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Abstract. We present a set of necessary and sufficient conditions for a class of optimal
control problems with pure state constraints for which the objective function is linear in
the state variable but the objective function is only required to be upper semi-continuous
in the control variable. We apply those conditions to a number of economic environments in
contract theory where discontinuities in objectives prevail. Examples of applications include
nonlinear pricing of digital goods, nonlinear pricing under competitive threat, and common
agency models of regulation.

Keywords. Optimal control, non-smooth optimization, convex analysis, type-dependent par-
ticipation constraints, principal-agent models.

1. INTRODUCTION

The textbook treatment of optimal screening contracts typically takes the agent’s out-
side option as a fixed constant, independent of type.1 More complex settings which allow
for competition by rival principals, non-trivial ownership rights on productive assets and
type-dependent fixed costs require a departure from this restrictive assumption. Lewis
and Sappington (1989a) initiated the seminal study of screening contracts in this more
general setting by constructing the solution to a class of optimal control problems with
type-dependent participation constraints. This class of problems was further enriched by
Maggi and Rodriguez (1995) with the most general statement of the problem and its
solution culminating in the analysis offered by Jullien (2000).

These techniques have allowed modelers to apply the optimal contracting paradigm to
more general economic contexts, unveiling new features of optimal contracts. Applica-
tions have spread through many fields including the design of nonlinear prices under the
threat of bypass (Curien, Jullien and Rey, 1998; Biglaiser and Mezzetti, 1993), compe-
tition in nonlinear prices (Martimort and Stole, 2009; Stole, 1995, 2003; Calzolari and
DeNicolo, 2013), trade policy in open economies (Brainard and Martimort, 1996), reg-
ulation of privately-owned monopolies (Caillaud, 1990), and optimal contracting under
liability constraints (Ollier and Thomas, 2013) or in dynamic contracting environments
(Deb and Said, 2015), to name a few examples.

Unfortunately, the existing techniques also have their own limits. In particular, the need
for tractability has led authors to restrict their analysis to economic environments which

1We are especially thankful to John Birge for many helpful discussions. We also thank Simon Board,
the Editor in charge, three referees for very useful comments and suggestions, and seminar participants
at the 2019 Summer Meetings of the North American Econometric Society (Seattle) and the European
Econometric Society (Manchester). A less general version of the main theorem in this paper appeared
in an earlier, unpublished note, “Necessary and sufficient conditions for non-smooth linear-state optimal
control problems” (2009). The present paper provides the more general result along with a geometric
intuition for its proof and several relevant applications. The usual disclaimer applies.

aParis School of Economics-EHESS, david.martimort@psemail.eu.
bUniversity of Chicago Booth School of Business, lars.stole@chicagobooth.edu.
1See Laffont and Martimort (2002, Chapter 3) for instance.
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are sufficiently smooth. In many circumstances, such as when firms face non-trivial fixed
costs or sunk investments, the environment is inherently discontinuous. In other settings,
such as when principals compete against one another using payment schedules, equilibria
may emerge which exhibit discontinuities in each player’s payoff function. In those cases,
we are left uncertain about the consequences of such discontinuities for optimal contracts
and the generality of results when environments (and equilibria) are not assumed to be
smooth a priori. Important economic insights may have gone unnoticed because of our
restricted attention. Developing the required techniques for non-smooth environments and
showing how they apply in practice are the purposes of this paper.

First, we present a set of necessary and sufficient conditions for a class of optimal
control problems with pure state constraints for which the objective function is linear
in the state variable but the objective function may exhibit kinks and discontinuities
in the control variable. Second, we apply these techniques to quite natural contracting
environments where existing techniques are inadequate or have made implicit restrictions
on contracting possibilities that have come unnoticed. Examples of applications include
nonlinear pricing of digital goods, nonlinear pricing under competitive threat, common
agency models of regulation and multi-unit auctions with externalities.

Section 2 presents our main result: A theorem that characterizes solutions to optimal
control problems in which the objective function is only restricted to be upper semi-
continuous. This theorem builds on earlier work by Vinter and Zheng (2000), but it refines
its application to the case of quasi-linear objectives which is prevalent in contract theory.
While Vinter and Zheng (2000) focuses on necessary conditions for optimality, we prove
that these conditions are also sufficient in our context. We also discuss to which extent
this theorem extends the existing literature and especially the work by Jullien (2000)
under much weaker conditions. Section 3 develops various applications of our framework,
deriving for each of those economic insights that would not have been available without
the use of new techniques. The Appendix contains not only the proof of our Theorem
and of various results related to our economic applications but also some brief overview
of optimization techniques in non-smooth environments, providing more intuition for our
main theorem.

2. THE THEOREM

We will consider control problems in which the state variable, u, is restricted to be an
absolutely continuous function on the interval Θ = [θ, θ]; AC(Θ,R) denotes the feasible
set of such functions. As a motivation, in the context of principal-agent models, the
state variable is typically the agent’s information rent as a function of his type. The
requirement of absolute continuity then follows from standard incentive compatibility
arguments.2 We will also restrict attention to problems in which that state variable must
satisfy a non-negativity constraint:

(2.1) u(θ) ≥ 0 ∀θ ∈ Θ ≡ [θ, θ].

Using again our motivation of principal-agent problems, the non-negativity constraint
(2.1) corresponds to a participation constraint that requires the agent to accept an offer

2See Milgrom and Segal (2002) and Carbajal and Ely (2013). As an example, if the agent’s utility is
continuously differentiable in type with a uniformly-bounded derivative, then the agent’s indirect utility
function is necessarily Lipschitz continuous (and therefore absolutely continuous).
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rather than take an outside option, which is here normalized at zero.3 When the state
variable u is both absolutely continuous and non-negative, it is said admissible.

We are interested in the following pure-state control program:

(P) : Maximizeu∈AC(Θ,R)

∫ θ

θ

(s(θ, u̇(θ))− u(θ)f(θ)) dθ subject to (2.1).

Regularity. We only assume that s(θ, v) is an upper semi-continuous function of v for
all θ, bounded from above, and that f(θ) is a positive, bounded function giving rise to an

absolutely-continuous definite integral F (θ) ≡
∫ θ
θ
f(θ)dθ. Without loss of generality, we

normalize f such that F (θ) = 1. In the principal-agent context, this allows us to interpret
F as a continuous probability distribution and f as its associated density. We also make
a minimal technical assumption that s(·, ·) is L×B-measurable, where L denotes the set
of Lebesgue measurable subsets of Θ and B is the set of Borel measurable subsets of R.

Linearity. We define the integrand for program (P) as L(θ, u, u̇) ≡ s(θ, u̇) − uf(θ).
We should make clear that the key restriction we have placed on (P) is that, for any θ
and u̇, the maximand is a linear function of the state variable u. As we will see below
in our applications, this linearity is found in a number of economic problems, especially
in contract theory where agents are risk-neutral and payoffs are linear in money. The
function s(θ, u̇)/f(θ) can there be viewed as a surplus function while u is the share of
this surplus that is captured by the agent – his information rent.

The linearity restriction is the primary source of many sharp results in the analysis
that follows, including the ability for us to relax the continuity of s, the characterization
of the solution by means of a simple and handy generalized gradient condition, and
the fact that necessary conditions for optimality are also sufficient. Indeed, non-smooth
techniques are particularly useful if one can find the solutions of such control problems
as pointwise optima. This is where the assumption of linearity of the maximand in u
provides purchase. Linearity allows such transformation; a point which is already well-
known from principal-agent screening models in quasi-linear and smooth environments
(Myerson, 1981, Lemma 3; Baron and Myerson, 1982, Lemma 2; Laffont and Martimort,
2002, Chapter 3 for a textbook treatment).4 Things are somewhat more complicated with
a state-dependent reservation utility but the basic intuition remains. Linearity allows us
to separate incentive and participation concerns5 from the possible non-smoothness of the
surplus function that is handled by taking the super-differential of the concave envelope
for s(θ, v).

Comparison with complete information models. To better isolate the role of
non-smoothness, consider the case where the integrand is reduced to L(θ, u, v) ≡ s(θ, v).

3Readers accustomed with the extant literature will certainly have noticed that even in the case of
a non-zero outside option, the formulation of the participation constraint as (2.1) comes from a re-
normalization. Our examples below repeatedly illustrate this point.

4When quasi-linearity is not assumed, this familiar trick no longer works as, for instance, in the well-
known model of the optimal taxation due to Mirrlees (1971).

5Incentive and participation concerns are captured by the term F (θ)−γ(θ) in the optimality condition
(2.5) below.
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In the contract theory applications below, it would correspond to a scenario with com-
plete information on the agent’s preferences so that the principal can fully extract the
agent’s rent. The optimization problem so constructed can be solved pointwise by means
of standard techniques for non-smooth problems.6 Any solution v∗(θ) must satisfy the
following pair of conditions,

(2.2) 0 ∈ ∂co(s)(θ, v∗(θ)) and co(s)(θ, v∗(θ)) = s(θ, v∗(θ)),

where co(s)(θ, v) is the concave majorization of the function s evaluated at (θ, v) and
∂co(s)(θ, v) is the set of gradients of s at (θ, v).7 The solution to our original program
(P) will differ from v∗ in (2.2) as a result of the addition of the linear term −uf(θ) in the
Lagrangean. Condition (2.5) below indicates how the solution needs to be modified. As
familiar from the principal-agent literature, u(θ) will have to maximize a virtual surplus
function obtained by compounding the impact of participation and incentive constraints.

Heuristic Approach. Following Jullien (2000), a heuristic treatment of problem (P)
would consist in first adding a Lagrange multiplier µ(dθ) to the participation constraint
(2.1) with the complementarity slackness condition

µ(dθ) = 0 if θ ∈ {θ̃ : u(θ̃) > 0}.

Second, we could then form a Lagrangean as∫ θ

θ

(s(θ, u̇(θ))− u(θ)f(θ))dθ +

∫ θ

θ

u(θ)µ(dθ).

Third, with a simple integration by parts, we would write the integrand as∫ θ

θ

(s(θ, u̇(θ)) + (F (θ)− γ(θ))u̇(θ)) dθ

where the adjoint function γ(θ) =
∫

[θ,θ)
µ(dθ̃), is right-continuous, strictly increasing at

points where (2.1) is binding, and satisfies the boundary conditions γ(0) = 0, γ(1) =
1. Those facts allow us to identify γ with a distribution function. Finally, pointwise
optimization would give us the optimality condition

u̇(θ) ∈ arg max
v
s(θ, v) + (F (θ)− γ(θ))v.

Two difficulties come with this heuristic approach. The first one is merely technical and
puts conditions on the Lagrange multiplier. Indeed, integrating by parts requires that
µ(dθ) lies in the dual space of non-negative functions in AC(Θ,R); i.e., µ(dθ) must be
the “derivative” of a function of bounded variation. The second difficulty is that, once
we proceed to pointwise optimization, we may have to deal with a non-smooth objective
since s(θ, v) is only required to be upper semi-continuous. The optimality conditions have
to be expressed by means of tools imported from non-smooth, convex analysis.

Main Result. We now present our main result for this class of problems.

6See Section 3.3 below for details.
7Appendix A provides a brief discussion of non-smooth, convex analysis. Because we are focused on

maximization, our tools rely on concave majorizations (i.e., the minimal concave envelope of a function)
rather than convex minorizations. Likewise, we are interested in the set of gradients of a concave function
(super-differentials) rather than the set of gradients of a convex function (sub-differentials).
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Theorem 1 u is a solution to program (P) if and only if u is admissible and there
exists a probability measure µ defined over the Borel subsets of Θ with an associated
adjoint function, γ : Θ→ [0, 1], defined by γ(θ) = 0 and if θ > θ,

γ(θ) =

∫
[θ,θ)

µ(dθ̃),

such that the following conditions are satisfied:

(2.3)

∫ θ

θ

u(θ̃)µ(dθ̃) = 0,

(2.4) co(s)(θ, u̇(θ)) = s(θ, u̇(θ)) for a.e. θ ∈ Θ,

(2.5) 0 ∈ F (θ)− γ(θ) + ∂co(s)(θ, u̇(θ)) for a.e. θ ∈ Θ.

The conditions in Theorem 1 are similar to those in Theorem 1 in Jullien (2000). In
both theorems, necessary and sufficient conditions are stated in terms of a probability
measure which serves to express a “complementary slackness condition” (2.3) and an op-
timality condition (2.5). Moreover, both theorems use a similar condition to establish the
continuity of u̇(θ) in the solution to (P). Yet, the present Theorem requires substantially
weaker assumptions on the primitive function s. To import results in Seierstadt and Syd-
saeter (1987, Theorems 2 and 3, Chap. 5), who provide necessary and sufficient conditions
satisfied by an optimal path for an optimal control problem with pure state constraints,
Jullien (2000) requires the stronger hypothesis that s(θ, v) is twice continuously differen-
tiable in v. Our contribution is to demonstrate the force and the broader validity of these
conditions for problems with integrands that are only upper semi-continuous.

As in Jullien (2000), the mesure µ(dθ) stems for the shadow cost of the participation
constraint (2.1) around θ. The adjoint function γ(θ) can thus be interpreted as the sum
of these shadow costs for all inframarginal types. It is thus non-decreasing and constant
on any open interval where the participation constraint is slack. Replacing the right-hand
side of (2.1) uniformly by ε < 0 for all θ̃ ≤ θ would relax the optimization problem and
increase its value by γ(θ)ε.

The adjoint function γ so constructed is right-continuous. Since the probability measure
µ may have mass points where the participation constraint begins to bind, γ(θ) may have
upward jumps at such points. This possibility may only arise at a countable number
of points since an increasing function is almost everywhere differentiable. Hence, the
participation constraint is only binding on a countable number of segments; a convenient
fact that allows one to isolate the relevant segments.

Smoothness. We now investigate under which conditions the optimal solution remains
continuously differentiable. In principal-agent models, it often means that the underlying
control, say output, is continuous.
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Proposition 1 If

(2.6) V(θ, σ) ≡ arg max
v∈R

s(θ, v) + (F (θ)− σ)v

is single-valued and continuous over the domain (θ, σ) ∈ Θ× [0, 1], then the solution u to
(P) is continuously differentiable.

That V(θ, σ) is single-valued and continuous is implied by the strict concavity of s(θ, ·).
It is also implied by the weaker condition in Jullien (2000, Assumption 2) that s(θ, v)−
(σ − F (θ))v is strictly quasi-concave in v for any σ ∈ [0, 1]. Together with the stronger
hypothesis that s(θ, v) is twice continuously differentiable in v, Lemma 7 in Jullien (2000,
p. 32) then provides a smooth version of (2.5) by means of a first-order condition, namely

F (θ)− γ(θ) +
∂s

∂v
(θ, u̇(θ)) = 0 a.e..8

Proposition 1 is more general since it allows for the possibility that s(θ, v) fails to be
continuous at its maximum.

That u is continuously differentiable captures the fact that often in applications the
optimal control, say output in a principal-agent context, is itself continuous. Examples
abound in the literature where continuity is not optimal if the virtual surplus is not strictly
concave. Models of bypass and regulation under the threat of entry due to Caillaud (1990),
Laffont and Tirole (1990) and Currien, Jullien and Rey (1995), as an illustration, feature
discontinuities in the optimal control because the bypass technology entails a fixed cost. In
those papers, the authors have dealt with discontinuities “by hand” using details specific
to the setting. Specifically, the authors first anticipate where the binding participation
constraints lie (sometimes a complex task in itself), they next reconstruct the agent’s
profile of information rent and, finally, the principal’s non-concave virtual surplus, before
proceeding to optimization. This guess-and-check approach, although useful, provides
little guidance when non-concavities arise precisely for types where the participation
constraint binds.9

Section 3.1 analyzes a nonlinear pricing with a fixed cost of building extra capacity to
accommodate customers’ needs that illustrates such intricacy. Avoiding paying this fixed
cost requires giving up extra rent to loyal customers since otherwise, they would switch
to a competitive fringe. The fixed-cost discontinuity thus determines the subset of types
for which the participation constraint is binding.

Continuing on that front, Section 3.2 presents a model of nonlinear prices under the
threat of competition by a fringe. A key property of this model is that the discontinuity in
the surplus function is now inherited from properties of the agent’s information rent when
the latter can split his purchases between the incumbent and the fringe. The discontinuity
is thus endogenously derived from demand considerations.

8Galbraith and Vinter (2004) provide also alternative conditions ensuring Lipschitz-continuity of the
optimal control.

9Another source of possible discontinuities comes when the types distribution has mass points; an
assumption that we have ruled out for simplicity. See Lewis and Sappington (1993) and Cremer, Khalil
and Rochet (1998) for applications to information gathering where a mass point of agents remains
uninformed; Hellwig (2010) provides a more general treatment.
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We should warn readers that, in non-smooth contexts, the solution u is unlikely to
remain continuously differentiable. Jumps in the underlying control occur. This feature
is nicely illustrated in the analysis of the discontinuous equilibria of a common agency
game that is developed in Section 3.3 below.

A More Primitive Statement of the Problem. Principal-agent problems with
type-dependent participation constraints as studied in the pathbreaking works of Lewis
and Sappington (1989a), Maggi and Rodriguez (1995) and Jullien (2000) are often ex-
pressed under the form (P ′) below so as to make the nature of the agent’s outside option,
Û(θ), and its associated participation constraint more explicit:

(P ′) : MaximizeU∈AC(Θ,R),q

∫ θ
θ

(s̃(θ, q(θ))− U(θ)) f(θ)dθ

subject to U̇(θ) = g(q(θ), θ) a.e., and U(θ) ≥ Û(θ) for all θ ∈ Θ.

The control variable q, which is assumed to be measurable, is generally interpreted as a
quantity vector that belongs to a feasible set Q ⊆ Rk.10 The primitive surplus function
s̃(θ, q) is defined over Q.11 The differential equation that defines U̇(θ) immediately follows
from the well-known envelope condition for incentive compatibility. The participation
constraint U(θ) ≥ Û(θ) allows that the agent’s outside option may vary by type.

The program (P ′) can easily be transformed into the canonical program (P) we explore
if Û(·) is differentiable almost everywhere. To illustrate, set u(θ) = U(θ)− Û(θ) and set

s(θ, v) = max
q∈Q

{
s̃(θ, q)f(θ) s.t. v = g(q, θ)− ˙̂

U(θ)
}
.

This reduction is particularly easy when g is itself a bijection between q and u̇ for all
θ, which implies that the control q can be expressed as a function of (v, θ), namely

q(θ) = g−1
q (v +

˙̂
U(θ), θ). In that case, substitution yields

s(θ, v) = s̃(θ, g−1
q (v +

˙̂
U(θ), θ)))f(θ).

While it is possible that the function s(θ, v), obtained as a maximum over all controls
that generate the same derivative u̇(θ), may be “smoother” than s̃(θ, q), it will typically
fall short of twice continuous differentiability as required in Jullien (2000).

3. APPLICATIONS

This section shows the broad applicability of our approach by highlighting applications
that requires non-smooth analysis. Our first application (Section 3.1) deals with nonlinear
pricing of a digital good under the threat of competition by a low-quality fringe. Because
the provider of a high-quality good needs to build capacity for extra services, the cost
function is discontinuous. We show that, under the threat of competition, a monopolist
may choose to leave rents to avoid building the extra capacity; thereby stressing how the

10Incentive compatibility requires on top that some monotonicity conditions also hold (for instance,
g(q(θ), θ) may have to be non-decreasing in θ). Those conditions can often be handled by extension of
the state variable and adding a new non-negative control.

11Note that the domain of definition of q can be easily included into the objective to fit with the
formalism of Theorem 1 if we set s̃(θ, q(θ)) = −∞ for q /∈ Q.
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cost discontinuity interacts with the characterization of the set of types with a binding
participation constraint.

Our second example, developed in Section 3.2, is a different model of nonlinear pricing
where a buyer may split his purchases between an incumbent firm and a fringe. The fringe
has limited capacity but sells a perfect substitute to the incumbent’s product. We show
that this possibility introduces a discontinuity in the surplus function simply because the
buyer’s rent has a different slope whether he purchases or not from the fringe.

Finally, in Section 3.3, we turn to a model of intrinsic common agency with countervail-
ing incentives, generalizing a well-known model due to Lewis and Sappington (1989b).
We show existence of different classes of discontinuous equilibria that solve non-smooth
self-generating problems. Those equilibria are obtained with non-smooth contracts and
output discontinuities may arise at points where the participation constraints is binding.

3.1. Nonlinear Pricing by a Digital Firm

Pricing for digital products and other technology-based services is notoriously com-
plex. Variable increases in demand for these products are fulfilled by adding blocks of
computing or network infrastructure. Although marginal costs are essentially zero, addi-
tional blocks of service typically require significant fixed costs. Such fixed costs introduce
discontinuities for which the tools developed above can be usefully applied.

Because of this technical difficulty, the screening literature in such environment is
sparse. Spulber (1993) and Thomas (2001) have studied nonlinear pricing when a mo-
nopolist faces a fixed capacity constraint in more general contexts. On top of the usual
information distortions, the optimal consumption profile depends on the shadow cost of
the capacity constraint; a result we quickly review below. For digital products, Huang
and Sundararajan (2011) follow a similar path and determine the set of types who are
bunched at the capacity level. Yet, nothing is known on how a monopolist would design
nonlinear pricing when facing a competitive fringe. To illustrate, suppose that there is
no cost of building extra services, so the logic of continuous screening models under the
threat of competition applies (e.g., Champsaur and Rochet, 1989; Stole, 1995). The abil-
ity of the monopolist to screen consumers and extract their information rent by reducing
consumption levels is limited by their possibility to switch to the fringe. With a fixed
cost for additional capacity, a tension appears between, on the one hand, charging high
prices to extract information rents and avoid additional capacity costs and, on the other
hand, inducing more consumers to switch from the fringe.

Technology and Demand. A monopolist sells a digital product. To supply more than
one unit, an extra block of capacity must be built. The firm’s cost function has thus
an upward jump discontinuity at q = 1+, namely C(q) = kδq>1. Let the set of feasible
outputs be Q = [0, Q] where Q is finite but sufficiently large to ensure interior solutions
under all the circumstances we consider below.

On the demand side, there is one consumer with a valuation for q units of services equal
to

(3.1) (S − θ)q − q2

2
.
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The demand shock θ is a non-observable heterogeneity parameter, uniformly distributed
on Θ = [θ, θ] with θ − θ = 1. The parameter S reflects the quality of the service.

Monopoly. Under complete information, the monopoly extracts all consumer’s surplus.
Because of the cost discontinuity, the bilateral surplus so obtained is

(S − θ)q − q2

2
− kδq>1.

This surplus function is also discontinuous with a downward jump at q = 1+. Its con-
cave envelope thus is a linear segment for q ∈ [1, 1 +

√
2k]. Following the approach for

solving non-smooth problems that is outlined in Appendix A, we find that the complete
information consumption level qfb(θ) satisfies

qfb(θ) =

{
1 if θ ∈ [S − 1−

√
2k, S − 1]

S − θ otherwise.

Intermediate types in [S − 1 −
√

2k, S − 1] are thus bunched together at qfb(θ) = 1.12

Consumption is discontinuous and jumps downwards at θ0 = (S − 1−
√

2k)−.

We now turn to the case where θ is private information for the consumer. Let U(θ) be
the informational rent (indirect utility) when offered a nonlinear price T (q)13

U(θ) ≡ max
q∈Q

(S − θ)q − q2

2
− T (q).

U(θ) is absolutely continuous and convex as the minimum of linear functions of θ. It is
thus almost everywhere differentiable with a derivative (wherever it exists) given by the
envelope condition

(3.2) U̇(θ) = −q(θ).14

This envelope condition in tandem with the convexity of U are necessary and sufficient
conditions for the implementability of q(·) using the tariff T (q(θ)) = (S−θ)q(θ)− 1

2
q(θ)2−

U(θ).15 For the pure monopoly setting, standard techniques can be used to derive the op-
timal consumption levels under asymmetric information. Knowing that the participation
constraint U(θ) ≥ 0 necessarily binds for the worst type θ, it is routine to reconstruct
and maximize pointwise a virtual surplus that is expressed as

(S − 2θ + θ)q − q2

2
− kδq>1.

Taking again the concave envelope of this function, we replicate our earlier findings mu-
tatis mutandis to get the following expression of the monopoly solution as

(3.3) qm(θ) = qfb(2θ − θ).16

12For simplicity, we assume that θ < S − 1 −
√

2k < S − 1 < θ, an assumption that ensures that a
strict subset of types chooses q = 1.

13From the Taxation Principle (Rochet, 1987), focusing on nonlinear tariffs is without loss of generality
in the space of non-stochastic mechanisms.

15Because U(θ) is convex, the consumption level q(θ) is a non-increasing selection within the best-

response correspondence arg maxq∈Q (S− θ)q− q2

2 −T (q). This monotonicity condition is first neglected
and then verified ex post for the solution to the relaxed program.
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Because of the non-concavity of the virtual surplus, the monopoly quantity is again
discontinuous. As this example clearly shows, sometimes standard techniques may suffice.
Unfortunately, it is no longer the case when participation constraints are more complex
and the discontinuity of the surplus function precisely determines where these constraints
are binding. This is the scenario we now investigate.

Competitive Fringe. We now assume that a competitive fringe, without capacity con-
straint, can supply a low-quality version of digital good at zero marginal cost. Specifically,
we assume that the intercept of the inverse demand function for the low-quality good is
Ŝ < S with ∆ = S− Ŝ > 0, and the consumption of the two versions of the good is mutu-
ally exclusive. A consumer who chooses the low-quality good would thus buy q̂(θ) = Ŝ−θ
units and obtain a net surplus of

Û(θ) = max
q∈Q

(Ŝ − θ)q − q2

2
≡ (Ŝ − θ)2

2
.17

Adopting our canonical form, we set u(θ) = U(θ)− Û(θ). The customer chooses to buy
exclusively from the monopolist when the participation constraint (2.1) holds. With this
notation, the envelope condition for incentive compatibility (3.2) becomes

(3.4) u̇(θ) = q̂(θ)− q(θ), a.e.

Expressed in terms of v = u̇, the surplus function becomes

s(θ, v) = (S − θ)(q̂(θ)− v)− 1

2
(q̂(θ)− v)2 − kδq̂(θ)−v>1.

Note that the downward discontinuity implies that the concave envelope of s(θ, v) is linear
over some range. We are now equipped to derive the optimal solution.

Smooth case: k = 0. To emphasize the difference between our techniques and those
used in the smooth scenario studied by Jullien (2000), we start with the familiar case
where there is no capacity constraint. The surplus function s(θ, v) is therefore smooth
and strictly concave in v. Our Theorem 1 then takes he same form as Theorem 1 in
Jullien (2000). The adjoint function γ0(θ) =

∫ θ
θ
µ0(ds) and the optimal consumption

level q0(θ) = q̂(θ) − u̇0(θ) must satisfy the following first-order condition for a smooth
problem:

(3.5) γ0(θ)− θ + θ =
∂s

∂v
(θ, u̇0(θ))⇔ q0(θ) = S − 2θ + θ + γ0(θ).

When there is competition with a fringe, strong downwards distortions of consumption
for the lowest types are no longer so attractive for the monopolist since these types could
switch to the fringe.

Proposition 2 Suppose that k = 0 and let θ̃ = θ + ∆ < θ. The following optimal
consumption levels and adjoint functions satisfy the necessary and sufficient conditions
for optimality of Theorem 1:

(3.6) q0(θ) = max{qm(θ); q̂(θ)},
16We assume that qfb(2θ − θ) > 0 to ensure consumption is positive for all types.
17We assume θ < Ŝ − 1 < θ to ensure that choice of the competitive fringe product results in positive

consumption.
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(3.7) γ0(θ) = max{θ − θ̃; 0}.

The participation constraint (2.1) is binding on [θ̃, θ], slack elsewhere.

The presence of the fringe limits the ability of the monopolist to price discriminate.
Screening distortions are less pronounced than in a pure monopoly setting, a result that
echoes findings in Champsaur and Rochet (1989), Stole (1995, 2003), and Calzolari and
DeNicolo (2015) among many others.

The intuition for the shape of the solution can be borrowed from the work of Maggi
and Rodriguez (1995). In a smooth environment, those authors have proposed a typology
of the various patterns of binding participation constraints that may arise at optimal
contracts in structured environments. They argue that whether participation constraints
bind on a whole interval or only at the extreme of the types set depends on the relative
convexity of the rent profile that the monopolist would like to implement vis-à-vis the
reservation payoff. Due to the lower quality of the alternative that it offers, buying from
the fringe provides a type-dependent reservation payoff that is less convex than what the
monopolist would like to implement without competition. The participation constraint is
then binding on a whole interval (here including the type with the lowest valuation).

Observe that the measure µ0 is absolutely continuous with respect to the Lebesgue
measure on [θ̃, θ) but it has a mass point at θ, namely µ({θ}) = ∆ < 1. Finally, θ̃ is
defined by a “smooth-pasting condition” qm(θ̃) = q̂(θ̃); output is continuous at θ̃ and u0

is differentiable at that point.

Discontinuity: k > 0. The surplus function s(θ, v) has a downward jump. Theorem 1 in
Jullien (2000) now no longer applies while Theorem 1 still does. The optimality condition
(2.5) must thus be expressed in terms of a subdifferential:

(3.8) γ(θ)− (θ − θ) ∈ ∂vco(s)(θ, u̇(θ)).

To streamline exposition and limit the number of possible cases to study, we impose the
condition

(3.9) q̂(θ̃) > 1 > q̂(θ).

This condition ensures that the monopolist has to incur some extra cost k if it offers the
same consumption levels everywhere on a right-neighborhood of θ̃. To avoid paying such
cost, the monopolist would like to have a bunch of types beyond θ̃ still consuming only
one unit. Yet, this objective conflicts with the possibility that those types would switch
to the fringe. To avoid paying k, the monopolist must redistribute part of these gains to
customers under the form of extra information rent beyond what they receive from the
fringe. The market is now segmented with four different connected subsets of types. This
pattern corresponds to an adjoint function γ which is obtained by slightly modifying γ0

(as explained in (3.11) below) according to our economic intuition.

Proposition 3 Suppose that k > 0 but small enough, and that Condition (3.9) holds.
The following optimal consumption levels and adjoint functions satisfy the necessary and
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sufficient conditions for optimality of Theorem 1:

(3.10) q(θ) =


qm(θ) if θ ∈ [θ, θ̃),

q̂(θ) if θ ∈ [θ̃, θ1) and θ ∈ [θ3, θ),

1 if θ ∈ [θ1, θ2),

qm(θ) +
√
k + θ1 − θ̃ if θ ∈ [θ2, θ3);

(3.11) γ(θ) =


0 if θ ∈ [θ, θ̃),

θ − θ̃ if θ ∈ [θ̃, θ1) and θ ∈ [θ3, θ),√
k + θ1 − θ̃ if θ ∈ [θ1, θ2);

where θ1, θ2, θ3 are such that θ̃ < θ1 < θ2 < θ3 < θ and

(3.12) q̂(θ1) = 1 + (
√

2− 1)
√
k, q̂(θ2) = 1 +

(√
2

2
− 1

)
√
k, q̂(θ3) = 1 + (

√
2− 2)

√
k.

The participation constraint (2.1) is binding on [θ̃, θ1] ∪ [θ3, θ] and slack elsewhere.

The optimal consumption remains equal to q0(θ) = max{qm(θ), q̂(θ)} for the bottom
interval [θ, θ1), i.e., for those types with the highest consumption levels for which the
incumbent finds it worth to incur the extra capacity. There is still a downward jump
in consumption at θ1. Types in the right-neighborhood [θ1, θ2) are all bunched together
and consume only one unit from the monopolist although they would like to get more
from the fringe. To save on the cost of the extra capacity, the monopolist gives to those
types a price discount to compensate for the constrained consumption and, as a result,
those types get a payoff above what they would get with the fringe. Yet, types with a
lower valuation consume less than one unit of service up to the point where the lowest
valuations in the interval [θ3, θ] again consume the same amount as with the fringe.

Again, some intuition for this pattern of rents can be grasped from the typology offered
by Maggi and Rodriguez (1995) although here the set of types with binding outside
options is significantly more complex than in their earlier study. Indeed, the fixed cost
now forces a constant consumption at q = 1 for a bunch of intermediate types. The rent
profile that the monopolist would like to implement becomes less convex than the outside
option for such types. We know from Maggi and Rodriguez (1995) that, in such contexts,
the participation constraint may be slack for intermediate types. In contrast with Maggi
and Rodriguez (1995) who focus on the rather pure cases where the reservation payoff
is uniformly more (or less) convex than the monopoly’s profile, the comparison is here
reversed for the very highest types. In sum, the participation constraint is now slack for
such intermediate types but it now binds on two intervals around that area.

The measure µ is again absolutely continuous with respect to the Lebesgue measure on
the interior of the set of the types, namely, [θ̃, θ1) ∪ [θ, θ), where (2.1) is binding. It has
again a mass point at θ still given by µ({θ}) = ∆. Now, to cope with the consumption
discontinuity at θ−1 and the fact that a right-neighborhood of that type receives rent
beyond what it gets from the fringe, µ has also another charge at that discontinuity point
θ1, namely µ({θ1}) =

√
k.
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3.2. Nonlinear Pricing with Split Purchases

The previous model can be slightly modified to cover other competitive scenarios. In-
stead of exclusively buying from one seller as in Section 3.1, consumers may have access
to a competitive fringe which sells a perfect substitute to the incumbent’s product and
they might split accordingly their purchases. This scenario is relevant for a number of
important contracting environments where previous analysis have instead been devel-
oped under the assumption of exclusive contracting. To illustrate, regulated monopolies
can be subject to competition by entrants with alternative bypass technologies. Earlier
works (Caillaud, 1990; Laffont and Tirole, 1990; Currien, Jullien and Rey, 1995), ruled
out the possibility that consumers may also purchase from entrants. Recent technological
advances in telecommunication services, broadcasting and internet practices suggest that
the theory of bypass should now also account for the possibility of split purchases between
an incumbent operator and entrants on some segments of its services.

Incumbent manufacturers may also design exclusive contracts with their retailers to
prevent their representing alternative suppliers. In Aghion and Bolton (1987)’s theory
of contracts as a barrier to entry, retailers buy entirely from the entrant if they switch
thanks to an assumption of unit demand while, more recently, Calzolari and DeNicolo
(2015) have analyzed how such exclusivity clause endogenously arises at equilibrium.18

Yet, the existing Antitrust bans on exclusivity arrangements that prevail in some countries
make it important to study how vertical contracts are modified when retailers may also
sell products from rivals.

Lastly, competition in financial and insurance markets has often been modeled, fol-
lowing Rotschild and Stiglitz (1976) in a context with exclusive contracts while often
exclusivity clauses can hardly be enforced as noticed by Attar et al. (2011). A trader
may buy a financial asset from one broker and then turn to another one to complete his
portfolio.

In these settings, standard screening distortions are limited by the buyer’s ability to
switch to the fringe. As we will see in the model below, such possibility introduces dis-
continuities in the virtual surplus. Instead of coming from the cost function as in Section
3.1, discontinuities come from the demand side and, more precisely, from how the buyer
responds to changes in contractual terms with a dominant firm.

Model. A dominant firm produces a good at constant marginal cost c ≥ 0. On the de-
mand side, consumers still have preferences given by (3.1) where θ, uniformly distributed
on [θ, θ] (with θ − θ = 1), is again private information. Importing mutatis mutandis our
earlier findings of Section 3.1, the monopoly solution would consist in offering

qm(θ) = S − 2θ + θ − c.

A competitive fringe sells a perfect substitute to the incumbent’s product at price p > c
(let ∆ = p− c > 0). Entry would thus be inefficient in a first-best world. We denote by q0

the quantity bought from the fringe. The fringe has a capacity constraint k > 0 and thus
q0 ∈ Q0 = [0, k]. The key difference with Section 3.1 is that consumers can now always
purchase from the fringe if the incumbent charges a price which is too high. Formally, if

18Choné and Linnemer (2016) and Martimort, Pouyet and Stole (2018) also investigate the possibility
of split purchases in related contexts.
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a consumer with type θ chooses q units from the incumbent, his indirect utility function
becomes

v(θ, q) = max
q0∈Q0

(S − θ)(q + q0)− (q + q0)2

2
− pq0.

Define the highest level of consumption from the incumbent firm which induces consump-
tion of k from the competitive fringe as

q̂(θ) = S − θ − p− k,

which we assume to be positive. For q ≤ q̂(θ), the consumer purchases q0(θ) = k units
from the competitive fringe, for q ≥ q̂(θ) + k, the consumer purchases q0(θ) = 0 from the
competitive fringe. Straightforward computations yield

v(θ, q) =


(S − θ)(q + k)− (q+k)2

2
− pk if q ≤ q̂(θ),

(q̂(θ)+k)2

2
+ ∆q if q ∈ [q̂(θ), q̂(θ) + k],

(S − θ)q − q2

2
if q ≥ q̂(θ) + k.

19

In particular, had the consumer not bought from the incumbent, i.e., q = 0, he would
consume up to capacity from the fringe and get a payoff worth

Û(θ) ≡ v(θ, 0) = q̂(θ)k +
k2

2
.20

For future reference, we will assume that

(3.13) qm(θ) > k.

This condition ensures that the incumbent firm still wants to serve the type with the
lowest possible demand θ even when that type consumes up to the fringe’s capacity.

A Discontinuous Surplus Function. When he instead buys q units from the dom-
inant firm which charges a nonlinear price T (q), a consumer with type θ gets

U(θ) = max
q∈Q

v(θ, q)− T (q).

To import our general formalism, we again introduce the state variable u(θ) = U(θ) −
Û(θ). The participation constraint takes its usual form (2.1) while the standard envelope
condition for incentive compatibility becomes

(3.14) u̇(θ) =


−q(θ) if q(θ) < q̂(θ),

−q̂(θ) if q(θ) ∈ [q̂(θ), q̂(θ) + k],

−q(θ) + k if q(θ) > q̂(θ) + k.

19To better understand the shape of the indirect utility function v(θ, q), we may think of the consumer
as only choosing in between consuming 0 or k units from the fringe. His indirect utility function would
be the (non-concave) maximum of two concave functions because of a discontinuous jump in the corre-
sponding choice. The possibility of consuming any arbitrary amount within the interval Q0 concavifies
this indirect utility function and introduces a linear piece for intermediate consumption levels from the
dominant firm.

20Since v(θ) < 0, this right-hand side remains positive.
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This relationship actually shows that u̇, taken as a function of q, is not bijective.21 This
phenomenon captures the role of competition from the fringe. If, to facilitate rent extrac-
tion, the dominant firm is willing to slightly reduce the buyer’s consumption q(θ) when
it takes values in (q̂(θ), q̂(θ) + k), the buyer can always consume more from the fringe.

The dominant firm wants to maximize the bilateral surplus of contracting with the buyer
net of the rent this buyer gets above his reservation payoff obtained when purchasing
exclusively from the fringe. This net surplus is thus

s̃(θ, q(θ))− u(θ) = v(θ, q(θ))− v(θ, 0)− cq(θ)− u(θ).

Replacing q(θ) by its expression in terms of u̇(θ) (from (3.14), when u̇(θ) 6= −q̂θ)) when-
ever such inversion is possible leads, straightforward computations (detailed in the Proof
of Proposition 4) allow us to express the gross surplus as simply

(3.15) s(θ, v) = (−q̂(θ)−∆)v − v2

2
+ k∆δv≤−q̂(θ).

This surplus function is upper semi-continuous, has a downward jump discontinuity at
v = −q̂(θ), and is maximized at v1(θ) = −q̂(θ) − ∆ < −q̂(θ). This downward jump
captures the fact that, when consumption from the dominant firm is too low (which
means v(θ) = −u̇(θ)), the bilateral surplus between the dominant firm and the customer
diminishes by k∆, reflecting the opportunity cost of purchasing k units from the fringe.

Proposition 4 Let θ̃ = θ+∆ and θ̃0 = θ̃+
√

2k∆. Suppose that θ̃0 ≤ θ and (3.13) holds.
The following optimal consumption levels and adjoint functions satisfy the necessary and
sufficient conditions for optimality of Theorem 1:

(3.16) q(θ) =


qm(θ) if θ ∈ [θ, θ̃],

arbitrary ∈ [q̂(θ), q̂(θ) + k] if θ ∈ (θ̃, θ̃0),

qm(θ)− k if θ ∈ [θ̃0, θ].

γ(θ) has a mass point at θ, µ({θ}) = 1.

The participation constraint (2.1) is binding at θ only.

Types who are the most eager to buy (i.e., θ ∈ [θ, θ̃)) are not tempted to switch to
the fringe. They consume the same downward distorted monopoly quantity qm(θ) as
what the incumbent firm would offer if the fringe was absent. This quantity nevertheless
remains large enough to make it unattractive for the buyer to switch. For intermediate
types in [θ̃, θ̃0), the monopolist loses some of his ability to screen. Any attempt to reduce
consumption from the incumbent is entirely compensated by the buyer consuming more
from the fringe. The incumbent’s sales are indeterminate but screening distortions are
reduced to avoid switching. Finally, types in [θ̃0, θ] react to the downward screening
distortion offered by the incumbent by consuming up to capacity from the fringe.

Although the discontinuity of s(θ, v) bears some similarity with that analyzed in Section
3.1, the characterization of the solution is rather different thanks to the different nature

21Carbajal and Ely (2016) present an interesting model of behavioral consumers having loss aversion
that has similar features.
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of the participation constraint. Over the range (θ̃, θ̃0), the solution entails u(θ) = −q̂(θ)
independently of the incumbent’s sales; which explains the indeterminacy in those sales.
Because of the downward discontinuity jump of s(θ, v) at v = −q̂(θ), co(s)(θ, v) has a kink
at that point and entails a flat segment for v ∈ [−q̂(θ̃0), v1(θ̃0)] where v1(θ̃0) = −q̂(θ̃0) +√

2k∆. At type θ̃0, the incumbent is thus indifferent between choosing u̇(θ̃0) = −q̂(θ̃0)
and moving up to u̇(θ̃0) = v1(θ̃0), reducing his sales to qm(θ̃0)− k and allowing the buyer
to purchase from the fringe up to capacity.

3.3. Common Agency with Countervailing Incentives

The characterization of all equilibrium allocations of common agency games under
asymmetric information is an important question. In such games, principals offer con-
tingent transfer schedules to a common agent who, upon acceptance and based on his
private information, chooses a decision on their behalf. Earlier works in the field have
often restricted the analysis to the case where principals compete through differentiable
schedules (Laffont and Tirole, 1990; Martimort and Semenov, 2008, Martimort and Stole,
2009, Calzolari and DeNicolo, 2013, among others). Of course, this restriction is akin to
an equilibrium refinement and modelers might want to know if the economic predictions
of the smooth equilibria so selected carry over to other non-smooth equilibria.

Recently, progresses on this front have been accomplished by Martimort, Semenov and
Stole (2017) for intrinsic common agency games and Martimort and Stole (2018) for
delegated common agency games.22 The first of these papers proposes necessary and
sufficient conditions for an allocation to arise at an equilibrium of an intrinsic common
agency games when principals can offer upper semi-continuous tariffs. The analysis is
based on two important steps. First, Martimort, Semenov and Stole (2017) observe that
an intrinsic common agency game is an aggregate game (Martimort and Stole, 2012). In a
quasi-linear environment, its equilibria are thus also solutions to a self-generating problem
obtained by summing the objectives of all principals. Second, the pointwise maximization
of the virtual surplus associated to this self-generating problem characterizes equilibrium
decisions. Of course, the possibility that a given principal offers a discontinuous schedule
makes this step of the analysis a non-smooth optimization problem. Computing best
responses would a priori require the use of the control techniques we develop in this paper.
Fortunately, the analysis in Martimort, Semenov and Stole (2017) is simplified by the
fact that all principals agree on whoever type is the least efficient one. The participation
constraint is thus known to be binding for this type. From there, it is easy to recover the
rent profile, continue with the standard Myersonian integration by parts, compute the
corresponding virtual surplus and proceed to its optimization.

Yet, in a number of contexts this direct approach may not suffice, especially when coun-
tervailing incentives arise and participation constraints may be binding on the interior of
the types set. To illustrate, regulated firms may differ not only through marginal costs
but also because of their fixed costs, low marginal costs implying also large upfront in-
vestment. Firms are thus torn in between their incentives to exaggerate either marginal
or fixed costs as in Lewis and Sappington (1989a). Also, an employee may be endowed
with some initial resources of a given size to produce a task on his principal’s behalf.

22Common agency is intrinsic when the agent is forced to contract with all principals or not contract
at all. Regulation is an example in order It is delegated when the agent keeps the right to select any
subset of offers. This scenario is relevant for lobbying games.
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Producing less than this capacity for the principal allows that agent to enjoy profits from
unused resources on alternative markets as in Lewis and Sappington (1989b). We now
investigate such model.

Model. An agent produces q units of good or services at a cost

θ(q − k)

where k > 0 is a fixed capacity. Any production q > k is costly to produce while excess
capacity can be sold on another market in case the requested quantity q is less than k.
The benefits of doing so is in that case θ(k − q). Let Q = [0, Q] be the set of possible
outputs with Q being large enough to ensure interior solutions. For simplicity, we again
assume that the agent’s type θ is uniformly distributed on Θ = [θ, θ] with θ = θ + 1.

There are n principals contracting simultaneously with the agent. Common agency is
intrinsic; the agent must accept all such contracts if he chooses to produce at all. His out-
side opportunity gives a payoff of zero. As an example, we may think of several regulatory
agencies that indeed contract independently with a firm to regulate different aspects of its
performances. Being active on the market requires to abide to all regulations. Principal
Pi enjoys a gross surplus Si(q) when q units are produced with Si being continuously
differentiable, increasing and strictly concave. To regulate the agent, Pi may offer any
upper-semi continuous nonlinear price Ti(q) defined over Q.23 Her net payoff becomes

Si(q)− Ti(q).

For future reference, we denote the aggregate surplus and aggregate nonlinear price (resp.
aggregate nonlinear price of all principal except i) respectively as S(q) =

∑n
i=1 Si(q) and

T (q) =
∑n

i=1 Ti(q) (resp. T−i(q) =
∑

j 6=i Tj(q)).

For reasons that will appear clearer below, we will assume that

(3.17) θ < S ′(k) < θ.

This condition simply means that it is efficient to produce more (resp. less) than the
existing capacity k when costs are low (resp. high) enough. This requirement is thus the
raison d’être for the countervailing incentives that arise in this context.

Equilibrium Characterization. When accepting an array of offers T = (T1, ...Tn),
the agent gets a payoff u(θ) and chooses a quantity q(θ) defined as

(3.18) u(θ) = max
q∈Q
T (q)− θ(q − k) and q(θ) = arg max

q∈Q
T (q)− θ(q − k)

As the maximum of linear functions of θ, u(θ) is convex, so it is a.e. differentiable and q(θ)
is non-increasing. At any point of differentiability, the envelope condition for incentive
compatibility thus writes as

(3.19) u̇(θ) = −q(θ) + k.

23From Peters (2001) and Martimort and Stole (2002), there is no loss of generality in considering this
strategy space in our setting.
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A (pure strategy) Nash equilibrium is an array T = (T 1, ..., T n) of nonlinear upper
semi-continuous schedules which are best responses to each other. Importantly, intrinsic
common agency games are actually aggregate games (Martimort and Stole, 2012). This
property is key to get a compact description of Nash-equilibrium conditions. Indeed,
each principal can always undo whatever aggregate nonlinear price T−i(q) was offered by
others at equilibrium and behave as if he was himself offering the aggregate price T (q).
At equilibrium, the so called Aggregate Concurrence Principle24 applies and all principals
end up with objectives that are aligned with those of a surrogate principal. That surrogate
principal would indeed solve the following self-generating problem:25

(P) : max
q(θ)∈Q,u(θ),T

∫ θ

θ

[S(q(θ))−θ(q(θ)−k)+(n−1)(T (q(θ))−θ(q(θ)−k))−nu(θ)]dθ,

subject to (2.1), (3.18) and (3.19).

What is remarkable here is that the maximand depends on an endogenous equilibrium ob-
ject, the aggregate schedule T . Its only known property is that it is upper semi-continuous.
Differentiability would be nice because it would help to characterize equilibrium alloca-
tions by means of a first-order condition but imposing this requirement a priori too
restrictive and may leave unexplored other non-smooth equilibrium allocations of inter-
est.

To see how, we proceed as above and write this optimization in its canonical form by
introducing the following surplus function:

(3.20) ns(θ, v) = S(k − v) + θv + (n− 1)(T (k − v) + θv).

The optimality conditions (2.4) and (2.5) should hold, with the latter being expressed as

(3.21) γ(θ)− θ + θ ∈ ∂co(s)(θ, u̇(θ)) a.e. θ ∈ Θ

where the adjoint function γ(θ) is non-decreasing, right-continuous, constant on all inter-
vals where (2.1) is slack and such that γ(θ) = 0 and γ(θ) = 1.

To this condition, we must also add the equilibrium requirement that the agent also
chooses the same quantity than what the surrogate principal suggests. Still with our
notations, this condition writes as:

(3.22) 0 ∈ ∂vco(T (k − u̇(θ)) + θu̇(θ)).

•The “almost” smooth equilibrium. Had T been continuously differentiable, at least al-
most everywhere, conditions (3.21) and (3.22) would respectively become

(3.23) S ′(qm(θ))− θ + (n− 1)(T ′(qm(θ))− θ) = n(θ − θ − γ(θ)),

(3.24) T ′(qm(θ)) = θ a.e. θ ∈ Θ.

24Martimort and Stole (2012).
25See the Appendix for details.
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Simplifying (3.23) then yields

(3.25) S ′(qm(θ)) = θ + n(θ − θ − γ(θ)) a.e. θ ∈ Θ.

With smoothness, this condition follows from applying an envelope condition on the
pointwise maximization of the surrogate principal’s objective taking into account the fact
that part of this objective, namely (n−1)(T (q(θ))−θ(q(θ)−k)) is already maximized by
the agent’s choice q(θ) at equilibrium. Below, we will investigate how to proceed without
such envelope condition in non-smooth problems.

We now exhibit a pair (um(θ), γm(θ)) that satisfies all necessary conditions for optimal-
ity and invoke our sufficiency result to complete the analysis. Consider thus the following
adjoint function

(3.26) γm(θ) =


0 if θ ∈ [θ, θn1 ],

θ − θ + 1
n
(θ − S ′(k)) if θ ∈ [θn1 , θ

n
2 ],

1 if θ ∈ [θn2 , θ]

where θn1 and θn2 , whose existence within (θ, θ) follows from (3.17), are respectively defined
as

S ′(k) = θn1 + n(θn1 − θ) = θn2 + n(θn2 − θ).

Clearly, γm(θ) as defined in (3.26) is strictly increasing on [θn1 , θ
n
2 ], which is consistent

with (2.1) being binding on this interval.

Observe also that qm(θ) is non-increasing as requested by incentive compatibility and
that it satisfies

(3.27) qm(θ)


> k if θ ∈ [θ, θn1 ),

= k if θ ∈ [θn1 , θ
n
2 ],

< k if θ ∈ (θn2 , θ].

In other words, q entails some bunching on [θn1 , θ
n
2 ]. From (3.27), um(θ) is decreasing (resp.

increasing) and positive on [θ, θn1 ) (resp. on (θn2 , θ]) and zero on the bunching area [θn1 , θ
n
2 ].

The last step to fully characterize the equilibrium is to find the aggregate nonlinear price
that implements this rent profile. A simple duality argument26 shows that the following
schedule succeeds:

(3.28) T m(q) = min
θ∈Θ

um(θ) + θ(q − k).

It is straightforward to check that T m so constructed is concave as the minimum of linear
functions of q, continuously differentiable almost everywhere, except at q = k where it
only admits a subdifferential ∂T m(k) = [θn1 , θ

n
2 ].27 All types in the bunching area [θn1 , θ

n
2 ]

choose output k at that kink.

26See Martimort, Semenov and Stole (2017) for more details.
27Our use of the word “subdifferential” for a concave function is somewhat abusive but it is also

self-explanatory.
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Finally, the equilibrium tariffs offered by each principal, T
m

j , are then designed so that
all principals’ objectives are in fact aligned with those of the surrogate principal:

(3.29)
1

n

(
S(q)− T m(q)

)
= Sj(q)− T

m

j (q) ∀q ∈ Q.28

This condition implies that all principals agree on inducing the same equilibrium output
even if each of them may entertain an individual deviation.

We collect the preceding arguments into the following proposition.

Proposition 5 In the continuous-allocation equilibrium of the intrinsic common agency
game with countervailing incentives, the allocation qm(θ) = k for all θ ∈ [θn1 , θ

n
2 ], where

θn1 and θn2 are characterized by,

S ′(k) = θn1 + n(θn1 − θ) = θn2 + n(θn2 − θ),

and qm(θ) satisfies

S ′(qm(θ))− θ = n(θ − θ) > 0, ∀θ ∈ [0, θn1 ],

and
S ′(qm(θ))− θ = n(θ − θ) < 0, ∀θ ∈ [θn2 , θ].

If we assume that the aggregate surplus of the principals is fixed independent of n, S,
and the principals have symmetric preferences with Si(q) = 1

n
S(q), then we can write the

boundary types for the bunching region as a function of n:

θn1 =
1

n+ 1
S ′(k) +

n

n+ 1
θ ∈ (θ, θ),

θn2 =
1

n+ 1
S ′(k) +

n

n+ 1
θ ∈ (θ, θ),

where the inclusions follow from (3.17). We conclude that θn1 is decreasing in n and θn2 is
increasing in n, implying an every expanding region of bunching, as illustrated in Figure
3.3.

Following Lewis and Sappington (1989b), this equilibrium outcome can be interpreted
as an inflexible rule over the bunching area. This bunching area increases with the number
of principals. There is less flexibility as more non-cooperating principals are involved. The
intuition is the following. In this common agency context, each principal has to pay the
cost of inducing information revelation from the agent. The information rent is thus
counted n times (a feature that appears in the expression of the surrogate principal’s
objective). Distortions are magnified. It in turn exacerbates countervailing incentives
making it more attractive to implement an inflexible rule.29

28See the Appendix for details.
29This result is also reminiscent of the work of Mezzetti (1997). His work differs from ours because

this author assumes that principals are selling differentiated products through their agent. His model
is thus one of private common agency, in contrast with ours where all principals control the same
variable; a setting with public common agency. Moreover, Mezzetti (1997) does not look for equilibria
with discontinuous output schedules while the use of our methodology unveils their existence in our
setting as we see below.
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Figure 1.— Graph of equilibrium allocation for the case of n = 2 (solid line), n = 4 (dashed line),
and n = 10 (doted line), assuming S(q) =

(
q − 1

2q
2
)
, [θ, θ] = [0, 1], and k = 1

2 .
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Figure 2.— Graph of equilibrium allocation for the case of n = 2 (solid line) and n = 4 (dashed
line) assuming S(q) = n

(
q − 1

2q
2
)
, [θ, θ] = [0, 1], and k = 3

4 .

•Non-smooth equilibria. The characterization of such equilibria has been made in Marti-
mort, Semenov and Stole (2017) for the case where the participation constraint is binding
at one extreme of the type space. The recipe of that paper allows one to reconstruct dis-
continuous equilibria starting from the continuous allocation qm and repeatedly removing
single output intervals from qm(Θ). In a sense the allocation (um, qm) is maximal given the
equilibrium range is as large as possible. Indeed, we can apply this methodology mutatis
mutandis here also when we restrict such removal to domains where the participation
constraint is non-binding.

Constructing such equilibria is rather easy following the approach in Martimort, Se-
menov and Stole (2017). Indeed, let us take two types (θ3, θ4) such that θ < θ3 < θ4 < θn1
and thus

(3.30) qm(θ) > qm(θ3) > qm(θ4) > k.30
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Notice that γm(θ) = 0 for all θ ∈ [θ, θn1 ] and that qm(θ3) > qm(θ4). Define then θ0 such
that

(3.31) S(qm(θ3))− (θ0 + n(θ0 − θ))qm(θ3) = S(qm(θ4))− (θ0 + n(θ0 − θ))qm(θ4).

It can be easily checked that there exists a unique such type θ0.

We now construct an equilibrium whose output range q(Θ) is the non-connected set
qm(Θ)/(qm(θ4), qm(θ3)). At the discontinuity of the output profile, it must be that type
θ0 is indifferent between choosing qm(θ3) and qm(θ4) which means that the equilibrium
aggregate tariff must also satisfy the following incentive constraint:

(3.32) T (qm(θ3))− θ0(qm(θ3)− k) = T (qm(θ4))− θ0(qm(θ4)− k).

Taken in tandem, (3.31) and (3.32) also show that the surrogate principal’s objective
function is kept constant at type θ0 when moving across the discontinuity from qm(θ3) to
qm(θ4).

Proposition 6 Fix (θ0, θ3, θ4) ∈ Θ defined as in (3.30) and (3.31). The following
output levels and the adjoint function γm(θ) satisfy the necessary and sufficient conditions
for optimality of Theorem 1 when applied to the self-generating problem (P):

(3.33) q(θ) =


qm(θ) if θ ∈ [θ, θ3] ∪ [θ4, θ],

qm(θ3) if θ ∈ [θ3, θ0],

qm(θ4) if θ ∈ (θ0, θ4].

An equilibrium aggregate tariff that implements the above output profile is:

(3.34) T (q) =

{
T m(q) if q ∈ [qm(θ), qm(θ4)) ∪ (qm(θ3), qm(θ)],

T m(qm(θ4)) + θ0(q − qm(θ4)) if q ∈ [qm(θ4), qm(θ3)].

The participation constraint (2.1) is binding on [θn1 , θ
n
2 ] and slack elsewhere.

The strength of our approach is to use necessary and sufficient conditions for a solu-
tion to the self-generating problem that do not impose any regularity property on the
equilibrium aggregate price T that enters the maximand, except upper semi-continuity.
Close inspection of those formula nevertheless shows that the discontinuity in the output
profile that arises at θ0 does not necessarily imply a discontinuity of this schedule. Indeed,
although T (q) as defined in (3.34) is concave and thus almost everywhere differentiable,
it is not so either at q = k or at q = qm(θ3) and q = qm(θ4). In fact, T (q) only admits
sub-differentials there. Yet, this schedule remains continuous.

Our approach has nevertheless some broader appeal. Consider the alternative nonlinear
price:

(3.35) T 1(q) =

{
T m(q) if q ∈ [qm(θ), qm(θ4)] ∪ [qm(θ3), qm(θ)],

−∞ if q ∈ (qm(θ4), qm(θ3)).

30The same construction could be entertained with the polar assumption qm(θ) < qm(θ4) < qm(θ3) <
k. We leave details to the reader.
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Figure 3.— Graph of a discontinuous equilibrium allocation with discontinuity between θ3 = 1
24

and θ4 = 6
24 , assuming n = 2, S(q) =

(
q − 1

2q
2
)
, [θ, θ] = [0, 1], and k = 1

8 .

These tariffs, as suggested in Martimort, Semenov and Stole (2017) have by construction
the nice property to preclude any principal to deviate by inducing the agent to choose an
output in the discontinuity gap (qm(θ4), qm(θ3)) since it would imply infinite punishments
from other principals. The tariff T 1(q) is clearly upper semi-continuous but it obviously
fails to be concave. Observe that nevertheless co(T 1) = T . It follows from this prop-
erty that both the agent’s maximization problem and the self-generating problem still
have for solution q(θ) as defined in (3.33). Yet, even though the self-generating problem
constructed with T 1(q) has a non-smooth maximand, its solution can still be obtained
with our approach. This remark shows in passing that different aggregates may induce
the same solutions to the self-generating problem and thus support the same equilibrium
outcome.

Let us turn now to the characterization of another class of discontinuous equilibria
where the discontinuity in the equilibrium output schedule will arise at a point θ0 where
the participation constraint is binding. If such equilibria exist, they are necessarily of
a very different nature than those described in Proposition 6. Indeed, the possibility of
an output discontinuity at such point means that the right- and the left-derivatives of
u are different, so θ0 is necessarily an isolated point where (2.1) is binding. This remark
suggests that we may look for an adjoint function γ(θ) that would have an upward jump
at such discontinuity point θ0:

(3.36) γ(θ) =

{
0 if θ ∈ [θ, θ0),

1 f θ ∈ [θ0, θ].

To describe such equilibrium, we now proceed as above. We again choose θ3 and θ4 on
the separating range of qm but now satisfying

(3.37) qm(θ) > qm(θ3) > k > qm(θ4) > qm(θ).

Since γ is right-continuous at the discontinuity point θ0, we have γ(θ0) = 1 and θ0 is
defined so that

(3.38) S(qm(θ3))− (θ0 + n(θ0 − θ))qm(θ3) = S(qm(θ4))− (θ0 + n(θ0 − θ))qm(θ4).
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Taken in tandem with the incentive constraint of that type θ0 that still writes as (3.32),
these conditions again imply that the surrogate principal’s surplus function remains con-
stant throughout the discontinuity at θ0.

Proposition 7 Fix (θ0, θ3, θ4) ∈ Θ defined as in (3.37) and (3.38). The output levels
and the adjoint function γm(θ) as defined respectively in (3.33) and (3.36) satisfy the
necessary and sufficient conditions for optimality of Theorem 1 when applied to the self-
generating problem (P). An equilibrium aggregate tariff that implements the above output
profile is:

(3.39) T (q) =


T m(q)− T m(qm(θ3)) + θ0(qm(θ3)− k) if q ∈ (qm(θ3), qm(θ)],

θ0(q − k) if q ∈ [qm(θ4), qm(θ3)],

T m(q)− T m(qm(θ4)) + θ0(qm(θ4)− k) if q ∈ (qm(θ4), qm(θ)].

The participation constraint (2.1) is binding only at θ0 and slack elsewhere.
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APPENDIX A: NON-SMOOTH OPTIMIZATION

This Appendix briefly reminds the reader about necessary and sufficient conditions for the
general problem of maximizing an upper semi-continuous function, h : R→ R, over a compact
set X ⊂ R.

A generalization of the first-order condition for smooth, concave optimization programs can
indeed be obtained for general upper semi-continuous programs by introducing a few concepts
from non-smooth convex analysis. The basic idea is that any solution to the original upper
semi-continuous program must lie on the minimal concave envelope or concavification of the
objective. Consider, for example, the upper semi-continuous function graphed in Figure 3.3 in
bold.

Figure 3.3:

This function is defined over the real line, but the restricted domain of interest is X = [x, x]. The
minimal-concave envelope over this domain is depicted by the dashed lines in the graph. Notice
its value is negative infinity outside of [x, x]. Obviously, the maximum of this concave envelope
is a solution to the original program. More generally, in the case in which there is a continuum
of solutions (i.e., the maximum is achieved on a horizontal component of the majorization),
there exist two solutions to the original program – the endpoints of the majorization. It is,
in this sense, without loss to convert an upper semi-continuous program over a compact set
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into a concave (but possibly non differentiable) program over the same set. Formally, we will
denote coX(h) to refer to the concavification of an objective function, h, over a domain, X,31

and coX(h)(x) to refer to the value of this envelope evaluated at x.32

Having reached the conclusion that we may focus on the concave envelope of the program,
we can now import the generalized notion of derivative from convex analysis. Formally, we will
define a set of gradients at any point to be all those vectors which “support” the graph at the
given point, and we refer to this set-valued notion of derivative as the generalized gradient or
the super-differential, denoted ∂h(x) when applied to a concave function h at point x.33 Where
h is differentiable, the super-differential is single-valued and corresponds to the gradient. If h
exhibits a kink and X ⊆ R, the super-differential is an interval of gradients with endpoints
corresponding to the left- and right-side derivatives at the point. More generally, if X ⊆ Rn,
then

∂h(x) = {τ ∈ Rn | h(y) ≤ h(x) + 〈τ, y − x〉 ∀ y ∈ Rn} .

Using this generalization of gradient, we can now state the necessary and sufficient conditions
for x∗ to be a maximum of an upper semi-continuous function, h, over some given domain
x ∈ X: if x∗ is a solution to the maximization program, then the following first-order condition
must be satisfied:

(A1) 0 ∈ ∂coX(h)(x∗).

Furthermore, if x∗ satisfies (A1) and the envelope coincides with h at x∗, i.e.,

(A2) coX(h)(x∗) = h(x∗)

then x∗ solves the maximization program.

These conditions can be further tightened when a component of the objective function is
affine. To this end, suppose that h = g+ f where g is affine (and slightly abusing notations, let
us write g(x) = gx). Well-known identities from convex analysis give us:

coX(h)(x) = gx+ coX(f)(x) and ∂coX(h)(x) = g + ∂coX(f)(x).

Thus, the linear linear part of the objective can be factored out and the “first-order” necessary
and sufficient condition for the optimality of x∗ reduces to

−g ∈ ∂coX(f)(x∗).

This property will be repeatedly used throughout our analysis, first, to derive generalized first-

order conditions for our infinite-dimensional optimal control problem and, second, to tackle

applications in contract theory where such a decomposition is frequently available.

31When X = R, we simplify notations and omit the subscript.
32In the non-smooth optimization literature, often one considers the minimal concave envelope of h

over the real line instead of some domain X, but in this case with a penalty function, ΨX(x) which
equals 0 for x ∈ X and −∞ for x 6∈ X. Thus, in our notation, coX(h) = coR(h+ ΨX).

33In our context of maximizing a concave function, it is perhaps more accurate to say that the graph of
a concave function “supports” its gradients. Nonetheless, we use the term “support” from convex analysis
given it is evocative and familiar. The term sub-differential is the parallel notion of super-differential when
applied to convex functions. When we refer to the generalized gradient of a function that is understood
to be convex, we will abuse notation slightly by again using the notation ∂h(x), where it is understood
that when h is convex, then

∂h(x) = {τ ∈ Rn | h(y) ≥ h(x) + 〈τ, y − x〉 ∀ y ∈ Rn} .

See Ferrera (2014) for an introduction to non-smooth analysis and an in-depth discussion of super- and
sub-differentials.
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APPENDIX B: PROOF OF THEOREM 1

Preliminaries for Non-Smooth Analysis. We draw heavily from Vinter and Zheng (1998)
in the following presentation. A complete treatment can be found in the monograph of Vinter
(2000). Theorem 3 from Vinter and Zheng (1998) appears as Theorem 10.2.1 in Vinter (2000).

Take a closed set A ⊆ Rn and a point x ∈ A. A vector r ∈ Rn is a limiting normal to A at x
if there exists a sequence (xi, ri)→ (x, r) with xi ∈ A and a constant M ≥ 0 such that for each
i in the sequence ri · (xi − x) ≤M ||xi − x||2, where || · || denotes Euclidean distance. The cone
of limiting normal vectors to A at x is denoted NA(x). Given a lower semi-continuous function
g : R → R ∪ {+∞} and a point x ∈ R such that g(x) < +∞, the limiting sub-differential of g
at x is defined as

∂g(x) ≡ {ξ | (ξ,−1) ∈ Nepi{g}(x, g(x))},

where epi{g} is the epigraph of the function g defined as

epi{g} ≡ {(x, α) ∈ R× R |α ≥ g(x)}.

The asymptotic limiting sub-differential of g at x, written ∂∞g(x), is defined as

∂∞g(x) ≡ {ξ | (ξ, 0) ∈ Nepi{g}(x, g(x))}.

Finally, we define:

∂>x h(t, x) ≡ co{lim
i
ξi | ∃ti → t, xi → x s.t. h(ti, xi) > 0 and ξi ∈ ∂xh(ti, xi) ∀i}.

Two results from non-smooth analysis (Vinter, 2000, Propositions 4.3.3 and 4.3.4) that we use
are (1) ∂∞g(x) = {0} if g is Lipschitz continuous and (2) for any x such that g(x) is finite,

Nepi{g}(x, g(x)) = {(ξd,−ξ) | ξ > 0 , d ∈ ∂g(x)} ∪ {∂∞g(x)× {0}}.

A local maximizer of Λ(x) is a feasible arc, x, which maximizes Λ(x) over all feasible arcs
x ∈ AC(Θ,R+) within an ε neighborhood of x, ||x−x||ac ≤ ε where we denote the norm on the

space of absolutely continuous functions by ||x||ac ≡ ||x(θ)|| +
∫ θ
θ ||ẋ(θ)||dθ. A local minimizer

is defined analogously.

Necessity. First, and for completeness, we reproduce here Theorem 3 of Vinter and Zheng
(1998) which provides necessary conditions for solutions to the following minimization program:

(P ′) : Minimize J(x) ≡
∫ θ
θ L(θ, x(θ), ẋ(θ))dθ

subject to x ∈ AC(Θ,R) and h(θ, x(θ)) ≤ 0 for all θ ∈ Θ ≡ [θ, θ].34

We will prove necessity for Theorem 1 by specializing this Theorem, exploiting the fact that
our integrand in Λ is a linear function of x and h(θ, x) = −x.

Theorem B.1 (Vinter and Zheng, 1998, Theorem 3) Let x be local minimizer for (P ′) in
AC(Θ,R) such that J(x) < +∞. Assume that the following hypotheses are satisfied:

H1. L(·, x, ·) is L × B measurable for each x and L(θ, ·, ·) is lower semi-continuous for a.e.
θ ∈ Θ.

34We specialize their theorem to our present problem in which the range of x(θ) is one-dimensional
and there is no endpoint cost function.
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H2. For every N > 0 there exists δ > 0 and k ∈ L1 such that

||L(θ, x′, v)− L(θ, x, v)|| ≤ k(θ)||x′ − x||, L(θ, x(θ), v) ≥ −k(θ)

for a.e. θ ∈ Θ, for all x, x′ ∈ x(θ) + δB and v ∈ ẋ(θ) +NB, where B is a unit Euclidean
ball.

H3. h is upper semi-continuous near (θ, x(θ)) for all θ ∈ Θ, and there exists a constant kh
such that

||h(θ, x′)− h(θ, x)|| ≤ kh||x′ − x||

for all θ ∈ Θ and all x′, x ∈ x(θ) + δB.

Then there exist an arc p ∈ AC(Θ,R), a constant λ ≥ 0, a non-negative measure µ on the Borel
subsets of Θ and a µ-integrable function ζ : Θ→ R, such that

(i). λ+maxθ∈Θ |p(θ)|+
∫ θ
θ µ(dθ̃) = K > 0 (where K is an arbitrary normalization constant),35

(ii).

ṗ(θ) ∈ co

{
η | (η, p(θ) +

∫
[θ,θ)

ζ(θ̃)µ(dθ̃),−λ)

∈ Nepi{L(θ,·,·)}(x(θ), ẋ(θ), L(θ, x(θ), ẋ(θ)))

}
a.e.,

(iii).

p(θ) = p(θ)−
∫ θ

θ
ζ(θ̃)µ(dθ̃) = 0,

(iv).(
p(θ) +

∫
[θ,θ)

ζ(θ̃)µ(dθ̃)

)
ẋ(θ)−λL(θ, x(θ), ẋ(θ)) ∈ arg max

v∈R

(
p(θ) +

∫
[θ,θ)

ζ(θ̃)µ(dθ̃)

)
v−λL(θ, x(θ), v),

(v). ζ(θ) ∈ ∂>x h(θ, x(θ)) µ-a.e. and supp{µ} ⊆ {θ |h(θ, x(θ)) = 0}.

We apply this result to our setting by substituting xf(θ) − s(θ, v) in program (P) in place
of L(θ, x, v) and thereby converting the maximization functional Λ in program (P) to the
minimization functional J in program (P ′). We complete the transformation by requiring that
h(θ, x) = −x, and that L(θ, x, v) is a linear function of x for any (θ, v).

First, we verify that hypotheses H1-H3 are satisfied for our program (P). Because s(θ, ·) is
upper semi-continuous and B-measurable, and because L(θ, x, v) is linear in x, H1 is satisfied.
H2 requires that L(θ, ·, v) is Lipschitz continuous, which is trivial given that L is linear in x
with coefficient f(θ). Because the transformed program has h(θ, x) = −x, h is a continuous
linear function of x and thus H3 is also satisfied.

Next, we specialize the conclusions of Vinter and Zheng (1998) by making use of the additional
restrictions on L(·) and h(·). We present this in the following Lemma.

35We choose to state the Theorem using K > 0 as an arbitrary normalization rather than K = 1,
which is the normalization chosen in Vinter and Zheng (1998). Later, by setting K = 3, we will succeed
in normalizing µ to a probability measure which is a more familiar object.
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Lemma B.1 Suppose that L(θ, x, v) is a linear function of x and that h(θ, x) = −x. Then the
conclusions (i)-(v) of Theorem B.1 imply

(a). λ+ maxθ∈Θ |p(θ)|+
∫ θ
θ µ(dθ̃) = K,

(b). ṗ(θ) = λf(θ) a.e.,

(c). p(θ) = p(θ) +
∫ θ
θ ζ(θ̃)µ(dθ̃) = 0

(d). ẋ(θ) ∈ arg maxv∈R

(
p(θ) +

∫
[θ,θ) ζ(θ̃)µ(dθ̃)

)
v + λs(θ, v), a.e.,

(e). ζ(θ) = −1 µ-a.e. and supp{µ} ⊆ {θ |u(θ) = 0}.

Proof of Lemma B.1: Implications (i) and (a) are identical. Implication (ii) requires

ṗ(θ) ∈ co

{
η |

(
η, p(θ) +

∫
[θ,θ)

ζ(θ̃)µ(dθ̃),−λ

)
∈ Nepi(L(θ,·,·))

(
x(θ), ẋ(θ), L(θ, x(θ), ẋ(θ))

)}
, a.e.

Because L(θ, x(θ), ẋ(θ)) = f(θ)x(θ)− s(θ, ẋ(θ)) is finite, the limiting normal cone in the above
expression can be written as

Nepi(L(θ,·,·))
(
x(θ), ẋ(θ), L(θ, x(θ), ẋ(θ))

)
=
{

(ξd1, ξd2,−ξ) | ξ > 0, (d1, d2) ∈ ∂
(
f(θ)x(θ)− s(θ, ẋ(θ))

)}⋃{
∂∞
(
f(θ)x(θ)− s(θ, ẋ(θ))

)
× {0}

}
.

Using the fact that L(·) is additively separable in x and ẋ yields (Rockafellar and Wets (2004,
Proposition 10.5))

∂
(
f(θ)x(θ)− s(θ, ẋ(θ))

)
= ∂ (f(θ)x(θ))× ∂

(
−s(θ, ẋ(θ))

)
= {f(θ)} × ∂

(
−s(θ, ẋ(θ))

)
and

∂∞
(
f(θ)x(θ)− s(θ, ẋ(θ))

)
⊆ ∂∞ (f(θ)x(θ))× ∂∞

(
−s(θ, ẋ(θ))

)
= {0} × ∂∞

(
−s(θ, ẋ(θ))

)
,

where the last equality uses the fact that a linear function is Lipschitz continuous and hence
∂∞(f(θ)u(θ)) = {0}. Substituting these sub-differentials into the expression for the limiting
normal cone, we have a simple inclusion:

Nepi(L(θ,·,·))
(
x(θ), ẋ(θ), L(θ, x(θ), ẋ(θ))

)
⊆

{
(ξf(θ), ξd2,−ξ) | ξ > 0, d2 ∈ ∂

(
−s(θ, ẋ(θ))

)}⋃{
{0} × ∂∞

(
−s(θ, ẋ(θ))

)
× {0}

}
.

This simplifies again to the inclusion

Nepi(L(θ,·,·))
(
x(θ), ẋ(θ), L(θ, x(θ), ẋ(θ))

)
⊆
{

(ξf(θ), ξd2,−ξ) | ξ ≥ 0, d2 ∈ ∂
(
−s(θ, ẋ(θ))

)⋃
∂∞
(
−s(θ, ẋ(θ))

)}
.

The key point to note is that any vector in the limiting normal cone must point in the same
direction in the (x, L) plane, regardless of d2. Returning to implication (ii), we see that any point
η in the given convex hull must satisfy (η, ·,−λ) = (ξf(θ), ·,−ξ) for some ξ ≥ 0, and hence the
convex hull reduces to {λf(θ)}. We conclude that implication (ii) simplifies to implication (b)
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given that L(·) is both additively separable and linear in x.

Implication (iii) is identical to implication (c).

Using the transformation L(θ, x, v) = xf(θ) − s(θ, v), implication (iv) simplifies to implica-
tion (d). Lastly, the fact that h(θ, x) = −x yields ∂xh(θ, u(θ)) = ∂>x h(θ, x(θ)) = {−1}. Thus,
implication (v) simplifies to ζ(θ) = −1 µ-a.e. and

(B1) supp{µ} ⊆ {θ |u(θ) = 0}.

This is implication (e). Q.E.D.

An immediate inspection of conditions (a)-(e) suggest further simplifications by combining
these conditions. Conditions (b) and (c) jointly yield

p(θ) = λF (θ).

Because p(θ) = λ and ζ(θ) = −1 a.e. with respect to µ, condition (c) also implies∫ θ

θ
µ(dθ̃) = λ.

Because we also have maxθ∈Θ |p(θ)| = λ, condition (a) implies λ > 0 and in particular λ = K
3 .

Because the choice of K is arbitrary, we choose K = 3 as a normalization, yielding λ = 1 and∫ θ
θ µ(dθ̃) = 1. Thus, up to this normalization, µ is a probability measure on Θ. Defining now

γ(θ) =
∫

[θ,θ) µ(dθ̃), the implication in (d) is therefore

(B2) ẋ(θ) ∈ arg max
v∈R

s(θ, v) + (F (θ)− γ(θ)) v, a.e..

This condition can finally be expressed as (2.4) and (2.5) of Theorem 1. Lastly, implication of
(e) delivers the complementary slackness condition (2.3). We have therefore proven the necessity
of the conditions in Theorem 1.

Sufficiency. Sufficiency is proven by generalizing Arrow’s Sufficiency Theorem to non-smooth
optimal control problems and specializing the theorem to the case in which the objective inte-
grand is a linear function of x. We adapt the argument of Arrow’s Sufficiency Theorem using
the approach of Seierstad and Sydsaeter (1987) but relaxing their continuity and smoothness
assumptions. The regularity of the optimal solution follows from arguments involving the nec-
essary conditions.

Let x be any admissible arc satisfying thus x ∈ AC(Θ,R) and x(θ) ≥ 0 for all θ ∈ Θ. Define

∆ =

∫ θ

θ

{(
s(θ, ẋ(θ))− x(θ)f(θ)

)
− (s(θ, ẋ(θ))− x(θ)f(θ))

}
dθ.

We will demonstrate that, under conditions (B1) and (B2) of Theorem 1, ∆ ≥ 0.

To this end, it is useful to define the Hamiltonian for program (P) with γ(θ) being the adjoint
equation which satisfies conditions(B1) and (B2):

H(θ, x, v) ≡ s(θ, v)− xf(θ)− (γ(θ)− F (θ))v.
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Note that γ(θ) is defined for θ ∈ (θ, θ] and thus H(·) inherits the same domain. Nonetheless,
because µ is not part of expression of ∆ and F is absolutely continuous, we can ignore the point
θ in the integral and conclude that

∆ =

∫
(θ,θ]

(
H(θ, x(θ), ẋ(θ))−H(θ, x(θ), ẋ(θ))

)
dθ +

∫ θ

θ
(F (θ)− γ(θ))

(
ẋ(θ)−ẋ(θ)

)
dθ.

Define the optimized Hamiltonian as

Ĥ(θ, x) ≡ sup
v∈R

H(θ, x, v).

Because γ(θ)−F (θ) is bounded on (θ, θ] and s(θ, ·) is bounded from above by assumption, Ĥ(·)
must be finite. Condition (B2) implies that

Ĥ(θ, x(θ)) = H(θ, x(θ), ẋ(θ))

and for any admissible x ∈ AC(Θ;R+),

Ĥ(θ, x(θ)) ≥ H(θ, x(θ), ẋ(θ)).

Combining these facts, we obtain
H(θ, x(θ), ẋ(θ))−H(θ, x(θ), ẋ(θ)) ≥ Ĥ(θ, x(θ))− Ĥ(θ, x(θ))

= f(θ)(x(θ)− x(θ)).
The last statement relies fundamentally on the linearity of H(·) in x. Substituting into the
previous statement for ∆, we have

∆ ≥
∫

(θ,θ]
f(θ)(x(θ)− x(θ))dθ +

∫ θ

θ
(F (θ)− γ(θ))

(
ẋ(θ)− ẋ(θ)

)
dθ

=

∫ θ

θ

(
f(θ)(x(θ)−x(θ))+F (θ)

(
ẋ(θ)−ẋ(θ)

))
dθ−

∫
(θ,θ]

γ(θ)
(
ẋ(θ)−ẋ(θ)

)
dθ

=

∫ θ

θ

d

dθ
[F (θ)(x(θ)− x(θ))]dθ −

∫
(θ,θ]

γ(θ)
(
ẋ(θ)− ẋ(θ)

)
dθ

= (x(1)− x(1))−
∫

(θ,θ]
γ(θ)

(
ẋ(θ)− ẋ(θ)

)
dθ.

It follows that ∆ ≥ 0 if

(x(1)− x(1))−
∫

(θ,θ]
γ(θ)

(
ẋ(θ)− ẋ(θ)

)
dθ ≥ 0.

If γ were absolutely continuous, we would be able to integrate the second term by parts and reach
such a conclusion. Because γ has possibly countable upward discontinuities, we must proceed
more carefully. Note that γ is non-decreasing on (θ, θ] with at most a countable number of
upward jump discontinuities. γ is thus the sum of a countable number of singular jump functions
plus a measure dµ(θ) which is absolute continuous with respect to the Lebesgue measure and
thus write as dµ(θ) = ν(θ)dθ.36 Denote the set of jump discontinuities by {τ1, τ2, . . .}, a possibly
infinite but countable set. Let I be the index set of τi and let define the size of the jump
discontinuity at any τi by ∆µ(τi) = γ(τ+

i )− γ(τi) > 0. We thus write:

γ(θ) =
∑

τi≤θ,i∈I
∆µ(τi) +

∫ θ

θ
ν(θ)dθ.

36Royden (1988).
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Since γ is absolutely continuous outside the discontinuities, we can integrate by parts between
any pair of discontinuities. Also note that at any such upward jump point, τ , γ is left- and
right-continuous with γ(τ) < γ(τ+) and (by condition (B1)) we have x(τ+) = 0.

Between any two points τi and τi+1, we know∫
(τi,τi+1]

γ(θ)
(
u̇(θ)− v̇(θ)

)
dθ

= γ(θ)(x(θ)− x(θ))|τi+1

t=τ+i
−
∫

(τi,τi+1)
(x(θ)− x(θ))ν(θ)dθ

= γ(τi+1)(x(τi+1)− x(τi+1))− γ(τ+
i )(x(τi)− x(τi))

−
∫

(τi,τi+1)
(x(θ)− x(θ))ν(θ)dθ.

The second equality above uses the fact that x and x are continuous on Θ.

Then we may write∫
(θ,θ]

γ(θ)
(
ẋ(θ)− ẋ(θ)

)
dθ

=
∑
i∈I

γ(τi+1)(x(τi+1)− x(τi+1))− (∆µ(τi) + γ(τi))(x(τi)− x(τi))

−
∫

(τi,τi+1)
(x(θ)− x(θ))ν(θ)dθ

= (x(1)− x(1))−
∑
i∈I

∆µ(τi)(x(τi)− x(τi))−
∫

(τi,τi+1)
(x(θ)− x(θ))ν(θ)dθ.

By complementary slackness in condition (B1), we know x(θ)ν(θ) = 0 and at any jump point
τi we must have x(τi) = 0. Thus,∫

(θ,θ]
γ(θ)

(
ẋ(θ)− ẋ(θ)

)
dθ = (x(1)− x(1))−

∑
i∈I

∆µ(τi)x(τi)−
∫

(τi,τi+1)
x(θ)ν(θ)dθ.

We deduce

∆ ≥ (x(1)− x(1))−
∫

(θ,θ]
γ(θ)

(
ẋ(θ)− ẋ(θ)

)
dθ

=
∑
i∈I

∆µ(τi)x(τi) +

∫
(τi,τi+1)

x(θ)ν(θ)dθ.

Because x(θ) ≥ 0, µ is a non-negative measure, and jump discontinuities ∆µ(τi) are positive, we
conclude that ∆ ≥ 0 as claimed. We have proven that conditions (B1) and (B2) are sufficient
for a solution.

Proof of Proposition 1: Smoothness of the Solution x. We add the hypothesis that

V(θ, σ) ≡ arg max
v∈R

s(θ, v) + (F (θ)− σ)v

is single-valued and continuous for (θ, σ) ∈ Θ × [0, 1]. It follows that V(θ, σ) is non-increasing
in σ and from condition (B2), that ẋ(θ) = v(θ, γ(θ)) a.e.

Suppose to the contrary that ẋ is discontinuous at some point τ ∈ Θ. Initially, suppose that
Condition (B2) is extended to hold for all θ ∈ Θ rather than for a.e. θ ∈ (θ, θ]; call this Condition
(B2’). Condition (B2’) and the additional hypothesis that V(θ, σ) is continuous in (θ, σ) jointly
imply that ẋ(θ) is discontinuous at τ only if γ is also discontinuous at τ . Any discontinuity
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in γ, however, must be an upward jump, γ(τ+) − γ(τ) > 0, implying that ẋ(θ) must jump
downwards. Complementary slackness (Condition (B1), however, imposes that x(τ) = 0, with
the implication that a downward discontinuity at τ would violate the state constraint u(θ) ≥ 0
in the neighborhood to the immediate right of τ . Hence, continuity must hold for all points
θ ∈ [θ, θ) under Condition (B2’). Furthermore, because γ is left continuous at t = 1, no jump
in ẋ(θ) is possible at this endpoint. We conclude that Condition (B2’) implies that ẋ(θ) is
continuous for all θ ∈ Θ. The weaker Condition (B2) allows ẋ(θ) to violate the maximization
condition on sets of measure zero, including at θ = θ. But such violations have no effect on the
solution x which is absolutely continuous. Thus, x is smooth as posited.

APPENDIX C: PROOFS FOR APPLICATIONS

Proofs of Propositions 2 and 3: First, we define θ̃, θ1, θ1 and θ3 such that

(C1) qm(θ̃) = q̂(θ̃)⇔ θ̃ = θ + ∆,

(C2) q̂(θ1) = 1 +
√

2k − γ1,

(C3) q̂(θ2) = 1 +

√
2k

2
− γ1,

(C4) q̂(θ3) = 1 +
√

2k − 2γ1,

where

(C5) γ1 =
√
k.

Observe that, for k small enough, θ̃ < θ1 < θ when Condition (3.9) is satisfied. It is also
immediate to check that θ1 < θ2 < θ3 always holds. Moreover, for k = 0, we have

(C6) θ1 = θ2 = θ3

so that, θ3 < θ also holds for k small enough and Condition (3.9) is satisfied.

Starting from the expression of s(θ, v), we now compute

(C7) co(s)(θ, v) =
(S − θ)(q̂(θ)− v)− 1

2(q̂(θ)− v)2 if v ≥ v2(θ),

(S − θ)(q̂(θ)− v1(θ))− 1
2(q̂(θ)− v1(θ))2 − k − (∆ + v1(θ))(v − v1(θ)) if v ∈ [v1(θ), v2(θ)],

(S − θ)(q̂(θ)− v)− 1
2(q̂(θ)− v)2 − k if v < v1(θ)

where v1(θ) = q̂(θ)− 1−
√

2k and v2(θ) = q̂(θ)− 1.

From there, we obtain the expression of the sub-differential

∂vco(s)(θ, v) =


−∆− v if v ≤ v1(θ) and v ≥ v2(θ),

−∆− v1(θ) if v ∈ [v1(θ), v2(θ)],

[−∆− v2(θ),−∆− v1(θ)] if v = v2(θ).
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We now check that the pair (u̇ = q̂ − q, γ) where q is defined in (3.10) and γ in (3.11)
satisfies the necessary and sufficient conditions for optimality of Theorem 1. The corresponding
conjecture is that (2.1) is binding on [θ̃, θ1]∪[θ3, θ] and slack elsewhere. The new adjoint function
γ is thus similar to γ0 on [θ, θ1) but it might also have an upward jump at the point θ1. This
jump is followed by a plateau.

Inserting this conjecture into (3.8) and using (C7) yields the following conditions.

• If θ ∈ [θ, θ̃), (2.1) slack,

(C8) γ(θ) = 0

and thus

(C9) −θ + θ = ∂vco(s)(θ, u̇(θ)) = −∆− u̇(θ)⇔ q(θ) = qm(θ).

For ∂vco(s)(θ, u̇(θ)) to be equal at −∆− u̇(θ), a sufficient condition is that u̇(θ) ≤ v1(θ)
or

(C10) −θ + θ + ∆ ≥ −v1(θ) = −Ŝ + θ + 1 +
√

2k ⇔ qm(θ) ≥ 1 +
√

2k.

Observe that θ ≤ θ̃ means qm(θ) ≥ q̂(θ) and thus (C10) holds when θ̃ ≤ θ1.

• If θ ∈ [θ̃, θ1], (2.1) is binding and, by differentiating, we get u̇(θ) = 0 on (θ̃, θ1). Take now

(C11) γ(θ) = θ − θ̃

which is positive and non-decreasing. Inserting into (3.8), we obtain

0 ∈ ∂vco(s)(θ, 0).

If co(s)(θ, 0) = −∆− u̇(θ), this condition becomes

(C12) q(θ) = q̂(θ).

A sufficient condition for writing ∂vco(s)(θ, u̇(θ)) = −∆− u̇(θ) as above is that

u̇(θ) = 0 ≤ v1(θ)⇔ q̂(θ) ≥ 1 +
√

2k

which means θ ≤ θ1. Because (2.1) is binding at θ1, we allow for some positive charge
there and we denote

γ(θ1) = θ1 − θ̃ + γ1.

• If θ ∈ (θ1, θ3), (2.1) is slack and

(C13) γ(θ) = θ1 − θ̃ + γ1

on this interval. Inserting into (3.8), we obtain:

(C14) θ1 − θ̃ + γ1 − θ + θ ∈ ∂vco(s)(θ, u̇(θ)).

We now consider two sub-cases.
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– For θ ∈ (θ1, θ2], we have ∂vco(s)(θ, u̇(θ)) ∈ [−∆− v2(θ),−∆− v1(θ)] which means

(C15) u̇(θ) = v2(θ)⇔ q(θ) = 1.

Condition (C14) becomes

θ1 − θ̃+ γ1 − θ+ θ ∈ [−∆− v2(θ),−∆− v1(θ)]⇔ θ− θ1 − γ1 ∈ [v1(θ), v2(θ)]

or θ ∈ [θ1, θ2], which holds for this sub-case.

– For θ ∈ (θ2, θ3], we have ∂vco(s)(θ, u̇(θ)) = −∆− u̇(θ). Inserting into (C14) yields

(C16) θ1 − θ̃ + γ1 − θ + θ = −∆− u̇(θ)⇔ q(θ) = qm(θ) + θ1 − θ̃ + γ1.

A sufficient condition for writing ∂vco(s)(θ, u̇(θ)) = −∆ − u̇(θ) as above is that
u̇(θ) ≥ v2(θ) which amounts to

θ1 − θ ≤ −v2(θ)

or θ ≥ θ2 which holds for this sub-case.

• If θ ∈ [θ3, θ], (2.1) is binding and, by differentiating, we get u̇(θ) = 0 on (θ3, θ). From
(3.8), we obtain:

γ(θ)− θ + θ = ∂vco(s)(θ, 0) = −∆.

Thus, on [θ3, θ], we have:

(C17) γ(θ) = θ − θ.

The parameter γ1 is chosen so that u(θ1) = u(θ3) = 0. This condition writes also as

0 =

∫ θ3

θ1

u̇(θ)dθ =

∫ θ3

θ1

(q̂(θ)− q(θ))dθ = 0.

Integrating by parts, we get

0 =

∫ θ3

θ1

( ˙̂q(θ)− q̇(θ))(θ − θ1)dθ = 0.

We rewrite this condition as

0 =

∫ θ2

θ1

−(θ − θ1)dθ +

∫ θ3

θ2

(θ − θ1)dθ

or

2(θ2 − θ1)2 = (θ3 − θ1)2.

Geometrically, this condition just says that the algebraic area between the curves q̂ and
q is zero over [θ1, θ3]. Using the definitions (C2), (C3), and (C4) yields

γ2
1 = k

or (C5).
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Summarizing our previous findings in (C9), (C12), (C15) and (C16) yields the expression of
q in (3.10). On the other hand, (C8), (C11) and (C17) yields the expression of γ (3.11).

Observe that Propositon 2 immediately follows from the general case when observing that
(C6) holds when k = 0.

Q.E.D.

Proof of Proposition 4: Standard arguments (see footnote 2) establish that U(θ) so de-
fined is absolutely continuous and thus a.e. differentiable with

(C18) U̇(θ) =


−q(θ)− k if q(θ) < q̂(θ),

−q̂(θ)− k if q(θ) ∈ (q̂(θ), q̂(θ) + k),

−q(θ) if q(θ) > q̂(θ) + k.

37

From this and the fact that
˙̂
U(θ) = −k, we get (3.14).

We can express s̃(θ, q) as

s̃(θ, q) =


(S − θ − k)q − q2

2 − cq if q ≤ q̂(θ),
(q̂(θ)+k)2

2 + ∆q −
(

(S − θ)k − k2

2 − pk
)

if q ∈ [q̂(θ), q̂(θ) + k],

(S − θ − c)q − q2

2 −
(

(S − θ)k − k2

2 − pk
)

if q ≥ q̂(θ) + k.

Observing that q̂(θ) + k = S − θ − p and simplifying yields

s̃(θ, q) =


(q̂(θ) + ∆)q − q2

2 if q ≤ q̂(θ),
q̂(θ)2

2 + ∆q if q ∈ [q̂(θ), q̂(θ) + k],

(S − θ − c)q − q2

2 −
(

(S − θ − p)k − k2

2

)
if q ≥ q̂(θ) + k.

Expressing q(θ) in terms of u̇(θ) over the different intervals yields

(C19) q(θ)


= −u̇(θ) if u̇(θ) ≥ −q̂(θ),
∈ [q̂(θ), q̂(θ) + k] if u̇(θ) = −q̂(θ),
−u̇(θ) + k if u̇(θ) ≤ −q̂(θ).

Inserting these expressions of q(θ) into the expression of s(θ, v) yields (3.15).

From there, we now compute

co(s)(θ, v) =
(−q̂(θ)−∆)v − v2

2 if v ≥ v2(θ),

−(
√

2∆k + ∆)(v − v2(θ)) + (−q̂(θ)−∆)v2(θ)− v2(θ)2

2 if v ∈ [−q̂(θ), v2(θ)],

(−q̂(θ)−∆)v − v2

2 + ∆k if v < −q̂(θ)

where v2(θ) =
√

2∆k − q̂(θ).

This yields the following expression of the sub-differential for co(s)(θ, v):

∂vco(s)(θ, v) =


−q̂(θ)−∆− v if v ≥ v2(θ),

−
√

2∆k −∆ if v ∈ (−q̂(θ), v2(θ)],

[−
√

2∆k −∆,−∆] if v = −q̂(θ),
−q̂(θ)−∆− v if v < −q̂(θ).
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With a uniform distribution, the optimality condition (2.5) becomes

γ(θ)− θ + θ ∈ ∂vco(s)(θ, u̇(θ))

or

(C20) γ(θ)− θ + θ


= −q̂(θ)−∆− u̇(θ) if u̇(θ) ≥ v2(θ),

= −
√

2∆k −∆ if u̇(θ) ∈ [−q̂(θ), v2(θ)],

∈ [−
√

2∆k −∆,−∆] if u̇(θ) = −q̂(θ),
= −q̂(θ)−∆− u̇(θ) if u̇(θ) < −q̂(θ).

We conjecture a solution (u(θ), γ(θ)) such that (2.1) binds at θ only and thus µ({θ}) > 0
with γ(θ) = 0 on [θ, θ). Thanks to the sufficiency part of our Theorem, we only check that this
solution satisfies the necessary conditions for optimality.

• On the interval [θ, θ̃), this conjecture implies γ(θ) = 0. Inserting into (C20) yields

−θ + θ = ∂vco(s)(θ, u̇(θ)) = −q̂(θ)−∆− u̇(θ).

Because θ ≤ θ̃ = θ + ∆, we thus have

u̇(θ) = −q̂(θ) + θ − θ̃ < −q̂(θ).

From (C19), we deduce that

−q(θ) + k = u̇(θ) = −(S − θ − p− k) + θ − θ̃

and thus

q(θ) = S − 2θ + θ − c = qm(θ).

• On the interval [θ̃, θ̃0], we have

u̇(θ) = −q̂(θ).

Indeed, imposing our conjecture γ(θ) = 0 on (C20) yields

−θ + θ ∈ ∂vco(s)(θ,−q̂(θ)) = [−
√

2∆k −∆,−∆]⇔ θ ∈ [θ̃, θ̃0].

From (C19), we deduce that

q(θ) ∈ [S − θ − p− k, S − θ − p] = [q̂(θ), q̂(θ) + k].

• On the interval [θ̃0, θ), our conjecture is γ(θ) = 0. Inserting into (C20) yields

−θ + θ = ∂vco(s)(θ, u̇(θ)) = −q̂(θ)− u̇(θ)−∆.

Because θ ≥ θ̃0 ≥ θ̃, we have

u̇(θ) = −q̂(θ) + θ − θ̃ > −q̂(θ) + θ − θ̃0 ≥ −q̂(θ).

From (C19), we deduce that

−q(θ) = u̇(θ) = −(S − θ − p− k) + θ − θ̃

and thus

q(θ) = S − 2θ + θ − c− k = qm(θ)− k.



PARTICIPATION CONSTRAINTS IN DISCONTINUOUS ADVERSE SELECTION MODELS 39

Gathering all the above findings yields (3.16). The condition (3.13) ensures that the incumbent
firm still wants to serve the type with the lowest possible demand θ even when that type
consumes up to the fringe’s capacity. It implies that u(θ) is everywhere decreasing, consistently
with (2.1) being binding at θ only. Hence, µ({θ}) = 1 as required. Q.E.D.

Proof of Propositions 6 and 7: We first explain in some details why all equilibria are
fully characterized as solutions to self-generating problems.

The Aggregate Concurrence Principle. Putting aside the monotonicity condition for
q(θ) that is checked ex post on the solution, we may write principal Pi’s optimization problem
at a Nash equilibrium, taking as given the aggregate offers made by other principals T −i, as:

(Pi) : max
q(θ)∈Q,u(θ)

∫ θ

θ
[Si(q(θ))− θ(q(θ)−K) + T −i(q(θ))− u(θ)]dθ,

subject to (2.1) and (3.19).

Any equilibrium comprises an allocation (u(θ), q(θ)) which is a solution to all problems (Pi)
above. It is necessarily also a solution to the self-generating problem (P) which is simply obtained
by taking the sum of the corresponding maximands. In particular, T implements the allocation
(u(θ), q(θ)).

Reciprocally, consider a solution (u(θ), q(θ)) to the self-generating problem (P) which is im-
plemented by the aggregate schedule T . We show that there exists an array T = (T 1, ..., Tn) of
schedules whose aggregate is T and which are best responses to each other. Consider for all j,
the tariff T j defined as

(C21)
1

n

(
S(q)− T (q)

)
= Sj(q)− T j(q) ∀q ∈ Q.

First, those tariffs’ aggregate is clearly T . Second, inserting the expressions of T j (for j 6= i)
into the maximand of (Pi), Pi’s payoff of implementing an allocation (u(θ), q(θ)) at a best
response to T−i writes as

1

n

(
S(q)− θ(q(θ)−K) + (n− 1)(T (q(θ))− θ(q(θ)−K))− nu(θ)

)
.

Hence, (Pi) takes the same form as (P) up to a multiplicative factor 1
n . Pi’s objective has thus

been aligned with that of the surrogate principal. As a result, Pi chooses to implement the same
allocation (u(θ), q(θ)) as this surrogate principal. Given that (u(θ), q(θ)) is a solution to the
self-generating problem (P), (u(θ), q(θ)) is implemented by the aggregate T . It means that, Pi
could be as well off offering a tariff Ti such that the aggregate remains T . In other words, Pi’s
best-response correspondance contains a tariff Ti that satisfies

T i(q) = T (q)−
∑
j 6=i

T j(q)

Because T j for j 6= i is given by (C21), we have

T i(q) = T (q)−
∑
j 6=i

(
Sj(q)−

1

n

(
S(q)− T (q)

))
= Si(q)−

1

n

(
S(q)− T (q)

)
.

Thus (C21) holds also for Pi.
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Discontinuities at points where (2.1) does not bind. Consider the output profile as in
(3.33).38 By means of the incentive compatibility condition (3.19) and the binding participation
constraint (2.1) over the interval [θn1 , θ

n
2 ], we can thus reconstruct a rent profile u(θ) which is

identical to um(θ) over [θ4, θ] but (possibly) differs on [θ, θ4]. More precisely, we get:

(C22) u(θ) =

{
um(θ) if θ ∈ [θ4, θ],

um(θ3) +
∫ θ3
θ (q(θ̃)− k)dθ̃ if θ ∈ [θ, θ4].

From (3.33) and (3.19), um is linear on the segments [θ3, θ0] and [θ0, θ4] with respective slopes
k − qm(θ3) and k − qm(θ4). um has thus a kink at θ0 with a subdifferential there defined as
∂um(θ0) = [k − qm(θ3), k − qm(θ3)].

By means of a duality argument similar to (3.28), we can now also reconstruct an aggregate
tariff as

(C23) T (q) = min
θ∈Θ

u(θ) + θ(q − k).

Tedious computations show that T (q) satisfies (3.34). In particular, observe that θ0 is indifferent
between choosing qm(θ3) and qm(θ4) which means that (3.32) holds. Taken in tandem, (3.31)
and (3.32) show that the surrogate principal’s objective function is kept constant at type θ0

when moving from qm(θ3) to qm(θ4).

Let us check that we have defined an equilibrium. To do so, we must verify that u as defined
in (C22) is a solution to the self-generating problem where T satisfies (3.35). To this end, we
define the surplus function again as in (3.20) and check that the following necessary conditions
(2.4) and (2.5) hold.

We first compute

nco(s)(θ, v) ={
S(k − v) + θv + (n− 1)(T m(k − v) + θv) if k − v ∈ [qm(θ), qm(θ4)) ∪ (qm(θ3), qm(θ)],

S(k − v) + θv + (n− 1)(T m(qm(θ4)) + θ0(k − v − qm(θ4)) + θv) if k − v ∈ [qm(θ4), qm(θ3))

and thus

n∂vco(s)(θ, v) =


−S ′(k − v) + θ if k − v ∈ [qm(θ), qm(θ4)) ∪ (qm(θ3), qm(θ)],

−S ′(k − v) + θ + (n− 1)(θ − θ0) if k − v ∈ (qm(θ4), qm(θ3)),

[(n− 1)(θ4 − θ0)− n(θ4 − θ),−n(θ4 − θ)] if k − v = qm(θ4),

[−n(θ3 − θ), (n− 1)(θ3 − θ0)− n(θ3 − θ)] if k − v = qm(θ3).

First, we notice that the output profile (3.33) satisfies (2.4) as requested by the necessary
conditions.

Second, we rewrite (2.5) as

(C24) γm(θ)− (θ − θ) ∈ ∂co(s)(θ, u̇(θ)) a.e. θ ∈ Θ

where the adjoint function γm(θ) is the same as in the “smooth” scenario, i.e., satisfies (3.26).

For points where ∂vco(s)(θ, u̇(θ)) is single valued, the optimality condition (C24) is the same
as in the “smooth” scenario and qm(θ) is thus the solution on [θ, θ3] ∪ [θ4, θ].

38Notice that we may have alternatively selected qm(θ0) = qm(θ4) without changing any result.
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If θ ∈ [θ3, θ0], qm(θ3) = k − u̇(θ) is the solution since then γm(θ) = 0 and (C24), when
evaluated at such point, becomes

−n(θ − θ) ∈ [(n− 1)(θ3 − θ0)− n(θ3 − θ),−n(θ3 − θ)]⇔ θ ∈ [θ3, θ0]

which holds true.

A similar reasoning shows that, if θ ∈ (θ0, θ4], qm(θ4) = k − u̇(θ) is also the solution since

−n(θ − θ) ∈ [(n− 1)(θ4 − θ0)− n(θ4 − θ),−n(θ4 − θ)]⇔ θ ∈ [θ0, θ4].

This ends the proof.

Discontinuities at points where (2.1) does bind. The equilibrium output is again given
by (3.33). By means of the incentive compatibility condition (3.19) and the binding participation
constraint (2.1) at θ0, i.e.,

(C25) u(θ0) = 0,

we can thus reconstruct a rent profile u(θ) as

(C26) u(θ) =

∫ θ

θ0

(k − q(θ̃))dθ̃.

It is immediate to check that

(C27) u(θ) =


(k − qm(θ4))(θ − θ0) if θ ∈ [θ0, θ4],

um(θ)− um(θ4) + (k − qm(θ4))(θ4 − θ0) if θ ∈ [θ4, θ],

um(θ)− um(θ3) + (qm(θ3)− k)(θ0 − θ3) if θ ∈ [θ, θ3],

(qm(θ3)− k)(θ0 − θ) if θ ∈ [θ3, θ0].

Observing that θ3 < θn1 and θ4 > θn2 so that qm(θ3) > k > qm(θ4) as requested by our assumption

(3.37), implies um(θ3) =
∫ θ
θn1

(k − q(θ̃))dθ̃ and um(θ4) =
∫ θ
θn2

(k − q(θ̃))dθ̃.

It follows from (C27) that u is linear on [θ3, θ0] and [θ0, θ4] with respective slopes qm(θ3) and
qm(θ4). Since qm(θ3) > k > qm(θ4) by (3.37), u has thus a kink at θ0 with a subdifferential
there being defined as ∂u(θ0) = [k − qm(θ3), k − qm(θ4)]. Observe that 0 ∈ ∂u(θ0).

By means of a duality argument similar to (3.28), we can now also reconstruct an aggregate
tariff as

(C28) T (q) = min
θ∈Θ

u(θ) + θ(q − k).

Tedious computations show that T (q) satisfies (3.39). In particular, T (q) is linear over [qm(θ4), qm(θ3)].
We also observe that θ0 is indifferent over all q ∈ [qm(θ3), qm(θ4)]), making always zero profit.
In particular, (3.32) holds.

Let us check that we have defined an equilibrium. To do so, we must verify that u as defined
in (C27) is a solution to the self-generating problem where T satisfies (3.39). It means checking
that both (2.4) and (2.5) hold where the adjoint function γm(θ) is now given by (3.36).

We first compute

nco(s)(θ, v) =
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S(k − v) + θv + (n− 1)(T m(k − v)− T m(qm(θ3)) + θ0(qm(θ3)− k) + θv) if k − v ∈ (qm(θ3), qm(θ)],

S(k − v) + θv + (n− 1)(θ − θ0)v if k − v ∈ [qm(θ4), qm(θ3)],

S(k − v) + θv + (n− 1)(T m(q)− T m(qm(θ4)) + θ0(qm(θ4)− k) + θv) if k − v ∈ [qm(θ), qm(θ4)).

We thus obtain

n∂vco(s)(θ, v) =


−S ′(k − v) + θ if k − v ∈ [qm(θ), qm(θ4)) ∪ (qm(θ3), qm(θ)],

−S ′(k − v) + θ + (n− 1)(θ − θ0) if k − v ∈ (qm(θ4), qm(θ3))

[−S ′(qm(θ3)) + θ + (n− 1)(θ − θ0),−S ′(qm(θ3)) + θ] if k − v = qm(θ3),

[−S ′(qm(θ4)) + θ,−S ′(qm(θ4)) + θ + (n− 1)(θ − θ0)] if k − v = qm(θ4).

First, we again notice that the output profile (3.33) satisfies (2.4) as requested by the necessary
conditions.

Second, (2.5) can now be expressed as

(C29) γm(θ)− (θ − θ) ∈ ∂co(s)(θ, u̇(θ)) a.e. θ ∈ Θ

where the adjoint function γm(θ) is the same as in the “smooth” scenario, i.e., satisfies (3.26).

For θ such that k − u̇(θ) ∈ [qm(θ), qm(θ4)) ∪ (qm(θ3), qm(θ)], we have n∂vco(s)(θ, u̇(θ)) =
−S ′(k− u̇(θ)) + θ. The optimality condition (C29) is thus the same as in the “smooth” scenario
and qm(θ) = k − ˙um(θ) is the solution on [θ, θ3] ∪ [θ4, θ].

If θ ∈ [θ3, θ0), qm(θ3) = k − u̇(θ) is the solution since then γm(θ) = 0,

n∂vco(s)(θ, k − qm(θ3)) =
[
−S ′(qm(θ3)) + θ + (n− 1)(θ − θ0),−S ′(qm(θ3)) + θ

]
and (C29), when evaluated at such point, becomes

−n(θ − θ) ∈ [−θ3 − n(θ3 − θ) + θ + (n− 1)(θ − θ0)− θ3 − n(θ3 − θ) + θ]

which holds true when θ ∈ [θ3, θ0).

If θ ∈ (θ0, θ4], qm(θ4) = k − u̇(θ) is the solution since then γm(θ) = 1 and

n∂vco(s)(θ, k − qm(θ4)) =
[
−S ′(qm(θ4)) + θ,−S ′(qm(θ4)) + θ + (n− 1)(θ − θ0)

]
and (C29) when evaluated at such point becomes

−n(θ − θ) ∈ [−θ4 − n(θ4 − θ) + θ,−θ4 − n(θ4 − θ) + θ + (n− 1)(θ − θ0)]

which again holds true when θ ∈ (θ0, θ4]. This ends the proof.
Q.E.D.


