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Understanding Persistence

Morgan Kelly∗

Abstract

A large literature onpersistence finds thatmanymodern outcomes
strongly reflect characteristics of the same places in the distant past.
These studies typically combine unusually high t statistics with se-
vere spatial autocorrelation in residuals, suggesting that some find-
ings may be artefacts of underestimating standard errors or of fitting
spatial trends. For 25 studies in leading journals, I apply three basic
robustness checks against spatial trends and find that effect sizes typ-
ically fall by over half, leaving most well known results insignificant
at conventional levels.

Turning to standard errors, there is currently nodata-drivenmethod
for selecting an appropriate HAC spatial kernel. The paper proposes
a simple procedure where a kernel with a highly flexible functional
form is estimated bymaximum likelihood. After correction, standard
errors tend to rise substantially for cross sectional studies but to fall
for panels. Overall, credible identification strategies tend to perform
no better than naive regressions. Although the focus here is on histor-
ical persistence, the methods apply to regressions using spatial data
more generally.

∗University College Dublin and CEPR. Some of the approach developed here circu-
lated in a very preliminary form under the title “The Standard Errors of Peristence.”
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1 Introduction

Asubstantial literature ondeep origins or persistence finds thatmanymod-
ern outcomes such as income or social attitudes strongly reflect the char-
acteristics of the same places in the more or less distant past, often cen-
turies or millennia previously. Notable examples include how the mortal-
ity of European settlers determines the quality ofmodern institutions; how
countries that inherited common law enjoy better legal systems; how me-
dieval pogroms prefigured Nazi zealotry; how the slave trade still retards
modern African development; and how colonial boundaries drive poverty
in Peru and civil conflict in Africa.1

Naturally, such findings are open to various charges of p hacking, of
publication bias, of answers in search of questions, of scepticism about
monocausal and largely atheoretical explanations of complex phenomena,
about themechanisms driving persistence, and so on. However, all of these
objections crumble into irrelevance in the face of one blunt fact: the un-
usual explanatory power of these persistence variables. While a judicious
choice of variables or time periods might coax a t statistic past 1.96, there
would appear to be no way that the t statistics of three, four, or even larger
that appear routinely in this literature could be the result of massaging
one’s regressions, no matter how assiduously.2 Such persistence results
must instead reflect the workings of the deep structural characteristics that
underlie historical processes: the enduring legacies of the past.

However, persistence regressions are spatial regressions: the values to-
day of some variable in a given set of places are regressed on another vari-
able for the same places in the past. Now, Tobler’s (1970) First Law of
Geography states that “everything is related to everything else, but near

1These are, in turn, Acemoglu, Johnson and Robinson (2001), La Porta, de Silanes and
Shleifer (2008), Voigtländer and Voth (2012), Nunn (2008), Dell (2010), andMichalopou-
los and Papaioannou (2016).

2Of the 25 studies examined below, 14 report a t above 3.3 (p = 10−3) and six above
5.1 (p = 10−7).
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things are more related than distant things.” Spatial data, in other words,
tend to be highly autocorrelated and, moreover, to display strong direc-
tional trends. This creates two potential difficulties for estimation.

First, as with time series, fitting spatial trends can lead to spurious cor-
relation. Given that income is higher in Europe than in Africa, any variable
that is high in one and low in the other will appear to explain progress and
poverty. This is less of a truism than it sounds, as we will see in a moment.

Second, the fact that economic variables tend to show high spatial au-
tocorrelation means that places resemble not only their immediate neigh-
bours but also quite distant places as well. The result is that many obser-
vations do not add much to the precision of coefficient estimates, so that
standard errors may be considerably larger than might be expected given
the nominal sample size. If you fail to compensate for this it can be easy to
mistake spatial noise regressions for deep, world-historical relationships.

Starting with spatial trends, nobody wants their persistence regression
to be merely a roundabout way of saying something to the effect that rich
countries tend to be richer than poor countries. It is therefore routine to
add some extra variables such as continental dummies, distance from the
equator, or terrain ruggedness by way of controls. In this paper I systemat-
ically apply three geographical controls as robustness checks, each of them
very simple.

The first, for studies of countries around the globe, is to add a dummy
forWorld Bank regions. Whereas continents are fairly arbitrary groupings,
these regions are more informative: Sub-Saharan Africa, the Middle East
and North Africa, and so on. The impact of this basic control turns out to
be substantial.

For instance, adding World Bank dummies to Acemoglu et al’s (2001)
regression of security of property rights on European settler mortality re-
duces the effect size from -0.6 (t=-4.0) to -0.2 (t=-1.4). Regional dummies
have similar impacts on results such as Alesina, Giuliano andNunn (2013)
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on the impact of plough adoption on gender roles; Ashraf andGalor (2013)
on genetic diversity; and Acemoglu, Johnson and Robinson (2002) on re-
versals of fortune. Adding a dummy for rich countries similarly attenu-
ates the finding of La Porta et al. (1998) that common law countries enjoy
higher judicial efficiency; as does a dummy for Europe for the Nunn and
Qian (2011) claim that the potato drove population growth.

What makes these global studies fragile is the fact that their persistence
variables show such long range spatial correlation that they act for all pur-
poses as regional proxies: see Figure 1 below. This means that once ex-
plicit regional controls are added their apparent explanatory power falls
markedly.

The second control, for studies on smaller geographical scales, is to add
longitude and latitude to control for directional gradients. These are espe-
cially important for studies of historical frontiers: if a hillside runs north-
south, then any east-west linewill separate higher regions from lower ones.
Figure 2 below illustrates how a strong north-south gradient in living stan-
dards underlies the apparent role of the PeruvianMita (Dell, 2010) in driv-
ing modern consumption.

The final robustness check is to examine how the results change after
we omit regions with extreme values, that usually lie towards the edge
of the study area. For the impact of medieval pogroms on Nazi support
(Voigtländer and Voth, 2012) this control region is Hitler’s adopted home
of Bavaria; for the way the modern levels of trust mirror historical slave
exports (Nunn and Wantchekon, 2011) this is the “Slave Coast” along the
Bight of Benin; and looking at how colonial frontiers aggravate civil conflict
(Michalopoulos and Papaioannou, 2016) the control region is Somalia. In
all cases the decrease in effect sizes is considerable.

On top of the three basic robustness checks, in three instances I add a
potentially important omitted variable: malaria. Malaria is routinely in-
cluded in studies of Africa (such as Alsan, 2015 or Nunn andWantchekon,
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2011) but if it were omitted, as in Nunn (2008), then some variable that
happened to be high in malarial regions, such as historical slave exports,
might appear to explain modern income.

Moving on from robustness, the second potential difficulty with persis-
tence studies, and spatial regressions more generally, arises from under-
estimated standard errors. Because many observations closely resemble
each other, many contribute little to sharpening the precision of estimates,
so that useful sample sizes may be a good deal lower than they appear.

The usual way that researchers try to control for this is to cluster stan-
dard errors at some arbitrary level, typically one administrative level above
the original observations. However, for clustered standard errors to be con-
sistent requires that residuals be uncorrelated between clusters, which will
usually not be true for spatial data: think of US towns on opposite sides of
a state line. Ignoring this requirement leads to the distortions analyzed by
Barios et al. (2012) and illustrated in Section 3 below. Moreover, as Abadie
et al. (2017) demonstrate, standard error estimates vary substantially ac-
cording to the assumed level of clustering, and even in experimental set-
tings it can be hard to determine what this should be.

A theoretically well grounded approach to standard error estimation
is to apply a heteroskedasticity and autocorrelation consistent (HAC) pro-
cedure, pioneered for spatial regressions by Conley (1999). However, es-
timates can be very sensitive to the choice of kernel: we will see below
how small changes in the assumed cutoff distance in the rectangular ker-
nel recommended by Conley and Molinari (2007) return widely different
standard errors, and there is noway of knowingwhich, if any, is the correct
one. Combining this sensitivity with the fact there exists no automatic and
data-dependent procedure for selecting a kernel, means that spatial HAC
standard errors are currently not entirely operational.
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However, the estimation of reliable spatial kernels is the defining prob-
lem of spatial statistics.3 Its canonical question is how to interpolate be-
tween observations taken at a few locations—such as mineral concentra-
tions in test boreholes, or barometric readings at weather stations—to infer
the values at other locations, usually on a grid to allow maps to be drawn.
This exercise revolves around estimating a kernel that reliably describes
how correlation changes with distance. Because of its extremely adapt-
able function form—that ranges from exponential to Gaussian as a single
smoothness parameter increases—and the fact that is it guaranteed to be
positive definite, the workhorse kernel of spatial statistics is the Matérn
function (Gneiting and Gutthorp, 2010), and that is the form that will be
applied here.

The proper concern with any kernel is that its assumed functional form
is inappropriate for the data at hand leading to large biases in standard er-
rors. For spatial data a further complication is that economic space, which
is what we care about, may not coincide with geographical space, which
is what we get to observe, so that the relevant locations of places are ob-
served with error. Appendix A presents extensive Monte Carlo simula-
tions which find that the downward bias of standard errors estimated with
a Matérn kernel is moderate even when residuals are generated by very
different (Cauchy and spatial autoregressive) processes, and locations are
observed with substantial Gaussian errors.

The residuals from the regressions examined below share a characteris-
tic formwith correlation falling off at a slow exponential ratewith distance.
Comparing adjusted standard errors with those originally reported, con-
sistent patterns emerge.

When no correction was originally applied, adjusted standard errors
can be a large multiple of reported ones—up to three times in one case—

3This is analogous to theway that Andrews (1991)was able to draw on existing kernels
in developing HAC standard errors for time series.
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that is roughly proportional to the degree of spatial autocorrelation in the
residuals. For clustered standard errors the distortion varies considerably
by study. However, in papers where multiple observations are clustered at
locations that are close together—such as households in towns from Dell
(2010)—the standard errors originally reported are large underestimates.

For longitudinal data the corrected standard errors tend to bemarkedly
smaller than the clustered ones that are routinely calculated. The reason is
that fixed effects have already soaked up a good deal of the spatio-temporal
structure of residuals, with the result that clustering corrections tend to be
too aggressive at clearing out whatever correlation remains.

I address the two issues of robustness to spatial trends and standard
errors in turn by looking at their impact on a variety of published studies.
The analysis is limited to 25 papers, that appeared in theAmerican Economic
Review (10), Quarterly Journal of Economics (8), and Econometrica (2), with
one each taken from theAmerican Economic Journal: Macroeconomics, Journal
of Political Economy, Journal of Politics, Review of Economics and Statistics, and
Science. Studieswere chosen either because they arewell known or because
they struck me as interesting and well executed, and to allow a variety that
included longitudinal data, discrete dependent variables, difference in dif-
ferences, instrumental variables, and regression discontinuities.

The sole concerns of this paper are with spatial robustness checks and
the computation of reliable standard errors. It is not concerned with issues
of data construction. It is not concerned with the plausibility of the mech-
anism that is said to drive the claimed persistence, or possible alternative
explanations, or with the quality of the underlying historical scholarship
(although in most cases this is extremely high, especially in regional stud-
ies). It is not concerned with, and does not remark on, any econometric
issues in the original regressions that it replicates, although in a few cases
these are not trivial.
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Above all, and this cannot be emphasized too strongly, this paper is not
concernedwith somehow “validating” or “disproving” the findings of any
particular study. In fact, I am not interested in any individual result except
insofar as it helps to illustrate the broader issues of spatial trends and stan-
dard errors. The fact, moreover, that the single regression analysed here
performs poorly does not in any way imply that later regressions in the pa-
per, that often use different dependent variables, are equally problematic.
Rather than the negative goal of trying to disparage anyone’s research, the
purpose of this study is the positive one of marking out two potentially
serious difficulties in persistence regressions, and in spatial studies more
widely, and showing how they can be remedied straightforwardly.

In terms of existing literature, there appears to have been no previ-
ous attempt to systematically analyze the effects of spatial trends and un-
derestimated standard errors on persistence results. Persistence studies
themselves fall into two broad groups. On one side there is what can be
called the “Attitudes and Institutions” literature reviewed, for example, by
Cantoni and Yuchtman (2020) and Nunn (2020); and on the other there
are studies of “Genes and Geology” surveyed by Spolaore and Wacziarg
(2013). Although these two literatures tend not to cite one another, I fold
them together because of their common statistical structure.

For spatial standard errors, the literature is small, especially compared
with time series. The HAC approach was pioneered by Conley (1999). Al-
ternative approachs, based on partitioning the data into a small number of
large groups, have been developed by Bester, Conley and Hansen (2011)
and Ibragimov andMüller (2010) but we find below that estimates are sen-
sitive to the assumed clusters.4

4Inference based on specific autoregressive models of spatial dependence has been
developed by Kelejian and Prucha (1999, 2007), Lee (2004, 2007a, 2007b) and Kim and
Sun (2011). However, because space unlike time is symmetric, these face potential issues
of endogeneity.
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The rest of the paper is as follows. In the following Section I illustrate
how simple robustness checks cause the effect sizes of many well known
persistence studies to fall substantially. Section 3 presents simulations to
show underestimated standard errors can make regressions of one spatial
noise series on another appear highly significant, and Section 4 proposes
a simple kernel to deal with this. The impact of these standard error cor-
rections is discussed in Section 5. Appendix A provides simulation results
to examine how robust the estimated standard errors are to errors in the
assumed functional form of the kernel and the spatial location of the ob-
servations, Appendix B considers the performance of some existing stan-
dard error corrections, and details of the studies examined are given in
Appendix C.

2 Persistence Studies: Robustness Checks.

We beginwith some robustness checks of persistence results. These checks
fall into three groups: For global studies they are World Bank region. For
studies on a smaller scale, the controls are either direction (longitude and
latitude); or omitting areas that have extreme values of the dependent or
explanatory variable. The controls applied to each regression are summa-
rized in Table 1 and exact details are given in Appendix C. Typically, the
regression examined is the lead regression of the paper including the ad-
ditional robustness variables added by the authors.

For two global studies, robustness checks differ somewhat fromWorld
Bank regions. For LaPorta et al. (1998) a rich country (incomeover $10,000)
dummy is applied; and in Nunn and Qian (2011) a dummy for Europe af-
ter 1700 is used, to control for Europe’s rapid growth after this time and
the fact that it is also a good place for potatoes.
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Figure 1: The long range correlation of many persistence variables makes
them act as regional proxies which means that their impact diminishes
when explicit regional dummies are added. Each tile represents a country
and observations are shaded by decile with bright colours highest. Each
of the first three variables gives Europe or its offshoots high values and
Africa low ones, whereas with female employment Africa scores high and
the Middle East low.
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Table 1: Summary of studies and robustness checks.

Regression Robustness Checka

Global
Acemoglu, Colonial Origins. Property rights on settler mortality. WB Regions.
Acemoglu, Reversal. Income on AD 1500 popn. WB Regions. Malaria.
Alesina, Plough. Female employment on plough adoption. WB Regions.
Ashraf, Malthusian. AD 1500 popn on neolithic transition. WB Regions.
Ashraf, Out of Africa. Income on genetic diversity. WB Regions.
Comin, 1000 BC. Income on technology in 1000 BC. WB Regions.
Galor, Time Preference. Patience on soil fertility. WB Regions.
La Porta, Law Finance. Judicial efficiency on Common Law. Rich country dummy.
Nunn, Ruggedness. Income on ruggedness × Africa. Malaria.
Nunn, Potato. Population on potato suitability. Europe dummy.
Schulz, Kinship. Individualism on kinship intensity. WB Regions.
Spolaore, Diffusion. Income on genetic distance from US. WB Regions.

Europe and the Americas
Acharya, American Slavery Republican support on 1861 slavery .

a Blanks denote cases where the results were unaffected by the standard robustness checks applied to similar studies.

Continued on next page
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Table 1: Summary of studies and robustness checks. (cont.)

Regression Robustness Checka

Ambrus, Cholera. Rent on cholera pump boundary. Direction.
Becker, Anti-Semitism Pogroms on Protestantism Ex. Brandenburg.
Becker, Weber. Literacy on percentage Protestant. Direction.
Caicedo, Mission. Literacy on mission distance. .
Dell, Mita. Consumption on Mita boundary. Direction.
Voigtlaender, Persecution. Nazi vote on pogroms. Ex Bavaria.

Africa and India
Alsan, Tsetse. Slavery on tsetse suitability. .
Banerjee, Land Tenure. Crop yield on British tax. Ex North India.
Michalopoulos, Pre-Colonial. Light density on political complexity. Direction.
Michalopoulos, Scramble. Civil conflict on border split. Ex Somalia.
Nunn, Mistrust. Mistrust on slave exports. Ex Bight of Benin.
Nunn, Slavery. Income on slave exports. Malaria.

a Blanks denote cases where the results were unaffected by the standard robustness checks applied to similar studies.
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For studies on a smaller geographical scale, longitude and latitude are
applied to boundary studies like Dell (2010) and Ambrus, Field and Gon-
zalez (2020).5 Distance from the equator is used for Michalopoulos and
Papaioannou (2013) to capture the fact that northern and southern Africa
are the richest parts of the continent; and longitude is used for Becker and
Woessmann (2009) as a control for a strong eastward fall in German liter-
acy.

The third class of robustness check is to analyze the impact of removing
a control regionwith unusually high values. So, forNunn andWantchekon
(2011) who look at the impact of slave exports on interpersonal trust, the
three modern states that border on the Slave Coast of the Bight of Benin
are omitted; while for Voigtländer and Voth (2012) the control is six con-
stituencies in Hitler’s adopted home of Bavaria that supported him dispro-
portionately. Becker and Pascali (2019) look at the role of Protestantism in
driving Anti-Semitism after 1500. However, Brandenburg accounts for 5
per cent of pogroms in the sample, but one fifth in the sixteenth century,
and Hesse accounts for 7 per cent in total but one sixth in the seventeenth
century. The control is to examine the impact of removing these two re-
gions.

Given the importance of malaria, in three cases it is added as a control.
These are in Acemoglu, Johnson and Robinson (2002), Nunn and Puga
(2012) and, more importantly, for Nunn’s (2008) investigation of the con-
nection between historical slave exports and modern income which, un-
usually among studies of Africa, does not include it.

5One other notable boundary study, which examines how trust in institutions changes
across the frontier of the former Habsburg empire, is Becker et al. (2014). For the first
regression of Table 2 showing trust in courts, the coefficient of 0.14 (SE=0.07) reduces to
0.03 (SE=0.08) after including longitude and latitude: there is a steady downward gra-
dient heading east. However, because the study uses ordered logit regressions where
residuals are not well defined, the HAC corrections here are not applicable and the study
is not included in the Tables.

13



●

●
●

● ●
●

●●

●● ●

● ●
●

●● ●
●

●
●● ● ●● ● ●●●

●
●

●● ●●
●

●● ●
● ●● ●●

● ●
●●

● ●● ●
●● ● ●● ●

●

● ●
●

●
●●

●
●

● ● ●
●

●

5.0

5.5

6.0

6.5

7.0

14 15
Latitude

H
ou

se
ho

ld
 C

on
su

m
pt

io
n

Figure 2: The left panel maps median household consumption, looking
south, fromDell (2010)with dark areas indicating low consumption. Black
lines are the Mita frontiers. It can be seen that although consumption is
indeed lower beneath the southern frontier, given the strong north-south
gradient this will be also be true for any east-west line nearby. The U-
shaped pattern of consumption going north-south is shown in the right
panel where each dot gives a town’s median consumption, and blue ones
lie within the Mita. Given the latitude of a town, knowing whether it lay
within the frontier adds little information about its household consump-
tion.

The first column of Table 2 details the impact of the robustness checks.
For each study, successive rows give the coefficient of themain explanatory
variable before and after applying the check: three studies with identical
rows were those left unchanged by the robustness checks applied to simi-
lar studies. The changes in effect sizes are summarized in Figure 3 which
gives the value of the coefficient on the main explanatory variable after the
robustness check relative to its original value. The falls tend in most cases
to be considerable.
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Figure 3: Regression coefficients after applying robustness checks, relative
to their original values.
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Figure 4: Regressions of one spatial noise series on another can appear
highly significant if one fails to correct the standard error for the fact that
most observations contribute little to the precision of coefficient estimates.

3 Fitting Spatial Noise

Economic variables tend to show strong spatial autocorrelation: places not
only resemble their immediate neighbours but quite distant places as well.
This autocorrelationmeans thatmany observations do not addmuch to the
precision of coefficient estimates so that standard errors may be consider-
ably larger than might be expected given the nominal sample size. A naive
spatial regression that spuriously matches high points in one variable with
high (or low) points in another will often return what looks like a strong
relationship unless standard errors are corrected appropriately.

Figure 4 illustrates the problem. It takes two simulations of spatial
noise, each on a square with sides of length 100. Across the square towns
are scattered at random, represented by white dots. The spatial noise has
an empirically realistic pattern: correlation falls off exponentially and has
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and clustered standard errors.

17



largely disappeared after a distance of 20; and only one quarter of the vari-
ance of observations is due idiosyncratic noise. (In the notation of the next
Section κ = 0.5, θ = 10, ρ = 0.75). Light areas denote regions with high
values. Suppose now that we take two noise processes and evaluate them
at each town, and then regress one on the other. In the example here, this
leads to a regression with t of 3.7 and a nominal significance of p = 0.0003.
In fact the empirical significance level is 5 per cent (out of 1000 random
noise regressions, its p value was at the 5th percentile): the estimated t
statistic is twice its correct value. The inflated t statistic is the result of our
failure to adjust standard errors for the fact that only around one quarter
of observations in this case contribute anything useful to the precision of
the coefficient estimate.

This inflation of t values is shown systematically in Figure 5 where the
points are now based on the African ethnic groups used by Michalopou-
los and Papaioannou (2013) and US commuting zones from Chetty et al.
(2014), where the original coordinate axes have been changed tomake each
a 100×100 square. Noise follows the same exponential falloff as before, and
the correlation range varies between 1 to 20. Figure 5 shows the percent-
age of regressions of one noise series on another that are significant at 5
per cent, using either heteroskedasticity consistent (HC) standard errors
or clustered (by district and state respectively) ones. The t statistics are no-
ticeably inflated even for moderate ranges of spatial correlation, in a way
that differs by dataset. At a range of 10, nearly one third of African re-
gressions are significant using HC standard errors, and 40 per cent of US
ones.

As noted earlier, by clustering one is using a procedure to safeguard
against spatial correlation that should not be used in the presence of spatial
correlation. When standard errors are clustered, the proportion of signif-
icant regressions is roughly halved, but the inflation is still considerable.
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4 Spatial Kernel Estimation.

We have observations of data atN sites si and estimate the regression ysi =

βxsi + usi . This leads to the estimate β̂ =
(
X

′
X
)−1

X
′
y with variance

Var
(
β̂
)

=
(
X

′
X
)−1

X
′
ΩX

(
X

′
X
)−1

=
(

1
N
X

′
X
)−1

Φ
(

1
N
X

′
X
)−1 (1)

The spectral approach, pioneered in spatial regression by Conley (1999),
is to estimate Φ as a weighted sum of cross products

Φ̂ =
1

N

∑
si,sj

K (si, sj)xsiûsix
′

sj
ûsj (2)

where K (si, sj) is a weighting kernel that must be chosen.
It is useful to decompose the kernel into a systematic spatial component

and idiosyncratic noise

K (si, sj) = ρC (si, sj) + (1− ρ)1ij (3)

where the indicator 1ij = 1 when i = j and 0 otherwise, and 0 ≤ ρ ≤ 1.
The parameter ρ reflects the ratio of spatial signal to noise in the residuals,
and in the limit where spatial structure ρ goes to zero, we return in (2) to
standard HC covariance estimation.

What is required is a kernel C that accurately reflects the systematic
correlation structure of the residuals. Because of its adaptable functional
form, and the fact that it is guaranteed to be positive definite, the most
widely used kernel in spatial statistics is based on the Matérn function.
Correlation between sites si, sj at distance h apart is

M (h; θ, κ) =
21−κ

Γ (κ)

(
h

θ

)κ
Bκ

(
h

θ

)
(κ > 0, θ > 0) (4)
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Figure 6: The flexible form of the Matérn function (drawn with range
θ = 1) allows it to fit a wide variety of spatial kernels. For the studies
analysed here, correlation among residuals tends to fall off exponentially
with distance, corresponding to κ = 0.5.

where Γ is a gamma function and Bκ is a Bessel function of the second
kind (Gneiting and Gutthorp, 2010). The parameter θ is a range parameter
controlling how fast correlation decays with distance, and κ is a smooth-
ness parameter. For κ = 1

2
, correlation decays exponentially so M (h) =

exp (−h/θ), and as κ → ∞, M becomes Gaussian. The flexibility of the
Matérn function is illustrated in Figure 6 where range θ is set to 1 and
smoothness κ takes on values from 0.5 to 4.

We have then a weighting kernel giving the correlation between the
residuals at every location

K (si, sj) = ρM (h; θ, κ) + (1− ρ) I (5)
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whose three parameters θ, ρ and κ can be estimated by maximum likeli-
hood from the estimated residuals. K is then substituted into (2) to esti-
mate Φ.

Because the Matérn function is monotonic, a distance can be chosen
beyond which correlation is negligible and can be set to zero. This gives
us a compact support for K and, assuming that this cutoff distance is of
order o

(
L1/3

)
where L is the length of the study space, allows the kernel

to satisfy Conley’s (1999) sufficient conditions for the estimated standard
errors (1) to be consistent.

The approach extends to nonlinear models in the usual way: see, for in-
stance, Andrews (1991). Similarly for panels, if A is the correlation matrix
between residuals across different time periods, andK is the spatial corre-
lation each period, then the longitudinal kernel is the Kronecker product
of the two.

The proper concern about any such exercise is that the estimated stan-
dard errorswill be substantially biased if the spatial correlation of the resid-
uals differs from the assumed functional form, if the relevant economic
locations of the observations differ from their geographic ones, or if the
strength of correlation varies with direction. Appendix A presents Monte
Carlo simulations which indicate that even substantial departures from
these assumptions lead to standard error estimates that are biased down-
wards by under five per cent.

5 Persistence Studies: Adjusted Standard Errors.

The main results are presented in Table 2. For each study there are two
rows displaying results first for the original specification, and then after
the robustness checks detailed in Table 1. Each row first gives the regres-
sion coefficient for the main variable, alongside its original and adjusted
standard errors. The next two columns give the maximum likelihood es-
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timates of the spatial range and structure parameters for the regression
residuals.

A property of the Matérn function is that when two sites are separated
by a distance h =

√
8κ θ, the correlation between them is 0.14: this distance

is commonly called the effective range. What this means is that range θ and
smoothness κ cannot be reliably estimated together, because as one rises
the other tends to fall. Instead, a grid search is conducted, with parameters
θ and ρ estimated for each value of κ, and the parameters with the highest
likelihood are selected.

In the regressions here, as in most areas of spatial statistics, the maxi-
mum likelihood value of κ is low, usually 0.5—exponential correlation—
and increasing the value of κ simply led to compensating falls in θ and
almost identical standard errors. For instance, for Schulz et al. (2019) the
maximum likelihood value occurred at κ = 1, but using the exponential
correlation reported in the Table reduced the standard error from 0.179 to
0.173.

The final column reports the degree of spatial autocorrelation in neigh-
bouring residuals given by the Moran statistic, I = W

∑
i 6=j wijûiûj/

∑
i û

2
i

where wij are weights andW = N/
∑
i,j wij . Here we assigned a weight of

one to the 5 nearest neighbours, and zero otherwise: changing this number
did not alter the results materially. The statistic has an asymptotic normal
distribution and in most cases is markedly above 2.

It can be seen that, except in cases where theMoran statistic is low, most
regressions display a common spatial pattern where correlation among
residuals dies away at a slow exponential rate, and there is a strong spatial
structure ρ. In the second row, after the robustness checks have often re-
moved considerable spatial structure, the difference between the original
and adjusted standard errors is often lower, reflecting the smaller kernel
parameters and reduced Moran statistics.
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Figure 7: Standard errors estimated with exponential kernel relative to
original values, before robustness checks were carried out.
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Table 2 breaks down the studies into three groups depending on how
their standard errorswere originally estimated.6 ForHCcorrections, where
no account was taken of the possibility that the residuals might be autocor-
related, the rise in standard errors in the first row is often substantial, more
than doubling in several cases. The exceptions are cases where the spatial
autocorrelation in the residuals is small, reflected by low Moran statistics,
so the standard error is unchanged.

For clustered standard errors, in most cases the kernel correction leads
to a rise of about one third. There are two exceptions however where the
change is considerably larger: Dell (2010) andNunn andWantchekon (2011).
In both studies, individual households or survey respondents were clus-
tered by town or district, but most of these places tend to clump near each
other. In such cases where there were multiple observations in each loca-
tion, the spatial kernel parameters and Moran statistics (which are low for
both studies reflecting their unusual residual structure) were calculated
based on the average residual at each site: changing the values of range
and structure had a small effect on the standard error estimates.

6In some cases decimal places have been moved to give all coefficients a similar order
of magnitude.
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Table 2: Summary of regression results and spatial kernel parameters.

SEs Spatial Kernel

Coef Orig. HAC Range Struct. Moran

Heteroskedasticity Robust SEs

Acemoglu, Colonial Origins. -0.59 0.15 0.19 5240 0.19 2.19
-0.22 0.16 0.16 780 0.05 0.48

Acemoglu, Reversal. -0.78 0.23 0.27 2220 0.86 2.57
-0.26 0.21 0.23 860 1.00 1.34

Acharya, American Slavery. -2.77 1.04 1.04 420 0.13 2.29
-2.77 1.04 1.04 420 0.13 2.29

Alesina, Plough. -1.52 0.39 0.58 2200 0.72 6.98
-0.62 0.41 0.43 1290 0.57 2.54

Ashraf, Malthusian. 1.37 0.23 0.37 2630 1.00 5.03
0.78 0.25 0.43 3660 1.00 6.56

Ashraf, Out of Africa. 5.42 1.07 2.12 4540 0.82 13.12
1.63 0.70 1.09 2230 0.69 7.70

Becker, Weber. 0.11 0.01 0.03 190 0.85 18.19
0.06 0.01 0.02 140 0.94 18.83

Caicedo, Mission. 1.12 0.50 1.56 90 0.88 22.62
1.12 0.50 1.56 90 0.88 22.62

Galor, Time Preference. 9.84 2.88 2.99 320 0.43 1.48
4.01 2.81 2.81 10 0.00 1.58

La Porta, Law Finance. -1.38 0.44 0.44 930 0.64 0.87
-0.62 0.40 0.40 480 0.41 0.07

Nunn, Ruggedness. 3.28 1.25 1.35 1900 0.83 6.98
0.49 1.02 1.04 2440 0.61 7.19

Nunn, Slavery. -0.13 0.02 0.02 810 0.36 1.89
-0.05 0.03 0.03 150 0.74 0.03

Schulz, Kinship. -0.39 0.09 0.18 7670 0.73 8.29
-0.13 0.09 0.15 3450 0.63 4.47

Spolaore, Diffusion. -4.53 0.53 1.35 4090 0.89 8.29
-1.57 0.65 1.01 2670 0.81 5.32

Successive rows give results before and after robustness checks. Each row reports the
original and adjusted standard errors along with estimated kernel parameters—effective
range 2θ and spatial structure ρ—and Moran statistic.

Continued on next page
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Table 2: Summary of regression results. (cont.)

SEs Spatial Kernel

Coef Orig. HAC Range Struct. Moran

Clustered SEs
Alsan, Tsetse. 0.11 0.04 0.06 3460 1.00 11.34

0.11 0.04 0.06 3460 1.00 11.34
Ambrus, Cholera. -0.44 0.15 0.20 1 1.00 7.71

-0.22 0.17 0.20 1 1.00 6.77
Comin, 1000 BC. 1.60 0.46 0.86 7580 0.91 10.28

0.16 0.55 0.55 2310 0.89 6.58
Dell, Mita. -2.89 0.88 2.34 10 0.72 0.80

-0.83 1.15 1.42 10 0.10 -0.16
Michalopoulos, Pre-Colonial. 0.21 0.09 0.09 870 0.59 11.81

0.13 0.08 0.08 680 0.59 10.51
Michalopoulos, Scramble. 0.45 0.17 0.33 680 0.50 32.84

0.33 0.20 0.33 480 0.45 32.04
Nunn, Mistrust. -1.83 0.34 1.46 210 0.57 1.19

-0.53 0.36 1.94 390 0.40 1.88
Voigtlaender, Persecution. 1.44 0.57 0.81 250 0.55 12.45

0.67 0.47 0.65 420 0.53 12.32

Fixed Effects
Banerjee, Land Tenure. 1.48 0.70 0.29 240 0.91 7.60

0.26 0.73 0.41 400 0.66 5.09
Becker, Anti-Semitism. 0.50 0.16 0.14 80 0.11 4.53

0.24 0.18 0.15 80 0.09 3.57
Nunn, Potato. 4.11 1.05 0.44 4800 0.91 6.44

0.69 1.36 0.51 5360 0.91 6.11

Successive rows give results before and after robustness checks. Each row reports the
original and adjusted standard errors along with estimated kernel parameters—effective
range 2θ and spatial structure ρ—and Moran statistic.

For longitudinal studies, adjusted standard errors are considerably lower
than the clustered ones originally calculated. The reason is that fixed ef-
fects have already absorbed a good deal of the spatio-temporal structure of
the residuals so that clustering is an aggressive solution to a problem that
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has substantially dissipated. The spatial correlation parameters θ and ρ for
panels, as well as Moran statistics, were calculated as the mean of the val-
ues estimated for each period, and temporal autocorrelation was similarly
an average of the autocorrelation between residuals in each period. Once
again, large changes in the assigned kernel parameters values did not affect
standard errors materially.

The changes in t values after robustness checks and standard error ad-
justments are shown in Figure 8. It is increasingly appreciated that because
t statistics conflate size of effects with how precisely those effects were esti-
mated they are not a useful metric of the importance of a variable. A coef-
ficient is “significant” if it has a 95 per cent confidence interval of [0.1, 0.2]

but “insignificant” if the confidence interval is [−1, 5] even though the latter
effect is as likely to be above 4 as below 0. Nevertheless, given the impor-
tance that many of these studies seem to attach to significance levels it is
perhaps useful to see how robust they are.

6 Conclusions

This paper considered two potentially important issues that arise from the
fact that the data underlying the historical persistence literature usually
show strong spatial autocorrelation. The first was that explanatory vari-
ables may be proxying for spatial trends in the data; and the second was
that standard errors may be underestimated. For 25 persistence studies,
controlling for these two possibilities usually had a noticeable impact on
the estimated results, both on effect sizes and standard errors.

As for practical advice, it is straightforward to compute fairly reliable
standard errors. However, spatial data, which clump together in different
ways, are inherently messy and it is naive to look for estimates accurate to
four decimal places. In the light of the Monte Carlo results in Appendix A,
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it seems prudent to expect that confidence intervals are perhaps five to ten
per cent wider than calculated.

The risk of chasing spatial trends can be reduced by following the ro-
bustness checks applied above. Quadratics in longitude and latitude should
be added to regressions as amatter of routine. Areaswith particularly high
values of the explanatory or dependent variables should be highlighted
and the effect of removing them should be made explicit. Given their un-
usual fragility, global studies based on country level data should be under-
taken with considerable caution.

The simplest and most important step however is simply to graph your
data. It is always advisable to be skeptical of any claimed regression result
where a scatter plot of the main variables is not provided. But with spa-
tial data it is equally important to see simple coloured maps of the depen-
dent and explanatory variables alongwith residuals to understand quickly
whether a regression is fitting anythingmore profound than spatial trends.
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Appendix A Robustness of Standard Error Esti-
mates

In estimating spatial standard errors above we made three assumptions
about the structure of the spatial structure of the data being analysed: that
the spatial correlation of residuals decays as a Matérn function; that the
relevant economic distance between points corresponds to their observed,
geographical distance; and that the correlation between residuals was sta-
tionary and isotropic. This Appendix presents Monte Carlo simulations to
assess the degree of bias in standard error estimates that arises when these
assumptions are violated. All simulations are for 200 points scattered ran-
domly on a 100× 100 square.

A.1 Errors in the Assumed Kernel

To assess the bias in standard errors when the underlying residuals do not
follow the assumed Matérn function we analyze two cases where the the
spatial structure is extremely different. The first is where the true correla-
tion of the residuals follows a Cauchy (power law) so that instead of (4)
the actual kernel describing correlation between sites si, sj at distance h
apart is

C (si, sj; θ, α) =
(
1 + (h/θ)2

)−α
(α > 0, θ > 0) (6)

Compared with a Matérn, the falloff in correlation with distance is ex-
tremely slow as the parameter α falls.

The second case is where the residuals have a spatially autoregressive
(SAR) structure. Specifically, for a vector of residuals u

u = λWu+ ε (7)
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where ε are iid standard normal variables andW is aweightingmatrixwith
diagonal elements of zero.

To simulate in each case we generate a vector of residuals u and an ex-
planatory variable x that both obey the same Cauchy or SAR process, and
then a dependent variable y = x + u. The goal then is to see how far the
standard error for the regression of y on x estimated with a Matérn kernel
differs from the the correct value.

Both theCauchy and SARprocesses imply considerably greater smooth-
ness than the exponential falloff (κ = 0.5) that gave the best fit for the
persistence regressions examined above. Specifically, in all cases the max-
imum likelihood estimate occurred with a smoothness parameter κ = 4

(increasing κ further not increase the likelihoodmaterially) that is tending
towards a Gaussian falloff: see Figure 6 above.

Starting with the Cauchy case in Table A1, the Matérn standard error
is biased downwards, reflecting the considerably greater spatial structure
of Cauchy residuals. Nevertheless, for shorter ranges and/or lower spa-
tial structure its performance is not hugely in error, with a downward bias
of under 10 per cent even with a slow falloff of α = 0.5. The bias of het-
eroskadisticity robust standard errors, where no steps are taken to correct
for spatial correlation, is also included for comparison.

We can see the same behaviour in Table A2where the data follow a SAR
process. It is assumed that the weighting matrixW gives equal weights to
the five nearest neighbours of each point: increasing this to 10 had no ma-
terial effect on the results. The Matérn kernel again performs well so long
as the degree of spatial structure, this time controlled by λ, is not excessive.
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Table A.1: Bias in standard errors when a Matérn kernel is applied to residuals that have a Cauchy
correlation structure.

α = 1 α = 0.75 α = 0.25

Corr
Range

Struct-
ure Bias RMSE

95%
Cover

HC
Bias Bias RMSE

95%
Cover

HC
Bias Bias RMSE

95%
Cover

HC
Bias

5 0.25 -0.00 0.10 0.98 -0.03 -0.01 0.09 0.96 -0.04 -0.02 0.11 0.90 -0.07
0.50 -0.03 0.11 0.94 -0.13 -0.02 0.13 0.96 -0.18 -0.05 0.13 0.94 -0.23
0.75 -0.09 0.11 0.88 -0.26 -0.06 0.13 0.92 -0.30 -0.13 0.17 0.94 -0.39
1.00 -0.15 0.16 0.94 -0.38 -0.12 0.16 0.88 -0.43 -0.15 0.16 0.86 -0.48

10 0.25 -0.03 0.11 0.96 -0.10 -0.05 0.10 0.92 -0.11 -0.08 0.10 0.86 -0.12
0.50 -0.07 0.14 0.92 -0.28 -0.07 0.15 0.88 -0.30 -0.11 0.15 0.94 -0.33
0.75 -0.12 0.16 0.96 -0.44 -0.13 0.13 0.88 -0.48 -0.16 0.20 0.92 -0.53
1.00 -0.10 0.16 0.86 -0.57 -0.19 0.16 0.84 -0.61 -0.23 0.17 0.78 -0.64

15 0.25 -0.04 0.13 0.98 -0.13 -0.05 0.13 0.96 -0.17 -0.05 0.15 0.98 -0.15
0.50 -0.10 0.15 0.94 -0.38 -0.09 0.20 0.92 -0.40 -0.16 0.17 0.84 -0.40
0.75 -0.16 0.15 0.94 -0.55 -0.17 0.20 0.84 -0.55 -0.21 0.19 0.92 -0.59
1.00 -0.19 0.16 0.90 -0.67 -0.27 0.15 0.86 -0.71 -0.33 0.16 0.84 -0.74

Bias, Root MSE, and 95% CI coverage probabilities level when a Matérn kernel is applied to residuals with Cauchy correlation.
α controls the rate of falloff in correlation. HC bias denotes bias when robust SEs are used. 1000 Monte Carlo replications. 200
random points on 100× 100 grid. In all cases a Matérn smoothing parameter κ = 4 is applied.
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λ Bias RMSE Coverage HC Bias

0.1 -0.02 0.08 0.93 -0.01
0.3 -0.03 0.09 0.94 -0.05
0.5 -0.05 0.11 0.94 -0.19
0.7 -0.13 0.15 0.90 -0.43
0.9 -0.30 0.20 0.79 -0.72

Bias, Root MSE and 95% CI coverage probabilities, when a Matérn kernel is applied
to data with spatial autoregressive structure with coefficient λ. HC bias denotes bias
when robust SEs are used. 1000 Monte Carlo replications. 200 random points on
100× 100 grid. For all estimates a Matérn smoothing parameter κ = 4 is applied.

TableA.2: Bias in standard errorswhen aMatérn kernel is applied to resid-
uals that have a spatial autoregressive (SAR) structure.

The fairly robust behaviour of theMatérn kernel when applied to resid-
uals with extremely slow, and empirically unrealistic, falloff of correlation
indicates that it should be reliable in cases where the data have a more re-
alistic spatial structure. If, for example, the true kernel follows a power
exponential distribution (stable law) where C (si, sj; θ, γ) = exp

(
(h/θ)−γ

)
,

the bias of the Matérn kernel is minor and the results are not reported.

A.2 Errors in the Assumed Location of Observations.

As Conley (1999) and Conley and Molinari (2007) have emphasized, eco-
nomic distance does not always coincide with geographical distance. To
assess robustness we assume that each point is moved in a random direc-
tion by a distance that is normally distributedwithmean zero and standard
deviation τ . On average, then, each location is moved an average distance
of τ

√
2/π and we examine the what happens when this average equals 1,

2, or 5. For concreteness, for the United States which is 5,000 km across, a
distance of 2 implies that each town lies an average of 100 km away from
its position on the map.
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Table A3 reports simulations where points are an average distance of
1, 2 or 5 from their observed positions, and correlation is exponential. It
can be seen that overall the bias is small when the distance is 1 or 2, but
becomes substantial at 5when the spatial structure of residuals is above 0.5.
As well as bias, the Table gives the average range and structure calculated
from the observed points: structure is estimated fairly accurately but range
tends to be overestimated: this works to mitigate the downward bias of the
estimates.

A.3 Anisotropy

It has been assumed so far that data are isotropic: correlation between sites
depends only on the distance h between them, independently of direction.
We now consider cases where correlation is geometrically anisotropic: in-
stead of the isocorrelation contours about each point being circles they
are ellipses. Table A4 shows simulations of the bias caused by ignoring
anisotropy, displaying cases where the ratio of major to minor axis is 1.5
or 2, and the main axis of correlation is rotated by zero or 45 degrees. We
apply exponential correlation with a range of 10.

It can be seen from theTable that the bias induced byneglecting isotropy
is not substantial for a ratio of 1.5, and evenwhen the ratio rises to 2 and the
residual have strong spatial structure, the downward bias is in the region
of 3 per cent.
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Table A.3: Bias in standard errors when the true position of points is observed with Gaussian error.

Range =5 Range=10 Range=15

Location
Error

Struct-
ure Bias RMSE

Est.
Range

Est.
Struct Bias RMSE

Est.
Range

Est.
Struct Bias RMSE

Est.
Range

Est.
Struct

1 0.25 -0.00 0.01 5.58 0.36 -0.00 0.03 7.60 0.33 -0.00 0.02 16.80 0.32
0.50 -0.00 0.01 5.78 0.52 -0.02 0.04 8.40 0.51 0.00 0.02 17.06 0.51
0.75 -0.01 0.02 5.64 0.71 -0.03 0.05 8.63 0.73 0.01 0.05 16.16 0.74
1.00 -0.01 0.02 5.91 0.88 -0.04 0.04 9.35 0.93 -0.01 0.03 17.62 0.95

2 0.25 -0.00 0.01 6.01 0.32 -0.01 0.03 8.00 0.31 -0.00 0.02 17.94 0.32
0.50 -0.01 0.02 6.45 0.46 -0.03 0.05 8.81 0.47 -0.00 0.04 17.91 0.49
0.75 -0.02 0.03 6.65 0.60 -0.04 0.06 9.12 0.66 0.00 0.07 18.19 0.70
1.00 -0.04 0.03 6.91 0.75 -0.07 0.05 9.57 0.84 -0.02 0.05 20.16 0.90

5 0.25 -0.01 0.02 6.24 0.28 -0.02 0.03 8.27 0.25 -0.01 0.03 19.33 0.25
0.50 -0.04 0.03 7.75 0.31 -0.07 0.06 9.28 0.36 -0.04 0.06 21.38 0.40
0.75 -0.07 0.04 8.36 0.38 -0.12 0.06 9.66 0.48 -0.05 0.09 23.18 0.56
1.00 -0.11 0.04 8.64 0.47 -0.18 0.06 9.85 0.60 -0.10 0.08 24.91 0.72

Bias, RMSE, estimated structure and range when observations differ from their true location by Gaussian noise with an average distance
of 1, 2 and 5. Location error gives the average displacement of each point. 1000 Monte Carlo replications with exponential kernel. 200
random points on 100× 100 grid.
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Appendix B Alternative Standard Error Correc-
tions

We noted earlier that when data are spatially autocorrelated, standard er-
rors clustered at some arbitrary level will in general be inconsistent. How-
ever Bester, Conley and Hansen (2011) and Ibragimov and Müller (2010)
derive estimators that are consistent under mild assumptions by grouping
data into G large clusters. Intuitively, most observations lie in the inte-
rior of a cluster and will be uncorrelated with most observations in other
clusters. The Bester, Conley and Hansen (2011) approach is to estimate
familiar clustered standard errors, whereas Ibragimov and Müller (2010)
take averages of the regression t statistics estimated for each cluster.

To evaluate these estimators we will use data taken from two of the
studies analysed earlier. Real world observations usually clump together
geographically—most cities are on coasts or large rivers, for example—
which suggests that the small changes in G may cause large changes in
the estimates.

Table A5 gives results for two regressions analysed above: others be-
have similarly. Estimates are calculated for two to eight clusters where the
clusters are parallel strips running either north to south, or east to west. To
make the results easily interpretable given the low degrees of freedom, the
table takes the relevant p values and converts them into a normal variable
that has the same significance level.

Both clustering procedures return a wide spread of estimates. For in-
stance, if seven clusters are assumed, BCH will give a value of 2.2 or 1.6
depending on the direction chosen compared with 1.7 or 1.9 for IM; and
across all cluster sizes estimates range from 0.8 to 2.4.

Moving to the rectangular kernels suggested by Conley (2010), Table
A6 shows how standard errors for global studies vary as the assumed cut-
off distancemove from 500 to 3000km, where entries are reported as amul-
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Anisotropy

Ratio Angle Structure Bias RMSE Coverage

1.5 0 0.25 0.00 0.01 0.95
0.50 0.00 0.02 0.92
0.75 -0.00 0.02 0.90
1.00 -0.01 0.02 0.89

1.5 45 0.25 0.00 0.01 0.94
0.50 0.01 0.02 0.94
0.75 0.01 0.02 0.94
1.00 0.01 0.02 0.94

2.0 0 0.25 -0.00 0.01 0.95
0.50 -0.00 0.03 0.94
0.75 -0.01 0.03 0.92
1.00 -0.03 0.03 0.91

2.0 45 0.25 0.00 0.01 0.93
0.50 0.01 0.02 0.95
0.75 0.03 0.03 0.92
1.00 0.03 0.03 0.89

Bias, Root MSE and 95% CI coverage probabilities, when the residuals are geomet-
rically anisotropic with a ratio of major to minor axis of 1.5 or 2; and the major axis
running at 0 or 45 degrees to horizontal. The residuals have exponential correlation
with a range of 10. 1000 Monte Carlo replications. 200 random points on 100 × 100
grid.

Table A.4: Bias in standard errors when the residuals are anisotropic, ac-
cording to the ratio and direction of the anisotropy.

tiple of original estimates and tend to vary considerably as assumed cutoffs
change.

Appendix C Studies Examined.

Here we give details of the regressions we examined from the papers anal-
ysed above. We group them into three categories by their geographical
focus: global; Africa and India; and Europe and the Americas. Because
the original studies were conducted in Stata and we use R to take advan-
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Study 1 Study 2

Groups BCH IM BCH IM

2 0.99 1.22 1.28 1.34 1.36 3.40 1.35 3.33
3 2.01 2.27 2.40 0.82 2.11 2.36 2.10 1.86
4 1.73 2.04 1.83 1.56 1.92 2.75 1.73 1.43
5 2.33 1.71 1.47 1.32 2.28 2.81 1.97 1.58
6 1.96 1.67 1.26 1.66 2.52 3.10 2.36 1.77
7 2.17 1.55 1.71 1.91 2.89 3.48 2.87 2.03
8 2.19 1.93 1.44 1.58 2.95 3.75 3.21 1.71

Estimated t statistics for Alsan (2015) and Spolaore and Wacziarg (2009) regressions
in Table 2 above, estimated using Bester, Conley and Hansen (2011) and Ibragimov
and Müller (2010) clustering. Groups denotes the assumed number of clusters, and
for each estimate a value is given first for when the clusters are assumed to be parallel
strips running north to south, and then east to west.

Table A.5: Change in Bester, Conley and Hansen (2011) and Ibragimov
andMüller (2010) t statistics as the assumed number and shape of clusters
varies.

Cutoff (kilometres) 500 1000 1500 2000 2500 3000

Acemoglu, Colonial Origins. 1.1 1.5 2.0 2.2 2.3 2.5
Acemoglu, Reversal. 1.1 1.2 1.4 1.3 1.3 1.2

Alesian, Plough. 1.3 1.6 1.8 2.1 2.3 2.4
Ashraf, Malthusian. 1.0 1.4 1.7 1.9 2.1 2.1

Ashraf, Out of Africa. 1.2 1.7 2.2 2.5 2.7 2.9
Comin, 1000 BC. 1.2 1.5 1.8 2.0 2.1 2.3

Galor, Time Preference. 1.1 1.3 1.6 1.4 0.9 .
La Porta, Law Finance. 0.9 1.1 1.4 1.6 1.6 1.8

Schulz, Kinship. 1.2 1.8 2.1 2.4 2.5 2.5
Spolaore, Diffusion. 1.3 1.9 2.5 3.1 3.5 3.7

Conley standard errors computed with rectangular kernel with assumed cutoffs from
500 to 3000km for global studies. Each estimate is reported as a multiple of the origi-
nal, heteroskedastic consistent standard error. Blank entries are caseswhere estimated
variance was negative.

Table A.6: Change in Conley standard errors as the assumed cutoff dis-
tance varies.
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tage of its strong geostatistical capabilities, we have taken care to ensure
that we could exactly replicate the original results, notably their standard
errors.

C.1 Global

World Bank regions and share of population at risk of malaria are taken
from the online replication data accompanying Ashraf and Galor (2013).

Acemoglu, Johnson andRobinson (2001). TheColonialOrigins of Com-
parative Development: An Empirical Investigation

We replicate the Acemoglu, Johnson and Robinson (2001) regression of
average protection against expropriation risk on estimated settlermortality,
both in logs from Table 3. Robustness control is WB regions.

Acemoglu, Johnson and Robinson (2002). Reversal of Fortune

We replicate Column 1 of Table 3 in Acemoglu, Johnson and Robinson
(2002), regressing GDP per capita in 1995 on estimated urbanization in
1500. The additional variables added are WB regions and a dummy for
high malarial prevalence where the share of population at risk of malaria
exceeds 0.05.

Alesina, Giuliano and Nunn (2013). On the Origin of Gender Roles:
Women and the Plough.

We take Alesina et al’s (2013) Table 3, column 1 regression of women’s
labour force participation on plough adoption, with a variety of geograph-
ical and historical controls. WB regions and absolute latitude are added as
robustness checks and two substantial outliers—Iceland and the Solomon
Islands—are omitted.
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Ashraf and Galor (2011). Dynamics and Stagnation in the Malthusian
Epoch.

Here we analyse Table 2, column 5 where the log of population density
in the year 1500 is regressed on the number of years since the neolithic
and geographical controls. The robustness check involves a dummy for
countries below 10 degrees south, and one for Europe, Central and South
Asia.

Ashraf and Galor (2013). The “Out of Africa” Hypothesis, Human Ge-
netic Diversity, and Comparative Economic Development

We reproduce the first column of Table 5 where per capita GDP in 2000 is
regressed on a measure of genetic diversity based on migratory distance
from East Africa and adjusted to take account of settler ancestry. We ap-
ply robust standard errors in all regressions, rather than the bootstrapped
errors of the original study which were somewhat larger. Additional vari-
ables added are distance from the Equator as in the original study, and a
dummy for the country being in Sub-Saharan Africa or South Asia.

Comin, Easterly and Gong (2010). Was the Wealth of Nations Deter-
mined in 1000 BC?

I reproduce Table 8A, Column 1 regressing log incomeper capita in 2002 on
migration-adjusted technology level in 1000 BC. Robustness check is WB
Regions.

Galor and Özak (2016). The Agricultural Origins of Time Preference

This replicates column 2 of Table 1, regressing long term orientation on
crop yield, continent dummies, absolute latitude, mean elevation, terrain
roughness, distance to coast, landlocked and island dummies. The robust-
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ness check is to replace continents with WB regions, and to add dummies
for Australia, Finland, Japan, and Korea.

La Porta et al. (1998). Law and Finance

This replicates column 2 of Table 6, a regression of Efficiency of Judicial
System on a civil law dummy, controlling for GDP per capita. The robust-
ness check is add a rich country dummy for whether GDP per capita in
1998 was above $10,000.

Nunn and Puga (2012) Ruggedness: The Blessing of Bad Geography in
Africa

We analyse the final column of Table 1 where income is regressed on the
interaction between terrain ruggedness and a dummy for African countries
with geographical controls added. Malaria is added as a control.

Nunn and Qian (2011). The Potato’s Contribution to Population and
Urbanization

Here we replicate the regression in Table 4 Column 1 of Nunn and Qian
(2011) which regresses a country’s population from 1100 to 1900 on the
area of land suitable for potato cultivationmultiplied by a dummy for years
after 1700, the assigned start of potato cultivation. As a robustness check
Europe is interacted with a post 1700 dummy.

Schulz et al. (2019) The Church, Intensive Kinship, and Global Psycho-
logical Variation

This replicates the regression of individualism on kinship intensity from
the top line of Table 2. The robustness check is a dummy for Europe and
Central Asia, East Asia and Pacific, and North America.
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Spolaore and Wacziarg (2009). The Diffusion of Development

We examine the baseline regression of per capital income on a measure
of a country’s genetic distance from the United States in the first column
of Table 1. In doing this we use their updated measure of genetic differ-
ence, and GDP per capita for 2000: the regression results are more or less
unchanged from those reported for the original study although the sample
size is somewhat larger. The robustness check is a dummy for Sub-Saharan
Africa and South Asia, and for 41 degrees above the equator, the latitude
of Italy.

C.2 Africa and India

Alsan (2015). The Effect of the TseTse Fly on African Development

We consider the regression in Table 1 on how local suitability for tsetse
flies affects the presence of slavery, controlling for climate variables and
clustering by district. The results here were unchanged by the robustness
checks applied to other studies.

Banerjee and Iyer (2005). History, Institutions, and Economic Perfor-
mance: The Legacy of Colonial Land Tenure Systems in India

We take the regression in column 1 of Table 3 of log yield of 15 major crops
on the share of land controlled by landlords, alongside geographical con-
trols and how long the area was under British rule. The control region is
the most northerly 33 (out of 166) districts, above 27 degrees of latitude.

Michalopoulos and Papaioannou (2013). Pre-Colonial Ethnic Institu-
tions

Michalopoulos and Papaioannou (2013) examine the extent towhichmod-
ern regional development, measured by satellite images of night time lu-
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minosity, is affected by the degree of pre-colonial political centralization
which ranges from stateless societies at zero to large states at four. We
examine the baseline regression of night time luminosity on pre-colonial
political centralization in Column 1 of Table 2. As a robustness check, a
quadratic in absolute latitude is added.

Michalopoulos and Papaioannou (2016). The Long Term Effects of the
Scramble for Africa

We consider the negative binomial regression in Column 1 of Table 2which
regresses the number of all violent incidents on an indicator variable of
whether the homeland is split alongside political and geographical con-
trols. The control region here is Somalia.

Nunn (2008). The Long Term Effect of the Slave Trade

We consider a regression of GDP 2000 on intensity of slave exports, rela-
tive to a country’s area from Table 3, with log of coastline length relative
to country area, original colonial power, and log average oil per capita in-
cluded as controls. As in the paper’s original checks, North Africa and
small offshore islands are omitted. For robustness, a dummy is added for
where the share of population at risk of malaria exceeds 0.5 and also for
the heavy outlier of Democratic Republic of the Congo.

Nunn andWantchekon (2011). The Slave Trade and the Origins of Mis-
trust in Africa

Column 1 of Table 2 regresses individual’s trust of neigbours on slave ex-
ports relative to geographic area with controls for individual and district
factors and a country fixed effect. The control region is the three modern
states—Benin, Ghana, and Nigeria—that lie along the Slave Coast of the
Bight of Benin.
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C.3 Europe and the Americas

Acharya, Blackwell and Sen (2016) The Political Legacy of American
Slavery

We reproduce column 2 of Table 2 which is a regression of percentage
Democratic supporters on 1861 slavery, using suitability for cotton as an
instrument for slavery, adding state dummies and geographical controls.
Controls applied to similar studies had no impact on the regression results.

Ambrus, Field and Gonzalez (2020). Loss in the Time of Cholera: Long
Run Impact of a Disease Epidemic on the Urban Landscape

I reproduce the regression of 1936 rental prices on whether the area lay
within the catchment area of the Broad Street cholera pump using a wide
bandwidth (this had the highest explanatory power in the study) in col-
umn 4 of Table 3, including the full set of controls originally used. The
robustness check is longitude plus latitude and an interaction term.

Becker and Pascali (2019): Religion, Division of Labor and Conflict:
Anti-Semitism in German Regions over 600 Years

We analyse column 2 of Table 2 which is a panel regression, by century, of
expulsions or killings of Jews on the interaction between being Protestant
in 1546 and post-Reformation centuries, with controls for the presence of
Jews. The control is to remove Brandenburg and Hesse.

Becker and Woessmann (2009). Was Weber Wrong? A Human Capital
Theory of Protestant Economic History

We analyse column 2 of Table 2 where literacy across Prussian counties
in 1871 is regressed on the percentage of the population that is Protestant
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with a variety of demographic controls. Across most of Germany there
appears to be a weak relationship between religion and literacy, except in
the extreme east where literacy was low among all groups, but Catholics
especially. To deal with this, the control variable adds a regional dummy,
dividing Germany into four east west groups at 7, 12, and 16 degrees of
longitude.

Dell (2010). The Persistent Effects of Peru’s MiningMita

We examine the regression in column 1 of Table 2, which compares equiv-
alent household consumption in a hundred kilometre strip on either side
of theMita boundary with controls for distance to the boundary, elevation,
slope and household characteristics. As a robustness check, latitude and
latitude squared are added to control for the strong north-south trend in
consumption.

Valencia Caicedo (2019). The Mission: Human Capital Transmission,
Economic Persistence, and Culture in South America

We analyse column 2 of Table 2 which regresses modern literacy rates on
distance from a Jesuit mission, with geographic controls and state fixed
effects. None of the robustness checks affected the results materially.

Voigtländer and Voth (2012). Persecution Perpetuated: The Medieval
Origins of Anti-Semitic Violence in Nazi Germany.

Herewe examine the regression in column two of Table 4 ofNazi vote share
in 1928 on pogroms, with controls for city population, and the percentage
of Protestants and Jews. The locational control is to exclude 5 constituen-
cies in Bavaria and one in neighbouring Badenwhere vote share was above
20 per cent.
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