which however lists fewer deposits. To build a complete data set we match
deposits across sources using a deposit’s name. For each unmatched deposit, we use additional
variables such as location and ore resources to verify if it corresponds to a deposit in the other
data set. We identify 82 mineral deposits with positive mineral resources in 1990. 49 of these
are listed in both sources, while the remaining 33 are only listed in one. These 33 deposits have
statistically significantly lower 1990 mineral resources than the deposits listed in both data sets.
24 of the 33 deposits are unique to MinEzr and nine are unique to RMD. For matched deposits
we use the MinFx data because we are more confident about its accuracy, based on a test in

Google Earth revealing that the MinFEz location data are more precise.

Location of mineral deposits
Both RMD and MinEz report the location of a deposit in terms of latitude and longitude. For
the set of deposits that are operated by a mine over our sample period and for which different
latitude and longitude data are reported by MinEr and RMD, we entered the location data into
Google Earth and regard the location displaying a mine as the correct one. For three deposits,
our sources do not provide location data; we retrieved these via Internet search (sources are
available on request). Using latitude and longitude, we identify the home district of the deposit
as of 2016 using Google Maps. We then identify the corresponding 1990-district, using district
proliferation tables provided by the BPS and information provided by Bazzi and Gudgeon (2020).

Time of discovery of deposits
Only MinEzx reports the year of discovery, which refers to “when the deposit was recognized as

having significant value”. Data are missing for around one third of deposits. Since we are only
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interested in whether the discovery took place before 1990, for several of these deposits we use the
fact that production started before 1990. For all remaining deposits we carried out an Internet
search. We found the discovery year for 42 deposits, mostly through annual reports of the
companies operating the deposits or via mining information websites such as mining-atlas.com.*”
For some remaining deposits, we infer that the discovery took place after 1990 if in 2016 (the
vintage of the MinFx data) the deposit’s status is either “Advanced Exploration”, “Emerging
Project” or different categories containing the term “Feasibility Study”. For all deposits that
are only listed in the RMD data, we also use the pre-1990 production start-up rule, Internet
search (23 deposits) and the deposit’s status to infer the discovery date, in this order. Regarding
the deposit status, we infer that the discovery (if at all) took place after the most recent year
for which the deposit’s status is either “Project, no specification”, “Conceptual”, “Feasibility”,
“Prefeasibility”, “Abandoned Project” or “Abandoned”. For the remaining deposits from both
data sets with missing discovery date, we infer the year of discovery as the year of production
start-up minus the median difference between discovery year and production start-up year across

all deposits for which we have information on both variables, which is eight years.*®

Inferring missing ore resources data
Ore resources data are missing for some deposits. We infer ore resources as ore reserves times the
mineral-specific average ratio of resources and reserves.*® In case there is no other deposit of the
same mineral with non-missing resources and reserves data, we infer resources as reserves times
the average ratio of resources and reserves across all deposits and minerals. If both reserves and
resources data are missing for a given deposit, we retrieve data using Internet search. There are
no deposits that were discovered by 1990 for which we were unable to retrieve resources data.

Ore reserves and resources data are missing for all tin deposits in both RMD and MinFEz.

47 For some deposits, we proxy discovery with the year of establishment of the company (or branch) which

operated the deposit, if the name of the company or branch contains the name of the deposit. Since for
all these deposits that year is after 1990, this turns out to be equivalent to dropping the deposits from our
sample.

We drop one single (small) deposit from our sample for which neither the discovery year nor the production
start-up year is reported.

Resources are “the concentration or occurrence of material of intrinsic economic interest in or on the Earth’s
crust in such form and quantity that there are reasonable prospects for eventual economic extraction” (Raw
Materials Data Handbook, p.57). Reserves are defined as “the economically mineable part of a measured
or indicated mineral resource” (p.58). The ratios of resources and reserves are obtained from RMD, since
MinFEz only reports ore resources.

48

49
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We retrieved the missing data via Internet search. Since we could not obtain resources data at
the deposit level, we use resources data of public operator PT Timah, which has a monopoly
on tin mining in Indonesia. Total tin resources of PT Timah, and thus Indonesia, amounted
to 1.06 megatons of tin in 2008, according to the annual report of PT Timah of that year. We
were unable to retrieve ore resources data for an earlier year. In order to infer tin resources as
of 1990, we add total tin production over 1990-2008 to the 2008 figure, using annual production
data from Indonesia’s Department of Mines and Energy, which is made available by the U.S.
Bureau of Mines. Since RMD and MinFEx do not contain any grade information for Indonesian
tin deposits, we convert the resulting number to tons of ore rather than tons of tin using the
average ratio provided by different sources. Specifically, according to earthsci.org, “Indonesia
produces tin mainly from alluvial deposits” (http://earthsci.org/mineral/mindep/depfile/
tin.htm), and the ratio of ore and tin from alluvial deposits ranges between 0.01 and 0.015 per
cent across different sources; we thus infer a ratio of 0.0125 for our analysis.

Since PT Timah annual reports do not indicate the spatial distribution of tin resources across
Indonesia, we infer the share of the different 1990-districts using annual production data from
Indonesia’s Department of Mines and Energy. While data on annual aggregate tin production in
Indonesia are available from 1949-2008, data at the sub-national level are only available for the
period 1978-1988 (Wu, 1989), thus we compute the production shares using the data from this
period. Since with these data we cannot attribute tin deposits that are located in the districts
Bangka and Belitung to either of the two districts, we treat these two 1990-districts as one
district in our analysis. Approximately 91% of Indonesian tin production took place in deposits
located in the Bangka-Belitung archipelago between 1978-1988. We thus infer the tin resources
of Bangka-Belitung as this percentage times our measure of total tin resources as of 1990. The
remaining 9% of tin production over 1978-1988 took place in deposits in the Riau archipelago;

we thus inferred 1990 tin resources of the 1990-district Riau as 9% of total 1990 tin resources.

Computation of district-specific 1990 ore resources
With the exception of tin, we first compute mineral ore resources as of 1990 for each deposit.
We then sum 1990 resources across all deposits in a district.

If a deposit was discovered before 1990 but did not start production before that year, the

deposit’s 1990 resources equal its initial resources. If a deposit was operated by a mine before
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1990, we deduct the mine’s pre-1990 ore production from the initial resources. For all deposits
contained in RMD, this is done using annual production data whenever available. Since MinFx
does not report production data, for all deposits unique to MinFEz annual production data are
unknown. For these deposits we infer total production before 1990 as average annual production
times the number of production years before 1990, both of which can be inferred using MinEx.%°

In the RMD data, for some deposits pre-1990 production is only reported in terms of metal
rather than ore. In these cases we compute the average ratio of ore and metal production of
the specific deposit and metal for each year in which both are available, and use this ratio
to infer pre-1990 ore production. If ore production is not available for any year, we use the
mine- and metal-specific grade to infer ore production from metal production. If the grade is
not reported, we retrieve it via Internet search. For five deposits in which production started
before 1990, pre-1990 production data are entirely unavailable. In these cases, we infer pre-1990
production as the average yearly (post-1990) production across years in which production data
are reported, multiplied by the number of pre-1990 production years. In one case we do not have

any information on production, and therefore infer 1990 ore resources as initial resources.

Multi-mineral deposits
RMD reports deposits’ annual production figures per extracted mineral, with maximum coverage
1975-2011. 11 deposits in our final sample (thus with positive 1990 ore resources) that are listed
in RMD produced more than one mineral at any point in time between 1975 and 2011. These
11 deposits are spread across 11 districts. Unfortunately, we do not know the share of each
mineral in total ore resources for the 11 deposits. We thus infer the share of mineral m in total
resources using the average ratio of ore production of mineral m over total ore production of
the respective deposit, using all years in which the deposit is operating and production data are
available. When production is only reported in terms of metal rather than ore output, we infer
ore production using the average mine-specific ratio of metal to ore production across all years
for which the ratio can be computed, and otherwise with the use of mine-metal-specific grade

data. In the 11 districts that contain at least one multi-mineral deposit with positive resources in

50 MinEz reports both “initial resources”, the year of production commencement and “current resources”. The

year as of which current resources are reported varies by deposit. We compute annual average production
as the difference between initial resources and current resources, divided by the number of years between
production commencement and the year in which current resources are reported.

64



1990, we incorporate the inferred mineral shares in multi-mineral deposits into our computation
of the mineral price index (MPI) of the district.

MinFEx only lists the main mineral of a given deposit, thus for deposits unique to MinFEx
we have to assume that the main mineral is the only mineral. Given the low occurrence of
multi-mineral deposits in RMD and the fact that deposits only listed in MinEz have small ore

resources, we do not expect this to affect our results.

OA2.2 Oil & Gas

The Indonesia Oil and Gas Atlas is divided into six volumes, each of which covers a certain
geographic area. Specifically, these are North Sumatra and Natuna (Volume 1, 1989), Central
Sumatra (Volume 2, 1991), South Sumatra (Volume 3, 1990), Java (Volume 4, 1989), Kalimantan
(Volume 5, 1991) and Eastern Indonesia (Volume 6, 1988). We assign a field producing oil and/or
gas to its 1990-district using data on the field’s latitude and longitude provided in the data source.

If a field is located offshore, we assign it to the closest district in terms of geographic distance.

OA2.3 Prices

Prices are global benchmarks rather than the prices of specific Indonesian blends. While
differences in quality across Indonesian blends and the blends we work with may imply that
their prices are not equivalent, we claim that the (percentage) change in the global price is a
good proxy for the (percentage) change in revenue accrued by the producer of the respective
mineral in Indonesia, in a given year. The prices we use are those of the respective metal rather
than the ore/rock, since ore prices heavily depend on the metal content and are therefore not
comparable across ores of different grades. For all prices, we compute and use annual averages.

We use prices reported by Platts Metals Week and the USGS for: copper (U.S. producer
cathode, 99.99-percent-pure copper), nickel (London Metal Exchange cash price for primary
nickel of minimum 99.80% purity), tin (New York composite), aluminum (99.7-percent-pure
aluminum ingot, U.S. market spot price) and cobalt (99.8-percent cobalt cathode, U.S. spot
price).’! For gold and silver, we use the prices determined on the London Bullion Market, which

t.52

is a wholesale over-the-counter marke Due to availability and data quality, the prices we use

51 Source: USGS.
2 Source: London Bullion Market Authority (LBMA).
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for manganese, diamonds, chromium, zirconium and uranium are those paid domestically in the
United States.®® For iron ore and coal, it is harder to identify an observed price that comes
close to a single world price. For iron ore, we use the price China pays per imported metric
ton on average in a given year, since China is a geographically close and important importer of
iron ore.>* For coal, we use the price of Australian coal instead of other coal types, due to data
quality and given that price changes are likely most aligned with Indonesian coal, since China
is a key importer of both Australian and Indonesian coal.?® For crude oil, we use the price of
West Texas Intermediate (WTT), which is a benchmark for the prices of other crude oil sorts.”®
We do not account for natural gas prices separately, both in order to follow the tradition of the
literature and because the development of natural gas prices and the development of crude oil

prices over time are in any case highly correlated.

OA2.4 Manufacturing Census

Data cleaning
We drop plant-years in which production worker employment is larger than total employment,
as well as plant-years in which the reported number of employees is below 20.>” We drop six
plants that have a district ID that does not correspond to any of the district IDs in the BPS list.
Around 6% of plants are reported to operate in different (two or more) 1990-districts in different
years. This could be due to changes in district borders that are not explained by district splits,
by the plant actually moving to another district or, arguably most likely, by measurement error.
The plant fixed effects that we control for only nest district-specific fixed effects if plants are
always recorded as in the same 1990-district. We therefore keep the plant’s district-years of the

1990-district that is reported for the longest consecutive period.

Defining more- versus less-traded goods producers
For each of the 473 six-digit industries of the 1997 North American Industry Classification System
(NAICS 1997), Holmes and Stevens (2014) estimate a (constant) distance elasticity, which equals

53 Uranium prices are from the IMF, all other prices from the USGS.

Source: IMF, http://www.imf.org/external/np/res/commod/index.aspx

Source: IMF, http://www.imf.org/external/np/res/commod/index.aspx

Source: Energy Information Administration (EIA).

Consistent with the plant-size threshold of 20 employees, only for a few plants the data reports less than 20
employees, which we treat as typos.
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the percentage change in trade volume as distance increases by one percent. Trade is based
on the 1997 U.S. Commodity Flow Survey (CFES), which documents the destination, product
classification, weight and value of a broad sample of shipments. Holmes and Stevens (2014)
estimate the distance elasticity via a standard log-log specification. The higher the trade costs
of a specific industry, the shorter its optimal average shipment distance (equivalently, the higher
its distance adjustment). Ready-Mix Concrete (4.2), Ice (3.0) and Asphalt (2.9) have the highest
estimated distance elasticity. 29 industries have an estimated distance elasticity of zero, including
Semiconductors, Analytical laboratory instruments and Aircraft, in which transportation costs
are very low relative to product value.

We use the estimates of Holmes and Stevens to classify Indonesian manufacturing plants into
more- versus less-traded goods producers, using the four-digit sector of each plant, as defined by
the 2000 version of the Klasifikasi Baku Lapangan Usaha (KBLI 2000). This roughly corresponds
to Revision 3.1. of the International Standard Industry Classification (ISIC Rev.3.1), however
not one-to-one. Therefore, we first use KBLI 2000 and ISIC Rev.3.1 documentation files to assign
to each KBLI 2000 industry code its corresponding ISIC Rev.3.1 code. Next, we walk from ISIC
Rev.3.1 to NAICS 1997 using concordance tables provided by the United States Census Bureau.
Since our sample contains 123 four-digit (ISIC Rev.3.1) industries, in the great majority of cases,
one four-digit ISIC Rev.3.1 industry code matches with more than one NAICS 1997 code. In all
these cases, we compute the ISIC-realization of the distance elasticity as the average realization

across all the NAICS industries matching with the particular ISIC industry.

Defining upstream plants
We use the 2007 U.S. Input-Output tables of the Bureau of Economic Analysis (BEA) to identify
upstream plants. These tables distinguish more sectors than any Indonesian Input-Output table
does, which thus allows a finer evaluation of an industry’s linkage to the mining sector. Because
formal mining is done in a very standard way across the globe, we can confidently use Input-
Output tables of another country for the mining sector.

The tables distinguish three mining industries which we together refer to as the “the mining
sector”: Coal mining; Iron, gold, silver and other metal ore mining; and Copper, nickel, lead and
zinc mining. Details on the concordance of the ISIC Rev.3.1 codes inferred from the manufac-

turing census and the BEA codes used in the Input-Output tables are described further below.
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For each of the 389 industries j that are distinguished in the 2007 Input-Output tables of the
BEA, we compute its ‘upstreamness’ to the mining sector as the ratio of the (weighted) sum of

its direct and indirect sales to the mining sector (as defined above) and its total sales:

Upstreamg, = 2 Sales;m X (Bim/B) + Z Sales;_; >, Sales_jm X (Rgm/Rk)

X
> Sales; — | )_; Sales; > Sales_j

€ [0,1]

where —.J denotes the set of all industries apart from j; k is the district identifier as usual; and
m={ Coal mining; Iron, gold, silver and other metal ore mining; Copper, nickel, lead and zinc
mining}. Ry, equals the total 1990 resources of the minerals contained in group m in district
k and Rj equals the total 1990 mineral resources in district k. Upstream;, takes into account
which minerals are found locally, which makes it industry- and district-specific rather than only
industry-specific. For example, if industry j is only upstream to the coal mining sector and there
are no coal deposits but only gold deposits in 1990 in district k£, then we do not classify plants
in industry j in district k as upstream (Upstream;, = 0). The reasoning behind this choice is
that in our empirical analysis, we try to test whether any effect of a local mining boom is driven
by plants that are upstream to the local mining sector. Using our previous example, we do not
expect plants that sell to the coal sector to benefit or suffer more from a gold boom in their home
district than plants in the same district that do not sell to any of the three mining sectors, since
neither group of plants sells to the sector Iron, gold, silver and other metal ore mining. On the
other hand, if coal deposits were present in district k, then the plants selling to the coal sector
might perform differently, and more so if the coal mining sector is in district k is more important.

We first walk from the BEA Input-Output table codes to the 2002 NAICS codes, and then
match those with the ISIC Rev.3.1 codes, using concordance tables provided by the United
States Census Bureau. In the census data, 133 four-digit ISIC Rev.3.1 manufacturing industries
are represented, while the BEA tables report 389 industries. As a consequence, in the great
majority of cases, one four-digit ISIC industry code matches with more than one BEA code. In
all these cases, we compute the realization of Upstream;;, as the average realization across all
the BEA industries matching with the particular ISIC code. We argue that the inferred value
provides a reasonable approximation, since the realizations of Upstream;, are very similar across

BEA codes that match with the same ISIC code.
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Total Factor Productivity (TFP)
The calulation of TEFP is based on the method by De Loecker and Warzynski (2012) and Acker-
berg et al. (2006). First, a separate translog production function for each two-digit ISIC sector
is estimated, relating the log value added to (the log of) capital, labor, and materials (including
squared terms and all interactions) and year and four-digit-ISIC-industry fixed effects. Input
coefficients are allowed to vary by exporter and foreign ownership status. Demand for materials
proxies for unobservable productivity shocks. This yields expected industry-level output, which
then results in plant-year level deviations from expected output. In the second step, these are
regressed using GMM on its lag, capital and labor input where current labor is instrumented with
lagged labor as suggested by Ackerberg et al. (2006). Finally, the innovations of this regression
capture TFP. Value added equals output net of inputs of material and energy. Capital is proxied
with fixed assets, labor with the number of employees. All variables are expressed in Indonesian

rupiahs, deflated using five-digit industry producer price indices.

OA2.5 SAKERNAS Labor Force Survey

We use the August round of the survey for the years 2007-2015, because these are representa-
tive at the district level, unlike other rounds or the years 1976-2006. This sample of SAKERNAS
covers all 1990-districts except in the years 2013 (five districts missing) and 2015 (one district
missing), and includes data on between 490,468 (in 2014) and 953,172 (in 2010) individuals.?®
This implies a coverage of between 0.2 and 0.4%.

In Table OA2 we use annual district-level mining wage data from SAKERNAS. The variable
is computed as a weighted average of the typical monthly wage across the sectors Coal Mining
and Peat Fxcavation; Uranium and Thorium Mining; and Metal Mining in a given 1990-district
and year, using the sample weight assigned to an individual respondent in the data.

For our analysis in Table OA3 we approximate the number of workers employed in the mining
sector and the number of workers employed in the combined mining and oil & gas sectors in a
given 1990-district and year. To compute the latter variable, we first compute the weighted share
of surveyed individuals who reported to work in the mining or oil & gas sector. The numerator

of this share is the weighted number of respondents in the district-year who state that their main

%8 In a given district, certain census blocks are selected, in which 16 households are sampled (10 from 2011

onwards). All individuals sampled in a certain census block obtain the same weight, which depends on the
relative importance of the census block in terms of overall district representation.
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activity in the past week was working and who report to work in one of the following sectors:
Coal Mining and Peat Excavation; Uranium and Thorium Mining; Metal Mining; Oil & Gas.
The denominator is the weighted number of respondents in the district-year. We then multiply
the ratio by the most recent available population figure from a given year’s perspective.’® To
approximate the number of mining workers, we repeat the above exercise, but exclude oil & gas
workers from the share’s numerator.

For illustrative purposes (see Section 3.1), in Table 1 we report descriptive statistics on the
fraction of mining workers to total workers across district-years (based on districts with mineral
resources as of 1990) and the fraction of oil & gas workers to total workers (based on districts with
oil&gas production around 1990), over 2007-2015. For a given district and year, the computation
of the numerators of these shares is done as described above, conceptually. The denominator of
both shares is the weighted number of surveyed individuals who state that their main activity

in the past week was working.
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