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1 Introduction

Since as early as 1849, with the pioneering work of Jules Dupuit, economists have investigated

the effects of second-degree price discrimination on pricing and quality provision. Anticipating the

modern treatments of Mussa and Rosen (1978) and Maskin and Riley (1984), Dupuit noted that

profit maximization by a monopolist leads to under-provision of quality at the bottom of the product

line. Intuitively, under-provision serves to prevent profit dissipation, whereby consumers with high

valuations per quality purchase low-quality products, therefore making it possible to set high prices

at the top of the product line.

This clarity of insight is missing in oligopolistic settings, where at least two firms compete for

consumers by offering menus of products. One critical feature of these markets is that consumers’s

preferences over product characteristics are often correlated with their propensity to switch brands.

The latter possibility has been recognized for long, and plays a key role in the empirical literature

that estimates demand employing discrete-choice models with random coefficients (in the tradition of

Berry, Levinsohn and Pakes 1995). In such models, consumers choose among different options from

competing product lines by weighing their respective price and quality dimensions. To produce more

flexible estimates, it is often assumed that consumer preferences over price/quality attributes are

random, while depending on demographics such as income, age, family size, etc (see, for instance,

Nevo 2001). These studies often find that consumers’ price sensitivity and taste for quality are

correlated, which implies that consumer segments (along the product line) systematically differ on

their propensities to switch brands (e.g., in response to price discounts).1

While there is no reason expect this correlation to be always positive or negative (across markets),

it is intuitive that common factors determine both the consumers’ tastes for quality and brand loyalty.

To illustrate, suppose income is the main factor behind one’s tastes for quality (e.g., high earners

like premium products) as well as behind brand switching (e.g., those with higher marginal utility of

money are more likely to react to price discounts). In this case, consumers with stronger tastes for

quality (high earners) are less likely to switch brands (for having a lower marginal utility of money).

This is consistent with the empirical findings of Kaplan and Menzio (2015) and Kaplan et al (2019),

who show that consumers with higher incomes engage less intensively on search activities, being

more likely to remain brand-loyal, while caring more about product quality.2 This is also consistent

with Petrin (2002), who finds, in the context of minivans, that those consumers with weaker brand

preferences assign less value to quality attributes such as horsepower or vehicle size.

1This is particularly relevant for structural empirical work investigating product design in oligopolistic settings.

Examples include Gandhi et al. (2008), Chu (2010) and Fan (2013).
2Anecdotal evidence suggests that a related story applies to airline markets. For instance, the most loyal customers

of Air France are likely to be business travelers who simultaneously exhibit higher tastes for premium features (extra

leg space, access to the pre-boarding lounge, etc), as well as a lower propensity to switch airlines (be it because the

employer pays the ticket, so they are less price sensitive, or because of the convexity of frequent flier rewards).
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By contrast, Crawford, Scherbakov and Shum (2019), in the context of cable TV, find that

consumers with stronger tastes for quality are easier to poach through price discounts than those

who exhibit weaker tastes for quality.3 One possible explanation to this finding is that consumers who

purchase premium packages (defined as containing more channels) are those who spend more time

watching TV, earn lower incomes,4 and therefore exhibit a higher marginal utility of money (being

therefore more price-sensitive).5 The authors then show that the quality of premium packages is set

inefficiently high by cable companies, which contrasts with the received wisdom from the monopolistic

screening literature (and also from oligopolistic models, as reviewed below).

All in all, the applied literature, as well as casual observations, suggest that correlation in

consumer preferences is not only empirically relevant, but also consequential for pricing and product

design. Yet, theory is mostly silent about how comovements between consumers’ tastes for quality

and brand loyalty affect market outcomes under competition. We try to fill this gap.

Model and Results

We embed the canonical Mussa and Rosen (1978) model of price discrimination into a Hotelling

framework, with two firms located at the extremes of a liner city. Crucially, the transportation cost

faced by a consumer (which determines her propensity to switch brands) is assumed to vary with her

taste for quality. Accordingly, “high types” (i.e., those consumers with a high valuation for quality)

may be more or less loyal to the their preferred brand than “low types.” As we shall see, this degree

of flexibility is crucial to explain the diversity of market outcomes observed under competition.

Firms simultaneously offer menus of price-quality pairs designed to screen consumers’ unobserved

tastes for quality. Firms are blind to consumer brand preferences (i.e., their location in the Hotelling

line), reflecting the anonymity of past market transactions, or privacy regulation.

To fix ideas, we first revisit the case of a “balanced duopoly,” where the intensity of consumers’

brand preferences is independent of their tastes for quality. In line with the seminal works of Arm-

strong and Vickers (2001) and Rochet and Stole (2002), we find that quality provision is efficient in

equilibrium provided consumers have mild brand preferences. We however depart from these contri-

butions, rather following Bénabou and Tirole (2016), on how to model the consumers’ comparison

between purchasing inside or outside goods. Crucially, in our model, variations in the intensity of

brand preferences do not affect participation decisions (as the relative value of one’s preferred brand

vis-à-vis the outside option is held constant), enabling us to cover the whole spectrum of competitive

3A similar pattern is found by Durrmeyer (2020), who studies the automobile market in France. She finds that

consumers with stronger preferences for “green” attributes (favoring cars which fuels emit less CO2) are the most

sensitive to automobile prices.
4There is indeed robust empirical evidence showing that the time spent watching TV is negatively correlated with

household income. See for instance Nielsen (2015).
5Another possibility is suggested by the behavioral literature on rational inattention (see Gabaix 2014 and the

references therein). This literature argues that consumers who spend more money on a product (premium cable TV)

tend to be more attentive to its price, and therefore more likely to switch brands in response to price differences.
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intensity. Accordingly, we show that, as consumers become more loyal to their preferred brands, the

equilibrium approaches the monopolistic outcome of Mussa and Rosen (1978).6

In the general case where brand loyalty is type-specific, our analysis delivers four main insights.

First, relative to its efficient level, equilibrium menus over-provide quality at the top of the product

line if the propensity of low-type consumers to switch brands is small relative to that of high types.

Intuitively, under this form of preference correlation, firms enjoy more market power among low

types, who then obtain lower payoffs in equilibrium. To avoid profit dissipation (stemming from low

types selecting the premium product, which profit margin is smaller), firms then inefficiently raise

the quality of the premium product. This is is consistent with the aforementioned contribution of

Crawford, Scherbakov and Shum (2019), who estimate “low types” to be less prone to switch cable

companies, while finding that cable companies design premium packages of inefficiently high quality.7

Conversely, equilibrium menus under-provide quality at the bottom of the product line if the

propensity of high-type consumers to switch brands is small relative to that of low types. The intu-

ition is the mirror image of that from the previous case: Here, firms enjoy more market power among

high types, who then obtain lower payoffs in equilibrium. To avoid profit dissipation (stemming now

from high types selecting the baseline product), firms then inefficiently reduce the quality of the

baseline product. This prediction is consistent with McManus (2007), who finds that (oligopolistic)

coffee shops distort product sizes for “sweet espresso” drinks, choosing inefficiently small servings

except at the largest cup size.8 It is also consistent with anecdotal evidence from airline services:

lack of comfort is common in economy class seats, which are typically foregone by business travelers

exhibiting more brand loyalty than cheapskate tourists.

Second, we show that asymmetric information about one’s tastes for quality may either benefit

or hurt consumers, depending on the correlation between preferences for quality and brand loyalty.

To understand the novelty of this finding, let us reconsider the monopolist benchmark of Mussa

and Rosen (1978). Because of the self-selection constraints inherent to price discrimination, all

types (weakly) benefit from privately knowing their tastes for quality (i.e., informational rents are

necessarily non-negative). This conclusion holds true under competition if the consumers’ brand

loyalty is independent of their tastes for quality. The reason is that low types obtain zero payoffs

whenever incentive constraints bind, which implies they are indifferent between the cases of com-

plete and asymmetric information about their preferences. In turn, high types gain even more from

asymmetric information as one moves from monopoly to duopoly. The reason is that asymmet-

6In contrast to our paper, Bénabou and Tirole (2016) study competition in linear contracts in a common-value

environment.
7See also Crawford (2012) for an earlier discussion on how to measure quality distortions in empirical models of

differentiated product demand.
8McManus (2007) posits in his structural model that price sensitivity is constant, being therefore orthogonal to

(random) preferences over product attributes. It is likely though that consumers of “sweet espresso drinks,” which are

the most differentiated across shops, have strong brand preferences, the more so for those who consume more coffee.
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ric information magnifies competition, as relinquishing more utility to high types relaxes incentive

constraints, increasing the efficiency of low-type contracts.

By contrast, informational rents are negative to high types (but positive to low types) if brand

loyalty is higher among low types. The reason is that, under this form of preference correlation,

asymmetric information alleviates competition for high types, as relinquishing more utility to these

consumers tightens incentive constraints, decreasing the efficiency of premium products. Conversely,

increasing the indirect utility of low types alleviates the upward distortion at the top of the product

line, which intensifies competition for high-type consumers. As a result, private information about

one’s tastes benefits low types but hurts high types.

On the other hand, informational rents are positive to high types (but negative to low types)

if brand loyalty is higher among high types. The reason is that, under this form of preference

correlation, asymmetric information alleviates competition for low types, as relinquishing more utility

to these consumers tightens incentive constraints, decreasing the efficiency of baseline products.

Conversely, increasing the indirect utility of high types alleviates the downward distortion at the

bottom, which intensifies competition for these consumers. Therefore, private information about

one’s tastes benefits high types but hurts low types. Under either form of preference correlation,

these results infirm the received wisdom according to which consumers are better off under second-

rather than third-degree price discrimination (where, due to complete information, pricing by firms

is not constrained by consumer self-selection) - see, for instance, Varian (2006). In other words,

informational rents may well be negative under competition.

Third, we develop a number of comparative statics on pricing and quality provision that eluded

previous analysis. For instance, we find that, as low types (resp., high types) become more prone to

switch brands, quality provision increases (resp., decreases) along the product line. Moreover, welfare

decreases (resp., increases) as low types become more prone to switch brands if quality provision is

excessive at the top (resp., deficient at the bottom) of the product line. Relatedly, we also show

that the price charged to low types is non-monotone in the brand loyalty of high-type consumers.

The latter implications are testable, and further differentiate our model from other theories of price

discrimination under competition (more on this below).

Fourth, we show that pure-strategy equilibria fail to exist whenever brand loyalty is sufficiently

different across consumers types, which implies equilibria are necessarily in mixed strategies. This

non-existence result is driven by the interplay between self-selection constraints and the fact that

different types exhibit different propensities to switch brands. Accordingly, our theory identifies a

new rationale for price/quality dispersion in private-value settings, unlike previous literature that

relates dispersion to search or informational frictions (as in Varian 1980 or Burdett and Judd 1983).9

9We cautiously interpret this result as consistent with the fact that many oligopolistic markets practicing second-

degree price discrimination are “unstable,” in that product features and prices are constantly revised by competing
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Importantly, we also characterize mixed-strategy equilibria, producing new (testable) predictions

about the distribution of market offers.

Paper Outline

The rest of the paper is organized as follows. Section 2 sets up the model. Section 3 derives

some preliminary results, and revisits the benchmark where the intensity of brand preferences is in-

dependent of consumers’ tastes for quality. To introduce the main ideas behind our results accessibly,

sections 4 and 5 consider two polar instances of our model. Section 4 studies the bottom-of-barrel

duopoly, where low types exhibit varying degrees of brand loyalty, while high types see firms as ho-

mogenous. This terminology reflects the fact that there is perfect competition for those consumers

with the highest potential to boost firms’ profits (namely, the high types). In turn, section 5 studies

the opposite polar case, the cream-skimming duopoly, where low types see firms as homogenous,

but high types are loyal to their preferred brands. There is “cream to be skimmed” in that firms

enjoy market power among those consumers with the largest profit potential. Section 6 considers

the general case where there is imperfect competition for all types of consumers. Section 7 describes

important extensions to our baseline model, including the case of a continuum of types. Section 8

collects the empirical implications, and concludes. Proofs are in the Appendix at the end of the

document.

We conclude this introduction by briefly reviewing the pertinent literature.

1.1 Related Literature

This article primarily contributes to the literature that studies imperfect competition in nonlinear

pricing schedules (see Stole 2007 for a comprehensive survey).

In one strand of this literature, Stole (1991), Ivaldi and Martimort (1994) and Martimort and

Stole (2009) study duopolistic competition in nonlinear price schedules when consumers can purchase

from more than one firm. Calzolari and Denicolò (2013) evaluate the welfare impact of exclusive

contracts (whereby firms offer discounts to consumers who buy nothing from the competitor), and

market-share discounts (i.e., discounts that depend on the seller’s share of a consumer’s total pur-

chases).10 These papers speak to markets where goods are divisible and/or exhibit some degree of

complementarity, whereas our analysis is relevant for markets where purchases are exclusive (e.g.,

most markets for durable goods).

As mentioned above, our work is more closely related to Rochet and Stole (1997, 2002) and

Armstrong and Vickers (2001). Several differences between our paper and these classic contributions

firms (e.g., air travel). Some of these markets do not suffer from severe informational frictions, but do seem to exhibit

heterogeneity in consumers’ brand loyalty.
10Relatedly, Calzolari and Denicolò (2015) analyze the effect of exclusive dealing when firms are asymmetric and

consumers’ valuations for the product are private information.

5



stand out: First, these works focus on the case where the propensity to switch brands is independent

of one’s tastes for quality. By contrast, our focus is on the more challenging case where preferences

co-move. Second, these papers adopt a “standard” Hotelling framework, in which consuming the

outside option does not require incurring the transportation cost. As explained in more detail below,

this specification conflates changes in the degree of competition across firms with changes in the

attractiveness of the outside option. Bypassing this limitation renders our model more tractable,

while permitting a clear interpretation of comparative statics.11,12

Another closely related paper is Ellison (2005), who examines a competitive price discrimination

framework related to ours, while assuming that consumers with higher valuations for quality have

stronger brand preferences. Crucially, Ellison takes qualities as exogenous, therefore focusing solely

on the equilibrium choice of prices. The emphasis of his work is in comparing two settings; one of

complete information about prices, the other where consumers fail to observe the price of “upgrading”

the product before getting to the store.13 By contrast, the simultaneous choice of price and quality

is at the heart of the present paper, which also considers the opposite preference correlation pattern,

investigates the possibility of price/quality dispersion, among many other aspects not present in

Ellison’s contribution.

In turn, Bonatti (2011) develops a model of nonlinear pricing with competition where consumers’

tastes for quality are brand-specific. In this setting, conditional on choosing a given brand, high-

type consumers are more brand loyal than low types, thus requiring larger discounts to switch

brands. Importantly, this comovement is hard-wired to the structure of heterogeneity in Bonatti’s

contribution. In our model, by contrast, consumers’ tastes for quality do not vary across brands,

which allows us to exogenously change the brand loyalty of each type of consumer. Bonatti finds

that quality levels are distorted downwards in equilibrium, which also occurs in our model when

high-type consumers are less prone to switch brands.

More recently, Chade and Swinkels (2019) propose a model where vertically differentiated firms

compete to screen consumers with private information about their willingness to pay for quality.

Firms are differentiated in their ability to produce different quality levels, which leads to segmentation

in equilibrium. As in here, they note the possibility of non-existence of pure-strategy equilibrium.

We see both models as offering complementary contributions: Whereas firms are asymmetric in their

ability to serve different consumer types in Chade and Swinkels (2019), the asymmetry in the current

paper rather pertains to the brand loyalty of different consumer types.

11This limitation is naturally absent in models where consumers exhibit no brand tastes, such as Champsaur and

Rochet (1989). In their model, firms are able to commit to a range of qualities before choosing prices, which may

generate market power. Our analysis holds unchanged under this alternative timing assumption.
12Other models exhibiting the demand specification of Rochet and Stole (2002) employ numerical solution methods.

Examples include Borenstein (1985), Borenstein and Rose (1994), Wilson (1993), and Yang and Ye (2008). See also

Stole (1995) for the case where firms compete observing consumers’ brand preferences, but not their tastes for quality.
13See also Verboven (1999).
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Finally, Dessein (2003, 2004) studies competition between telecommunication networks for users

with heterogenous calling patterns who self-select into their preferred calling plans. In his 2003

contribution, Dessein provides general conditions under which access charges do not affect profits.

Dessein (2004) revisits this question in a setting where heavy and light users perceive the substi-

tutability of the competing networks differently. He then shows that access charges (more often)

affect profits, and provides sufficient conditions for the complete-information outcome to violate in-

centive constraints. We complement Dessein’s contribution by developing a complete equilibrium

analysis.

Our counter-intuitive comparative statics also relate to classic contributions in price theory,

where discrimination (in the form of menus) is absent. For instance, Dorfman and Steiner (1954) show

that, as firms’ market power goes down (as measured by an increase in the elasticity of substitution),

quality provision can either increase or decrease, as so does welfare.14 More recently, Chen and

Riordan (2008) show, in the context of a random utility model, that duopoly may lead to higher

prices than monopoly, as increasing product variety may reduce the price-elasticity of demand. By

contrast, our results are driven by the interplay between asymmetric information (manifested in the

incentive constraints that shape the firms’ decisions) and competition, as captured by the varying

degrees of consumers’ brand loyalty.

2 Model

There is a unit-mass continuum of consumers with single-unit demands for a vertically differentiated

good. Consumers are heterogeneous in their tastes for quality, denoted by θ, and their tastes for

brands, denoted by x. For each consumer, θ is a draw from a distribution with binary support

{θl, θh} ⊂ R++, where ∆θ ≡ θh − θl > 0, and associated probabilities pl and ph (with pl, ph > 0 and

pl = 1 − ph).15 As is the Hotelling model, x is uniformly distributed over the unit segment [0, 1],

and independent of θ.16 The pair (θ, x) is private information of each consumer, and independently

drawn across consumers. For convenience, we abuse terminology and refer to the quality taste θ as

the consumer’s type.17

There are two firms associated with the two ends of the unit segment, indexed by j ∈ {a, b}.
We assume that each firm’s offer consists of a menu of quality-price pairs.18 We let (qjk, y

j
k) be the

quality-price pair designed by firm j for consumers whose taste for quality is θk, where k ∈ {l, h}.
14See Dranove and Satterthwaite (2000) for a modern treatment of this seminal contribution.
15See subsection 7.1 for the case of a continuum of types.
16See subsection 7.2 for other discrete-choice specifications.
17This terminology reflects the fact that firms cannot screen consumers’ tastes for brands.
18We thus rule out stochastic as well as reciprocal mechanisms (where the offer of a firm may depend on that of its

competitor). Given our restriction to menus of price-quality pairs, it is without loss of generality to suppose firms’

menus have the same cardinality as the support of consumers’ tastes for quality (which is two in the baseline model).
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A menu is then denoted by mj ≡ ((qjk, y
j
k) : k ∈ {l, h}). Our choice of labels implies that type-k

consumers (i.e., those with taste for quality θk) prefer the contract (qjk, y
j
k) to the contract designed

to the other consumer type. This leads to the following incentive-compatibility constraints:

ICk : ujk ≡ θkq
j
k − y

j
k ≥ θkq

j

k̂
− yj

k̂
where k, k̂ ∈ {l, h}, k 6= k̂.

We refer to ujk as type-k’s indirect utility under firm j’s menu.

A consumer with brand taste x ∈ [0, 1] and taste for quality θk prefers purchasing from firm a

rather than firm b if and only if

uak − tkx ≥ ubk − tk(1− x),

where the brand loyalty parameter tk ≥ 0 captures the intensity of brand preferences by type-k

consumers. The comparison between tl and th determines whether consumers with low or high

tastes for quality are more prone to switch brands in response to changes in firms’ offers.

Following Bénabou and Tirole (2016), we assume that consumers brand tastes do not affect the

comparison between one’s preferred brand and the outside option. Namely, a consumer with brand

taste x ∈ [0, 1] and taste for quality θk prefers the contract offered by firm a relative to the outside

option if and only if

uak − tkx ≥ tk max {−x,−(1− x)} , (1)

and analogously for firm b. Intuitively, consumers have the option to choose among the products

of non-strategic fringe suppliers, or non-market substitutes, that mimic the characteristics of each

firm j, therefore inheriting their respective taste shocks. The max operator in the right-hand side of

(1) means that consumers pick their preferred outside good. This specification allows us to vary the

intensity of brand preferences (across consumer types), without affecting the relative value of non-

participation. Indeed, condition (1) boils down to uak ≥ 0 for x ≤ 1
2 , and implies that, whenever both

firms make positive sales, the relevant margin for pricing is always the competitive one (substitution

towards the competing firm), never the participation one (substitution towards the outside option).19

In light of the above, it is without loss of generality to restrict attention to implementable menus,

which are those that satisfy, for each k, constraint ICk and the standard individual rationality

constraint IRk: u
j
k ≥ 0. For a given profile of menus (ma,mb), the demand for firm a’s contract to

type-k’s consumers is then:20

Da
k(ma,mb) = pkI

(
1

2
+
uak − ubk

2tk

)
, where I(x) ≡ min {max{0, x}, 1} .

Firms incur a per-unit cost ϕ(q) for providing a good of quality q. The cost function ϕ(·) is twice

continuously differentiable, strictly increasing and strictly convex. It also satisfies ϕ(0) = ϕ′(0) = 0

19By contrast, in the standard Hotelling framework, changes in tk simultaneously affect substitution and participation.

Disentangling these two effects helps interpretation and tractability of the model, as we discuss in the next section.
20The min/max operators in the definition of function I(·) reflect the fact that type-k demand is between 0 and pk.

8



and limq→∞ ϕ
′(q) =∞, which guarantees that the efficient qualities,

qek ≡ arg max
q

θkq − ϕ(q),

exist and are strictly positive for both consumer types, as so are the efficient surplus Sek ≡ θkqek−ϕ(qek).

Therefore, the profit by firm j ∈ {a, b} per sale of contract (qjk, y
j
k) equals yjk − ϕ(qjk), and its

total profit under the menu profile (ma,mb) is∑
k∈{l,h}

Dj
k(m

a,mb)
(
yjk − ϕ(qjk)

)
.

Firms simultaneously post menus, after which each consumer chooses her preferred contract across

firms’ menus. A (possibly mixed) strategy by each firm is a distribution over implementable menus

σj . A symmetric equilibrium (for short, equilibrium), possibly in mixed strategies, is a distribution

over implementable menus σ∗ that is a best response to itself.

3 Preliminaries

3.1 A change of variables

Similarly to Armstrong and Vickers (2001), we find it convenient to formulate the firms’ problems in

terms of indirect utilities, rather than price-quality pairs. To this end, the next lemma answers the

following question: which menu m maximizes a firm’s profit conditional on delivering the indirect

utility profile (ul, uh)? We drop the superscript j to lighten notation.

Lemma 0. [Incentive Compatibility] Consider an equilibrium menu m = {(ql, yl) , (qh, yh)}, and

let (ul, uh) be its profile of indirect utilities. Then the menu’s qualities are given by

ql (ul, uh) =

{
uh−ul

∆θ if uh − ul < qel ∆θ

qel if uh − ul ≥ qel ∆θ
and qh (ul, uh) =

{
uh−ul

∆θ if uh − ul > qeh∆θ

qeh if uh − ul ≤ qeh∆θ.

Given (ul, uh), one can determine via Lemma 0 the equilibrium quality levels (ql, qh), and hence

also the prices (yl, yh) of any equilibrium menu. It is therefore convenient to abuse notation and

identify each menu to its indirect-utility profile: m = (ul, uh). The surplus generated by each contract

k ∈ {l, h} in menu m = (ul, uh) is then given by

Sk(ul, uh) ≡ qk (ul, uh) θk − ϕ (qk (ul, uh)) .

As previous literature has shown, in the monopolistic (or Mussa-Rosen) menu, the individual

rationality constraint for low-valuation consumers (IRl) binds (ul = 0), as so does the incentive

constraint for high-valuation consumers (ICh). In light of this, the high-type indirect utility at the

monopolist’s solution, denoted by u∞h , is such that

u∞h = arg max
uh≥0

{plSl(0, uh) + ph (Seh − uh)} .
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High types obtain no rents (u∞h = 0) and low types are not served (q∞l = 0) in case θl − ph
pl

∆θ ≤ 0.

Otherwise, u∞h > 0 is implicitly given by

pl
ph

∂Sl
∂uh

(0, u∞h )− 1 = 0, (2)

in which case low-type consumers are offered a positive but inefficiently low quality level. We denote

this menu by m∞ ≡ (0, u∞h ). By contrast, consumers appropriate the entire efficient surplus in

the perfectly competitive (or Bertrand) menu m0 ≡ (Sel , S
e
h), where quality provision is efficient to

consumers of all valuations and firms derive zero profits from each contract in the menu.

3.2 Balanced Duopoly

Before analyzing the full-fledged model, we shall first revisit the case of a “balanced duopoly,”

where brand loyalty is invariant to type. This is the subject of the next proposition, where we let

η̄ ≡ Seh − qel ∆θ.

Proposition 0. (Equilibrium: Balanced Duopoly) Suppose the intensity of brand preferences

is the same across types, and let t ≡ tl = th. Then there exists a unique pure-strategy equilibrium,

which is such that:

(a) If t ∈ [0, η̄], u∗k = max {Sek − t, 0} for k ∈ {l, h}. Quality provision is efficient.

(b) If t > η̄, u∗l = 0 and, whenever positive, u∗h is implicitly given by

Seh − u∗h
t

+

(
pl
ph

∂Sl
∂uh

(0, u∗h)− 1

)
= 0. (3)

Moreover, u∗h is decreasing in t, and converges to the monopolistic level u∞h as t grows un-

bounded. Quality is efficiently (resp., under-) provided to high-type (resp., low-type) consumers.

When t is small (i.e., t ≤ Sel ), the equilibrium is close to the perfectly competitive outcome, where

neither individual rationality or incentive constraints bind. Accordingly, quality is efficiently provided

to consumers of all valuations, and firms’ markups are constant across the product line (and equal to

t). This outcome coincides type-by-type with that of a Hotelling model where consumer valuations

are observable. Moreover, it can be implemented by the “cost-plus-fee” tariff T (q) ≡ t + ϕ(q), as

first observed by Armstrong and Vickers (2001) and Rochet and Stole (2002).

For t larger than Sel , the individual rationality constraint is binding for low-valuation consumers,

whose surplus is fully extracted by firms. As long as t ≤ η̄, this is the only binding constraint, and

quality provision remains efficient to both consumer types.21 Otherwise, the incentive constraint

of high-valuation consumers also binds, and equilibrium is characterized by equation (3). As the

21Indeed, η̄ > Sel , as implied by the convexity of the cost function ϕ. This implies that constraint IRl binds “before”

(i.e, for smaller t’s) ICh in the balanced-duopoly case.
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Figure 1: Equilibrium in a balanced duopoly.

intensity of brand preferences increases (i.e., t grows large), firms are able to extract more rents from

high-valuation consumers, which requires decreasing the low-type quality away from its efficient level.

In the limit as t→∞, equilibrium converges to the monopolistic outcome. This is can be readily seen

from equation (3): Its first term vanishes as t grows unbounded, making the equilibrium condition

coincide with the monopolist’s optimality condition in equation (2).

Remark 1. (Previous literature) In the Hotelling specification considered by Rochet and Stole

(2002), for t in a neighborhood above 2
3S

e
l , firms are local monopolists for low-type consumers (who

have uniformly distributed reservation utilities), but compete under full market coverage for high

types. As a result, variations in t affect the intensity of brand preferences of the latter (whose

relevant comparison is across firms’ contracts), while affecting consumer participation for the former

(whose relevant comparison is between the closest firm and the outside option). As t grows large, the

volume of sales to consumers (of any type) shrinks to zero. In the current model, by contrast, the

relative value of the outside option is not affected by changes in t, which therefore can be identified

with the intensity of brand preferences. As a result, firms are never local monopolists, being always in

competition for both consumer types. This explains why, in the current model, equilibrium approaches

the monopolist outcome as consumers become more brand loyal.

4 Bottom-of-barrel duopoly

A bottom-of-barrel duopoly bears its name due to the fact that brand preferences are stronger

among those consumers who have the lowest willingness to pay for quality (and therefore the lowest

potential for profits). To capture this possibility in the starkest manner, we assume that high-

valuation consumers see firms as perfect substitutes, i.e., th = 0. In turn, the intensity of brand

preferences among low-valuation consumers is unconstrained, as tl is allowed to take any positive

value. To streamline the exposition, we assume that:

Assumption 1. ηh ≡ Seh − qeh∆θ > 0.

11



When the cost function has the power form, ϕ(q) = 1
aq
a, Assumption 1 is satisfied if and only

if aθl > θh. Intuitively, this assumption requires consumer types to be sufficiently close so that the

self-selection constraints affect equilibrium outcomes. If this condition is violated, we are left with

the less interesting case where the incentive constraint IC l never binds, and equilibrium is always

efficient and in pure strategies.22

Before describing the equilibrium, it is convenient to define the zero-profit h-type utility ůh as

the implicit solution to

Sh(0, ůh)− ůh = 0. (4)

In words, ůh is the highest indirect utility that firms can relinquish to high-type consumers while

obtaining zero profit from the high-type contract and fully extracting rents from low types. By virtue

of Assumption 1, ůh > qeh∆θ, which implies that the high-type quality of the menu (0, ůh) is distorted

upwards: qh(0, ůh) > qeh. More broadly, Assumption 1 guarantees that the incentive constraint IC l

binds whenever low-valuation consumers obtain a sufficiently low indirect utility in equilibrium.

The next proposition clarifies when a pure-strategy equilibrium exists.

Proposition 1. (Pure-Strategy Equilibrium) Suppose there is perfect competition for high types

(th = 0), but imperfect for low types (tl > 0). Then:

(a) If tl ∈ (0, Sel − ηh], there is a unique pure-strategy equilibrium, with u∗l = Sel − tl and u∗h = Seh.

Quality provision is efficient.

(b) No pure-strategy equilibrium exists if tl ∈ (Sel − ηh, t̃l), where the threshold:

t̃l ≡ inf

{
tl :

∂Sh
∂ul

(0, ůh) <
1

2

pl
ph

(
1−

Sel
tl

)}
,

and t̃l ≡ ∞ if the inequality inside brackets is violated for all tl > 0.

(c) If tl ∈ [t̃l,∞), there is a unique pure-strategy equilibrium, with u∗l = 0 and u∗h = ůh. Quality is

efficiently (resp., over-) provided to low-type (resp., high-type) consumers.

As illustrated in Figure 2, Proposition 1 identifies three regions. When tl is small, the equilibrium

is as if there was complete information about agents’ valuations, as no incentive constraint binds.

Accordingly, quality is efficiently provided, and agents obtain the efficient surplus discounted by

firms’ profits tk (as in a complete-information Hotelling model). Because tl > th = 0, firms obtain

zero profits from high types, but a positive profit from low types.

When tl exceeds the threshold Sel − ηh, the “complete-information” equilibrium described above

can no longer be sustained, as constraint ICl would be violated. This means that no pure-strategy

equilibrium exhibits efficient quality provision. Perfect competition, however, implies that firms

22Namely, the equilibrium is such that u∗
l = max{Sel − tl, 0} and u∗

h = Seh.
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Figure 2: Equilibrium in a bottom-of-barrel duopoly.

obtain zero profit from high-type consumers. As a consequence, firms can ignore the existence of

high-type consumers and respond as if they were playing a Hotelling competition game where only

low types are present. These two observations imply that, if an equilibrium in pure strategies exists,

it has to satisfy

u∗l = Sel − tl and Sh(u∗l , u
∗
l )− u∗h = 0. (5)

Crucially, Assumption 1 implies that the high-type quality is above its efficient level in this putative

equilibrium.

There is always a profitable deviation to this putative equilibrium provided tl ∈ (Sel − ηh, Sel ].
It works as follows: the deviating firm grants a small discount δ > 0 to low types, which relaxes

the ICl constraint. This enables the firm to reduce the quality provided to high types, therefore

increasing the efficiency from their respective contracts (recall there was over-provision in the putative

equilibrium). Because there is perfect competition among high types, the deviating firm can then

adjust prices to slightly undercut its rival, conquering the whole high-type market and appropriating

the correspondent efficiency gain. That this deviation is profitable comes from the fact that the

profit gain among high types is of first-order magnitude, while the discount δ to low types entails

only a second-order profit loss.23 We refer to this strategy as the relax-and-undercut deviation, as it

involves relaxing incentive compatibility to enable undercutting the rival firm.

For tl > Sel , the IRl constraint necessarily binds. By the same reasoning above, if an equilibrium

in pure strategies exists, it has to be such that (u∗l , u
∗
h) = (0, ůh), where ůh is zero-profit h-type utility

from equation (4). The relax-and-undercut deviation above now produces a first-order profit gain

among high-types at the expense of a first-order profit loss among low types. The loss is now first-

order because the putative equilibrium utility u∗l = 0 is at the corner dictated by the IRl constraint

(therefore exhibiting a non-zero shadow cost). The race between these two effects is resolved in favor

of deviating if and only if tl is below the threshold t̃l. Intuitively, if brand preferences are mild (in

the sense that tl < t̃l), the business-stealing effect from discounting the low-type price is sufficiently

23To see why, note that u∗
l = Sel − tl in an interior optimum, therefore being a local maximand.
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large to render the relax-and-undercut deviation profitable. This is always the case when t̃l =∞.24

By contrast, when t̃l <∞, sufficiently intense brand preferences (in the sense that tl ≥ t̃l) bring

the pure-strategy equilibrium back to existence. The reason is that, when competition for low types

is mild, discounting the low-type price attracts too few extra customers, rendering the relax-and-

undercut deviation unprofitable. The putative equilibrium (u∗l , u
∗
h) = (0, ůh) is then an equilibrium.

Because ICl binds, high types are provided inefficiently high quality, while appropriating the full

(inefficient) surplus produced by their contract. Low types endure full rent extraction, as u∗l = 0,

and are offered their efficient quality level.

In sum, Proposition 1 reveals that, whenever the incentive constraint matters in a bottom-barrel

duopoly, a pure-strategy equilibrium exists (if at all) only when the intensity of brand preferences

is sufficiently different across consumer types. Else, the equilibrium exhibits dispersion of offers,

whereby firms randomize their choice of menus. In particular, the non-existence of pure-strategy

equilibria may be interpreted as a sign of market instability, as no pair of menus exists such that

firms can stick to their offers across time while best responding each other. Crucially, this result is

solely due to the interplay between asymmetric market power and self-selection constraints, which

contrasts with the received wisdom according to which, in private-value settings, dispersion of offers

stems from search/informational frictions faced by consumers (as in Varian 1980 and Burdett and

Judd 1983).

Dispersion of Offers. We now describe a mixed-strategy equilibrium when tl ∈ (Sel − ηh, t̃l). This

equilibrium exhibits the following property: across any two menus offered in equilibrium, the indirect

utilities offered to low- and high-type consumers co-move.25 This is the subject of the next definition,

first proposed by Garrett et al (2019):

Definition 1. [Ordered Equilibrium] A mixed-strategy equilibrium is said to be ordered if, for any

two menus M = (ul, uh) and M′ = (u′l, u
′
h) offered in equilibrium, ul < u′l if and only if uh < u′h. In

this case, the menu (u′l, u
′
h) is said to be more generous than the menu (ul, uh).

Because indirect utilities co-increase, every menuM = (ul, uh) offered in an ordered equilibrium

can be described by a support function Ul, strictly increasing and bijective, such that ul = Ul(uh).

Moreover, we can describe firms’ randomization solely in terms of F ∗h , the marginal cdf over the

indirect utilities offered to type-h consumers. This is so because, for any equilibrium menu, F ∗l (ul) =

F ∗h (uh), where F ∗l is the marginal cdf over type-l indirect utilities. As such, the joint distribution

over menus, denoted by F ∗, has support over the graph of the support function Ul, which (counter-)

domain is denoted by Υh (Υl).

24Whether t̃l is finite or not depends on parameters. For instance, if the cost is quadratic, ϕ(q) = 1
2
q2, t̃l = ∞ if

κl ≡ 1− 2 ph
pl

(
2θl−θh

∆θ

)
≤ 0, but equals t̃l =

S∗
l
κl
<∞ if κl > 0.

25In fact, we can establish a stronger statement; namely, that all mixed-strategy equilibria (if more than one exists)

are ordered.
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Denoting by EF ∗
l
[ũl] the mean of ul as induced by the cdf F ∗l , let us define

ůl ≡
Sel − tl + EF ∗

l
[ũl]

2
.

The next proposition characterizes a mixed-strategy equilibrium.

Proposition 2. (Mixed-Strategy Equilibrium) Suppose there is perfect competition for high types

(th = 0), but imperfect for low types (tl > 0). If Sel − ηh < tl < t̃l, there exists a mixed-strategy

equilibrium, which is ordered. In this equilibrium, the support of indirect utilities is an interval,

Υk = [uk, ūk], and the support function Ul(·) and cdf F ∗h of high-type’s indirect utilities jointly satisfy

Ul(uh)− ul = 2

(
Sh(Ul(uh), uh)− uh
∂Sh
∂ul

(Ul(uh), uh)

)(
Ul(uh)− ůl

Ul(uh) + ul − 2ůl

)
∀ uh ∈ [uh, ūh],

and

F ∗h (uh) =
pl
ph

(
Ul(uh)− ůl

tl

)(
∂Sh
∂ul

(Ul(uh), uh)

)−1

∀ uh ∈ [uh, ūh],

with boundary conditions

ul = max {ůl, 0} , uh = Sh(ul, uh), ūl = Ul(ūh), and ūh = (F ∗h )−1 (1).

Moreover, F ∗h is absolutely continuous at any uh ∈ (uh, ūh]. When tl is sufficiently large, in which

case ůl < 0, F ∗h exhibits a mass point at uh (i.e., F ∗h (uh) > 0).

The characterization of Proposition 2 clarifies how equilibrium transitions from being in pure,

then mixed, and then (possibly) again in pure-strategies as tl increases. Namely, it identifies two

varieties of mixed-strategy equilibria. In the first variety, the IRl constraint is slack at all equilibrium

menus, or, equivalently, the least generous menu offers a positive indirect utility to low-valuation

consumers: ul > 0. This occurs when tl is sufficiently small, in which case the cdf F ∗h has no mass

points. By contrast, for tl sufficiently large, the IRl constraint binds in the least generous menu

(ul, uh) = (0, ůh), which is then a mass point of the mixed strategy F ∗. As revealed by Proposition

1, whenever t̃l is finite, the probability of this mass point is one (i.e., a pure strategy equilibrium

resumes existing) if tl is large enough (namely, larger than t̃l).

Equilibrium Properties. As firms’ market power is higher among low-type consumers, the con-

straint ICl binds in all equilibrium menus, which therefore exhibit over-provision of quality in the

high-type contract. This observation is key to understand the ordered property of equilibrium, which

is intimately related to the relax-and-undercut deviation described above. Intuitively, firms differen-

tiate themselves according to how big is the “discount” they give to low-type consumers. Those firms

who grant the largest discounts are able to undertake the greatest reductions in the quality provided

to high types, therefore obtaining the largest welfare gains. The larger is the surplus produced by
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the h-type contract, the larger is the incentive to relinquish more indirect utility to high types, so as

to expand demand. As a consequence, the firms who offer the highest indirect utilities to low types

(i.e., those who “discount” more) are also the ones that offer the highest indirect utilities to high

types, i.e., menus are ordered.

Moreover, the quality of high-type contracts is smaller, while the efficiency is larger, the more

generous is the firm. The latter property implies that firms offering more generous menus obtain

a larger profit share from consumers with high types, and lower from those with low types. The

following corollary summarizes this discussion.

Corollary 1. (Mixed-Strategy Equilibrium: Properties) Consider the mixed-strategy equilib-

rium of Proposition 2. All equilibrium menus exhibit over-provision of quality at the top and efficient

provision at the bottom of the product line. More generous menus exhibit lower qualities at the top

(less distortion), and generate a higher (resp., lower) share of their profit from high-type (resp.,

low-type) consumers.

Dispersion of offers has also interesting implications regarding the effects of private information

on consumers’ payoffs (vis-à-vis the complete-information benchmark). First, high-type consumers

obtain negative informational rents (i.e., they would like to provide verifiable information about their

tastes for quality, if that was possible). The reasons are twofold: First, firms obtain positive profits

from selling to high types, even though there is perfect competition for such consumers; second, the

contract tailored to these consumers is inefficient (due to over-provision of quality). As a result,

the rent left to high types (difference between surplus and profit) is necessarily smaller than under

complete information. Conversely, firms obtain lower profits among low types than under complete

information, as ul > max{0, Sel − tl}, even though quality is efficiently provided to such consumers.

As a result, private information is beneficial to low-type consumers, i.e., informational rents are

positive.26 These insights generalize well beyond the bottom-barrel case, as described in Section 6.

5 Cream-skimming duopoly

Just like in some markets low-valuation consumers have stronger brand preferences than those with

high-valuations (e.g., cable TV), in others the reverse pattern is verified (e.g., air travel). Similarly

to the bottom-barrel case, this section considers the starkest version of this asymmetry, assuming

there is perfect competition for low types, tl = 0, but imperfect competition for high types, th > 0.

26The distribution of market offers from Proposition 2 sharply differs from that obtained in Garrett et al (2019),

where dispersion is due to informational frictions. First, the patterns of quality distortions are reversed (over-provision

at the top of the product line, rather than under-provision at the bottom). Second, informational rents can be negative

in our model, whereas they are always positive in Garrett et al (2019). Third, in contrast to our theory, the latter

paper predicts that the distribution of menus never exhibits mass points.
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Figure 3: Equilibrium in a cream-skimming duopoly.

Because firms’ market power is stronger among those consumers who have the highest willingness to

pay, we refer to this case as the cream-skimming duopoly.

The analysis that follows is parallel to that of the last section. We adopt analogous notation by

defining ηl ≡ Sel + qel ∆θ, and observing that Seh − ηl > 0 (due to the convexity of the cost function).

The next proposition is the counterpart to Proposition 1 in the context of a cream-skimming duopoly.

Proposition 3. (Pure-Strategy Equilibrium) Suppose there is perfect competition for low types

(tl = 0), but imperfect for high types (th > 0). Then:

(a) If th ∈ [0, Seh − ηl], there is a unique pure-strategy equilibrium, with u∗l = Sel and u∗h = Seh − th.

Quality provision is efficient.

(b) No pure-strategy equilibrium exists if th ∈ (Seh − ηl, t̃h), where the threshold:

t̃h ≡ inf

{
th :

∂Sl
∂uh

(0, 0) <
1

2

ph
pl

(
1−

S∗h
th

)}
,

and t̃h ≡ ∞ if the inequality inside brackets is violated for all th > 0.

(c) If th ∈ [t̃h,∞), there is a unique pure-strategy equilibrium, with u∗l = u∗h = 0. Quality is

efficiently provided to high-type consumers, while low-types are not served (q∗l = 0).

Proposition 3 is illustrated in Figure 4. When th is small, the equilibrium is in pure strategies and

coincides with that under complete information. As th exceeds the threshold Seh − ηl, the incentive

constraint ICh starts to bind. Because competition is perfect, any pure-strategy equilibrium has

to generate zero profit from sales to low-type consumers. This is turn implies that the equilibrium

outcome in the high-type market has to be as if no other consumer type existed, which leads to the

putative equilibrium

Sl(u
∗
l , u
∗
l )− u∗l = 0 and u∗h = Seh − th. (6)

Crucially, that th > Seh−ηl implies that the low-type quality is below its efficient level in this putative

equilibrium.
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The following deviation, analogous to the relax-and-undercut deviation considered in the last

section, increases profit whenever th ∈ (Seh− ηl, Seh]. It consists on granting a small discount to high-

valuation consumers, which relaxes the ICh constraint. This enables the deviating firm to increase

the quality provided to low types, therefore increasing the efficiency from their respective contracts

(recall there was under-provision in the putative equilibrium). Because there is perfect competition

among low types, the deviating firm can then adjust prices to slightly undercut its rival, conquering

the whole low-type market and appropriating the correspondent efficiency gain. As in the bottom-of-

barrel case, this deviation trades off a first-order gain (among low types, whose quality was inefficient)

with a second-order loss (on the profits collected from high types).

For th > Seh, the IRh constraint necessarily binds, and, by the same reasoning above, the pure-

strategy equilibrium (if it exists) is such that (u∗l , u
∗
h) = (0, 0). Accordingly, low types are not served,

while high types get efficient quality but no rents. The relax-and-undercut deviation continues to

work provided th is not too high (in the sense that th < t̃h). This guarantees that the profit loss from

giving a discount to high types is not too large relative to the profit gain from serving the whole

low-type market (left unserved in the putative equilibrium).

By contrast, if brand preferences are sufficiently intense among high types (in the sense that

th ≥ t̃h), the relax-and-undercut deviation is no longer profitable (a result of the business-stealing

effect among high types being too small). The putative equilibrium is then an equilibrium, and low

types are excluded from the market.27 This occurs notwithstanding low types being “up for grabs”

(they see firms as homogenous) and exhibiting a positive willingness-to-pay for quality. It is precisely

because serving low types dissipates profits from (the very profitable) high types that exclusion at

the bottom occurs, similarly to what happens under monopoly.

The question of whether firms can sustain in equilibrium the full extraction of high-type rents

(which requires not serving low types) is reminiscent of recurring price/quality cycles in airline

markets. Anecdotal evidence suggests that, in some routes served by multiple airlines, prices are

high for extended periods of time, which effectively shuns cheap-stake tourists who would only

buy low-priced tickets. One of the competing airlines then changes its strategy, trying to absorb

this latent demand by introducing a “low-cost” alternative (of substantively lower quality), while

decreasing regular fares. In some cases, such low-cost alternatives prove unprofitable, and the high-

price outcome is restored. The fast-moving nature of these markets, where product features and

prices are typically “unstable” and short-lasting, echoes the non-existence of pure strategy equilibria

described in Proposition 3.

Dispersion of Offers. Similarly to the bottom-barrel case, a mixed-strategy equilibrium exists

(i.e., offers are dispersed) whenever no pure-strategy equilibrium can be found. The structure of the

27As in the bottom-of-barrel case, whether t̃h is finite depends on parameters. If the cost is quadratic, t̃h = ∞ if

κh ≡ 1− 2 pl
ph

θl
∆θ
≤ 0, but equals t̃h =

S∗
h
κh

<∞ if κh > 0.
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mixed-strategy equilibrium is the mirror-image of its bottom-barrel counterpart. As firms’ market

power is higher among high-type consumers, it is the constraint ICh that binds (as opposed to ICl),

which implies there is under-provision of quality in the low-type contract of all equilibrium menus.

Reflecting the relax-and-undercut strategy, firms differentiate themselves according to how big is

the “discount” they give to high-type consumers, which enables them to provide higher quality to

low-type consumers (increasing surplus). This raises incentives to poach low types, which explains

why the equilibrium is again ordered.

Moreover, the quality and efficiency of low-type contracts increase as menus become more gen-

erous. As a result, the share of total profits obtained from low types also increases with the menu’s

generosity. Relative to complete information, equilibrium profits are lower for high types, but higher

(indeed, positive) for low types (which market is perfectly competitive). Private information renders

low types worse-off, but high types better-off. These predictions are the reverse of what happens

in the bottom-barrel case. For brevity, we leave the complete description of this equilibrium to the

Online Appendix.

6 Mid-barrel duopolies: The intermediate cases

The last two sections focused on the two extreme (but simpler) cases where there is perfect compe-

tition for one consumer type, but imperfect for the other. We characterized equilibria, unveiled the

patterns of over- or under- provision of quality, and showed that, relative to complete information,

asymmetric information always hurts some consumer type while benefits the other (which one is

hurt depends on the profile of brand preferences). In this section, we show that our main insights

are robust to environments where competition is imperfect for both consumer types. Completing the

equilibrium characterization also enables us to develop comparative statics away from the extreme

cases explored above.

6.1 Distortions

To describe the patterns of quality provision, let us define Λ(tl, th) ≡ th + max{Sel − tl, 0}, and recall

that ηh < η̄.28 Consider the following regions, illustrated in Figure 4:

E ≡
{

(tl, th) ∈ R2
++ : ηh ≤ Λ(tl, th) ≤ η̄

}
,

D+ ≡
{

(tl, th) ∈ R2
++ : Λ(tl, th) < ηh

}
, and D− ≡

{
(tl, th) ∈ R2

++ : Λ(tl, th) > η̄
}
.

As established in the next proposition, equilibrium quality provision is efficient in region E. By

contrast, quality is distorted upwards at the top (resp., downwards at the bottom) of the product

line in region D+ (resp., D−):

28Indeed, recall from from Sections 3 and 4 that ηh = Seh − qeh∆θ < Seh − qel ∆θ = η̄.
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Figure 4: Equilibrium distortions and brand substitutability across types.

Proposition 4. (Distortions) Suppose (tl, th) ∈ R2
++. Then:29

(a) If (tl, th) ∈ E, quality provision is efficient to both types. The unique equilibrium is in pure

strategies, with u∗k = max {Sek − tk, 0}, k ∈ {l, h}.

(b) For (tl, th) ∈ D+, there is over-provision of quality to high-type consumers in equilibrium.

(c) For (tl, th) ∈ D−, there is under-provision of quality to low-type consumers in equilibrium.

Recall from Proposition 0(a) that IC’s are slack in the “diagonal” (i.e., when tl = th) provided

the intensity of brand preferences is low (in the sense that tl = th < Sel ). The equilibrium is then

identical to that under complete information. Proposition 4(a) shows that the complete-information

outcome is an equilibrium provided brand preferences are not “too different” across consumer types

(in which case IC’s remain slack). The same holds true over the horizontal band in region E (in which

tl ≥ Sel ). The reason is that raising tl, while keeping th constant, does not affect firm’s incentives

(as u∗l is already at zero). So the balanced-duopoly equilibrium remains (the unique) equilibrium,

which is efficient.

It is worth noting that, in region E, although equilibrium is efficient away from the 45-degree

line, markups are not constant across contracts. This reveals that the cost-plus-fee pricing prediction

of Rochet and Stole (2002) is a knife-edge consequence of assuming that tl = th.

Let us now consider Claim (b), which reveals that, in region D+, over-provision of quality

at the top prevails in equilibrium, be it in pure or mixed strategies. This claim generalizes the

insights from the bottom-of-barrel duopoly to instances where competition is imperfect for high-type

consumers. Namely, it reveals that, fixing th > 0, over-provision of quality occurs in equilibrium if

29Notice that (tl, th) ∈ R2
++ implies firms payoffs are continuous in actions. Therefore, a symmetric Nash equilibrium

(in either pure or mixed strategies) is guaranteed to exist (by the usual arguments dating from Nash 1950).
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and only if tl is sufficiently high. The logic of this result is similar to that of Section 3: Any putative

equilibrium menu not exhibiting over-provision at the top is shown to either violate constraint ICl,

or to be suboptimal, provided the profile of brand preferences (tl, th) is in region D+. Intuitively,

low-types are significantly more brand-loyal than high types, constituting the market segment with

higher potential for profits. To prevent profit dissipation, whereby low types migrate to the high-

type contract, firms set the quality of the “premium” product inefficiently high, which renders such

product less attractive to low types.

Lastly, Claim (c) asserts that holding tl > 0 fixed, under-provision of quality occurs in equilibrium

if and only if th is sufficiently high. Again, this is true be the equilibrium in pure or mixed strategies.

The logic of this result is familiar: Any putative equilibrium menu not exhibiting under-provision

at the bottom is shown to either violate constraint ICh, or to be suboptimal, provided the profile of

brand preferences (tl, th) is in region D−. Intuitively, low-types are significantly less brand-loyal than

high types, who constitute the market segment with higher profit potential. This implies that quality

has to be under-provided at the bottom of the product line to prevent high types from purchasing

the low-quality good (which exhibits a smaller profit margin).

Having signed the equilibrium distortions at any profile of brand preferences (tl, th), we will now

study other properties of equilibria. We start with those in pure strategies.

6.2 Pure-strategy equilibrium

The following characterization paves the way for the comparative statics on prices and qualities

developed below. It also reveals that, whenever incentive constraints bind under competition, infor-

mational rents are always positive for some consumer type, but negative for the other.

Proposition 5. (Informational Rents) Let (u∗l , u
∗
h) be a pure-strategy equilibrium. Then no other

pure-strategy equilibrium exists. Moreover:

(a) If (tl, th) ∈ E, consumers obtain the same payoffs as under complete information.

(b) If (tl, th) ∈ D+, relative to the complete information benchmark, high types lose, while low types

gain from asymmetric information. Moreover, the equilibrium profile jointly satisfies

Sh(u∗l , u
∗
h)− u∗h + th

(
∂Sh
∂uh

(u∗l , u
∗
h)− 1

)
= 0 and

Sel − u∗l
tl

+

(
ph
pl

∂Sh
∂ul

(u∗l , u
∗
h)− 1

)
≤ 0,

where the second condition is an (in)equality if u∗l > 0 (u∗l = 0).

(c) If (tl, th) ∈ D−, relative to the complete information benchmark, high types gain, while low

types lose from asymmetric information. Moreover, the equilibrium profile jointly satisfies

Seh − u∗h
th

+

(
pl
ph

∂Sl
∂uh

(u∗l , u
∗
h)− 1

)
≤ 0 and Sl(u

∗
l , u
∗
h)− u∗l + tl

(
∂Sl
∂ul

(u∗l , u
∗
h)− 1

)
≤ 0,
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where the first condition is an (in)equality if u∗h > 0 (u∗h = 0), while the second condition is an

(in)equality if u∗l > 0 (u∗l = 0).30

In region E, the equilibrium is just like under complete information, as so are consumers’ payoffs.

The situation is different when incentive constraints bind. For instance, in region D+, con-

sider the simpler case where u∗l = 0. The equilibrium condition from Claim (b) reveals that u∗h is

determined by
Sh(0, u∗h)− u∗h

th︸ ︷︷ ︸
poaching gain

− 1︸︷︷︸
mark-up

loss per sale

+

(
∂Sh
∂uh

(0, u∗h)

)
︸ ︷︷ ︸

efficiency

loss per sale

= 0. (7)

Intuitively, when choosing how much utility to leave to high types, firms balance the gains from

poaching consumers away from the competitor, which is the first term in (7), with the per sale

loss from reducing the price, which is the second term, compounded with the efficiency loss from

tightening the incentive constraint, which is the last term. The latter is absent in the complete

information benchmark, what explains why informational rents are negative for high-type consumers:

u∗h = Sh(u∗l , u
∗
h)− th + th

∂Sh
∂uh

(u∗l , u
∗
h) ≤ Seh − th.

Intuitively, firms have less incentives to increase the high-type payoff relative to the complete in-

formation benchmark. The reason is that ICl binds, so raising uh tightens this constraint, thus

decreasing the efficiency of the high-type contract. The opposite applies to low types, for which

firms are more compelled to provide rents (so as to relax this constraint).

The same logic explains why, in region D−, relative to the complete information benchmark,

high types gain, while low types lose from asymmetric information. Intuitively, firms have an extra

incentive to increase high-type payoffs relative to the complete information benchmark. Namely, on

top of the usual poaching gains and mark-up losses, increasing uh relaxes the binding constraint ICh,

thus increasing the efficiency of the low-type contract. The opposite applies to low types, for which

firms are less compelled to provide rents (so as not to tighten this constraint).

Interestingly, the latter effect is shrouded in the balanced duopoly case, where ICh binds only

when u∗l = 0 (as, note from Figure 4, tl > Sel whenever the 45-degree line belongs to region D−). In

this case, low types obtain the same payoff as under complete information (zero), while high-types

obtain positive informational rents.

Proposition 5 derives the necessary conditions that the (unique) pure-strategy equilibrium satis-

fies, if it exists. The next proposition describes precisely when this occurs (beyond region E, where

it always exists).

30Because incentive compatibility requires that uh ≥ ul, if the first condition is an inequality, so is the second, in

which case u∗
h = u∗

l = 0.
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Figure 5: Existence of pure-strategy equilibrium in regions D+ (left panel) and D− (right panel),

when t̃l, t̃h =∞.

Proposition 6. (Characterization) Assume the cost function ϕ is quadratic. Then:

(a) Region D+: There exists a continuous function τh : (Sel − ηh,∞) → [0, ηh) such that a pure-

strategy equilibrium exists at (tl, th) ∈ D+ if and only if th ≥ τh(tl).
31

(b) Region D−: There exists a continuous function τl : (Seh − ηl,∞) → [0, ηl) such that a pure-

strategy equilibrium exists at (tl, th) ∈ D− if and only if tl ≥ τl(th).32

In light of the bottom-barrel and cream-skimming scenarios, it should not come as a surprise that

a pure-strategy equilibrium might fail to exist in regions D+ and D−. Indeed, Proposition 6 reveals

that no pure-strategy equilibrium exists “close” to the non-existence regions of the bottom-of-barrel

and cream-skimming cases, but that existence is assured “close” to region E. These ideas are made

precise by the existence of a threshold τh(tl) in region D+ (resp., τl(th) in region D−) such that a

pure-strategy equilibrium exists if and only if th (resp., tl) exceeds this threshold. See Figure 5 for

an illustration.

On a more technical level, the non-existence of a pure-strategy equilibrium relies on the fact

that best responses are not quasi-concave. For instance, consider the region D+ and fix some tl ∈
(Sel − ηh, t̃l). The proof of Proposition 6 first reveals that the best response is locally quasi-concave

at the putative equilibrium of Proposition 5 if and only if th is high enough. Otherwise, the putative

equilibrium is a saddle point of the best response, thus exhibiting a local profitable deviation. This

is the ultimate reason for why no pure-strategy equilibrium exists in the bottom-barrel case when

tl ∈ (Sel − ηh, t̃l).
Even when the best response is locally quasi-concave at the putative equilibrium of Proposition

5, we have to compare the putative equilibrium profit with that of all non-local deviations (due to

31Obviously, whenever t̃l <∞, the threshold τh(tl) = 0 for all tl ≥ t̃l.
32Obviously, whenever t̃h <∞, the threshold τl(th) = 0 for all th ≥ t̃h.
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failure of global quasi-concavity). In line with the analysis of the bottom-barrel case, we then show

that the best non-local deviation is the already familiar relax-and-undercut strategy.33 Under this

strategy, the deviating firm corners the high-type market, and raises the utility of low-type consumers

to relax the incentive constraint and increase the efficiency of the high-type contract. This deviation

improves upon the putative equilibrium profit if and only if th is small (as, otherwise, cornering the

high-type market requires relinquishing too much rents to consumers). We then obtain the threshold

structure of Proposition 6.

Ultimately, Proposition 6 shows that the main ideas behind the bottom-barrel and cream-

skimming scenarios are robust to environments where competition is imperfect for both consumer

types. In particular, the relax-and-undercut deviation preserves a central role in determining whether

a pure-strategy equilibrium exists.

6.3 Comparative Statics

We are now ready to derive comparative statics.

Proposition 7. (Comparative Statics on Quality and Payoffs) Consider a neighborhood

around (tl, th) ∈ R2
+ where the pure-strategy equilibrium exists. Then, for k ∈ {l, h},

∂u∗k
∂th

,
∂u∗k
∂tl

< 0, and
∂q∗k
∂th
≤ 0 ≤

∂q∗k
∂tl

,

with strict inequality for k = h (resp., k = l) if (tl, th) ∈ D+ (resp., (tl, th) ∈ D− and q∗l > 0).

Not surprisingly, the equilibrium indirect utility of both consumer types strictly decreases as

brand preferences (of either type) become more intense. More interesting, perhaps, is the effect on

qualities when some incentive constraint binds (otherwise, quality levels are efficient). In this case,

as high types develop more intense brand preferences, equilibrium quality levels go down. The reason

is the following: changes in th directly affect competition for high types, but only indirectly for low

types (through incentive constraints). As a result, an increase in th decreases u∗h faster than u∗l ,

what implies that the quality of the inefficient contract decreases. When constraint ICl is binding

(as in region D+), it is the high-type quality that is inefficient. As such, q∗h goes down (reducing the

distortion) as th goes up, whereas q∗l remains constant at its efficient level. In turn, when constraint

ICh is binding (as in region D−), it is the low-type quality that is inefficient. As such, q∗l goes

down (magnifying the distortion) as th goes up, whereas q∗h remains constant at its efficient level.

Therefore, variations in th can either increase or decrease equilibrium welfare, depending on whether

the preference profile (tl, th) belongs to regions D+ or D−. When (tl, th) lies in the efficient region

E, variations in th have no effect on equilibrium qualities.

33To prove this claim we relied on ϕ being quadratic. While we believe the result to be true more generally, its proof

is elusive.
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Mutatis mutandis, the same logic explains the effect of tl on equilibrium quality levels. Because

an increase in tl decreases u∗l faster than u∗h, the quality of the inefficient contract (if positive) shall

increase. Accordingly, an increase in tl strictly increases q∗h when (tl, th) ∈ D+ (magnifying the

distortion), but strictly increases q∗l when (tl, th) ∈ D− and q∗l > 0 (reducing the distortion).

The key take-away of Proposition 7 is therefore that, under self-selection constraints, competition

and welfare are often misaligned, in that more competitive markets (in the sense that consumers

are less brand-loyal) often produce lower welfare. At the heart of the matter lies the idea that,

under asymmetric information, contract offers are interdependent across consumer segments. This

interdependency renders competition welfare-decreasing whenever it tightens incentive constraints.

The comparative statics on prices is explored in the following result.

Proposition 8. (Comparative Statics on Prices) Consider a neighborhood around (tl, th) ∈ R2
+

where the pure-strategy equilibrium exists, and denote by (y∗l , y
∗
h) the equilibrium price profile. Then:

(a) If (tl, th) ∈ E, then y∗k = min {tk, Sek}.

(b) If (tl, th) ∈ D+, then
∂y∗l
∂tl

,
∂y∗l
∂th

,
∂y∗h
∂tl
≥ 0,

with strict inequality if and only if the constraint IRl is slack. Moreover, y∗h is decreasing in th

if IRl binds, but is quasi-convex in th if IRl is slack and ϕ′′′(q) ≤ 0.

(c) If (tl, th) ∈ D−, then
∂y∗h
∂th

> 0, and
∂y∗l
∂tl

,
∂y∗h
∂tl
≥ 0,

with strict inequality if and only if the constraint IRl is slack. Moreover, y∗l is decreasing in th

if IRl binds, but is quasi-convex in th if IRl is slack and ϕ′′′(q) ≤ 0.

Prices always increase with the intensity of brand preferences when the quality of the product is

set efficiently. This familiar intuition explains why prices increase with (tl, th) in region E, and why

the baseline price y∗l (resp., premium price y∗h) increase with (tl, th) in region D+ (resp., D−).

The analysis is more subtle when changes in the intensity of brand preferences jointly affect

quality provision and utility levels. This occurs, for instance, with the premium product when

(tl, th) ∈ D+. As tl increases, high types are worse-off (u∗h decreases), whereas the quality of the

premium product increases (q∗h increases), so y∗h has to increase as well. By contrast, as th increases,

high-type payoffs decrease, as so does the quality of the premium product. The latter effect dominates

when IRl binds, which implies the premium product becomes cheaper as high types become more

brand loyal. When IRl is slack, this pattern is more nuanced, as the premium price y∗h is U-shaped

in the brand loyalty parameter th.

A similar logic explains why, in region D−, the baseline product may become cheaper as high

types becomes more brand-loyal. When IRl binds, the baseline price goes down with th because the
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quality of the baseline product falls more than the equilibrium payoff of low types. When IRl is

slack, the race between quality and payoff changes leads to U-shaped pattern.

More broadly, Proposition 8 reveals that, under self-selection constraints, variations in the level

of prices are a misleading indicator of the degree of competition in the market. This is consistent

with the ambiguous relationship found in the empirical literature between the degree of competition

and the level of prices in markets characterized by self-selection. For instance, Chu (2010) documents

that cable companies in the US reacted to new competition by satellite television by raising both

price and quality (as determined by the available channels), with consumers benefiting overall from

the higher-priced offerings.

6.4 Mixed-strategy equilibria

In the mid-barrel case, a closed-form characterization of mixed-strategy equilibria is difficult to

obtain, as the support of equilibrium menus (and its cardinality) are bound to change for different

preference profiles (tl, th). Yet, we can show that the main properties identified in Sections 4 and

5 remain valid when competition is imperfect for both consumer types. Namely, mixed-strategy

equilibria are ordered, and, as already established by Proposition 4, all equilibrium menus offer a

premium (resp., baseline) good of inefficiently high (resp., low) quality provided (tl, th) ∈ D+ (resp.,

D−). The next proposition summarizes this discussion.

Proposition 9. (Mixed-Strategy Equilibria) Consider (tl, th) ∈ D+ ∪ D− such that no pure-

strategy equilibrium exists. Then at least one mixed-strategy equilibrium exists, and any such equi-

librium is ordered.

Beyond predicting price/quality dispersion, Proposition 9 delivers one key testable implication.

Namely, the gross utilities offered by firms are similarly ranked across the product line (as follows

from the ordered property of equilibria).

7 Discussion and Extensions

7.1 Continuum of Types

This section illustrates how the results from the binary-type model extend to the case where types are

uniformly distributed over some interval
[
θ, θ̄
]
⊆ R+ and the cost function is quadratic: c (q) = 1

2q
2.

As before, we let the intensity of brand preferences change with one’s preferences for quality, as

described by the brand loyalty schedule t (θ). To facilitate comparison with the binary type model

of the previous sections, we assume that t (θ) is affine:

t(θ) = t+ (t̄− t)
(
θ − θ
θ̄ − θ

)
, (8)
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Figure 6: Equilibrium quality schedules for
[
θ, θ̄
]

= [1, 2]: The dashed (resp., dotted) line assumes

that brand loyalty is decreasing (resp., increasing) in preferences for quality, whereas the full line,

which is the efficient schedule, assumes it is constant (∆t = 0).

where t, t̄ ≥ 0. Note that t(θ̄) = t̄ and t(θ) = t, which explains the notation. If ∆t ≡ t̄− t < 0, brand

loyalty is decreasing in preferences for quality, and increasing if ∆t > 0.

Rochet and Stole (2002) showed that, when ∆t = 0 and t ≡ t̄ = t is sufficiently small, the

equilibrium is in pure strategies, and quality provision is efficient to all types (q∗(θ) = θ). Allowing

for correlation between brand loyalty and brand preferences, our model also admits a pure-strategy

equilibrium (assuming |∆t| 6= 0 is small). Moreover, when correlation is positive, i.e., ∆t > 0 (resp.,

negative, i.e., ∆t < 0), almost every quality is distorted downwards (resp., upwards), which is in line

with Proposition 4. Figure 6 numerically illustrates this finding for
[
θ, θ̄
]

= [1, 2].

Furthermore, when ∆t > 0 (resp., ∆t < 0) low types are worse-off (resp., better-off) under

asymmetric information, while high types are better-off (resp., worse-off). Intuitively, when ∆t > 0,

competition for low types is hindered by the fact that high types have strong brand loyalty. To

prevent profit dissipation (due to high types selecting low-quality contracts), firms then provide less

utility to low types (relative to the complete information outcome), leading to negative informational

rents. Conversely, when ∆t < 0, competition for high types is hindered by the fact that low types

have strong brand loyalty, which explains why informational rents are negative for the former but

positive for the latter. These conclusions generalize Proposition 5, established under binary types.

Our next result characterizes the equilibrium, and collect the findings discussed above.

Proposition 10. (Pure-strategy equilibrium: Continuum of types) For every t ∈ (0, τ),

there exists ε > 0 such that, for all |∆t| ∈ (0, ε), there exists a pure-strategy equilibrium in which the

indirect utility schedule u∗ (θ) satisfies, for all θ ∈ (θ, θ), the following differential equation:

ü (θ) = 2−
(

1

t(θ)

)(
θu̇ (θ)− (u̇ (θ))2

2
− u(θ)

)
subject to u̇ (θ) = θ for θ ∈ {θ, θ}. (9)

27



(a) If ∆t > 0, every interior quality involves downward distortions: q∗ (θ) < θ. Moreover, relative

to complete information, there are types θ1, θ2 ∈ (θ, θ) such that every type θ < θ1 is worse-off,

whereas every type θ > θ2 is better-off.

(b) If ∆t < 0, every interior quality involves upward distortions: q∗ (θ) > θ. Moreover, relative to

complete information, there are types θ1, θ2 ∈ (θ, θ) such that every type θ < θ1 is better-off,

whereas every type θ > θ2 is worse-off.

The next corollary employs the characterization of Proposition 10 to perform comparative statics

on both the magnitude of brand loyalty, as well as on the correlation between brand loyalty and brand

preferences. To do so, it is convenient to write the brand loyalty schedule as t(θ) = α + βθ. In this

parametrization, changes in the parameter α correspond to uniform shifts on brand loyalty (across

consumer types), while β captures the correlation between θ and t(θ).34

Corollary 2. (Comparative Statics) Consider the pure-strategy equilibrium of Proposition 10,

and adopt the parametrization t(θ) = α + βθ. Then, an increase in α reduces the indirect utility of

every type, while an increase in β reduces the quality provision for every interior type.

The effect of increasing α on equilibrium indirect utilities is expected. More interesting, perhaps,

is that, as β increases, rendering high types more brand loyal vis-à-vis low types, quality provision

decreases along the product line. These findings confirm that the comparative statics in Proposition

7 are robust to a continuum-type setting.

With a continuum of types, as in the binary-type case, a symmetric pure-strategy Nash equi-

librium may fail to exist, as there is no guarantee that the firms’ best responses are globally quasi-

concave. We investigate this issue by numerically computing the putative pure-strategy equilibrium,

and then searching for profitable incentive-compatible deviations.35 Assuming [θ, θ̄] = [1, 2], and

parametrizing the brand loyalty schedule by the profile (t, t̄), Figure 7 identifies the regions where a

pure-strategy equilibrium does (not) exist. The results are remarkably parallel to those under binary

types (illustrated in Figure 5): There is always a pure-strategy equilibrium close to the “diagonal”

(where t̄ = t), whereas non-existence obtains when brand loyalty is sufficiently different across “low”

and “high” types (i.e., for t small and t̄ large, or vice-versa). This reveals that dispersion of offers is

a robust feature of competitive models involving self-selection and heterogeneous brand loyalty.

7.2 Other Discrete-Choice Models

For tractability, we introduced horizontal differentiation following the Hotelling/Bénabou-Tirole

framework, where demands, whenever interior, are linear in utilities. A more general formulation is

34There is a one-to-one relationship between the (α, β) parametrization and the one based on the brand-loyalty profile

(t, t̄) - see the proof of Proposition 10 for details. Naturally, β > 0 if and only if ∆t > 0.
35See the Online Appendix for details about our numerical procedure.

28



Figure 7: Brand-loyalty profiles (t, t̄) under which a pure-strategy equilibrium does (not) exist.

to assume that individual i, with taste for quality k ∈ {h, l}, obtains the utility

U ikj ≡ θkqkj − ykj + tkε
i
j

whenever she purchases a good of quality qkj from firm j at the price ykj . The taste shock εij reflects

the consumer’s preferences for seller j’s products, and the parameter tk captures the intensity of

brand preferences of type-k consumers. As before, th = 0 corresponds to the “bottom-of-barrel”

duopoly, while tl = 0 corresponds to the “cream-skimming” duopoly.

The Bénabou-Tirole’s treatment of outside goods then calls for defining the utility of non-

participation as U ik0 = u0 + tk maxj{εij}, where u0 is a constant (typically normalized to zero).

As in the baseline model, the interpretation is that consumers have access to a “generic” substitute

to each firm’s product line, and choose their preferred generic as the outside option. This specifica-

tion allows us to vary the intensity of brand preferences (across consumer types), without affecting

the relative value of non-participation.36

The baseline model from the previous sections corresponds to assuming that εia is uniformly

distributed over [0, 1], and that horizontal tastes are perfectly negatively correlated: εia = 1 − εib
(which is the Hotelling framework). Another natural possibility is to adopt a logit framework, where

εikj are iid draws from a Gumbel distribution with scale parameter normalized to one.37 Aside from

36Equivalently, and perhaps closer to empirical specifications, one could introduce heterogeneous price sensitivities,

while assuming that brand shocks are identically distributed across types. Namely, let individual i, with taste for

quality k ∈ {h, l}, obtain the utility U ikj ≡ αkqkj −βkykj + εij when purchasing a good of quality qkj from firm j at the

price ykj . Here, βk is type-k’s price sensitivity. Similarly, the utility of non-participation is set to be U ik0 = maxj{εij}.
By multiplying type-k utilities by 1

βk
and defining θk ≡ αk

βk
and tk ≡ 1

βk
, we obtain the specification in the text.

37In this case, the demand of firm a for its k-type product takes the form Da
k = pk exp

(
ua
k−u

b
k

tk

) [
1 + exp

(
ua
k−u

b
k

tk

)]−1

,
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the non-linearity of demands, which renders a closed-form characterization elusive, both specifications

are similar, and lead to parallel conclusions. In particular, the relax-and-undercut deviation (which

breaks down pure-strategy equilibria when consumer types sufficiently differ in their brand loyalty)

works the same way as in sections 4 to 6. Numerical analysis reveals that the patterns of distortions,

informational rents and comparative statics (in Propositions 4 to 8) are also robust to this alternative

demand specification.

It is also possible to introduce random outside options (in addition to brand tastes). To do so,

one needs to define the utility of non-participation as being Ũ ik0 = ũi0 + tk maxj{εij}, where ũi0 is the

utility of outside expenses by consumer i (assumed heterogenous across consumers and unobserved

by firms). While we expect our main insights to hold in this more general setting, analytical results

are elusive.

7.3 More than Two Firms

For simplicity, the baseline assumed a duopolistic market structure. It is straightforward to extend

our analysis to for more than two competing firms. One natural possibility is to use the Spokes model

of Chen and Riordan (2007), where each consumer only considers two (randomly selected) firms out

of all firms in the market (and makes purchasing decisions à la Hotelling). This extension can be

developed isomorphically to the results on the baseline model. It is also possible to employ other

discrete-choice specifications (as described in subsection 7.2) to analyze oligopolistic competition

(e.g., logit demands). We expect these more general formulations to preserve our main qualitative

insights, while requiring numerical techniques that our simple model conveniently bypasses.

8 Conclusions

We study oligopolistic competition by firms engaging in second-degree price discrimination. Crucially,

we allow consumers with different tastes for quality to exhibit varying propensities to switch brands,

which reflects a key feature of empirical models estimating demand for differentiated goods. Our

analysis delivers five main take-aways:

(a) We show how patterns of quality provision relate to co-movements between consumers’ tastes

for quality and brand loyalty. Specifically, quality provision is inefficiently low at the bottom

(high at the top) of the product line if the propensity of low-type consumers to switch brands

is small (large) relative to that of high types.

(b) Informational rents may well be negative under competition. In fact, they are always negative

for some type, while positive for the other, provided consumers obtain more than their reser-

where ujk is the gross indirect utility of good k from firm j.
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vation utility in equilibrium. This is unlike the monopoly case, or the oligopoly case under

uniform brand loyalty, where informational rents are always (weakly) positive.

(c) Competition and welfare are often misaligned: More competition (in the sense that consumers

are less brand-loyal) is welfare-decreasing whenever it tightens incentive constraints. This is the

case when low types become more prone to switch brands and quality provision is inefficiently

high at the top of the product line.

(d) Variations in the level of prices are a misleading indicator of the degree of competition in the

market. In particular, more competition can either decrease or increase prices, depending on

the race between quality and payoff changes. This is the case, for instance, when high types

become more prone to switch brands and quality provision is inefficiently low at the bottom of

the product line.

(e) Dispersion of offers (due to the non-existence of pure-strategy equilibria) often occurs when

different types exhibit (sufficiently) different propensities to switch brands. In this case, firms

randomize over ordered menus, where indirect utilities co-move across types. This is unlike

previous literature that relates dispersion in private-value settings to search or informational

frictions.

Our analysis can be extended in many fruitful directions. One pertains to dynamic models of com-

petition where consumers (with recurring consumption needs) are heterogeneous on their switching

costs, while exhibiting different tastes for product characteristics (which is the case in insurance

markets, for instance). Another pertains to models of competition under non-exclusive agency (as

in Calzolari and Denicolò 2013), where agents differ in their tastes for quality/quantity, but also

on how they perceive the complementarity/substitutability between different sellers. We expect the

ideas and techniques of our paper to be useful in exploring these interesting research avenues.
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9 Appendix

Proof of Proposition 0. We will only verify that the strategies described in the Proposition

constitute an equilibrium. Uniqueness follow from Proposition 5.

Case 1: t ∈ [0, Sel ].

The best response of firm a solves

max
ual ,u

a
h

{
pl

(
1

2
+
ual − (Sel − t)

2t

)
(Sel − ual ) + ph

(
1

2
+
uah − (Seh − t)

2t

)
(Seh − uah)

}
subject to ual , u

a
h ≥ 0. The first-order conditions with respect to uak, k ∈ {l, h}, are

1

2t
(Sek − uak)−

(
1

2
+
uak − (Sek − t)

2t

)
= 0. (10)

The expression above is strictly decreasing in uak, which implies the firm’s problem is quasi-concave.

The unique solution to (10) is given by ũk = Sek − t for k ∈ {l, h}. The argument is symmetric for

firm b.

Case 2: t ∈ [Sel , S
e
h − qel ∆θ].

The best response of firm a solves

max
ual ,u

a
h

{
pl

(
1

2
+
ual
2t

)
(Sel − ual ) + ph

(
1

2
+
uah − (Seh − t)

2t

)
(Seh − uah)

}
subject to ual , u

a
h ≥ 0. The derivative of the objective function with respect to uah is again given by

(10), and that for ual is given by

1

2t
(Sel − ual )−

(
1

2
+
ual
2t

)
. (11)

Because both derivatives are decreasing in their respective arguments, we conclude the objective is

quasi-concave. The unique optimum is such that ual = 0 and uah = Seh− t. To see why, let us evaluate

(11) at ual = 0 to obtain
Sel
2t −

1
2 ≤ 0 ⇐⇒ Sel ≤ t. The optimal ual is then at the corner: ual = 0.

That uah = Seh − t directly follows from (10).

Case 3: t > Seh − qel ∆θ.
Consider first the instance where θl − ph

pl
∆θ > 0, which guarantees that umh > 0. The best

response of firm a maximizes the objective

Π̂a(ul, uh) ≡ pl
(

1

2
+
ul
2t

)
(Sl(ul, uh)− ul) + ph

(
1

2
+
uh − ũh

2t

)
(Seh − uh)

subject to ul, uh ≥ 0, where ũh solves (3). Let us consider first the rangeD ≡ {(ul, uh) : ul ≤ uh ≤ qel ∆θ}.
It is straightforward to compute that

∂Π̂a

∂ul
(ul, uh) =

pl
2t

(Sl(ul, uh)− ul) + pl

(
1

2
+
ul
2t

)(
∂Sl
∂ul

(ul, uh)− 1

)
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and
∂2Π̂a

∂u2
l

(ul, uh) =
pl
t

(
∂Sl
∂ul

(ul, uh)− 1

)
+ pl

(
1

2
+
ul
2t

)
∂2Sl
∂u2

l

(ul, uh).

Also notice that, for all (ul, uh) ∈ D,

∂Sl
∂uh

(ul, uh) = −∂Sl
∂ul

(ul, uh) =
θl

∆θ
− ϕ′

(
uh − ul

∆θ

)
1

∆θ

and
∂2Sl
∂u2

h

(ul, uh) =
∂2Sl
∂u2

l

(ul, uh) = − ∂2Sl
∂ul∂uh

(ul, uh) = −ϕ′′
(
uh − ul

∆θ

)(
1

∆θ

)2

.

Therefore, because ϕ is convex and (ul, uh) ∈ D,

∂Sl
∂ul

(ul, uh) ≤ − θl
∆θ

+ ϕ′ (qel )
1

∆θ
= 0.

Coupled with the fact that ∂2Sl
∂u2

l
< 0, this implies that

∂2Π̂a

∂u2
l

(ul, uh) =
pl
t

(
∂Sl
∂ul

(ul, uh)− 1

)
+ pl

(
1

2
+
ul
2t

)
∂2Sl
∂u2

l

(ul, uh) < 0

for all (ul, uh) ∈ D.

Now notice that
∂Π̂a

∂ul
(0, uh) =

pl
2t
Sl(0, uh) +

pl
2

(
∂Sl
∂ul

(0, uh)− 1

)
≤ pl

2

(
Sel
t
− 1 +

∂Sl
∂ul

(0, uh)

)
<
∂Sl
∂ul

(0, uh) ≤ 0,

where the penultimate inequality follows from the fact that t > Seh−qel ∆θ > Sel . Because ∂Π̂a

∂ul
(0, uh) <

0 and ∂2Π̂a

∂u2
l
< 0 for all (ul, uh) ∈ D, we conclude that firm a’s best response entails ul = 0.

We can therefore simplify firm a’s problem as that of choosing uh ≥ 0 to maximize

Π̂a(0, uh) ≡ pl
2
Sl(0, uh) + ph

(
1

2
+
uh − ũh

2t

)
(Seh − uh) .

It is straightforward to compute that

∂Π̂a

∂uh
(0, uh) =

pl
2

∂Sl
∂uh

(0, uh) +
ph
2t

(Seh − uh)− ph
(

1

2
+
uh − ũh

2t

)
and

∂2Π̂a

∂u2
h

(ul, uh) =
pl
2

∂2Sl
∂u2

h

(0, uh)− ph
t
< 0,

since ∂2Sl
∂u2

h
< 0 for all (ul, uh) ∈ D. The unique pure equilibrium then solves

pl
2

∂Sl
∂uh

(0, uh) +
ph
2t

(Seh − uh)− ph
2

= 0,
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which becomes (3) after rearranging.

Writing the solution to (3) as a function of t, ũh(t), and totally differentiating (3) with respect

to t leads to

−ũ′h(t) +
pl
ph

∂Sl
∂uh

(0, ũh(t))− 1 + t
pl
ph

∂2Sl
∂u2

h

(0, ũh(t))ũ′h(t) = 0.

Isolating ũ′h(t) leads to

ũ′h(t) =

pl
ph

∂Sl
∂uh

(0, uh)− 1

1− t plph
∂2Sl
∂u2

h
(ul, uh)

=

θl
∆θ − ϕ

′
(
ũh(t)
∆θ

)
1

∆θ − 1

1 + tϕ′′
(
ũh(t)
∆θ

) (
1

∆θ

)2 .
The denominator is always strictly positive, whereas the numerator is strictly negative if and only

if ũh(t) > umh . Because ∂Sl
∂uh

(0, uh) ↓ 0 as uh ↓ qel ∆θ, follows that ũh(t) ↑ qel ∆θ as t ↓ Seh − qel ∆θ.
Because qel ∆θ > umh , this implies that ũh(t) is strictly decreasing in a neighborhood of t = Seh−qel ∆θ.
As a result, ũh(t) < qel ∆θ for all t > Seh − qel ∆θ. Since qel ∆θ < Seh, equation (3) implies that

pl
ph

∂Sl
∂uh

(0, ũh(t))− 1 > 0 ⇐⇒ ũh(t) > umh

for all for all t > Seh − qel ∆θ. In sum, we showed that ũh(t) is bounded and strictly decreasing over

the interval t > Seh − qel ∆θ: ũh(t) ∈ [umh , q
e
l ∆θ].

Finally, equation (3) also implies that ũh(t) satisfies

S∗h − ũh(t)

t
+
pl
ph

∂Sl
∂uh

(0, ũh(t))− 1 = 0

for all t > Seh − qel ∆θ. Continuity then implies that

lim
t→∞

{
Seh − ũh(t)

t
+
pl
ph

∂Sl
∂uh

(0, ũh(t))− 1

}
= 0.

Because ũh(t) is bounded for all t > Seh − qel ∆θ, we obtain limt→∞

{
Seh−ũh(t)

t

}
= 0. As a result,

lim
t→∞

{
pl
ph

∂Sl
∂uh

(0, ũh(t))− 1

}
=
pl
ph

∂Sl
∂uh

(
0, lim
t→∞

ũh(t)
)
− 1 = 0.

The last equality implies that limt→∞ ũh(t) = umh , as we wanted to show.

Consider now the instance where θl − ph
pl

∆θ ≤ 0, which implies that umh = 0. In this case,

pl
ph

∂Sl
∂uh

(0, 0)− 1 < 0

and there exists a finite t̄ such that

Seh + t̄

(
pl
ph

∂Sl
∂uh

(0, 0)− 1

)
= 0.
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In the unique symmetric equilibrium, ũh is given by equation (3) if t < t̄, and ũh = 0 if t ≥ t̄. The

latter follows from the fact that ∂2Π̂a

∂u2
h
< 0 for all (ul, uh) ∈ D and that

Seh + t

(
pl
ph

∂Sl
∂uh

(0, 0)− 1

)
≤ 0

whenever t ≥ t̄. Q.E.D.

Proof of Proposition 1.

Proof of Claim (a). Suppose tl ∈ [0, Sel − ηh]. Proposition 11 shows that firms obtain zero profits

from high-type contracts. In the putative equilibrium where constraints IRk and ICk are slack, for

k ∈ {l, h}, we posit that u∗l = Sel − tl and u∗h = Seh.

The best response of firm a then solves

max
ual ,u

a
h

{
pl

(
1

2
+
ual − (Sel − tl)

2tl

)
(Sel − ual ) + phD̂

a
h (uah) (Seh − uah)

}
,

where

D̂a
h (uah) =


0 if uah < Seh
1
2 if uah = Seh

1 if uah > Seh.

This problem has a solution u∗l = Sel − tl and u∗h = Seh. Note that ICl is slack, as

u∗h − u∗l = Seh − (Sel − tl) ≤ qeh∆θ

by assumption, and IRl is slack, as tl < Sel . This shows that (Sel − tl, S
e
h) is an equilibrium.

Uniqueness follows by Proposition 11.

Proof of Claim (b). As shown in the proof of Proposition 11, any putative equilibrium satisfies

u∗l = max {Sel − tl, 0} and u∗h solves u∗h = Sh(u∗l , u
∗
h). We will show that this is not an equilibrium

when tl ∈ (Sel − ηh, Sel ) . For that, we will show that the firm has a profitable deviation with the

following structure: the firm relinquishes an ε ≈ 0 more utility to high types (conquering the entire

type-h market), and chooses ûl to solve

max
ul

{
pl

(
1

2
+
ul − (Sel − tl)

2tl

)
(Sel − ul) + ph (Sh(ul, üh(u∗l ))− üh(u∗l ))

}
s.t. ul ≥ Sel − tl.

This problem is concave. Therefore, the deviation described above generates a strict improvement if

and only if the first-order condition evaluated at ul = Sel − tl is strictly positive:[
pl
2tl

(Sel − ul)− pl
(

1

2
+
ul − (Sel − tl)

2tl

)
+ ph

∂Sh
∂ul

(ul, üh(u∗l ))

]
ul=S

e
l −tl

= ph
∂Sh
∂ul

(Sel − tl, üh(u∗l )) > 0,

which is true by virtue of the fact that tl > Sel − ηh. This shows that there exists no pure-strategy

equilibrium when tl ∈ (Sel − ηh, Sel ).
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Let us now consider the case where tl ≥ Sel . In this case, the only remaining putative equilibrium

takes the form u∗l = 0 and u∗h = üh(0) ≡ ůh. Consider the deviation to this putative equilibrium

with the following structure: the firm relinquishes an ε ≈ 0 more utility to high types (conquering

the entire type-h market), and chooses ûl to solve

max
ul

{
pl

(
1

2
+
ul
2tl

)
(Sel − ul) + ph (Sh(ul, ůh)− ůh)

}
s.t. ul ≥ 0.

This problem is concave. Therefore, the deviation described above generates a strict improvement if

and only if the first-order condition evaluated at ul = 0 is strictly positive:[
pl
2tl

(Sel − ul)− pl
(

1

2
+
ul
2tl

)
+ ph

∂Sh
∂ul

(ul, ůh)

]
ul=0

=
pl
2

(
Sel
tl
− 1

)
+ ph

∂Sh
∂ul

(0, ůh) > 0,

which, by the definition of t̃l, is equivalent to tl < t̃l. This establishes that there exists no pure-

strategy equilibrium whenever Sel − ηh < tl < t̃l.

Proof of Claim (c). Finally, let us show that u∗l = 0 and u∗h = üh(0) ≡ ůh is a pure-strategy

equilibrium when tl ≥ t̃l. Proposition 11 then shows that this is the unique pure strategy equilibrium.

We start arguing that the firm cannot improve by offering a menu in which the utility of the high

type is smaller than ůh. This is because in any such menu the firm would attract no high types,

while the firm would not profit from low types as the menu (0, ůh) maximizes the firm’s utility when

it considers only low types.

Moreover, since the firm obtains zero profits from high types, a similar argument establishes

that the firm cannot increase its profits by offering a contract that gives the same utility to high

types. Therefore it remains to argue that the firm cannot profit by offering menus of the kind

(4ul, ůh +4uh) , where (4ul,4uh) ∈ R+×R+. In light of the previous argument, we consider the

following upper bound to the firms utility in which the constraint ICh is ignored and it is assumed

that the firm attracts all high types whenever such consumers yield positive profits:

G (4ul,4uh) ≡

 pl

(
1
2 + 4ul

2tl

)
(Sel −4ul)

+phmax {Sh(4ul, ůh +4uh)− ůh −4uh, 0}

 .

Therefore, if we show that (0, 0) ∈ argmax(4ul,4uh)∈R+×R+
G(4ul,4uh) then we will have concluded

that (0, ůh) is an equilibrium. First notice that any deviation (4ul,4uh) ∈ R+ × R+ in which

4uh ≥ 4ul is weakly dominated by (4ul,4uh) = (0, 0) because it decreases the profits obtained

from both types. Henceforth we can restrict attention to deviations (4ul,4uh) ∈ R++ × R+in

which 4uh < 4ul. Again, since 4uh → Sh(4ul, ůh + 4uh) − ůh − 4uh is strictly decreasing in

4uh, a sufficient condition for the absence of profitable deviation is that G (0, 0) ≥ G (4ul, 0) for all

4ul > 0. Therefore, since 4ul → G (4ul, 0) is concave, a sufficient condition is

∂4ul+G (4ul,4uh) |(4ul,4uh)=(0,0)=
pl
2

(
Sel
tl
− 1

)
+ ph

∂Sh
∂ul

(0, ůh) ≤ 0,

36



which holds by assumption. Q.E.D.

Proof of Proposition 2. Take a symmetric ordered equilibrium F ∗. For j = l, h , let uj be the

infimum of F ∗j , and let ūj be supremum the support of F ∗j . Let SuppF ∗j be the support of F ∗j .

At any point of continuity of F ∗h , the profit of the menu (ul, uh),is given by

Π (ul, uh) :=EF ∗
l

[
plI

(
1

2
+
ul − ũl

2tl

)
(Sl (ul, uh)− ul)

]
+ phF

∗
h (uh) (Sh (ul, uh)− uh)

Since profits are supermodular in (ul, uh) , it is easy to show that (ul, uh) is optimal, hence

Π (ul, uh) = Π∗ ≡ sup(ul,uh)Π (ul, uh) . The equilibrium characterization is established in steps 1-15

below. The first step shows that each obtains a profit equal to the profit from the best contract

designed only to low types in any mixed-strategy equilibrium. The second and third steps imply

that firms obtain zero profits from high types from the less generous contract for these types. The

fourth and fifth steps show that the difference in the indirect utilities given to low types from two

different equilibrium contracts is bounded above by tl and hence competition for low types always

happens in the intensive margin: I
(

1
2 + ul−ũl

2tl

)
=
(

1
2 + ul−ũl

2tl

)
for every equilibrium utilities ul and

ũl. Step 6 shows that the support of the distribution of indirect utilities for the high type has no

atom. Steps 1-6 imply that we can write the firm’s problem as

Π (ul, uh) :=pl

(
1

2
+
ul − ũl

2tl

)
(Sl (ul, uh)− ul) + phF

∗
h (uh) (Sh (ul, uh)− uh)

(not only for points of continuity of F ∗h ). Step 7 establishes that the constraint ICl for every equi-

librium menu (ul, uh) in which ul > ul. Step 8 shows that the support of F ∗l has no atom at any

ul > ul. Steps 9-10 show that the support of F ∗k is an interval for k = l, h. Step 11 and 13 provide

necessary and sufficient conditions for the equilibrium to have an atom at the lowest generous con-

tract (ul, uh) . Step 12 shows that the support function ul → Uh (ul) as well as the marginals F ∗k are

Lipschitz continuous (and hence absolutely continuous) on any interval [uk + ε, ūl]. Steps 14 and 15

use these properties to obtain the conditions stated in the proposition.

Step 1: ul ∈ argmaxEF ∗
l

[
plI
(

1
2 + ul−ũl

2tl

)
(Sel − ul)

]
.

Assume towards a contradiction that ul /∈ argmaxEF ∗
l

[
plI
(

1
2 + ul−ũl

2tl

)
(Sel − ul)

]
.

Notice first that

supulEF ∗
l

[
plI
(

1
2 + ul−ũl

2tl

)
(Sel − ul)

]
≤ EF ∗

l

[
plI
(

1
2 +

ul−ũl
2tl

)
(Sl (ul, uh)− ul)

]
+ phFh (uh) (Sh (ul, uh)− uh) = Π∗.

Using this, the contradiction assumption and Π (ul, uh) = Π∗ we get

phFh (uh) (Sh (ul, uh)− uh) > 0,
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and hence Fh has an atom at uh, which implies that, for ε sufficiently small

EF ∗
l

[
plI
(

1
2 +

ul−ũl
2tl

)
(Sl (ul, uh)− ul)

]
+ phFh (uh) (Sh (ul, uh)− uh) .

< EF ∗
l

[
plI
(

1
2 +

ul−ũl
2tl

)
(Sl (ul, uh)− ul)

]
+ phFh (uh + ε) (Sh (ul, uh + ε)− uh − ε) ,

a contradiction.

Step 2: Fh (uh) (Sh (ul, uh)− uh) = 0.

Trivially, Fh (uh) (Sh (ul, uh)− uh) ≥ 0, hence if Fh (uh) (Sh (ul, uh)− uh) > 0 then Fh must have

an atom at uh which, using the argument presented in Step 1, leads to a contradiction. .

Step 3: (Sh (ul, uh)− uh) = 0.

Assume towards a contradiction that (Sh (ul, uh)− uh) > 0. Then by Step 2, Fh (uh) = 0. More-

over, there exists a (small) ε > 0 such that (Sh (ul, uh + ε)− uh − ε) > 0, implying that (ul, uh + ε)

is a profitable deviation.

Step 4: In any (non-degenerate) mixed-strategy equilibrium we have ul ≥ Sel − tl.
If Sel − tl < 0 the claim is obvious. Hence assume that Sel − tl ≥ 0. Notice that the steps above

imply that

Π (ul, uh) = Π∗ = maxulE
[
plI

(
1

2
+
ul − ũl

2tl

)
(Sl (ul, uh)− ul)

]
The first-order condition relatively to ul can be simplified to:

−
ˆ ul+tl

ul

(
1

2
+
ul − ũl

2tl

)
dF ∗l (ũl) +

ˆ ul+tl

ul

(
Sel − ul

2tl

)
dF ∗l (ũl) ≤ 0,

with equality if ul > 0. If the inequality above holds for ul = 0 we must have

0 ≥ −
´ ul+tl
ul

(
1
2 + −ũl

2tl

)
dF ∗l (ũl) +

´ ul+tl
ul

(
Sel
2tl

)
dF ∗l (ũl)

=
´ ul+tl
ul

(
ũl
2tl

)
dF ∗l (ũl) +

´ ul+tl
ul

(
Sel −tl

2tl

)
dF ∗l (ũl) > 0,

which is an absurd. Hence the first-order condition above holds with equality, implying

−
ˆ ul+tl

ul

(tl + ul − ũl) dF ∗l (ũl) +

ˆ ul+tl

ul

(Sel − ul) dF ∗l (ũl) = 0,

and hence

ul = (Sel − tl) +

´ ul+tl
ul

(ũl − ul) dF ∗l (ũl)

F ∗l (ul + tl)
≥ (Sel − tl) . (12)

Step 5: In any (non-degenerate) mixed-strategy equilibrium we have ūl − ul ≤ tl and hence for all

ul, ũl in the support of F ∗l we have I
(

1
2 + ul−ũl

2tl

)
=
(

1
2 + ul−ũl

2tl

)
. Thus for any point of continuity

of F ∗h we can write the firm’s problem for any point of continuity of Fh as:

Π (ul, uh) :=pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sl (ul, uh)− ul) + phFh (uh) (Sh (ul, uh)− uh) .
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Follows immediately from Step 4.

Step 6: The support of F ∗h has no atom at any uh > uh.

Assume towards a contradiction that F ∗h has an atom at some uh > uh : Fh (uh+)−Fh (uh−) > 0.

A standard undercutting argument implies that Fh (uh) (Sh (ul, uh)− uh) = 0 for any optimal menu

(ul, uh) . Hence Fh (uh) > 0 implies Sh (ul, uh) − uh = 0. Thus take an optimal menu (ul, uh) and

notice that

Π (ul, uh) =pl

(
1
2 +

ul−EF∗
j

(ũl)

2tl

)
(Sl (ul, uh)− ul) + phFh (uh) (Sh (ul, uh)− uh)

= Π (ul, uh) = pl

(
1
2 +

ul−EF∗
j

(ũl)

2tl

)
(Sl (ul, uh)− ul)

= maxulpl

(
1
2 +

ul−EF∗
j

(ũl)

2tl

)
(Sl (ul, uh)− ul) = Π (ul, uh) ,

which implies that ul = ul, and thus (ul, uh) and (ul, uh) are optimal. Using this and Step 3 we see

that Sh (ul, uh) − uh = Sh (ul, uh) − uh. However, since
(

∂
∂uh

)
(Sh (ul, ũh)− ũh) ≤ −1,we conclude

that uh = uh, which is a contradiction.

Step 7: The constraint ICl binds for every optimal menu (ul, uh) in which ul > ul.

Otherwise, the f.o.c. w.r.t. ul yields

ul = 1
2

[
−pl

(
1
2 +

−EF∗
j

(ũl)

2tl

)
+ pl

(
Sl(ul,uh)

2tl

)
+ pl

(
∂Sl(ul,u1

h)
∂ul

)]
≤ 1

2

[
−pl

(
1
2 +

−EF∗
j

(ũl)

2tl

)
+ pl

(
Sel
2tl

)]
≤ ul,

where the first equality has to hold because ul has to be strictly positive, while the second uses Step

1. But thus contradiction ul > ul.

Step 8: The support of F ∗l has no atom at any ul > ul.

In light of Step 7, there are u1
h, u

2
h, with u1

h < u2
h for which

(
ul, u

1
h

)
and

(
ul, u

2
h

)
are optimal.

The following first-order conditions must then hold

−pl
(

1
2 +

ul−EF∗
j

(ũl)

2tl

)
+ pl

(
Sel −ul

2tl

)
+ pl

(
∂Sl(ul,u1

h)
∂ul

)
+ phFh

(
u1
h

)(∂Sh(ul,u1
h)

∂ul

)
= 0

−pl
(

1
2 +

ul−EF∗
j

(ũl)

2tl

)
+ pl

(
Sel −ul

2tl

)
+ phFh

(
u2
h

)(∂Sh(ul,u2
h)

∂ul

)
= 0,

implying phFh
(
u2
h

)(∂Sh(ul,u2
h)

∂ul

)
= phFh

(
u1
h

)(∂Sh(ul,u1
h)

∂ul

)
. But notice that Step 7 and u1

h < u2
h

imply
∂Sh(ul,u2

h)
∂ul

>

(
∂Sh(ul,u1

h)
∂ul

)
, hence phFh

(
u2
h

)(∂Sh(ul,u2
h)

∂ul

)
> phFh

(
u1
h

)(∂Sh(ul,u1
h)

∂ul

)
, which is

a contradiction.

Step 9: The support of F ∗h is an interval.

Assume towards a contradiction that there exists uah < ubh, that uah, u
b
h ∈ suppF ∗h , but that(

uah, u
b
h

)⋂
suppF ∗h = ∅. In this case, there exists let ual be the supremum over all utilities such that

(ual , u
a
h) is optimal. Let ubl be the infimum over all utilities such that

(
ubl , u

b
h

)
is optimal. If ual = ubl
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the argument in Step 8 above leads to a contradiction. Hence we must have ual < ubl . But then Step

7 and Fh
(
u1
h

)
= Fh

(
u2
h

)
imply Π

(
ubl , u

b
h − ε

)
> Π

(
ubl , u

b
h

)
for ε sufficiently small, a contradiction.

Step 10: The support of F ∗l is an interval.

The argument given in the steps above imply that we only have to deal with one case: there

are two optimal menus (ual , uh) and
(
ubl , uh

)
with ual 6= ubl . But then fixing uh, the payoff function is

strictly concave, and hence Π (ual , uh) =Π
(
ubl , uh

)
implies Π (ual , uh) < Π

(
ual +ubl

2 , uh

)
, contradicting

the putative optimality of (ual , uh) .

Step 11: F ∗l (resp., F ∗h ) have an atom at ul (resp., uh) if and only if

−pl

(
1

2
−

EF ∗
j

(ũl)

2tl

)
+ pl

(
Sel
2tl

)
< 0,

in which case ul = 0, F ∗h (uh) = F ∗l (0) > 0 which satisfy

−pl

(
1

2
−

EF ∗
j

(ũl)

2tl

)
+ pl

(
Sel
2tl

)
+ phF

∗
h (̊uh (0))

(
∂Sh (0, ůh (0))

∂ul

)
= 0,

where ůh (ul) is the unique solution to Sh (ul, ůh (ul))− ůh (ul) = 0.

First notice that if ul > 0 then Step 1 implies

−pl

(
1

2
−
ul − EF ∗

j
(ũl)

2tl

)
+ pl

(
Sel − ul

2tl

)
= 0.

On the other hand, the fact that for k = l, h, F ∗k (uk) is strictly increasing (hence almost everywhere

differentiable) imply

−pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
+ pl

(
Sel − ul

2tl

)
+ phF

∗
h (̊uh (ul))

(
∂Sh (ul, ůh (ul))

∂ul

)
= 0. (13)

Therefore the last two equations imply F ∗h (̊uh (ul)) = 0,and hence since the problem satisfies the

increasing-difference properties in (ul, uh) , F ∗l (ul) = 0. Conversely, if

−pl

(
1

2
−

EF ∗
j

(ũl)

2tl

)
+ pl

(
Sel
2tl

)
< 0,

then

0 = argmax

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul),

together with (13), imply the desired equation.

Step 12: The functions Uh (ul) , F
∗
l (ul) and F ∗h (uh) are Lipschitz continuous (hence absolutely

continuous) on any interval [ul + ε, ūl] .

The strict-difference property of the profit function Π (ul, uh) and the fact F ∗k has no atom for

every uk > uk imply that there exists a strictly increasing function Uh : [ul, ūl]→ [uh, ūh] such that
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(ul, uh) lies in the support of F ∗ if and only if ul ∈ [ul, ūl] and uh = Uh (ul) . We start showing that

the restriction of the function F ∗h to any interval [uh + ε, ūh] is Lipschitz continuous.

We have for every ul ∈ [ul + ε, ūl]

pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul)+phFh (ul) (Sh(ul,Uh (ul))− uh) = pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul) .

From the strict concavity of ul → pl

(
1
2 +

ul−EF∗
j

(ũl)

2tl

)
(Sel − ul) and the fact that

ul = argmax

{
pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul)

}
,

it follows there is κε > 0 such that

pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul) < pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul) + κε.

This and F ∗h (uh) ≤ 1 for every uh imply

Sh (ul,Uh (ul))− uh >
κε
ph
. (14)

Moreover, ul + ε ≤ u1
l ≤ u2

l imply that there are positive constants γ2 > γ1 > 0 such that

γ1

(
u2
l − u1

l

)
≤ pl

(
1

2
+
u1
l − EF ∗

j
(ũl)

2tl

)(
Sel − u1

l

)
−pl

(
1

2
+
u2
l − EF ∗

j
(ũl)

2tl

)(
Sel − u2

l

)
≤ γ2

(
u2
l − u1

l

)
For η sufficiently small, the difference in profits between the available menu (ul + η, Uh (ul) + η) and

the optimal menu (ul, Uh (ul)) satisfies:

phF
∗
h (Uh (ul) + η) (Sh (ul + η,Uh (ul) + η)− uh − η)− phF ∗h (Uh (ul)) (Sh (ul,Uh (ul))− uh) ≤ γ2η,

which, since Sh (ul + η,Uh (ul) + η) = Sh (ul,Uh (ul)) , implies

ph (F ∗h (Uh (ul) + η)− F ∗h (Uh (ul))) (Sh (ul,Uh (ul))− uh) ≤ η (γ2 + 1) .

Using (14) we get

(F ∗h (Uh (ul) + η)− F ∗h (Uh (ul))) ≤
η (γ2 + 1)

κε
≡ λη.

Next we show that there exists a constant ν such that Uh (ul + η)− Uh (ul) ≤ ην.
Notice that the following first-order conditions are necessary at almost every (ul, ul + η) ∈

[ul + ε, ūl]
2 :

−pl
∂

∂ul

[
pl

(
1

2
+
ul + η − EF ∗

j
(ũl)

2tl

)
(Sel − ul − η)

]
= phF

∗
h (Uh (ul + η))

(
∂Sh (ul + η,Uh (ul + η))

∂ul

)
(15)
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−pl
∂

∂ul

[
pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul)

]
= phF

∗
h (Uh (ul))

(
∂Sh (ul,Uh (ul))

∂ul

)
.

Since u → pl
∂
∂ul

[
pl

(
1
2 +

u−EF∗
j

(ũl)

2tl

)
(Sel − u)

]
is Lipschitz continuous over the range above, there

exists % > 0 and such that

−pl
∂

∂ul

[
pl

(
1

2
+
ul + η − EF ∗

j
(ũl)

2tl

)
(Sel − ul − η)

]
+pl

∂

∂ul

[
pl

(
1

2
+
ul − EF ∗

j
(ũl)

2tl

)
(Sel − ul)

]
≤ %η,

This and (15) imply

phF
∗
h (Uh (ul + η))

(
∂Sh (ul + η,Uh (ul + η))

∂ul

)
− phF ∗h (Uh (ul))

(
∂Sh (ul,Uh (ul))

∂ul

)
≤ %η.

If Uh (ul + η) ≤ Uh (ul)+η there is nothing to prove. Henceforth assume that Uh (ul + η) > Uh (ul)+η,

which implies

0 ≤
(
∂Sh (ul + η,Uh (ul + η))

∂ul

)
−
(
∂Sh (ul,Uh (ul))

∂ul

)
≤ %η

F ∗h (Uh (ul + ε)) ph
:= ϕη,

or if we let 4 (u,Uh (u)) := Uh (u)− u and observe that Shdepends only on this difference and hence

can be written as Sh (4 (u,Uh (u))) we obtain

0 ≤
(
∂Sh (4 (ul + η,Uh (ul + η)))

∂ul

)
−
(
∂Sh (4 (ul,Uh (ul)))

∂ul

)
≤ ϕη,

Next, notice that since4 (·,Uh (·)) : [ul + ε, ūl]
2 → R++ lies in a compact set [4θqeh + χ1,4θqeh + χ2]

for constants 0 < χ1 < χ2. This and the fact that
(
∂Sh(4)
∂ul

)
is strictly increasing in 4 in the same

set, implies the existence of ψ > 0 such that(
∂Sh (4 (ul + η,Uh (ul + η)))

∂ul

)
−
(
∂Sh (4 (ul,Uh (ul)))

∂ul

)
≥ ψ [4 (ul + η,Uh (ul + η))−4 (ul,Uh (ul))] .

Putting the last two inequalities together one has

Uh (ul + η)− Uh (ul) ≤
ϕη

ψ
+ η ≡ νη,

which shows that Uh (·) is Lipschitz continuous. The result for F ∗l follows because

F ∗l (ul + η)− F ∗l (ul) = F ∗h (Uh (ul + η))− F ∗h (Uh (ul)) ≤ λ [Uh (ul + η)− Uh (ul)] ≤ λνη.

Step 13: We have ul = max

{
Sel −tl+EF∗

l
[ũl]

2 , 0

}
.

The first-order condition yields ul > 0 if and only if

∂

[
pl

(
1
2 +

ul−EF∗
l

[ũl]

2tl

)
(Sel − ul)

]
∂ul

|ul=0> 0,
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which holds if and only if
Sel −tl+EF∗

l
[ũl]

2 > 0.

Step 14: Reformulation of the firm’s problem.

In light of the steps above, we can write the firm’s problem as:

max
ul

{
pl

(
1

2
+
ul − EF ∗

l
[ũl]

2tl

)
(Sel − ul) + phF

∗
h (uh) (Sh(ul, uh)− uh)

}
s.t. uh ≥ ul ≥ 0.

We obtain the following first-order condition with respect to ul :

−pl
tl

(
Ul(uh)−

(
Sel − tl + EF ∗

l
[ũl]

2

))
+ phF

∗
h (uh)

∂Sh
∂ul

(Ul(uh), uh) = 0,

which, after rearranging, leads to

F ∗h (uh) =
1

tl

pl
ph

(Ul(uh)− ůl)
(
∂Sh
∂ul

(Ul(uh), uh)

)−1

. (16)

Ul(uh)− ul = 2

(
Sh(Ul(uh), uh)− uh
∂Sh
∂ul

(Ul(uh), uh)

)(
Ul(uh)− ůl

Ul(uh) + ul − 2ůl

)
,

as in the statement of the proposition.

Step 15: When tl > 2Sel we have ůl < 0, in which case F ∗h exhibits a mass point at uh (i.e.,

F ∗h (uh) > 0).

First notice that when ůl < 0, then (16) implies

F ∗h (uh) = − 1

tl

pl
ph
ůl

(
∂Sh
∂ul

(0, uh)

)−1

> 0.

Next we show that whenever tl is sufficiently large we must necessarily have ůl < 0. Indeed, since

ůl =
Sel −tl+EF∗

l
[ũl]

2 and EF ∗
l
[ũl] ≤ Sel as otherwise the firm would obtain a negative payoff from the

low type, the result follows whenever tl > 2Sel .Q.E.D.

Proof of Proposition 4.

Pure-Strategy Equilibria. We first analyze pure-strategy equilibria.

Case 1: Assume that (tl, th) ∈ E.

Consider the problem in which both IC constraints are ignored. The best response of firm a

solves

max
ual ,u

a
h

{
pl

(
1

2
+
ual − ubl

2tl

)
(Sel − ual ) + ph

(
1

2
+
uah − ubl

2th

)
(Seh − uah)

}
subject to ual , u

a
h ≥ 0. The first-order conditions with respect to uak, k ∈ {l, h}, are

1

2tk
(Sek − uak)−

(
1

2
+
uak − ubk

2tk

)
≤ 0, (17)
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with equality if uak > 0. The expression above is strictly decreasing in uak, which implies the firm’s

problem is quasi-concave. The unique solution to (17) is given by u∗k = max {Sek − tk, 0} , k ∈ {l, h}.
The argument is symmetric for firm b. Finally notice that both IC constraints are satisfied because

(tl, th) ∈ E. Since there is at most one pure strategy equilibrium by Proposition 5, we conclude that

all pure-strategy equilibrium must involve no distortion. The possibility of mixed-strategy equilibria

in this region is ruled out in Case 3 below.

Case 2: Assume that (tl, th) ∈ D+. First consider any pure-strategy equilibrium. Notice if ql = qel

and qh = qeh for some optimal menu
(
u1
l , u

1
h

)
then the first-order necessary conditions would imply

that the relaxed problem in which both IC constraints are ignored is strictly concave, which implies

that it admits one solution. All equilibrium must be in pure strategies and by 1. above we must

have (tl, th) ∈ E, leading to a contradiction. Assume towards a contradiction that ql (ul, uh) < qel

and qh (ul, uh) = qeh. In this case, the first-order condition with respect to uh and ul read(
ph
2th

)
(Seh − uh)− ph

2 + pl
2
∂Sl(ul,uh)

∂uh
≤ 0,(

pl
2tl

)
(Sl (ul, uh)− ul)− pl

2 + pl
2
∂Sl(ul,uh)

∂ul
≤ 0.

First assume that ul = 0,in which case

Λ(tl, th) ≡ th + max{Sel − tl, 0} ≥ (Seh − uh) + th
pl

2ph

∂Sl (ul, uh)

∂uh
+ ul > Seh −4θqel = η̄,

otherwise

Λ(tl, th) ≡ th + max{Sel − tl, 0} ≥ (Seh − uh) + th
pl

2ph

∂Sl (ul, uh)

∂uh
+ul−

∂Sl (ul, uh)

∂ul
> Seh−4θqel = η̄,

contradicting (tl, th) ∈ D+. Therefore all pure-strategy equilibria involve

ql (ul, uh) = qel and qh (ul, uh) > qeh.

Case 3: Assume that (tl, th) ∈ D−. By an argument analogous to the one used in Case 2 above, it

is easy to show that all pure-strategy equilibria involve

qh (ul, uh) > qel and ql (ul, uh) < qel .

Mixed Strategy Equilibria. Consider now mixed-strategy equilibria. First suppose that (ul, uh)

is such that Sl (ul, uh) = Sel . Taking a right-derivative w.r.t. ul for the menu (ul, uh) delivers

pl

ˆ ul+tl

ul

(
Sel − ul

2tl

)
dFl (ũl)− pl

ˆ ul+tl

ul

(
1

2
+
ul − ũl

2tl

)
dFl (ũl)

+ph

ˆ uh+th

uh

∂Sh (ul, uh)

∂ul

(
1

2
+
uh − ũh

2th

)
dFh (ũh) ≤ 0,
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which implies

ul ≥
ˆ ul+tl

ul

(Sel − tl) dFl (ũl)+

´ ul+tlul
(ũl − ul) dFl (ũl) + ph

pl
tl
´ uh+th
uh

∂Sh(ul,uh)
∂ul

(
1 +

uh−ũh
th

)
dFh (ũh)

Fl (ul + tl)

 ≥ Sel−tl,
and hence ūl ≤ ul + tl. Therefore the profit from the low type reads

pl

(
1

2
+
ul − EF ∗

l
[ũl]

2tl

)
(Sl (ul, uh)− ul)

in which case we can take a first-order condition w.r.t. ul at (ul, uh) delivering

ul ≥ (Sel − tl) +
(
EF ∗

l
[ũl]− ul

)
+
ph
pl
tl

ˆ uh+th

uh

∂Sh (ul, uh)

∂ul

(
1 +

uh − ũh
th

)
dFh (ũh) .

This immediately imply that there exists no optimal (ul, uh) at which Sel > Sl (ul, uh) as otherwise

ul < (Sl (ul, uh)− tl) +
(
EF ∗

l
[ũl]− ul

)
< ul,

which would be a contradiction. Similarly if ICl binds for (ul, uh) then it must bind for every
(
u1
l , u

1
h

)
in the support as otherwise

ul ≥ 1
2

[
(Sel − tl) +

(
EF ∗

l
[ũl]
)

+ ph
pl
tl
´ uh+th
uh

∂Sh(ul,uh)
∂ul

(
1 +

uh−ũh
th

)
dFh (ũh)

]
> 1

2

[
(Sel − tl) +

(
EF ∗

l
[ũl]
)]
≥ u1

l ,

which is a contradiction.

It is easy to see that the profit is differentiable at (ūl, ūh). Moreover, its derivative w.r.t. uh

satisfies

−Fh (ūh − th) + Fh (ūh − th)
∂Sh (ūl, ūh)

∂ūh
+

ˆ ūh

ūh−th

(
Sh (ūl, ūh)− ūh

2th

)
dFh (ũh)

−
ˆ ūh

ūh−th

(
1

2
+
ūh − ũh

2th

)
dFh (ũh) = 0,

implying th ≤ Seh − ūh, with strict inequality if ICl binds at (ūl, ūh). We claim that ICl binds at

(ūl, ūh) if and only if it binds at (ul, uh) . Indeed, if ICl binds at (ūl, ūh) but not at (ul, uh) then the

first-order condition above delivers ūh < Seh − th, while by an argument absolutely analogous to the

one presented above we have uh ≥ Seh− th, which is a contradiction. In summary, the analysis above

shows that ICl binds at some point (ul, uh) in the support if and only if it binds at (ul, uh) and at

(ūl, ūh).

Performing an absolutely symmetric argument for ICh we conclude that ICh binds at (ūl, ūh)

if and only if it binds at (ul, uh) if and only if it binds at every menu (ul, uh) in the equilibrium

support.

Case 1: ICl binds at every menu in the equilibrium support.
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In this case, ul > Sel − tl and ūh < Sh − th which imply

Λ(tl, th) ≡ th + max{Sel − tl, 0} < (Seh − ūh) + ul ≤ Seh − (ūh − ūl) < Seh −4θqeh.

Hence (tl, th) ∈ D+.

Case 2: ICh binds at every menu in the equilibrium support.

Analogously to case 1 above, the first-order condition at (ul, uh) w.r.t. uh implies uh > Seh − th
while the first-order condition at (ūl, ūh) w.r.t. ul implies Sel − tl > ūl,hence

Λ(tl, th) ≡ th + max{Sel − tl, 0} > (Seh − uh) + ūl ≥ Seh − (uh − ul) > Seh −4θqel .

Hence (tl, th) ∈ D−.
Case 3: No IC binds at any menu in the equilibrium support.

The first-order conditions at (ul, uh) imply that uk ≥ Sek − tk, and hence since ūk ≤ Sek we have

ūk − uk ≤ tk. Therefore the problem is given by

max
ul,uh

{
pl

(
1

2
+
ul − EF ∗

l
[ũl]

2tl

)
(Sel − ul) + ph

(
1

2
+
uh − EF ∗

l
[ũl]

2th

)
(Seh − uh)

}
This problem is strictly concave and admits a unique solution. Therefore the equilibrium is in

pure-strategies and (tl, th) ∈ E. Q.E.D.

Proof of Proposition 5.

We prove two facts that show that there exists at most one pure-strategy equilibrium. The statement

regarding types that benefit from asymmetric information and types that are made worse off follows

immediately from the necessary first-order conditions for the equilibrium.

Fact 1: If there exists an equilibrium in which no IC constraint binds then this is the unique pure

strategy equilibrium.

It is trivial to see that there is at most one equilibrium in which no IC constraint binds and in

which case this is in pure strategies. Hence we show that there is no other equilibrium in which one

IC binds. Recall that 4 (ul, uh) := uh − ul. Notice that this equilibrium satisfies uh > 0 and

Sel − u1
l − tl ≤ 0 (= 0 if u1

l > 0) (18)

Seh − u1
h − th = 0 (19)

First suppose that there exists an equilibrium
(
u2
l , u

2
h

)
in which ICl binds:

Sel − u2
l − tl +

(
ph
pl

)
tl

(
∂Sh

(
4
(
u2
l , u

2
h

))
∂ul

)
≤ 0(= 0 if ul > 0) (20)

Sh
(
4
(
u2
l , u

2
h

))
− u2

h − th +

(
ph
pl

)
th

(
∂Sh

(
4
(
u2
l , u

2
h

))
∂uh

)
= 0. (21)
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Notice that (19) and (21) imply u2
h < u1

h, while (18) and (20) imply u2
l ≥ u1

l implying4
(
u2
l , u

2
h

)
<

4
(
u1
l , u

1
h

)
, a contradiction.

Next suppose that there exists an equilibrium
(
u3
l , u

3
h

)
in which ICh binds:

Sel − uel − tl + tl

(
∂Sl

(
4
(
u3
l , u

3
h

))
∂ul

)
≤ 0(= 0 if u3

l > 0) (22)

Sh
(
4
(
u3
l , u

3
h

))
− u3

h − th +
(pl
h

)
th

(
∂Sl

(
4
(
u3
l , u

3
h

))
∂uh

)
≤ 0(= 0 if u3

h > 0) (23)

Notice that (23) and (19) imply u2
h > u1

h, while (22) and (20) imply u2
l ≤ u1

l delivering 4
(
u2
l , u

2
h

)
>

4
(
u1
l , u

1
h

)
,a contradiction.

Fact 2: If there exists an equilibrium in which the ICl constraint binds then this is the unique pure

strategy equilibrium.

Let
(
u2
l , u

2
h

)
an equilibrium in which ICl binds and

(
u3
l , u

3
h

)
an equilibrium in which ICh binds.

Using (21) and (23) we u3
h > u2

h > 0. On the other hand (22) and (20) imply u3
l ≤ u2

l . Therefore we

have ∆
(
u3
l , u

3
h

)
> ∆

(
u2
l , u

2
h

)
, which is a contradiction. Q.E.D.
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Online Appendix

Omitted Proofs

Proof of Proposition 3.

Proof of Claim (a). Suppose th ∈ [0, Seh − ηl]. Proposition 11 shows that firms obtain zero profits

from low-type contracts. Moreover, the argument in In the putative equilibrium where constraints

IRk and ICk are slack, for k ∈ {l, h}, we posit that u∗l = Sel and u∗h = Seh − th.

The best response of firm a then solves

max
ual ,u

a
h

{
plD̂

a
l (ual ) (Sel − ual ) + ph

(
1

2
+
uh − (Seh − th)

2th

)
(Seh − uah)

}
,

where

D̂a
l (ual ) =


0 if ual < Sel
1
2 if ual = Sel

1 if ual > Sel .

This problem has a solution u∗l = Sel and u∗h = Seh − th. Note that ICh is slack, as

u∗h − u∗l = (Seh − th)− Sel ≥ qel ∆θ

by assumption, as th ≤ Seh− ηl. This establishes the result as by Proposition 11 there exists at most

one pure-strategy equilibrium.

Proof of Claim (b). Now suppose th > Seh − ηl. Assume first that there exists a pure-strategy

equilibrium in which ICh does not bind. Then since the firm makes zero profits from low types by

Proposition 11, we must have ul = Sel . On the other hand, the first-order condition with respect to

uh delivers uh ≤ Seh − th. Hence

uh − ul ≤ Seh − th − Sel < qel ∆θ,

which is a contradiction.

Hence since in any pure-strategy equilibrium ICh binds and the firm obtains zero profits low

types, we must have u∗l = Sl(u
∗
l , u
∗
h) < Sel .

Assume first that th ∈ (Seh − ηl, Seh) . Hence the first-order condition with respect to uh delivers

−
(ph

2

)
+

(
Seh − uah

2th

)
+
pl
2

∂Sl(u
∗
l , u
∗
h)

∂uh
≤ 0,

which implies uh ≥ Seh − th > 0. If uh > Seh − th then uh /∈ argmaxph

(
1
2 +

uh−u∗h
2th

)
(Seh − uh),

which in light of our finding in Proposition 11 that firm makes zero profits from low types, we
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conclude that there is a profitable deviation. Hence the unique candidate to a pure-strategy equi-

librium is (Seh − th, ül(Seh − th)), where the function ül(uh) is defined as the unique solution in ul

to Sl(ul, uh) = ul. Consider a deviation to this putative equilibrium with the following structure:

the firm relinquishes an ε ≈ 0 more utility to low types (conquering the entire type-l market), and

chooses ûh to solve

max
uh

{
pl (Sl(ül(u

∗
h), uh)− ül(u∗h)) + ph

(
1

2
+
uh − (Seh − th)

2th

)
(Seh − uh)

}
s.t. uh ≥ Seh − th.

This problem is concave. Therefore, the deviation described above generates a strict improvement if

and only if the first-order condition evaluated at uh = Seh − th is strictly positive:[
pl
∂Sl
∂uh

(ül(u
∗
h), uh) +

ph
2th

(Seh − uh)− ph
(

1

2
+
uh − (Seh − th)

2th

)]
uh=Seh−th

= pl
∂Sl
∂uh

(ül(u
∗
h), Seh−th) > 0,

which is true by virtue of the fact that th > Seh − ηl. This shows that there exists no pure-strategy

equilibrium when th ∈ (Seh − ηl, Seh).

Let us now consider the case where th ≥ Seh. In this case, an analogous argument to the one used

above implies that the only remaining putative equilibrium takes the form u∗h = 0 and u∗l = ül(0) ≡ 0.

Consider a deviation to this putative equilibrium with the following structure: the firm relinquishes

an ε ≈ 0 more utility to low types (conquering the entire type-l market), and chooses ûh to solve

max
uh

{
plSl(0, uh) + ph

(
1

2
+
uh
2th

)
(Seh − uh)

}
s.t. uh ≥ 0.

This problem is concave. Therefore, the deviation described above generates a strict improvement if

and only if the first-order condition evaluated at uh = 0 is strictly positive:[
pl
∂Sl
∂uh

(0, uh) +
ph
2th

(Seh − uh)− ph
(

1

2
+
uh
2th

)]
uh=0

= pl
∂Sl
∂uh

(0, 0) +
ph
2

(
Seh
th
− 1

)
which, by the definition of t̃h, is equivalent to th < t̃h. This establishes that there exists no pure-

strategy equilibrium whenever Seh − ηl < th < t̃h.

Proof of Claim (c). The putative equilibrium is u∗l = u∗h = 0. We will show that no firm has

a profitable deviation. Consider a deviation to some utility profile (ul, uh) 6= (0, 0) . First assume

uh > ul and notice that the first-order condition w.r.t. uh delivers

−ph
(

1
2 + uh

2th

)
+ ph

(
Seh−uh

2th

)
+ pl

∂Sl
∂uh

(ul, uh)

< −ph
(

1
2

)
+ ph

(
Seh
2th

)
+ pl

∂Sl
∂uh

(ul, ul)

= −ph
(

1
2

)
+ ph

(
Seh
2th

)
+ pl

∂Sl
∂uh

(0, 0) ≤ 0,

where the last inequality used th ≥ t̃h. This shows that all such deviations are suboptimal. Hence

consider deviations in which uh = ul. But in this case, Sl(ul, ul) = Sl(0, 0) = 0, which implies that

no such deviation can be profitable. This completes the proof. Q.E.D.
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Proof of Proposition 6. We only prove (b) as the argument for (a) is analogous. Take (tl, th) ∈ D+

and consider the putative pure-strategy equilibrium (u∗l , u
∗
h) from Proposition 5.

Consider first the case where u∗l > 0. Letting 4 ≡ uh − ul (and 4∗ ≡ u∗h − u∗l ) it follows from the

equilibrium conditions that

∂4
∂th

=
−pl
tl

(
∂Sh
∂uh

(4∗)− 1
)

pl
tl

(
∂Sh
∂uh

(4∗)− 1
)

+
(
pl
tl

+ ph
th

)
th
∂2Sh
∂u2

h
(4∗)

< 0,

∂4
∂th

+ 1 =

(
pl
tl

+ ph
th

)
th
∂2Sh
∂u2

h
(4∗)

pl
tl

(
∂Sh
∂uh

(4∗)− 1
)

+
(
pl
tl

+ ph
th

)
th
∂2Sh
∂u2

h
(4∗)

> 0,

∂ul
∂th

=
ph

∂2Sh
∂u2

h
(4∗)

(
∂Sh
∂uh

(4∗)− 1
)

pl
tl

(
∂Sh
∂uh

(4∗)− 1
)

+
(
pl
tl

+ ph
th

)
th
∂2Sh
∂u2

h
(4∗)

< 0,

∂uh
∂th

=
∂4
∂th

+
∂ul
∂th

=

[
ph

∂2Sh
∂u2

h
(4∗)− pl

tl

] (
∂Sh
∂uh

(4∗)− 1
)

pl
tl

(
∂Sh
∂uh

(4∗)− 1
)

+
(
pl
tl

+ ph
th

)
th
∂2Sh
∂u2

h
(4∗)

< 0,

∂uh
∂th

+ 1 =

∂2Sh
∂u2

h
(4∗) (Sel − u∗l )

pl
tl

(
∂Sh
∂uh

(4∗)− 1
)

+
(
pl
tl

+ ph
th

)
th
∂2Sh
∂u2

h
(4∗)

> 0.

In turn, consider the case where u∗l = 0. In this case, 4∗ = u∗h, and

∂4
∂th

(tl, th) =
∂u∗h
∂th

(tl, th) =
1− ∂Sh

∂uh
(4∗)

∂Sh
∂uh

(4∗)− 1 + th
∂2Sh
∂u2

h
(4∗)

< 0,

∂4
∂th

(tl, th) + 1 =
∂u∗h
∂th

(tl, th) + 1 =
th
∂2Sh
∂u2

h
(4∗)

∂Sh
∂uh

(4∗)− 1 + th
∂2Sh
∂u2

h
(4∗)

> 0.

Obviously, in this case,
∂u∗l
∂th

(tl, th) = 0. The signs of these derivatives will be used below.

The best reply of each firm chooses (ul,4) to maximize

Πd(ul,4) ≡ pl
(

1

2
+
ul − u∗l

2tl

)
(Sel − ul) + phI

(
1

2
+
4+ ul − u∗h

2th

)
(Sh(4)−4− ul) .

At the range where uh = 4+ ul ∈ (u∗h − th, u∗h + th), the Jacobian and the Hessian of the best-reply

objective function exhibit the following derivatives:

∂Πd

∂ul
(ul,4) =

pl
2tl

(Sel − ul)− pl
(

1

2
+
ul − u∗l

2tl

)
− ph

(
1

2
+
4+ ul − u∗h

2th

)
+
ph
2th

(Sh(4)−4− ul) ,

∂Πd

∂δ
(ul,4) =

ph
2th

(Sh(4)− δ − ul) + ph

(
1

2
+
4+ ul − u∗h

2th

)(
∂Sh
∂uh

(4)− 1

)
,
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∂2Πd

∂u2
l

(ul,4) = − pl
2tl
− pl

2tl
− ph

2th
− ph

2th
= −

(
pl
tl

+
ph
th

)
,

∂2Πd

∂δ2
(ul,4) =

ph
th

(
∂Sh
∂uh

(4)− 1

)
+ ph

(
1

2
+
4+ ul − u∗h

2th

)(
∂2Sh
∂u2

h

(4)

)
,

and
∂2Πd

∂ul∂δ
(ul,4) = − ph

2th
+
ph
2th

(
∂Sh
∂uh

(4)− 1

)
=

ph
2th

(
∂Sh
∂uh

(4)− 2

)
.

Because
∂2Πd

∂u2
l

(ul,4),
∂2Πd

∂42
(ul,4),

∂2Πd

∂ul∂4
(ul,4) < 0,

the function Πd is coordinate-wise concave and submodular in (ul,4). It is jointly weakly concave

at (ul,4) if and only if

H(ul,4) ≡ ∂2Πd

∂u2
l

∂2Πd

∂42
−
(
∂2Πd

∂ul∂4

)2

≥ 0.

After some algebra, it can be shown that

H(ul,4) =

(
ph
th

)2
{
−
(
pl
tl

th
ph

+ 1

)[(
∂Sh

∂uh
(4)− 1

)
+

1

2
(th +4+ ul − u∗h)

(
∂2Sh

∂u2h
(4)

)]
− 1

4

(
∂Sh

∂uh
(4)− 2

)2
}
.

At the putative equilibrium,

H(u∗l ,4∗) =

(
ph
th

)2

Υ(tl, th),

where

Υ(tl, th) ≡

{
−
(
pl
tl

th
ph

+ 1

)[(
∂Sh
∂uh

(4∗)− 1

)
+
th
2

(
∂2Sh
∂u2

h

(4∗)
)]
− 1

4

(
∂Sh
∂uh

(4∗)− 2

)2
}
,

with the understanding that δ∗ is a function of (tl, th). Hence, the best-reply objective is locally

weakly jointly concave at the putative equilibrium, i.e., H(u∗l ,4∗) ≥ 0, if and only if Υ(tl, th) ≥ 0.

Direct inspection reveals that Υ(tl, th) < 0 for th in an open neighborhood around zero.

Taking the partial derivative of Υ(tl, th) with respect to th, we obtain:

∂Υ

∂th
(tl, th) = −pl

tl

1

ph

(
∂Sh
∂uh

(4∗)− 1

)

−
(
pl
tl

th
ph

)[
∂S2

h

∂u2
h

(4∗)
(
∂δ∗

∂th
+ 1

)
+
th
2

∂3Sh
∂u3

h

(4∗)∂δ
∗

∂th

]
.

−1

2

∂2Sh
∂u2

h

(4∗)− th
2

∂3Sh
∂u3

h

(4∗)∂δ
∗

∂th
− 1

2

∂δ∗

∂th

∂2Sh
∂u2

h

(4∗)∂Sh
∂uh

(4∗) > 0.

The derivatives computed above for 4∗, for the cases where either u∗l > 0 or u∗l = 0, together

with the assumption on the third derivative of ϕ, which guarantees that ∂3Sh
∂u3

h
> 0, imply the last

inequality.
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Therefore, for a fixed tl, there exists a threshold τ1
h(tl) > 0 such that the best-reply objective

is locally weakly jointly concave at the putative equilibrium, i.e., H(u∗l ,4∗) ≥ 0, if and only if

th ≥ τ1
h(tl). Further notice that (tl, τ

1
h(tl)) ∈ D+, as a pure-strategy equilibrium is guaranteed to

exist by continuity around any (tl, th) satisfying

Λ(tl, th) = ηh,

i.e., in the boundary between the regions D+ and E. Obviously, a pure-strategy equilibrium fails to

exist provided th < τ1
h(tl).

For th ≥ τ1
h(tl), by local joint concavity, we know there is no local deviation around the putative

equilibrium. But there might exist non-local profitable deviations. To analyze the latter, note that

H(ul,4) ≥ 0 if and only if

ul ≥

(
pl
tl
th
ph

+ 1
) [(

∂Sh
∂uh

(4)− 1
)

+ 1
2 (th +4− u∗h)

(
∂2Sh
∂u2

h
(4)

)]
+ 1

4

(
∂Sh
∂uh

(4)− 2
)2

−
(
∂2Sh
∂u2

h
(4)

)(
pl
tl
th
ph

+ 1
) .

The right-hand side does not depend on ul, being an affine function of 4 when ϕ is quadratic as
∂Sh
∂uh

(4) = γ1 − γ24 for γ1 ∈ R and γ2 ∈ R+for 4 ∈ [qeh∆θ,+∞) and ∂2Sh
∂u2

h
(4) = −γ2 for 4 in

the same range. Therefore, Πd is jointly concave over a convex subset of the domain {(ul,4) : ul ≥
0,4 ∈ [qeh∆θ,+∞)}. Because th ≥ τ1

h(tl), the putative equilibrium (u∗l , u
∗
h) belongs to this set, which

implies Πd does not possess another critical point.

This implies that the best profitable deviation cannot belong to the range

uh = 4+ ul ∈ (u∗h − th, u∗h + th),

which implies it satisfies uh ∈ {u∗h− th, u∗h + th} (it is easy to show that no profitable deviation exist

when no IC binds or where ICh binds).

Consider first the deviation that sets uh = u∗h + th, therefore cornering the high-type market.

The optimal deviation of this kind chooses ul to solve the following program:

Πd∗(tl, th) ≡ max
ul

{
pl

(
1

2
+
ul − u∗l

2tl

)
(Sel − ul) + ph (Sh(ul, u

∗
h + th)− u∗h − th)

}
.

This objective is concave in ul. The first-order condition reveals that the maximand udl solves

pl
2tl

(
Sel − udl

)
− pl

(
1

2
+
udl − u∗l

2tl

)
+ ph

∂Sh
∂ul

(udl , u
∗
h + th) = 0,

which can be rewritten as

udl =
Sel − tl

2
+
u∗l
2

+ tl
ph
pl

∂Sh
∂ul

(udl , u
∗
h + th). (24)
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Employing the envelope theorem, we obtain that

∂Πd∗

∂th
(tl, th) = − pl

2tl

∂u∗l
∂th

(tl, th)
(
Sel − udl

)
+ ph

(
∂Sh
∂uh

(ul, u
∗
h(tl, th) + th)− 1

)[
∂u∗h
∂th

(tl, th) + 1

]
.

In turn, consider the deviation that sets uh = u∗h−th, therefore abandoning the high-type market.

The optimal deviation of this kind chooses ul to solve the following program:

Πb∗(tl, th) ≡ max
ul

{
pl

(
1

2
+
ul − u∗l

2tl

)
(Sel − ul)

}
.

We denote the maximand by ubl . Notice that udl > u∗l > ubl . Moreover,

∂Πb∗

∂th
(tl, th) = − pl

2tl

∂u∗l
∂th

(tl, th)
(
Sel − ubl

)
.

Therefore,

∂Πd∗

∂th
(tl, th)−∂Πb∗

∂th
(tl, th) =

pl
2tl

∂u∗l
∂th

(tl, th)
(
udl − ubl

)
+ph

(
∂Sh
∂uh

(ul, u
∗
h(tl, th) + th)− 1

)[
∂u∗h
∂th

(tl, th) + 1

]
,

which is negative because udl − ubl > 0. Because Πb∗(tl, th) = Πd∗(tl, th) in the locus {(tl, th) :

Λ(tl, th) = ηh}, it follows that Πb∗(tl, th) < Πd∗(tl, th) for all (tl, th) ∈ D+.

This establishes that the optimal deviation is such that uh = u∗h + th and ul is the maximand of

Πd∗(tl, th). Let us then compare Πd∗(tl, th) with the putative equilibrium profit:

Π∗(tl, th) ≡ pl
2

(Sel − u∗l ) +
ph
2

(Sh(4∗)−4∗ − u∗l ) .

Partially differentiating with respect to th gives

∂Π∗

∂th
(tl, th) = −pl

2

∂u∗l
∂th

(tl, th) +
ph
2

(
∂δ∗

∂th
(tl, th)

)(
∂Sh
∂uh

(4∗)− 1

)
− ph

2

∂u∗l
∂th

(tl, th) > 0.

Hence,

∂Π∗

∂th
(tl, th)− ∂Πd∗

∂th
(tl, th) =

ph
2

(
∂δ∗

∂th
(tl, th)

)(
∂Sh
∂uh

(4∗)− 1

)
− ph

2

∂u∗l
∂th

(tl, th)

+
pl
2tl

∂u∗l
∂th

(tl, th)
(
Sel − tl − udl

)
−
(
ph
∂Sh
∂uh

(0, u∗h(tl, th) + th − ul)− ph
)[

∂u∗h
∂th

(tl, th) + 1

]
Plugging the expression (24) for the maximand udl gives

∂Π∗

∂th
(tl, th)− ∂Πd∗

∂th
(tl, th) =

ph
2

(
∂4∗

∂th
(tl, th)

)(
∂Sh
∂uh

(4∗)− 1

)
− ph

2

∂u∗l
∂th

(tl, th)

+
pl
4tl

∂u∗l
∂th

(tl, th)

(
Sel − tl − u∗l − 2tl

ph
pl

∂Sh
∂ul

(udl , u
∗
h + th)

)
−ph

(
∂Sh
∂uh

(udl , u
∗
h(tl, th) + th)− 1

)[
∂u∗h
∂th

(tl, th) + 1

]
> 0.
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The derivatives computed above for 4∗, u∗l and u∗h, for the cases where either u∗l > 0 or u∗l = 0,

together with the fact that Sel − tl < u∗l , as shown in Proposition 5, imply the last inequality.

Therefore, for a fixed tl, there exists a threshold τ2
h(tl) > 0 such that the putative equilibrium

profit Π∗(tl, th) is greater than Πd∗(tl, th) if and only if th ≥ τ2
h(tl). Set τh(tl) ≡ max{τ1

h(tl), τ
2
h(tl)}

to obtain the result. Q.E.D.

Proof of Proposition 7. Notice that the set of symmetric equilibria is upper hemicontinuous.

Hence, since it is a function, it is continuous.

Consider a neighborhood U of (tl, th) where an equilibrium (u∗l , u
∗
h) in which pure-strategy equi-

librium exists. Moreover, assume that U is contained in E,D+ or D−,and hence by Proposition 4

all equilibrium (u∗l , u
∗
h) in U exhibits qualitatively the same set of distortions.

First consider the case in which U ∈ E. In this case, u∗k = max {Sek − tk, 0} , k ∈ {l, h}, which

immediately delivers the result.

Next consider an open set U ∈ D+ where the ICh constraint binds and IR does not. The

equilibrium is given by the following equations:

Sl (ul, uh) + tl

(
∂Sl(ul,uh)

∂ul
− 1
)

= ul

Seh − th + th

(
pl
ph

)
∂Sl(ul,uh)

∂uh
= uh.

Recall that 4 (ul, uh) := uh − ul. To ease notation, we write only 4 below, leaving implicit its

dependence on (ul, uh) wherever it does not lead to confusion. Consider the equation

G (4, tl, th) ≡
[
Seh − th + th

(
pl
ph

)
∂Sl (4)

∂uh

]
−
[
Sl (4) + tl

(
∂Sl (4)

∂ul
− 1

)]
−4.

We have
∂G(4,tl,th)

∂4 = th

(
pl
ph

)
∂2Sl(4)
∂42 − ∂Sl(4)

∂4 + tl
∂2Sl(4)
∂42 < 0

∂G(4,tl,th)
∂th

= −1 +
(
pl
ph

)
∂Sl(4)
∂4 = −

(
Seh−uh
th

)
< 0

∂G(4,tl,th)
∂tl

= −
(

1− ∂Sl(4)
∂ul

)
=
(
Sl(ul,uh)−ul

tl

)
> 0

Therefore by straightforward algebra we have ∂4
∂tl

> 0, ∂4∂th < 0,∂uh∂tl = th

(
pl
ph

)
∂2Sl(ul,uh)

∂u2
h

∂4
∂tl

< 0,∂uh∂th
=

∂4
∂th

+ ∂ul
∂th

< 0,∂ul∂th
=
[
∂Sl(ul,uh)

∂4 − tl
(
∂2Sl(ul,uh)

∂42

)]
∂4
∂th

< 0 and ∂ul
∂tl

= ∂uh
∂tl
− ∂4

∂tl
< 0.

Next consider an open set U ∈ D+ where both ICh and IR bind. The equilibrium is given by

the following equations:

ul = 0

Seh − th + th

(
pl
ph

)
∂Sl(0,uh)
∂uh

= uh.

Locally, we have ∂4
∂tl

= 0, ∂4∂th = −

(
1−

(
pl
ph

)
∂Sl(0,uh)

∂uh

)
(

1−th
(
pl
ph

)
∂2Sl(0,uh)

∂u2
h

) = −
1
th

(Seh−uh)(
1−th

(
pl
ph

)
∂2Sl(0,uh)

∂u2
h

) < 0,∂uh∂tl = 0,∂uh∂th
=

∂4
∂th

< 0,∂ul∂th
= 0 and ∂ul

∂tl
= 0.
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Next consider an open set U ∈ D− where the ICl and the IR constraints bind. The equilibrium

is given by the following equations:

ul = 0

uh = Sh (0, uh)− th + th
∂Sh(0,uh)

∂uh

We have ∂4
∂tl

= 0, ∂4∂th = −

(
1− ∂Sh(0,uah)

∂uh

)
(

1− ∂Sh(0,uh)
∂uh

− ∂
2Sh(0,uh)
∂u2
h

) = −
1
th

(Sh(0,uh)−uh)(
1− ∂Sh(0,uh)

∂uh
− ∂

2Sh(0,uh)
∂u2
h

) < 0,∂uh∂tl = 0,∂uh∂th
=

∂4
∂th

< 0,∂ul∂th
= 0 and ∂ul

∂tl
= 0.

Finally, consider an open set U ∈ D+ where the only binding constraint is the constraint ICl .

The equilibrium is given by the following equations:

ul = Sel + tl

(
ph
pl

)(
∂Sh(ul,uh)

∂ul

)
− tl

uh = Sh (ul, uh) + th
∂Sh(ul,uh)

∂uh
− th

Consider the equation

G (4, tl, th) :=

[
Sh (ul, uh)− th + th

∂Sh (4)

∂uh

]
−
[
Sel + tl

((
ph
pl

)
∂Sh (4)

∂ul
− 1

)]
−4.

We have:
∂G(4,tl,th)

∂4 =
[
∂Sh(ul,uh)

∂4 + th
∂2Sh(4)
∂42 + tl

(
ph
pl

)
∂2Sh(4)
∂42

]
− 1 < 0

∂G(4,tl,th)
∂tl

= −
((

ph
pl

)
∂Sh(4)
∂ul

− 1
)

= 1
tl

(Sel − ul) > 0

∂G(4,tl,th)
∂th

= −
(

1− ∂Sh(4)
∂uh

)
= − 1

th
(Sh (ul, uh)− uh) < 0

Therefore we have ∂4
∂tl

> 0, ∂4∂th < 0,∂uh∂tl =
(
th
∂2Sh(4)
∂u2

h
+ ∂Sh(4)

∂uh

)
∂4
∂tl

< 0,∂uh∂th
= ∂4

∂th
+ ∂ul

∂th
< 0,∂ul∂th

=

−tl
(
ph
pl

)(
∂S2

h(ul,uh)

∂42

)
∂4
∂th

< 0 and ∂ul
∂tl

= ∂uh
∂tl
− ∂4

∂tl
< 0. This exhausts all cases and completes the

proof. Q.E.D.

Proof of Proposition 8. We proceed by analyzing five different cases.

Case 1. First consider an open set in which U ∈ E and tk 6= Sek for k ∈ {l, h}. We have u∗k =

max {Sek − tk, 0} , k ∈ {l, h}, which immediately implies ∂yk
∂tk

= I{Sek−tk>0}.
Case 2. Consider an open set in which U ∈ D− and only the ICh constraints binds.

The equilibrium is given by the following equations:

Sl (ul, uh) + tl

(
∂Sl(ul,uh)

∂ul
− 1
)

= ul

Seh − th + th

(
pl
ph

)
∂Sl(ul,uh)

∂uh
= uh

Prices are given by

yl = θlql (ul, uh)− ul
yh = θhq

e
h − uh.
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Comparative statics are given by: ∂yh
∂tl

= −∂uh
∂tl

> 0, ∂yh∂th
= −∂uh

∂th
> 0, ∂yl

∂tl
= θl

∂ql(ul,uh)
∂4

∂4
∂tl
− ∂ul

∂tl
> 0

and
∂yl
∂th

= θl
∂ql (ul, uh)

∂4
∂4
∂th
− ∂ul
∂th

= [ϕ´(ql (ul, uh)4θ − tlϕ´´(ql (ul, uh)]

(
1

4θ

)2 ∂4
∂th

.

We must show that if ϕ´´´≤ 0 then yl is quasi-convex in th if ϕ′′′(q) ≤ 0. For that notice that

sign ∂yl∂th
= sign [tlϕ´´(ql (4 (th))− ϕ´(ql (4 (th))4θ] . Notice that ql → tlϕ´´(ql) − ϕ´(ql)4θ is de-

creasing in ql and ∂ql
∂th

< 0. Therefore ∂yl
∂th

(t∗h) = 0 implies ∂yl
∂th

(
t̃h
)
> 0 for t̃h > t∗h.

ϕ´(q)4θ − tlϕ´´(q) = K which can have at most one root since ϕ´´ > 0 and ϕ´´´≤ 0.

Case 3. Consider an open set in which U ∈ D− and in which IR and ICh bind and in which uh > 0.

The equilibrium is given by:

Seh − th + th

(
pl
ph

)
∂Sl (0, uh)

∂uh
= uh

We have

yh = θhq
e
h − uh.

yl = θlql (ul, uh) .

We have the following comparative statics: ∂yl
∂tl

= θl
4θ

∂4
∂tl

= 0, ∂yl∂th
= θl
4θ

∂4
∂th

< 0,∂yh∂tl = −∂uh
∂tl

= 0 and
∂yh
∂th

= −∂uh
∂th

> 0.

Case 4. Consider an open set in which U ∈ D+ and in which the only binding constraint is ICl.

The equilibrium is given by the following equations:

Sel + tl

(
ph
pl

)(
∂Sh(ul,uh)

∂ul

)
− tl = ul

Sh (ul, uh) + th
∂Sh(ul,uh)

∂uh
− th = uh.

We have

yh = θhqh (ul, uh)− uh.
yl = θlq

e
l − ul.

We have the following comparative statics: ∂yl
∂tl

= −∂ul
∂tl

> 0, ∂yl∂th
= −∂ul

∂th
> 0,∂yh∂tl =

(
θh
4θ

)
∂4
∂tl
−∂uh

∂tl
> 0

and

∂yh
∂th

= θh
∂qh(ul,uh)

∂4
∂4
∂th
− ∂uh

∂th

=
(
θh
4θ

)
∂4
∂th
−
(
∂4
∂th

+ ∂ul
∂th

)
=
(

1
4θ

)2 [
θl4θ + tl

(
ph
pl

)(
∂S2

h(ul,uh)

∂q2

)]
∂4
∂th

= ∂4
∂th

(
1
4θ

)2 [
θl4θ − tl

(
ph
pl

)
ϕ´´(qh (ul, uh)

]
.

The desired quasiconvexity when ϕ´´´ < 0 follows because sign∂yh∂th
= sign

[
tl

(
ph
pl

)
ϕ´´(qh)− θl4θ

]
which is decreasing in qh and hence since ∂qh

∂th
< 0 it is increasing in th.
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Case 5. Consider an open set in which U ∈ D+ and in which the binding constraint are ICl and

IR. The equilibrium is given by the following equation:

Sh (0, uh) + th
∂Sh (0, uh)

∂uh
− th = uh.

Prices are given by:

yh = θhqh (0, uh)− uh.
yl = θlq

e
l .

We have ∂yl
∂tl

= 0, ∂yl∂th
= 0 and ∂yh

∂tl
= 0. Finally notice that

∂yh
∂th

= θh
∂qh (ul, uh)

∂4
∂4
∂th
− ∂uh
∂th

=

[
θh
4θ
− 1

]
∂4
∂th

< 0.

This completes the proof. Q.E.D.

Proof of Proposition 10.

Existence of Symmetric Equilibrium when |β| is small. Is straightforward to verify

that the firm’s problem is equal to the problem of Rochet and Stole (2002) when t is constant and

small. It follows that there exists ζ1 > 0 such that if t is a constant belonging to (0, ζ1) then

the problem has a unique solution in which u̇ (θ) = θ for every θ. Consider t(θ) = α + βθ. A

straightforward continuity argument implies that for every ζ in this range there exists ε1 > 0 such

that supθ∈[θ,θ]‖ζ − α+ βθ‖ < ε1 then if (uα,β (θ))θ∈[θ,θ] satisfies the Euler equation above with the

same boundary conditions (which solution is continuous in α, β ) then if (ûα,β (θ))θ∈[θ,θ] is a best-

response to this equation we must have
(

1
2 +

ûα,β(θ)−uα,β(θ)
2t(θ)

)
∈
[

1
3 ,

2
3

]
for every θ. Without loss of

generality, we make this restriction for the remainder of this proof. In light of this, we set up the

optimal control problem where y(θ) is the control variable, x (θ) is the state variable and the costate

variable is p (θ) :

H(θ, x(θ), y(θ), p(θ)) =

(
1

2
+
x (θ)− ũ (θ)

2t (θ)

)(
θy (θ)− (y (θ))2

2
− x(θ)

)
+ p (θ) y(θ),

Optimality Conditions are Hy(θ, x(θ), y(θ), p(θ)) = 0,−ṗ (θ) = Hx(θ, x(θ), y(θ), p(θ),ẋ (θ) = y (θ) and

the transversality conditions y
(
θ̄
)

= θ̄,y (θ) = θ. Solving and imposing symmetry we obtain(
1

2

)
(θ − y (θ)) = −p (θ)

−ṗ (θ) =

(
1

2t (θ)

)(
θy (θ)− (y (θ))2

2
− x(θ)

)
−
(

1

2

)
Let

(
x∗α,β(θ), y∗α,β(θ), p∗α,β(θ)

)
be a solution to the system above. We claim that this is an optimal

solution. For that we will use Arrow sufficiency condition. Define:

H(θ, x(θ), p∗α,β(θ)) = maxỹ

(
1

2
+
x (θ)− ûα,β (θ)

2t (θ)

)(
θỹ − (ỹ)2

2
− x(θ)

)
+ p∗α,β (θ) ỹ
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.

Letting A (x) :=
(

1
2 +

x(θ)−ûα,β(θ)
2t(θ)

)
,B(x) := A (x) θ + p∗α,β (θ), we obtain

H(θ, x(θ), p∗(θ)) =
B(x)2

2A(x)
− x(θ)A(x).

Arrow sufficiency condition will be satisfied if we guarantee that Hxx(θ, x(θ), p∗(θ)) ≤ 0. Since

x → A (x) =
(

1
2 +

x(θ)−ûα,β(θ)
2t(θ)

)
is positive affine, we may change variables and get A(x) = z,

B(x) = zθ + p∗α,β (θ) and x(θ) = 2zt (θ)− t (θ) + ûα,β (θ) , which implies

H(θ, z, p∗(θ)) =

(
zθ + p∗α,β

)2

2z
− (2zt (θ)− t (θ) + ûα,β (θ)) z.

Differentiating twice with respect to z

Hzz(θ, z, p
∗(θ)) =

p∗2
α,β

z3 − 4t (θ)

=
(θ−y∗α,β(θ))

2

4z3 − 4t (θ)

<
9(θ−ˆ̇uα,β(θ))

2

4 − 4 (α− |β| θ) ,

where the last line used z =
(

1
2 +

ûα,β(θ)−uα,β(θ)
2t(θ)

)
∈
[

1
3 ,

2
3

]
and y∗α,β(θ) = ˆ̇uα,β (θ) . The solution when

(ûα,β (θ)) when β = 0 satisfies
(
θ − ˆ̇uα,0 (θ)

)
= 0. By a continuity argument, there exists ε2 ∈ (0, ε1)

such that supθ∈[θ,θ] ‖ζ − α+ βθ‖ < ε2 implies maxθ
9(θ−ˆ̇uα,β(θ))

2

4 − 4 (α− |β| θ) < 0, which completes

the argument. Moreover, a continuity argument implies that we can take ε ∈ (0, ε2) such that

supθ∈[θ,θ] ‖ζ − α+ βθ‖ < ε implies that ˆ̇uα,β (θ) is increasing and ûα,β (θ) > 0.

Distortions when β > 0 and β < 0.

Case 1: β > 0. Let (u (θ))θ∈[θ,θ] be the solution when t (θ) = α+βθ. We will show that u̇ (θ) < θ

for all θ ∈
(
θ, θ
)
.

First we show that ü (θ) < 1. Assume towards a contradiction that ü (θ) ≥ 1. Let (uλ (θ))θ∈[θ,θ].

be the solution when t (θ) = α+ βθ for every θ and notice that ü (θ) = 1 for every θ. Notice that

dü(θ)
dθ |θ= −

(
1

(α+βθ)2

)
[(θ − u̇ (θ)) ü (θ) + (θ − u̇ (θ))] (α+ βθ)2 + β

(
1

(α+βθ)2

)(
θu̇ (θ)− (u̇(θ))2

2 − u(θ)
)

= β
(

1
(α+βθ)2

)(
θu̇ (θ)− (u̇(θ))2

2 − u(θ)
)
> 0.

Therefore, there exists ε > 0 such that, for all θ ∈ (θ, θ + ε) we have ü (θ) > 1, implying

θu̇ (θ)− (u̇ (θ))2

2
− u(θ) < θu̇λ (θ)− (u̇λ (θ))2

2
− uλ(θ).

Therefore u̇ (θ) > θ for every θ in this set. Let θ∗ be the infimum over all θ ≥ θ + ε such that

u̇ (θ) ≤ θ. Since u̇
(
θ
)

= θ,we conclude that θ∗ is well defined. Notice that since u̇ (θ) > θ for every
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θ ∈ (θ, θ∗) we have ü (θ∗) ≤ üλ (θ∗) = 1. However, since u (θ∗) > uλ (θ∗) we must have

ü (θ∗) = 2−
(

1
α+βθ∗

)(
θ∗u̇ (θ∗)− (u̇(θ∗))2

2 − u(θ∗)
)

> 2−
(

1
α+βθ

)(
θ∗u̇ (θ∗)− (u̇(θ∗))2

2 − u(θ∗)
)

> 2−
(

1
α+βθ

)(
θ∗u̇ (θ∗)− (u̇(θ∗))2

2 − uλ(θ∗)
)

= üλ (θ∗) ,

which is a contradiction. This shows that ü (θ) < 1 and hence there exists ε > 0 such that, for all

θ ∈ (θ, θ + ε) we have u̇ (θ) < θ. Assume towards a contradiction that there exists θ̃ < θ such that

u̇
(
θ̃
)

= θ̃. Let θ̃ be the smallest type satisfying this condition. This implies ü
(
θ̃
)
≥ 1, hence the

case above applies and leads to a contradiction.

Case 2: β < 0. An argument analogous to the one presented in Case 1 above establishes that

u̇ (θ) > θ for every θ ∈
(
θ, θ
)

Types that benefit and types that are hurt by asymmetric information.

Case 1: β > 0. As we have shown above, ü (θ) < 1, and hence

u(θ) = (α+ βθ) (ü (θ)− 2) + θu̇ (θ)− (u̇(θ))2

2

< (α+ βθ) (üλ (θ)− 2) + θu̇λ (θ)− (u̇λ(θ))2

2

= uλ (θ) ,

where(uλ (θ))θ∈[θ,θ]. is the solution when t (θ) = α + βθ. This implies that type θ < θ1 is worse off

under asymmetric information. By continuity there is θ1with θ < θ1 such that every type θ < θ1

is worse off when there is asymmetric information. A symmetric argument shows the existence of

θ2 ∈
[
θ1, θ̄

)
such that every type θ > θ1 is better off under asymmetric information.

Case 2: β < 0. The argument is similar to case 1 above and omitted for brevity.

An increase in β decreases u̇ (θ) for every interior type.

Case 1: β > 0. Keep α constant and take two solutions uβ1 (θ) and uβ2 (θ) for β2 > β1. We claim

that u̇β1 (θ) > u̇β2 (θ) for every θ ∈
(
θ, θ
)
. First we claim that üβ1 (θ) > üβ2 (θ) . Assume towards a

contradiction that üβ1 (θ) ≤ üβ2 (θ) . Notice that üβ1 (θ) = üβ2 (θ) implies

düβ2
(θ)

dθ − düβ1
(θ)

dθ

= β2

(
1

(α+β2θ)
2

)(
θu̇β2 (θ)− (u̇β2

(θ))
2

2 − uβ2(θ)

)
− β1

(
1

(α+β1θ)
2

)(
θu̇β1 (θ)− (u̇β1

(θ))
2

2 − uβ1(θ)

)
=
(

β2θ
α+β2θ

)
θ−1

 θu̇β2
(θ)−(u̇β2

(θ))
2

2
−uβ2

(θ)

α+β2θ

− ( β1θ
α+β1θ

)
θ−1

 θu̇β1
(θ)−(u̇β1

(θ))
2

2
−uβ1

(θ)

α+β2θ


= θ−1

[(
β2θ

α+β2θ

)
−
(

β1θ
α+β1θ

)]
(2− üβ2 (θ)) > 0.

Hence if üβ1 (θ) ≤ üβ2 (θ) then there exists θ1 > θ such that üβ1 (θ) < üβ2 (θ) and u̇β1 (θ) < u̇β2 (θ)

for all θ ∈ (θ, θ1) . Clearly there should be θ2 ∈
(
θ1, θ

)
such that üβ1 (θ2) = üβ2 (θ2), otherwise we

would have u̇β1

(
θ
)
< u̇β2

(
θ
)
, which is a contradiction. Therefore let θ∗ ∈

(
θ1, θ

)
be the smallest
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element of this set such that üβ1 (θ∗) = üβ2 (θ∗). Notice that we must have
düβ1

(θ)

dθ |θ∗≥
düβ2

(θ)

dθ |θ∗ or

equivalently

d

dθ

( 1

α+ β1θ∗

)θ∗u̇β1 (θ∗)−

(
u̇
β1

(θ∗)
)2

2
− uβ1(θ∗)


 ≤ d

dθ

( 1

α+ β2θ∗

)θ∗u̇β2 (θ∗)−

(
u̇
β2

(θ∗)
)2

2
− uβ2(θ∗)


 ,

which holds if and only if

(
1

α+β1θ∗

) [
θ∗ − u̇

β1
(θ∗)

]
üβ1 (θ∗)−

(
β1

(α+β1θ∗)2

)(
θ∗u̇β1 (θ∗)−

(
u̇
β1

(θ∗)
)2

2 − uβ1(θ∗)

)

≤
(

1
α+β2θ∗

) [
θ∗ − u̇

β2
(θ∗)

]
üβ2 (θ∗)−

(
β2

(α+β2θ∗)2

)(
θ∗u̇β2 (θ∗)−

(
u̇
β2

(θ∗)
)2

2 − uβ2(θ∗)

)

But notice that u̇
β1

(θ∗) < u̇
β2

(θ∗) < θ∗ implies θ∗ − u̇
β1

(θ∗) > θ∗ − u̇
β2

(θ∗) > 0. This, üβ1 (θ∗) =

üβ2 (θ∗) > 0 and
(

1
α+β1θ∗

)
>
(

1
α+β2θ∗

)
imply

(
1

α+ β1θ∗

)[
θ∗ − u̇

β1
(θ∗)

]
üβ1 (θ∗) >

(
1

α+ β2θ∗

)[
θ∗ − u̇

β2
(θ∗)

]
üβ2 (θ∗) .

On the other hand, using

 θ∗u̇βi (θ
∗)−

(
u̇
βi

(θ∗)
)2

2
−uβi (θ

∗)

α+βiθ∗

 = 2− üβi (θ∗) > 0, we immediately get

−
(

β1

(α+β1θ∗)2

)(
θ∗u̇β1 (θ∗)−

(
u̇
β1

(θ∗)
)2

2 − uβ1(θ∗)

)
+
(

β2

(α+β2θ∗)2

)(
θ∗u̇β2 (θ∗)−

(
u̇
β2

(θ∗)
)2

2 − uβ2(θ∗)

)
= 1

θ∗

[(
β2θ∗

α+β2θ∗

)
−
(

β1θ∗

α+β1θ∗

)]
(2− üβ1 (θ∗)) > 0.

Putting these together one gets
düβ1

(θ)

dθ |θ∗<
düβ2

(θ)

dθ |θ∗ , a contradiction. Therefore we conclude that

üβ1 (θ) > üβ2 (θ) . This implies that there exists ε > 0 such that u̇β1 (θ) > u̇β2 (θ) for all θ ∈ (θ, θ + ε) .

Assume towards a contradiction that u̇β1 (θ∗) = u̇β2 (θ∗) for some θ∗ < θ and let θ∗ be the smallest

element greater than θ + ε satisfying this equality. We must have üβ1 (θ∗) ≤ üβ2 (θ∗) . This and

u̇β1 (θ∗) = u̇β2 (θ∗) allows us to apply the first part of the proof and obtain a contradiction.

Case 2: β < 0. The proof is analogous to the case above and is omitted by brevity.

An increase in α decreases u (θ) for every type.

Keep β constant and take two solutions uα1 (θ) and uα2 (θ) for α2 > α1. First we show that

uα1 (θ) > uα2 (θ) . Assume towards a contradiction that uα1 (θ) ≤ uα2 (θ) and notice that this implies

üα1 (θ) < üα2 (θ) and hence there is θ1 > θ such that for all θ ∈ (θ, θ1) we have uα1 (θ) < uα2 (θ) and

u̇α1 (θ) < u̇α2 (θ) . Let θ∗ be the smallest element θ of
[
θ1, θ

]
such that u̇α1 (θ) = u̇α2 (θ) . We must
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have üα1 (θ) ≥ üα2 (θ) , but then

üα2 (θ∗) = 2−
(

1
α2+βθ∗

)(
θ∗u̇α2 (θ∗)− (u̇α2 (θ∗))

2

2 − uα2(θ∗)

)
= 2−

(
1

α2+βθ∗

)(
θ∗u̇α1 (θ∗)− (u̇α1 (θ∗))

2

2 − uα1(θ∗)

)
+
(

1
α2+βθ∗

)
(uα2(θ∗)− uα1(θ∗))

> 2−
(

1
α1+βθ∗

)(
θ∗u̇α1 (θ∗)− (u̇α1 (θ∗))

2

2 − uα1(θ∗)

)
+
(

1
α2+βθ∗

)
(uα2(θ∗)− uα1(θ∗)) > üα1 (θ∗) ,

a contradiction.

Next, suppose towards a contradiction that there exists θ such that uα2 (θ) − uα1 (θ) > 0, and

then take θ∗ ∈ argmaxθuα2 (θ)− uα1 (θ) . Notice that whether θ∗ < θ̄ or θ∗ = θ̄, we must have

uα2 (θ∗) − uα1 (θ∗) > 0 and üα2 (θ∗) − üα1 (θ∗) ≤ 0, but then the same argument as above implies

üα2 (θ∗) > üα1 (θ∗) , which leads to a contradiction. Q.E.D.

Proposition 11. (Only one pure-strategy equilibrium when tk = 0 for some k ∈ {l, h}).

There exists at most only one symmetric pure-strategy equilibrium in the model in which there is

perfect competition for type k. Moreover, each firm makes zero profits from the type k.

Proof of Proposition 11

We only prove the result for the case in which there is perfect competition for high types as

the other case is analogous. We first claim that in any equilibrium (ul, uh) each firm makes all

profits from the low type. In fact, otherwise the firm could profitably deviate to (ul + ε, uh + ε)

for some small ε > 0. Next notice that if ICl binds then firm could profitably deviate by offering

(ul, ul +4θq∗l ) .We conclude that any equilibrium must satisfy

(ul, uh)∈ arg max
ual ,u

a
h

{
pl

(
1

2
+
ual − ul

2tl

)
(Sel − ual ) + phD̂

a
h (uah) (Sh (ual , u

a
h)− uh)

}
which implies uh = Sh (ul, uh) and

−
(pl

2

)
+ pl

(
Sel − ul

2tl

)
+
(ph

2

) ∂Sh (ul, uh)

∂ul
= 0.

Since each firm obtains zero profits from high types, we must have ul = max {Sel − tl, 0} . Hence uh

solves Sh (max{Sel − tl, 0} , uh) − uh = 0. Recall that ∆ (ul, uh) := uh − ul and thus equilibrium re-

quires that Sh (∆ (ul, uh))−uh = 0. Observe that
(

∂
∂ul

)
[Sh (∆ (ul, uh))− uh] ≥ 0,with strict inequal-

ity whenever ∆ (ul, uh) > 4θq∗h, while
(

∂
∂uh

)
[Sh (∆ (ul, uh))− uh] < 0. This implies that whenever

∆ (max {Sel − tl, 0} , S∗h) ≤ 4θq∗h, any pure-strategy equilibrium should be (max {Sel − tl, 0} , S∗h),

while if ∆ (max {Sel − tl, 0} , S∗h) > 4θq∗h then any pure-strategy equilibrium should be (max {Sel − tl, 0} , ůh),

where ůh satisfies Sh (max {Sel − tl, 0} , ůh)− ůh = 0. Q.E.D.
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Mixed-Strategy Equilibrium in the Cream-Skimming Duopoly

We now describe a mixed-strategy equilibrium that prevails when th ∈ (Seh − ηl, t̃h) and tl = 0.

Similarly to the bottom-of-barrel case, this equilibrium is ordered. Accordingly, the menus offered

in equilibrium can be described by a support function Uh : Υl → Υh, which is strictly increasing and

bijective, and maps the support of F ∗l (which is Υl) into the support of F ∗h (which is Υh). In contrast

to the bottom-barrel case, however, it is convenient to set the domain of the support function as

being Υl (rather than Υh), and describe the firm’s randomization by means of the marginal cdf F ∗l .

Denoting by EF ∗
h
[ũh] the mean of uh as induced by the cdf F ∗h , let us define

ǔh ≡
Seh − th + EF ∗

h
[ũh]

2
.

Proposition 12. (Mixed-Strategy Equilibrium) Suppose there is perfect competition for low

types (tl = 0), but imperfect for high types (th > 0). If th ∈ (Seh−ηl, t̃h), there exists a mixed-strategy

equilibrium, which is ordered. In this equilibrium, the support of indirect utilities is an interval,

Υk = [uk, ūk], and the support function Uh(·) and cdf F ∗l of low-type’s indirect utilities jointly satisfy

Uh(ul)− uh = 2

(
Sl(ul,Uh(ul))− ul
∂Sl
∂uh

(ul,Uh(ul))

)(
Uh(ul)− ǔh

Uh(ul) + uh − 2ǔh

)
, ∀ ul ∈ [ul, ūl],

and

F ∗l (ul) =
1

th

ph
pl

(Uh(ul)− ǔh)

(
∂Sl
∂uh

(ul,Uh(ul))

)−1

∀ ul ∈ [ul, ūl],

with boundary conditions

ul = Sl(ul, uh), uh = max{ǔh, 0}, ūl = (F ∗l )−1 (1), and ūh = Uh(ūl).

Moreover, F ∗l is absolutely continuous at any ul ∈ (ul, ūl], and exhibits a mass point at ul (i.e.,

F ∗l (ul) > 0) when th is sufficiently large.

Proof of Proposition 12. The equilibrium structure below can be derived by arguments analogous

to the ones provided in the proof of Proposition 2. Hence we omit several details by brevity.

Step 1: Firms symmetrically randomize over menus (ul, uh) according to the distribution F ∗. This

distribution has support

supp (F ∗) = {(ul, uh) : uh = Uh(ul), ul ≤ ul ≤ ūl} ,

where the support function Uh(·) is strictly increasing and continuous. Moreover, uh = Uh(ul) and

ūh = Uh(ūl). The cdf F ∗ might possess a mass point at (ul, uh), but is absolutely continuous

elsewhere in its support. The marginals associated with F ∗ are F ∗l and F ∗h , which have respective
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supports [ul, ūl] and [uh, ūh]. If F ∗ exhibits a mass point at (ul, uh), then F ∗l (resp., F ∗h ) exhibits a

mass point at ul (resp., uh), but is absolutely continuous elsewhere. Obviously,

F ∗(ul, uh) = F ∗l (ul) = F ∗h (uh).

To construct the mixed-strategy equilibrium, denote by EF ∗
h
[ũh] the expectation of the random

variable ũh under the law F ∗h . Analogously to Proposition 2 , the constraint ICh always binds, any

equilibrium pair (ul, uh) has to solve

max
uh

{
plF

∗
l (ul) (Sl(ul, uh)− ul) + ph

(
1

2
+
uh − EF ∗

h
[ũh]

2th

)
(Seh − uh)

}
s.t. uh ≥ ul ≥ 0.

This problem is concave. Therefore, the cdf F ∗l and the support function Uh(·) have to jointly satisfy

the first-order condition:

plF
∗
l (ul)

∂Sl
∂uh

(ul, uh)− ph
th

(
Uh(ul)−

(
Seh − th + EF ∗

h
[ũh]

2

))
= 0,

which, after rearranging, leads to

F ∗l (ul) =
1

th

ph
pl

(
Uh(ul)−

(
Seh − th + EF ∗

h
[ũh]

2

))(
∂Sl
∂uh

(ul, uh)

)−1

. (25)

Note that the cross-derivative of the objective is

plf
∗
l (uh)

∂Sl
∂uh

(ul, uh) + plF
∗
l (ul)

∂2Sl
∂uh∂ul

(ul, uh) > 0,

as both terms are positive. This reveals that the objective is supermodular; hence, if (ul, uh) and

(u′l, u
′
h) are equilibrium menus, then uh > u′h implies ul > u′l. In view of this, the support function

Ul(·) is strictly increasing.

That firms randomize requires that the following indifference condition holds across all equilib-

rium menus:

plF
∗
l (ul) (Sl(ul, uh)− ul) + ph

(
1

2
+
uh − EF ∗

h
[ũh]

2th

)
(Seh − uh)

= ph

(
1

2
+
uh − EF ∗

h
[ũh]

2th

)
(Seh − uh) .

Because ul = Sl(ul, uh) by construction, the right-hand side is the profit obtained by choosing the

least generous menu in the support. Using equation (25), we can re-write this indifference condition

as

ph
th

(Uh(ul)− ǔh)

(
∂Sl
∂uh

(ul,Uh(ul))

)−1

(Sl(ul,Uh(ul))− ul)+ph
(

1

2
+
Uh(ul)− EF ∗

h
[ũh]

2th

)
(Seh − Uh(ul))

= ph

(
1

2
+
uh − EF ∗

h
[ũh]

2th

)
(Seh − uh) .
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or, equivalently, as

Uh(ul)− ǔh

= th

(
∂Sl
∂uh

(ul,Uh(ul))

Sl(ul,Uh(ul))− ul

)[(
1

2
+
uh − EF ∗

h
[ũh]

2th

)
(Seh − uh)−

(
1

2
+
Uh(ul)− EF ∗

h
[ũh]

2th

)
(Seh − Uh(ul))

]
.

Tedious algebra reveals that

th

(
1

2
+
uh − EF ∗

h
[ũh]

2th

)
(Seh − uh)− th

(
1

2
+
Uh(ul)− EF ∗

h
[ũh]

2th

)
(Seh − Uh(ul))

=
1

2
[(Uh(ul)− uh)(Uh(ul) + uh − 2ǔh)] .

Therefore

Uh(ul)− ǔh =

(
∂Sl
∂uh

(ul,Uh(ul))

Sl(ul,Uh(ul))− ul

)
1

2
[(Uh(ul)− uh)(Uh(ul) + uh − 2ǔh)] ,

which, after rearranging leads to

Uh(ul)− uh = 2

(
Sl(ul,Uh(ul))− ul
∂Sl
∂uh

(ul,Uh(ul))

)
Uh(ul)− ǔh

Uh(ul) + uh − 2ǔh
,

as in the statement of the proposition.

Assume that if ǔh ≥ 0 and notice that since the menu (ul, uh) deliverers zero profits from the

low type, each firm must choose uh = ǔh and hence Equation (25) implies F ∗l (ul) = 0. On the other

hand, if ǔh < 0 each firm must set uh = 0 and hence (25) implies F ∗l (ul) > 0. That is:

F ∗l (ul) > 0 ⇐⇒ ǔh ≡
Seh − th + EF ∗

h
[ũh]

2
< 0.

In particular, when uh = 0 we have

F ∗l (ul) = − ǔh
th

ph
pl

(
∂Sl
∂uh

(0, 0)

)−1

.

Finally, we choose ūl such that F ∗l (ūl) = 1 so as to guarantee that F ∗l is a proper cdf. The

construction above guarantees that firms are indifferent across all equilibrium menus, which best

respond the mixed strategy F ∗.

Step 2: F ∗l exhibits a mass point at ul (i.e., F ∗l (ul) > 0) when th is sufficiently large.

Notice that since EF ∗
h
[ũh] < Seh, we have ǔh < 0 when th > 2Seh. Q.E.D.

Continuum of Types: Numerical Procedure

This appendix (together with the Matlab codes) detail the numerical procedure employed to investi-

gate the existence of a pure-strategy equilibrium in the continuum-type model of subsection 7.1. We

first describe how the putative equilibrium is constructed, allowing for the possibility of bunching on

some interval. Second, we present how the best deviation to the putative equilibrium is computed.

Finally, we describe the test of equilibrium existence for a given brand loyalty schedule t (θ).
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The general problem

Denoting by u (θ) the utility of type θ, and recalling that incentive compatibility requires that

u̇ (θ) = q(θ), one can write the profit of a firm obtained from consumers of type θ as

π (θ, u(θ), u̇ (θ) | ũ (θ)) =

(
1

2
+
u (θ)− ũ (θ)

2t (θ)

)
(S (θ)− u (θ)) , where S (θ) ≡

(
θu̇ (θ)− (u̇ (θ))2

2

)

is the surplus produced by the contract designed to type-θ consumers, and ũ (θ) is the indirect-utility

schedule offered by the competing firm.

The best-response problem of the firm consists in finding the utility profile u (θ) that maximizes

Π =

ˆ θ̄

θ
π (θ, u(θ), u̇ (θ) | ũ (θ)) dθ, (26)

where ũ (θ) is taken as given, and the control u(θ) is subject to the participation, positive-quality,

and monotonicity constraints:

u(θ), u̇(θ), ü (θ) ≥ 0.

Accordingly, define the Hamiltonian as:

H (θ, u (θ) , u̇ (θ) , ü (θ)) =

(
1

2
+
u (θ)− ũ (θ)

2t (θ)

)(
θu̇ (θ)− u̇ (θ)

2
− u (θ)

)
+ρ1 (θ)u (θ)+ρ2 (θ) u̇ (θ)+µ (θ) ü (θ) ,

where ρ1 (θ) , ρ2 (θ) denote respectively the co-state variables associated with u (θ) and u̇ (θ), while

µ (θ) is the Lagrange multiplier associated with constraint ü (θ) ≥ 0. After imposing symmetry, the

necessary conditions are

ρ̇1 (θ) = − 1

2t (θ)

(
θu̇ (θ)− u̇ (θ)

2
− u (θ)

)
+

1

2
, (27)

ρ̇2 (θ) = −1

2
(θ − u̇ (θ))− ρ1 (θ) , (28)

µ (θ) = −ρ2 (θ) , µ (θ) ≥ 0, µ (θ) ü (θ) = 0, (29)

and the transversality conditions require that

ρ1 (θ) = ρ1

(
θ
)

= ρ2 (θ) = ρ2

(
θ
)

= 0. (30)

We now describe how the program is numerically solved to obtain the putative symmetric equilibrium.

The first step

(a) We first compute the relaxed problem considering that µ (θ) = 0 over the whole interval
[
θ, θ
]
.

Differentiation of (28) with respect to θ and substitution into (27) yields:

ü (θ) = 2−
(

1

t (θ)

)(
θu̇ (θ)− (u̇ (θ))2

2
− u(θ)

)
(31)
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with transversality conditions u̇ (θ) = θ and u̇
(
θ
)

= θ. This yields the solution u∗r (θ). If the

solution involves ü∗r (θ) ≥ 0 for every θ ∈
[
θ, θ
]

then the first step ends. For some t (θ), however,

we find that ü∗r (θ) < 0 either in an interval at the bottom, i.e., θ ∈ [θ, θ1], or at the top, i.e.,

θ ∈
[
θ2, θ̄

]
. We briefly describe here the procedure to find the solution when bunching occurs

at the bottom of the product line, i.e., over some interval θ ∈ [θ, θc] (the procedure for allowing

bunching at the top is symmetric).

(b) Over an interval θ ∈ [θ, θc] in which ü (θ) = 0, the solution uc (θ, θc) is characterized by an

affine function of the form:

uc (θ, θc) = κ0 + κ1θ. (32)

This solution has to

max
uc(θ,θc)

ˆ θc

θ

(
1

2
+
uc (θ, θc)− ũc (θ)

2t (θ)

)(
θu̇c (θ, θc)−

u̇c (θ, θc)

2
− uc (θ, θc)

)
dθ.

Using (32), this is equivalent to finding

{κ∗0 (θc) , κ
∗
1 (θc)} = arg max

κ0,κ1

(
−κ

2
1

2
− κ0

) ˆ θc

θ

(
1

2
+
κ0 + κ1θ − ũc (θ)

2t (θ)

)
dθ,

where ũc (θ) is given.

(c) Over the interval θ ∈
[
θc, θ

]
, the solution u∗c (θ, θc) is given by the ODE (31). By continuity, the

boundary conditions are u̇c
(
θ, θc

)
= θ, u̇c (θc, θc) =κ∗1 (θc), and uc (θc, θc) = κ∗0 (θc) + θcκ

∗
1 (θc).

(d) The alogirthm then computes u∗c (θ, θc) for any θc by imposing boundary conditions given

by u̇c (θc, θc) = κ∗1 (θc) and uc (θc, θc) = κ∗0 (θc) + θcκ
∗
1 (θc) . Then the optimal θ∗c is found by

iteration until one converges to the transversality condition u̇c
(
θ, θc

)
= θ. This procedure leads

to u∗c (θ, θ∗c ).

(e) The putative symmetric Nash equilibrium is thus given by u∗ (θ) = u∗r (θ) if there is no bunching,

and u∗ (θ) = u∗c (θ, θ∗c ) otherwise.

(f) This yields a profit value for both firms that is given byΠ∗ =
(

1
2

) ´ θ̄
θ

(
θu̇∗ (θ)− u̇∗(θ)

2 − u∗ (θ)
)
dθ.

We next describe how we numerically construct the best deviation from this putative symmetric

equilibrium.
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The best deviation

We compute a candidate function u∗p (θ) defined as a polynomial function of degree n = 4 which is

given by:38

u∗p (θ) = arg max
up

ˆ θ̄

θ

(
1

2
+
up (θ)− u∗ (θ)

2t (θ)

)(
θu̇p (θ)− u̇p (θ)

2
− up (θ)

)
dθ

subject to u̇p (θ) , üp(θ) ≥ 0 for every θ.

This yields the deviation profit Π∗p =
´ θ̄
θ

(
1
2 +

u∗p(θ)−u∗(θ)

2t(θ)

)(
θu̇∗p (θ)− u̇∗p(θ)

2 − u∗p (θ)
)
dθ.

Testing the existence of pure strategic Nash equilibrium

For a given specification of t (θ), the steps above yield values Π∗ and Π∗p . The algorithm rejects the

existence of pure strategy symmetric equilibrium if Π∗p > Π∗.

38Note that, by the Weierstrass approximation theorem, the procedure above correctly identifies equilibria provided

the deviating profile ud(θ) is a polynomial of sufficiently large degree.
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