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Hedging macroeconomic and financial uncertainty and

volatility∗

Ian Dew-Becker, Stefano Giglio, and Bryan Kelly

June 11, 2020

Abstract

We study the pricing of shocks to uncertainty and volatility using a wide-ranging

set of options contracts covering a variety of different markets. If uncertainty shocks

are viewed as bad by investors, they should carry negative risk premia. Empirically,

however, uncertainty risk premia are positive in most markets. Instead, it is the realiza-

tion of large shocks to fundamentals that has historically carried a negative premium.

In other words, we find that the return premium for gamma is negative while that for

vega is positive. These results imply that it is jumps, for which exposure is measured

by gamma, not forward-looking uncertainty shocks, measured by vega, that drive in-

vestors’ marginal utility. In further support of the jump interpretation, the return

patterns are more extreme for deeper out of the money options.

1 Introduction

Background

It is well established that a wide range of measures of economic volatility and uncer-

tainty vary over time. Uncertainty about all features of the aggregate economy, including

productivity, the level of the stock market, inflation, interest rates, and energy prices, varies

substantially, and often as the direct result of policy choices. It is therefore important to

∗Dew-Becker: Northwestern University. Giglio: Yale University. Kelly: Yale University. We appreciate
helpful comments from Dmitry Muravyev, Federico Gavazzoni, Nina Boyarchenko, Vito Gala, Alex Hsu, Ivan
Shaliastovich, Emil Siriwardane, and seminar participants at Kellogg, CITE, Syracuse, Yale, the University
of Illinois, the Federal Reserve Board, UT Austin, LBS, LSE, Columbia, Queen Mary, FIRS, WFA, INSEAD,
SITE, the NBER, UIUC, the MFA, Temple, the AEA, UBC, the CBOE, the Federal Reserve Bank of Chicago,
and the Macro Finance Society.
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understand how uncertainty affects the economy, both to reveal the basic drivers of economic

fluctuations and also to guide policymakers.

There are numerous theories, both in macro and finance, that explore the relationship

between uncertainty and real activity. This literature highlights that causation runs in

both directions, so even the sign of the relationship between the two is ambiguous in many

cases.1 The empirical literature studying uncertainty in macroeconomics has focused almost

entirely on analyzing raw correlations or using vector autoregressions (VAR) with varying

identifying assumptions, and thus far it has not resolved the question of whether uncertainty

is contractionary in either the short- or long-run – i.e. whether uncertainty is typically good

or bad.

Parallel to the macro literature, there is a long-running literature in finance that studies

how uncertainty and volatility are priced in financial markets. That literature distinguishes

between the pricing of shocks to uncertainty about the future – i.e. shocks to conditional

variances or implied volatilities – and realized volatility, or the actual occurrence of jumps.

Constantinides, Jackwerth, and Savov (2013) and Cremers, Halling, and Weinbaum (2015),

for example, study the pricing of uncertainty and jump risk looking at option portfolios with

different vega (implied volatility) and gamma (realized volatility or jump) exposure.

Contribution and Methods

This paper takes a finance approach to evaluating the effects of uncertainty shocks,

building on the work of Constantinides, Jackwerth, and Savov (2013), Cremers, Halling, and

Weinbaum (2015), and Dew-Becker et al. (2017). Instead of studying a VAR with all of the

associated identification challenges, as in the macro literature, we use one of the key insights

of the finance literature, that financial markets provide a direct window on how investors

perceive shocks.2 The main contribution of this paper relative to past work is to use options

across a wide range of underlyings and maturities to measure the risk premia associated

with shocks to uncertainty and to realized volatility. Those premia can furthermore be used

to construct implied premia on shocks to major macro uncertainty indexes and hence shed

light on the question of how uncertainty shocks affect the real economy.

If investors are willing to accept negative average returns on portfolios that hedge uncer-

tainty shocks, as they would on an insurance contract, that implies that they view uncer-

1For example, see Schwert (1989), Caballero (1999), Bloom (2009), Schwert (2011), Pastor and Veronesi
(2009), Bachmann and Moscarini (2012), and a summary discussion in Bloom et al. (2017) about the
potentially expansionary effects of uncertainty shocks. In finance, see the finance literature on good and bad
uncertainty, e.g. Bekaert, Engstrom, and Ermolov (2015) and Segal, Shaliastovich, and Yaron (2015).

2To be clear, the analysis of risk premia does not identify structural shocks; it only reveals the correlation
of innovations in marginal utility with reduced-form innovations to uncertainty (since there is no structural
identification here, we will use the terms “shock” and “innovation” interchangeably).
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tainty as being bad in that it rises in high marginal utility states. On the other hand, if the

hedging portfolios have positive average returns, then investors view uncertainty as typically

rising in low marginal utility (good) states. So rather than running sophisticated regressions

of output on uncertainty, we follow the finance tradition of letting investors speak to the

question.

While there is a large literature that estimates the risk premia for uncertainty about the

S&P 500 based on the pricing of options,3 recent evidence shows that aggregate uncertainty

has multiple dimensions beyond the financial uncertainty captured by the S&P 500 (Lud-

vigson, Ma, and Ng (2015); Baker, Bloom, and Davis (2015)). This paper contributes to

the literature by estimating risk premia associated with uncertainty and realized volatility

(jumps) in 19 different markets covering a range of features of the economy, including finan-

cial conditions, inflation, and the prices of real assets. The broad range allows the analysis

to uncover consistent patterns in investors’ attitudes to different types of uncertainty. We

also use all the options together to construct hedging portfolios for aggregate uncertainty

measures developed in the literature – in Jurado, Ludvigson, and Ng (JLN; 2015) and the

economic policy uncertainty (EPU) index of Baker, Bloom, and Davis (2015). Fitting those

indexes actually requires using more than just the S&P 500 – the results show that to span

uncertainty about the real economy, it is important to have implied volatilities for real assets,

like energies and metals, underscoring the value of the breadth of our dataset.

In each of the 19 markets, we construct straddles and strangles at maturities of one to

five months, and measure two-week holding period returns. We show, both theoretically

and empirically, that the different maturities have different loadings on the underlying risks,

allowing estimation of risk premia using standard factor models. We examine risk premia

for two types of shocks – to uncertainty, and to realized volatility (jumps). An uncertainty

shock represents an increase in the dispersion of agents’ conditional distribution for future

outcomes, and an option’s exposure to uncertainty shocks is measured (approximately) by

its vega. The second shock is to the realization of large outcomes, i.e. exposure to realized

volatility, or gamma (formally, exposure to squared returns).

Vega and gamma – exposures to implied and realized volatility – have a formal link to

theoretical models. Whereas uncertainty in models is a forward-looking conditional variance,

realized volatility is a contemporaneous sample variance. That is, for some shock ε, with

vart (εt+1) = σ2
t , uncertainty is σ2

t , while volatility is ε2
t . Vega is literally the exposure of an

option to σ2
t , while gamma is exposure to ε2

t . The distinction between σ2
t and ε2

t is crucial

from a theoretical point of view: models in which forward-looking uncertainty matters for

3See Egloff, Leippold, and Wu (2010), Dew-Becker et al. (2017), Van Binsbergen and Koijen (2017),
Andries et al. (2015), and Ait-Sahalia, Karaman, and Mancini (2015).
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the economy have predictions about σ2
t but not about ε2

t .

To summarize, then, the basic method in the paper is to measure risk premia on implied

and realized volatility (jumps), or vega and gamma, using a typical factor pricing model on

a panel of option returns across maturities, strikes, and numerous different underlyings. The

estimated premia are then used to infer the relationship of marginal utility with uncertainty

and realized volatility, both for specific underlyings and also for prominent macro uncertainty

indexes.

Results

The main results focus on straddles because the options in the portfolio are initially at

the money and hence most liquid. The empirical analysis yields three key findings. First,

across 19 option markets, the risk premium for hedging uncertainty shocks – vega – is in the

majority of cases positive. For nonfinancial underlyings and the JLN macro and inflation

uncertainty indexes, the premia are statistically and economically significantly positive, with

Sharpe ratios near 0.5. The results imply that investors in these markets view periods of

high uncertainty about the real economy as being good on average. For the financial sector

(including the S&P 500) and the JLN financial uncertainty and EPU index, the premium

on uncertainty is not clearly distinguishable from zero.

The second empirical result runs in the opposite direction: consistently across both

the financial and real sectors of the economy, portfolios that hedge realized volatility, or

jumps, earn statistically and economically significantly negative returns. Investors on average

therefore view periods in which shocks to fundamentals themselves are large as being bad.

It is well known that both volatility and uncertainty are countercyclical, but their overall

correlation is not as high as one might expect – only about 65 percent on average across

markets – and the average correlation between their innovations is only 0.2. The results here

show that innovations in realized volatility identify the states of the world that investors

view as actually negative, whereas surprise increases in implied volatility – which is high in

other, mostly unrelated, states of the world – are not on average perceived as bad.

Our findings for realized volatility contribute to the growing literature studying skewness

risk in the economy: if shocks to the economy (i.e. aggregate consumption) are skewed

to the left, then large shocks tend to be bad.4 An explanation for the pricing of realized

volatility could then simply be that hedging realized volatility helps hedge downward jumps

and disasters in aggregate consumption. If it is truly jumps that drive pricing, then we would

expect that the negative returns on options would be larger for options that are farther out

4See Barro (2006), Bloom, Guvenen, and Salgado (2016), Seo and Wachter (2018a,b), Siriwardane (2015)
and Berger, Dew-Becker, and Giglio (2018). Dew-Becker, Tahbaz-Salehi, and Vedolin (2019) provide a
structural model for the source of aggregate skewness.
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of the money. To test the hypothesis that the pricing is compensation for jump risk, we

extend the baseline results to examine returns on strangles, which are like straddles, in

holding both a put and a call, but in which both options are out of the money at inception.

Relative to straddles, strangles only have positive payoffs for relatively large movements in

the underlying.

Our third result is that the gamma/jump premia for strangles are about twice as large

as those for straddles, formalizing the idea that it is jumps, rather than small (or diffusive)

movements in underlying prices that investors are averse to. As with the results for straddles,

the result that deeper out-of-the-money options have more negative returns is well known

for the S&P 500. Our results are novel for showing that the same result appears in a wide

range of markets, including those linked to the real economy.

Because the variance risk premium is robustly negative across many markets, jumps –

which drive surprises in realized volatility – tend to be robustly viewed as bad events by in-

vestors, regardless of where they occur. According to asset prices, what policymakers should

focus on, rather than uncertainty about the future (the possibility that something extreme

might happen), is the realization of extreme (typically negative) events. For investors, the

results imply that the mean-variance efficient portfolio among the assets we study is short

gamma – jump risk – and either neutral to or long vega (exposure to implied volatility), and

we show that large Sharpe ratios are available when buying vega and selling gamma across

many markets. In the paper, we also build a simple extension of the standard long-run risk

model of Bansal and Yaron (2004) that shows how our results can arise in equilibrium.

Relationship with past work

The paper is related to two main strands of literature. The first studies the relation-

ship between uncertainty and the macroeconomy. Numerous channels have been proposed

through which uncertainty about various aspects of the aggregate economy may have real

effects, but the models do not generate a uniform prediction that uncertainty shocks are

necessarily contractionary.5 Our results are more consistent with the expansionary forces

present in the models. There are also models with joint or reverse causation, such as Pastor

and Veronesi (2009) and Bachmann and Moscarini (2012).6 The related empirical literature

tries to measure whether uncertainty does in fact have contractionary effects, finding often

conflicting results.7

5See Basu and Bundick (2017), Bloom (2009), Bloom et al. (2017), Leduc and Liu (2015), Gourio (2013),
Gilchrist and Williams (2005) and Bloom et al. (2017).

6See also Decker, D’erasmo and Boedo (2016), Berger and Vavra (2013), Ilut, Kehrig and Schneider
(2015), Kozlowski, Veldkamp, and Venkateswaran (2016), Cesa-Bianchi, Pesaran, and Rebucci (2018) and
Diercks, Hsu, and Tamoni (2019).

7For example, Schwert (1989), Schwert (2011), Berger, Dew-Becker, and Giglio (2017), Bretscher, Hsu,
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This paper builds on that work from a finance perspective, by providing measures of

risk premia that indicate how investors perceive the effects of aggregate uncertainty shocks

across many markets. The finance perspective of this paper means that the methods and

data are very different from papers that have instead used a macroeconomic approach to the

question. For example, Berger, Dew-Becker, and Giglio (2018) estimate a structural vector

autoregression as is common in the macroeconomics literature to try and understand the

effect of uncertainty shocks on the economy. This paper – while trying to answer a similar

question – takes a financial economics approach, studying risk premia, and requiring none

of the VAR identifying assumptions.

As discussed above, Constantinides, Jackwerth, and Savov (2013) and Cremers, Halling,

and Weinbaum (2015) are important precedents in the finance literature for studying the

pricing of shocks to uncertainty and volatility. We build on Constantinides, Jackwerth, and

Savov (2013) in that we also examine factor risk premia estimated from option returns,

with the innovation that we look across a broader range of markets. Our analysis uses

methods similar to that paper and also to those of Cremers, Halling, and Weinbaum (2015),

in that we study both a factor model and replicating portfolios. We differ from Cremers,

Halling, and Weinbaum (2015) in that we use option returns to measure risk premia, rather

than projecting stock returns onto uncertainty and volatility factors. Because stock returns

are driven by so many different risk factors, options can be useful for helping to isolate

underlying risks relatively precisely. That difference can help explain differences between

the results obtained by us and Constantinides, Jackwerth, and Savov (2013) relative to

Cremers, Halling, and Weinbaum (2015).

The paper also draws on a literature in finance estimating the pricing of volatility (ε2)

risk. The past literature almost exclusively studies the S&P 500, and it in general studies

just the variance risk premium, which is the pricing of realized volatility (as measured by

the average gap between option-implied and realized volatility).8 In addition to studying a

much broader range of markets, our contribution is to also isolate the premium on implied

volatility.

The remainder of the paper is organized as follows. Section 2 describes the data and

and Tamoni (2019), Jurado, Ludvigson, and Ng (2015), Ludvigson, Ma, and Ng (2015), Baker, Bloom, and
Davis (2015), Bachmann and Bayer (2013), and Alexopoulos and Cohen (2009). For papers on different
types of uncertainty, see also Bretscher, Schmid, and Vedolin (2018), Elder and Serletis (2010), Darby et al.
(1999), Huizinga (1993) and Elder (2004).

8For example, see Ait-Sahalia, Karaman, and Mancini (2015), Bollerslev and Todorov (2011), Andersen,
Fusari, and Todorov (2015, 2017), Dew-Becker et al. (2016), Constantinides, Jackwerth, and Savov (2013),
Cremers, Halling, and Weinbaum(2015), and Farago and Tedongap (2018) for work on the S&P500. A few
papers have studied specific markets, like Bakshi, Kapadia, and Madan (2003), Mueller, Vedolin, and Yen
(2017), Prokopczuk et al. (2017), Trolle and Schwartz (2010).
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its basic characteristics. Our main results on the cost of hedging uncertainty and volatility

shocks are in section 3. We then provide a theoretical derivation of the risk exposures of

the options in section 4 and use it to construct replicating portfolios. Section 5 reports the

cost of hedging macroeconomic uncertainty and realized volatility, combining all 19 markets

together. Section 6 presents robustness results and section 7 concludes.

2 Measures of uncertainty and realized volatility

This section describes our main data sources and then examines various measures of uncer-

tainty and realized volatility.

2.1 Data

2.1.1 Options and futures

We obtain data on prices of financial and commodity futures and options from the end-of-day

database from the CME Group, which reports closing settlement prices, volume, and open

interest over the period 1983–2015. Each market includes both futures and options, with

the options written on the futures. The futures may be cash- or physically settled, while

the options settle into futures. As an example, a crude oil call option gives its holder the

right to buy a crude oil future at the strike price. The underlying crude oil future is itself

physically settled – if held to maturity, the buyer must take delivery of oil.9

To be included in the analysis, contracts are required to have least 15 years of data and

maturities for options extending to at least six months, which leaves 14 commodity and 5

financial underlyings. The final contracts included in the data set have 18 to 31 years of

data. A number of standard filters are applied to the data to reduce noise and eliminate

outliers. Those filters are described in appendix A.1.

We calculate implied volatility for all of the options using the Black–Scholes (1973)

model (technically, the Black (1976) model for the case of futures).10 Unless otherwise

specified, implied volatility is calculated at the five-month maturity. We take this value as

the benchmark measure of uncertainty in each market. In general, longer maturities are

naturally more tightly linked to long-lived economic decisions, like physical investments. We

9The underlying futures in general expire in the same month as the option. Crude oil options, for example,
currently expire three business days before the underlying future.

10The majority of the options that we study have American exercise, while the Black model technically
refers to European options. We examine IVs calculated assuming both exercise styles (we calculate American
IVs using a binomial tree) and obtain nearly identical results. Since there are no dividends on futures
contracts, early exercise is only rarely optimal for the options studied here.
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do not go past five months because there is less trade and liquidity at longer maturities,

making prices less reliable.

Implied volatilities extracted from options reflect market’s uncertainty about future re-

turns, but they also contain a risk premium, which can potentially vary over time. However,

even in the presence of that risk premium, implied volatilities appear to provide very good

summaries of the available information in the data for forecasting future volatility, driving out

other standard uncertainty measures from forecasting regressions. Appendix A.2 compares

implied volatilities to regression-based forecasts of future volatilities and shows that they are

all over 90 percent correlated (with an average correlation of 97 percent), indicating that

option-implied volatility is a good, if not perfect, proxy for true (physical) uncertainty. For

that reason, in what follows we refer to implied volatility and uncertainty interchangeably,

with the understanding that deviations due to time-varying risk premia are quantitatively

small at the monthly frequencies we focus on.11

2.2 The time series of implied volatility

Figure 1 plots option implied volatility for three major futures: the S&P 500, crude oil, and

US Treasury bonds. The implied volatilities clearly share common variation; for example, all

rise around 1991, 2001, and 2008. On the other hand, they also have substantial independent

variation. Their overall correlations (also reported in the figure) are only in the range 0.5–0.6.

Table 1 reports pairwise correlations of implied volatility across the 19 underlyings. The

largest correlations in implied volatility are among similar underlyings – crude and heating

oil, the agricultural products, gold and silver, and the British Pound and Swiss Franc.

Correlations outside those groups are notably smaller, in many cases close to zero. The

largest eigenvalue of the correlation matrix explains 46 percent of the total variation. The

remaining eigenvalues are much smaller, though – even the second largest only explains 16

percent of the total variation. Eight eigenvalues are required to explain 90 percent of the total

variation in the IVs, which is perhaps a reasonable estimate of the number of independent

components in the data.

The common variation in the implied volatilities is much larger than the common varia-

tion in the underlying futures returns. The largest principal component for the futures re-

turns explains less than half as much variation – 19 percent versus 46. In other words, while

the individual futures prices may be driven by idiosyncratic shocks, or their correlations with

each other might change over time, masking common variation, investor uncertainty about

11See also Bekaert, Hoerova, and Lo Duca (2013) for an analysis of the variation in risk premia in implied
volatilities.
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futures returns has a substantial degree of commonality across markets (similar to Herskovic

et al. (2016)), showing that we are not studying uncertainty that is purely idiosyncratic and

isolated to individual futures markets. The table below formalizes that result, reporting the

variation explained by the first eigenvalue for implied volatility, realized volatility (discussed

below), and the underlying futures returns, along with bootstrapped 95-percent confidence

bands.

Fraction of variation explained by largest eigenvalue

Futures

IV RV return

Largest Eigenvalue (% explained) 45.9% 28.1% 19.1%

95% Bootstrap CI
37.3% 23.7% 16.7%

49.5% 41.8% 21.2%

2.3 Relationship between implied volatility and macro uncertainty

indexes

Our ultimate goal is to understand the pricing of economic uncertainty. We therefore want

to check whether the implied volatilities in the futures markets we study are related to other

prominent measures of uncertainty. Figure 2 quantifies how well the 19 IVs can replicate

two well-known macro uncertainty indexes: the JLN index from Jurado, Ludvigson, and

Ng (2015) and the EPU index of Baker, Bloom, and Davis (2015) (see section 5 for a more

detailed description of the indexes). Figure 2 plots the time series of the JLN indexes and

EPU index against the fitted values from their projection onto the 19 implied volatilities. The

right-hand panels plot the pairwise correlations of the implied volatilities in the individual

markets with the fitted uncertainty. For financials, the correlation with S&P 500 implied

volatility is 97 percent. The next highest correlation is only 68 percent, for Treasury bonds.

So figure 2 shows that fitted financial uncertainty is very nearly equivalent to S&P 500

implied volatility.12

The second row plots fitted uncertainty for real variables. In this case, gold, copper,

crude oil, and heating oil are the most important contributors. The third row shows similar

results for the price component of JLN uncertainty. Uncertainty about the real economy and

12The strong fit the S&P 500 implied volatility is not simply due to the fact that S&P 500 returns are
included in the JLN construction. The results are similar when all variables involving the S&P 500 index
(returns, dividends, etc.) are dropped.
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inflation are therefore driven by similar factors, and those factors are notably distinct from

financial uncertainty, which shows why having a broad range of IVs, and looking at markets

beyond the S&P 500, is important.

The bottom panels plot results for the EPU index. The highest pairwise correlations are

with financial IVs, Treasuries, gold, the S&P 500, and currencies. That implies that the

EPU index measures a similar type of uncertainty as other financial uncertainty measures,

perhaps because news coverage often focuses on financial markets.13

3 The cost of hedging uncertainty and volatility

In this section we present the main results of the paper: we estimate the cost of hedging

shocks to volatility and uncertainty using option portfolios.

We compute the cost of hedging a shock as the negative of the average excess return

(risk premium) on the portfolio that hedges that shock. We report all risk premia in terms

of Sharpe ratios, which reveal the compensation for bearing a risk (or the cost of hedging

it) per unit of risk, and are therefore more easily comparable across markets. The option

returns are highly skewed, so an investor here would care about more than just the Sharpe

ratio; we use it simply as a device for holding effective leverage constant across markets. For

reference, the historical Sharpe ratio of US equities in our sample is 0.52.

We estimate risk premia for implied and realized volatility using a standard linear factor

model, and we use straddle returns of different maturities as test assets. Typical factor

models use a small number of aggregate factors. Here, though, we are interested in the

price of risk for shocks to all 19 types of uncertainty. We therefore estimate market-specific

factor models. This is similar to the common practice of pricing equities with equity-specific

factors, bonds with bond factors, currencies with currency factors, etc.14

The cost of hedging a risk has a simple but important economic interpretation: it mea-

sures the extent to which the risk is “bad” with respect to state prices or marginal utility.

Consider a factor X and an asset with returns RX that hedges it, in the sense that RX varies

one-for-one (and is perfectly correlated) with innovations to X. Then if M represents the

stochastic discount factor,

E

[
RX,t+1 −Rf

stdt (RX,t+1)

]
= −cov

(
Mt+1 − EtMt+1,

Xt+1 − EtXt+1

stdt (Xt+1)

)
Rf , (1)

13To account for possible overfitting due to the fact that we have 19 explanatory variables, we experimented
with lasso and variable selection based on information criteria. The results were highly similar in all cases.

14The analysis is similar to those of Jones (2006) and Constantinides, Jackwerth, and Savov (2013).
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where Rf is the gross risk-free rate, which we treat as constant for the sake of exposition,

Et is the expectation operator, and stdt is the standard deviation conditional on date-t

information. The equation says that the negative of the risk premium on a portfolio that

hedges the risk X measures the covariance of innovations in Xt+1 with state prices. More

generally, when the correlation between RX and innovations in X is less than 1, E [RX −Rf ]

measures the covariance of state prices with the part of innovations to X that is spanned by

RX . So if the premium E [RX −Rf ] is negative, times when RX (and hence X) rise are bad

times, in which state prices are high. The factor model and subsequent analysis will deliver

estimated Sharpe ratios for the various risk factors we study.

Finally, as we review in Appendix A.3, the risk premia estimated from linear factor

models correspond to the average excess returns of portfolios that isolate each risk (that is,

each portfolio has beta of 1 with respect to one risk factor, and 0 with respect to all other

factors). These portfolios are precisely those portfolios that allow investor to change risk

exposure to any factor and that factor only; we refer to them as factor-hedging portfolios.

3.1 Method

3.1.1 Factor model specification

For each market we estimate a time-series model of the form

ri,n,t = ai,n + βfi,n
fi,t

IVi,t−1

+ βf
2

i,n

1

2

(
fi,t

IVi,t−1

)2

+ β∆IV
i,n

∆IVi,t
IVi,t−1

+ εi,n,t, (2)

where fi,t is the futures return for underlying i and ∆IVi,t is the change in the five-month

at-the-money implied volatility for underlying i. ri,n,t is a return on each of the N test assets

(straddles and strangles, described in greater detail below).

The underlying futures return fi,t controls for any exposure of the test assets to the

underlying, though in general that loading will be small, given that we use as test assets

portfolios with payoffs that are symmetric in the value of the underlying. Much more im-

portant is the fact that straddles and strangles have nonlinear exposures to the futures

return. (fi,t/IVi,t−1)2 captures that nonlinearity. βf
2

i,n will be interpreted as the exposure

of the options to realized volatility.15 Finally, the third factor is the change in the at-the-

money implied volatility for the specific market at the five-month maturity, representing an

uncertainty shock in that market.16

15The results are similar when the second factor is the absolute value of the futures return or when it is
measured as the sum of squared daily returns over the return period.

16Since the IVs may be measured with error, we construct this factor by regressing available implied
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The three factors are scaled by lagged implied volatility for two reasons. First, this helps

control heteroskedasticity. Intuitively, the factors are measuring innovations in standard

deviation units, so that we are pricing based on how much the underlying moves relative to

what investors expected. The second reason will be demonstrated in the next section: it is

what the Black–Scholes model implies for the exposures of straddles and strangles. That is,

the option portfolios yield exposure to the scaled factors used here, rather than, for example,

the raw futures return (and raw futures return squared). So while the analysis in this section

does not rely on Black-Scholes, this scaling will be useful for interpreting the results.

We estimate a standard linear specification for the risk premia,

E [ri,n,t] = γfi β
f
i,nStd

(
fi,t

IVi,t−1

)
+γf

2

i β
f2

i,nStd

((
fi,t

IVi,t−1

)2
)

+γ∆IV
i β∆IV

i,n Std

(
∆IVi,t
IVi,t−1

)
+αi,n (3)

where αi,n is a fitting error, using standard two-step cross-sectional regressions. The γ

coefficients represent the risk premia that are earned by investments that provide direct

exposure to the factors. Due to the scaling by standard deviations, the γ’s are the Sharpe

ratios of the hedging portfolios for each factor constructed using the test assets.17

3.1.2 Test assets

Our main results are for two-week returns on straddles with maturities between one and

five months.18 A straddle is a portfolio holding a put and a call with the same maturity

and strike; we specifically study zero-delta straddles, with the strike set so that the Black–

Scholes delta of the portfolio is zero. The final payoff of a zero-delta straddle depends on

the absolute value of the return on the underlying, meaning that they have symmetrical

exposures to positive and negative returns,. For the remainder of the paper, we refer to

zero-delta straddles simply as straddles (that is, we only work with zero-delta straddles).

volatilities on maturity for each underlying and date and then taking the fitted value from that regression
at the five-month maturity.

17While f2i,t and ∆IVi,t are nontradable factors, fi,t itself is tradable, so we include it as a test asset,

yielding the additional restriction E [fi,t/IVi,t−1] = γfi Std(fi,t/IVi,t−1) (see Cochrane (2005)).
18Past work on option returns and volatility risk premia has examined returns at frequencies of anywhere

from a day (e.g. Andries et al. (2017)), to holding to maturity (Bakshi and Kapadia (2003)). The precision
of estimates of the riskiness of the straddles is, all else equal, expected to be higher with shorter windows.
On the other hand, shorter windows cause any measurement error in option prices to have larger effects.

Some of the existing literature, beginning with Bakshi and Kapadia (2003), examines delta-hedged returns.
Even with delta hedging, the higher-order risk exposures of the straddles change substantially as the price
of the underlying changes over time.

Another alternative is to examine returns on synthetic variance swaps. Synthetic variance swap prices are
constructed using the full range of strikes, so they require much more data than straddles. The markets we
study do not all have liquid options at extreme strikes and multiple maturities, so we focus on straddles,
which just require liquidity near the money.
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Straddles give investors exposure both to realized and implied volatility. They are ex-

posed to realized volatility because the final payoff of the portfolio is a function of the absolute

value of the underlying futures return. But when a straddle is sold before maturity (as in

our case, since we use two-week holding period returns), the sale price will also depend on

expected future volatility, meaning that straddles can give exposure to uncertainty shocks.

Since the options in the straddle are at the money at inception, a straddle is the most liquid

zero-delta portfolio we can construct.

In principle, it is also possible to estimate the factor risk premia using other assets,

like stock or bond returns (e.g. Cremers, Halling, and Weinbaum (2015)). We focus on

option returns because they depend directly on realized volatility and uncertainty – which

is why they are used to construct implied volatility measures – whereas for other assets

the connection is less clear (many other factors affect their returns) and there could be

nontrivial problems with exposures shifting over time. We show below that under the simple

Black–Scholes benchmark, the factor loadings will be constant.

3.2 Empirical results

3.2.1 Hedging uncertainty shocks

The dotted red series in figure 3 plots estimated risk premia and confidence bands for the

realized and implied volatility factors – γf
2

i and γ∆IV
i , respectively – using straddles as test

assets. Again, the risk premia should be interpreted as annualized Sharpe ratios, since they

are scaled to measure average annualized returns per unit of annualized standard deviation.

The top panel plots premia for implied volatility and the bottom panel realized volatility.

The boxes are point estimates while the bars represent 95-percent confidence bands based

on a block bootstrap.19

Across the top panel, implied volatility shocks carry zero or even positive premia. For

financials, the average Sharpe ratios tend to be near zero or weakly negative. The S&P 500

has a positive premium, consistent with results for variance swaps discussed extensively in

Dew-Becker et al. (2016). That result is not completely robust here, however – something we

discuss further below – but there is certainly no evidence of a significantly negative premium

for S&P 500 uncertainty. For the nonfinancials, on the other hand, all 14 sample Sharpe

ratios are actually positive, and five of those are individually statistically significant. Overall,

19The bootstrap is constructed with 50-day blocks and 5000 replications. It is used to account for the fact
that the returns use overlapping windows. Hansen–Hodrick type standard errors are not feasible here due
to the fact that observations in the data are not equally spaced in time. The block bootstrap additionally
accounts for other sources of serial correlation in the returns, such as time-varying risk premia.

13



for only one out of 19 contracts, the British Pound, do we find a significantly negative Sharpe

ratio.

To formally estimate the average risk premia across contracts, we use a random effects

model, which yields an estimate of the population mean risk premium while simultaneously

accounting for the fact that each of the sample Sharpe ratios is estimated with error, and

that the errors are potentially correlated across contracts (see appendix A.5).

For both nonfinancials and all markets overall, the estimated population mean Sharpe

ratio is statistically and economically significantly positive, while for financials it is close to

zero. The group-level means have the advantage of being much more precisely estimated

than the Sharpe ratios for the markets individually. They show that on average, instead of

there being a cost to hedging uncertainty shocks, the factor risk premium for uncertainty

shocks is actually positive. For nonfinancials, the average Sharpe ratio is 0.43, and the lower

end of the 95-percent confidence interval is 0.13. For the overall mean, the corresponding

numbers are 0.32 and 0.08, so the average Sharpe ratios are significantly positive in both

cases. The top panel of table 3 reports the estimated average Sharpe ratios for financials

and nonfinancials, and, in the third column, their difference, and shows that the difference

in risk premia between the two groups is not statistically significant.

The top panel of figure 3 contains our key results on the risk premium for uncertainty. It

shows that across the board, risk premia for uncertainty are indistinguishable from zero or, if

anything, somewhat positive. The results allow us to quantify the overall correlation between

uncertainty and marginal utility. For financial underlyings, including the S&P 500, the zero

or very weakly negative risk premium implies that the correlation is close to zero. For the

nonfinancial underlyings, which are closely linked to the JLN real and price uncertainty

series, the results imply that the correlation is positive.

3.2.2 Hedging realized volatility shocks

The bottom panel of figure 3 reports risk premia for realized volatility across the 19 markets,

representing our second main result. The numbers are drastically different from those for

IV. Whereas implied volatility has earned a zero or even positive premium, the realized

volatility premia are almost all estimated to be negative. For the S&P 500, this result is

well known and is referred to as the variance risk premium. The S&P 500 realized volatility

risk premium is most negative, at -1.26 – the premium for selling insurance against shocks

to realized volatility is more than twice as large as the premium on the stock market over

the same period. For the other financial underlyings, the premium on realized volatility is

not statistically significantly negative. For the nonfinancials, 11 of 14 estimated premia are
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negative (6 significantly).

Looking at the category means, in this case all three estimates – financials, nonfinancials,

and all assets – are negative. The values are on the edge of statistically significant for the

nonfinancials and the overall mean, with confidence bands just barely encompassing zero.

The point estimate for the overall mean Sharpe ratio is -0.26 and the upper end of the

95-percent confidence interval is 0.04. Those values are almost the same as what we obtain

for uncertainty, but with the opposite sign. As with uncertainty, table 3 shows that the

difference between financials and nonfinancials is not statistically significant.

In sum, in stark contrast to the results for hedging uncertainty, the bottom panel of

figure 3 shows that there has historically been, consistently across markets, an economically

significant cost to hedge realized volatility. Contracts that, rather than loading on changes in

implied volatility, load on actual realized squared returns, earn negative Sharpe ratios with

magnitudes up to twice as large as that for the overall stock market. So while uncertainty

is viewed as neutral or even good on average, realized volatility or jumps – the realization of

large squared returns – is viewed as mostly bad, for both financials and nonfinancials.

3.2.3 Goodness of fit

Figure 4 reports a scatter plot of realized returns on the various straddle returns against

the fitted returns from the model. The figure shows that there is a wide spread in realized

returns that the model is able to capture. In addition, there are no large outliers. Table A.1

in the appendix reports the p-values of the χ2 test of the model based on the squared fitting

errors (bootstrapped following Constantinides, Jackwerth, and Savov (2013)). That test is

very stringent, especially when the fitting errors are small on average, since they are scaled

by their sample variance. That said, the test rejects in only three of the 19 markets. The

p-value for the S&P 500 is 0.22, similar to the one obtained by Constantinides, Jackwerth,

and Savov (2013). The fact that the model is rejected for only one of the 14 nonfinancials

suggests that the results for nonfinancials – where the differences in the pricing of implied and

realized volatility are most pronounced – should be most reliable. The test rejects for two of

the five financial underlyings, which implies that they are more likely to have specification

error.

3.3 Interpretation of the results

How can realized volatility have a negative price of risk, while uncertainty have a positive

one? Key to understanding this distinction is noticing that realized volatility (which is

computed by squaring shocks) is strongly dominated by large price movements like jumps,
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which our empirical results suggest tend to be bad for investors on average. So it is easy to

see how investors might dislike realized volatility, as it captures the occurrence of a large,

bad shock.

On the other hand, innovations in implied volatility are driven by changes in the perceived

uncertainty about good and bad potential events: so a higher probability of a bad jump will

increase uncertainty, but a higher probability of a good event (e.g., a new technology) will

also increase uncertainty. Our results show that on net, investors seem to perceive increases

in uncertainty as being associated with good states of the world.

Section A.11 in the appendix formalizes this idea, describing a simple extension of the

standard long-run risk model of Bansal and Yaron (2004) that is consistent with our results

on the pricing of both volatility and uncertainty shocks.

Finally, it is valuable to compare our analysis with some closely related past work. As

discussed above, both Constantinides, Jackwerth, and Savov (2013; CJS) and Cremers,

Halling, and Weinbaum (2015; CHW) also examine the pricing of uncertainty and realized

volatility in the S&P 500 using factor models. While we cannot compare our full range of

results with theirs, we can at least see how those for the S&P 500 compare.

The analysis of CJS is closest to us, as they also use option portfolios as test assets. In

table 8, they report a premium of approximately zero for shocks to uncertainty and a large

negative premium for realized volatility for the S&P 500. So consistent with us, they find

much stronger pricing of realized than implied volatility, though their uncertainty premium

is less positive. CHW, instead, use the cross-section of equities as their test assets and find

a more strongly negative premium for uncertainty. However, they also report returns on an

uncertainty hedging portfolio, which aligns very closely with our analysis in the next section

(see their table 1). In that case, their results are quantitatively highly similar to ours. We

discuss this observation further below.

3.4 Is realized volatility about jumps? Evidence from strangles

Similar to others (e.g. Cremers, Halling, and Weinbaum (CHW; 2015)), we have argued

thus far that the exposures to squared returns on the underlying – or gamma – represent

exposure to jump risk. While CHW focused on straddles, we further test the hypothesis that

the premia are for jumps by examining returns on strangles. A strangle is, like a straddle,

a portfolio long a put and a call, with the delta set to zero here by construction. However,

in the case of a strangle, the two options are out-of-the-money, with different strikes, rather

than both having the same strike. So whereas the final payoff of a straddle depends on the

absolute value of the change in the underlying, a strangle only pays off if the underlying moves
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sufficiently far from its initial value (with that required distance being a choice variable).

We examine returns on strangles where the put and call strikes are 1 standard deviation

unit (scaling by time to maturity) from the forward price when the portfolio is formed, so

they only have positive payoffs at maturity if the underlying moves further than that. As

with the straddles, we examine two-week returns.

Figure 5 replicates figure 3 for the case of strangles. For the uncertainty risk premia, the

results are qualitatively and quantitatively similar to those for straddles: for financials the

premium is close to zero, and for nonfinancials it is 0.42.

It is for the RV/gamma risk premia that we find a substantial difference, representing

our third main result. Across the various markets, the premia are generally twice as large

for strangles as for straddles. Every single point estimate is now negative, and only one

confidence band contains zero. For financial underlyings, the average premium is now sta-

tistically significant, at -1.54. For nonfinancials and all assets combined, the means are both

-1.48 and -1.5 respectively.

These results show that it is really the tail of the distribution that drives the RV results.

The finding that deep out-of-the-money options have the largest premia is well known for the

S&P 500. This paper is novel for showing that the relationship of the gamma premium with

moneyness in fact holds across all the markets that we study (and it is strikingly different

from the patterns on uncertainty).

To sum up, figures 3 and 5 contain our three main results. Pervasively across markets,

premia related to vega (uncertainty) are zero or positive, while premia for gamma (jump

risk) are significantly negative. Furthermore, the jump risk premia are largest for out-of-

the-money options. Economically, the results show that it is periods with extreme shocks –

realized volatility or jumps – that investors are averse to, rather than simple increases in

forward-looking uncertainty.

4 Theoretical risk exposures of straddles and strangles

We argued heuristically above that straddles and strangles are natural test assets for a factor

model involving realized and implied volatility since they have zero delta and payoffs that

are convex in the underlying return. This section formalizes that intuition by calculating

the theoretical exposures of options of different maturities to those shocks, following the

analysis of Cremers, Halling, and Weinbaum (2015). Similar to them, we then show that we

can construct replicating portfolios that, under the theory, should provide direct exposure

to shocks to either implied or realized volatility. Formally, under the Black-Scholes model,

17



one portfolio has positive vega and zero gamma, and the other has positive gamma and zero

vega. These portfolios give an alternative, and in some sense more direct, way of measuring

the risk premia.

4.1 Return exposures

The exposures of the portfolios studied above to the risk factors we use in our linear factor

model can be approximated theoretically using the Black–Scholes model, as in Coval and

Shumway (2001), Bakshi and Kapadia (2003), and Cremers, Halling, and Weinbaum (2015).

Appendix A.4 shows that the partial derivatives of the zero-delta straddle and strangle return

with respect to the underlying futures return, f , its square, and the change in volatility, can

be approximated as

∂rn,t
∂ft

≈ 0, (4)

∂2rn,t

∂ (ft/σt−1)2 ≈ n−1, (5)

∂rn,t
∂ (∆σt/σt−1)

≈ 1, (6)

where rn,t is the return on date t of a straddle or strangle with maturity n, ft is the return

on the underlying future, σt is the implied volatility of the underlying, and ∆ is the first-

difference operator.20

It is perhaps surprising at first that the exposures are the same for both straddles and

strangles. Intuitively, the two types of portfolios have the same exposures up to the second

order – where they differ is in their higher-order exposures, which are naturally larger for

the strangles. The first partial derivative says that the straddles and strangles have close

to zero local exposure to the futures return. The second line says that the exposure of

the options to squared returns on the underlying – realized volatility – is approximately

inversely proportional to time to maturity. The third line shows that they are also exposed

to changes in expected future volatility, through ∆σt
σt−1

, and that exposure is approximately

constant across maturities.

To see how the risk exposures differ in their higher order terms, figure A.4 in the appendix

plots the return on a straddle and a 1-standard-deviation strangle as a function of the change

in the price of the underlying. One can see how the two curves are not just tangent at zero,

20We ignore here the fact that options at different maturities have different underlying futures contracts.
If that elision is important, it can be expected to appear as a deviation of the estimated factor loadings from
the predictions of the approximations (4)–(6).
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but that they have the same curvature, consistent with having the same second derivative, as

in equation (5). They only begin to difer noticeably as the returns get extreme. So straddles

and strangles have equal local exposures to the underlying, but in the tails, e.g. in response

to jumps, strangles become more sensitive. This shows why strangle returns help isolate the

extra premium earned for exposure to tail risk.

4.2 Replicating portfolios

Cremers, Halling, and Weinbaum (2015) show that the implied sensitivities in (4)–(6) give a

method for constructing portfolios that the Black–Scholes model says should give exposures

only to realized volatility – (fn,t/σt−1)2 – or implied volatility, measured by ∆σt/σt−1. The

method is to construct, for each market, two portfolios,

rvi,t =
5

24
(ri,1,t − ri,5,t) ≈ (ft/σt−1)2 , (7)

ivi,t =
5

4
ri,5,t −

1

4
ri,1,t ≈ ∆σt/σt−1. (8)

where the approximations follow from equations (4)–(6).21 Throughout this section, capi-

talized RV and IV refer to the levels of realized and implied volatility, while lower-case rv

and iv refer to the associated portfolio returns. We use the one- and five-month options to

construct the portfolios since it is exactly five-month implied volatility that is priced in the

main analysis. The iv portfolio is dominated by an investment in the five-month options,

with just a small short position in the one-month options. In that sense, the iv portfolio is

a rather direct claim on exactly the implied volatility priced in the factor model.

The purpose of constructing these portfolios is to give a simple and direct method of

measuring the premia associated with realized and implied volatility that does not require

full estimation of the factor model. If the loadings used to construct the portfolios are correct,

this method will also be more efficient. On the contrary, if the assumptions of the model are

not correct, then the results will be biased (whereas the factor model will still be correct,

as it estimates the risk exposures instead of using the ones implied by the model). There is

thus a bias/variance trade-off between the factor model, which requires fewer assumptions

but will have greater estimation error, and the replicating portfolios, which require stronger

assumptions but will have less estimation error.

The key concern, then, is how accurate the Black–Scholes-implied loadings are. Figure

21Note that equation (5) gives the second derivative, which has weight 1/2 in the Taylor approximation.
So the loading on the squared future return for a straddle of maturity n is (2n)−1, which implies that the
coefficient for (7) is 5/24.
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A.2 and table A.2 in the appendix show that the theoretical predictions for the loadings are

fairly accurate (though not perfect) empirically. Appendix A.4 also examines the accuracy

of the Black–Scholes approximation for returns in a simulated setting.

Table A.2 shows that the biggest deviations from the model-implied loadings are for the

S&P 500 iv portfolio. In that case, there is a large positive loading on realized volatility – a

GARCH effect – and a large negative loading on the underlying futures return – the leverage

effect. Both should be expected to bias the return on the iv portfolio down relative to the

estimated implied volatility factor loading from above. The effects are three times larger

for the S&P 500 than for any other market. That suggests that for measuring pricing of

S&P 500 uncertainty, in particular, it is best to use the factor model, as in Constantinides,

Jackwerth, and Savov (2013). For all other markets, instead, the Black-Scholes assumptions

appear relatively accurate, so we would expect the results to line up well with those of the

factor model.

Note that even though the rv and iv portfolios theoretically load on separate risk factors,

they need not be uncorrelated. It is well known from the GARCH literature (e.g. Engle

(1982) and Bollerslev (1986)) that in many markets, innovations to realized volatility are

correlated with innovations to implied volatility. Table 4 reports the correlations between

the rv and iv returns in the 19 markets. GARCH effects appear most strongly for the

financial underlyings and precious metals, where the average correlation is 0.44. For the

other nonfinancial underlyings, the effects are much smaller, and the correlation between

the rv and iv returns is only 0.03 on average (it is 0.09 on average across all nonfinancials).

So for the nonfinancials, innovations to realized and implied volatility returns are essentially

independent on average. These weak correlations are valuable for the identification, since

they show that surprises in realized and implied volatility are far from the same and can be

hedged separately using the rv and iv portfolios.

4.3 Risk premia

4.3.1 Straddles

The solid blue series in the two panels of figure 3 report annualized Sharpe ratios for the rv

and iv portfolios constructed from straddles in the 19 markets. As with the factor model,

we begin by focusing on the straddle returns because they are most liquid and hence most

conservative.

The results in figure 3 for the rv and iv portfolios are highly similar to those for the

factor model. The iv portfolios earn returns close to zero on average for the financial under-
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lyings and returns that are consistently positive for the nonfinancial underlyings. For the

nonfinancials, the average Sharpe ratio for the iv portfolios is again statistically significantly

positive. As expected, since the iv portfolios are formed using stronger assumptions, the

standard errors for the risk premia are tighter than for the factor model.

The bottom panel of table 3 summarizes the estimates for the realized and implied

volatility risk premia for financials and nonfinancials computed using the rv and iv portfolios,

and also reports tests for whether the two are different. In all cases, the premia for the

financials are insignificant while those for the nonfinancials are insignificant. However, note

that there are fewer financial underlyings, limiting our statistical power. The difference

between financials and nonfinancials itself is not significant – so we cannot actually say that

there is strong evidence for a difference between the two in three out of four cases. The only

case where the difference is statistically significant is for the Sharpe ratio on the iv portfolio.

That difference appears to be driven largely by the fact that the return on the S&P 500

iv portfolio is very different from the estimated risk premium for implied volatility from the

factor model. In fact, the confidence bands do not even overlap. This result is driven by the

fact that there are much stronger GARCH effects in the S&P 500 than the other underlyings

that we study, creating a bias, as discussed above (see table A.1 showing that the S&P 500 iv

portfolio actually loads strongly on realized volatility). We thus place relatively less trust in

the results from the rv and iv portfolios (as opposed to the results from the factor model) for

the S&P 500 than the other underlyings, for which there is very strong agreement between

the factor model and the iv portfolio returns. Even in the case of the S&P 500, though, the

premium for uncertainty shocks is not statistically significantly negative.

The Sharpe ratios for the rv portfolios are also highly similar to the estimated risk premia

on realized volatility in the factor model (even for the S&P 500). The financial underlyings

other than the S&P 500 again have premia generally close to zero, while the S&P 500 and

the nonfinancials have consistently negative premia.

The returns on the rv and iv portfolios for the S&P 500 can be compared to those

reported in table 1 of Cremers, Halling, and Weinbaum (2016). For their analog to our

rv portfolio, they obtain a Sharpe ratio of -0.9, compared to -1.2 in our case, while for

their analog to the iv portfolio, they report a Sharpe ratio of -0.5, compared to -0.2 here.

In both cases, the confidence bands for our estimates easily contain theirs. We thus obtain

substantial agreement with the findings of CHW for returns on option portfolios. Our results

differ from theirs in two key ways. First, we focus on factor models using options as test

assets, instead of equities. We choose to use options, similar to Constantinides, Jackwerth,

and Savov (2013), because they have risk exposures very directly tied to uncertainty and
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volatility, whereas equity returns have many other risk exposures that have been explored

in the literature. Second, obviously, we explore the pricing of options in a wide range of

markets, not just the S&P 500.

4.3.2 Strangles

The results for strangles are again consistent with those for straddles, but more extreme.

In figure 5, as in figure 3, the point estimates and confidence bands from the factor model

(red) and the rv and iv portfolios (blue) are similar, with the model-based rv and iv port-

folios again having narrower confidence intervals, showing that the results are robust to the

estimation method.

We again find that the strangles have much more negative jump/gamma premia than

the straddles. Since we showed above that the exposures of the strangles and straddles are

the same up to second order, this section clearly indicates that it is the difference in higher

order exposures of the different strategies that drives the larger premia for strangles.

4.4 Summary

The results in this section are useful for three reasons. First, they show that our results are

not driven by some hidden detail of the factor model estimation. The rv and iv portfolios are

simple to construct and yield highly similar results to the factor model, both for straddles

and strangles. So the three key findings, zero or positive premia for uncertainty, substan-

tially negative premia for realized volatility, and even larger premia for realized volatility for

strangles, appear to be robust.

Second, the replicating portfolios help clarify exactly what the source of identification

is in the factor model. The options have exposures to implied and realized volatility that

differ across maturities, so including a panel of multiple maturities allows us to separately

measure their premia.

Finally, by analyzing the risk exposures of the options, we can link the factor model

estimates back to widely studied and applied features of options – their greeks. The estimate

of the price of shocks to implied volatility from the factor model is essentially identical to

the Sharpe ratio on a portfolio with positive vega and zero gamma, while the estimate of

the price of shocks to realized volatility is almost the same as the Sharpe ratio on a portfolio

with positive gamma and zero vega.
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4.5 Combined portfolios

As we discussed in Section 2.3, the uncertainty in our 19 markets is related to various

measures of aggregate uncertainty. It is then natural to ask what the cost of hedging is

for aggregate uncertainty. A simple way to do that is to buy all the iv or rv portfolios

simultaneously. We focus on just the straddles here since they are most liquid and thus

most feasible for an investor to hold. Since tables 1 and 2 show that realized and implied

volatility are imperfectly correlated across markets, even larger Sharpe ratios can be earned

by holding portfolios that diversify across the various underlyings. Table 5 reports results

of various implementations of such a strategy. Looking first at the top panel, the first row

reports results for portfolios that put equal weight on every available underlying in each

period, the second row uses only nonfinancial underlyings, and the third row only financial

underlyings. The columns report Sharpe ratios for various combinations of the rv and iv

portfolios. The first two columns report Sharpe ratios for strategies that hold only the rv or

only the iv portfolios, the third column uses a strategy that is short rv and long iv portfolios

in equal weights, while the final column is short rv and long iv, but with weights inversely

proportional to their variances (i.e. a simple risk parity strategy).

The Sharpe ratios reported in table 5 are generally larger than those in figure 3. The

portfolios that are short rv and long iv are able to attain Sharpe ratios above 1. The largest

Sharpe ratios come in the portfolios that combine rv and iv, which follows from the fact that

they are positively correlated, so going short rv and long iv leads to internal hedging. All of

that said, these Sharpe ratios remain generally plausible. Values near 1 are observed in other

contexts (e.g. Broadie, Chernov, and Johannes (2009) for put option returns, Asness and

Moskowitz (2013) for global value and momentum strategies, and Dew-Becker et al. (2017)

for variance swaps).

The portfolios that take advantage of all underlyings simultaneously seem to perform

best, presumably because they are the most diversified. While holding exposure to implied

volatility among the financials earns effectively a zero risk premium, it is still generally

worthwhile to include financials for the sake of hedging.

Finally, the bottom panel of table 5 reports the skewness of the various strategies from

above. One might think that the negative returns on the rv portfolio are driven by its

positive skewness, but the iv portfolio also is positively skewed and has positive average

returns. So the degree of skewness does not seem to explain differences in average returns

in this setting.
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5 Hedging uncertainty indexes

The results so far give the cost of directly hedging shocks in commodity markets. This

section examines how options can be used to hedge shocks to macro uncertainty indexes.

Section 2.3 showed that the commodity IVs do a good job of spanning the macro uncertainty

indexes. We now discuss those indexes in more detail and examine the cost of hedging both

the implied and realized parts of macro volatility.

The JLN index is developed in a pair of papers by Jurado, Ludvigson, and Ng (JLN;

2015) and Ludvigson, Ma, and Ng (2017). We follow their construction methodology and

further extend it to yield separate measures of uncertainty that pertain to financial mar-

kets, real activity, and goods prices, with the latter two also being combined into an overall

macroeconomic uncertainty index.22 The goal of the JLN framework is to estimate uncer-

tainty on each date, σ2
t . The method can also be extended to create a realized volatility

index.23 We refer to the JLN uncertainty indexes by JLNU and realized volatility indexes

by JLNRV .

The Economic Policy Uncertainty (EPU) index of Baker, Bloom, and Davis (2015) is

constructed based on media discussion of uncertainty, the number of federal tax provisions

changing in the near future, and forecaster disagreement. Unlike JLN, there is no distinc-

tion in this case between volatility and uncertainty, so we treat EPU as measuring only

uncertainty.

Figure 2 shows that the 19 IVs span most of the variation in the JLN and EPU uncertainty

indexes. We can then measure risk premia associated with those indexes by constructing

hedging portfolios using our straddles. For each index, we obtain the weights for the hedging

portfolio from the coefficients of the projection we presented in section 2.3. Specifically, for

each uncertainty index j, we estimate the regression

JLNU j
t = a+

∑
i

bjiIVi,t + εj,t (9)

22The construction involves two basic steps. First, realized squared forecast errors are constructed for
280 macroeconomic and financial time series. 134 macro series are from McCracken and Ng (2016), while
the remaining financial indicators are from Ludvigson and Ng (2007). Our analysis uses code from the
replication files of JLN. The macro price series are defined as those referring to price indexes, and the real
series are the remainder of the macro time series. Denoting the error for series i as εi,t, there is a variance
process, σ2

i,t = E
[
ε2i,t
]
. So ε2i,t constitutes a noisy signal about σ2

i,t. JLN then estimate σ2
i,t from the history

of ε2i,t using a two-sided smoother and create an uncertainty index as the first principal component of the

estimated σ2
i,t. For the component indexes, we take the first principal component of the σ2

i,t corresponding
to the relevant group of indicators.

23This is done by taking the first principal component from the cross-section of the ε2i,t in a given month,

instead of the σ2
i,t.
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We then use the risk premia estimated in the factor model to calculate a premium for

hedging the JLN indexes. In particular, we construct a hypothetical portfolio that has expo-

sure bji to ∆IVi,t/IVi,t−1. The mean return on that portfolio can be calculated from equation

(3), while the standard deviation is obtained from the covariance matrix of ∆IVi,t/IVi,t−1

across i (again weighting by bji ). The same method also yields a risk premium for the EPU

and JLNRV indexes (see appendix figure A.1 for the analogous of figure 2 for realized

volatilities).

The right-hand section of figure 3 (red lines) reports the Sharpe ratios for straddle port-

folios hedging the EPU and JLN indexes, computed using the estimates from the factor

models. Since those hedging premia are constructed combining the individual factor premia,

it is not surprising that they are similar. In all three cases, the risk premium for JLN indexes

– financial, macro, and price uncertainty – is positive, in one case statistically significantly.

Furthermore, the confidence bands rule out economically large negative premia – the lowest

confidence band only runs to -0.32. For EPU we find a point estimate of approximately zero

(-0.03), though a confidence band that runs to -0.49.

The right-hand section of the bottom panel of figure 3 reports the returns from the

JLN realized volatility hedging portfolios (again, the red lines use the risk premia estimates

from the factor model). Again, consistent with the fact that the RV risk premia themselves

are consistently negative, hedging the JLN indexes for realized volatility historically has a

positive cost. For all three subindexes, the risk premia are very negative, with the Sharpe

ratios for financial, real, and price volatility at -1.15, -0.62, and -0.65, all three of which are

statistically significant. So the conclusions from hedging the JLN and EPU indexes are highly

similar to those in the main analysis, providing further evidence that in the macroeconomy,

it is realized volatility that is priced, rather than uncertainty about the future. The blue

lines in the figure, that use the estimates from the rv and iv portfolio, show similar results,

with the uncertainty Sharpe ratios slightly lower but still statistically indistinguishable from

zero, and the realized volatility premia strongly negative. Figure 5 shows that the results

for straddles are again similar, with hedging realized volatility in this case again carrying a

more negative premium.

6 Robustness

This section examines some potential concerns about the robustness of the results.
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6.1 One-week holding period returns

Our main analysis is based on two-week holding period returns for straddles, which strike

a balance between having more precise estimates of risk premia and reducing the impact of

measurement error in prices. We have repeated all of our analysis using one-week holding

period returns, and find very similar results. Appendix figure A.6 is the analog of figure

3, but constructed using one-week returns. The results are qualitatively and quantitatively

similar to the baseline.

6.2 Split sample and rolling window results

To address the concern that the results could be driven by outliers (though note that there

would need to be outliers in all 19 markets), figures A.7 and A.8 replicate the main results in

figure 3, but splitting the sample in half (before and after June 2000). The confidence bands

are naturally wider, and the point estimates vary more from market to market in the two

figures. Nevertheless, the qualitative results are the same as in the full-sample case, showing

that realized volatility earns a negative premium while the premium on implied volatility is

positive.

To further evaluate the possibility that the results are driven by a small number of

observations, figure A.9 plots Sharpe ratios for the rv and iv portfolios in five-year rolling

windows for each of the 19 markets, as well as for the equal-weighted portfolios of all 19

markets. The sample Sharpe ratios are reasonably stable over time. In no case do the

results appear to be driven by a single outlying period or episode. Note that these results

are not informative about variation in the conditional risk premium; with a five-year window,

the standard error for the Sharpe ratios is 0.45, so even if the true conditional Sharpe ratios

are constant, the five-year rolling estimates should display large amounts of variation over

time.

6.3 Alternative maturities

Our main results use the five-month maturity for implied volatility, both in the factor model

and as the second leg in the rv and iv portfolios. Figure A.10 in the appendix replicates the

analysis using two-month implied volatility instead in both cases. The results are qualita-

tively and quantitatively similar to the main specification. Note that the GARCH effects –

that bias the estimates for the iv portfolio risk premium (blue) in the top panel downward

relative to the estimates from the factor model (red) – are stronger when using 2-month IV

instead of 5-month IV (see the loadings of the iv portfolio on realized volatility in table A.4).
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To help understand why the maturity choice does not have strong effects, the top panel

of table A.3 in the appendix reports loadings of the rv portfolio on changes in implied

volatility at maturities of one to five months. In all cases, the coefficients are close to zero –

no larger than 0.1 – indicating that the exposures to implied volatility at any maturity are

economically small (especially in comparison to the loading on realized volatility, which can

be seen from table A.2 to be closer to 1). The bottom panel shows the same loadings, but

for the RV-hedging portfolio built using the factor model (a portfolio that by construction

has loading 1 on RV and 0 on 5-month IV, as the last column of the table highlights – see

Appendix A.3 for more details).

6.4 Weighted least squares

Johnson (2019) argues that there can be efficiency gains from weighting by implied volatility

in estimating risk premia. We explore that in figure A.11 in the appendix, which reports

the risk premia (computed with the factor model) with and without weighting by implied

volatility. Weighting drives most of the risk premia to be less negative or more positive, but

the patterns all remain qualitatively and quantitatively similar. The premium for implied

volatility shocks becomes even more strikingly positive.

6.5 Pricing the independent parts of realized and implied volatil-

ity

The main results above report returns associated with assets that hedge innovations to

realized and implied volatility. Table 4 shows that those returns are positively correlated:

months with increases in realized volatility also tend to have increases in implied volatility.

A natural question is what would happen if we were to construct a portfolio that loaded on

the independent part of those returns, e.g. an increase in implied volatility holding realized

volatility fixed. Section A.8 in the appendix reports an SDF-based analysis that prices the

independent components and shows that the results are similar to the main specification

(see figure A.12).

6.6 Liquidity

If the options used here are highly illiquid, the analysis will be substantially complicated for

three reasons. First, to the extent that illiquidity represents a real cost faced by investors

– e.g. a bid/ask spread – then returns calculated from settlement prices do not represent

returns earned by investors. Second, illiquidity itself could carry a risk premium that the
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options might be exposed to. Third, bid/ask spreads represent an added layer of noise

in prices. The identification of the premia for realized volatility and uncertainty depends

on differences in returns on options across maturities, so what is most important for our

purposes is how liquidity varies across maturities. This section shows that the liquidity of

the straddles studied here is generally highly similar to that of the widely studied S&P 500

contracts traded on the CBOE, and the liquidity does not appear to substantially deteriorate

across maturities.

While a long history of bid/ask spreads is not available to us, we obtained posted bid/ask

spreads for the options closest to the money on Friday, 8/4/2017 for our 19 contracts plus

the CBOE S&P 500 options at maturities of 1, 4, and 7 months. Those spreads are plotted

in figure A.13. For the majority of the options, the spreads are less than 3 percent, consistent

with the 4.1-percent bid/ask spread for one-month S&P 500 options at the CBOE. Across

nearly all the contracts, the posted spreads again decline with maturity, and for 10 of the

19 contracts the one-month posted spreads are nearly indistinguishable from that for the

S&P 500, which is typically viewed as a highly liquid market and where incorporating bid-

ask spreads generally has minimal effects on return calculations (Bondarenko (2014)).

Figure A.13 yields two important results. First, it shows that the liquidity of the straddles

is reasonably high, in the sense that posted spreads are currently relatively narrow in absolute

terms for most of the contracts and that they compare favorably with spreads for the more

widely studied S&P 500 options traded at the CBOE. Second, liquidity does not appear

to deteriorate as the maturity of the options grows, and in fact in many cases there are

improvements with increasing maturities, again consistent with CBOE data.

Section A.4.5 in the appendix reports statistics for volume across maturities, showing

that the markets are generally fairly similar. Section A.4.6 reports an additional robustness

test that measures returns using a method that is robust to certain types of measurement

errors in prices, showing that the main results are essentially identical.

Finally, it is useful to note that while the liquidity of option markets changed significantly

in the last 30 years, the patterns in risk premia for the rv and iv portfolios appear stable

over time (see, for example, the rolling Sharpe ratios of figure A.9), suggesting that liquidity

is not the main driver of our results.

Even though the liquidity is similar across many of the markets, one might still ask how

trading costs affect the returns we have been studying. Any trading cost will lower the return

of a portfolio, regardless of whether an investor is long or short. By studying returns based

on quoted prices, we are essentially looking at the return averaged across what the buyer

and seller receive. For example, if the return on a portfolio based on quoted prices is 10
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percent and there are total trading costs to each side of 1 percent, then the buyer earns a

return of 9 percent while the seller has a loss of 11 percent. Looking at quotes is therefore

natural for illustrating the return that the average investor sees.

7 Conclusion

This paper studies the pricing of uncertainty and realized volatility across a broad array of

options on financial and commodity futures. Uncertainty is proxied by implied volatility

– which theoretically measures investors’ conditional variances for future returns – and a

number of uncertainty indexes developed in the literature. Realized volatility, on the other

hand, measures how large realized shocks have been. In modeling terms, if εt+1 ∼ N (0, σ2
t ),

uncertainty is σ2
t , while volatility is the realization of ε2

t .

A large literature in macroeconomics and finance has focused on the effects of uncertainty

on the economy. This paper explores empirically how investors perceive uncertainty shocks.

If uncertainty shocks have major contractionary effects so that they are associated with high

marginal utility for the average investor, then assets that hedge uncertainty should earn

negative average returns. On the other hand, the finance literature has recently argued that

in many cases uncertainty can be good. For example, during the late 1990’s, it may have

been the case that investors were not sure about how good new technologies would turn out

to be.

The contribution of this paper is to construct hedging portfolios for a range of types

of macro uncertainty, including interest rates, energy prices, and uncertainty indexes. The

cost of hedging uncertainty shocks reveals the relative importance of good and bad types of

uncertainty. Furthermore, using a wide range of options is important for capturing uncer-

tainty about the real economy and inflation, as opposed to just about financial markets. The

empirical results imply that uncertainty shocks, no matter what type of uncertainty we look

at, are not viewed as being negative by investors, or at least not sufficiently negative that it

is costly to hedge them. Financial uncertainty appears to be roughly equally split between

the good and bad types, while nonfinancial uncertainty is relatively more strongly driven by

good uncertainty – the cost of hedging nonfinancial uncertainty shocks is negative.

What is highly costly to hedge is realized volatility. Portfolios that hedge extreme returns

in futures markets – and hence large innovations in macroeconomic time series – earn strongly

negative returns, with premia that are in many cases one to two times as large as the premium

on the aggregate stock market over the same period. So what is consistently high in bad

times is not uncertainty, but realized volatility. Periods in which futures markets and the
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macroeconomy are highly volatile and display large movements appear to be periods of high

marginal utility, in the sense that their associated state prices are high. This is consistent

with (and complementary to) the findings in Berger, Dew-Becker, and Giglio (2019), who

provide VAR evidence that shocks to volatility predict declines in real activity in the future,

while shocks to uncertainty do not.

Berger, Dew-Becker, and Giglio (2019) show that the VAR evidence and pricing results

for realized volatility are consistent with the view that it is downward jumps in the economy

that investors are most averse to. They show that a simple model in which fundamental

shocks are both stochastically volatile and negatively skewed can quantitatively match the

pricing of uncertainty and realized volatility, along with the VAR evidence. Similarly, Seo

and Wachter (2018a,b) show that negative skewness can explain the pricing of credit default

swaps and put options. This paper thus also contributes to the growing literature studying

the effects of skewness. In a world where fundamental shocks are negatively skewed, the

most extreme shocks – those that generate realized volatility – tend to be negative, which

can explain why realized volatility would be so costly to hedge.
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Farago, Adam and Roméo Tédongap, “Downside risks and the cross-section of asset returns,”
Journal of Financial Economics, 2018, 129 (1), 69–86.

Gilchrist, Simon and John C Williams, “Investment, capacity, and uncertainty: a putty–clay
approach,” Review of Economic Dynamics, 2005, 8 (1), 1–27.

32



Gourio, Francois, “Credit Risk and Disaster Risk,” American Economic Journal: Macroeco-
nomics, 2013, 5(3), 1–34. Working paper.

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh, “The
common factor in idiosyncratic volatility: Quantitative asset pricing implications,” Journal of
Financial Economics, 2016, 119 (2), 249–283.

Huizinga, John, “Inflation uncertainty, relative price uncertainty, and investment in US manu-
facturing,” Journal of Money, Credit and Banking, 1993, 25 (3), 521–549.

Ilut, Cosmin, Matthias Kehrig, and Martin Schneider, “Slow to Hire, Quick to Fire: Em-
ployment Dynamics with Asymmetric Responses to News,” NBER Working Paper Series,
2015.

Jones, Christopher S, “A nonlinear factor analysis of S&P 500 index option returns,” The
Journal of Finance, 2006, 61 (5), 2325–2363.

Jurado, Kyle, Sydney Ludvigson, and Serena Ng, “Measuring Uncertainty,” American Eco-
nomic Review, 2015, 105 (3), 1177–1216.

Kozlowski, Julian, Laura Veldkamp, and Venky Venkateswaran, “The Tail that Wags the
Economy: Belief-Driven Business Cycles and Persistent Stagnation,” 2016. Working paper.

Leduc, Sylvain and Zheng Liu, “Uncertainty shocks are aggregate demand shocks,” Journal of
Monetary Economics, 2016, 82, 20–35.

Ludvigson, Sydney C, Sai Ma, and Serena Ng, “Uncertainty and Business Cycles: Exogenous
Impulse or Endogenous Response?,” Technical Report, National Bureau of Economic Research
2015.

McCracken, Michael W and Serena Ng, “FRED-MD: A monthly database for macroeconomic
research,” Journal of Business & Economic Statistics, 2016, 34 (4), 574–589.
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Figure 2: Fit to uncertainty indexes

Note: The left-hand panels plot the fitted values from the regressions of the EPU and JLN indexes on
three-month implied volatility in the 19 markets. The right-hand panels plot pairwise correlations between
the individual implied volatility series and the fitted values from the regressions.36



Figure 3: RV and IV portfolio Sharpe ratios and factor risk premia: straddles

Note: Squares are point estimates and vertical lines represent 95-percent confidence intervals. The solid
series plots the Sharpe ratios for the rv and iv portfolios. The dotted series plots the estimated risk premia
from the factor model. In both cases, all estimation uses straddles. The confidence bands for the rv and
iv Sharpe ratios are calculated through a 50-day block bootstrap, while those for the factor model use
GMM standard errors with the Hansen–Hodrick (1980) method used to calculate the long-run variance.
The “Fin. mean”, “Non-fin. mean”, and “Overall mean” points represent random effects estimates of
group-level and overall means. The “JLN” and “EPU” points are for the portfolios that hedge those
indexes.
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Figure 4: Cross-sectional fit of factor models
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Note: For each straddle of maturity 1 to 5 months, and for each of the 19 markets, the figure reports
the predicted risk premium against the realized average excess return. Predicted risk premia are obtained
estimating a linear factor model separately in each market.
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Figure 5: RV and IV portfolio Sharpe ratios and factor risk premia: strangles

Note: See figure 3. This figure differs only in replacing the straddles with 1-sigma strangles.
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Table 1: Pairwise correlations of implied volatility across markets
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S&P 500 0.56
Swiss Franc 0.53 0.29
Yen 0.40 0.56 0.48
British Pound 0.45 0.40 0.75 0.45
Gold 0.52 0.57 0.21 0.28 0.37
Silver 0.42 0.34 0.19 0.29 0.34 0.78
Copper 0.39 0.49 0.15 0.35 0.36 0.74 0.77
Crude oil 0.42 0.63 0.25 0.39 0.27 0.54 0.31 0.48
Heating oil 0.41 0.64 0.23 0.36 0.23 0.51 0.28 0.51 0.95
Natural gas 0.11 0.44 -0.03 0.04 0.03 0.33 0.06 0.44 0.49 0.63
Corn 0.25 0.37 -0.11 0.14 0.11 0.50 0.56 0.58 0.22 0.18 0.11
Soybeans 0.22 0.35 -0.05 0.17 0.17 0.47 0.48 0.57 0.29 0.29 0.21 0.85
Soybean meal 0.28 0.33 -0.08 0.16 0.06 0.53 0.50 0.57 0.30 0.27 0.23 0.81 0.94
Soybean oil 0.31 0.30 0.10 0.12 0.23 0.48 0.49 0.56 0.26 0.29 0.23 0.73 0.89 0.83
Wheat 0.38 0.42 0.01 0.19 0.10 0.62 0.62 0.60 0.34 0.31 0.17 0.84 0.77 0.75 0.64
Lean hog 0.29 0.42 -0.03 0.28 -0.10 0.27 0.16 0.35 0.40 0.47 0.40 0.29 0.37 0.39 0.38 0.36
Feeder cattle 0.45 0.35 0.11 0.16 0.07 0.40 0.51 0.50 0.31 0.34 0.13 0.48 0.47 0.50 0.48 0.52 0.43
Live cattle 0.51 0.28 0.24 0.18 0.07 0.38 0.41 0.45 0.32 0.39 0.26 0.32 0.33 0.43 0.49 0.43 0.47 0.84

Note: Pairwise correlations of three-month option-implied volatility across markets. The darkness of the
shading represents the degree of correlation.

Table 2: Pairwise correlations of realized volatility across markets
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S&P 500 0.63
Swiss Franc 0.17 0.12
Yen 0.31 0.32 0.15
British Pound 0.43 0.36 0.24 0.31
Gold 0.44 0.47 0.15 0.24 0.31
Silver 0.42 0.43 0.15 0.22 0.27 0.65
Copper 0.52 0.51 0.11 0.24 0.43 0.50 0.53
Crude oil 0.24 0.24 0.13 0.20 0.20 0.32 0.14 0.24
Heating oil 0.20 0.22 0.04 0.14 0.15 0.30 0.11 0.15 0.91
Natural gas 0.03 0.08 0.04 -0.04 0.00 0.05 -0.06 0.00 0.08 0.18
Corn 0.33 0.35 0.04 0.09 0.27 0.37 0.40 0.50 0.12 0.03 -0.04
Soybeans 0.33 0.30 0.03 0.16 0.30 0.33 0.35 0.40 0.11 0.05 -0.07 0.74
Soybean meal 0.33 0.25 0.03 0.19 0.19 0.31 0.32 0.30 0.08 0.02 -0.06 0.68 0.94
Soybean oil 0.48 0.43 0.11 0.21 0.42 0.40 0.41 0.51 0.17 0.12 -0.04 0.67 0.88 0.72
Wheat 0.30 0.24 0.02 0.08 0.11 0.31 0.34 0.33 0.11 0.04 -0.08 0.63 0.51 0.47 0.47
Lean hog 0.12 0.12 0.08 0.20 -0.03 0.00 0.00 0.05 0.10 0.09 0.11 0.07 0.11 0.12 0.11 0.12
Feeder cattle 0.22 0.20 0.03 0.04 0.07 0.10 0.16 0.30 0.10 0.07 0.12 0.35 0.32 0.32 0.27 0.22 0.26
Live cattle 0.41 0.24 0.13 0.11 0.11 0.17 0.24 0.28 0.07 0.07 0.09 0.22 0.22 0.27 0.30 0.23 0.28 0.63

Note: Pairwise correlations of monthly realized volatility across markets. The darkness of the shading
represents the degree of correlation.

40



Table 3: Risk premia for financials and nonfinancials, and their difference

Financials Nonfinancials Difference
Factor model RV -0.18 -0.29 0.11

[-0.63] [-1.62] [0.34]
IV 0.10 0.43 -0.32

[0.47] [2.82] [-1.28]

Replicating port. rv -0.25 -0.30 0.05
[-1.13] [-2.14] [0.18]

iv -0.02 0.34 -0.36
[-0.14] [2.95] [-2.02]

Note: The table reports the average risk premia for RV and IV risks, across financials (first column),
across nonfinancials (second column) and for the difference between the two groups (third column), with
corresponding t-statistics in square brackets. The top panel estimates the risk premia using the linear
factor model; the bottom panel estimates the risk premia as the average excess returns of the rv and iv
portfolios.

Table 4: Correlations between rv and iv portfolio returns in each marketProduced by code_factor_models_SR

Std(rv) Std(iv) Corr(rv,iv)

S&P 500 0.03 0.08 0.48 0.03323091 0.08027609 0.48419584

T-bonds 0.03 0.08 0.01 0.03370078 0.07916396 0.02004228

CHF 0.04 0.08 0.63 0.04479324 0.08291669 0.62747114

JPY 0.04 0.08 0.61 0.04000464 0.07717094 0.6074935

GBP 0.04 0.07 0.41 0.0361496 0.06619884 0.41118175

Gold 0.04 0.12 0.48 0.03755131 0.11543249 0.48552942

Silver 0.04 0.08 0.45 0.03923592 0.07799427 0.45249853

Copper 0.03 0.10 0.03 0.03304444 0.09783542 0.03470247

Crude Oil 0.04 0.09 0.05 0.03720843 0.0827804 0.06479827

Heating oil 0.04 0.08 0.01 0.03970228 0.07486559 0.01774106

Natural gas 0.04 0.08 -0.17 0.04327286 0.07426585 -0.17030587

Corn 0.04 0.08 0.06 0.03588184 0.08019112 0.0794538

Soybeans 0.04 0.09 0.17 0.03600734 0.08504357 0.17723764

Soybean meal 0.04 0.11 0.20 0.04110779 0.10650053 0.20003536

Soybean oil 0.04 0.09 0.21 0.03888972 0.08898793 0.21555017

Wheat 0.04 0.08 0.08 0.03631271 0.08171911 0.09895636

Lean hog 0.05 0.10 -0.24 0.04945181 0.09666471 -0.24005174

Feeder cattle 0.05 0.10 0.03 0.0485883 0.09999072 0.01747831

Live cattle 0.04 0.08 -0.12 0.03896606 0.07733293 -0.12100551

Note: The table reports, for each underlying, the standard deviation of the two-week returns to the rv
and iv portfolios, and their correlation.
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Table 5: Portfolios of rv and iv across markets

Panel A: Sharpe ratios
rv iv Equal weight Risk-parity

All underlyings -0.74 *** 0.49 ** 1.05 *** 0.90 ***
Nonfinancials -0.63 *** 0.62 *** 0.91 *** 0.90 ***
Financials -0.37 ** -0.04 0.42 *** 0.13

Panel B: Skewness
rv iv Equal weight Risk-parity

All underlyings 1.23 *** 1.82 *** -0.79 *** 1.05 ***
Nonfinancials 2.11 *** 1.55 *** -2.00 *** 0.75 ***
Financials 2.01 *** 2.91 *** -1.40 *** 2.19 ***

rv+iv

rv+iv

Note: Sharpe ratios and skewness of portfolios combining rv and iv portfolios across markets. For each
panel, the first row reports a portfolio constructed using straddles from all available markets on each date,
the second row using only nonfinancial underlyings, the third row only financial underlyings. Each column
corresponds to a different portfolio. The first column is an equal-weighted RV portfolio, the second is an
equal-weighted IV portfolio, the third is an equal-weighted long-short IV minus RV portfolio, and the last
is the same long/short portfolio but weighted by the inverse of the variance (risk-parity). *** indicates
significance at the 1-percent level, ** the 5-percent level, and * the 10-percent level.
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A.1 Data filters and transformations

The observed option prices very often appear to have nontrivial measurement errors. This
section describes the various filters we use and then proceeds to provide more information
about the specifics of the data transformations we apply. Code is available on request.

First, we note that the price formats for futures and strike prices for many of the com-
modities change over time. That is, they will move between, say, 1/8ths, 1/16ths, and
pennies. We make the prices into a consistent decimal time series for each commodity by
inspecting the prices directly and then coding by hand the change dates.

We then remove all options with the following properties

1. Strikes greater than 5 times the futures price

2. Options with open interest below the 5th percentile across all contracts in the sample

3. Price less then 5 ticks above zero

4. Maturity less than 9 days

5. Maturity greater than 8 months.

6. Options with prices below their intrinsic value (the value if exercised immediately)

Note that in our baseline results, we do not remove options for which we have no volume
information, or for which volume is zero. However, we have reproduced our main analysis
(figure 3) including that filter and find, if anything, stronger results. We report them in
Appendix figure A.5.

We then calculate implied volatilities using the Black–Scholes formula, treating the op-
tions as though they are European. We have also replicated the analysis using American
implied volatilities and find nearly identical results (the reason is that in most cases we
ultimately end up converting the IVs back into prices, meaning that any errors in the pric-
ing formula are largely irrelevant – it is just a temporary data transformation, rather than
actually representing a volatility calculation).

The data are then further filtered based on the IVs:

1. Eliminate all zero or negative IVs

2. All options with IV more than 50 percent (in proportional terms) different from the
average for the same underlying, date, and maturity

3. We then filter outliers along all three dimensions, strike, date, and maturity, removing
the following:

(a) If the IV changes for a contract by 15 percent or more on a given day then
moves by 15 percent or more in the opposite direction in a single day within the
next week, and if it moves by less than 3 percent on average over that window,
for options with maturity greater than 90 days (this eliminates temporary large
changes in IVs that are reversed that tend to be observed early in the life of the
options).
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(b) If the IV doubles or falls by half in either the first or last observation for a contract

(c) If, looking across maturities at a given strike on a given date, the IV changes by
20 percent or more and then reverses by that amount at the next maturity (i.e.
spikes at one maturity). This is restricted to maturities within 90 days of each
other.

(d) If the last, second to last, or third to last IV is 40 percent different from the
previous maturity.

(e) If, looking across strikes at a given maturity on a given date, the IV changes by
20 percent and reverses at the next strike (for strikes within 10 percent of each
other).

(f) If the change in IV at the first or last strike is greater than 20 percent, or the
change at the second or second to last option is greater than 30 percent.

At-the-money (ATM) IVs are constructed by averaging the IVs of the options with the
first strike below and above the futures price. The ATM IV is not calculated for any obser-
vation where we do not have at least one observation (a put or a call) on both sides of the
futures price.

To calculate ATM straddle returns for each maturity, we interpolate linearly between
the IVs of the two closest out of the money options on either side of the spot, and use this
to compute the implied price of the ATM straddle at the beginning of the holding period;
similarly, we interpolate linearly the IVs of those options at the end of the holding period,
and obtain the corresponding price of the straddle at the end of the holding period. These
prices are then used to compute the holding period return. Finally, to calculate returns of
straddles at standardized maturities, we interpolate linearly the returns across maturities
(which corresponds to a feasible portfolio). If options are not available on the maturities on
both sides of the target one, then we use a single straddle if it has a maturity within 35 days
of the target maturity.

A.2 Implied volatility and regression forecasts

Implied volatilities are, under certain assumptions, expectations of future realized volatility
under the risk-neutral measure. If there is a time-varying volatility risk premium, then
implied volatilities will be imperfectly correlated with physical expectations of future realized
volatility, which constitutes actual uncertainty. This section compares implied volatilities to
regression-based forecasts of future volatility to evaluate the quantitative magnitude of that
deviation.

For each market, we estimate the regression

RVi,t = ai + bi (L)RVi,t−1 + ciIVi,t−1 + εi,t (A.1)

where bi (L) is a polynomial in the lag operator, L, and ai and ci are coefficients. RVi,t is
realized volatility in month t for market i – the sum of squared daily futures returns during
the month. IVi,t is the (at-the-money) implied volatility at the end of month t in market i.
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The table below reports the correlation between the fitted values from that regres-
sion – which represent physical uncertainty – and implied volatility. That is, it reports
corr (bi (L)RVi,t−1 + ciIVi,t−1, IVi,t−1). Ideally, we would like that correlation to be 1, so
that implied volatility is perfectly correlated with physical uncertainty, and hedging implied
volatility hedges uncertainty. Note that this does not require that risk premia are constant.
If bi (L) = 0 but ci 6= 1, risk premia are time-varying, but the physical uncertainty is still
perfectly correlated with implied volatility. It is only deviations of bi (L) from zero that
reduce the correlation. To the extent that the implied volatility summarizes all available
information, we would expect bi = 0.

Correlations of implied volatility with fitted uncertainty

S&P 500 0.966 Crude oil 0.998 Silver 0.984
Treasuries 0.940 Feeder cattle 0.951 Soybeans 0.970
British Pound 0.987 Gold 0.994 Soybean meal 0.974
Swiss Franc 0.994 Heating oil 0.992 Soybean oil 0.946
Yen 0.976 Lean hogs 0.937 Wheat 0.998
Copper 0.963 Live cattle 0.919
Corn 0.994 Natural gas 0.949

The table shows that across the various markets, the correlations are all high, with a
minimum of 91.1 percent and a mean of 97.0 percent. So while implied volatility is not
literally the same as physical uncertainty, it appears to be fairly close. In the baseline
results, we allow for two lags in the polynomial b, but we have experimented with alternative
specifications and obtain similar results.

A.3 Factor models and factor-hedging portfolios

In this section we review a useful result from the algebra of cross-sectional regressions: given
a set of K nontradable factors Ft, the cross-sectional estimates of the K risk premia, λ, are
the average excess returns of K portfolios, each of which has betas of exactly 1 with respect
to one factor, and 0 with respect to the other K − 1 factors: we refer to these as factor-
hedging portfolios for the K factors in Ft. The time series of returns for the factor-hedging
portfolios are the slopes of period-by-period cross-sectional regressions. These results hold
in population.

Consider K nontradable factors Ft, and a vector of N excess returns rt of test assets.
Nontradable factors have a risk premium of λ (a K×1 vector), so the factor model can be
written as:

rt︸︷︷︸
N×1

= β︸︷︷︸
N×K

λ︸︷︷︸
K×1

+ β︸︷︷︸
N×K

(Ft − E[Ft])︸ ︷︷ ︸
K×1

+ et︸︷︷︸
K×1

(A.2)

Cross-sectional regressions operate in two stages. First, they estimate the N ×K matrix β
from time series regressions of the form:

rt = k + βFt + et
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where the constant k also depends on the means of the factors E[Ft], which is not in-
terpretable in general when factors are nontradable, and is irrelevant for computing β. The
second step of the cross-sectional regression could either be estimated using average returns
(in one cross-sectional regression), or as a sequence of period-by-period cross-sectional regres-
sions. The latter approach is often used in practice (as in the Fama-MacBeth version of the
two-step regressions) because it makes standard errors calculation easier, but either method
yields the same point estimates for risk premia λ. Here, we also follow the second method,
but for a different reason: because it generates a time-series of factor-hedging portfolios.

We therefore run, for each period t, cross-sectional regressions of rt on the estimated β:

rt = at + βgt + ut

obtaining a time-series of K × 1 slope vectors gt. Risk premia λ are then estimated as the
time-series average of the slopes: λ = E[gt].

The time-series slopes gt have a useful interpretation. They are calculated in each period
as:

gt = (β
′
β)−1β′rt (A.3)

This equation clarifies that gt are themselves excess returns (they are the returns of
portfolios of the underlying N assets, with weights w = (β

′
β)−1β′); the risk premia λ are

the (risk premia) average excess returns of these K portfolios gt. We can now explore the
properties of these portfolios. Substituting rt out from (A.2) we have:

gt = (β
′
β)−1β′(βλ+ β(Ft − E[Ft]) + et) = λ+ (Ft − E[Ft]) + (β

′
β)−1β′et

Under suitable assumptions on the cross-sectional dispersion in the β (see Giglio and Xiu
(2019) for a formal analysis) the last term is close to zero for large N (intuitively, the idiosyn-
cratic errors are diversified away, and the gt are well-diversified portfolios). We therefore can
write:

gt ' λ+ (Ft − E[Ft])

From this equation, it is clear that, as expected, E[gt] = λ. In addition, these K portfolios
have the special property of being exposed to exactly one of the underlying factor Ft each:
the matrix of exposures of gt to factor innovations Ft − E[Ft] is simply the identity matrix.
So the first portfolio has betas [1, 0, 0 , 0, ...], the second portfolio has betas [0, 1, 0 , 0, ...],
and so on. This is why we refer to these portfolios as factor-hedging portfolios.

Finally, it is worth pointing out that the latter property also holds in any sample: the
estimated betas of the factor-hedging portfolios with respect to the nontradable factors will
be the vectors [1, 0, 0 , 0, ...], [0, 1, 0 , 0, ...] and so on in every sample.

A.4 Approximating return sensitivities

This section describes the approximation of option returns used to obtain the rv and iv
portfolios. P denotes the price of an at-the-money straddle or strangle. σ is the Black–
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Scholes volatility, n is the time to maturity, F is the forward price, and K is the strike. N
denotes the standard Normal cumulative distribution function.

For the calls and puts, respectively, we set

Kcall = F exp

(
bσ
√
n+

σ2

2
n

)
(A.4)

Kput = F exp

(
−bσ
√
n+

σ2

2
n

)
(A.5)

We calculate everything for arbitrary b. A straddle is the special case where b = 0, while a
strangle has positive b, so that both the put and call are out of the money.

A.4.1 Prices

We first calculate the price of a strangle. The Black–Scholes formula gives

Pcall = FN (−b)− F exp

(
bσ
√
n+

σ2

2
n

)
N
(
−b− σ

√
n
)

(A.6)

Pput = −FN (−b) + F exp

(
−bσ
√
n+

σ2

2
n

)
N
(
−b+ σ

√
n
)

(A.7)

So the total price is

P = Pcall + Pput = F (N (−b)−N (−b)) (A.8)

−F
(

exp

(
bσ
√
n+

σ2

2
n

)
N
(
−b− σ

√
n
)
− exp

(
−bσ
√
n+

σ2

2
n

)
N
(
−b+ σ

√
n
))

(A.9)

≈ FN ′ (−b) 2σ
√
n (A.10)

where the second line uses a first order approximation toN (x) around−b and exp
(
bσ
√
n+ σ2

2
n
)
≈

1.

A.4.2 Return derivatives

The local approximation for returns that we use is

∂rt+1

∂xt+1

=
∂

∂xt+1

P (Ft+1, σt+1)

P (Ft, σt)
(A.11)

and we evaluate the derivatives at the point Ft+1 = Ft, σt+1 = σt.
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We have

∂rt+1

∂σt+1

=
Pσ,t+1

Pt
(A.12)

=
N ′ (−b) +N ′ (b)

N ′ (−b) 2σt
(A.13)

≈ 1

σt
(A.14)

where Pσ,t denotes ∂P (Ft+1, σt+1) /∂σt+1 (evaulated at σ2
t+1 = σ2

t ), and using the approxi-
mation that N ′ (b) ≈ N ′ (−b). We then have

∂rt+1

∂ (∆σt+1/σt)
≈ 1 (A.15)

Next, for squared returns, we have

∂rt+1

∂F 2
t+1

=
PFF,t
Pt

(A.16)

=
1

FtN ′ (−b) 2σ
√
n

N ′ (−b) +N (b)

Ftσt
√
n

(A.17)

≈ 1

F 2
t σ

2
t n

(A.18)

Again using N ′ (b) ≈ N ′ (−b). Finally, note that ∂ft+1 = ∂Ft+1/Ft+1, so that

∂2rt+1

∂ (ft+1/σt)
2 =

∂rt+1

∂F 2
t+1

F 2
t σ

2
t (A.19)

≈ 1

n
(A.20)

A.4.3 Accuracy

To study how effective the above approximation is, we examine a simple simulation. We as-
sume that options are priced according to the Black–Scholes model. We set the initial futures
price to 1 and the initial volatility to 30 percent per year. We then examine instantaneous
returns (i.e. through shifts in σ and S) on the iv and rv portfolios for straddles defined
exactly as in the main text, allowing the futures return to vary between between +/− 23.53
percent, which corresponds to variation out to four two-week standard deviations. We allow
volatility to move between 15 and 60 percent – falling by half or doubling.

The top two panels of figure A.3 plot contours of returns on the rv and iv portfolios
defined in the main text, while the middle panels plot the contours predicted by the approx-
imations for the partial derivatives. For the iv portfolio, except for very large instantaneous
returns – 15–20 percent – the approximation lies very close to the truth. The bottom-right
panel plots the error – the middle panel minus the top panel – and except for cases where the
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underlying has an extreme movement and the implied volatility falls – the exact opposite of
typical behavior – the errors are all quantitatively small, especially compared to the overall
return.

For the rv portfolio, the errors are somewhat larger. This is due to the fact that we
approximate the rv portfolio using a quadratic function, but its payoff has a shape closer to
a hyperbola. Again, for underlying futures returns within two standard deviations (where
the two-week standard deviation here is 5.88 percent), the errors are relatively small quan-
titatively, especially when σ does not move far. Towards the corners of the figure, though,
the errors grow somewhat large.

These results therefore underscore the discussion in the text. The approximations used
to construct the iv and rv portfolios are qualitatively accurate, and except in more extreme
cases also hold reasonably well quantitatively. But they are obviously not fully robust to all
events, so the factor model estimation, which does not rely on any approximations, should
be used in situations where the nonlinearities are a concern.

A.4.4 Empirical return exposures

To check empirically the accuracy of the expressions for the risk exposures of the straddles,
appendix figure A.2 plots estimated factor loadings for straddles at maturities from one to
five months for each market from time series regressions of the form

ri,n,t = ai,n + βfi,n
fi,t

IVi,t−1

+ βf
2

i,n

1

2

(
fi,t

IVi,t−1

)2

+ β∆IV
i,n

∆IVi,t
IVi,t−1

+ εi,n,t (A.21)

The prediction of the analysis above is that βfi,n = 0, βf
2

i,n = 1/n, and β∆IV
i,n = 1.

Across the panels, the predictions hold surprisingly accurately. The loadings on fi,t are all
near zero, if also generally slightly positive. The loadings on the change in implied volatility
are all close to 1, with little systematic variation across maturities. And the loadings on the
squared futures return tend to begin near 1 (though sometimes biased down somewhat) and
then decline monotonically, consistent with the predicted n−1 scaling.

Table A.2 reports results of similar regressions for each underlying of the returns on the
rv and iv portfolios on the underlying futures return, the squared futures return, and the
change in implied volatility. The table shows that while the Black–Scholes predictions do not
hold perfectly, it is true that the rv portfolio is much more strongly exposed to realized than
implied volatility, and the opposite holds for the iv portfolio. The coefficients on (ft/σt−1)2

average 0.78 for the rv portfolio and 0.12 for the iv portfolio (though that average masks
some variation across markets). Conversely, the coefficients on ∆σt/σt−1 average 0.03 for
the rv portfolio and 0.81 for the iv portfolio Furthermore, the R2s are large, averaging 70
percent across the various portfolios, implying that their returns are well described by the
approximation (4).
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A.4.5 Volume

Figure A.14 reports the average daily volume of all of the option contracts across maturities
1 to 6 months. For crude oil, which we use here as a reference contract, the figure reports
average daily volume in dollars; for all other contracts, it reports the average daily volume
relative to crude oil. Empirically, crude oil options have volume numbers of the same order
of magnitude as the S&P 500, while there is more heterogeneity across the other markets.
Looking across maturities, the general pattern is that dollar volume declines by about a
factor of three in almost all the markets between the 1- and 6-month maturities – so the
6-month maturity has less volume, but far from zero.

A.4.6 Alternative scaling for returns

Because returns have a price in the denominator, if that price is measured with error, returns
can be biased upwards. The iv portfolio is net long the straddles, while the rv portfolio has
a total weight of zero, so measurement error in prices would bias iv returns up but not rv
returns. To account for that possibility, this section examines results when all the straddle
returns are scaled by the price of the one-month straddle, instead of the price of a straddle
with the same maturity.

Specifically, denoting Pn,t the price of a straddle of maturity n on date t, the return on
an n-month straddle used in the main results is

Rn,t =
Pn−1,t+1 − Pn,t

Pn,t
(A.22)

We consider returns on a portfolio that puts weight Pn,t

P1,t
on the n-month straddle and weight

1− Pn,t

P1,t
on the risk-free asset (which is a tradable portfolio), which is

rrescaledn,t+1 =
Pn−1,t+1 − Pn,t

Pn,t

Pn,t
P1,t

+

(
1− Pn,t

P1,t

)
rf,t (A.23)

=
Pn−1,t+1 − Pn,t

P1,t

+

(
1− Pn,t

P1,t

)
rf,t (A.24)

This portfolio is useful for two reasons. First, the one-month maturity has the highest volume
in most markets we study, and it is typically considered to be the most accurate. Second, this
eliminates differences in bias across maturities since in this specification, the denominator is
the same for all n.

For rrescaledn,t+1 , similar calculations to those above yield the results that

∂2rrescaledn,t+1

∂ (ft+1/σt)
2 ≈ 1√

n
(A.25)

∂rrescaledn,t+1

∂ (∆σt+1/σt)
≈
√
n (A.26)
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We then calculate alternative rv and iv portfolios as

ivrescaledt =
3√
12

(√
5/12rrescaled5,t −

√
1/12rrescaled1,t

)
(A.27)

rvrescaledt =
5/48√

12

(√
12rrescaled1,t −

√
12/5rrescaled5,t

)
(A.28)

Figure A.15 replicates figure 3 with the rescaled returns. The results are nearly identical
to the baseline for both the Sharpe ratios on the iv and rv portfolios and the estimated
factor risk premia. These results show that when we correct for the potential bias induced
by low liquidity and measurement error at longer maturities, the estimates are essentially
unchanged.

A.5 Random effects models

Denote the vector of true Sharpe ratios for the straddles in market i as sri. Our goal is
to estimate the distribution of sri across the various underlyings. A natural benchmark
distribution for the means is the normal distribution,

sri ∼ N (µsr,Σsr) (A.29)

This section estimates the parameters µsr and Σsr. µsr represents the high-level mean of
Sharpe ratios across all the markets, and Σsr describes how the market-specific means vary.
The estimates of the market-specific Sharpe ratios differ noticeably across markets, but much
of that is variation is likely driven by sampling error. Σsr is an estimate of how much the
true Sharpe ratios vary, as opposed to the sample estimates.

Denote the sample estimate of the Sharpe ratio in each market as ŝri, and the stacked
vector of sample Sharpe ratios as ŝr ≡

[
ŝr′1, ŝr

′
2, ...

]′
. Similarly, denote the vector of true

Sharpe ratios as sr ≡ [sr′1, sr
′
2, ...]

′. Under the central limit theorem,

ŝr⇒ N (sr,Σŝr) (A.30)

where ⇒ denotes convergence in distribution and the covariance matrix Σŝr depends on the
covariance between all the returns, across both maturities and underlyings, along with the
lengths of the various samples.1 Appendix A.6 describes how we construct Σŝr.

The combination of (A.29) and (A.30) represents a fully specified distribution for the
data as a function of µsr and Σsr. It is then straightforward to construct point estimates
and confidence intervals for µsr and Σsr with standard methods.

To allow for the possibility that average returns differ between the financial and nonfi-
nancial underlyings, the mean in the likelihood can be replaced by µsr + µDIF , where µD

1More formally, we would say that ŝr properly scaled by the square root of the sample size converges to
a normal distribution. The expression (A.30) implicitly puts the sample size in Σŝr. The derivation of this
result is a straightforward application of the continuous mapping theorem, nearly identical to the proof that
a sample t-statistic is asymptotically Normally distributed.
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is the difference in Sharpe ratios and IF is a 0/1 indicator for whether the associated un-
derlying is financial. We calculate the sampling distribution for the estimated parameters
through Bayesian methods, treating the parameters as though they are drawn from a uni-
form prior. The point estimates are therefore identical to MLE, and the confidence bands
represent samples from the likelihood.2

A.6 Calculating the covariance of the sample mean

returns

There are two features of our data that make calculating covariance matrix of sample means
difficult: we have an unbalanced panel and the covariance matrix is either singular or nearly
so. We deal with those issues through the following steps.

1. For each market, we estimate the two largest principal components, therefore modeling
straddle returns for underlying i and maturity n on date t as

ri,n,t = λ1,i,nf1,i,t + λ2,i,nf2,i,t + θi,n,t (A.31)

where the λ are factor loadings, the f are estimated factors, and θ is a residual that we take
to be uncorrelated across maturities and markets (it is also in general extremely small).

2. We calculate the long-run covariance matrix of all J × 2 estimated factors. The
covariance matrix is calculated using the Hansen–Hodrick method to account for the fact that
the returns are overlapping (we use daily observations of 2-week returns). The elements of
the covariance matrix are estimated based on the available nonmissing data for the associated
pair of factors. That means that the covariance matrix need not be positive semidefinite.
To account for that fact, we set all negative eigenvalues of the estimated covariance matrix
to zero.

Given the estimated long-run covariance matrix of the factors, denoted Σf , and given the
(diagonal) long-run variance matrix of the residuals θ, denoted Σθ, the long-run covariance
matrix of the returns is then

Σr ≡ ΛΣfΛ
′ + Σθ (A.32)

where Λ is a matrix containing the factor loadings λ.
3. Finally, it is straightforward to show that the covariance matrix of the sample mean

returns is
Σr̂ = M � Σr (A.33)

where � denotes the elementwise product and M is a matrix where the element for a given
return pair is equal to the ratio of the number of observations in which both returns are
available to the product of the number of observations in which each return is available
individually (if all returns had the same number of observations T , then we would obtain

2We use Bayesian methods to calculate the sampling intervals because likelihood-based methods require
inverting large second derivative matrices, which can be numerically unstable. The estimation in this section
is performed using the Bayesian computation engine Stan, which provides functions that both maximize the
likelihood and rapidly sample from the posterior distribution. Code is available on request.
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the usual T−1 scaling). We then have the asymptotic approximation that

r̂ ⇒ N (r̄,Σr̂) (A.34)

where r̂ is a vector that stacks the r̂i and r̄ stacks the r̄i and ⇒ denotes convergence in
distribution.

To construct Σŝr, we simply divide the i, j element of Σr̂ by the product of the sample
standard deviations of ri and rj.

A.7 Calculating risk prices with unbalanced panels

and correlations across markets

In estimating the factor models, we have two complications to deal with: the sample length
for each underlying is different, and returns are correlated across underlyings. This section
discusses how we deal with those issues.

We have the model
ETi [Ri] = λiβi + αi (A.35)

where ETi denotes the sample mean in the set of dates for which we have data for underlying
i, Ri is the vector of returns of the straddles, λi is a vector of risk prices, βi is a vector of risk
prices, and αi is a vector of pricing errors. Note that these objects are all population values,
rather than estimates. In order to calculate the sampling distribution for the estimated
counterparts, we need to know the covariance of the pricing errors. Note that there is also
a population cross-sectional regression with

ETi [Ri] = ai + βiETi [fi] + ETi [εi] (A.36)

where εi is a vector of residuals and fi is a vector of pricing factors. That formula can be
used to substitute out returns and obtain

αi = ai + βiETi [fi] + ETi [εi]− λiβi (A.37)

Since ai, λi, and βi are fixed in the true model, the distribution of αi depends only on the
distributions of the sample means ETi [fi] and ETi [εi]. Denoting the long-run (i.e. Hansen–
Hodrick) covariance matrix of fi as Σfi and that of εi as Σεi , we have

var (αi) = βiT
−1
i Σfβ

′
i + T−1

i Σεi (A.38)

Since the λi are estimated from a regression, if we denote their estimates as λ̂i, we obtain
the usual formula for the variance of λ̂i − λi

var
(
λ̂i − λi

)
= (β′iβi)

−1
β′ivar (αi) βi (β

′
iβi)

−1
(A.39)

= Σf + (β′iβi)
−1
β′iΣεiβi (β

′
iβi)

−1
(A.40)
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Beyond the variance of λ̂i, we also need to know the covariance of any pair of estimates, λ̂i
and λ̂j. Using standard OLS formulas, we have

[
λ̂i − λi
λ̂j − λj

]
=

[
(β′iβi)

−1 β′iαi(
β′jβj

)−1
β′jαj

]
(A.41)

=

[
(β′iβi)

−1 β′i (βiETi [ft] + ETi [εj,t])(
β′jβj

)−1
β′j
(
β2ETj [ft] + ETj [εj,t]

) ] (A.42)

The covariance between λ̂i and λ̂j is then

T12

T1T2

(
Σf,i,j + (β′1β1)

−1
β′1Σε,i,jβ2 (β′2β2)

−1
)

(A.43)

where Σf,i,j and Σε,i,j are now long-run covariance matrices (again from the Hansen–Hodrick
method). Using these formulas, we then have estimates of risk prices in each market indi-
vidually along with a full covariance matrix of all the estimates.

A.8 SDF-based analysis

The marginal effects of realized and implied volatility can be estimated using the stochastic
discount factor representation of the factor model estimated in the previous section. Specif-
ically, given the set of straddle returns in each market, one can construct a pricing kernel
Mt of the form

Mt = M̄ −mf
i

fi,t
IVi,t−1

−mf2

i

(
fi,t

IVi,t−1

)2

−m∆IV
i

∆IVi,t
IVi,t−1

(A.44)

where Mt represents state prices (or marginal utility) and 1 = Et−1MtRt for any return priced
by M . The difference between this specification and that in the previous section is that the
coefficients m... represent the marginal impact of each term on marginal utility, whereas the
γ... coefficients represent the premium for total exposure to the factors. Cochrane (2001)
discusses the distinction extensively.

Denoting the covariance matrix of the factors in market i by Σi, the m coefficients can
be recovered as [

mf
i ,m

f2

i ,m
∆IV
i

]′
= Σ−1

i

[
γfi , γ

f2

i , γ
∆IV
i

]′
(A.45)

The m’s now represent Sharpe ratios on portfolios with exposure to each of the individual
factors, orthogonalized to the other two. That is, m∆IV

i is the Sharpe ratio for a portfolio

exposed to the part of
∆IVi,t
IVi,t−1

that is orthogonal to
fi,t

IVi,t−1
and

(
fi,t

IVi,t−1

)2

.

Figure A.12 reports the results of this exercise. The findings are qualitatively consistent
with the main results in figure 3 and in fact even stronger quantitatively. The marginal
effect of an increase in uncertainty on marginal utility, holding realized volatility fixed, is
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consistently negative, while an increase in realized volatility increases marginal utility. The
fact that these results are close to the benchmark case is a consequence of the weak correlation
between innovations in realized and implied volatility, so that the rotation by Σ−1

i has small
effects.

Figure A.12 also reports premia on orthogonalized versions of the rv and iv portfolios.3

Again, the results are similar to the main analysis.

A.9 Robustness: ETF options

This section provides an alternative check on the results for crude oil options by examining
returns on straddles for options on two exchange traded funds. The first is the United States
Oil Fund (USO), which invests in short-term oil futures. USO has existed since 2006, and
Optionmetrics reports quotes for options beginning in May, 2007. The second fund is the
Energy Select Sector SPDR fund (XLE), which tracks the energy sector of the S&P 500.
XLE has existed since 1998 and Optionmetrics reports data since December, 1998.

We eliminate observations using the following filters:
1. Volume less than 10 contracts
2. Time to maturity less than 15 days
3. Bid-ask spread greater than 20 percent of bid/ask midpoint
4. Initial log moneyness – log strike divided by the futures price – greater than 0.75

implied volatility units in absolute value (where implied volatility is scaled by he square root
of time to maturity).

We then calculate straddle returns as in the main text over two-week periods and average
across the two straddles nearest to the money for each maturity, weighting them by the
inverse of their absolute moneyness.

The top section of table A.9.1 reports the number of (potentially overlapping) two-week
straddle return observations across maturities for USO, XLE, and the CME Group futures
options used in the main analysis. Since the CME data goes back to 1983, there are far more
observations for that series than the other two. More interestingly, though, the number
of observations only declines by about 10 percent between the 1- and 6-month maturities,
while it falls by more than 2/3 for the XLE and USO samples. The CME data therefore has
superior coverage at longer horizons, which justifies its use in our main analysis.

The bottom section of table A.9.1 reports the correlations of the USO and XLE straddle
returns with those for the CME on the days where they overlap. The correlations are
approximately 90 percent at all maturities for USO and 50 percent for XLE. The 90-percent
correlations for USO and the CME sample provide a general confirmation of the accuracy of
the CME straddle returns, since we would expect the USO and CME options to be highly
similar as USO literally holds futures. The lower correlation for XLE is not surprising given
that it holds energy sector stocks rather than crude oil futures.

Table A.9.1.

3These are constructed simply through a rotation. The rv⊥ portfolio has a positive correlation with rv
and zero correlation with iv, whie the iv⊥ portfolio has zero correlation with rv and a positive correlation
with iv.
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Maturity: 1 2 3 4 5 6
# obs. USO 1640 1616 1721 1679 1118 525

XLE 2612 2545 2454 1928 1134 369
CME 6762 6645 6817 6801 6606 5998

Corr. w/ USO 0.93 0.96 0.95 0.92 0.89 0.83
CME XLE 0.43 0.48 0.50 0.49 0.50 0.53

In the main text, the RV and IV portfolio returns are calculated using 5- and 1-month
straddles. Since the number of observations drops off substantially between 4 and 5 months
for both XLE and USO, though, here we examine returns on RV and IV portfolios using
both 5- and 4-month straddles for the long-maturity side.

Figure A.16 plots estimated annualized Sharpe ratios along with 95-percent confidence
bands for the RV and IV portfolios using 4- and 5-month straddles for the three sets of
options. In all four cases, the three confidence intervals always overlap substantially. The
fact that the sample for the CME options is far larger is evident in its confidence bands
being much narrower than those for the other two sources. For the IV portfolios, USO has
returns that are close to zero, but its confidence bands range from -1 to greater than 0.5,
indicating that it is not particularly informative about the Sharpe ratio.

Table A.9.2 reports confidence bands for the difference between the IV and RV average
returns constructed with the CME data and the same portfolios constructed using USO
and XLE. The top panel shows that the differences for the IV portfolios are negative for
USO and positive for XLE, but only the difference for USO constructed with the 4-month
straddle is statistically significant. The bottom panel similarly shows mixed results for the
point estimates for the differences for the RV portfolios, with none of the differences being
statistically significant.

Table A.9.2. Differences between CME and USO, XLE mean returns

USO - CME, 4mo. USO - CME, 5mo. XLE - CME, 4mo. XLE - CME, 5mo.
IV return -2.2 -2.2 -0.8 -1.4

[-3.9,-0.2] [-4.8,0.4] [-2.5,4.1] [-4.1,6.3]
RV return 0.43 0.47 -0.27 0.67

[-0.6,1.4] [-0.6,1.4] [-1.8,1.3] [-1.5,2.6]

Notes: the table reports percentage (two-week) returns on USO and XLE minus returns on

CME RV and IV portfolios. 95-percent confidence intervals are reported in brackets.

The fact that the USO and CME straddle returns are highly correlated does not neces-
sarily mean that the CME data is accurate for the mean return on the straddles. To check
whether the difference in the means observed in the USO and XLE data would affect out
main results, we ask how the Sharpe ratios of the RV and IV portfolios in the CME data
would change if we shifted their means by the average differences reported in table A.9.2.
The bars labeled “CME, USO adj.” and CME, XLE adj.” show how the confidence bands
would change if we shifted them by exactly the point estimates from table A.9.2. Note that
this is not the same as shifting the Sharpe ratio for the CME data to match that for the
XLE or USO data. The reason is that the difference in table A.9.2 is calculated only for the
returns on matching dates, whereas the Sharpe ratio calculated in figure A.16 is calculated
using the full sample for the CME data. So the two adjusted bands take the full-sample
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band and then shift it by the mean difference calculated on the dates that overlap between
the CME data and XLE or USO.

Figure A.16 shows that the economic conclusions drawn for the crude oil straddles are not
changed if the mean returns are shifted by the differences observed in table A.9.1. The RV
portfolio returns remain statistically significantly negative in all four cases, the changes in
the point estimates are well inside the original confidence intervals. The top panel shows that
the IV returns using 5-month straddles are similarly unaffected. For the 4-month straddles,
the only difference is that with the USO options, the estimated Sharpe ratio falls by about
half and is no longer statistically significantly greater than zero. So, again, out of eight cases
– IV and RV with 4- and 5-month straddles – in only one is there a nontrivial change in the
conclusions, and even there the Sharpe ratio on the IV portfolio does not become negative,
it is simply less positive.

Overall, the period in which the USO and XLE options are traded is too short to use
them for our main analysis. This section shows that the USO straddle returns are highly
correlated with the CME returns. The mean returns on the XLE and CME straddles are
highly similar, while they differ somewhat more for CME and USO. However, shifting the
means used for the CME options in the main analysis by the observed difference between
the CME and USO options does not substantially change any of the conclusions.

A.10 Robustness: Oil and gas equity options

As a further extension of the results for ETS above, we also analyse the returns on options
on oil and gas companies. Specifically, we obtain data from Optionmetrics on firms with an
Optionmetrics industry code between 120 and 125. We then constructed rv and iv portfolios
for those firms using the same methods as for the main analysis, again with maturities of one
and five months. We construct two-week returns and sum them across whatever firms are
available on each date, weighting by market capitalization. The Optionmetrics data covers
the period 1996–2018.

Sharpe ratio
rv -0.56

95% CI [-1.02,-0.10]
iv 0.05

95% CI [-0.42,0.52]
The Sharpe ratios for the rv and iv portfolios for oil and gas companies are below. Similar

to the main results, we obtain a significantly negative premium on realized volatility and a
marginally positive premium on implied volatility. The premium for the iv portfolio for oil
and gas companies is less positive than for crude oil futures options, but more positive than
for S&P 500 index options. In other words, the results imply that options on oil and gas
companies behave as though they are a mixture of options on the S&P 500 and on crude oil,
which is not an unrealistic desciption of oil and gas companies.

Because of the relatively short sample compared to the main results, similar to the
previous section, this analysis has relatively low power. The point estiamte for rv is outside
the confidence band for iv and vice versa, but their confidence bands do overlap and the
Sharpe ratios are not statistically significantly different from each other. That also illustrates
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the benefit in the main analysis of using information from many different markets to help
increase estimation power. Nevertheless, the results in this section are consistent with our
main findings, if statistically weaker.

A.11 Model

To help provide some context for the empirical results and fit them into a standard frame-
work, this section describes results from a simple extension of the standard long-run risk
model of Bansal and Yaron (2004). The technical analysis is in section A.12; here we report
the specification and key results.

Agents have Epstein–Zin preferences over consumption , Ct, with a unit elasticity of
substitution, where the lifetime utility function, vt, satisfies

vt = (1− β) logCt +
β

1− α
logEt exp ((1− α) vt+1) (A.46)

where α is the coefficient of relative risk aversion. Consumption growth follows the process

∆ct = xt−1 +
√
σ2
B,t−1 + σ2

G,t−1εt + Jbt (A.47)

xt = φxxt−1 + ωxηx,t + ωx,Gησ,G,t − ωx,Bησ,B,t (A.48)

σ2
j,t = (1− φσ) σ̄2

j + φσσ
2
j,t−1 + ωjησ,j,t, for j ∈ {B,G} (A.49)

where εt and the η·,t are independent standard normal random variables. xt represents the
consumption trend. We have two deviations from the usual setup. First, we include jump
shocks, Jbt, where bt is a Poisson distributed random variable with intensity λ and J is the
magnitude of the jump. This addition allows for random variation in realized volatility and
is drawn from Drechsler and Yaron (2011). Second, there are two components to volatility,
which we refer to as bad and good. Bad volatility, σ2

B, is associated with low future con-
sumption growth, while good volatility, σ2

G, is associated with high future growth (where all
of the ω· coefficients are nonnegative).

Define realized volatility to be the realized quadratic variation in consumption growth,
while implied volatility is the conditional variance of consumption growth (these are formal-
ized in the appendix).

Proposition 1 The average excess returns on forward claims to realized and implied volatil-
ity for consumption growth in this model are,

E [RVt+1 − PRV,t] = J2λ (1− exp (−αJ)) (A.50)

E [IVt+1 − PIV,t] = (α− 1)
(
vY,x (ωx,GωG − ωx,BωB) + vY,σ

(
ω2
G + ω2

B

))
(A.51)

where Px,t is the forward price for x. E [IVt+1 − PIV,t] > 0 for ωx,G sufficiently larger than
ωx,B. Furthermore, the sign of E [RVt+1 − PRV,t] is the same as the sign of J and of the
conditional skewness of consumption growth (i.e. the skewness of ∆ct+1 conditional on date-
t information).
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Proposition 1 contains our key analytic results. We analyze premia for realized and
implied volatility on consumption – real activity – consistent with the focus in the empirical
analysis on macro volatility and uncertainty. The negative premium on realized volatility
is driven by downward jumps, similar to the literature on the volatility risk premium in
equities (Drechsler and Yaron (2011), Wachter (2013)). The sign of the premium on implied
volatility depends on the contribution of good versus bad volatility. When good volatility
shocks, where high volatility is associated with high future growth (e.g. due to learning
about new technologies), are relatively larger than bad volatility shocks (ωx,GωG > ωx,BωB)
the premium on implied volatility can be positive.

Section A.12 provides a numerical calibration of the model using values close to those in
Bansal and Yaron’s (2004) original choices. It shows that the model generates quantitatively
realistic Sharpe ratios for implied and realized volatility in addition to a reasonable equity
premium.

The key economic mechanism for the positive pricing of uncertainty shocks is that high
volatility is sometimes associated with higher long-term growth. Intuitively, that mechanism
contributes positive skewness to consumption growth, while the jumps contribute negative
skewness. The appendix provides novel evidence on the skewness of consumption growth
consistent with the model. In particular, conditional skewness in the model, which depends
only on the jumps, is more negative than the skewness of expected consumption growth,
which depends on the relationship of volatility and long-run growth (x). We show that
consumption growth displays exactly the same pattern in US data.

So a simple version of the long-run risk model with good and bad volatility shocks and
jumps in consumption can match our key empirical facts. Furthermore, the empirical results
are sharp, in the sense that the sign of the premium on implied volatility identifies the
relative importance of the bad and good volatility shocks, while the sign of the premium on
realized volatility identifies the sign of consumption jumps.

A.12 Model details

A.12.1 Dynamics

Consumption growth follows

∆ct = xt−1 +
√
σ2
B,t−1 + σ2

G,t−1εt + Jbt (A.52)

xt = φxxt−1 + ωxηx,t + ωx,Gησ,G,t − ωx,Bησ,B,t (A.53)

σ2
j,t = (1− φσ) σ̄2

j + φσσ
2
j,t−1 + ωjησ,j,t (A.54)

for j ∈ {G,B}. The shocks ε, ηx, ηG, ηB are independent and Gaussian with unit variances.
The ω coefficients are all assumed to be positive. bt is a Poisson random variable with
intensity λ.

A.17



The dynamics can also be written as

[
xt

σ2
t − σ̄2

]
=

[
φx 0
0 φσ

] [
xt−1

σ2
t−1 − σ̄2

]
+

[
ωx ωx,G 0
0 ωG ωB

] ηx,t
ηG,t
ηB,t

 (A.55)

∆ct = xt−1 + σ2
t−1εt + Jbt (A.56)

Yt = FYt−1 +Gηt (A.57)

where Yt = [xt, σ
2
t − σ̄2]

′
, etc. The fact that the model can be rewritten with only a single

variance process follows from the linearity of the two processes, the fact that they have the
same rate of mean reversion, and the fact that they appear additively. We can then write
consumption and dividend growth as

∆ct = c′Y Yt−1 +
√
σ̄2 + g′Y Yt−1εt + Jbt (A.58)

∆dt = γ
(
c′Y Yt−1 +

√
σ̄2 + g′Y Yt−1εt + Jbt

)
+ ωdεd,t (A.59)

for vectors cY and gY . ∆dt is log dividend growth, which we will use for modeling equities.
It satisfies ∆dt = γ∆ct +ωdεd,t (εd,t ∼ N (0, 1)), where γ determines the leverage of equities.

A.12.2 Preferences

We assume agents have Epstein–Zin preferences with a unit IES,

vt = (1− β) ct +
β

1− α
logEt exp ((1− α) vt+1) (A.60)

vct =
β

1− α
logEt exp ((1− α) (vct+1 + ∆ct+1)) (A.61)

where vct is the log utility/consumption ratio, vct = vt − ct. We look for a solution to the
model of the form

vct = v̄ + v′Y Yt (A.62)

Inserting into the recursion for vc,

vct =
β

1− α
logEt exp

(
(1− α)

(
v̄ + v′Y Yt+1 + c′Y Yt +

√
g′Y Ytεt+1 + Jbt+1

))
(A.63)

=
β

1− α
logEt exp

(
(1− α)

(
v̄ + v′Y (FYt +Gηt+1) + c′Y Yt +

√
σ̄2 + g′Y Ytεt+1 + Jbt+1

))
(A.64)

= β (v̄ + (v′Y F + c′Y )Yt) + β
1− α

2

(
v′YGG

′vY + σ̄2 + g′Y Yt
)

+
β

1− α
λ (exp ((1− α) J)− 1)(A.65)
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Matching coefficients,

v′Y = β (v′Y F + c′Y ) + β
1− α

2
g′Y (A.66)

v′Y = β

(
c′Y +

1− α
2

g′Y

)
(I − βF )−1 (A.67)

v̄ =
β

1− β

(
1− α

2

(
v′YGG

′vY + σ̄2
)

+
1

1− α
λ (exp ((1− α) J)− 1)

)
(A.68)

The pricing kernel is then

Mt+1 = β
exp ((1− α) (vct+1))

Et exp ((1− α) (vct+1 + ∆ct+1))
exp (−α∆ct+1) (A.69)

mt+1 = − log β + (1− α) vct+1 − α∆ct+1 − logEt exp ((1− α) (vct+1 + ∆ct+1))(A.70)

Or, equivalently,

mt+1 = m0 +m′Y Yt +mηηt+1 − α
√
σ̄2 + g′Y Ytεt+1 − αJbt+1 (A.71)

m0 = − log β − (1− α)2

2

(
v′YGG

′vY + σ̄2
)
− λ (exp ((1− α) J)− 1) (A.72)

m′Y = −cY −
(1− α)2

2
gY (A.73)

mη = (1− α) v′YG (A.74)

A.12.3 Pricing equities

We have the usual Campbell–Shiller approximation for the return on equities, rt+1, with

rt+1 = κ0 + κ1zt+1 − zt + ∆dt+1 (A.75)

where zt is the log price/dividend ratio of equities. We look for a solution of the form
zt = z0 + z′Y Yt, which leads to the pricing equation

0 = logEt exp

 m0 +m′Y Yt +mηηt+1 − α
√
σ̄2 + g′Y Ytεt+1 − αJbt+1

+κ0 + (κ1 − 1) z0 + κ1z
′
Y (FYt +Gηt+1)− z′Y Yt

+γ
(
c′Y Yt +

√
σ̄2 + g′Y Ytεt+1 + Jbt+1

)
+ ωdεd,t+1

 (A.76)

The solution satisfies

z0 = (1− κ1)−1

(
m0 + κ0 + λ (exp ((γ − α) J)− 1)

+1
2

(
(mη + κ1z

′
YG) (mη + κ1z

′
YG)′ + (γ − α)2 σ̄2 + ω2

d

) ) (A.77)

z′Y =

(
m′Y + γc′Y +

1

2
(γ − α)2 g′Y

)
(I − κ1F )−1 (A.78)
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A.12.3.1 Average excess returns

To get average returns, on equities, first note that

logEt [exp (rt+1 − rf,t)] = logEt

exp

 κ0 + (κ1 − 1) z0 + κ1z
′
Y (FYt +Gηt+1)− z′Y Yt

+γ
(
c′Y Yt +

√
σ̄2 + g′Y Ytεt+1 + Jbt+1

)
+ ωdεd,t+1

−rf,0 − r′f,1Yt

(A.79)

= κ0 + (κ1 − 1) z0 − rf,0 +
(
κ1z

′
Y F − z′Y + γc′Y − r′f,1

)
Yt (A.80)

+
1

2

(
κ2

1z
′
YGG

′zY + γ2
(
σ̄2 + g′Y Yt

))
+

1

2
ω2
d + λ (exp (γJ)− 1)(A.81)

The risk-free rate is of the form rf,t = rf,0 + r′f,1Yt, with

rf,0 = log β +
(1− 2α)

2
σ̄2 + λ (exp ((1− α) J)− exp (−αJ)) (A.82)

r′f,1 = c′Y −
1

2
α2g′Y (A.83)

which allows for the calculation of the average excess return on equities. The conditional
standard deviation of equity returns is√

κ2
1z
′
YGG

′zY + γ2σ̄2 + γ2J2λ (A.84)

A.12.4 Pricing realized volatility

Since our empirical work estimates premia for realized and implied volatility for macro
variables, we examine here the pricing of realized and implied volatility for ∆ct+1. The
cumulative innovation in consumption between dates t and t+ 1 is

∆ct+1 − Et∆ct+1 = σ2
t εt+1 + J (bt+1 − λ)

The first part is typically thought of as a diffusive component. That is, we can think of
εt+1 = Bt+1 − Bt, for a standard (continuous-time) Brownian motion Bt. Similarly, bt+1 is
the innovation in a pure jump process, bt+1 = Nt+1 − Nt, where Nt is a (continuous-time)
Poisson counting process. Now consider measuring the total quadratic variation in those two
processes (i.e. as though we were measuring realized volatility from daily futures returns, as
in our empirical analysis). The quadratic variation in B between dates t and t+ 1 is exactly
1, while the quadratic variation in N is exactly Nt+1 − Nt = bt+1. We then say that the
realized volatility in consumption growth between period t and t+ 1 is

RVt+1 = σ2
t + J2bt+1 (A.85)

In this case, the diffusive part of the realized volatility is entirely predetermined. This is
a typical result. It is only the jumps that contribute an unexpected component to realized
volatility. The pricing of realized volatility will therefore depend on the pricing of jumps.
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The price of a forward claim on RVt+1 is

PRV,t = Et

[
exp (mt+1)

Et exp (mt+1)
RVt+1

]
= Et

[
exp

(
(1− α) v′YGηt+1 − α

(√
σ̄2 + g′Y Ytεt+1 + Jbt+1

)
−
[

1
2

(
(1− α)2 v′YGG

′v′Y + α2 (σ̄2 + g′Y Yt)
)

+ λ (exp (−αJ)− 1)
] ) (σ2

t + J2bt+1

)]
= σ2

t + J2λ exp (−αJ)

The average excess return on that forward is then

Et [RVt+1 − PRV,t] = σ2
t + J2λ− σ2

t − J2λ exp (−αJ) (A.86)

= J2λ (1− exp (−αJ)) (A.87)

The sign of this object is equal to the sign of J . Note also that this is the sign of the
conditional skewness of consumption growth.

A.12.5 Pricing uncertainty

We define uncertainty on date t as expected realized volatility on date t + 1. That is, it is
the conditional variance for ∆ct+1. So we say

IVt ≡ σ2
t + J2λ (A.88)

We now consider the price and excess return for a forward claim to IVt+1.

PIV,t = Et

[
exp (mt+1)

Et exp (mt+1)
IVt+1

]
= J2λ+ σ̄2 + φσσ̂

2
t + Et

[
exp

(
(1− α) v′YGηt+1

−1
2

(
(1− α)2 v′YGG

′v′Y
) ) g′Y ηt+1

]
= J2λ+ σ̄2 + φσσ̂

2
t +

Et [exp ((1− α) v′YGηt+1) g′YGηt+1]

exp
(

1
2

(
(1− α)2 v′YGG

′v′Y
))

= J2λ+ σ̄2 + φσσ̂
2
t + (1− α)

(
ωG (vY,xωx,G + vY,σωG)

+ωB (vY,σωB − vY,xωx,B)

)
where the last line follows from straightforward but tedious algebra. The average return on
the claim on uncertainty is then

E [IVt+1]− PIV,t = J2λ+ σ̄2 + φσσ̂
2
t −

(
J2λ+ σ̄2 + φσσ̂

2
t + (1− α)

(
ωG (vY,xωx,G + vY,σωG)

+ωB (vY,σωB − vY,xωx,B)

))
(A.89)

= − (1− α)

(
ωG (vY,xωx,G + vY,σωG)

+ωB (vY,σωB − vY,xωx,B)

)
(A.90)
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In the standard case from Bansal and Yaron (2004), we would have ωx,G = ωx,B = 0, so this
would be

E [IVt+1]− PIV,t = (α− 1) vY,σ
(
ω2
G + ω2

B

)
(A.91)

Since vY,σ < 0, the premium for IV will be negative in that case. Now when ωx,G can be
positive, we have

E [IVt+1]− PIV,t = (α− 1)
(
vY,x (ωx,GωG − ωx,BωB) + vY,σ

(
ω2
G + ω2

B

))
(A.92)

Since vY,x > 0, if ωx,G is sufficiently large relatively to ωx,B, the premium can be positive.
The Sharpe ratio on this object depends on the standard deviation of IVt+1−PIV,t, which

is exactly
√
ω2
G + ω2

B.

A.12.6 Calibration

The calibration is relatively close to Bansal and Yaron’s (BY; 2004) choices, with a few
changes. For the preferences, we set β = 0.998 and α = 15. β is as in BY, while α is
set somewhat higher to help match the equity premium. We study post-war data here, in
which the volatility of consumption growth is lower, thus necessitating higher risk aversion
to match the equity premium. Leverage, γ, is set to 3.5, on the upper end of the range of
values studied by BY.

The jump intensity is 1/18, implying jumps occur on average once every 18 months, while
the jump size J = −0.015.

The persistence of x and σ2 are 0.979 and 0.987, as in BY.
σ̄ = 0.0039, which is half the value used in BY in order to match the lower consumption

volatility noted above. The standard deviation of innovations to x is set to 0.06×σ, which is
somewhat higher than the value of 0.044 in BY. Of that, ωx = ωx,G = 0.0129 and ωx,B = 0.
Similarly, ωG = ωB = 1.62 × 10−6, so that the standard deviation of innovations to σ2 is
0.23×10−5, as in BY. Finally, ωd = 0.01.

A.12.7 Results

The table below lists key moments from the model along with analogs from the data. The
model moments are based on a monthly simulation of the model that is aggregated to the
quarterly frequency to match quarterly data observed empirically (see also BY).

The first three rows on the left show that the model is able to generate realistic values
for mean, standard deviation, and Sharpe ratio for equity returns. The top row on the
right shows that the volatility of consumption growth is somewhat higher than in the data.
However, this value is still smaller than that used by Bansal and Yaron (2004) by 40 percent.
Our calibration of 0.87 percent is the midpoint between Bansal and Yaron’s (2004) original
value and the value in the post-war data. Using a smaller volatility would require either
increasing some other form of risk (e.g. long-run risk or stochastic volatility) or risk aversion
in order to generate a realistic equity premium.

Next, the table shows that the Sharpe ratios for claims on RV and IV are approximately
-0.21 and 0.19, respectively, which agree well with the empirical values (which are calculated
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as the overall means across all 19 markets we study; see figure 3). These are the key moments
that the model was designed to match. They show that it is able to generate quantitatively
realistic premia for uncertainty and realized volatility shocks.

As discussed in the main text, the economic mechanism behind the negative premium on
RV is negative conditional skewness in consumption growth, while the mechanism behind
the positive premium for IV – the good volatility shocks that raise future consumption
growth – pushes in the direction of positive skewness. That implies that the skewness of
the conditional expectation of consumption growth should be less negative than conditional
skewness. To test that idea, we examine skewness in the model and data. The information
set used for conditioning here is lagged consumption growth. That is, we look at results
involving regressions of consumption growth on three of its own lags in both the model and
the data.

The table shows that the data and model both share the feature that the conditional
expectation of consumption growth is much less negatively skewed than the surprise in
consumption growth, consistent with the main mechanism in the model. This is not a
moment that the model was explicitly designed to match. The model was meant to match
the premia on RV and IV, so this represents an additional test of the proposed mechanism.

To be clear, the main contribution of the paper is not meant to be this model, but
nevertheless this section shows that the empirical results can be rationalized in a standard
structural asset pricing model.

Summary statistics from the model and empirical data, 1947–2018

Model Data Model Data
E [rm − rf ] 0.077 0.056 std (∆c) 0.0087 0.0052
std (rm − rf ) 0.14 0.11 skewt (∆ct+1) -0.32 -0.15
E[rm−rf ]
std(rm−rf)

0.53 0.52 skew (Et∆ct+1) -0.10 -0.07

E[RVt+1−PRV,t]
std[RVt+1−PRV,t]

-0.21 -0.32

E[RVt+1−PRV,t]
std[RVt+1−PRV,t]

0.19 0.26
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Figure A.1: Fit to realized volatility indexes

Note: See figure 2. This figure uses the JLN realized volatility series instead of uncertainty.
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Figure A.2: Factor loadings

S&P 500

Note: Loadings of two-week straddle returns on the three risk factors. The factors are all scaled by current
IV , as in equation 2. The loadings are scaled so that if the Black-Scholes approximation was exact, the
loading on ∆IV would be 1 at all maturities, the loading on fi,t would be 0 at all maturities, and the
loading on f2i,t would be 1/n where n is the maturity in months.
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Figure A.3: rv and iv portfolio approximation errors
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top panels. All returns and errors are reported as decimals.
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Figure A.4: Straddle and strangle returns
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Note: Returns of 1-standard deviation strangles and straddles as function of the underlying’s return.
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Figure A.5: Imposing a filter on volume

Note: Same as figure 3, but using only options for which volume is neither zero nor missing.
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Figure A.6: RV and IV portfolio Sharpe ratios and factor risk premia, one-week holding
period

Note: Same as figure 3, but using one-week holding periods.
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Figure A.7: RV and IV portfolio Sharpe ratios and factor risk premia (first half of the sample)

Note: Same as Figure 3, but only using the first half of the sample (up to June 2000).
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Figure A.8: RV and IV portfolio Sharpe ratios and factor risk premia (second half of the
sample)

Note: Same as Figure 3, but only using the second half of the sample (after June 2000).
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Figure A.10: RV and IV portfolio Sharpe ratios and factor risk premia (using 2-month IV)

Note: Same as Figure 3, but using 2-month instead of 5-month IV.
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Figure A.11: RV and IV risk premia estimates with and without weighting

Note: The figure reports risk premia for the factor model, unweighted (as in figure 3) or weighting each
observation by the implied volatility.
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Figure A.12: SDF loadings on RV and IV (Sharpe ratios)

Note: The figure reports the stochastic discount factor (SDF) loadings on IV and RV. The loadings are
scaled to correspond to Sharpe ratios of orthogonalized RV and IV portfolios, whose risk premia is equal
to the corresponding SDF loading.
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Figure A.13: Bid-ask spreads on 8/4/2017

Note: The figure reports posted bid-ask spreads for at-the-money straddles obtained from Bloomberg on
of August 4, 2017 (the CBOE S&P 500 spreads on that date are also obtained from Optionmetrics).
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Figure A.14: Volume across markets and maturities

Note: Average daily volume of options in different markets. The panel corresponding to crude oil reports
values in dollars. All other panels show values relative to the volume in the crude oil market, matched by
maturity.
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Figure A.15: RV and IV portfolio Sharpe ratios and factor risk premia (robust to measure-
ment error)

Note: Same as Figure 3, but returns are computed using the same denominator at all maturities, to
provide robustness with respect to measurement error in the prices (see section A.4.6).A.38



Figure A.16: Options on crude futures vs ETFs

Note: Sharpe ratios on rv and iv portfolios using straddles for CME crude oil futures and the XLE and
USO exchange traded funds. “4-month” and “5-month” refers to the longer of the two maturities used to
construct each portfolio (the short maturity is always one month). The squares are point estimates based
on the full sample available for each series. The lines are 95-percent confidence bands constructed with a
50-day block bootstrap. ”CME, USO adj.” and ”CME, XLE adj.” are identical to the ”CME” numbers
but with the mean return in the denominator of the Sharpe ratio shifted by the point estimate for the
mean difference from table A.6.2.
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Table A.1: χ2 test of the factor model

Betas of rv portfolio with DIV of maturities 1 to 5

p-value
S&P 500 0.22
T-bonds 0.02
GBP 0.01
CHF 0.38
JPY 0.75
Copper 0.75
Corn 0.00
Crude oil 0.08
Feeder cattle 0.25
Gold 0.44
Heating oil 0.14
Lean hog 0.19
Live cattle 0.80
Natural gas 0.30
Silver 0.68
Soybeans 0.21
Soybean meal 0.41
Soybean oil 0.11
Wheat 0.29

Note: For each market, the table reports bootstrapped p-values for the χ2 of on the squared fitting errors
of the factor model (bootstrapped following Constantinides, Jackwerth, and Savov (2013).
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Table A.2: Risk exposures of rv and iv portfolios

rv portfolio iv portfolio
f f2 ΔIV R2 f f2 ΔIV R2 Corr(rv,iv)

S&P 500 -0.07 1.44 0.02 0.68 S&P 500 -0.16 1.37 0.96 0.75 0.48
T-bonds -0.01 0.81 -0.06 0.75 T-bonds -0.01 0.35 1.05 0.78 0.13
GBP -0.03 0.81 0.00 0.82 GBP -0.02 0.44 0.91 0.86 0.47
CHF 0.00 0.75 0.03 0.73 CHF 0.05 0.52 0.91 0.72 0.64
JPY -0.02 0.74 0.04 0.80 JPY 0.02 0.57 0.89 0.87 0.63
Copper -0.01 0.79 -0.06 0.62 Copper 0.01 0.23 1.00 0.85 0.07
Corn -0.02 0.65 -0.01 0.69 Corn 0.06 0.41 0.85 0.75 0.08
Crude oil -0.03 1.00 -0.02 0.75 Crude oil 0.03 -0.07 0.93 0.77 0.06
Feeder cattle -0.03 0.98 -0.01 0.66 Feeder cattle -0.02 -0.25 0.96 0.78 0.02
Gold 0.00 0.70 0.01 0.68 Gold 0.08 0.35 0.97 0.68 0.48
Heating oil -0.02 0.88 -0.04 0.76 Heating oil 0.04 -0.17 1.00 0.77 -0.02
Lean hog -0.02 0.90 -0.06 0.75 Lean hog 0.04 -0.49 1.03 0.64 -0.24
Live cattle -0.03 1.03 -0.03 0.72 Live cattle 0.00 -0.44 0.92 0.78 -0.12
Natural gas -0.03 0.87 -0.02 0.80 Natural gas 0.03 -0.38 0.98 0.64 -0.17
Silver -0.01 0.63 0.03 0.71 Silver 0.04 0.20 0.92 0.85 0.45
Soybeans -0.02 0.66 -0.01 0.71 Soybeans 0.04 0.30 0.89 0.80 0.18
Soybean meal -0.01 0.61 -0.02 0.74 Soybean meal 0.05 0.31 0.93 0.69 0.19
Soybean oil -0.01 0.64 -0.02 0.73 Soybean oil 0.05 0.29 0.94 0.77 0.20
Wheat -0.01 0.63 -0.05 0.78 Wheat 0.05 0.30 0.97 0.78 0.16
Average -0.02 0.82 -0.01 0.73 Average 0.02 0.20 0.95 0.76

Note: The table reports regression coefficients of the rv and iv portfolios for each market onto three
market-specific factors: the futures return, the squared futures return, and the change in IV. The column
on the right reports the correlation between the rv and iv portfolio returns.

A.41



Table A.3: Risk exposures of rv portfolio to IV innovations at different maturity
Betas of rv portfolio with DIV of maturities 1 to 5

rv portfolio 1 2 3 4 5
S&P 500 0.08 0.08 0.07 0.05 0.02
T-bonds 0.07 0.06 0.03 0.00 -0.06
GBP 0.07 0.07 0.06 0.04 0.00
CHF 0.07 0.07 0.07 0.06 0.03
JPY 0.07 0.07 0.07 0.06 0.04
Copper 0.08 0.08 0.05 0.00 -0.06
Corn 0.08 0.08 0.07 0.05 -0.01
Crude oil 0.06 0.06 0.04 0.01 -0.02
Feeder cattle 0.09 0.08 0.06 0.03 -0.01
Gold 0.07 0.07 0.07 0.05 0.01
Heating oil 0.07 0.07 0.05 0.02 -0.04
Lean hog 0.09 0.08 0.06 0.01 -0.06
Live cattle 0.08 0.08 0.06 0.02 -0.03
Natural gas 0.08 0.08 0.07 0.03 -0.02
Silver 0.09 0.09 0.09 0.07 0.03
Soybeans 0.07 0.07 0.06 0.03 -0.01
Soybean meal 0.07 0.07 0.05 0.03 -0.02
Soybean oil 0.07 0.07 0.05 0.02 -0.02
Wheat 0.05 0.05 0.03 -0.01 -0.05

RV-hedging 1 2 3 4 5
S&P 500 0.05 0.04 0.04 0.02 0.00
T-bonds 0.11 0.11 0.10 0.07 0.00
GBP 0.08 0.08 0.07 0.05 0.00
CHF 0.07 0.07 0.06 0.04 0.00
JPY 0.07 0.07 0.06 0.04 0.00
Copper 0.13 0.13 0.12 0.07 0.00
Corn 0.12 0.12 0.12 0.08 0.00
Crude oil 0.07 0.07 0.06 0.03 0.00
Feeder cattle 0.09 0.09 0.07 0.04 0.00
Gold 0.10 0.10 0.08 0.05 0.00
Heating oil 0.09 0.09 0.08 0.06 0.00
Lean hog 0.11 0.11 0.10 0.06 0.00
Live cattle 0.09 0.09 0.07 0.04 0.00
Natural gas 0.10 0.10 0.09 0.06 0.00
Silver 0.12 0.12 0.11 0.07 0.00
Soybeans 0.11 0.11 0.09 0.06 0.00
Soybean meal 0.12 0.12 0.10 0.07 0.00
Soybean oil 0.12 0.12 0.11 0.07 0.00
Wheat 0.11 0.11 0.10 0.06 0.00

Maturity of IV shock

Maturity of IV shock

Note: The table reports the loading of the rv portfolio (top panel) and of the RV-hedging portfolio built
using the factor model (bottom panel) on shocks to IV of different maturity, from 1 to 5 months.
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Table A.4: Risk exposures of rv and iv portfolios, 2-month IV

Code: code_loadings_2month.m

rv portfolio iv portfolio
f f2 ΔIV R2 f f2 ΔIV R2 Corr(rv,iv) PASTE TRV HERE PASTE TIV HERE

S&P 500 -0.04 0.74 0.04 0.38 S&P 500 -0.33 4.79 0.78 0.66 0.27 -0.04403 0.743387 0.035885 0.378429 -0.33096 4.788869 0.782892 0.662113
T-bonds 0.00 0.37 0.00 0.39 T-bonds -0.08 2.44 0.84 0.72 0.14 0.001116 0.374377 0.000682 0.392666 -0.07711 2.443597 0.836684 0.724055
GBP -0.02 0.45 0.03 0.50 GBP -0.05 2.04 0.70 0.73 0.27 -0.01614 0.449034 0.028285 0.497416 -0.05393 2.038616 0.701523 0.728368
CHF 0.00 0.40 0.03 0.44 CHF 0.07 2.16 0.74 0.69 0.40 -0.00434 0.398663 0.033463 0.435819 0.067496 2.158974 0.735063 0.691526
JPY -0.02 0.42 0.04 0.54 JPY -0.01 2.04 0.72 0.82 0.46 -0.01946 0.415988 0.037577 0.539817 -0.00946 2.037504 0.721615 0.817313
Copper -0.01 0.33 0.02 0.25 Copper 0.00 2.18 0.78 0.68 -0.04 -0.00585 0.330083 1.58E-02 0.251355 0.000407 2.1814 0.781245 0.681332
Corn -0.02 0.27 0.03 0.32 Corn 0.10 2.17 0.64 0.72 0.07 -0.02092 0.267729 0.029207 0.324988 0.103278 2.170353 0.640644 0.717416
Crude oil -0.01 0.58 0.01 0.50 Crude oil -0.06 1.72 0.77 0.71 0.19 -0.01478 0.5755 0.008166 0.502724 -0.05707 1.71766 0.773649 0.708795
Feeder cattle 0.00 0.45 0.04 0.36 Feeder cattle -0.21 2.07 0.77 0.58 0.05 0.001176 0.445861 0.0381 0.363427 -0.20976 2.067184 0.772743 0.584258
Gold -0.01 0.28 0.02 0.35 Gold 0.09 2.21 0.84 0.66 0.23 -0.00729 0.28294 0.015785 0.349412 0.088363 2.212219 0.839218 0.659035
Heating oil -0.02 0.54 0.01 0.49 Heating oil 0.04 1.31 0.80 0.62 0.09 -0.01583 0.544416 0.011959 0.491073 0.042234 1.310109 0.802014 0.618963
Lean hog -0.01 0.45 0.03 0.45 Lean hog -0.01 1.59 0.74 0.59 0.08 -0.0061 0.44668 0.026399 0.447115 -0.01365 1.585297 0.73859 0.587069
Live cattle -0.02 0.53 0.02 0.47 Live cattle -0.06 1.75 0.75 0.68 0.18 -0.01532 0.53315 0.024819 0.468208 -0.05717 1.751938 0.750309 0.67868
Natural gas -0.03 0.50 0.02 0.55 Natural gas 0.03 1.28 0.77 0.67 0.18 -0.02689 0.502215 0.016186 0.552198 0.028043 1.281543 0.771103 0.674768
Silver 0.00 0.28 0.04 0.41 Silver -0.01 1.70 0.79 0.76 0.30 0.002497 0.280743 0.035679 0.406198 -0.00552 1.703562 0.792883 0.762121
Soybeans -0.02 0.38 0.03 0.50 Soybeans 0.05 1.52 0.69 0.77 0.29 -0.01557 0.377608 0.026339 0.495955 0.052663 1.524565 0.691857 0.765914
Soybean meal -0.01 0.31 0.03 0.47 Soybean meal 0.07 1.60 0.66 0.75 0.26 -0.01327 0.310595 0.028212 0.469066 0.069233 1.595942 0.655038 0.754999
Soybean oil -0.01 0.33 0.02 0.43 Soybean oil 0.07 1.63 0.73 0.72 0.20 -0.0131 0.332162 0.02237 0.433573 0.072594 1.627871 0.730127 0.722838
Wheat -0.01 0.26 0.00 0.33 Wheat 0.07 2.16 0.70 0.79 0.14 -0.01195 0.259314 0.004916 0.329767 0.068146 2.164887 0.696227 0.785877
Average -0.01 0.41 0.02 0.43 Average -0.01 2.02 0.75 0.70

Note: Same as table A.2, but 2-month IV is used as one of the factors (as opposed to 5-month IV) and
in the construction of the rv and iv portfolios.
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