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Abstract

Using spectral analysis, we document that hedge fund and mutual fund flows explain much of the
persistence and cyclicality of anomaly returns. Indeed, they correct and amplify mispricing slowly,
24 and 4 times more, respectively, over horizons longer than one year compared with shorter
horizons . Passive fund flows, in contrast, have no effect on mispricing. Over long horizons, hedge
fund flows are most influential among fund types on a per-dollar basis . Hedge fund managers,
rather than investors, helm this “slow-moving” effect, and frictions explain their behavior. We
propose a model highlighting the horizon-dependent effects of capital on market efficiency. 
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1. Introduction 

We use spectral analysis to study how anomaly returns and fund flows are related. Our analysis sheds light 

on two important aspects of market efficiency that are difficult to tackle in the traditional time domain. 

First, most anomaly returns, both in the United States and globally, are autocorrelated (e.g., there is factor 

momentum) and driven by components with different serial correlations. 1  Relatedly, individual stock 

returns display seasonalities or appear cyclical, which our findings suggest is also true of factor returns.2 

These patterns are puzzling as they are at odds with the weakest forms of market efficiency. Second, casual 

observation, as well as theory, suggests that investors specialize in specific investment horizons (e.g., 

pension funds over the long term vs. quant funds over the short term) (Crouzet, Dew-Becker, and Nathanson 

2020). This raises the possibility that the relationship between capital flows and anomaly returns might vary 

across horizons.  

Separately, a large body of evidence indicates that capital flows to hedge and mutual funds affect 

mispricing. In particular, Akbas, Armstrong, Sorescu, and Subrahmanyam (2015) show that hedge 

(respectively, mutual) fund flows are positively (respectively, negatively) related to anomaly returns, 

suggesting that they correct (respectively, exacerbate) mispricing.3 Evidence also indicates that fund flows 

contain autocorrelated and cyclical components. 4  These observations naturally lead to two (related) 

conjectures: first, that the dynamic properties of market efficiency, as reflected in the serial correlation and 

cyclicality of anomaly returns, are connected to those of flows to financial institutions (hedge and mutual 

funds), and, second, that the role of flows in market efficiency, as reflected in the sensitivity of anomaly 

returns to flows, varies across horizons. In this paper, we investigate these conjectures.   

                                                 
1 For evidence on the serial correlation of factor returns, see, for example, McLean and Pontiff (2016), Avramov, 
Cheng, Schreiber, and Shemer (2017), Ehsani and Linnainmaa (2019), Arnott, Clements, Kalesnik, and Linnainmaa 
(2019), Gupta and Kelly (2019), and Alti and Titman (2019). See also the evidence reported in Section 5. 
2 For evidence on the seasonality or cyclicality of individual stock or anomaly returns, see, for example, Kamstra et 
al. (2003), Heston and Sadka (2008), Hartzmark and Solomon (2013), Lou, Yan, and Zhang (2013), Novy-Marx 
(2014), Dew-Becker and Giglio (2016), Gao, Han, Li, and Zhou (2018), Cieslak et al. (2019), Linnainmaa and Zhang 
(2019), Etula, Rinne, Suominen, and Vaittinen (2020), and Pitkäjärvi, Suominen, and Vaittinen (2020). Keloharju, 
Linnainmaa, and Nyberg (2016, 2020) document seasonal momentum and reversal patterns in anomaly returns, which, 
together, lead to cycles. Our study does not distinguish between seasonality and cyclicality, and, for simplicity, we 
refer to cyclicality throughout. Bogousslavsky (2016) shows that serial correlation and seasonality are linked to one 
another. Furthermore, as spectral analysis establishes (see Section 4), more persistent time series contain components 
with longer cycles. 
3 To be concise, we use the words “mispricing,” “anomalies,” and “factors” interchangeably throughout the paper. In 
doing so, we follow the flow return literature, which interprets anomalies as mispricing rather than as compensation 
for risk. This literature provides evidence that funds’ capital affects mispricing. In addition to Akbas et al. 2015),  
Kokkonen and Suominen (2015) find that hedge funds constitute “smart money” in that their flows correct the 
mispricing identified by anomaly signals (for trades-based evidence, see also Dong et al. 2018). In contrast to hedge 
funds, mutual funds amplify mispricing and thus behave as “dumb money” (see also Frazzini and Lamont 2008). 
4 For evidence on the serial correlation and/or cyclicality of fund flows, see Kamstra et al. (2017), among others, and 
the evidence reported in Section 5.  
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In a nutshell, we find that both hedge and mutual fund capital flows play a large part in the 

autocorrelation and cyclicality of anomaly returns, especially over long horizons (one year and longer), and 

thus contribute to factor persistence. That’s because they, respectively, correct and amplify mispricing over 

all horizons, but their effect on returns is “slow,” that is, up to 24 and 4 times stronger over horizons longer 

than one year than over shorter horizons. Furthermore, as these numbers suggest, the tilt toward low 

frequency is more pronounced for hedge funds than for mutual funds: over long horizons, a one-standard-

deviation (1-SD) increase in hedge (respectively, mutual) fund flows is associated with a 1.3% 

(respectively, 1.7%) increase (respectively, decrease) in monthly anomaly return, implying that hedge fund 

flows can correct 80% of the mispricing induced by mutual fund flows; over short horizons, this figure 

drops to 12%. As a result, hedge funds deploy capital toward improving market efficiency seven times more 

slowly than do mutual funds toward reducing efficiency. The sharp contrasts between fund types can be 

retraced to fund managers: unlike mutual fund managers, hedge fund managers generate returns that are far 

more persistent than the flows they receive, a behavior we dub “slowing down” flows. Put differently, 

arbitrage capital does not move slowly (Duffie 2010) from hedge fund investors to hedge fund managers, 

but rather it is deployed by managers to slowly correct pricing anomalies. The reasons for such a behavior 

are, we document and rationalize in theory, related to frictions that limit arbitrage activity.  

To come to these conclusions, we decompose fund flows and anomaly returns in the frequency 

domain using Fourier analysis and then study how flows and returns are related frequency by frequency. 

Fourier analysis enables one to decompose any (stationary) time series into a combination of uncorrelated 

random waves (or sinusoids). Each wave is characterized by a cycle length (aka a wavelength or period) 

that measures how much time is required for one full cycle or, equivalently, by a frequency that measures 

the number of cycles per unit time. Low-frequency waves are slow moving (i.e., persistent), whereas high-

frequency waves are fast moving (i.e., transitory).5 We refer to periods of one year or more as “low 

frequency” and to periods of less than one year as “high frequency.”  

Our spectral decomposition is based on a notion of frequency that differs from those previously 

studied. In particular, our use of “frequency” should be distinguished from the frequency of trading, which 

refers to how often a strategy is rebalanced (aka turnover) and also from the closely related notion of a 

holding horizon. It also differs from the frequency of measurement, which reflects how often a time series 

is sampled. Instead, our focus is on the frequency at which the returns of a strategy accrue and at which 

capital flows, that is, on their serial correlation and cycle length.6 Our approach allows us to examine, 

                                                 
5 The physical sciences and engineering widely use this approach, which is analogous to using a prism to separate 
white light into its component colors, where each color corresponds to a different frequency. The resultant 
decomposition is known as a series’ “spectral representation”, and this approach is referred to as “spectral analysis” 
or analysis in the “frequency domain” (in contrast to the time domain approach). 
6 See Section 4.3 for a detailed discussion of the differences between these notions. 
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frequency by frequency, how flows relate to returns, in terms of explanatory power, direction, and 

magnitude. Furthermore, it captures aspects of these series, namely, the serial correlation and length of the 

cycles composing these series, not easily represented by a single persistence parameter. Indeed, our 

decomposition identifies prominent cycles related to real and financial activity that have been reported in 

the literature; examples include the business cycle (with a period from 2 to 8 years) (e.g., Dew-Becker and 

Giglio 2016), firm/fund annual and quarterly fiscal and reporting cycles, the one-year asset allocation cycle 

(Kamstra et al. 2003, 2017), and seasonal momentum and reversal (Heston and Sadka 2008, 2010; 

Keloharju, Linnainmaa, and Nyberg 2020).  

In our analysis, we loosely interpret a group of funds as a filter that receives capital (flows) over a 

range of frequencies and selects the frequencies of its profit (returns) through active management. In other 

words, fund investors supply capital over various frequencies, and fund managers select which to pass on 

to the equity markets and which to attenuate. Our goal is to assess how closely the serial correlation and 

cyclicality of anomaly returns relate to those of fund flows, and the extent to which they derive from those 

of investor flows themselves, which are simply passed through, versus from the “filtering” behavior of fund 

managers.  

Our proxy for mispricing is the returns on the long-minus-short strategy based on the 11 anomalies 

documented by Stambaugh, Yu, and Yuan (2012, 2015), or the “SYY anomalies.” We also consider a subset 

of seven anomalies unrelated to real investment—the so-called “non-investment (NINV) anomalies”—

because they are more closely related to mutual and hedge fund flows (Akbas et al. 2015). We measure 

flows as aggregate net flows to hedge and mutual funds. 

We derive three sets of results. The first concerns the serial correlation of anomaly returns and 

comprises three findings. First, the serial correlation of anomaly returns is tightly related to that of fund 

flows. Intuitively, we show that the tightness of that relationship is determined by the explanatory power 

(R2) of flows for anomaly returns in contemporaneous time-series regressions.7 At low frequency (below 

one cycle per year), mutual and hedge fund flows, together, explain 20% to 24% of the variations in 

anomaly returns; they account for the majority of the total R2 and far more than does any factor in prominent 

factor models. At high frequency, their explanatory power drops to 2.3% but nonetheless represents from 

one-tenth to one-fifth of the total R2. Second, the contrast between low- and high-frequency regressions is 

striking. For mutual funds, the R2 is five times larger at low frequency than it is at high frequency; for hedge 

funds, it is 40 to 325 times larger. This finding is a manifestation of the slow movement of capital toward 

mispricing, a phenomenon we refer to as the “slow-moving effect.” Third, as these numbers suggest, 

                                                 
7 Suppose a time series, Xt, follows a first-order autoregressive process with coefficient 𝜌, and a second time series, 
Yt, is related to Xt throughYt = α +βXt +εt with εt i.i.d. Then the first-order autocorrelation coefficient of Yt equals 𝜌𝑅², 
where 𝑅ଶ is the R-squared of a least squares regression of Yt on Xt. See Section 3 for more details.  
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differences across fund types are also very pronounced. Flows’ explanatory power is tilted toward low 

frequency 8 to 60 times more for hedge funds than it is for mutual funds. Taken together, these three results 

imply that the serial correlation of anomaly returns is related to the serial correlation of fund flows, 

especially at low frequency and for hedge funds. 

Our second set of results concerns the direction and magnitude of mispricing changes in response 

to flows. It also consists of three findings. First, in the aforementioned regressions of anomaly returns on 

flows, the coefficient estimates are positive for hedge funds and negative for mutual funds, regardless of 

the frequency considered. Thus, hedge and mutual funds behave as, respectively, smart and dumb monies 

over the entire spectrum. Second, consistent with our findings for R2, the economic magnitudes of these 

effects are larger at low frequency, by factors of 24 and 4 for hedge and mutual funds, respectively. Hedge 

funds’ tilt toward low frequency is considerably more pronounced: at low frequency, a 1-SD increase in 

hedge (respectively, mutual) fund flows is associated with a 1.3% (respectively, 1.7%) increase 

(respectively, decrease) in monthly anomaly return, implying that hedge fund flows could correct 80% of 

the mispricing induced by mutual fund flows; at high frequency, this figure drops to 12%. Stated differently, 

hedge funds deploy capital toward improving market efficiency 7 times more slowly than do mutual funds 

toward reducing efficiency. 

Third, we investigate whether fund managers receive capital predominantly at low frequency (i.e., 

receive slow capital) or instead actively tilt flows toward low-frequency mispricing (i.e., slowing down 

capital). Or, put in the language of filtering, we investigate whether they merely pass through the signals 

they receive or rather actively filter them. We find that capital flows (the filter’s input) are slow for mutual 

funds, in that low-frequency flows explain one-third more of the total variations in flows than do high-

frequency flows, but not for hedge funds, whose variations are equally driven by low- and high-frequency 

flows. Turning to managers (i.e., the filter itself), we find that both types of funds behave, in aggregate, as 

a low-pass filter: regressions of anomaly returns on flows yield coefficient estimates that are larger in 

magnitude at low frequency than they are at high frequency. In other words, managers appear to attenuate 

the effect of high-frequency flows such that the effect of flows on mispricing is mainly observed at low 

frequency. This low-pass filtering is most pronounced for hedge fund managers, who correct mispricing at 

low frequency 4–13 times more than they do at high frequency. Thus, managers, rather than investors, are 

the main drivers of the slow-moving effect for hedge funds. For mutual funds, in contrast, managers’ 

tendency to amplify mispricing at low frequency is comparable with their investors’ tendency to supply 

capital at low frequency, so that the slow-moving effect is split equally between managers and investors.  

In a sharp contrast, flows to passive funds have no effect on mispricing—consistent with their role 

as benchmarks—and are actually associated with a stronger effect at high frequency on the returns of 

passive benchmark portfolios (e.g., the S&P 500), possibly because of more limited liquidity provision at 
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that frequency. To summarize our second set of results, hedge and mutual funds, respectively, correct and 

amplify mispricing in each frequency. Both types of fund managers actively slow down the flow of capital 

toward mispriced stocks, but hedge fund managers do it far more than mutual fund managers.  

 Overall, our first two sets of results suggest that capital allocated to correct and exacerbate 

mispricing is slow moving. Managers’ low-pass filtering plays an important role in this process, particularly 

in hedge funds. As our spectral analysis demonstrates, hedge and mutual fund flows move in (non-

offsetting) cycles, so cycles in anomaly returns can arise. In particular, anomaly return cycles may emerge 

from flows of smart and dumb monies because they alternately correct and exacerbate mispricing (Pontiff 

2006; Akbas et al. 2015). 

Our analysis so far does not explicitly deal with the endogeneity of flows with respect to mispricing. 

Rather, we rely on prior research lending support to a causal effect of flows on mispricing.8 Endogeneity 

might arise because of an omitted variable affecting fund flows and anomaly returns simultaneously (e.g., 

investment opportunities) or through reverse causality. Neither seems likely given the contrasting patterns 

we report across fund types. Indeed, an omitted variable would need to have opposite influences on hedge 

and mutual fund flows and no influence on passive fund flows. Likewise, reverse causality requires 

mispricing to affect hedge and mutual fund flows in opposite directions, while not affecting passive fund 

flows. Notwithstanding, we conduct two formal endogeneity tests, namely, the omitted variable test of Oster 

(2019) and Granger causality tests, and find little support for endogeneity, especially for hedge funds. 

Finally, we propose a theory in which exogenous flows cause the low-pass filtering behavior of managers 

(and which makes several ancillary predictions that match well with the data).  

Remarkably, although hedge funds manage only one-tenth of mutual funds’ assets, the impact of 

their flows on mispricing at low frequency is comparable to that of mutual funds’. Thus, on a per-dollar 

basis, their flows are the most influential. Accordingly, our final set of results illuminate the determinants 

of hedge funds’ behavior, especially managers’. Specifically, the results shed light on whether their 

behavior is related to frictions that limit arbitrage activity over specific frequency bands. After all, if there 

were no limits to arbitrage, mispricing corrections would be instantaneous rather than slow moving. We 

consider three types of frictions: fundamental risk, limited arbitrage capital, and implementation costs.9 

                                                 
8 Akbas et al. (2015) document that hedge fund flows correct mispricing contemporaneously and, moreover, display 
no predictive power for future anomaly returns; that is, once mispricing is corrected, the correction is maintained. 
Exploiting detailed trading records, Dong et al. (2018) show that an increase in hedge funds’ capital leads to an 
increase in the intensity with which they trade on anomalies; Kokkonen and Suominen (2015) show that their trades 
correct mispricing. Likewise, several studies document that flow-induced mutual funds’ trades cause an exacerbation 
of mispricing (see, e.g., Wermers 1999; Coval and Stafford 2007; Frazzini and Lamont 2008; Greenwood and Thesmar 
2011; Lou 2012; Shive and Yun 2013). 
9 Strictly speaking, risk is not a friction. Rather, any limitation to investors’ ability to diversify risk is a friction. We 
slightly abuse notation by bundling risk with genuine frictions. 
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Exploiting variations in 14 proxies for these frictions—over time, in the cross section, and with two 

exogenous shocks to sharpen causal interpretations—we report evidence consistent with all three frictions 

hindering hedge fund activity in important ways. However, we find limited evidence that these frictions 

matter for mutual funds. This outcome is consistent with the notion that the rational consideration of market 

frictions is typical of smart (informed) managers, but not of dumb (noise) managers. 

We propose a simple model that ties together our evidence and illustrates how the three frictions 

that play a central role in the data can, in theory, produce the patterns we document. The model—an 

extension of Garleanu and Pedersen (2013, 2016) to an equilibrium setting—describes the dynamics of 

returns when the factors driving those returns decay at different speeds. The economy features two agents: 

noise traders (dumb money), who have a temporary excess demand for assets, and arbitrageurs (smart 

money), who accommodate that demand. Our economy also features two assets, one with slowly decaying 

excess demand and another a fast-decaying excess demand; these assets represent, respectively, low-

frequency and high-frequency mispricing. Arbitrageurs receive flows that expand their risk-bearing 

capacity (and more so for more persistent flows) and that they invest in the two assets subject to a 

transaction cost. We use the model to compute the coefficient from regressing asset returns on flows and 

derive six predictions that are consistent with our empirical results. 

The first of these predictions is that the regression coefficient is positive; this is simply a reflection 

of the mispricing corrections that occur when arbitrageurs see their risk capacity expand as a result of the 

flows they receive. The next two predictions state that the regression coefficient and R2 are larger for the 

slower-decaying asset. These predictions reflect two factors: (1) arbitrageurs are exposed for longer to the 

slower asset and so they demand a larger risk premium, and (2) they trade that asset more slowly and so 

incur lower transaction costs. Both factors drive a wedge between the prices of the two assets, a wedge that 

results in the slower asset being more mispriced and hence more responsive to fluctuations in arbitrage 

capital. In theory, two mechanisms underlie managers’ low-pass filtering. The first is that lower-frequency 

mispricing requires managers to commit capital for longer spells of time and so is more sensitive to 

fluctuations in arbitrage capital. The second is that managers invest more aggressively flows that they deem 

less likely to reverse, that is, lower-frequency flows. An alternative version of the latter mechanism is that 

managers convert high-frequency flows into low-frequency flows by holding on to those flows and 

investing them gradually in mispriced assets. All of these mechanisms make managers appear to “slow 

down flows.”  

Our final three predictions concern the three frictions we empirically examined. That is, the 

regression coefficient is more sensitive to the speed of decay when fundamentals are riskier, when 

arbitrageurs’ risk-bearing capacity is lower, and when transaction costs are greater. Any one of these 

conditions will widen the gap between the prices of the two assets and so will magnify the differential effect 
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of decay speed. The model proposed here demonstrates that our diverse empirical findings can be 

rationalized within a unified framework featuring limited risk bearing and transaction costs. 

Collectively, our findings indicate that capital flows to financial institutions contribute to 

explaining anomaly returns mainly at low frequency; that is, these two series are most closely related 

through their components with high serial correlation and long cycles. Furthermore, anomaly returns 

respond to hedge and mutual fund flows in opposite directions over the full spectrum, but both responses, 

especially hedge funds’, are stronger at low frequencies. Thus, hedge and mutual fund capital moves slowly 

toward mispricing, a process in which hedge fund managers play a prominent role, thereby contributing to 

factor persistence. These findings can be viewed as a mixed blessing for market efficiency. On the one 

hand, that hedge fund managers prioritize low-frequency anomalies suggests that they improve the 

efficiency of financial markets over long horizons, over which, presumably, it matters most for most 

investors and policy makers.10 On the other hand, that dumb money also moves slowly suggests that 

arbitrageurs need to maintain open positions for long spells of time. 

The rest of our paper proceeds as follows. Section 2 reviews the related literature and discusses our 

contribution. Section 3 describes the data and variables. Section 4 presents the methodology employed for 

the spectral analysis, and then Section 5 applies it to fund flows and mispricing. Section 6 discusses how 

their frequency structures are related. Section 7 investigates the role of frictions. Section 8 presents our 

theoretical model. Section 9 concludes with a brief summary. 

 

2. Related literature and contribution 

The starting point of our analysis is the evidence in the literature that flows to asset managers affect market 

efficiency. In particular, Akbas et al. (2015, 2016) and Kokkonen and Suominen (2015) report that flows 

to hedge funds and mutual funds are associated with, respectively, correcting and worsening mispricing. 

We combine spectral analysis with the regression approach of Akbas et al. (2015) to understand how this 

flow-mispricing relationship varies across frequencies and why it does. This novel spectral perspective 

sheds light on four important aspects of market efficiency. 

First, we contribute to the recent literature that documents that anomaly returns are serially 

correlated. Notably, Ehsani and Linnainmaa (2019) report pervasive “factor momentum,” which can last 

for more than a year and is driven by factor return autocorrelations.11 We describe how hedge and mutual 

                                                 
10 High-frequency traders are credited with improving market efficiency over fractions of a second, leading critics to 
question their social value (e.g., Biais, Foucault, and Moinas 2015; Budish, Cramton, and Shim 2015). 
11 McLean and Pontiff (2016), Avramov et al. (2017), Arnott et al. (2019), Gupta and Kelly (2019), and Alti and 
Titman (2019), among others, report various degrees of persistence in anomaly returns. In addition, although they do 
not directly examine serial correlations, Daniel, Hirshleifer, and Sun (2020) show that two factors—capturing long- 
(one year or longer) and short-horizon (less than one year) mispricing—suffice to span a large set of anomalies. 
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fund flows contribute to explaining the serial correlation of anomaly returns. As a matter of fact, no factor 

from recent prominent models exhibits as much explanatory power as fund flows at low frequency (below 

one cycle per year), that is, for the persistent component of anomaly returns. At high frequency, that is, for 

the transient component of anomaly returns, in contrast, we find a limited role for flows, despite anomaly 

returns displaying large variations, suggesting that forces unrelated to flows explain those variations. 

Moreover, that hedge funds persistently correct mispricing has implications that go beyond cross-sectional 

anomalies; it illuminates more general forms of long-run predictability, where returns that identify 

mispricing corrections in one asset predict those in other assets (e.g., the cross-asset autocorrelation reported 

in Pitkäjärvi, Suominen, and Vaittinen 2020 and Dong, Li, Rapach, and Zhou 2020).12 Theoretically, we 

present a mechanism that ties together arbitrage activity, the serial correlation of anomaly returns, and 

frictions.  

With serial correlation and cycle length uniquely linked in the frequency domain, our findings also 

relate to the studies documenting cycles in stock or anomaly returns (reviewed in Section 5.1). Moreover, 

Pontiff (2006) and Akbas et al. (2015) argue that mispricing follows exacerbation and correction cycles. 

Our findings suggest that capital flow cycles are closely related to anomaly return cycles over long horizons 

(one year or longer), but not over short horizons (less than one year).  

Second, our findings are also relevant to research on slow-moving capital (e.g., Duffie 2010) in 

three ways. First, we suggest that, in addition to smart money moving slowly to correct mispricing, which 

is the focus of existing work, dumb money too moves slowly to exacerbate mispricing. Second, we 

differentiate, in the slow movement of capital, the provision of capital (by investors) from the processing 

of capital (by managers). Our finding suggests that such a distinction is especially important for hedge 

funds, where managers do most of the “slowing down.” Finally, and closely related to our first contribution 

on the dynamic properties of anomalies, prior studies take for granted that the slow movement of capital 

amplifies return predictability. But they fail to condition on whether capital moves gradually (i.e., 

persistently) or in delayed but sudden bursts as a result of, for example, capital lumpiness, limited attention, 

or infrequent portfolio rebalancing (Chen, Cole, and Lustig 2012). This distinction matters, because such 

bursts make returns less, not more, predictable. Our findings do not support this alternative view and instead 

suggest that capital to financial institutions changes mispricing not only slowly but also persistently.  

Third, we document that the flow-anomaly return relationship varies across frequencies depending 

on the type of institution. In other words, how market efficiency is shaped by institutions is not only 

frequency specific but also institution specific. This finding is consistent with the theory of Crouzet, Dew-

                                                 
12 For example, Pitkäjärvi, Suominen, and Vaittinen (2020) document long-horizon (around one year) predictability 
between equity and bond market returns. Dong, Li, Rapach, and Zhou (2020) show that mispricing corrections 
identified by anomaly returns predict mispricing corrections manifested in aggregate market returns.  
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Becker, and Nathanson (2020) demonstrating that, in equilibrium, investors endogenously specialize in 

specific frequencies. Our study also answers the call from recent work (Koijen et al. 2019; Koijen and Yogo 

2019) to understand the roles played by different types of institutions in asset pricing. Consistent with these 

authors’ finding that hedge funds are the most influential institutions per dollar of assets under management, 

we report that hedge funds’ flows are slowed down more than are mutual funds, and that, despite their 

smaller size, their effect on mispricing at low frequency is comparable to mutual funds’.   

Fourth, we analyze the effects of frictions on mispricing. In contrast to theoretical work, the 

empirical literature has not yet reached a consensus on how important frictions actually are and on which 

ones matter.13 We confirm the relevance of three categories of frictions (risk, limited access to capital, and 

implementation costs) by documenting, for hedge funds, a stronger (respectively, weaker) flow effect on 

persistent (respectively, transient) mispricing in periods of elevated frictions. This evidence indicates not 

only that these frictions matter but also that frictions affect the persistence of mispricing corrections. 

Our final contribution is methodological. Our work is part of a growing stream that exploits new 

tools (e.g., statistical and machine learning) in finance. Much like other techniques, such as principal 

component analysis or partial least squares, spectral analysis is essentially a way of understanding the 

covariance structure of variables. Here, we apply spectral analysis to explain persistent and cyclical 

variations. With persistent cycles at the heart of so many economic variables, including capital flows and 

returns, spectral analysis is a promising approach. In fact, a nascent literature examines investments and 

asset returns through the lens of frequencies.14 

 

3. Data and variable construction 

We employ three main variables in our analyses: (1) anomaly returns, which proxy for aggregate cross-

sectional mispricing; (2) aggregate mutual fund flows; and (3) aggregate hedge fund flows. In this section, 

we describe all three variables and the control variables used in our tests. 

                                                 
13 Consider, for example, our results for implementation costs. Their role in hampering arbitrage has been hotly 
debated in the literature. Contrary views reflect differences in samples and methodologies used across various studies. 
One strand of papers uses broad data sets to extrapolate price impact estimates from small to large trades and conclude 
that implementation costs are high enough to wipe out arbitrage profits. Another strand of research examines, in 
proprietary data sets, the actual implementation algorithms followed by selected asset managers; this work reports that 
those managers’ costs are low and so arbitrage profits are sizable. Papers in the first stream of literature include 
Lesmond, Schill, and Zhou (2004), Korajczyk and Sadka (2004), Novy-Marx and Velikov (2016), and DeMiguel et 
al. (2020). Among the second are Keim and Madhavan (1997), Engle, Ferstenberg, and Russell (2012), and Frazzini, 
Israel, and Moskowitz (2018). The debates center on (a) the plausibility of the strategies and costs simulated by the 
former strand of papers and (b) the representativeness of the practitioners studied by the latter. 
14 From a theoretical perspective, models work out the implications of frequency profiles for asset pricing (Dew-
Becker and Giglio 2016; Crouzet et al. 2020). On the empirical front, studies conduct frequency analyses of concepts, 
such as news (Calvet and Fisher 2007), consumption risk (Ortu, Tamoni, and Tebaldi 2013), risk prices (Dew-Becker 
and Giglio 2016), investment strategies’ alphas and betas (Chaudhuri and Lo 2019; Bandi, Chaudhuri, Lo, and Tamoni 
forthcoming), market return (Schneider 2019), and state vectors (Neuhierl and Varneskov forthcoming).  
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3.1. Anomalies and mispricing 

3.1.1. Mispricing proxies 

Following Stambaugh et al. (2012, 2015), we use a set of 11 prominent cross-sectional return anomalies to 

measure aggregate cross-sectional mispricing. These anomalies include failure probability (Campbell, 

Hilscher, and Szilagyi 2008), the O-score (Ohlson 1980), net stock issuances (Ritter 1991; Loughran and 

Ritter 1995), composite equity issuance (Daniel and Titman 2006), accruals (Sloan 1996), net operating 

assets (Hirshleifer, Hou, Teoh, and Zhang 2004), momentum (Jegadeesh and Titman 1993), gross 

profitability (Novy-Marx 2013), asset growth (Cooper, Gulen, and Schill 2008), return on assets (Chen, 

Novy-Marx, and Zhang 2010), and the ratio of investments to assets (Titman, Wei, and Xie 2004). These 

anomalies have been shown to generate alpha in standard risk models. Akbas et al. (2015) document that 

non-investment anomalies (the first seven of those listed), not anomalies related to real investments (the 

last four), drive the relation between fund flows and SYY anomaly returns. Accordingly, we also proxy for 

aggregate mispricing using NINV anomalies only. 

Assuming that, at least, part of an anomaly’s return predictability is due to mispricing, we can 

identify the relative degree of mispricing in the cross section by sorting stocks into deciles based on the 

anomaly characteristic under study. Stambaugh et al. (2015) show that returns to individual anomalies have 

low correlations with each other but have relatively high correlations with aggregate returns to a long-short 

strategy that combines the 11 anomalies into a single signal. This result suggests that each of the 11 

components captures a different element of cross-sectional mispricing. So rather than considering 

anomalies individually, we follow Stambaugh et al. (2015) and construct an aggregate mispricing measure 

to identify overvalued and undervalued stocks at the end of each calendar month (we report the results for 

each individual anomaly in Table A2 of the appendix). Using the 11 characteristics together is justified 

given that (a) hedge funds seldom trade on single anomalies and (b) the aggregate mispricing measure 

“diversifies away [the] noise in each individual anomaly and . . . increases precision” (Stambaugh et al. 

2015). Stambaugh and Yuan (2016) show that their mispricing metric explains a set of 73 anomalies well. 

To construct this aggregate mispricing measure, we proceed in three steps. First, in each month, we 

assign all sample stocks to deciles that reflect degrees of mispricing, based on their next-month expected 

returns as predicted by each of the individual anomalies. Thus, each stock is associated with 11 different 

decile ranks each month, one for each anomaly. Second, we compute an aggregate score for each stock and 

month based on the average of the decile ranks. If a stock is mispriced in the current month, then we expect 

the mispricing to be corrected the next month, on average. This means that undervalued (respectively, 

overvalued) stocks are expected to realize high (respectively, low) returns in the subsequent month. Scoring 

is performed in such a way that stocks with higher scores are expected to earn higher average returns over 

the next month. In the final step of our procedure, we construct a long-short portfolio that takes long 
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positions in the most undervalued stocks (those in the top decile) and short positions in the most overvalued 

stocks (those in the bottom decile). 

3.1.2. Mispricing correction versus exacerbation 

That mispricing is corrected on average over time does not imply that it is corrected every month. At times, 

mispricing can be indeed exacerbated. By tracking the returns of the long-short strategy, as well as the long 

and short legs of that strategy, during the post-ranking calendar month, we can determine whether 

mispricing is corrected or exacerbated. Specifically, stocks in the short leg are overvalued at the end of 

month t. So a positive return on the short leg during month t + 1 indicates that these overvalued stocks 

continue to appreciate and become even more overvalued. Analogously, stocks in the long leg are 

undervalued at the end of month t. Hence a negative return on the long leg in month t + 1 indicates an 

exacerbation of undervaluation. In months during which aggregate mispricing is exacerbated, the long leg 

yields lower returns than does the short leg, and so the returns on the long-short strategy are negative. 

Conversely, for months during which aggregate mispricing is corrected, the long leg realizes higher returns 

than the short leg, and so returns on the long-short strategy are positive.15 

3.2. Flows to mutual funds and hedge funds 

Following the literature, we compute the monthly aggregate fund flows to actively managed mutual funds 

(MF) and to hedge funds (HF) as 

 
MF௧  (or HF௧) =

∑ TNA௜,௧ − TNA௜,௧ିଵ൫1 + 𝑅௜,௧൯ே
௜ୀଵ

∑ TNA௜,௧ିଵ
ே
௜ୀଵ

, 
 

(10) 

where TNAi,t represents the total net assets of fund i in month t and Ri,t is the return on fund i over month t. 

To construct MF, we obtain monthly total net assets and returns from the CRSP Survivor Bias-Free 

U.S. Mutual Fund database. We follow the procedure described in Huang, Sialm, and Zhang (2011) to 

select actively managed mutual funds that primarily invest in the U.S. equity market. Thus, we choose only 

those funds whose Lipper investment objectives are related to the domestic equity market; in this way, we 

eliminate balanced, bond, money market, and international funds. We also exclude passive funds identified 

using the procedure described in Appel, Gormley, and Keim (2016). 

To construct HF, we obtain monthly hedge fund returns and net asset value from the Lipper TASS 

database. As with our mutual fund sample, we focus on hedge funds that mostly trade in the U.S. equity 

                                                 
15 The data reveal that, on average, monthly returns to the long leg, the short leg, and the long-short strategy are 
positive, negative, and positive, respectively. This means that, consistent with the mispricing-based interpretation in 
the anomaly literature, post-ranking, the correction of mispricing dominates its exacerbation. In other words, 
mispricing is attenuated on average during month t + 1 after it is identified at the end of month t by the aggregate 
mispricing measure. 
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market. Hence, we only include funds denominated in U.S. dollars and exclude funds whose strategies are 

emerging market, fixed income, fund of funds, or managed futures. The fund data cover the period from 

January 1994 to December 2016.16 

3.3. Control variables and other data 

The stock sample includes all common stocks listed on the NYSE, AMEX, and Nasdaq. In our analyses, 

we follow Akbas et al. (2015) and control for aggregate liquidity and commonly used risk factors. These 

include Amihud, the equal-weighted average Amihud (2002) illiquidity measure of all common stocks listed 

on the NYSE in month t ; Turnover, the equal-weighted average turnover of all common stocks listed on 

the NYSE in month t ; MKTRF, the monthly market return in excess of the risk-free rate; and HML and 

SMB, the monthly returns to value and size strategies. 

 

4. Methodology 

In this section, we describe our spectral decomposition methodology. Before doing so, we briefly discuss 

its usefulness in understanding the series of anomalies and fund flows and their relationship. Our frequency 

approach is motivated by the fact that anomaly returns and flows are made up of serially correlated, seasonal 

components, that is, of cycles of various frequencies. It is a priori unclear how important each component 

is and how the components of one series relate to those of the other. Indeed, investors differ considerably 

in their horizons, trading strategies, and performance, and their trades are likely to affect market 

(in)efficiency only at the frequency at which they operate (Crouzet et al. 2020). For instance, an algorithmic 

trader might specialize in high-frequency mispricing, while a value investor might focus on low-frequency 

mispricing. Similarly, capital is supplied to and redeemed from asset managers over various frequencies. 

On one hand, many mutual fund investors regularly contribute to retirement accounts that offer restricted 

redemption rights, thus producing low-frequency flows. On the other hand, several mutual fund features, 

such as open-endedness, liquidity, and mark-to-market, encourage investors to move money at high 

frequencies. Hedge and mutual funds also differ markedly in their skill sets and clientele. These 

considerations prompt us to examine, frequency by frequency, how hedge and mutual fund flows relate to 

anomaly returns. 

4.1. Decomposition of mispricing and flows 

Our analysis relies on decomposing any given stationary time series Xt (i.e., flows or anomaly returns), for 

t = 1, …, T, as follows: 

                                                 
16 We do not detrend flows since our spectral analysis accounts for trends in the form of a low-frequency component. 
We confirm that our main findings obtain if we use detrended flows (see Table I1 of the Internet Appendix). 
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 𝑋௧ = 𝑋௧
௅ + 𝑋௧

ு; (1) 

here, 𝑋௧
௅ is the slow-moving or persistent (low-frequency) component of Xt, representing cycles longer than 

a threshold value (e.g., one year in our analysis), and 𝑋௧
ு is the fast-moving or transient (high-frequency) 

component that captures shorter cycles. Both 𝑋௧
௅ and 𝑋௧

ு are orthogonal, so Cov(𝑋௧
௅ , 𝑋௧

ு) = 0. 

Such a decomposition can be performed using a Fourier transformation. Let ωk = 2πk/T for k = 

0, ..., N represent a frequency, where N = T − 1 defines the total number of frequencies. Then the Fourier 

transform of Xt is given by 

  𝐽௫(𝜔௞) =  
ଵ

்
∑ 𝑋௧𝑒ି௜ఠೖ௧்

௧ୀଵ ,  

(2) 

where the absolute value of Jx(ωk) is the amplitude of Xt at frequency ωk. Because ωk is uniquely defined 

by k, we slightly abuse notation by referring to frequencies as k (rather than ωk) when doing so does not 

cause confusion. The amplitude determines the highest (or lowest) point of a cycle relative to the series’ 

mean. The inverse Fourier transformation allows us to recover the original time series: 

 
𝑋௧ =  ෍ 𝐽௫(𝜔௞)𝑒௜ఠೖ௧

ே

௞ୀ଴

. 
 

(3) 

Now that Xt is expressed as a linear combination of orthogonal components of different frequencies, 

we can decompose it into distinct time series, each corresponding to a subset of frequencies, or a “frequency 

band.” To do so, we first create a filter FB, which consists of a vector of size N + 1, for frequency band B. 

Here, FB(k) is set to one if k belongs to B; otherwise, FB(k) = 0. In the empirical analysis, we focus on two 

frequency bands, B={L,H}: L corresponds to low frequencies, so FL is a low-pass filter, and H corresponds 

to high frequencies, so FH is a high-pass filter. Next, we apply the filter FB to the series Xt to obtain its 

component, 𝑋௧
஻, as follows:  

 
𝑋௧

஻ =  ෍ 𝐹஻(𝑘)𝐽௫(𝜔௞)𝑒௜ఠೖ௧

ே

௞ୀ଴

. 
 

(4) 

𝑋௧
஻ represents the components of Xt that evolve within the frequency band B.  

The variance of 𝑋௧
஻ can be calculated using the time-series variance; it also can be calculated using 

the sample spectrum: 

 
Var(𝑋௧

஻) =  ෍ 𝐹஻(𝑘)𝐽௫(𝜔௞)𝐽௫(𝜔௞)തതതതതതതതത ;

ே

௞ୀ଴

 
 

(5) 

in this expression the overline denotes a complex conjugate. The factor 𝐽௫(𝜔௞)𝐽௫(𝜔௞)തതതതതതതതത in Equation (5) is 

known as the series’ power (or squared amplitude) at frequency k. Because powers add to the variance of 

Xt, the ratio of frequency-k power to the sum of all powers measures the contribution of that frequency to 
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the series’ total variance. Likewise, Var(𝑋௧
஻)/Var(𝑋𝑡) measures the contribution of frequencies in the band B 

to the total variance of Xt. 

Similarly, the covariance between two stationary time series, Xt and Yt, over the frequency band B 

is described by their cospectrum: 

 
CO஻ =

1

𝑇
෍ 𝑋௧

஻𝑌௧
஻

்

௧ୀଵ

=  ෍ 𝐹஻(𝑘)𝐽௑(𝜔௞)𝐽௒(𝜔௞)തതതതതതതതത

ே

௞ୀ଴

. 
 

(7) 

When FB(k) = 1 for all frequencies k, CO஻  in Equation (7) coincides with the covariance of Xt and Yt. 

Essentially, the cospectrum measures the frequency-specific relation between two time series. For example, 

CO஻>0 (respectively, <0) means that 𝑋௧
஻ and 𝑌௧

஻ are positively (negatively) related over the frequency 

band B. Put differently, their cycles tend to move in sync, with their peaks and troughs aligned (respectively, 

move in opposite directions, with one’s peaks aligned with the other’s troughs). Importantly, two time series 

may be positively correlated at some frequencies and yet be negatively correlated at other frequencies. In 

particular, their cospectrum can be negative over some frequencies even if their covariance is positive. 

4.2. A regression approach 

An intuitive and straightforward way of evaluating the relation between two time series over a frequency 

band, B = {L,H}, is to regress components of one series on the other’s: 

 𝑌௧
஻ = 𝛼 + 𝛽஻𝑋௧

஻ + 𝜀௧. (8) 

In this regression, the coefficient βB is related to the cospectrum over that frequency band through βB = 

CO𝐵/Var(𝑋𝑡
𝐵). Thus, it measures the frequency-specific association between Xt and Yt . Since each series 

equals a sum of components that are uncorrelated across frequencies, the regression coefficient for a 

frequency band reflects the relative contribution of that band to the total covariance between the series. 

 Moreover, the R2 of the regression measures the contribution of the serial correlation of 𝑋௧
஻ to that 

of 𝑌௧
஻ . As an illustration, suppose a (decomposed) time series, 𝑋௧

஻ , follows a first-order autoregressive 

(AR1) process with coefficient 𝜌஻, that is, 𝑋௧
஻ = 𝜌஻𝑋௧ିଵ

஻  + 𝜈௧, where 𝜈௧ is i.i.d. and uncorrelated with 𝑋௧
஻. 

Consider a second series, 𝑌௧
஻, related to 𝑋௧

஻ through Equation (8), where 𝜀௧ is i.i.d. and uncorrelated with 

𝑋௧
஻ and 𝜈௧. Then the first-order autocorrelation coefficient of 𝑌௧

஻ equals  

                     𝜌஻
஼௢௩(ఉಳ௑೟

ಳ,௒೟
ಳ)

௏௔௥(௒೟
ಳ)

≡ 𝜌஻ × 𝑅஻
ଶ , (9) 

where 𝑅஻
ଶ  is the R2 of Equation (8). Therefore, a higher 𝑅஻

ଶ  implies that the serial correlation structure of 𝑌௧
஻ 

is more tightly related to that of 𝑋௧
஻. In a multivariate setting, the R2 is replaced with a (semi)-partial R2 

(denoted by PR2), which measures the proportion of the total variation of 𝑌௧
஻ that is uniquely explained by 

an explanatory variable. For instance, in the regression of 𝑌௧
஻ on 𝑋ଵ௧

஻  and 𝑋ଶ௧
஻ , the partial R2 of 𝑋ଵ௧

஻  is the R2 
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of the regression of 𝑌௧
஻ on the residuals of the regression of 𝑋ଵ௧

஻  and 𝑋ଶ௧
஻ . Thus, the partial R2 reflects the 

extent to which the serial correlation of an explanatory variable is passed on to that of 𝑌௧
஻.   

Finally, the regression R2 and coefficient estimate, taken together, are informative about how the 

cycles composing the variables relate to one another. Each frequency k is associated with a unique cycle 

length and serial correlation, with more persistent series having longer cycles. A high R2 in the regression 

of 𝑌௧
௞ on 𝑋௧

௞ implies that the serial correlation and the cyclicality of 𝑌௧
௞ are closely linked to those of 𝑋௧

௞. 

Furthermore, the regression coefficient reveals the degree to which the peaks of the two series’ cycles are 

aligned. For example, a high 𝑅஻
ଶ  and positive 𝛽஻ over the frequency band B indicate that the cycles of 𝑋௧

஻ 

and 𝑌௧
஻ move up and down together over that frequency band, whereas a high 𝑅஻

ଶ  and negative 𝛽஻ that they 

move in opposite directions.      

4.3. How the frequencies of flows and returns differ from the holding horizon and turnover 

Although broadly related, our notion of frequency is distinct from those of a holding period and turnover. 

Let us start with the frequency of anomaly returns. It represents the frequency at which the returns of an 

anomaly strategy accrue (those returns typically differ from the returns of the individual stocks composing 

the strategy) and is closely linked to their serial correlation. To illustrate these differences, consider the 

following three types of traders. The first is a long-term investor, such as Warren Buffett, who does not 

adjust his holdings in a stock. Nonetheless, his marked-to-market profits from the stock vary over all 

frequencies, including the highest, along with fluctuations in the stock’s price. The second type of trader is 

a convergence trader whose strategy requires frequently rotating her portfolio, holding stocks for a few 

months or less; such a strategy is akin to an anomaly strategy with transient signals that prompt frequent 

rebalancing. Despite the continuous rotations, the returns to the strategy, not to each stock she holds, might 

be persistent and evolve at, say, the business-cycle frequency, along with cross-asset return correlations. 

Finally, consider arbitrageurs who build positions in an underpriced asset by buying shares weekly over a 

quarter, thereby gradually pushing up the asset’s price. The stock’s return will likely display low-frequency 

fluctuations with cycles (e.g., quarterly) longer than those of trading (weekly). Note that if arbitrageurs 

switched between buying and selling the stock every week, then the stock’s return would instead exhibit 

high-frequency (weekly) movements.  

The distinction between these notions is confirmed by the data: we find that anomaly strategies that 

yield profits over different holding horizons (See Table A1, Panel A, and the discussion in footnote 20) or 

that require different turnovers (see Table I7 and the discussion in footnote 28) load on both low- and high-

frequency components of anomaly returns, indicating that the holding horizon and turnover are distinct 

from the return frequency. 
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The frequency of capital flows need not relate to turnover either. For example, investors can 

contribute capital to a fund, either gradually (i.e., at low frequency) as pension investors do or in sudden 

bursts (i.e., at high frequency) as liquidity traders do, to either a high-frequency trading shop or a buy-and-

hold mutual fund. 

5. Anomaly returns and flows across frequencies 

In this section, we estimate the spectra of anomaly returns and flows; that is, we decompose these series 

into a sum of frequency-specific components, each associated with a specific autocorrelation and cycle 

length. We start by connecting these components to cycles of returns and/or flows documented in the 

literature to illustrate how well our spectral analysis reflects real economic activities. Then we present some 

descriptive statistics. Finally, we perform a variance decomposition to quantify each frequency’s 

contribution to the series’ variability. 

5.1.  Anomaly returns and flows spectra  

Performing a Fourier transformation requires that the time series be stationary. Accordingly, we carry out 

unit-root tests, which confirm that the anomaly return and flow series are all stationary (Table I2 of the 

Internet Appendix). Figure 1 displays the spectra of NINV anomaly returns and hedge fund flows. The x-

axis corresponds to a variable’s frequency, and the y-axis represents the power of each frequency scaled by 

the sum of powers over the full spectrum, that is, the relative contribution of each frequency to the variable’s 

total variance. 

In this figure, we link prominent frequencies to cycles in real economic activity and in asset or 

anomaly returns documented in previous studies (listed below the figure). For instance, business cycles 

have periods of 2–8 years (i.e., points A, B, C, and D with frequencies from 0.1 to 0.5 cycles per year; see 

Dew-Becker and Giglio 2016). Point A represents cycles with periods of approximately 8 and 10 years that 

correspond to the Democratic and Republican presidential anomaly return cycle and to the solar anomaly 

return cycle reported in Novy-Marx (2014); these cycles are associated with public policy and investors’ 

risk aversion. Point B represents a cycle with a 5-year period that matches the overreaction and 

underreaction cycle that drives momentum and reversal anomalies (Lee and Swaminathan 2000). Point E 

represents the frequency of one cycle per year that coincides not only with annual reporting (e.g., to 

shareholders or fiscal authorities) but also with (a) the seasonal affective disorder (SAD) cycle in returns 

and asset allocation, which some have argued is related to investors’ risk tolerance (Kamstra et al. 2003, 

2017) and with (b) a cycle of seasonal momentum and reversal (Heston and Sadka 2008; Keloharju et al. 

2020). Point G represents the quarterly frequency that corresponds to return cycles associated with (a) 

earnings announcements (Linnainmaa and Zhang 2019) and (b) dividend payments (Hartzmark and 
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Solomon 2013); the latter is also related to inflows induced by investors’ preference for dividends (Harris, 

Hartzmark, and Solomon 2015).  

The spectra of anomaly returns and flows display not only commonalities, such as at the quarterly 

frequency, but also disparities. One example of the latter is point H, which is related to the FOMC return 

cycle (close to six cycles per year; Cieslak et al. 2019), and which is an important contributor to the variance 

of anomaly returns, but not to that of hedge fund flows. Another is that, whereas the business-cycle peak at 

0.3 cycle per year stands out for both variables, its contribution exceeds 12% of the total variance in hedge 

fund flows, yet it is less than 4% of the NINV total variance. 

[[ INSERT Figure 1 about Here ]] 

For most of the analysis, we group frequencies into two bands representing the low- and high-

frequency components of the series. Variables with the “-LOW” suffix represent those time series that are 

reconstructed from frequencies lower than or equal to one cycle per year; variables with the “-HIGH” suffix 

are time series reconstructed from frequencies higher than one cycle per year. The -LOW and -HIGH 

variables are orthogonal to one another. Because flow variables are measured monthly, our highest 

frequency is six cycles per year. Figure 2 plots the time series of anomaly returns and fund flows, together 

with their high- and low-frequency components. As expected, these components differ markedly in their 

persistence. Intuitively, low-frequency (respectively, high-frequency) anomaly returns reflect components 

that go through long (respectively, short) exacerbation and correction cycles; in other words, they represent 

the persistent (respectively, transient) component of anomaly returns. Likewise, low-frequency 

(respectively, high-frequency) fund flows capture components that go through long (respectively, short) 

high-low flow cycles, that is, persistent (respectively, transient) flows. 

[[ INSERT Figure 2 about Here ]] 

5.2. Descriptive statistics 

Table 1 presents summary statistics (Panel A) and correlations among main variables (Panels B and C). In 

Panel A of the table, the average monthly returns on the SYY and NINV anomalies are 1.9% and 1.6%, 

respectively. These average returns are statistically significant, with respective t-statistics of 6.52 and 4.36, 

indicating that a long-minus-short strategy is profitable. Yet over time, anomaly returns widely vary, with 

standard deviations of 4.8% for SYY and 6.0% for NINV. The monthly average flows to mutual funds and 

hedge funds are 0.2% and 0.4%, respectively, and their respective standard deviations are 0.5% and 1.7%.  

[[ INSERT Table 1 about Here ]] 

The values reported in Panel B of Table 1 establish that anomaly returns are positively related to 

hedge fund flows, negatively related to mutual fund flows, and unrelated to passive fund flows. These 

correlations are in accordance with the notion that hedge funds constitute smart money, whereas mutual 

funds amount to dumb money. The results suggest also that passive funds, whose performance is based on 

Electronic copy available at: https://ssrn.com/abstract=3675163



18 
 

tracking the benchmarks, are neither dumb nor smart money. Panel C of Table 1 reports correlations 

calculated between the low- and high-frequency components of returns and fund flows. Whereas Panel B 

indicates that the correlations between HF flows and anomaly returns are positive but statistically 

insignificant, Panel C shows that correlations at low frequency are significantly positive.  

5.3. Variance decomposition of fund flows and anomaly returns 

Panel D of Table 1 displays the relative contribution of low- and high-frequency bands to the total variance 

of each series. The table reveals that they differ markedly in their frequency structures. First, the high-

frequency components of SYY and NINV anomalies contribute about three times more to their total 

variance than do their respective low-frequency components. This suggests that the fast-moving mispricing 

exacerbation and correction cycles drive most of the variation in anomaly returns. Second, the frequency 

structures of flows differ across fund types. For mutual funds, flows are mostly (66%) driven by low-

frequency fluctuations; for hedge funds, they are driven by low- and high-frequency fluctuations to an equal 

degree; finally, for passive funds, they are mostly driven (54%) by high-frequency fluctuations. Thus, 

comparatively, mutual fund investors are the slowest in providing capital, and passive fund investors are 

the fastest. Hedge fund investors, who are neither slow nor fast, lie in between. This ranking is broadly 

consistent with the characteristics of the clientele that these funds serve.  

[[ INSERT Figure 3 about Here ]] 

Figure 3 offers a visual representation of the variance decomposition by displaying the cumulative 

contribution of frequencies. Thus, the figure plots Var(∑ 𝑋௧
௞௄

௞ୀ଴ )/Var(𝑋௧) for each frequency k. The figure 

illustrates a major difference between anomaly returns and fund flows: whereas the cumulative contribution 

of frequencies to the total variance in anomaly returns is close to the 45° line, which corresponds to an 

equal contribution benchmark, it is located well above that line for fund flows, especially for mutual funds. 

For example, the lowest frequency for mutual fund flows is the most important contributor to their variance, 

which suggests that many mutual fund investors are long-term investors. This observation is consistent with 

the observation that a substantial portion of mutual fund assets under management are tied to retirement 

accounts and so are restricted from redemption. The contrast between anomaly returns and fund flows was 

already evident in Figure 1, where NINV exhibits large spikes at high frequencies (i.e., at more than 

two cycles per year), while large spikes for hedge fund flows are concentrated on the low end of the 

spectrum (fewer than 0.5 cycles per year). 

6. Relation between anomaly returns and flows across frequencies 

In this section, we evaluate the relation between fund flows and mispricing in the frequency domain. To do 

so, we estimate regressions of decomposed returns on decomposed flows. We first focus on the coefficient 

Electronic copy available at: https://ssrn.com/abstract=3675163



19 
 

estimates in the regressions and then turn to their explanatory power and economic magnitude. Next, we 

consider the respective roles of investors and managers. Finally, we examine separately the long and short 

legs of anomaly portfolios. 

6.1. Regressions of anomaly returns on flows 

Akbas et al. (2015) show that the coefficient estimate from regressing (total) anomaly returns on (total) 

flows is positive for hedge funds but negative for mutual funds. Their interpretation is that hedge fund flows 

constitute smart money that corrects mispricing, whereas mutual fund flows amount to dumb money that 

exacerbates mispricing. Intuitively, correcting (respectively, exacerbating) mispricing an overvalued stock 

entails taking a short (respectively, long) position and so, by construction, is associated with a positive 

(respectively, negative) return on the anomaly portfolio. Therefore, positive net capital flows to hedge 

(respectively, mutual) funds in a month accompanied by positive (respectively, negative) anomaly returns 

indicate that those flows are positively associated with a mispricing correction (respectively, exacerbation). 

We build on this interpretation, as well as on direct evidence obtained from trading records that fund flows 

affect mispricing.17 Given that hedge funds and mutual funds may specialize in different frequencies, it is 

not a priori clear how their flows relate to mispricing across frequencies. Our regression sheds light on this 

question.  

[[ INSERT Table 2 about Here ]] 

Table 2 reports the results from regressing long-short anomaly returns on fund flows over low- and 

high-frequency bands. Panels A, B, and C split, respectively, flows, returns, and both flows and returns, 

into their low- and high-frequency components. Following Akbas et al. (2015), we control for Amihud 

illiquidity and the aggregate turnover as well as Fama-French three factors.18 t-statistics are calculated based 

on Newey-West standard errors with 13 lags.  

We first reproduce the results of Akbas et al. (2015) in columns (1) and (3) of Panel A, by 

regressing total anomaly returns on total hedge fund and mutual fund flows. That both SYY and NINV are 

positively related to hedge fund flows but negatively related to mutual fund flows indicates that hedge fund 

flows contribute to correcting mispricing, while mutual fund flows contribute to exacerbating it. These 

results match those reported in Akbas et al. (2015) in both magnitude and significance. Next, in columns 

(2) and (4), we decompose fund flows into their low- and high-frequency components (HF-LOW, HF-

HIGH, MF-LOW, MF-HIGH). Although the coefficient estimates for both HF-LOW and HF-HIGH are 

positive, the magnitude is much smaller for HF-HIGH (and statistically insignificant), suggesting that 

mainly low-frequency hedge fund flows correct mispricing. For mutual funds, in contrast, MF-LOW and 

                                                 
17 See the discussion in footnotes 2 and 7.  
18 In Table A1 of the appendix, we use other factor models and obtain results similar to those in Table 2.    
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MF-HIGH exhibit coefficients that are (significantly) negative and of comparable magnitudes, suggesting 

that both low- and high-frequency mutual fund flows tend to aggravate mispricing. 

In Panel B, we decompose anomaly returns into their low- and high-frequency components (SYY-

LOW, SYY-HIGH, NINV-LOW, NINV-HIGH) and regress each component on total flows. We find that 

the positive relation between hedge fund flows and anomaly returns is driven by low-frequency anomaly 

returns (Columns (1) and (2)). At high frequency, the coefficient estimate is positive, but it is much smaller 

in magnitude and statistically insignificant (Columns (3) and (4)). This finding suggests that hedge fund 

flows mainly correct low-frequency mispricing. In contrast, a negative relation between mutual fund flows 

and anomaly returns is observed for both high- and low-frequency returns, with coefficient estimates of 

comparable magnitude, indicating that mutual fund flows exacerbate both high and low-frequency 

mispricing.  

Finally, in Panel C, we regress decomposed anomaly returns on decomposed flows to examine how 

each component of flows affects each component of mispricing (as in Equation (8)). The results show that 

hedge fund flows correct mispricing mainly over low frequencies. For instance, the regression of SYY-

LOW on HF-LOW yields a coefficient estimate of 0.796 (t = 3.56), whereas the coefficient estimate from 

regressing SYY-HIGH on HF-HIGH is indistinguishable from zero. In contrast, mutual fund flows 

exacerbate mispricing over both high and low frequencies. Consider again SYY anomalies: at low 

frequency, MF-LOW yields a coefficient estimate for SYY-LOW of −2.770 (t = −3.09); at high frequency, 

MF-HIGH yields a coefficient estimate for SYY-HIGH of −2.071 (t = −3.00). The magnitudes of these 

coefficients are more comparable than are those we obtained for hedge funds. We remark that directly 

comparing coefficients without accounting for the magnitude of the variation in each frequency band may 

produce misleading results. In Section 6.3, we study these coefficients in depth. 

Overall, these results indicate that mutual fund flows constitute dumb money throughout the entire 

spectrum: they exacerbate mispricing at each frequency. Hedge fund flows amount to smart money, in that 

they correct mispricing at each frequency. But, in contrast to mutual funds, their smart money effect is 

concentrated on low frequencies. In the Internet Appendix (Table I3), we examine individual anomalies 

and confirm that these findings, based on aggregated mispricing measures, are not driven by a subset of 

anomalies or by differences across anomalies (e.g., by correlations between mispricing and flows in 

different frequency bands being driven by different sets of anomalies).19  

                                                 
19 Table I3 examines the relation across frequencies between individual anomaly returns and fund flows. For 8 of the 
11 SYY anomalies, the coefficient estimates for HF-LOW are positive, and 4 of them are statistically significant. 
Although we observe some positive coefficients for HF-HIGH, their magnitude is (on average) smaller, and only two 
of them are significant. For mutual funds, the negative relation prevails for both high- and low-frequency flows. 
Furthermore, HF-LOW is positively related to eight low-frequency anomaly returns, six of which are statistically 
significant; HF-HIGH is positively related to four high-frequency anomaly returns, none of which is significant. 
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6.2. Explanatory power of flow components 

In this section, we examine the explanatory power of fund flows for anomaly returns. Table 2 reports the 

partial R2 of each explanatory variable in the regressions. As noted in Section 4.2, the partial R2 reflects the 

extent to which the serial correlation of anomaly returns is related to that of the explanatory variable. 

Columns (1) and (3) of Panel A indicate that HF and MF flows jointly explain 3.0% (respectively, 3.4%) 

of the variation in SYY (respectively, NINV) anomalies, which represent 13% (respectively, 21%) of the 

regressors’ total explanatory power. These estimates are comparable to those obtained for non-market 

pricing factors, such as the value factor, HML. Thus, HF and MF flows form two (non-traded) factors that, 

alongside other prominent factors, contain important information for explaining variations in anomaly 

returns.  

The combined explanatory power for low-frequency returns (Columns (1) and (2) of Panel B) 

reaches 27% (respectively, 35%) of the regressions’ overall explanatory power. On the other hand, the 

combined explanatory power for high-frequency returns (Columns (3) and (4) of Panel B) accounts for 5% 

(respectively, 10%), an estimate comparable to (respectively, higher than) the explanatory power achieved 

by the value factor at 6% (respectively, 2%) but far smaller than that displayed by the market factor at 50% 

(respectively, 32%) and size factor at 37% (respectively, 52%). These results suggest that flows are related 

to both the persistent and the transient components of anomaly returns, but that their relation to the persistent 

component is much stronger.  

Panel C of Table 2 shows that decomposing fund flows substantially increases their explanatory 

power. Low-frequency HF and MF flows, together, explain 20% (respectively, 24%) of the total variation 

in low-frequency SYY (respectively, NINV). Their explanatory power represents 53% (respectively, 61%) 

of the regressors’ total explanatory power, far more than other factors’, the market included. At high 

frequency, it drops to 2.3% (respectively,2.3%) but nonetheless represents 13% (respectively, 20%) of the 

regression’s total R2. These results suggest that the serial correlations of the persistent components of 

anomaly returns and fund flows are closely related to one another. The serial correlations of their transient 

components are also related, but to a much lesser degree. Table A1 in the appendix re-estimates those partial 

R2 using the recent factor models of Daniel, Hirshleifer, and Sun (2020),20  Fama and French (2015), 

Stambaugh and Yuan (2017), and Hou, Xue, and Zhang (2015) and reaches similar conclusions: low-

                                                 
20 Despite a common emphasis on horizon, our study and Daniel, Hirshleifer, and Sun’s (2020) differ in (a) purpose 
and (b) concept. (a) Our objective is to analyze the relation between flows and mispricing, whereas theirs is to develop 
(horizon-dependent) asset pricing factors, regardless of flows. (b) We consider distinct notions of horizon: our focus 
is on the persistence of mispricing’s economic significance, whereas theirs is on the horizon over which its statistical 
significance sustains. Indeed, as our Table A1 shows, long- and short-horizon factors are significantly related to both 
low- and high-frequency components of anomaly returns; moreover, for each frequency component, the economic 
magnitude of the relationship is similar across long- and short-horizon factors. 
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frequency flow factors have far more explanatory power for low-frequency anomaly returns than any of the 

factors in those models.  

[[ INSERT Table 3 about Here ]] 

Panel A of Table 3 quantifies the difference in flows’ explanatory power between the low- and 

high-frequency regressions and compares it across fund types. It reports, for each fund type, the ratio of the 

partial R2 displayed by flows in the low-frequency regression to that displayed in the high-frequency 

regression (Columns (3) and (6)). For mutual funds, that ratio is around five, whereas for hedge funds, it 

ranges from 40 to 325. Thus, flows’ explanatory power is tilted toward low frequencies, and this tilt is 8 to 

60 times more pronounced for hedge funds than for mutual funds. We dub this tilt the slow-moving effect. 

Overall, these results indicate that fund flows significantly contribute to the serial correlation of 

anomaly returns, especially at low frequency and for hedge funds. In the next sections, we analyze the 

direction and magnitude of the slow-moving effect, as well as the contributions of fund investors and 

managers.  

6.3. Direction and magnitude of the slow-moving effect 

In this section, we evaluate the slow-moving effect across frequencies in terms of its direction and economic 

significance. We examine the effect first over the low- and high-frequency bands, then continuously over 

the entire spectrum, and, finally, separately over the long and short legs of the anomaly portfolios. 

6.3.1. The slow-moving effect over low- and high-frequency bands 

The direction of the effect of flows on mispricing over the frequency band B = {L,H} is given by the sign 

of the regression coefficient, 𝛽஻, and its economic magnitude by the impact on returns (expressed in units 

of their standard deviation) of a 1-SD increase in flows, 𝛽஻ × 𝜎ி
஻/𝜎ோ

஻ , where 𝜎ி
஻  and 𝜎ோ

஻  denote 

(respectively) the standard deviations of flows and anomaly returns over the band B. Columns (3) to (5) in 

Panels B and C of Table 3 present estimates of the fund flow effect on SYY and NINV anomaly returns, 

respectively. The positive (respectively, negative) signs of 𝛽஻ for hedge (respectively, mutual) fund flows 

imply that they correct (respectively, exacerbate) mispricing over both low and high frequencies. Consider, 

for example, hedge fund flows and NINV anomalies (Panel C). The regression coefficient on HF-LOW is 

1.107 (Column (1)), which, given the standard deviation of HF-LOW (1.2% in Column (2)), is associated 

with a 1.3% increase in the NINV-LOW monthly return (Column (3)), that is, a mispricing correction of 

1.3% per month. Likewise, a 1-SD increase in MF-LOW exacerbates NINV-LOW mispricing by 1.7% per 

month. At high frequency, in contrast, a 1-SD increase in flows corrects NINV mispricing by 0.1% per 

month for hedge funds and exacerbates it by 0.8% per month for mutual funds. In terms of economic 

magnitude, a 1-SD increase in hedge funds flows corrects mispricing by 46.9% and 1.9% of a SD (Column 
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(5)) at low and high frequencies, respectively. The corresponding estimates for mutual funds equal -58.9% 

and -16.2%, respectively. 

Next, we compare the effect of flows in a given frequency band across fund types. Taking the ratio 

of economic magnitudes across funds at low frequency implies that, for NINV (respectively, SYY) 

anomalies, a 1-SD increase in hedge fund flows corrects 46.9%/58.9%=80% (respectively, 43.1%/54.6% = 

79%) of the mispricing entailed by a 1-SD increase in mutual fund flows. Thus, to the extent that hedge 

funds correct the mispricing generated by mutual funds, their flows can correct most of that mispricing. At 

high frequency, in contrast, a 1-SD increase in hedge fund flows corrects only 1.90% /16.2% = 12% 

(5.0%/15.5%=32%) of the NINV (respectively, SYY) mispricing entailed by a 1-SD increase in mutual 

fund flows.  

We then compare the fund flow effect across frequencies for a given fund type. To do so, we report 

in Column (5) of Panels B and C (row labeled “LOW/HIGH”) the cross-frequency flow-mispricing ratio, 

which is defined as the ratio of the magnitudes of the flow effect across frequencies, (𝛽௅ × 𝜎ி
௅/𝜎ோ

௅)/(𝛽ு ×

𝜎ி
ு/𝜎ோ

ு). A ratio larger (respectively, smaller) than one indicates that low-frequency flows lead to a larger 

(respectively, smaller) mispricing correction (or exacerbation) than do high-frequency flows. For hedge 

funds, the ratio of 24.41 (respectively, 8.62) for NINV (respectively, SYY) anomalies implies that they 

correct mispricing at low frequency 9 to 24 times more than they do at high frequency. Likewise, the ratio 

for mutual funds implies that their flows amplify mispricing at low frequency about four times more than 

they do at high frequency. Remarkably, these high ratios are obtained despite limited liquidity provision 

magnifying the price impact of high-frequency flows. Indeed, studies in microstructure, both theoretical 

and empirical, demonstrate that faster trading induces a bigger price impact (e.g., Kyle et al. 2017). Hence, 

to the extent that higher-frequency flows entail moving in and out of positions faster, they are likely to 

generate a bigger price impact and, hence, lower cross-frequency ratios. 

Finally, a comparison of fund types reveals that these cross-frequency ratios are 2.44 to 6.72 times 

larger for hedge funds than they are for mutual funds. Thus, the slow-moving effect, that is, fund flows’ 

tendency to affect low-frequency mispricing more than high-frequency mispricing, is considerably stronger 

for hedge funds than it is for mutual funds. In other words, hedge fund capital improves market efficiency 

more slowly than mutual fund capital degrades it.  

6.3.2.  The slow-moving effect over continuously expanding frequency bands 

So far, we have relied on a binary breakdown of variables into high- and low-frequency components. We 

now paint a continuous picture of how the slow-moving effect varies as a function of frequency. Panels A 

and B of Figure 4 plot the cross-frequency flow-mispricing ratio estimated over expanding frequency bands 

as follows. First, for each range of frequencies from 0.04 (the lowest frequency generated by our data) to a 
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cutoff c (up to six cycles per year, the highest frequency), we regress SYY or NINV on mutual fund flows, 

hedge fund flows, and control variables. Then we estimate the economic magnitude of the fund-flow effect 

over the frequency band [0.04, c] as 𝛽஼ × 𝜎ி
஼/𝜎ோ

஼ , where 𝜎ி
஼  and 𝜎ோ

஼  denote, respectively, the standard 

deviations of flows and mispricing over the frequency band [0.04, c]. Finally, we divide that number by the 

estimate of the economic magnitude over the high-frequency band, (1, 6] to obtain the cross-frequency 

flow-mispricing ratio, (𝛽஼ × 𝜎ி
஼/𝜎ோ

஼)/(𝛽ு × 𝜎ி
ு/𝜎ோ

ு). Hence, the ratio at one cycle per year—the frequency 

at which the expanding band coincides with the low-frequency band—corresponds to the ratio reported in 

Table 3. 

[[ INSERT Figure 4 about Here ]] 

Figure 4 reveals that, for all frequencies lower than one cycle per year, the ratio remains elevated 

for both fund types, and then, as the band expands to include higher frequencies, sharply declines past that 

threshold. In addition, the decline is more pronounced for hedge funds than for mutual funds. The break in 

the flow-return relation around one cycle per year indicates that one year is an important cutoff for the 

influence of both hedge funds and mutual funds on mispricing. Yet as the figure shows, our finding that 

mutual and hedge funds more strongly affect low-frequency mispricing is not sensitive to the choice of this 

cutoff for defining the low-frequency band; rather, it reflects their broad behavior over the entire spectrum. 

Furthermore, flow cycles can lead to the appearance of anomaly return cycles. To the extent that 

flows of smart and dumb monies alternately correct and fuel mispricing, return cycles may emerge (Pontiff 

2006; Akbas et al. 2015).21 Thus, hedge and mutual fund flows can contribute to both the serial correlation 

and the cyclicality of anomaly returns, especially for cycles longer than one year.  

6.3.3. Long versus short legs of anomaly portfolios 

Stambaugh et al. (2012, 2015) show that anomalies are mainly driven by overpricing in the short leg of 

anomaly portfolios. If our findings are driven by correcting or exacerbating mispricing, then they, too, 

should be driven by the short leg. Table 4 reports the results from regressing long- and short-leg returns 

separately on fund flows across frequencies. 

[[ INSERT Table 4 about Here ]] 

Panel A shows that hedge fund flows are not related to long-leg returns regardless of the frequency 

band, but, according to Panel B, they are significantly and negatively related to short-leg returns at low 

frequency. Comparing the magnitude of the coefficient estimates, we conclude that the positive relation 

between flows and returns exhibited in Table 2 is mostly due to the short leg. Observe that, for this leg, a 

negative coefficient implies that flows correct mispricing. In other words, at low frequency, hedge funds 

                                                 
21 With a correlation well below one within each frequency band (Table 1), hedge and mutual fund flows’ effects on 
mispricing are unlikely to perfectly offset each other. 
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correct overvaluation more so than undervaluation. Turning to mutual funds, we find that both long and 

short legs yield positive coefficient estimates at low and high frequencies; these results imply that mutual 

funds correct underpricing and exacerbate overpricing. But a comparison of the magnitudes of the 

coefficient estimates reveals that the effect on the short leg is far greater. Hence, we conclude that the slow-

moving effect of both fund types operates through the short leg of anomalies. 

6.4. Managers versus investors 

To understand the role of managers and investors in the slow-moving effect, we propose decomposing the 

effect into one part attributable to fund investors and another part attributable to fund managers. Indeed, 

that fund flows have a stronger effect on mispricing at low frequency may stem from investors’ flows 

comprising more low-frequency components or from fund managers investing flows in a way that affects 

mispricing more over low frequencies. Put in the language of filtering, we evaluate the extent to which the 

properties of returns (output signal) derive from those of investor flows (input signal) or from the 

investment behavior of fund managers (the filter). Formerly, the cross-frequency flow-mispricing ratio can 

be written as ൤ቀ
ఙಷ

ಽ

ఙಷ
ಹቁ × ቀ

ఉಽ

ఉಹ
ቁ൨ /(𝜎ோ

௅/𝜎ோ
ு). The first term in the numerator of this expression, (𝜎ி

௅/𝜎ி
ு), which 

we dub the  cross-frequency volatility ratio, represents the impact of investor flows (or the investor effect 

for short): a larger such ratio can be interpreted as investors supplying capital more slowly. We already 

know from the variance decomposition in Section 5.3 that mutual fund and passive fund investors are, 

respectively, relatively slow and fast in providing capital, while hedge fund investors are neither. The 

second term in the numerator of the ratio, 𝛽௅/𝛽ு, labeled the cross-frequency beta ratio, represents the 

impact of managers’ investment strategy (or the manager effect). A larger ratio can be interpreted as the 

impact of one unit of flows being tilted more toward low frequencies. A ratio larger (respectively, smaller) 

than one means that flows have a larger (respectively, smaller) effect on returns at low frequency than at 

high frequency, and so that managers behave as a low (respectively, high)-pass filter.  

Returning to Table 3, one sees that Panels B and C present the results from decomposing the slow-

moving effect into an investor effect, 𝜎ி
௅/𝜎ி

ு, in Column (2), and a manager effect, 𝛽௅/𝛽ு, in Column (1). 

For hedge funds, the estimate of the investor effect (1.03) indicates that investors supply capital equally 

over low and high frequencies and so do not contribute to the slow-moving effect, whereas estimates of the 

manager effect (4.42 and 12.98 for SYY and NINV anomalies, respectively) imply that managers play a 

critical role therein. For mutual funds in contrast, estimates of the investor (1.39) and manager effects (1.34 

and 1.43, respectively) imply that investors and managers both contribute, and almost equally so, to the 

slow-moving effect. Estimates of the manager effect—both above one—indicate that managers, especially 

at hedge funds, behave as a low-pass filter.  
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Comparing estimates across fund types suggests that mutual fund investors supply capital one-third 

more slowly than do hedge fund investors (= 1.39/1.03-1) and that hedge fund managers slow down capital 

2 (= 4.42/1.34-1 for SYY) to 8 times (= 12.98/1.43-1 for NINV) more than do mutual fund managers.  

Panels C and D of Figure 4, which display the investor and manager effects estimated over continuously 

expanding frequency bands, confirm that these patterns obtain throughout the spectrum. The figure also 

highlights the prominent role played by hedge fund managers, in comparison to investors and mutual fund 

managers, in the slow-moving effect.   

Several mechanisms can lead fund managers to behave as a low-pass filter. First, these managers 

might be redirecting high-frequency flows toward low-frequency mispricing. Consider, for example, a fund 

investor allocating capital to a fund at high frequency, say $1.2 billion in January and zero over the rest of 

the year. The fund’s manager can convert those flows into low-frequency flows by investing them gradually 

over the course of the year, for example, by investing $100 million every month, and holding the 

undeployed money in cash or liquid benchmarks. In other words, after the manager spreads those high-

frequency flows over time, they are indistinguishable from low-frequency flows.  

In the model of Section 8, we propose two alternative mechanisms, based on the equilibrium 

(mis)pricing of assets. The first is that managers invest more aggressively flows that they deem less likely 

to reverse, that is, lower-frequency flows (which we refer to as patient capital in our model). In the above 

example, the manager might invest only 80% of the $1.2 billion received in January and hold the residual 

in cash or liquid benchmarks to accommodate future redemptions, versus 90% of the $100 million received 

every month. The second mechanism we propose in our model is based, not on managers investing different 

amounts over different frequencies, but on mispricing’s reaction to the amount invested varying over 

frequencies. Specifically, lower-frequency mispricing requires longer capital commitments from managers 

(because it takes more time to correct) and so commands a larger risk premium and hence responds more 

to fluctuations in arbitrage capital. Returning to our example, we have the manager invest the same amount 

whether the funds are received all in January or gradually over the year, but each dollar of flows corrects 

mispricing more at low frequency than it does at high frequency. All three mechanisms (redirecting flows, 

allowing for more aggressive investing of lower-frequency flows, and lower-frequency mispricing being 

more responsive to flows) lead to a larger coefficient estimate (beta) at lower frequency and reflect the 

general idea that managers make optimal decisions given their limited risk-bearing capacity and the 

presence of market frictions. We therefore loosely refer to all three mechanisms as “slowing down flows.” 

Taken together, these results indicate that both hedge and mutual fund managers behave as a low-

pass filter; however, the importance of managers and investors differ strikingly across fund types. For hedge 

funds, the slow-moving effect is entirely due to managers slowing down flows, whereas for mutual funds, 

it is equally driven by investors’ flows being slow and managers’ slowing them further. 
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6.5. Passive funds 

Passive funds offer some perspective on estimates of the manager effect. Passive fund managers have no 

discretion in dealing with flows, so comparing beta ratios across passive and active managers provides 

information on the active filtering conducted by managers. We first note that, because passive funds 

typically track broad indexes rather than take long-short, market-neutral positions in anomaly portfolios, 

their flows do not affect mispriced assets but the market at large.22 Accordingly, in Table 5, we estimate the 

effect of flows, not on anomaly returns, but on two market return proxies: MKT, the value-weighted market 

returns from CRSP, and S&P 500, the return on the S&P 500 index. Panel A of Table 5 shows that, in sharp 

contrast to hedge and mutual funds, the effect of passive fund flows is insignificant at low frequency and 

strong at high frequency. Panel B further estimates that a 1-SD increase in passive flows is associated with 

a 1.0% increase in the monthly market return (Column (3)) at high frequency—about 0.27 of a SD (Column 

(5)), and no significant change at low frequency. As a result, the cross-frequency flow-“mispricing” ratio 

for passive funds is close to zero (Column (5)).  

[[ INSERT Table 5 about Here ]] 

 Given that passive fund managers have no flexibility for dealing with flows, these results likely 

reflect the price impact of flows on benchmark stocks due to imperfect liquidity provision. To illustrate, 

suppose a passive fund receives high-frequency inflows (respectively, outflows) of $1.2 billion in January 

and zero over the rest of the year. Accommodating those flows upon reception triggers bigger stock price 

increases (respectively, decreases) than if the fund had received them at low frequency, for example, $100 

million in every month of the year. Thus, passive funds flows affect returns at high frequency only.  

This interpretation is confirmed by passive funds’ cross-frequency beta ratio, which is well below 

one (ranging from 0.02 for MKT to 0.06 for S&P; see Column (1) in Panel B of Table 5). Since passive 

managers invest the flows they receive in their designated benchmarks without discretion or delay, this low 

ratio can only arise from higher-frequency flows triggering a bigger price impact. Indeed, inflows 

(respectively, outflows) lead to purchases (respectively, sales) that push up (respectively, down) stock 

prices more if they occur at higher frequency, because market makers require a larger compensation for 

accommodating orders over a shorter period, consistent with much of the microstructure literature. In other 

words, because of imperfect liquidity provision, managers who do not actively filter flows, that is, those 

who behave as a passive pass-through filter, have a cross-frequency beta ratio below one. This suggests that 

                                                 
22 That passive funds do not affect mispricing is confirmed in Table I4 of the Internet Appendix. The table presents 
estimates from regressing anomaly returns on passive equity fund flows as in our baseline analysis and shows no 
significant effect at any frequency. 
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using as benchmark a ratio of one as in Section 6.4 is likely to understates the true extent of low-pass 

filtering at hedge and mutual funds.23 

6.6. Endogeneity 

Here, we discuss the endogeneity of flows with respect to mispricing, in the form of reverse causality and 

an omitted variable. Before proceeding to formal tests, we note that the contrasting patterns we report across 

fund types should alleviate endogeneity concerns. Indeed, if the flow-return relationship is driven by an 

omitted variable (e.g., investment opportunities) affecting flows and mispricing simultaneously, then that 

variable needs to exert (a) opposite influences on hedge and mutual fund flows (given the opposite signs 

we find in Table 2 for their relationship to mispricing), and (b) no influence on passive fund flows (since, 

in Table I4 in the Internet Appendix, passive flows have no bearing on mispricing). This seems unlikely 

given how highly correlated flows are (e.g., in Table 1, the correlations of mutual fund flows with passive 

and hedge fund flows range from 0.42 to 0.53 at low frequency). Likewise, for reverse causality to hold, 

mispricing needs to affect hedge and mutual fund flows in opposite directions while not affecting passive 

fund flows.  

Notwithstanding, we conduct two formal endogeneity tests. The first is a Granger causality test that 

assesses reverse causality. The results, reported in Table A2 of the appendix, indicate that while hedge fund 

flows Granger cause mispricing corrections at low frequency, the reverse is not true. In contrast, Granger 

causality is observed in both directions at low frequency for mutual funds. Furthermore, we find no evidence 

of Granger causality at high frequency for either fund type. Overall, these results are consistent with hedge 

fund flows correcting mispricing at low frequency, rather than mispricing corrections generating hedge 

fund flows.  

 The second endogeneity test is the omitted variable test of Oster (2019).24 The key parameter of 

this test, denoted by “delta,” measures how important the omitted variable (the unobservable) needs to be 

(in percentage terms), relative to the controls (the observables), in order to render the parameter of interest 

(the treatment) insignificant. A delta of one means that the unobservable needs to be 100% as important as 

the observable controls to overturn the significant finding on the treatment. The higher the absolute value 

of delta, the smaller the likelihood of an omitted variable having a significant effect. Therefore, an absolute 

value of delta higher than one suggests that the parameter of interest is unlikely to be biased by an omitted 

variable.  Table A3 of the appendix reports estimates of delta for the coefficients in the regressions of Table 

                                                 
23 Although anomaly portfolios differ from the market portfolio, liquidity provision at high frequency is likely to be 
more restricted for anomaly stocks than for the market.  
24 Economics and other social sciences widely use the omitted variable test, which has only started to be applied in 
finance as of late. See, for example, Mian and Sufi (2014), Michalopoulos and Papaioannou (2016), Gorodnichenko 
and Weber (2016), Bhagwat, Dam, and Harford (2016), Knüpfer, Rantapuska, and Sarvimäki (2017), Schoenherr 
(2019), and Heimer et al. (2019). 
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2. Panel A shows that the deltas for hedge funds are higher than one in absolute value in all regressions, 

except for NINV-HIGH. For example, for SYY-LOW and HF, the delta estimate of 8.2 suggests that an 

omitted variable would have to be 820% as important as the controls to render the coefficient on HF 

insignificant. This is highly unlikely. Panel B confirms this conclusion for HF-LOW and HF-HIGH. 

Notably, the deltas for hedge fund flows are nontrivially larger than the deltas of traditional asset pricing 

factors especially at low frequency, suggesting that the hedge fund flow factors is less likely to suffer an 

omitted variable concern than the prominent factors. Overall, these results alleviate concerns about an 

omitted variable bias, especially for hedge funds. 

We also explicitly model the dependence of flows on lagged market return and turnover. 

Specifically, using flows orthogonalized with respect to these variables, we find that the baseline results of 

Table 2 are unchanged (see Table I5 in the Internet Appendix). 

Finally, in support of a causal relation from flows to mispricing, we propose in Section 8 a theory 

in which (exogenous) flows generate the low-pass filtering behavior that we observe in the data. The model 

makes several additional predictions about the role of frictions in generating the behavior we observe in the 

data and detail in Section 7.  

7. Market frictions and low-pass filtering 

We find that the impact of funds, especially hedge funds, on mispricing is tilted toward low frequencies 

(the slow-moving effect), and that this tilt is mostly due to managers’ filtering behavior, again especially 

for hedge funds. Since flows are measured as a percentage of total net asset and hedge funds manage only 

a tenth of mutual funds’ assets, our finding that hedge funds’ flows exert an effect comparable to mutual 

funds’ at low frequency implies that their flows are the most important for mispricing at that frequency on 

a per-dollar basis. 

In this section, we investigate the role of market frictions in inducing managers, especially at hedge 

funds, to behave as a low-pass filter. Clearly, if there were no frictions to impede arbitrage, then all 

mispricing, regardless of its frequency profile, would be eliminated instantly. We examine how managers’ 

filtering behavior responds to variations (over time and across funds) in the intensity of three frictions: risk, 

access to capital, and implementation costs. We then address endogeneity concerns using exogenous shocks 

to these frictions. Throughout this section, we report results only for the NINV anomaly in the interest of 

brevity; those based on the SYY anomaly are largely similar and relegated to the Internet Appendix (Table 

I6). 
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7.1. Risk 

We first examine in Table 6 whether managers’ low-pass filtering behavior depends on aggregate risk. We 

use various proxies, including the NBER recession indicator, the VIX, the financial uncertainty index of 

Jurado et al. (2015), and the economic uncertainty index of Bekaert et al. (2019).25 The variables of interest 

are the low- and high-frequency flows interacted with a dummy variable, D, that represents a risk proxy. 

For the NBER indicator, D is a dummy variable set to one if the economy is in recession during the current 

month (and set to zero otherwise). For other proxies, D is a quintile score ranging from zero to one; here 

higher scores indicate greater uncertainty. Panel A uses total flows as independent variables, while Panel B 

uses low- and high-frequency flows.  

In Panel A, the coefficient estimates for hedge fund flows interacted with D is significantly positive 

in the NINV-LOW regressions across all risk proxies (Columns (1), (3), (5), and (7)); for mutual fund flows, 

instead, the estimates are indistinguishable from zero throughout. 

[[ INSERT Table 6 about Here ]] 

In Panel B, the coefficient estimate for HF-LOW × D is significantly positive for low-frequency 

anomaly returns (Columns (1), (3), (5), and (7)); in contrast, the coefficient estimate for HF-HIGH × D is 

not significant for high-frequency anomaly returns (Columns (2), (4), (6), and (8)). This result suggests that 

hedge funds’ low-frequency mispricing correction amplifies with risk. The impact of risk as measured in 

the low-frequency regressions is economically sizable. In Column (1) of Panel B, for example, the 

coefficient estimate for HF-LOW × D (2.252) is more than three times as large as that on HF-LOW (0.684). 

Turning to mutual funds, we observe that none of the regressions yields a significant coefficient 

estimates for flows interreacted with the risk proxy except for the NBER recession indicator. That set of 

regressions reveals contrasting findings: the coefficient estimates for MF-LOW × D are negative for low-

frequency anomaly returns (Column (1)), indicating that mutual funds’ exacerbation of mispricing at low 

frequency amplifies during recessions, whereas those on MF-HIGH × D are positive for high-frequency 

anomaly returns (Column (2)), implying  that their exacerbation of mispricing at high frequency dampens.  

Overall, these results suggest that hedge funds’ correction of low-frequency mispricing intensifies 

in times of heightened aggregate risk. We also find some, albeit weaker, evidence that mutual funds’ 

exacerbation of low-frequency mispricing increases during recessions. 

                                                 
25 Jurado et al. (2015) estimate a financial uncertainty index from the conditional volatility of prediction errors; these 
errors are calculated based on various macroeconomic (e.g., real output and employment) and financial (e.g., earnings-
to-price ratio, default and term spreads) time series. Bekaert et al. (2019) jointly estimate time-varying risk aversion 
and economic uncertainty from a dynamic model of asset prices; their estimation also makes use of macroeconomic 
(e.g., consumption and industrial production) and financial (e.g., stock returns and the VIX) variables. 
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7.2. Leverage 

In this section, we examine how managers’ low-pass filtering behavior relates to leverage, exploiting 

variations, first in the time series, and then in the cross section.26 We consider two determinants of hedge 

funds’ leverage: funding costs (which makes leverage more expensive) and risk aversion (which makes 

leverage less desirable). We proxy for the former with the TED spread and for the latter with the measure 

developed by Bekaert et al. (2019). As in Table 6, the main variables of interest in Table 7 are the low- and 

high-frequency fund flows interacted with D, now a quintile score scaled from zero to one, where a higher 

score indicates a wider TED spread or greater risk aversion. 

[[ INSERT Table 7 about Here ]] 

The coefficient estimates for HF × D and HF-LOW × D are generally positive and significant for 

low-frequency anomaly returns, suggesting that the low-frequency mispricing correction by hedge funds 

strengthens when either funding costs or risk aversion rises (Columns (1), (2), (5), and (6)). The effects are 

economically significant. In column (2) of Panel B, for example, the coefficient for HF-LOW × D (1.184) 

is three times as large as the coefficient for HF-LOW (0.351). These values imply that an increase in the 

TED spread from the lowest to the highest quintile is associated with a quadrupling of the flow-return 

relation at low frequency [(1.184 + 0.351) / 0.351 = 4.37]. 

We then examine leverage in the cross section of hedge funds. Because leverage is chosen by funds, 

unlevered funds are likely to be more risk averse or to face more restrictions on borrowing than are levered 

funds. As Adrian and Shin (2013) show, risk-bearing capacity is positively related to leverage. So, to the 

extent that frictions are the reason why funds behave as low-pass filters, we expect low-frequency 

mispricing corrections to be more pronounced for unlevered funds. In Table 8, we examine whether the 

flow-return relationship is affected by funds’ use of leverage. For each month, we classify hedge funds into 

two groups: those that use leverage (HFLev) and those that do not (HFUnLev). Then we calculate flows 

separately for each group and decompose these flows in the frequency domain. The table shows that, for 

total flows, the positive relation between hedge funds and mispricing is significant only for unlevered funds 

and for low-frequency mispricing (Column (1)). When we decompose the flows in the frequency domain, 

only HFUnLev-LOW exhibits a significant coefficient estimate, which is positive with low-frequency 

mispricing. This result suggests that more risk-averse funds—or funds with less access to borrowing—are 

more likely to pursue low-frequency arbitrage. 

[[ INSERT Table 8 about Here ]] 

                                                 
26 A growing literature studies the influence of intermediaries, such as broker-dealers and banks (through their balance 
sheets), on asset prices. Intermediaries act as middlemen between capital providers (households) and end users 
(e.g., hedge and mutual funds). Our paper differs by focusing on end users and not on middlemen. 
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Altogether, our findings indicate that limitations on hedge funds’ risk-bearing capacity leads hedge 

funds to behave as more selective low-pass filters. 

7.3. Liquidity and transaction costs 

We explore how managers’ low-pass filtering behavior depends on aggregate liquidity, again starting with 

the time series, and then turning to the cross section. We employ four measures of illiquidity that track 

variations in marketwide liquidity over time: (1) Amihud illiquidity, (2) the aggregate illiquidity described 

by Pastor and Stambaugh (2003), (3) the “permanent variable factor” proposed in Sadka (2006), and (4) Hu 

et al.’s (2013) noise measure. Each of these measures captures a different aspect of illiquidity. The Amihud 

illiquidity proxy computes volume-induced price impact, and the Pastor-Stambaugh measure tracks return 

reversals post-trading, which reflect the compensation paid to liquidity providers (Nagel 2012). The Sadka 

measure calculates the permanent variable component of price impact, which is extracted from bid-ask 

spreads. Sadka (2010) and Dong, Feng, and Sadka (2019) show that the permanent variable factor is an 

especially relevant component of transaction costs for both hedge funds and mutual funds. Finally, the noise 

measure of Hu et al. (2013) reflects the shortage of arbitrage capital and helps to explain the cross section 

of hedge fund returns. Following the liquidity literature, we obtain aggregate illiquidity measures by 

averaging individual illiquidity measures over all stocks.27 

For our analyses, the illiquidity variables (denoted by ILLIQ) are constructed as follows. First, if 

the original variable measures market liquidity, then we convert it to an illiquidity measure by multiplying 

it by negative one. Next, we detrend the measure and sort monthly (detrended) illiquidity values into 

quintiles. Finally, we standardize quintile scores from zero to one to obtain ILLIQ. Thus, the coefficient 

estimates for the interaction between flows and ILLIQ can be interpreted as the difference in the effect 

between the lowest and highest illiquidity periods. 

[[ INSERT Table 9 about Here ]] 

Table 9 presents results from regressing anomaly returns on flows interacted with ILLIQ. For hedge funds, 

the effect at low frequency strengthens considerably when liquidity worsens: all coefficient estimates for 

HF × ILLIQ (Panel A) and HF-LOW × ILLIQ (Panel B) are significantly positive. The effect is 

economically sizable; in Column (1) of Panel B, for instance, the magnitude of the effect of HF-LOW on 

NINV-LOW triples, from 0.349 when ILLIQ = 0 (lowermost illiquidity quintile) to 1.505 (1.156 + 0.349) 

when ILLIQ = 1 (uppermost illiquidity quintile). The coefficient estimates for HF-HIGH × ILLIQ are 

insignificant throughout, except in Panel B, where the coefficient for the Pastor-Stambaugh measure is 

significant. For mutual funds in contrast, the slow-moving effect is not sensitive to the level of liquidity 

                                                 
27 We thank Lubos Pastor and Ronnie Sadka for providing the liquidity measures. 
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(the coefficient estimates for MF × ILLIQ, MF-LOW × ILLIQ, and MF-HIGH × ILLIQ are 

indistinguishable from zero). 

As we discussed for the case of passive flows (Sections 6.3.2 and 6.4), flows may affect returns 

because of limited liquidity provision. One may therefore wonder whether heightened price impact in 

periods of low liquidity mechanically leads to higher coefficient estimates for hedge funds. We find this 

interpretation implausible because it implies a stronger flow-induced price effect (1) at high frequency and 

(2) particularly for mutual funds (since the mutual fund industry is more than 10 times larger than the hedge 

fund industry), neither of which is consistent with our results. Rather, our results indicate that hedge fund 

managers choose to filter flows more selectively when transactions are more costly. 

Next, we explore illiquidity differences in the cross section of funds. More specifically, we examine 

share restriction provisions, which are measured as the sum of the number of days in the lockup, redemption 

notice, and payout periods. This measure is widely used in the hedge fund literature to capture fund-level 

illiquidity, since funds whose underlying assets are more illiquid set higher share restrictions (Aragon 2007; 

Sadka 2010; Teo 2011). We expect such funds to engage in more low-pass filtering given that transaction 

costs are a greater concern with illiquid assets. 

In each month, we divide hedge funds into two groups, denoted by HFBelow and HFAbove, based 

on the median value of share restrictions; we then estimate fund flows and their frequency components 

separately for each group. The results, which are presented in Table 10, show that the positive relation 

between mispricing and hedge fund flows is confined to funds with high share restrictions (HFAbove). This 

outcome indicates that illiquidity is a driver of hedge funds’ low-pass filtering. 

[[ INSERT Table 10 about Here ]] 

Note that these findings do not imply that arbitrageurs trade fewer shares or less frequently because 

of transaction costs. Indeed, for a given target portfolio, arbitrageurs may simply spread their trades over a 

longer period, a behavior that would result in more persistent rebalancing and trading (e.g., gradually 

building a stake in an underpriced stock) and hence in a more persistent correction of mispricing. That is, 

to the extent that trades are consistently in the direction of correcting mispricing, then high-frequency 

rebalancing and trading in a stock can result in low-frequency mispricing correction. Thus, our tests speak 

to how transaction costs might alter the persistence of mispricing corrections by hedge funds, but not to 
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how those costs affect the turnover or profitability of their strategies.28 This viewpoint differentiates our 

liquidity tests from those presented in other studies of transaction costs.29 

7.4. Exogenous shocks 

To sharpen the identification of the effect of frictions on the low-pass filtering behavior of hedge fund 

managers, we exploit two quasi-natural experiments associated with shifts in the intensity of frictions. The 

first is the 2007–2009 financial crisis. Many studies use this event as an adverse shock to economic 

uncertainty (i.e., risk), funding access (i.e., risk-bearing capacity; Aragon and Strahan 2012), and market 

liquidity (Sadka 2010). Following Akbas et al. (2015), we consider the crisis to have unfolded from July 

2007 to December 2009.The second experiment is the adoption of decimalization, which was implemented 

between August 2000 and May 2001 by U.S. stock exchanges. It considerably improved liquidity 

(Bessembinder 2003; Furfine 2003) and is used as an exogenous shock to liquidity (e.g., Chordia, Roll, and 

Subrahmanyam 2008; Fang, Noe, and Tice 2009). Table 11 examines how the relation between flows and 

mispricing changed in response to these two shocks. The main variables of interest are the low- and high-

frequency fund flows interacted with SHOCK, an indicator variable set equal to one if the month t is 

included in the period of the shocks and to zero otherwise. 

[[ INSERT Table 11 about Here ]] 

The results presented in Table 11 reveal that low-pass filtering strengthened for hedge funds during 

the financial crisis but weakened during decimalization: in the low-frequency returns regressions of Panels 

A (total flows) and B (decomposed flows), the coefficient estimate for hedge fund flows interacted with the 

SHOCK indicator is significantly positive during the former (Column (1)) and negative during the latter 

(Column (3)). For decimalization, there was also an amplification of hedge funds’ mispricing corrections 

at high frequency, as evidenced by the significantly positive coefficient estimate for HF-HIGH × SHOCK 

(Column (4)). This result suggests that improved liquidity induces a shift in hedge funds’ mispricing 

corrections from low to high frequency, that is, a weakening of their low-pass filtering. It also speaks against 

our findings being mechanically driven by limited liquidity provision since the high-frequency flow effect 

on mispricing corrections strengthens when liquidity improves. 

                                                 
28 As further evidence, we compute the average returns on low- and high-turnover anomalies separately. Viewing them 
as two factors, we then perform the same test used in Table A1. The results, which are reported in Table I7 of the 
Internet Appendix, indicate that both low- and high-turnover anomalies load significantly on low- and high-frequency 
anomaly returns, supporting our claim that frequency and turnover are distinct notions. In that test, the low turnover 
anomalies are based on the Novy-Marx and Velikov (2016) low turnover anomalies, which require rebalancing less 
than once per year; the high-turnover anomalies, consistent with our one-year cutoff, are based on a combination of 
their medium and high-turnover anomalies, which require rebalancing on average, one to five times per year and more 
than five times per year, respectively.  
29 See, for example, Keim and Madhavan (1997), Korajczyk and Sadka (2004), Lesmond et al. (2004), Engle et al. 
(2012), Novy-Marx and Velikov (2016), DeMiguel et al. (2020), Frazzini et al. (2018), and Patton and Weller 
(2020). 
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Mutual funds exhibit largely similar patterns, namely, a strengthening of low-pass filtering during 

the financial crisis and a weakening during decimalization. In Panel B, for example, the coefficient estimate 

for MF-LOW × SHOCK is significantly negative in Column (1) and positive in Column (3). Again, 

decimalization, through improved liquidity, induces a shift in mutual funds’ exacerbation of mispricing 

from low to high frequency (negative coefficient estimate for MF-LOW × SHOCK in Column (4)). Overall, 

the evidence from these two experiments indicates that frictions cause fund managers, especially at hedge 

funds, to behave as low-pass filters. 

 

8. Modeling frictions and arbitrage in the frequency domain 

This section presents a model that ties together the pieces of evidence that we have reported. The model 

describes the dynamics of asset returns when the factors driving those returns decay at different speeds. It 

features three ingredients that, as indicated by the data, play a central role in stymieing arbitrage activity: 

risk, transaction costs, and the limited availability of capital. We build on two papers by Garleanu and 

Pedersen (2013, 2016; denoted by GP2013 and GP2016 henceforth), who describe the optimal dynamic 

trading strategy of a mean-variance investor in the presence of transaction costs when stock returns can be 

predicted by signals, or factors, decaying at different speeds. The third ingredient—limited capital— is 

incorporated into the model by assuming arbitrageurs’ risk-bearing capacity to be finite and increasing in 

the funds they receive. 

8.1. The economy 

Our model helps explain the dynamics of asset returns given the dynamics of mispricing. We start with an 

(exogenous) shock to the demand for assets that causes them to be mispriced; demand then gradually reverts 

to its initial level. The speed of reversion is the model’s key parameter. We interpret the shock and its 

reversion as being caused by noise trading, for example, mutual funds trading in response to flows.30 

Hedge funds accommodate variations in demand. How aggressively they trade depends on two 

features: their risk tolerance (a function of their capital) and transaction costs. Two comments on our 

modeling strategy are in order. First, we view hedge funds’ finite risk tolerance (i.e., that they are not risk 

neutral) as a tractable and intuitive way of capturing frictions, such as asymmetric information or limited 

contract enforceability, that hinder their ability to share risk by, say, borrowing or issuing claims contingent 

on future trading profits. Second, asset demand in our setup is exogenous, whereas prices are endogenous: 

                                                 
30 This model is a version of the equilibrium model analyzed in the last section of GP2016 and streamlined along two 
dimensions. The first is that a single factor, rather than two, drives mispricing; the second is that the dynamics of 
mispricing are deterministic rather than stochastic. These simplifications allow us to characterize the dynamics of 
returns in closed form and to derive sharp predictions. 
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prices reflect the compensation required by hedge funds for accommodating demand shocks. This 

equilibrium approach contrasts with, though is closely related to, a dual one in which prices are exogenously 

given but trades are endogenously determined (e.g., GP2013). 

8.1.1. Assets 

A riskless asset and two risky assets, which are labeled “slow” and “fast” (respectively, S and F for short) 

for reasons that will become clear shortly, trade competitively. The riskless rate equals an exogenous 

constant r f. Risky asset s (s = {S, F}) pays a stochastic dividend 𝑑𝑢௧
௦, between times t and t + dt, with mean 

𝐸௧(𝑑𝑢௧
௦) = 𝐷𝑑𝑡  and variance Var௧(𝑑𝑢௧

௦) = Σ𝑑𝑡. Here, Σ denotes risk, and dividends are independent and 

identically distributed (i.i.d.) across assets and over time. 

Both the price 𝑝௧
௦ of asset s and the return on that asset are determined endogenously. The return 

(in excess of the risk-free return) on one share of asset s between times t and t + dt, to which we refer as the 

“dollar excess return,” is given by 

𝑑𝑄௧
௦ ≡ 𝑑𝑝௧

௦ + 𝑑𝑢௧
௦−𝑟௙𝑝௧

௦𝑑𝑡. 

The excess return is defined as 𝑟௧
௦ ≡ 𝑑𝑄௧

௦/𝑝௧
௦ .31 Trading risky assets is subject to transaction costs. We 

maintain GP2016’s assumption A.2 that these costs are proportional to the amount of risk. Specifically, 

consider an agent trading with intensity ℎ௧
௦ ∈ ℝ, which represents the rate of change of her holdings 𝑥௧

௦ of 

asset s; that is, 𝑑𝑥௧
௦ ≡ ℎ௧

௦𝑑𝑡. The transaction costs incurred per unit of time come to భ

మ
𝜆Σ(ℎ௧

௦)ଶ, where 𝜆 ≥ 0 

parameterizes the trading costs.32 There are no restrictions on short selling or borrowing.  

The slow and fast assets represent the low- and high-frequency components of an anomaly strategy 

in our empirical analysis. Because our evidence mostly derives from the short leg of the long-short portfolio, 

the analysis focuses on the case of overvalued assets. Symmetric predictions obtain for undervalued assets. 

8.1.2. Agents 

The economy is populated by two representative agents. The first, and the focus of our study, is a hedge 

fund (or arbitrageur; for ease of exposition, hereafter we use a feminine pronoun for the arbitrageur). This 

arbitrageur chooses a dynamic trading strategy, which is represented by holdings 𝑥௧
௦ of asset s (s = {S, F}) 

                                                 
31 In the model, we analyze both dollar and percentage returns. Although mean-variance models typically focus on 
dollar returns, our tests are based on percentage returns. Also, as Lemma 3 shows, the decay rate of percentage returns 
is a function of the asset’s mispricing and therefore of the severity of frictions. Therefore, the percentage returns allow 
us to link together decay rates, mispricing, and frictions. 
32 One interpretation of this expression is that it follows from an investor trading with a risk-averse dealer. The 
compensation demanded by this dealer for bearing the risk that the asset price might fluctuate over a period of time dt 
is given by the dealer’s risk aversion λ multiplied by the size (variance) of the risk, Σ∆𝑥௧

௦ଶ, where ∆𝑥௧
௦ represents the 

number of shares traded. Therefore, trading ∆𝑥௧
௦ shares moves the (average) price by భ

మ
𝜆Σ∆𝑥௧

௦; the resultant price, when 

multiplied by the trade size ∆𝑥௧
௦, yields a total trading cost given by the previous expression. 
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and an associated trading intensity ℎ௧
௦ ≡ 𝑑𝑥௧

௦ 𝑑𝑡⁄ , to maximize a mean-variance objective that includes the 

cost of trading. Specifically, she maximizes the present value of future expected excess returns, penalized 

for risks and trading costs, as follows: 

max
௫బ

ೞ ,௫భ
ೞ ,…

𝐸଴ ∫ 𝑒ିఘ௧ ൤(𝑥௧
ௌ𝑟௧

ௌ + 𝑥௧
ி𝑟௧

ி) −
ଵ

ଶ

ஊ

ఛ
൬𝑥௧

ௌଶ
+ 𝑥௧

ி
ଶ

൰ −
(ଵିఘ)೟

ଶ
𝜆Σ ቀℎ௧

ௌଶ
+ ℎ௧

ிଶ
ቁ൨ 𝑑𝑡

∞

଴
; 

here, ρ > 0 is a discount rate and τ is the arbitrageur’s risk tolerance coefficient. The first term in brackets 

represents the portfolio’s expected excess return; the second term represents its variance scaled by the 

arbitrageur’s risk tolerance; and the last term represents the penalty for transaction costs. This objective 

corresponds to equation (5) in GP2016. We replace (to facilitate the presentation) the coefficient γ of 

absolute risk aversion with its inverse, that is, the coefficient of absolute risk tolerance, τ ≡ 1/γ. 

The second agent is a noise trader (to which we refer hereafter with a masculine pronoun). He 

might be a mutual fund responding to flows or any trader subject to shocks (such as to liquidity needs, 

perceived investment opportunities, or sentiment) unrelated to asset fundamentals. This interpretation is 

consistent with the evidence reported in Tables 2 and 4 and in the literature (e.g., Akbas et al. 2015). The 

behavior of the noise trader is not explicitly modeled; instead, we represent it by the residual demand for 

the assets (i.e., his demand minus the number of shares outstanding), which is price inelastic. We assume 

that the residual demand for asset s in period t, denoted by 𝑓௧
௦ , is positive and gradually declines to 

zero. Specifically, starting from 𝑓଴
௦ ≥ 0, the demand 𝑓௧

௦ evolves deterministically over time, in accordance 

with 

𝑑𝑓௧
௦ = −Φ௦𝑓௧

௦𝑑𝑡 for 𝑡 ≥ 0, 

where Φ S ≥ 0 is a parameter that controls the speed at which 𝑓௧
௦ decays to zero. We assume that the shocks 

are initially identical across assets (𝑓଴
ௌ = 𝑓଴

ி) but that they decay at different speeds: asset S, the “slow” 

asset, is associated with a smaller mean-reversion speed than asset F, the “fast” asset; that is, Φ S < Φ F. The 

top panel of Figure 5 illustrates these dynamics. We refer to 𝑓௧
௦ ( ≥ 0) as a factor because of its role (as we 

will describe) in driving returns. In short, the two risky assets are each associated with distinct predicting 

factors that differ only in the speed at which they decay (i.e., in the mean-reversion parameter Φ S ). 

Finally, we assume that the model’s parameters satisfy the following restriction. 

Assumption 1 (Upper bound on the magnitude of transactions costs): 𝜆 <
ଵ

ఛఃಷ(ఃಷାఘ)
. 

Assumption 1 ensures that the cost of trading assets is not too large relative to their risk premium, a scenario 

that most closely matches our evidence. 
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8.1.3. Equilibrium 

The equilibrium price process is such that the optimal holdings of the arbitrageur and the noise trader clear 

the asset market; that is, 𝑥௧
௦ + 𝑓௧

௦ = 0 for all periods t ≥ 0 and assets s = {S, F} . We assume that markets are 

initially in equilibrium, that is, 𝑥଴
௦ = −𝑓଴

௦.  

8.2. Equilibrium characterization 

Given our assumptions (i.i.d. dividends and deterministic residual demand), asset prices evolve 

deterministically over time. Hence, the dividend remains the sole source of risk. It is then natural to suppose, 

as we will confirm later, that asset prices are driven by the factors (𝑓௧
ௌ, 𝑓௧

ி). Thus, we write 𝑝௧
௦ = 𝑐଴

௦ + 𝑐௦𝑓௧
௦, 

where 𝑐଴
௦ and 𝑐௦ are constants. The mean and variance of excess returns over dt are, accordingly, given by 

𝐸௧(𝑑𝑄௧
௦) = 𝑑𝑝௧

௦ + 𝐸௧(𝑑𝑢௧
௦)−𝑟௙𝑝௧

௦𝑑𝑡 = (−𝑐௦(Φ௦ + 𝑟௙)𝑓௧
௦ + 𝐷−𝑟௙𝑐଴

௦)𝑑𝑡 

and Var௧(𝑑𝑄௧
௦) = Var௧(𝑑𝑢௧

௦) = Σ𝑑𝑡. 

Since these factors have the structure assumed by GP2016, the arbitrageur’s optimal strategy is given by 

their Proposition 1, which we restate next. 

Proposition 1 (Optimal trading strategy). The arbitrageur tracks a moving “aim portfolio,” aim௧
௦, toward 

which she rebalances her holdings by a fraction a /λ. That is, her optimal trading intensity ℎ௧
௦ is given by 

ℎ௧
௦ ≡

ௗ௫೟
ೞ

ௗ௧
=

௔

ఒ
(aim௧

௦ − 𝑥௧
௦), 

where 

aim௧
௦ =

ఛ

ଵା஍ೞ௔ఛ

ா೟(ௗொ೟
ೞ)

ஊௗ௧
 for 𝑠 = {𝑆, 𝐹}) and 𝑎 ≡

ఒ

ଶ
ቆට𝜌ଶ +

ସ

ఒఛ
− 𝜌ቇ. 

The rebalancing fraction a /λ is positive, decreasing in the transaction cost λ and in risk tolerance τ, and 

independent of assets’ mean reversion speeds Φ S. 

See the appendix for all proofs. 

According to Proposition 1, the arbitrageur’s optimal trading strategy can be broken down into two 

parts. The first, called the “aim portfolio,” is the position the arbitrageur seeks to achieve. This aim portfolio 

is a scaled-down version of the “Markowitz portfolio,” (𝜏/(Σ𝑑𝑡))𝐸௧(𝑑𝑄௧
௦ , 𝑑𝑄௧

௦)୘ , which is the optimal 

portfolio in the absence of transaction costs. The aim portfolio places less weight on an asset whose factor 

decays more rapidly (higher Φ S ). The reason is that any holdings of such an asset must be rebalanced more 

frequently, which is more costly. The second part of the optimal trading strategy consists of the extent to 

which the arbitrageur rebalances toward her aim portfolio. Transaction costs dictate that the arbitrageur 

only partially rebalance toward this portfolio. Specifically, this is achieved by a fraction a /λ (which is 
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infinite only in the absence of transaction costs), which does not depend on the decay speed of the factor 

underlying an asset’s price. Equilibrium expected returns and prices are given by Proposition 2. 

Proposition 2 (Equilibrium expected returns and prices). The expected dollar excess return over dt is 

𝐸௧(𝑑𝑄௧
௦) = −Σ[1 𝜏 −⁄ λΦ௦(Φ௦ + 𝜌)]𝑓௧

௦𝑑𝑡 for s = {S, F}, 

and the price is given by 

𝑝௧
௦ =

஽

௥೑ +
ஊ[ଵ ఛି⁄ ஛஍ೞ(஍ೞାఘ)]

஍ೞା௥೑ 𝑓௧
௦ for s = {S, F}. 

Proposition 2 establishes that the expected return consists of two components. The first is a reward 

that compensates the arbitrageur for taking “the other side” of noise trades. It is equal to the amount of risk 

that she must bear, (Σ𝑑𝑡) × (−
௙೟

ೞ

ఛ
), where the product’s first term is the risk per share and the second is the 

number of shares she must hold in equilibrium, divided by her risk-bearing capacity τ. This risk reward is 

negative because the arbitrageur is short the asset in equilibrium (𝑓௧
௦ ≥ 0). Note that, for a given 𝑓௧

௦, the 

speed of decay Φ S has no bearing on the risk reward because (a) the risk per share, Σ𝑑𝑡, is identical across 

assets and (b) the current level of the factor 𝑓௧
௦, regardless of its change 𝑑𝑓௧

௦, determines how many shares 

the arbitrageur holds in equilibrium. However, Φ S matters owing to its influence on 𝑓௧ : in any period 𝑡 >

0, the residual supply of shares (−𝑓௧
௦) is greater for asset S than for asset F, which implies a larger (i.e., 

more negative) risk reward for the former  (𝑓௧
ௌ > 𝑓௧

ி). In sum, the arbitrageur must maintain a larger short 

position in the slower asset. The residual supply of the slower asset decays more slowly, thereby exposing 

the arbitrageur in every period to more fundamental risk. To compensate the arbitrageur for this higher risk, 

the slower asset offers a higher return. 

The second component of the expected return is compensation for trading costs, ΣλΦ௦(Φ௦ + 𝜌)𝑓௧
௦𝑑𝑡. 

The compensation is positive (so the arbitrageur expects a positive return from buying shares) and increases 

with risk Σ, with the transaction cost parameter λ, and with the size of the arbitrageur’s trade over the 

interval dt, Φ௦𝑓௧
௦𝑑𝑡. Unlike the risk component, the trading cost component increases with the speed of 

decay. The reason is that, when the factor decays faster, the arbitrageur must adjust her holdings of the asset 

more rapidly in equilibrium (i.e., she has less time to close her short positions), which entails higher 

transaction costs (recall that such costs are convex in the rate of change in the arbitrageur’s holdings). The 

fast-decaying asset is therefore less attractive to a short seller, from which it follows that the asset must 

offer a higher expected return. Assumption 1 implies that the compensation for risk dominates the 

compensation for transaction costs, and, thus, the expected return is negative (but less so for the faster-

decaying asset). Since the arbitrageur is short the asset, she expects to earn a positive return. This expected 

return gradually vanishes as the demand shock reverts to zero. 
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The price is the sum of two terms. The first is a constant, D/r f, which equals the present value of 

expected dividends (i.e., the asset’s fundamental value). If the arbitrageur were risk neutral (i.e., had an 

infinite risk tolerance) and there were no transaction costs, then the price simply would be equal to the 

fundamental value. The second term is a transitory component, ஊ[ଵ ఛି⁄ ஛஍ೞ(஍ೞାఘ)]

஍ೞା௥೑ 𝑓௧
௦, which is positive by 

Assumption 1, implying that the asset is overvalued. Initially (i.e., at 𝑡 = 0), the asset’s price exceeds its 

fundamental value—as a result of noise traders’ excess demand—and the arbitrageur is short the asset. 

Then (at 𝑡 > 0), as excess demand fades, the arbitrageur closes her short positions and the price converges 

to the fundamental value. The price is shaped by the same forces as the expected return: compensations for 

risk and transaction cost.33 The former increases the price (so a short position earns a positive premium), 

whereas the latter reduces it. Intuitively, transaction costs discourage the arbitrageur from buying back 

shares (as illustrated by the smaller rebalancing fraction a /λ in Proposition 1). So for the market to clear at 

a time when the noise trader offloads shares, the price must be sufficiently low to compensate the arbitrageur 

for transaction costs.34 In equilibrium, then, the price strikes a balance: it is high enough to compensatefor 

risk (thereby enticing the arbitrageur to short the asset), yet low enough to compensate for transaction costs 

(thus encouraging her to close her short positions later). By Assumption 1, the former channel dominates 

the latter, so the asset’s price exceeds its fundamental value.35 

We turn now to discussing the impact of the decay rate on the extent of overvaluation. A faster 

decay reduces the price through the two channels just described. The first is that, at any date 𝑡 > 0, asset F 

has a lower residual demand (𝑓
𝑡
𝐹 < 𝑓

𝑡
𝑆)—leading to less risk compensation. Put differently, the arbitrageur 

needs to maintain open positions in asset F for a shorter spell of time and so is less exposed to the asset’s 

fundamental risk. This leads to a lower price. Second, for markets to clear, the arbitrageur must buy back 

more shares of asset F than of asset S over any period dt; thus, she incurs higher transaction costs. She is 

compensated for these more rapid buys of asset F through a lower price. Thus, the slow asset is more 

overvalued than the fast asset. The bottom panel of Figure 5 illustrates this. 

                                                 
33 The relation between an asset’s price and its expected return is most easily seen by setting both the riskless rate and 
the expected dividend to zero; in that case, the expected dollar excess return coincides with the price change: 

𝐸௧(𝑑𝑄௬
௦) = 𝑑𝑃௬

௦ for any date y ≥ t. Therefore, 𝑃௧
௦ = ∫ 𝐸௧(𝑑𝑄௬

௦) 𝑑𝑦
௧

ା∞
. 

34 In terms of the optimal trading strategy described in Proposition 1, market clearing requires that the arbitrageur’s 
aim portfolio loads more positively on a risky asset, the higher its speed of decay and the higher the transaction cost: 

aim௧
௦ = −𝑓௧

௦ −
ఒ

௔

ௗ௙೟
ೞ

ௗ௧
= (−1 +

ఒ஍ೞ

௔
)𝑓௧

௦ . This, in turn, implies that the asset has (a) a higher expected return, given 

Proposition 1’s definition of the aim portfolio, and (b) a lower price, since its price in the long term (i.e., as t → ∞) is 
pinned down by the fundamental value. 
35 Relaxing Assumption 1 implies that, if transaction costs are high enough, then the asset is undervalued (i.e., its price 
at t = 0 is below its fundamental value, then rises) despite the noise trader’s excess demand. Again, this is because the 
market can clear in periods t > 0 only if the price is sufficiently low to yield a buyer a return high enough to offset the 
transaction costs. 
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The next lemma describes how the decay rates of prices and returns relate to the decay rates of the 

factor, Φ s. 

Lemma 3 (Rates of decay). The decay rates for asset (s = {S, F}) are given by the following expressions: 

(i) for the holdings, − ଵ

௫೟
ೞ  

ௗ௫೟
ೞ

ௗ௧
= Φ௦; 

(ii) for the price, − ଵ

௣೟
ೞ  

ௗ௣೟
ೞ

ௗ௧
= (1 −

஽/௥೑

௣೟
ೞ )Φ௦; 

(iii) for the expected excess return, − ଵ

ா೟(௥೟
ೞ)

 
ௗா೟(௥೟

ೞ)

ௗ௧
=

஽/௥೑

௣೟
ೞ Φ௦. 

Part (i) of Lemma 3 characterizes the speed of trading as measured by the percentage change in the 

arbitrageur’s holdings,  −
ଵ

௫೟
ೞ  

ௗ௫೟
ೞ

ௗ௧
. Since market clearing requires that the arbitrageur and noise trader’s 

holdings sum to zero in every period (i.e., that 𝑥௧
௦ = −𝑓௧

௦ and 𝑑𝑥௧
௦ = −𝑑𝑓௧

௦), it follows that, in equilibrium, 

the trading rate equals the factor’s (exogenous) decay rate: − ଵ

௫೟
ೞ  

ௗ௫೟
ೞ

ௗ௧
= −

ଵ

௙೟
ೞ  

ௗ௙೟
ೞ

ௗ௧
= Φ௦. 

Two implications of Lemma 3 undergird our empirical analysis. The first is that returns decay at 

rates that differ across assets, since those rates are themselves functions of the decay rate of the assets’ 

underlying factors. Thus, the lemma supports our use of Fourier transforms in the empirical analysis for 

extracting, from a portfolio’s returns, components that decay at distinct rates. The lemma’s second 

implication is that the decay rate of returns differs from that of their underlying factors. Given that the 

factor’s decay rate coincides with the trading rate, it must be that returns decay at some rate other than the 

trading rate. This observation underscores how our approach, which is based on the frequency of returns, 

differs from those that focus on the rebalancing frequency and portfolio turnover. Furthermore, the decay 

rate of returns depends on the extent of mispricing as measured by the ratio of the fundamental value to the 

price, (𝐷/𝑟௙)/𝑝௧
௦. Thus, our framework sheds light on how the severity of market inefficiency (i.e., the size 

of the mispricing) and the frequency of market inefficiency (i.e., the persistence of mispriced assets’ 

returns) relate to one another: the more overvalued an asset, the more slowly its return decays. This 

connection further motivates our study of market efficiency in the frequency domain.  

Taking stock, two forces make returns persistent (slow-moving) in equilibrium. The first is that 

noise traders are slow to reduce their demand for the stock, and the second is that arbitrageurs are slow to 

correct mispricing; that is, they fail to correct it fully and immediately. In our empirical analysis, these two 

forces correspond to mutual funds persistently exacerbating mispricing and to hedge funds persistently 

correcting mispricing. Given the prominence of hedge funds in our empirical findings, we endogenize 

arbitrageurs in our model and make noise trading exogenous. In the next section, we introduce capital flows 

to arbitrageurs and analyze their effect on returns. 
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8.3. Flow return regressions 

We analyze how the relation between returns and flows varies with the speed at which the underlying factor 

decays. 

8.3.1. Modeling flows 

So far, we have described the behavior of an unconstrained mean-variance investor characterized by a 

constant coefficient of absolute risk tolerance. As is well known, there are no wealth effects under such 

preferences: as wealth fluctuates, the investor holds the same number of shares but simply adjusts her 

holdings of the riskless asset. To account for the behavior of hedge funds, which typically buy (respectively, 

sell) shares in response to capital inflows (respectively, outflows), we assume that net flows increase risk 

tolerance (as in, e.g., Merton 1987) and, furthermore, that this increase is greater for flows that the 

arbitrageur deems more persistent. Thus, we assume that the change in an arbitrageur’s coefficient of 

absolute risk tolerance over the interval dt is given by 

𝑑𝜏௧ = 𝑘 × 𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧, 

where 𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧ denotes net capital flows over the interval dt and where k is a positive constant. These 

flows have mean 𝐸௧(𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧) = Π𝑑𝑡 and variance Var௧(𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧) = Ψ𝑑𝑡.  As in our empirical analysis, 

we further decompose flows into two orthogonal components: one persistent (labeled the “patient” 

component) and the other transitory (the “impatient” component). We then write the flow-induced change 

in absolute risk tolerance as 

𝑑𝜏௧ = 𝑘 × [(1 + 𝜔)𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧
௉ + (1 − 𝜔)𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧

ூ]; 

here, 𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧
௉  and 𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧

ூ  denote (respectively) patient and impatient net flows, and 𝜔 ∈ [0,1] is a 

constant. Thus, a dollar’s worth of patient flows increases arbitrageurs’ risk tolerance by k(1 + ω), whereas 

a dollar’s worth of impatient flows increases their risk tolerance by the smaller amount k(1 – ω). This 

parameterization offers an intuitive and tractable way of representing the observed behavior of arbitrageurs: 

as capital flows in, risk tolerance increases; this leads the arbitrageur to scale up her risky portfolio and 

more so for flows that she believes will not reverse soon (and that are therefore less likely to force her to 

liquidate positions). The parameter ω controls the impact of flow persistence on risk tolerance. The larger 

is ω, the greater is this impact. If 𝜔 = 0 , then flows equally affect risk tolerance regardless of their 

persistence; if 𝜔 = 1, then only patient flows matter for risk tolerance. For simplicity, the variances of 

patient and impatient net flows are assumed equal. This assumption eliminates any investor effect from the 

model and implies that the total effect of flows coincides with the manager effect. 

Electronic copy available at: https://ssrn.com/abstract=3675163



43 
 

We assume that the arbitrageur does not anticipate flows and that she views shifts in risk tolerance 

as permanent so that we can apply the results of GP2016 (our Proposition 1). Finally, we assume that flows 

(and thus also shocks to risk tolerance) are independent of dividends, 𝑑𝑢௧
௦ (𝑠 = {𝑆, 𝐹}). 

Although we acknowledge that this representation of the effects of flows is somewhat ad hoc and 

not fully consistent with investor rationality, we believe that it offers a realistic and tractable account of 

arbitrageurs’ actual behavior. Developing a full-fledged model of dynamic trading under general investor 

preferences is a task that goes beyond the scope of this paper. More importantly, we see no reason to believe 

that fluctuations in risk tolerance will differentially affect an arbitrageur’s portfolio allocation to the fast- 

and slow-decaying assets, which is the focus of our study. The ability to anticipate flows might well affect 

the choice of liquid (e.g., cash) versus illiquid assets, but not—for a given level of liquidity—the choice of 

fast- versus slow-decaying stocks. 

8.3.2. Linking flows to returns 

To evaluate the impact of flows on return, we proceed as follows. Starting from equilibrium for a given risk 

tolerance coefficient, we consider a flow-induced shock to risk tolerance and then solve for the equilibrium 

under the new risk tolerance coefficient. Finally, we analyze how prices and returns adjust from one 

equilibrium to the other. In that setting, price dynamics are determined by two forces: the mean reversion 

of the demand shock (i.e., the factor’s decay), which results in the price also reverting to the mean, and the 

flow-induced fluctuation in risk tolerance. Inflows (respectively, outflows) render an arbitrageur more 

(respectively, less) risk tolerant, the effect of which is to lower (respectively, raise) the price toward 

(respectively, away from) the fundamental value. As a result, the price displays a tendency to decline toward 

the fundamental value, while being perturbed by flows. Formally, the price change over dt can be written as 

𝑑𝑝௧
௦ =

𝜕𝑝௧
௦

𝜕𝑓௧
௦ቤ

ఛ೟

𝑑𝑓௧
௦ +

𝜕𝑝௧
௦

𝜕𝜏
ฬ

௙೟
ೞ

𝑑𝜏௧ =
𝜕𝑝௧

௦

𝜕𝑓௧
௦ቤ

ఛ೟

(−Φ௦𝑓௧
௦𝑑𝑡) +

𝜕𝑝௧
௦

𝜕𝜏
ฬ

௙೟
ೞ

𝑘𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧ , 

where the first term captures the downward trend, and the second term represents the variations due to 

flows. The excess return follows from 𝑟௧
௦ = (𝑑𝑝௧

௦ + 𝑑𝑢௧
௦−𝑟௙𝑝௧

௦𝑑𝑡)/𝑝௧
௦. 

8.3.3. Predictions 

In line with the empirical investigation, our predictions pertain to the least squares coefficient from 

regressing returns on flows. The dependent variable is the negative of the excess return, −𝑟௧
௦, since the 

arbitrageur takes a short position in the overvalued asset (which corresponds to the short leg of the anomaly 

portfolio in our empirical analysis). For the independent variable, we consider both total flows, 𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧, 

and decomposed flows (𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧
௉ , 𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧

ூ). β s, β s,P, and β s,I (s = {S, F}) denote the corresponding 

regression coefficients. The beta ratio, β S,P/β F,I, measures the extent to which the arbitrageur’s correction 
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of mispricing in the slow asset in response to patient flows exceeds her correction in the fast asset in 

response to impatient flows, that is, her tendency to correct slow rather than fast mispricing.36  Our main 

prediction is Prediction 2; the other predictions describe its sensitivity to model parameters. 

Prediction 1 (Sign of regression coefficient). The regression coefficient of the excess return on total flows, 

β S (s = {S, F}), is positive. 

Prediction 1 states that the arbitrageur corrects mispricing to a greater (respectively, lesser) extent 

when she gains (respectively, loses) capital. This outcome reflects that inflows expand her risk-bearing 

capacity and so she requires a smaller premium to accommodate the demand shock. Prediction 1 is 

consistent with the positive coefficients we generally find in the data for the regressions of anomaly returns 

on hedge fund flows. In addition, the negative regression coefficient we report for mutual funds can be 

rationalized by interpreting flows to mutual funds as shocks to the noise trader’s demand 𝑓௧
௦ for assets.37  

Our main prediction follows. It describes how the flow-return relation varies with factors’ speed 

of decay. 

Prediction 2 (Impact of speed of decay on the regression coefficient). Assume that 𝑓଴
௦ <

஽/௥೑

ஊఒ൫ଶ஍ಷାఘ൯
 

(Assumption 2). 

 The coefficient from regressing the excess return on total flows is larger for assets that decay 

more slowly: β S – β F > 0. 

 The beta ratio exceeds unity:  β S, P/β F,I > 1. 

Prediction 2 states that mispricing whose decay is slower is associated with a larger regression 

coefficient. Intuitively, the arbitrageur has more risk exposure to the slower-decaying asset (per the 

discussion following Proposition 2), so an increase in risk tolerance—due to inflows—leads to a larger 

reduction in the risk compensation and price of that asset. Put differently, because asset S is more 

overvalued than asset F, its price has farther to decline to reach its fundamental value. As a result, flows 

trigger larger price adjustments and returns for asset S and so 𝛽ௌ > 𝛽ி . The bottom panel of Figure 5 

illustrates this effect. Note that our restriction on parameter values (Assumption 2) is sufficient, but not 

necessary, for the prediction to hold. That assumption is satisfied, in particular, when there is no transaction 

cost (𝜆 = 0).38 

                                                 
36 By assumption, both assets have identical return volatility, which is determined by the volatilities of dividends and 
flows. 
37 An inflow of capital to mutual funds (noise traders) in period t increases 𝑓௧

ௌ  and 𝑓௧
ி , thereby magnifying asset 

overvaluation and leading to negative returns on the arbitrageur’s short position. 
38 Moreover, no such restriction is required when the regressions are based on dollar returns, 𝑑𝑄௧

௦, rather than relative 
returns, 𝑟௧

௦ ≡ 𝑑𝑄௧
௦/𝑝௧

௦, or on relative returns normalized by their standard deviation. 
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Two mechanisms contribute to making the beta ratio greater than one, which we interpret as 

managers slowing down flows as explained in Section 6.4. The first is that, for a given level of persistence 

of flows, the slow asset is associated with a larger regression coefficient (𝛽ௌ > 𝛽ி). The second is that 

patient flows trigger a greater increase in risk tolerance than do impatient flows: 𝑑𝜏௧/𝑑𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧
௉ =

𝑘(1 + 𝜔) > 𝑑𝜏௧/𝑑𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧
ூ = 𝑘(1 − 𝜔) . An alternative version of this second mechanism is that the 

arbitrageur, rather than investing patient flows more aggressively than impatient flows, “converts” 

impatient flows into patient flows (see Section 6.4).  Specifically, assume that flows, whether they are 

patient or impatient, increase risk tolerance by the same amount. Assume further that the arbitrageur 

possesses a technology for turning impatient flows into patient flows, that is, in the data, for transforming 

high-frequency flows into low-frequency flows. In practice, this might be achieved by parking high-

frequency flows into cash or the market and then gradually reallocating the funds in mispriced assets. Then, 

to the econometrician, high (respectively, low)-frequency flows appear to have a small (big) effect on 

anomaly returns since there are in fact few (respectively, many) such flows after the arbitrageur has 

converted them.  

Prediction 3 (Impact of speed of decay on the regression R²). The R² from regressing the excess return on 

total flows is larger for assets that decay more slowly. 

 

Prediction 3 states that flows have more explanatory power for the returns of the slower-decaying 

asset. This is a consequence of this asset having a larger regression coefficient (which amplifies the impact 

of flows on returns), as well as a higher price (which dampens the impact of the dividend on returns). Note 

that no restriction on parameter values is required for the prediction to obtain. 

We remark that, when the arbitrageur is risk neutral (i.e., has infinite risk tolerance), the regression 

coefficient equals zero regardless of the factor’s decay rate and of transaction costs. This observation 

confirms that the arbitrageur’s limited risk-bearing capacity is a predominant driver of our predictions. 

Next, we present three auxiliary predictions that describe how the regression coefficients’ 

sensitivity to the speed of decay varies with the economy’s three characteristics: fundamental risk, risk 

tolerance, and transaction costs. Given that flows trigger larger price adjustments for more overvalued 

assets, the effect of a characteristic will be determined by its differential effect on overvaluation (across 

assets’ speed of decay), that is, by whether it widens or narrows the gap between the slow and fast asset’s 

prices. 

Prediction 4 (Fundamental risk). Assume that 𝑓଴
௦ <

஽(஽/௥೑ା௥೑)

ଶ௥೑ஊൣଵ ఛ⁄ ା஛൫஍ಷ൫஍ಷାଶ௥೑൯ା௥೑ఘ൯൧
 (Assumption 3). Then the 

coefficients from regressing the excess return on total, patient, and impatient flows are all more sensitive 
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to the speed of decay when fundamentals are riskier (i.e., when Σ is larger). Thus, we have ௗ(ఉೄିఉಷ)

ௗஊ
≥ 0 and 

ௗ(ఉೄ,ುିఉಷ,಺)

ௗஊ
≥ 0. 

Prediction 4 states that assets are more sensitive to the speed of factor decay when fundamental risk 

is higher. Intuitively, when risk rises, asset prices move farther away from their fundamental values and to 

a greater extent for slow-decaying assets than for fast-decaying assets. This is because the arbitrageur’s 

compensations for risk and for transaction costs both increase, pushing prices in opposite directions (see 

the discussion after Proposition 2), but the former increases more than the latter (by Assumption 3). On the 

one hand, the compensation for risk, and hence the asset’s price, increases because each share is now riskier; 

this effect is more pronounced for the slow asset because the arbitrageur’s exposure to that asset is greater. 

On the other hand, the compensation for transaction costs also increases, because such costs are (by 

assumption) proportional to fundamental risk, yet that increase reduces the asset’s price; this effect is 

stronger for the fast-decaying asset, the arbitrageur’s holding of which must be adjusted more rapidly. By 

Assumption 3, the effect of risk dominates that of transaction costs; hence, an increase in risk has a greater 

effect on the slower-decaying asset. This increase widens the gap between the two asset’s prices and thus 

also between their sensitivities to the speed of decay of their underlying factor.39 

Prediction 5 (Risk tolerance). Assume that 𝑓଴
௦ <

஽/௥೑(஍ಷା௥೑)

ஊఒ஍ಷ൫஍ಷାఘ൯
 (Assumption 4). Then the coefficients from 

regressing the excess return on total, patient, and impatient flows are more sensitive to the speed of decay 

when the arbitrageur is less risk tolerant (i.e., when τt is smaller): ௗ(ఉೄିఉಷ)

ௗఛ೟
≤ 0.40 

Prediction 5 describes how the sensitivity of the regression coefficient to the speed of factor decay 

depends on the level of risk tolerance. Note that it focuses on the level of risk tolerance, not on the changes 

that we associate with flows. We interpret the level of risk tolerance to represent the ease with which the 

arbitrageur can increase her leverage. We predict that assets are more sensitive to the speed of factor decay 

when the arbitrageur is less risk tolerant. Intuitively, when there is less tolerance for risk, asset prices move 

away from their fundamental values and more so for the slower-decaying asset (once again, the result of 

the arbitrageur’s greater risk exposure to that asset). Therefore, the gap between the two assets’ prices, and 

hence between their sensitivities to the speed of factor decay, widens. As before, no restriction on parameter 

                                                 
39 No restriction on parameter values is required for the prediction to obtain when our regressions are based on dollar, 
rather than relative, returns or on relative returns normalized by their standard deviation. 
40 The sign of  

ௗ(ఉೄ,ುିఉಷ,಺)

ௗఛ೟
 is ambiguous because of a conflict between two effects. On the one hand, for a given level 

of flows’ persistence, the regression coefficient is less sensitive to risk tolerance for the slow asset than for the fast 
asset. On the other hand, patient flows induce a larger increase in risk tolerance than do impatient flows. 
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values is required for this prediction to obtain provided that we use dollar (rather than relative) returns in 

the regressions. 

Prediction 6 (Transaction costs). Assume that 𝑓଴
௦ <

஽(஍ಷఘି௥೑ఘିଶ௥೑஍ಷ)

௥೑ஊ൫ଶ஍ಷାఘ൯ൣଵ ఛ⁄ ା஛஍ಷ൫஍ಷାఘ൯൧
 (Assumption 5). Then the 

coefficients from regressing the excess return on total, patient, and impatient flows are more sensitive to 

the speed of decay when transaction costs λ are higher: ௗ(ఉೄିఉಷ)

ௗఒ
≥ 0 and ௗ(ఉೄ,ುିఉಷ,಺)

ௗఒ
≥ 0. 

Prediction 6 states that transaction costs magnify the gap between the slow- and fast-decaying 

assets’ regression coefficients. Intuitively, when transaction costs rise, an asset’s price moves closer to its 

fundamental value in compensation for the (future) cost of buying shares; that price’s movement is greater 

for the asset requiring faster trading, namely, the faster-decaying asset (see Proposition 2 and the subsequent 

discussion). Hence, the gap widens between the two assets’ prices and therefore between their respective 

sensitivities to the speed at which their underlying factor decays.41 

Predictions 4 to 6 for the effect of frictions zero in on the arbitrageur, who is the only optimizing 

agent in the model. These predictions are likely to extend to mutual funds (noise traders) if they, too, are 

modeled as optimizing agents who are concerned with risk and transaction costs. Such an extension is 

consistent with the findings of Section 7, which documents that the intensity of frictions affects mutual 

funds’ behavior.  

This section demonstrates that our diverse empirical findings can be rationalized within a unified 

framework featuring frictions related to the limited availability of arbitrageur capital (modeled as finite risk 

tolerance) and transaction costs. The model focuses on our main empirical findings, namely, the relation 

between the various components of flows and returns. We have derived an array of predictions consistent 

with the data, provided the transaction cost is not too high relative to risk aversion (Assumption 1) and that 

the asset is not too mispriced (Assumptions 2–5 concerning 𝑓଴’s magnitude).42 More general models could, 

perhaps, deliver similar predictions; yet we believe that, in light of the empirical evidence presented here, 

capital scarcity and transaction costs will need to feature prominently in any such model. 

 

9. Conclusion 

We examine the frequency structure of fund flows, anomaly returns, and their relationship. Through spectral 

analysis, we show that hedge fund and mutual fund flows are major determinants of the persistence and 

cyclicality of anomaly returns. This is because capital supplied by hedge fund investors slowly correct 

                                                 
41 Assumption 5 implies Assumption 2. 
42 Furthermore, because mispricing approaches zero over time, Assumptions 2–5 must all hold after some date. 
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mispricing, while capital supplied by mutual fund investors slowly exacerbate it. Specifically, both types 

of flows are more influential (respectively, 24 and 4 times more) over frequencies below one cycle per year, 

which we refer to as low frequencies. In other words, both types of funds behave, in aggregate, as low-pass 

filters, slowing down the effect of flows on mispricing. In contrast, passive fund flows have no effect on 

mispricing. As these numbers suggest, hedge funds are the most selective low-pass filter. Their flows are 

also the most influential of all fund types at low frequency. We show that hedge fund managers, rather than 

hedge fund investors, are responsible for this slow-moving effect, and market frictions explain much of 

their behavior. We propose a simple model that ties together our evidence and illustrates the frequency-

dependent effects of capital on the dynamics of market efficiency.  

Our study sheds light on the persistence and cyclicality of anomaly returns by linking them to 

capital flows. We introduce two capital flow factors and demonstrate their importance in explaining the 

dynamics of market efficiency, especially at low frequency. In so doing, our analysis deepens the 

understanding of the nature of “slow capital” and of its market efficiency implications. Furthermore, it 

reveals that funds have heterogeneous effects across frequencies, and that frictions play a central role in 

driving those effects. In light of the debate over the social value of hedge funds, our work suggests that 

hedge fund managers improve the efficiency of financial markets at low frequencies, where such efficiency 

is presumably more socially useful. More work is needed to shed light on this important question.  

More generally, with many forces in finance exhibiting serial correlation and moving in cycles or 

waves (e.g., trading activity, volatility, liquidity, corporate cash flows, innovation), the frequency approach 

we take can be fruitfully employed to explain how such dynamic properties are linked across variables. 
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Appendix. Proof of Propositions and Predictions 

Proof of Proposition 1 
See GP2016’s Proposition 1 and observe that 𝐸௧(𝑑𝑄௧

௦) is an affine function of the factor 𝑓௧
௦ (in the GP2016 

notation, 𝐸௧(𝑑𝑄௧
௦)  = 𝐵𝑓௧

௦). 

 

Proof of Proposition 2 
The equilibrium price process is such that the optimal holdings of the arbitrageur and the noise trader clear 

the asset market at every instant; formally, 𝑥௧
௦ + 𝑓௧

௦ = 0 and 𝑑𝑥௧
௦ + 𝑑𝑓௧

௦ = 0. Substituting our conjectured 

price function, 𝑝௧
௦ = 𝑐଴

௦ + 𝑐௦𝑓௧
௦, into the expression for the mean expected excess return, 𝐸௧(𝑑𝑄௧

௦), yields 

aim௧
௦ =

ఛ

ஊ

ି௖ೞ൫஍ೞା௥೑൯௙೟
ೞା஽ି௥೑௖బ

ೞ

ଵା஍ೞ௔ఛ
. Market clearing in period t implies that 𝑑𝑥௧

௦ =
௔

ఒ
(aim௧

௦ + 𝑓௧
௦)𝑑𝑡 (Proposition 1). 

Equating this expression to the change in the residual asset supply, −𝑑𝑓௧
௦ , leads to 𝑐଴

௦ =
஽

௥೑  and 𝑐௦ =

ஊ[ଵ ఛି⁄ ஛஍ೞ(஍ೞାఘ)]

஍ೞା௥೑   and thus confirms the price conjecture. Note that, by Assumption 1, 𝑐௦ > 0. 

 

Proof of Prediction 1 

Given Section 7.3.2’s expression for 𝑑𝑝௧
௦ ,  the excess return equals 𝑟௧

௦ =
ଵ

௣೟
ೞ

డ௣೟
ೞ

డ௙೟
ೞฬ

ఛ೟

𝑑𝑓௧
௦−𝑟௙𝑑𝑡 +

ଵ

௣೟
ೞ

డ௣೟
ೞ

డఛ
ቚ

௙೟
ೞ

𝑘𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧ +
ଵ

௣೟
ೞ 𝑑𝑢௧

௦ , where the first two terms capture a deterministic trend and the last term 

represents a dividend shock that is uncorrelated with flows. Hence the least squares coefficient for our 

regression of 𝑟௧
௦ on total flows, 𝑁𝑒𝑡𝐹𝑙𝑜𝑤𝑠௧, equals 𝛽௦ =

௞

௣೟
ೞ

డ௣೟
ೞ

డఛ
ቚ

௙೟
ೞ

=
௞

௣೟
ೞ

ஊ

ఛ೟
మ(஍ೞା௥೑)

𝑓௧
௦; this coefficient is positive 

because all terms are positive. Likewise, the regression coefficients of 𝑟௧
௦ on patient and impatient flows 

are equal to (respectively) 𝛽௦,௉ =
௞(ଵାఠ)

௣೟
ೞ

డ௣೟
ೞ

డఛ
ቚ

௙೟
ೞ

= (1 + 𝜔)𝛽௦ and 𝛽௦,ூ =
௞(ଵିఠ)

௣೟
ೞ

డ௣೟
ೞ

డఛ
ቚ

௙೟
ೞ

= (1 − 𝜔)𝛽௦. As a result, 

𝛽௦,௉ − 𝛽௦,ூ = 2𝜔𝛽௦  > 0. Moreover, the beta ratio, 
ఉೄ,ು

ఉಷ,಺ =
ଵାఠ

ଵିఠ

ఉೄ

ఉಷ, is positive. 

 

Proof of Prediction 2 

Differentiating the regression coefficient with respect to the speed of decay yields ௗఉೞ

ௗ஍ೞ =
డఉೞ

డ஍ೞቚ
௙೟

ೞ
+

డఉೞ

డ௙೟
ೞฬ

஍ೞ

ௗ௙೟
ೞ

ௗ஍ೞ. 

The first term captures the direct effect of speed on 𝛽௦; the second, captures the indirect effect via factor 

decay. We show that both terms are negative. Starting with the first term, we write డఉೞ

డఃೞቚ
௙೟

ೞ
=

డ

డ஍ೞ ቀ
௞

௣೟
ೞ

ஊ

ఛ೟
మ(஍ೞା௥೑)

𝑓௧
௦ቁฬ

௙೟
ೞ

=
௞ஊ௙೟

ೞ

ఛ೟
మ

డ

డ஍ೞ ቀ
ଵ

௣೟
ೞ(஍ೞା௥೑)

ቁ = −
௞ஊ௙೟

ೞ

ఛ೟
మ

ವ

ೝ೑ିஊ஛(ଶ஍ೞାఘ)௙೟
ೞ

௣೟
ೞ²(஍ೞା௥೑)²

; here, we use that (Φ௦ + 𝑟௙)𝑝௧
௦ = 𝐷(Φ௦ +

𝑟௙)/𝑟௙ + Σ[1 𝜏 −⁄ λΦ௦(Φ௦ + 𝜌)]𝑓௧
௦  (see Proposition 2). Hence, డఉೞ

డ஍ೞቚ
௙೟

ೞ
≤ 0  if 𝑓௧

௦ ≤ 𝐷/[𝑟௙Σ𝜆(2Φ௦ + 𝜌)].  This 

condition holds if 𝑓଴
௦ < 𝐷/[𝑟௙Σ𝜆(2Φ௦ + 𝜌)]  since 𝑓௧

௦ ≤ 𝑓଴
௦ . Finally, note that 𝐷/[𝑟௙Σ𝜆(2Φி + 𝜌)] < 𝐷/

[𝑟௙Σ𝜆(2Φௌ + 𝜌)] because Φௌ < Φி. As for the second term, 
ௗఉೞ

ௗఃೞ is also negative, because it is the product of 
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two terms, one of which is positive, డఉೞ

డ௙೟
ೞฬ

஍ೞ
=

௞

௣೟
ೞ

ஊ

ఛ೟
మ(஍ೞା௥೑)

, and the other is negative, ௗ௙೟
ೞ

ௗ஍ೞ = −𝑡𝑓௧
௦. The ranking 

of regression coefficients for patient and impatient flows now follows given that 𝛽ௌ,௉ = (1 + 𝜔)𝛽ௌ  and 

𝛽ி,௉ = (1 + 𝜔)𝛽ி. Finally, the beta ratio 
ఉೄ,ು

ఉಷ,಺ =
ଵାఠ

ଵିఠ

ఉೄ

ఉಷ > 1. 

 

Proof of Prediction 3 

The R² from regressing the excess return on total flows is given by 𝑅௦ଶ =
ఉೞమ

Var(ே௘௧ி௟௢௪௦೟)

Var൫௥೟
ೞ൯

=

ఉೞమ
ஏௗ௧

ఉೞమஏௗ௧ାஊௗ௧ ௣೟
ೞమ⁄

, where we dropped the terms of order 𝑑𝑡ଶ in Var௧(𝑟௧
௦). Rearranging yields and substituting 

in the expression for 𝛽ௌ yields 𝑅௦ଶ = ൬1 +
ஊ

ஏ൫ఉೞ௣೟
ೞ൯

మ൰
ିଵ

= ቆ1 +
ଵ

ஊஏ
ቀ

ఛ೟
మ(஍ೞା௥೑)

୩௙೟
ೞ ቁ

ଶ

ቇ

ିଵ

. Since 𝑓௧
௦ is positive 

and decreasing in Φ௦, 𝑅௦ଶ is decreasing in Φ௦. 

 

Proof of Prediction 4 

Differentiating డఉೞ

డఃೞ  with respect to Σ , we obtain the equality డ²ఉೞ

డ஍ೞడஊ
=

−
௞௙೟

ೞ஽/௥೑൛஽/௥೑൫஽/௥೑ା௥೑൯ିଶஊ௙೟
ೞൣఒ൫஍ೞ(஍ೞାଶ௥೑)ାఘ௥೑൯ାଵ/ఛ೟൧ൟ

ఛ೟
మ௣೟

ೞయ(஍ೞା௥೑)య . This expression is negative if the numerator is positive, 

which Assumption 3 ensures since 𝑓௧
௦ ≤ 𝑓଴

௦  and Φௌ < Φி . The relations for patient and impatient flows 

follow from the expressions 𝛽ௌ,௉ = (1 + 𝜔)𝛽ௌ and 𝛽ி,ூ = (1 − 𝜔)𝛽ி, which in turn imply that ௗఉೄ,ು

ௗஊ
= (1 +

𝜔)
ௗఉೄ

ௗஊ
 and ௗఉಷ,಺

ௗஊ
= (1 − 𝜔)

ௗఉಷ

ௗஊ
. 

 

Proof of Prediction 5 

The expression డఉೞ

డ஍ೞ = −
௞ஊ௙೟

ೞ

ఛ೟
మ

஽/௥೑ିஊ஛(ଶ஍ೞାఘ)௙೟
ೞ

௣೟
ೞ²(஍ೞା௥೑)²

 (see the proof of Prediction 2) implies that డఉೞ

డ஍ೞ increases with 𝜏௧ 

if also 𝜏௧𝑝௧
௦(Φ௦ + 𝑟௙) increases with 𝜏௧ . Plugging in our expression for 𝑝௧

௦  reveals that this condition is 

satisfied if 𝑓௧
௦ <

஽/௥೑(஍ೞା௥೑)

ஊఒ஍ೞ(஍ೞାఘ)
, an inequality that holds if 𝑓଴

௦ <
஽/௥೑(஍ೞା௥೑)

ஊఒ஍౩(஍ೞାఘ)
 since 𝑓௧

௦ ≤ 𝑓଴
௦. Finally, observe that 

the right-hand side of this inequality is decreasing in Φ S. Hence, Assumption 4 suffices to show that 
డమఉೞ

డ஍ೞడఛ೟
≥ 0.  To establish the relations for patient and impatient flows, we proceed as in the proof of 

Prediction 3 but with one difference: we cannot determine the sign of ௗ(ఉೄ,ುିఉಷ,಺)

ௗఛ೟
 because the two effects 

that control this term’s sign work in opposite directions. On the one hand, for a given level of persistence 

of flows, the regression coefficient is less sensitive to 𝜏௧ for the slow asset than for the fast asset: ௗ(ఉೄିఉಷ)

ௗఛ೟
≤

0. On the other hand, patient flows induce a larger increase in risk tolerance than do impatient flows: 

𝑘(1 + 𝜔) > 𝑘(1 − 𝜔). It follows that the sign of ௗ(ఉೄ,ುିఉಷ,಺)

ௗఛ೟
=

ௗ((ଵାఠ)ఉೄି(ଵିఠ)ఉಷ)

ௗఛ೟
 is ambiguous. 
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Proof of Prediction 6 

Differentiating డఉೞ

డ஍ೞ  with respect to λ yields డ²ఉೞ

డ஍ೞడఒ
= −

௞ஊ²௙೟
ೞమ൛஽/௥೑൫ఘ௥೑ାଶ௥೑஍ೞି஍ೞఘ൯ାஊ(ଶ஍ೞାఘ)௙೟

ೞ[ఒ஍ೞ(஍ೞାఘ)ାଵ/ఛ೟]ൟ

ఛ೟
మ௣೟

ೞయ(஍ೞା௥೑)య . 

This expression is negative if the numerator is positive, a condition ensured by Assumption 5 because 𝑓௧
௦ ≤

𝑓଴
௦ and Φௌ < Φி . To establish the predicted relations for patient and impatient flows, we simply proceed as 

in the proof of Prediction 3. 
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Figure 1: Economic Cycles and Seasonality in the Frequency Domain 

This figure shows the relation between the frequency decomposition of time series variables (non-investment anomaly return, NINV, in the top 
panel; hedge fund flows in the bottom panel) and the corresponding cycles of asset returns or economic activity. Circles represent frequencies that 
correspond to prominent cycles in asset returns/economic activity documented in the literature. The x-axis shows the natural log of frequency of 
the time-series variables, and the y-axis shows the power (squared amplitude) of each frequency scaled by the sum of powers over the full spectrum. 
Therefore, it shows the relative contribution (in percentage points) of each frequency to the total variance of the time series variable. NINV return 
is the return of the long-minus-short strategy based on seven anomalies, reported in Stambaugh, Yu, and Yuan (2012), which are not related to 
corporate investments. Hedge fund flows are the monthly net aggregate percentage flows to equity hedge funds. The sample period is 1994–2016. 

 

A. 0.1 c/y (Approximately 8 to 10-year period): 10-year solar cycle and 8-year democratic/republican presidential cycle in anomaly returns 
(Novy-Marx 2014). Business cycle (Stock and Watson 1999; Dew-Becker and Giglio 2016). 

B. 0.2 c/y (Approximately 4 to 5-year period): 5-year overreaction/underreaction anomaly return cycle (Lee and Swaminathan 2000), 5-year El 
Niño weather related anomaly return cycle (Novy-Marx 2014), 4-year presidential cycle (Hirsch 1968; Allvine and O’Neill 1980), 4-year Mars-
Vesta anomaly return cycle (Novy-Marx 2014), and 4-year return seasonality (Heston and Sadka 2008). Business cycle (Stock and Watson 1999, 
Dew-Becker and Giglio 2016) 

C. 0.3 c/y (3-year period): Business cycle (Stock and Watson 1999; Dew-Becker and Giglio 2016); 3-year return seasonality (Heston and Sadka 
2008). 

D. 0.5 c/y (2-year period): 2-year return seasonality (Heston and Sadka 2008); Long-run uncertainty periodicity (Barrero, Bloom, and Wright 
2018). Business cycle (Stock and Watson 1999; Dew-Becker and Giglio 2016).  

E. 1 c/y (1-year period): Annual firm/fund fiscal and reporting cycles; SAD cycle and seasonal asset allocation cycle (Kamstra et al. 2003, 2017); 
Momentum and reversal seasonality (Heston and Sadka 2008; Keloharju, Linnainmaa, Nyberg 2016, 2020). 

F. 2 c/y (semi-annual period): Low-frequency interest rate periodicity (Hanson, Lucca, and Wright 2018).  

G. 4 c/y (quarterly period): Quarterly rebalancing/reporting period of funds; Earnings-announcement return cycle (Linnainmaa and Zhang 2019); 
Dividend return cycle (Hartzmark and Solomon 2013). 

H. 6 c/y (2-month period): FOMC return cycle (Cieslak, Morse, and Vissing-Jorgensen 2019); Monthly payment cycle (Etula, Rinne, Suominen, 
and Vaittinen 2020).    
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Figure 2: Time Series of Decomposed Anomaly Returns and Fund Flows 

This figure plots the time series of decomposed variables. Panel A shows the decomposed anomaly returns, while Panel B displays 
decomposed fund flows. The first row shows the original time series, while the second and third rows plot the low- and high-frequency 
anomaly returns. A Fourier transformation is applied to anomaly returns and fund flows to obtain the frequency components. Then, the 
time series of LOW (HIGH) frequency anomaly returns and fund flows are reconstructed by an inverse Fourier transformation using only 
low (high) frequency Fourier components. SYY is the return of the long-minus-short strategy based on eleven anomalies documented in 
Stambaugh, Yu, and Yuan (2012). NINV is the return of the long-minus-short strategy using seven anomalies in SYY that are not related 
to corporate investments. MF and HF are the monthly aggregate percentage flow of equity mutual funds and equity hedge funds, 
respectively. The sample period is 1994–2016. 

 

Panel A: Decomposed Time Series of Anomaly Returns 
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Panel B: Decomposed Time Series of Fund Flows 
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Figure 3: Relative Contribution of Frequencies to Total Variance 

This figure shows the relative contribution of each frequency to the total variance of anomaly returns and fund flows. Specifically, we first 
calculate the cumulative power (squared amplitude) in a frequency band from 0 to a cutoff c as the sum of powers in the band. Then, we 
divide this number by the sum of powers over the full spectrum, and plot that ratio as a function of the cutoff c. Therefore, the figures show 
the cumulative contribution (in percentage points) of expanding frequency bands to the total variance of the variables. The dashed lines 
represent the equal-contribution benchmark. SYY is the return of the long-minus-short strategy based on eleven anomalies documented in 
Stambaugh, Yu, and Yuan (2012). NINV is the return of the long-minus-short strategy using seven anomalies in SYY that are not related 
to corporate investments. MF and HF are the monthly aggregate percentage flow of active equity mutual funds and equity hedge funds, 
respectively. The sample period is 1994–2016. 
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Figure 4: Economic Significance over Expanding Frequency Bands  

The figure plots measures for economic significance of the effect of fund flows on mispricing across frequency bands. Panels A and B plot 
the cross-frequency flow-mispricing ratios (flow-mispricing ratio) over expanding frequency bands, and Panels C and D show the ratio of 
the beta (standard deviation) that corresponds to an expanding frequency band to the beta (standard deviation) that corresponds to the high-
frequency band. The cross-frequency flow-mispricing ratio for an expanding window is calculated as follows. For each frequency range 
from 0 to a cutoff c, we regress SYY (or NINV) on mutual fund flows, hedge fund flows, and control variables and obtain βc and σF

c. Then, 
we estimate the economic magnitude of the fund-flow effect over the frequency band (0, c] as βc × σF

c / σR
c, where σF

c and σR
c denote, 

respectively, the standard deviations of flows and mispricing over the frequency band (0, c]. Finally, we divide that estimate by the 
economic magnitude over the high-frequency band (1, 6] to obtain the cross-frequency flow-mispricing ratio. For Panels C and D, we 
divide βc and σF

c by the estimates for the high-frequency band (1, 6] to calculate the ratios, βc / βH and σF
c / σF

H. The x-axis shows the 
natural log of frequency cutoff c. The vertical dashed line marks the frequency of one cycle per year, to which the results in Tables 2 and 
3 correspond. The sample period is 1994–2016. 
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 Figure 5: Model of frictions and arbitrage 

This figure illustrates the model presented in Section 8. The top panel displays the excess demands for the slow and fast assets, 𝑓௧
௦ for s = 

{S, F}, which evolves over time according to 𝑑𝑓௧
௦ = −Φ௦𝑓௧

௦𝑑𝑡 starting from 𝑓଴
ௌ = 𝑓଴

ி , and where Φ S < Φ F controls the speed of decay. 

The bottom panel displays the prices of the slow and fast assets, 𝑝௧
௦, which equal 𝑝௧

௦ =
஽

௥೑
+

ஊ[ଵ ఛି⁄ ஛஍ೞ(஍ೞାఘ)]

஍ೞା௥೑
𝑓௧

௦ in equilibrium. The panel 

also indicates the impact of an inflow of funds on the two assets’ prices. The inflow, labelled “$ Inflow”, increases arbitrageurs’ risk 
tolerance, and leads to a price correction (negative return) marked by an arrow labeled 𝑟௧

௦. The correction is larger for the slow asset than 
for the fast asset. The parameters of the model are as follows: Φௌ = 0.1, Φி = 0.2, 𝑓଴

ௌ = 𝑓଴
ி = 1, 𝜌 = 0.01, 𝐷 = 0.005, 𝑟௙ = 0.05, Σ =

0.1,  λ = 0.5, 𝜏 = 0.4 before the inflow and 1 after. 
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Table 1: Summary Statistics 
Panel A shows descriptive statistics for main variables, and Panel B reports their correlations. Panel C provides the correlations of decomposed returns and fund flows, and 
Panel D reports the variance decomposition of returns and fund flows in the frequency domain. The upper right corner of Panels B and C shows Pearson correlations and the 
lower left corner of the panels provides Spearman correlations. SYY is the return of the long-minus-short strategy based on eleven anomalies documented in Stambaugh, Yu, 
and Yuan (2012). NINV is the return of the long-minus-short strategy using seven anomalies in SYY that are not related to corporate investments. MF and HF are the monthly 
aggregate percentage flows of US-equity oriented active mutual funds and hedge funds, respectively. Passive is the monthly aggregate percentage flow of US-equity oriented 
passive mutual funds. Amihud is the equally-weighted average Amihud illiquidity measure of all common stocks listed in NYSE in month t. Turnover is the equally-weighted 
average turnover of all common stocks in NYSE in month t. MKTRF is the monthly return of the market in excess of the risk free rate. HML and SMB are the monthly returns 
to the value and the size strategies, respectively. The suffixes of -LOW and -HIGH indicate the low- and high-frequency components of the original time series, respectively. 
The LOW components are time series that are re-constructed from frequencies that have cycles of one year or longer, while the HIGH components are re-constructed time 
series from frequencies that have cycles shorter than one year. The sample period is 1994–2016. 

Panel A: Descriptive Statistics 
Variable (%) N Mean t Value Std Dev P10 Q1 Median Q3 P90 

SYY 276 1.88 [6.52] 4.80 -3.87 -0.39 1.81 4.34 7.24 

SYY-LOW 276 0.00 [0.00] 2.24 -2.38 -1.27 -0.31 1.15 2.35 

SYY-HIGH 276 0.00 [0.00] 4.25 -5.39 -2.06 0.25 2.36 4.82 

NINV 276 1.56 [4.36] 5.97 -5.37 -0.96 2.11 4.51 7.46 

NINV-LOW 276 0.00 [0.00] 2.87 -2.58 -1.37 -0.05 1.16 2.85 

NINV-HIGH 276 0.00 [0.00] 5.23 -6.88 -2.45 0.38 3.01 5.54 

MF (Active) 276 0.15 [4.58] 0.54 -0.46 -0.18 0.13 0.47 0.82 

MF-LOW 276 0.00 [0.00] 0.44 -0.54 -0.32 -0.06 0.29 0.54 

MF-HIGH 276 0.00 [0.00] 0.32 -0.39 -0.15 0.02 0.18 0.32 

HF 276 0.42 [4.11] 1.69 -1.23 -0.24 0.60 1.42 2.00 

HF-LOW 276 0.00 [0.00] 1.22 -1.10 -0.50 0.03 0.72 1.49 

HF-HIGH 276 0.00 [0.00] 1.18 -1.34 -0.57 0.10 0.66 1.26 

Passive 276 0.96 [14.97] 1.07 -0.22 0.26 0.81 1.57 2.34 

Passive-LOW 276 0.00 [0.00] 0.72 -0.75 -0.50 -0.12 0.24 1.10 

Passive-HIGH 276 0.00 [0.00] 0.79 -0.92 -0.46 0.02 0.44 0.85 

MKTRF 276 0.63 [2.40] 4.37 -5.20 -1.97 1.24 3.47 6.05 

Amihud 276 3.74 [25.44] 2.44 1.18 1.65 3.08 5.39 7.22 

Turnover 276 15.49 [35.67] 7.21 6.92 8.56 15.01 20.38 24.45 

HML 276 0.24 [1.31] 3.09 -2.99 -1.34 0.01 1.76 3.65 

SMB 276 0.15 [0.73] 3.34 -3.74 -1.93 0.05 2.05 3.64 

 
Panel B: Pairwise Correlations 

Pearson (Upper right) /  
Spearman (Lower left) SYY NINV MF Passive HF MKTRF Amihud Turnover HML SMB 

SYY  0.950 -0.131 -0.066 0.083 -0.490 0.158 -0.120 0.304 -0.374 
  [0.00] [0.03] [0.28] [0.17] [0.00] [0.01] [0.05] [0.00] [0.00] 

NINV 0.929  -0.134 -0.074 0.079 -0.387 0.114 -0.109 0.241 -0.329 
 [0.00]  [0.03] [0.22] [0.19] [0.00] [0.06] [0.07] [0.00] [0.00] 

MF -0.145 -0.174  0.348 0.283 0.287 0.485 -0.633 0.009 0.116 
 [0.02] [0.00]  [0.00] [0.00] [0.00] [0.00] [0.00] [0.88] [0.05] 

Passive -0.050 -0.084 0.367  -0.034 0.198 0.333 -0.348 -0.013 0.026 
 [0.41] [0.17] [0.00]  [0.58] [0.00] [0.00] [0.00] [0.83] [0.67] 

HF 0.002 0.006 0.310 -0.021  0.040 -0.097 -0.214 0.146 0.044 
 [0.97] [0.92] [0.00] [0.72]  [0.51] [0.11] [0.00] [0.02] [0.46] 

MKTRF -0.431 -0.334 0.261 0.239 -0.040  -0.042 -0.102 -0.147 0.222 
 [0.00] [0.00] [0.00] [0.00] [0.50]  [0.49] [0.09] [0.01] [0.00] 

Amihud 0.192 0.135 0.480 0.382 -0.036 -0.019  -0.648 -0.010 -0.081 
 [0.00] [0.02] [0.00] [0.00] [0.55] [0.75]  [0.00] [0.86] [0.18] 

Turnover -0.072 -0.014 -0.661 -0.443 -0.138 -0.066 -0.683  -0.072 0.015 
 [0.23] [0.81] [0.00] [0.00] [0.02] [0.27] [0.00]  [0.23] [0.81] 

HML 0.119 0.034 0.061 0.027 0.119 -0.130 -0.013 -0.092  -0.296 
 [0.05] [0.58] [0.32] [0.66] [0.05] [0.03] [0.83] [0.13]  [0.00] 

SMB -0.387 -0.321 0.076 0.055 0.028 0.251 -0.087 0.059 -0.137 1.000 

  [0.00] [0.00] [0.21] [0.36] [0.65] [0.00] [0.15] [0.33] [0.02]   

 

Electronic copy available at: https://ssrn.com/abstract=3675163



Panel C: Correlations - Decomposed Variables 
Pearson (Upper right) /  
Spearman (Lower left) 

SYY-
LOW SYY-HIGH NINV-LOW NINV-HIGH MF-LOW MF-HIGH 

Passive-
LOW Passive-HIGH HF-LOW HF-HIGH 

SYY-LOW  0.000 0.968 0.000 0.057 0.000 0.114 0.000 0.192 0.000 
  [1.00] [0.00] [1.00] [0.35] [1.00] [0.06] [1.00] [0.00] [1.00] 

SYY-HIGH 0.004  0.000 0.945 0.000 -0.296 0.000 -0.157 0.000 0.031 
 [0.95]  [1.00] [0.00] [1.00] [0.00] [1.00] [0.01] [1.00] [0.61] 

NINV-LOW 0.949 -0.007  0.000 -0.001 0.000 0.044 0.000 0.233 0.000 
 [0.00] [0.91]  [1.00] [0.98] [1.00] [0.46] [1.00] [0.00] [1.00] 

NINV-HIGH 0.003 0.925 -0.009  0.000 -0.261 0.000 -0.137 0.000 -0.003 
 [0.97] [0.00] [0.88]  [1.00] [0.00] [1.00] [0.02] [1.00] [0.96] 

MF-LOW 0.080 0.002 -0.028 -0.001  0.000 0.533 0.000 0.415 0.000 
 [0.19] [0.97] [0.64] [0.98]  [1.00] [0.00] [1.00] [0.00] [1.00] 

MF-HIGH 0.035 -0.315 0.041 -0.264 -0.056  0.000 0.128 0.000 0.101 
 [0.57] [0.00] [0.50] [0.00] [0.35]  [1.00] [0.03] [1.00] [0.09] 

Passive-LOW 0.241 -0.007 0.106 -0.018 0.456 0.012  0.000 -0.006 0.000 
 [0.00] [0.91] [0.08] [0.77] [0.00] [0.84]  [1.00] [0.92] [1.00] 

Passive-HIGH -0.004 -0.207 -0.014 -0.162 0.075 0.147 -0.022  0.000 -0.060 
 [0.95] [0.00] [0.81] [0.01] [0.21] [0.01] [0.71]  [1.00] [0.32] 

HF-LOW 0.128 0.021 0.131 0.036 0.474 -0.040 0.094 -0.012  0.000 
 [0.03] [0.73] [0.03] [0.55] [0.00] [0.51] [0.12] [0.85]  [1.00] 

HF-HIGH 0.004 -0.003 0.013 -0.023 -0.040 0.110 -0.030 -0.109 -0.139  

  [0.95] [0.96] [0.83] [0.71] [0.51] [0.07] [0.61] [0.07] [0.02]   

 
Panel D: Variance Decomposition 

Variable SYY NINV MF (Active) HF Passive 

Total Variance (×10000) 23.06 100.0% 35.62 100.0% 0.30 100.0% 2.87 100.0% 1.14 100.0% 

Variance-LOW 5.04 21.9% 8.24 23.1% 0.20 66.0% 1.48 51.5% 0.52 45.9% 

Variance-HIGH 18.02 78.1% 27.38 76.9% 0.10 34.0% 1.39 48.5% 0.62 54.1% 
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Table 2: Regressions of Anomaly Returns on Flows 
This table reports the results of regressions of the long-short anomaly returns on fund flows. The dependent variables are the long-minus-short returns at month 
t of two composite anomalies, SYY and NINV, and their respective low- and high-frequency component returns. SYY is the return of the long-minus-short strategy 
based on eleven anomalies documented in Stambaugh, Yu, and Yuan (2012). NINV is the return of the long-minus-short strategy using seven anomalies in SYY that 
are unrelated to corporate investments. The main independent variables are MF and HF at month t, the percentage flows of active mutual funds and hedge funds, 
and their respective low- and high-frequency components. Panel A uses the total returns as dependent variables, while Panels B and C report the results using the 
low- and high-frequency anomaly returns. The main independent variables are total flows for Panel B and the decomposed flows for Panel C. The first column of 
each model shows the coefficient of each variable and the corresponding t value, and the second column reports the semi-partial R2 (PR2) and the ratio of each PR2 
to the sum of all PR2. The PR2 is estimated from the difference between a R2 of the full model that includes all explanatory variables and a R2 of the reduced model 
that excludes the variable of interest. t-statistics are calculated based on Newey-West standard errors with 13 lags. The sample period is 1994–2016. 

Panel A: Total Returns 
  (1) (2)   (3) (4) 

Anomaly SYY  NINV 

  Beta PR2 /  
(% of ttl PR2) Beta PR2 /  

(% of ttl PR2)   Beta PR2 /  
(% of ttl PR2) Beta PR2 /  

(% of ttl PR2) 
MF -1.732 1.9%     -2.450 2.4%    

 [-2.81] (8%)    [-3.05] (15%)   

HF 0.338 1.1%    0.399 1.0%   
 [2.61] (5%)    [2.45] (6%)   

MF-LOW   -2.113 1.3%    -3.447 2.3% 
   [-2.12] (6%)    [-2.60] (13%) 

MF-HIGH   -1.695 1.1%    -2.167 1.2% 
   [-2.36] (5%)    [-2.10] (6%) 

HF-LOW   0.631 1.4%    0.990 2.2% 
   [3.08] (6%)    [3.13] (12%) 

HF-HIGH   0.165 0.2%    0.068 0.0% 
   [0.99] (1%)    [0.31] (0%) 

MKTRF -0.416 11.9% -0.414 11.7%  -0.384 6.6% -0.383 6.5% 
 [-4.19] (52%) [-4.20] (51%)  [-3.04] (40%) [-3.06] (35%) 

Amihud 0.258 0.8% 0.361 1.2%  0.202 0.3% 0.418 1.0% 
 [1.80] (4%) [2.54] (5%)  [0.87] (2%) [2.03] (6%) 

Turnover -0.105 1.0% -0.083 0.6%  -0.158 1.5% -0.120 0.8% 
 [-1.83] (5%) [-1.45] (2%)  [-1.63] (9%) [-1.39] (4%) 

HML 0.248 2.2% 0.234 1.9%  0.217 1.1% 0.194 0.9% 
 [1.37] (10%) [1.31] (8%)  [0.93] (7%) [0.84] (5%) 

SMB -0.305 3.9% -0.305 3.9%  -0.362 3.5% -0.362 3.5% 
 [-4.86] (17%) [-5.01] (17%)  [-4.70] (21%) [-4.90] (19%) 

N 276   276     276   276   
R2 38.9% (100%) 39.3% (100%)   27.2% (100%) 28.4% (100%) 

 
Panel B: Decomposed Return – Total Flows 

  (1) (2)   (3) (4) 
Anomaly SYY-LOW NINV-LOW  SYY-HIGH NINV-HIGH 

  Beta 
PR2 /  

(% of ttl PR2) Beta 
PR2 /  

(% of ttl PR2)   Beta 
PR2 /  

(% of ttl PR2) Beta 
PR2 /  

(% of ttl PR2) 
MF -0.808 1.9% -1.120 2.2%  -0.923 0.7% -1.329 0.9% 

 [-2.16] (12%) [-2.44] (15%)  [-1.66] (4%) [-1.80] (9%) 
HF 0.227 2.3% 0.319 2.8%  0.111 0.2% 0.080 0.1% 

 [2.36] (15%) [2.39] (19%)  [0.77] (1%) [0.45] (1%) 
MKTRF -0.111 3.8% -0.146 4.1%  -0.305 8.2% -0.238 3.3% 

 [-2.91] (25%) [-2.96] (29%)  [-3.88] (50%) [-2.44] (32%) 
Amihud 0.268 4.0% 0.211 1.5%  -0.010 0.0% -0.009 0.0% 

 [1.64] (26%) [0.94] (11%)  [-0.08] (0%) [-0.06] (0%) 
Turnover -0.053 1.2% -0.081 1.8%  -0.052 0.3% -0.076 0.5% 

 [-0.80] (8%) [-0.84] (12%)  [-1.29] (2%) [-1.56] (4%) 
HML 0.106 1.9% 0.132 1.8%  0.142 0.9% 0.085 0.2% 

 [1.54] (12%) [1.53] (12%)  [1.09] (6%) [0.49] (2%) 
SMB 0.032 0.2% 0.032 0.1%  -0.338 6.1% -0.394 5.4% 

 [0.63] (1%) [0.51] (1%)  [-6.25] (37%) [-5.43] (52%) 
N 276   276     276   276   
R2 22.7% (100%) 19.7% (100%)   27.6% (100%) 17.0% (100%) 
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Panel C: Decomposed Returns – Decomposed Flows 
  (1) (2)   (3) (4) 

 FREQ = LOW  FREQ = HIGH 
Anomaly SYY-LOW NINV-LOW  SYY-HIGH NINV-HIGH 

  Beta 
PR2 /  

(% of ttl PR2) 
Beta 

PR2 /  
(% of ttl PR2) 

  Beta 
PR2 /  

(% of ttl PR2) 
Beta 

PR2 /  
(% of ttl PR2) 

MF-FREQ -2.770 10.5% -3.825 12.2%  -2.071 2.1% -2.675 2.3% 
 [-3.09] (27%) [-3.56] (31%)  [-3.00] (12%) [-2.73] (20%) 

HF-FREQ 0.796 9.9% 1.107 11.8%  0.180 0.2% 0.085 0.0% 
 [3.56] (26%) [3.71] (30%)  [1.19] (1%) [0.42] (0%) 

MKTRF -0.115 4.2% -0.153 4.5%  -0.299 7.8% -0.230 3.0% 
 [-3.33] (11%) [-3.40] (11%)  [-3.65] (45%) [-2.29] (27%) 

Amihud 0.517 11.2% 0.554 7.9%  -0.156 0.3% -0.137 0.1% 
 [2.99] (29%) [2.61] (20%)  [-1.14] (2%) [-0.80] (1%) 

Turnover -0.049 0.9% -0.075 1.3%  -0.034 0.1% -0.045 0.1% 
 [-0.78] (2%) [-0.85] (3%)  [-0.71] (1%) [-0.73] (1%) 

HML 0.106 1.8% 0.131 1.7%  0.128 0.7% 0.063 0.1% 
 [1.88] (5%) [1.88] (4%)  [0.92] (4%) [0.34] (1%) 

SMB 0.031 0.2% 0.030 0.1%  -0.336 6.0% -0.392 5.4% 
 [0.73] (0%) [0.57] (0%)  [-6.34] (34%) [-5.49] (48%) 

N 276   276     276   276   
R2 34.3% (100%) 33.2% (100%)   29.4% (100%) 18.5% (100%) 
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Table 3: Economic Significance across Frequency Bands and Fund Types 
The table estimates the economic significance of the effect of low- and high-frequency flows on returns at their respective frequency. Panel A summarizes the 
semi-partial R2s (PR2) of low- and high-frequency flows, while Panels B and C calculate cross-frequency flow-mispricing ratios for SYY and NINV anomalies. The 
PR2 is estimated from the difference between a R2 of the full model that includes all explanatory variables and a R2 of the reduced model that excludes the 
variable of interest. The economic magnitude of the fund-flow effect at frequency band B=(L, H) is calculated as βB × σFB / σRB, where σFB and σRB denote, 
respectively, the standard deviations of flows and mispricing at frequency band B, and βB is the coefficient estimate from regressing mispricing on flows, at 
frequency band B, as reported in Table 2. Then, the cross-frequency flow-mispricing ratio (flow-mispricing ratio) is defined as the ratio of the economic 
magnitude of the fund-flow effect at low frequency to its magnitude at high frequency. SYY is the return of the long-minus-short strategy based on eleven 
anomalies documented in Stambaugh, Yu, and Yuan (2012). NINV is the return of the long-minus-short strategy using seven anomalies in SYY that are not 
related to corporate investments. MF and HF are the monthly aggregate percentage flows of equity mutual funds and equity hedge funds, respectively.  The 
sample period is 1994–2016. 

Panel A: Semi-Partial R2 of Low- and High-Frequencies 
    (1) (2) (3)   (4) (5) (6) 

  SYY  NINV 

Flows   FREQ=LOW FREQ=HIGH LOW/HIGH   FREQ=LOW FREQ=HIGH LOW/HIGH 

MF-FREQ   10.5% 2.1% 5.05   12.2% 2.3% 5.36 

HF-FREQ   9.9% 0.2% 40.41   11.8% 0.0% 324.62 

Ratio HF/MF   0.95 0.12 8.01   0.96 0.02 60.62 

 
Panel B: Cross-Frequency Flow-Mispricing Ratio – SYY Anomaly 

    (1) (2) (3) (4) (5) (6) 

Fund Type Frequency Beta-FREQ 
STD(Flows)-

FREQ 
Effect of One 

σFB on Ret 
STD(Ret)-FREQ Econ. Magnitude 

(Flow-Misp. Ratio) 
Manager vs. 

Investor 

    βB σFB βB × σFB σRB βB x σFB / σRB (1)/(2) 

MF FREQ=LOW -2.770 0.4% -1.2% 2.2% -54.6%  

 FREQ=HIGH -2.071 0.3% -0.7% 4.2% -15.5%   

  LOW / HIGH 1.34 1.39 1.87   3.53 0.96 

HF FREQ=LOW 0.796 1.2% 1.0% 2.2% 43.1%  

 FREQ=HIGH 0.180 1.2% 0.2% 4.2% 5.0%   

  LOW / HIGH 4.42 1.03 4.56   8.62 4.28 

Ratio HF/MF   3.30 0.74 2.44   2.44 4.47 

 
Panel C: Cross-Frequency Flow-Mispricing Ratio – NINV Anomaly 

    (1) (2) (3) (4) (5) (6) 

Fund Type Frequency Beta-FREQ 
STD(Flows)-

FREQ 
Effect of One 

σFB on Ret STD(Ret)-FREQ Econ. Magnitude 
(Flow-Misp. Ratio) 

Manager vs. 
Investor 

    βB σFB βB × σFB σRB βB x σFB / σRB (1)/(2) 

MF FREQ=LOW -3.825 0.4% -1.7% 2.9% -58.9%  

 FREQ=HIGH -2.675 0.3% -0.8% 5.2% -16.2%   

  LOW / HIGH 1.43 1.39 1.99   3.63 1.03 

HF FREQ=LOW 1.107 1.2% 1.3% 2.9% 46.9%  

 FREQ=HIGH 0.085 1.2% 0.1% 5.2% 1.9%   

  LOW / HIGH 12.98 1.03 13.39   24.41 12.59 

Ratio HF/MF   9.08 0.74 6.72   6.72 12.28 
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Table 4: Flows to Passive Funds 
The table studies fund flows of passive mutual funds. Passive funds are identified by names, following Appel, Gormley, and Keim (2016). Panel A examines the 
flow-return relation using the low- and high-frequency components of value weighted market return (MKT) and returns to S&P500 index (S&P) as dependent 
variables. Panel B calculates cross-frequency flow-return ratios for both MKT and S&P. The economic magnitude of the fund-flow effect at frequency band 
B=(L, H) is calculated as βB × σFB / σRB, where σFB and σRB denote, respectively, the standard deviations of flows and market returns at frequency band B, and βB 
is the coefficient estimate from regressing market returns on flows, at frequency band B, as reported in Panel A. Then, the cross-frequency flow-return ratio 
(flow-return ratio) is defined as the ratio of the economic magnitude of the fund-flow effect at low frequency to its magnitude at high frequency. The control 
variables include the aggregate Amihud measure, the aggregate turnover, HML and SMB. t-statistics are calculated based on Newey-West standard errors. The 
sample period is 1994–2016. 

Panel A: Regressions 
  (1) (2)   (3) (4) 

 FREQ = LOW  FREQ = HIGH 

Variables MKT-LOW S&P-LOW   MKT-HIGH S&P-HIGH 

Passive-FREQ 0.029 [0.05] 0.074 [0.12]   1.313 [3.97] 1.300 [3.90] 

Controls Yes Yes   Yes Yes 

N 276 276  276 276 

R2 9.2% 10.1%   8.8% 12.9% 

 
Panel B: Economic Significance 

    (1) (2) (3) (4) (5) (6) 

Returns Frequency Beta-FREQ 
STD(Flows)-

FREQ 
Effect of One 

σFB on Ret STD(Ret)-FREQ Econ. Magnitude 
(Flow-Ret. Ratio) 

Manager vs. 
Investor 

    βB σFB βB × σFB σRB βB x σFB / σRB (1)/(2) 

 FREQ=LOW 0.029 0.7% 0.0% 1.9% 1.1%   

MKT FREQ=HIGH 1.300 0.8% 1.0% 3.9% 26.1%   

  LOW / HIGH 0.02 0.92 0.02   0.04 0.02 

  FREQ=LOW 0.074 0.7% 0.1% 1.9% 2.8%   

S&P FREQ=HIGH 1.313 0.8% 1.0% 3.8% 27.3%   

  LOW / HIGH 0.06 0.92 0.05   0.10 0.06 
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Table 5: Regressions of Long and Short Returns on Flows 
The table reports the results of regressions of the long-leg and short-leg returns of anomalies on fund flows. The dependent variables are the low- and high-
frequency components of long (decile 10) and short (decile 1) returns in month t on two composite anomalies, SYY and NINV. SYY is the composite anomaly 
constructed based on eleven anomalies documented in Stambaugh, Yu, and Yuan (2012). NINV is the composite of seven anomalies in SYY that are not related 
to corporate investments. Panel A reports the results for the long-leg returns, and Panel B shows the results for short-leg returns. The main independent 
variables are the low- and high-frequency components of fund flows in month t, that is, MF-LOW, MF-HIGH, HF-LOW, and HF-HIGH. The control variables 
include MKTRF, aggregate Amihud measure, aggregate turnover, HML and SMB. t-statistics are calculated based on Newey-West standard errors with 13 lags. 
The sample period is 1994–2016. 

Panel A: Long-Leg Returns 
  (1) (2)   (3) (4) 

 FREQ = LOW  FREQ = HIGH 

Anomaly SYY-LOW NINV-LOW   SYY-HIGH NINV-HIGH 

MF-FREQ 2.553 [4.13] 2.399 [4.26]  1.962 [5.44] 1.578 [4.06] 

HF-FREQ -0.102 [-0.48] -0.126 [-0.59]  -0.101 [-1.35] -0.044 [-0.51] 

Controls Yes Yes   Yes Yes 

N 276 276  276 276 

R2 35.6% 35.2%   80.4% 80.4% 

 
Panel B: Short-Leg Returns 

  (1) (2)   (3) (4) 
 FREQ = LOW  FREQ = HIGH 

Anomaly SYY-LOW NINV-LOW   SYY-HIGH NINV-HIGH 

MF-FREQ 5.323 [4.69] 6.224 [4.53]  4.033 [5.05] 4.253 [4.35] 

HF-FREQ -0.898 [-2.64] -1.233 [-3.24]  -0.281 [-1.77] -0.129 [-0.67] 

Controls Yes Yes   Yes Yes 

N 276 276  276 276 

R2 31.5% 30.9%   68.1% 60.8% 
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Table 6: Aggregate Risk 
The table examines whether the flow-return relation is affected by aggregate risk. The dependent variables are the low- and high-frequency components of NINV 
anomaly. The main independent variables are the total fund flows, the low- and high-frequency fund flows, and their interactions with D, which measures aggregate 
risk. We use four variables that measure risk; a NBER Recession Indicator, VIX, the Financial Uncertainty Index of Jurado, Ludvigson, and Ng (2015), and the Economic 
Uncertainty Index of Bekaert, Engstrom, and Xu (2019). For the NBER indicator, D is a dummy variable that equals one if the current month is in a recessionary period, 
zero otherwise. For other uncertainty variables, D is a quintile score scaled from zero to one. Panel A uses the total flows as the independent variables, while Panel B 
uses the low- and high-frequency flows. The control variables include MKTRF, aggregate Amihud measure, aggregate turnover, HML and SMB. t-statistics are calculated 
based on Newey-West standard errors with 13 lags. The sample period is 1994–2016. 

Panel A: Total Flows 

      NBER Recession   VIX   
Financial Uncertainty Index 

(JLN)   
Economic Uncertainty 

Index (BEX)   

   (1) (2)  (3) (4)  (5) (6)  (7) (8)  

      NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   
 MF  -0.867 -1.567  -1.152 -1.430  -0.528 -1.135  -0.766 -1.541  

   [-1.69] [-1.92]  [-1.40] [-1.80]  [-0.70] [-1.46]  [-0.89] [-1.42]  

 MF × D  0.825 1.663  0.315 -0.168  0.054 -0.887  -0.398 -0.132  

   [0.54] [0.79]  [0.25] [-0.09]  [0.04] [-0.48]  [-0.30] [-0.06]  

 HF  0.087 0.181  -0.108 0.205  -0.148 0.170  -0.168 0.481  

   [0.54] [0.87]  [-0.56] [0.61]  [-0.79] [0.66]  [-1.31] [1.40]  

 HF × D  0.708 -0.371  0.630 -0.179  0.719 -0.143  0.799 -0.512  

   [3.58] [-1.48]  [2.62] [-0.42]  [3.29] [-0.46]  [3.62] [-1.17]  

  Controls   Yes Yes   Yes Yes   Yes Yes   Yes Yes   
 N  276 276  276 276  276 276  254 254  

  Adj R2   20.7% 14.5%   18.7% 14.0%   21.2% 14.1%   20.5% 13.4%   

 

Panel B: Decomposed Flows 

      NBER Recession   VIX   
Financial Uncertainty Index 

(JLN) 
  

Economic Uncertainty 
Index (BEX) 

  

   (1) (2)  (3) (4)  (5) (6)  (7) (8)  

      FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   

 MF-FREQ  -2.989 -3.283  -3.725 -2.165  -2.325 -2.012  -3.030 -2.321  

   [-2.94] [-3.10]  [-2.58] [-2.16]  [-1.75] [-1.81]  [-1.86] [-1.35]  

 MF-FREQ × D  -16.145 4.558  -0.546 -1.237  -1.687 -1.415  -2.183 -0.936  

   [-12.30] [2.05]  [-0.24] [-0.47]  [-0.60] [-0.53]  [-0.78] [-0.26]  

 HF-FREQ  0.684 0.170  0.188 0.230  0.142 0.180  0.154 0.614  

   [1.64] [0.74]  [0.57] [0.50]  [0.37] [0.57]  [0.44] [1.40]  

 HF-FREQ × D  2.252 0.026  1.475 -0.285  1.466 -0.215  1.470 -0.717  

   [5.53] [0.06]  [4.18] [-0.42]  [3.53] [-0.49]  [3.65] [-1.04]  

  Controls   Yes Yes   Yes Yes   Yes Yes   Yes Yes   
 N  276 276  276 276  276 276  254 254  

  Adj R2   40.7% 15.3%   36.6% 14.3%   34.1% 14.3%   36.8% 13.4%   
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Table 7: Leverage 
The table examines whether the flow-return relation is affected by determinants of fund leverage, namely, the levels of funding cost and risk aversion. 
The dependent variables are the low- and high-frequency components of NINV anomaly. The main independent variables are the total fund flows, the 
low- and high-frequency fund flows, and their interactions with D, which measures the levels of funding cost and risk aversion in month t. We use TED 
Spread as a funding cost measure and estimate the risk aversion following Bekaert, Engstrom, and Xu (2019). Specifically, monthly TED spreads and risk 
aversion are ranked into quintiles over the sample period. Then, D is created based on the quintile score, and scaled from zero to one. Panel A uses the 
total flows as the independent variables, while Panel B uses the low- and high-frequency flows. t-statistics are calculated based on Newey-West standard 
errors with 13 lags. The sample period is 1994–2016. 

Panel A: Total Flows 
      TED Spread   Risk Aversion (BEX)   
   (1) (2)  (3) (4)  

      NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   
 MF  -1.525 -0.686  -1.422 -1.635  

   [-2.82] [-0.62]  [-1.52] [-2.18]  

 MF × D  1.125 -1.508  0.430 0.235  

   [1.21] [-0.93]  [0.34] [0.13]  

 HF  -0.207 0.316  0.031 0.107  

   [-1.34] [0.96]  [0.13] [0.31]  

 HF × D  0.858 -0.404  0.486 0.053  

   [4.12] [-0.98]  [1.65] [0.12]  

  Controls   Yes Yes   Yes Yes   
 N  276 276  254 254  

  Adj R2   23.4% 14.8%   19.9% 13.1%   

 
Panel B: Decomposed Flows 

      TED Spread   Risk Aversion (BEX)   
   (1) (2)  (3) (4)  

      FREQ = LOW FREQ = HIGH   FREQ = LOW FREQ = HIGH   
 MF-FREQ  -4.098 -1.749  -4.533 -2.541  

   [-3.09] [-1.09]  [-2.79] [-2.18]  

 MF-FREQ × D  0.909 -2.163  -0.120 -0.321  

   [0.38] [-0.74]  [-0.05] [-0.12]  

 HF-FREQ  0.351 0.387  0.415 0.350  

   [0.81] [0.94]  [1.00] [0.84]  

 HF-FREQ × D  1.184 -0.562  1.255 -0.256  

   [2.34] [-1.02]  [3.08] [-0.40]  

  Controls   Yes Yes   Yes Yes   
 N  276 276  254 254  

  Adj R2   37.7% 15.2%   39.7% 13.0%   
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Table 8: Hedge-Fund Leverage 
The table examines, in the cross-section of funds, whether the flow-return relation is affected by hedge funds’ use of leverage. Each month, hedge funds 
are divided into two groups, HFUnLev and HFLev, according to their use of leverage. Then, fund flows are calculated separately for each group of hedge 
funds. The dependent variables are the low- and high-frequency components of NINV anomaly. Panel A uses the total flows as the independent variables, 
while Panel B uses the low- and high-frequency flows. t-statistics are calculated based on Newey-West standard errors with 13 lags. The sample period is 
1994–2016. 

Panel A: Total Flows 
  (1)   (2)   

  NINV-LOW   NINV-HIGH   

MF -1.196 [-2.56]  -1.310 [-1.76]  

HFUnLev 0.340 [3.36]  -0.102 [-0.40]  

HFLev 0.074 [0.64]  0.168 [0.83]  

Controls Yes   Yes   

N 276  276  

Adj R2 18.9%   14.6%   

 
Panel B: Decomposed Flows 

  (1)   (2)   

  FREQ = LOW   FREQ = HIGH   

MF-FREQ -3.860 [-3.66]  -2.700 [-2.75]  

HFUnLev-FREQ 1.328 [3.26]  -0.167 [-0.52]  

HFLev-FREQ -0.115 [-0.23]  0.235 [0.96]  

Controls Yes   Yes   

N 276  276  

Adj R2 36.2%   15.3%   

 

Electronic copy available at: https://ssrn.com/abstract=3675163



Table 9: Market Liquidity 
This table reports the results of regressions of anomaly returns on fund flows and their interaction with liquidity variables. The dependent variables are the low- and 
high-frequency components of NINV anomaly. The main independent variables are the total fund flows, the low- and high-frequency fund flows, and their interaction 
with ILLIQ, which measures the market illiquidity in month t. We use four measures of illiquidity; Amihud illiquidity, the aggregate liquidity proxy of Pastor and 
Stambaugh (2003), the permanent variable factor of Sadka (2006), and the noise measure of Hu, Pan, and Wang (2013). If the original variable measures market liquidity, 
then we multiply the variable by minus one. Then, we obtain the detrended illiquidity measures from the residuals of regressions of the illiquidity measures on a linear 
deterministic trend. Finally, we sort the detrended illiquidity measures into quintiles and standardize the quintile scores from zero to one to obtain ILLIQ. Panel A uses 
the total flows as the independent variables, while Panel B uses the low- and high-frequency flows. t-statistics are calculated based on Newey-West standard errors. 
The sample period is 1994–2016. 

Panel A: Total Flows 
      Amihud   Aggregate Liquidity (PS)   PV-Level (Sadka)   Noise (HPW)   

   (1) (2)  (3) (4)  (5) (6)  (7) (8)  

      NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   
 MF  -1.446 -0.254  -0.867 -1.849  -1.455 -1.981  -0.891 -1.566  

   [-2.22] [-0.21]  [-1.05] [-2.12]  [-1.65] [-2.22]  [-0.97] [-1.62]  

 MF × ILLIQ  0.955 -1.932  -0.304 0.879  0.997 -0.059  0.088 0.351  

   [0.91] [-1.10]  [-0.29] [0.60]  [0.88] [-0.03]  [0.09] [0.20]  

 HF  -0.065 0.134  0.000 0.268  -0.157 0.450  -0.194 0.182  

   [-0.25] [0.40]  [0.00] [0.82]  [-0.93] [1.41]  [-0.80] [0.75]  

 HF × ILLIQ  0.576 -0.080  0.558 -0.327  0.728 -0.448  0.763 -0.150  

   [1.82] [-0.21]  [2.74] [-0.75]  [2.71] [-1.02]  [2.82] [-0.52]  

  Controls   Yes Yes   Yes Yes   Yes Yes   Yes Yes   
 N  276 276  276 276  228 228  276 276  

  Adj R2   18.9% 14.3%   18.4% 14.1%   19.9% 14.0%   19.9% 13.9%   

 
Panel B: Decomposed Flows 

      Amihud   Aggregate Liquidity (PS)   PV-Level (Sadka)   Noise (HPW)   

   (1) (2)  (3) (4)  (5) (6)  (7) (8)  

      FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   

 MF-FREQ  -4.118 -1.166  -3.295 -4.285  -3.164 -1.313  -2.551 -3.284  

   [-3.45] [-0.56]  [-2.66] [-3.69]  [-2.20] [-0.74]  [-1.63] [-1.80]  

 MF-FREQ × ILLIQ  0.847 -2.551  -0.851 2.250  -0.724 -2.912  -1.602 0.952  

   [0.64] [-0.78]  [-0.59] [0.90]  [-0.29] [-0.82]  [-0.74] [0.31]  

 HF-FREQ  0.349 -0.063  0.739 0.755  0.148 0.488  0.235 0.076  

   [0.86] [-0.17]  [2.31] [2.30]  [0.42] [1.20]  [0.47] [0.25]  

 HF-FREQ × ILLIQ  1.156 0.245  0.591 -1.226  1.371 -0.447  1.243 0.051  

   [2.58] [0.48]  [2.01] [-2.55]  [2.98] [-0.79]  [2.52] [0.12]  

  Controls   Yes Yes   Yes Yes   Yes Yes   Yes Yes   
 N  276 276  276 276  228 228  276 276  

  Adj R2   34.1% 14.7%   31.3% 15.6%   34.1% 14.5%   32.4% 14.3%   

 

Electronic copy available at: https://ssrn.com/abstract=3675163



Table 10: Hedge-Fund Liquidity 
The table examines, in the cross-section of funds, whether the flow-return relation is affected by restrictions on the redemption of hedge funds’ shares. The share 
restrictions are the sum of the number of days comprising the lock-up period, the redemption notice period, and the payout period. We construct flows of hedge 
fund based on their share restriction property. Specifically, each month, hedge funds are divided into two groups, HFBelow and HFAbove, based on the median 
value of the share restrictions. Then, flows are calculated separately for each group of hedge funds. The dependent variables are the high- and low-frequency 
components of the long-minus-short returns of NINV anomaly. Panel A uses the total flows as the independent variables, while Panel B uses the low- and high-
frequency flows. t-statistics are calculated based on Newey-West standard errors with 13 lags. The sample period is 1994–2016. 

Panel A: Total Flows 
  (1)   (2)   

  NINV-LOW   NINV-HIGH   

MF -1.433 [-2.99]  -1.276 [-1.65]  

HFBelow -0.060 [-0.65]  0.105 [0.47]  

HFAbove 0.392 [2.94]  -0.024 [-0.17]  

Controls Yes   Yes   

N 276  276  

Adj R2 20.2%   14.5%   

 
Panel B: Decomposed Flows 

  (1)   (2)   

  FREQ = LOW   FREQ = HIGH   

MF-FREQ -4.168 [-4.22]  -2.749 [-2.65]  

HFBelow-FREQ -0.464 [-2.13]  0.028 [0.10]  

HFAbove-FREQ 1.647 [4.53]  0.083 [0.53]  

Controls Yes   Yes   

N 276  276  

Adj R2 44.1%   15.3%   
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Table 11: Exogenous Shocks to Frictions 
This table examines the relation between anomaly returns and fund flows during period of exogenous shocks to funding and market liquidity. The dependent 
variables are the high- and low-components of NINV anomaly. The main independent variables are the total fund flows, the low- and high-frequency fund flows, 
and their interaction with SHOCK, a dummy variable that equals one if the month t is included in the period of the exogenous shock, zero otherwise. We consider 
two distinct periods of liquidity shocks; Decimalization and Financial Crisis. Decimalization is 08/2000–05/2001, and considered as the period of positive shock to 
market liquidity. Financial Crisis is 07/2007–12/2009, and considered as the period of negative shock to market and funding liquidity. Panel A uses the total flows 
as the independent variables, while Panel B uses the low- and high-frequency flows. t-statistics are calculated based on Newey-West standard errors with 13 lags. 
The sample period is 1994–2016. 

Panel A: Total Flows 
      Financial Crisis   Decimalization   
   (1) (2)  (3) (4)  

      NINV-LOW NINV-HIGH   NINV-LOW NINV-HIGH   
 MF  -0.786 -1.777  -0.814 -1.068  

   [-1.58] [-2.11]  [-1.99] [-1.46]  

 MF × SHOCK  -0.747 3.398  6.145 -21.277  

   [-0.50] [1.50]  [6.16] [-6.37]  

 HF  0.105 0.215  0.211 0.160  

   [0.60] [0.99]  [1.55] [0.96]  

 HF × SHOCK  0.625 -0.394  -2.706 0.073  

   [2.88] [-1.60]  [-8.24] [0.07]  

  Controls   Yes Yes   Yes Yes   
 N  276 276  276 276  

  Adj R2   19.6% 14.9%   36.0% 20.3%   

 
Panel B: Decomposed Flows 

      Financial Crisis   Decimalization   
   (1) (2)  (3) (4)  

      FREQ = LOW FREQ = HIGH   FREQ = LOW FREQ = HIGH   
 MF-FREQ  -2.900 -3.456  -2.963 -2.069  

   [-2.96] [-3.26]  [-3.24] [-2.10]  

 MF-FREQ × SHOCK  -17.642 4.988  9.849 -33.607  

   [-12.12] [1.46]  [3.23] [-5.62]  

 HF-FREQ  0.769 0.263  0.891 0.149  

   [1.83] [1.16]  [2.89] [0.74]  

 HF-FREQ × SHOCK  2.023 -0.430  -2.853 5.050  

   [5.46] [-0.64]  [-6.90] [2.66]  

  Controls   Yes Yes   Yes Yes   
 N  276 276  276 276  

  Adj R2   44.7% 15.7%   43.6% 21.7%   
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Table A1. Robustness to Various Factor Models 
This table re-estimates the main results of Table 2 under diverse factor structures. The dependent variables are the low- and high-frequency components of 
the long-minus-short returns at month t of two composite anomalies, SYY and NINV. The main independent variables are the low- and high-frequency fund 
flows at month t. Panel A uses the factors of Daniel, Hirshleifer, and Sun (2020, DHS factors). Panel B uses the factors from Fama and French (2015, FF5 factors). 
Panel C reports the results using the factors in Stambaugh and Yuan (2017, SY). Panel D reports the factor structure of Hou, Xue, and Zhang (2015, HXZ factors). 
The first column of each model shows the coefficients and the corresponding t values, and the second column report the semi-partial R2 (PR2). The PR2 is 
estimated from the difference between a R2 of the full model that includes all explanatory variables and a R2 of the reduced model that excludes the variable 
of interest. t-statistics are calculated based on Newey-West standard errors with 13 lags. The sample period is 1994–2016. 

Panel A: DHS Factors 
  (1) (2)   (3) (4) 

 FREQ = LOW  FREQ = HIGH 
Anomaly SYY-LOW NINV-LOW   SYY-HIGH NINV-HIGH 

  Beta PR2 Beta PR2   Beta PR2 Beta PR2 
MF-FREQ -2.631 9.5% -3.674 11.3%  -1.949 1.8% -2.477 2.0% 

 [-3.12]  [-3.57]   [-2.80]  [-2.51]  

HF-FREQ 0.815 10.6% 1.136 12.6%  0.138 0.1% 0.039 0.0% 
 [3.37]  [3.60]   [1.00]  [0.20]  

MKTRF -0.053 0.7% -0.089 1.1%  -0.053 0.2% 0.055 0.1% 
 [-1.85]  [-2.36]   [-0.78]  [0.59]  

Amihud 0.506 10.8% 0.542 7.6%  -0.116 0.2% -0.087 0.1% 
 [3.06]  [2.64]   [-0.81]  [-0.51]  

Turnover -0.037 0.5% -0.064 0.9%  0.011 0.0% 0.006 0.0% 
 [-0.59]  [-0.72]   [0.26]  [0.11]  

Short(PEAD) 0.117 1.1% 0.114 0.6%  0.464 4.8% 0.522 4.0% 
 [2.33]  [1.86]   [4.86]  [4.30]  

Long(FIN) 0.111 3.3% 0.120 2.4%  0.497 18.8% 0.562 15.8% 
 [3.52]  [3.04]   [6.15]  [5.65]  

N 276 276   276 276 
R2 36.2% 34.2%   41.1% 29.1% 

 
Panel B: FF5 Factors 

  (1) (2)  (3) (4) 
 FREQ = LOW  FREQ = HIGH 

Anomaly SYY-LOW NINV-LOW  SYY-HIGH NINV-HIGH 
  Beta PR2 Beta PR2  Beta PR2 Beta PR2 

MF-FREQ -2.688 9.8% -3.743 11.6%  -2.527 3.1% -3.243 3.3% 
 [-3.23]  [-3.74]   [-3.54]  [-3.13]  

HF-FREQ 0.744 8.6% 1.046 10.4%  0.209 0.3% 0.144 0.1% 
 [3.43]  [3.55]   [1.22]  [0.75]  

MKTRF -0.063 0.9% -0.099 1.3%  -0.037 0.1% 0.119 0.6% 
 [-1.81]  [-2.18]   [-0.63]  [1.47]  

Amihud 0.477 9.2% 0.513 6.5%  -0.356 1.4% -0.403 1.2% 
 [2.85]  [2.48]   [-2.47]  [-2.31]  

Turnover -0.057 1.2% -0.085 1.6%  -0.064 0.4% -0.089 0.5% 
 [-0.91]  [-0.96]   [-1.62]  [-1.79]  

SMB 0.100 1.5% 0.116 1.2%  -0.117 0.6% -0.044 0.1% 
 [2.04]  [1.91]   [-1.80]  [-0.42]  

HML 0.044 0.2% 0.083 0.4%  -0.333 2.6% -0.488 3.6% 
 [0.79]  [1.13]   [-3.72]  [-3.15]  

RMW 0.206 3.1% 0.244 2.7%  0.758 11.7% 1.131 17.2% 
 [5.97]  [5.51]   [5.46]  [5.77]  

CMA 0.030 0.0% -0.021 0.0%  0.629 4.9% 0.632 3.2% 
  [0.42]   [-0.23]     [3.35]   [2.20]   
N 276 276   276 276 
R2 37.4% 36.0%   44.5% 37.4% 
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Panel C: SY Factors 
  (1) (2)   (3) (4) 

 FREQ = LOW  FREQ = HIGH 
Anomaly SYY-LOW NINV-LOW   SYY-HIGH NINV-HIGH 

  Beta PR2 Beta PR2   Beta PR2 Beta PR2 
MF-FREQ -2.444 8.0% -3.455 9.8%  -1.568 1.2% -2.275 1.6% 

 [-2.82]  [-3.33]   [-2.28]  [-2.50]  

HF-FREQ 0.794 10.0% 1.112 12.0%  0.091 0.1% -0.052 0.0% 
 [3.39]  [3.66]   [0.79]  [-0.28]  

MKTRF -0.037 0.3% -0.067 0.6%  0.075 0.3% 0.229 2.1% 
 [-1.39]  [-2.11]   [1.33]  [2.87]  

Amihud 0.482 9.7% 0.515 6.8%  -0.253 0.7% -0.224 0.4% 
 [2.84]  [2.46]   [-1.86]  [-1.37]  

Turnover -0.033 0.4% -0.058 0.8%  0.032 0.1% 0.034 0.1% 
 [-0.57]  [-0.70]   [0.57]  [0.47]  

SMB 0.047 0.4% 0.044 0.2%  -0.242 3.0% -0.301 3.0% 
 [1.37]  [0.96]   [-3.28]  [-2.66]  

MGMT 0.162 3.1% 0.176 2.2%  0.470 7.3% 0.397 3.4% 
 [3.20]  [2.75]   [7.19]  [4.10]  

PERF 0.091 2.7% 0.103 2.1%  0.525 24.6% 0.711 29.7% 
 [2.76]  [2.53]    [13.29]  [12.76]  

N 276 276  276 276 
R2 37.8% 35.5%   58.6% 50.1% 

 
Panel D: HXZ Factors 

  (1) (2)   (3) (4) 
 FREQ = LOW  FREQ = HIGH 

Anomaly SYY-LOW NINV-LOW   SYY-HIGH NINV-HIGH 
  Beta PR2 Beta PR2   Beta PR2 Beta PR2 

MF-FREQ -2.719 10.1% -3.743 11.7%  -1.357 0.9% -1.597 0.8% 
 [-3.31]  [-3.84]   [-1.88]  [-1.60]  

HF-FREQ 0.813 10.6% 1.130 12.5%  -0.009 0.0% -0.177 0.2% 
 [3.49]  [3.79]   [-0.07]  [-0.91]  

MKTRF -0.049 0.6% -0.073 0.8%  -0.024 0.0% 0.133 0.8% 
 [-2.37]  [-2.85]   [-0.47]  [2.09]  

Amihud 0.517 11.2% 0.555 7.9%  -0.133 0.2% -0.096 0.1% 
 [3.15]  [2.76]   [-0.92]  [-0.56]  

Turnover -0.036 0.5% -0.059 0.8%  0.017 0.0% 0.025 0.0% 
 [-0.63]  [-0.74]   [0.30]  [0.37]  

SMB 0.087 1.2% 0.098 1.0%  -0.047 0.1% 0.016 0.0% 
 [2.72]  [2.34]   [-0.77]  [0.21]  

IA 0.110 0.9% 0.092 0.4%  0.389 3.0% 0.293 1.1% 
 [2.18]  [1.48]   [3.14]  [1.77]  

ROE 0.220 4.7% 0.287 4.9%  0.868 20.4% 1.227 26.9% 
 [4.70]  [4.79]    [12.63]  [12.04]  

N 276 276  276 276 
R2 38.0% 36.8%   51.9% 46.2% 
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Table A2: Granger Causality Test 
The table provides the results of Granger causality tests of our main variables. Panel A examines whether the high- and low-frequency components of fund flows Granger-cause mispricing in the respective frequency. 
We use two composite anomalies, SYY and NINV, as proxies for mispricing. Panel B investigates whether mispricing proxies Granger-cause fund flows. We use the following specification for the Granger causality tests: 
Yt = Yt-1 + ΔXt-1 + Controls + et. t-statistics of the regression coefficients are calculated based on Newey-West standard errors with 13 lags, and are reported in brackets. p-values for Granger causality tests are reported in 
parentheses. The sample period is 1994–2016. 

Panel A: Granger Causality of Mispricing 
Y Variable SYY-LOW NINV-LOW SYY-HIGH NINV-HIGH 

X Variable Restricted HF-LOW MF-LOW Both Restricted HF-LOW MF-LOW Both Restricted HF-HIGH MF-HIGH Both Restricted HF-HIGH MF-HIGH Both 

Lagged Y 0.960 1.004 0.931 0.966 0.963 1.013 0.931 0.972 -0.016 -0.015 0.009 0.011 -0.076 -0.072 -0.073 -0.067 

 [42.06] [25.16] [36.84] [27.24] [40.06] [24.43] [32.88] [25.55] [-0.44] [-0.40] [0.22] [0.28] [-1.93] [-1.79] [-1.70] [-1.59] 

Lagged HF  0.708  1.104  0.983  1.510  0.086  0.097  0.185  0.188 

  [3.49]  [5.90]  [3.04]  [5.25]  [0.75]  [0.85]  [1.19]  [1.23] 

Lagged MF   -1.423 -3.114   -2.029 -4.258   0.675 0.701   0.151 0.206 
   [-2.41] [-4.05]   [-2.75] [-4.47]   [1.43] [1.50]   [0.22] [0.31] 

Adj RSQ 93% 94% 94% 95% 94% 94% 94% 95% 25% 25% 25% 25% 15% 15% 14% 15% 

Granger Test                                 

F  31.48 9.82 85.05  38.25 12.52 106.75  0.45 1.52 2.10  1.19 0.05 1.28 

(p value)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.50) (0.22) (0.15)  (0.28) (0.83) (0.26) 

Χ2  31.82 9.92 85.99  38.67 12.66 107.93  0.46 1.54 2.12  1.21 0.05 1.29 

(p value)   (0.00) (0.00) (0.00)   (0.00) (0.00) (0.00)   (0.50) (0.21) (0.15)   (0.27) (0.83) (0.26) 

 

Panel B: Granger Causality of Fund Flows 
Y Variable HF-LOW MF-LOW HF-HIGH MF-HIGH 

X Variable Restricted SYY-LOW NINV-LOW Restricted SYY-LOW NINV-LOW Restricted SYY-HIGH NINV-HIGH Restricted SYY-HIGH NINV-HIGH 

Lagged Y 0.932 0.937 0.936 0.941 0.994 1.006 -0.140 -0.141 -0.140 0.014 0.003 0.007 
 [54.58] [40.90] [35.71] [52.62] [41.56] [39.92] [-2.61] [-2.45] [-2.50] [0.24] [0.05] [0.13] 

Lagged X  -0.019 -0.012  -0.066 -0.061  0.001 -0.001  -0.004 -0.002 
  [-0.43] [-0.27]  [-3.82] [-4.87]  [0.09] [-0.07]  [-1.40] [-1.05] 

Adj RSQ 94% 94% 94% 96% 97% 97% 0% 0% 0% 10% 10% 10% 

Granger Test                         

F  0.34 0.21  56.21 78.35  0.01 0.00  2.55 1.20 

(p value)  (0.56) (0.65)  (0.00) (0.00)  (0.92) (0.95)  (0.11) (0.27) 

Χ2  0.34 0.21  56.83 79.21  0.01 0.00  2.58 1.22 

(p value)   (0.56) (0.65)   (0.00) (0.00)   (0.92) (0.95)   (0.11) (0.27) 
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Table A3: Omitted Variable Test 
The table reports the results of test for unobservable selection, using δ of Oster (2019). Oster’s δ measures the degree of selection on unobservables relative to 
observables that would be required to make the estimated beta zero. δ is calculated based on the assumptions that the maximum R2—the R2 value that can be 
obtained if all unobserved variables are included—is one and the true beta is zero. Panel A uses the total fund flows, while Panel B reports the results using the 
low- and high-frequency fund flows. The sample period is 1994–2016. 

Panel A: Total Flows 
  (1) (2) (3) (4) (5) (6) 

Variables SYY SYY-LOW SYY-HIGH NINV NINV-LOW NINV-HIGH 

MF 1.6 -0.2 0.2 1.4 -0.2 0.2 

HF -5.7 8.2 -1.0 -3.2 1.5 -0.2 

MKTRF 0.7 0.5 0.4 0.4 0.4 0.2 

Amihud 0.4 0.2 0.0 0.2 0.2 0.0 

Turnover 0.8 0.1 -0.4 1.0 0.1 -0.2 

SMB 0.5 -0.1 0.4 0.3 -0.1 0.3 

HML 0.5 0.5 0.2 0.2 0.3 0.1 

 
Panel B: Decomposed Flows 

  (1) (2) (3) (4) (5) (6) 

Variables SYY SYY-LOW SYY-HIGH NINV NINV-LOW NINV-HIGH 

MF-LOW -0.4 -0.2 -0.4 -0.4 -0.3 -0.2 

MF-HIGH 0.4 -0.5 0.3 0.3 -0.5 0.2 

HF-LOW 12.0 -1.9 -0.4 9.0 -3.9 -0.2 

HF-HIGH -2.0 -0.5 -1.1 -0.3 -0.5 -0.2 

MKTRF 0.7 0.9 0.4 0.4 0.9 0.2 

Amihud 0.4 0.6 -0.2 0.4 2.0 -0.1 

Turnover 0.4 0.1 -0.4 0.3 0.2 -0.3 

SMB 0.5 -0.2 0.5 0.4 -0.1 0.3 

HML 0.4 0.8 0.2 0.2 0.7 0.1 
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Table I1. Detrended Flows 

The table reproduces our main results using detrended fund flows. We obtain the detrended MF and HF from the residuals of regressions of MF and HF on a linear 
deterministic trend. Then, we decompose the detrended flows into low- and high-frequency components. Panel A corresponds to Panel C of Table 2, and Panels B 
and C correspond to Panels B and C of Table 3. t-statistics are calculated based on Newey-West standard errors. The sample period is 1994–2016. 

Panel A: Regressions of Anomaly Returns on Detrended Flows 
  (1) (2)   (3) (4) 

 FREQ = LOW  FREQ = HIGH 

Anomaly SYY-LOW NINV-LOW  SYY-HIGH NINV-HIGH 

  Beta PR2 /  
(% of ttl PR2) 

Beta PR2 /  
(% of ttl PR2) 

  Beta PR2 /  
(% of ttl PR2) 

Beta PR2 /  
(% of ttl PR2) 

MF-FREQ -2.934 10.5% -3.800 10.7%  -2.166 2.0% -2.721 2.1% 
 [-3.52] (34%) [-3.81] (36%)  [-2.87] (11%) [-2.51] (19%) 

HF-FREQ 0.733 8.7% 1.011 10.2%  0.162 0.2% 0.061 0.0% 
 [3.37] (29%) [3.29] (34%)  [1.07] (1%) [0.31] (0%) 

MKTRF -0.111 3.8% -0.150 4.2%  -0.305 7.9% -0.237 3.2% 
 [-3.59] (12%) [-3.65] (14%)  [-3.63] (45%) [-2.28] (28%) 

Amihud 0.331 5.1% 0.304 2.6%  -0.106 0.1% -0.107 0.1% 
 [2.17] (17%) [1.49] (9%)  [-0.83] (1%) [-0.67] (1%) 

Turnover -0.006 0.0% -0.015 0.1%  -0.041 0.2% -0.046 0.2% 
 [-0.11] (0%) [-0.20] (0%)  [-0.92] (1%) [-0.81] (1%) 

HML 0.108 1.9% 0.131 1.7%  0.126 0.7% 0.062 0.1% 
 [1.84] (6%) [1.79] (6%)  [0.90] (4%) [0.33] (1%) 

SMB 0.021 0.1% 0.016 0.0%  -0.334 5.9% -0.391 5.4% 
 [0.51] (0%) [0.30] (0%)  [-6.46] (33%) [-5.58] (47%) 

N 276   276     276   276   

R2 34.6% (100%) 32.3% (100%)   29.8% (100%) 18.6% (100%) 

 
Panel B: Cross-Frequency Flow-Mispricing Ratio using Detrended Flows – SYY Anomaly 

    (1) (2) (3) (4) (5) (6) 

Fund Type Frequency Beta STD of Flows 
Effect of One σFB 

on Ret STD of Ret Econ. Magnitude 
(Flow-Misp. Ratio) 

Manager vs. 
Investor 

    βB σFB βB × σFB σRB βB x σFB / σRB (1)/(2) 

MF FREQ=LOW -2.934 0.3% -0.8% 2.2% -37.0%  

 FREQ=HIGH -2.166 0.3% -0.7% 4.2% -15.3%   

  LOW / HIGH 1.35 0.94 1.28   2.41 1.44 

HF FREQ=LOW 0.733 1.2% 0.9% 2.2% 39.0%  

 FREQ=HIGH 0.162 1.2% 0.2% 4.2% 4.5%   

  LOW / HIGH 4.54 1.02 4.63   8.76 4.44 

Ratio HF/MF   3.35 1.09 3.63   3.63 3.09 

 
Panel C: Cross-Frequency Flow-Mispricing Ratio using Detrended Flows – NINV Anomaly  

    (1) (2) (3) (4) (5) (6) 

Fund Type Frequency Beta STD of Flows 
Effect of One σFB 

on Ret STD of Ret Econ. Magnitude 
(Flow-Misp. Ratio) 

Manager vs. 
Investor 

    βB σFB βB × σFB σRB βB x σFB / σRB (1)/(2) 

MF FREQ=LOW -3.800 0.3% -1.1% 2.9% -37.4%  

 FREQ=HIGH -2.721 0.3% -0.8% 5.2% -15.6%   

  LOW / HIGH 1.40 0.94 1.31   2.40 1.48 

HF FREQ=LOW 1.011 1.2% 1.2% 2.9% 42.1%  

 FREQ=HIGH 0.061 1.2% 0.1% 5.2% 1.4%   

  LOW / HIGH 16.47 1.02 16.83   30.68 16.13 

Ratio HF/MF   11.80 1.09 12.80   12.80 10.87 
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Table I2. Stationarity Tests 

The table provides the results of Phillips–Perron unit-root tests. For each variable, we report the test results based on the models with zero mean, a single mean, 
and a deterministic trend. Each test provides the rho (ρ) and tau (τ) statistics, and their respective p-values, which are reported in the parenthesis. The sample 
period is 1994–2016. 

    MF   HF   SYY   NINV 

Type\Test stats   ρ τ   ρ τ   ρ τ   ρ τ 

Zero Mean  -86.58 -7.75   -158.95 -10.33   -210.29 -12.66   -232.95 -13.66 
  (0.00) (0.00)  (0.00) (0.00)  (0.00) (0.00)  (0.00) (0.00) 

Single Mean  -94.17 -8.00  -169.95 -10.71  -223.70 -14.03  -238.63 -14.33 
  (0.00) (0.00)  (0.00) (0.00)  (0.00) (0.00)  (0.00) (0.00) 

Trend  -176.28 -11.36  -174.74 -10.85  -223.79 -14.20  -238.81 -14.40 

    (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00)   (0.00) (0.00) 
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Table I3: Returns of Individual Anomalies and Fund Flows 

The table shows the results of time-series regressions of the long-minus-short returns of various anomalies on fund flows. The dependent variables are the long-
minus-short returns at month t of eleven anomalies in documented in Stambaugh, Yu, and Yuan (2012). Panel A uses the total anomaly returns as the dependent 
variables, while Panels B and C use the low-frequency and high-frequency return components, respectively. The main independent variables are the low- and high-
frequency components of fund flows at month t, that is, MF-LOW, MF-HIGH, HF-LOW, and HF-HIGH. t-statistics are calculated based on Newey-West standard 
errors. The sample period is 1994–2016. 

Panel A: Total Returns 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Anomaly 
Total 

Accruals 
Asset 

Growth 

Composite 
Equity 
Issue 

Investment-
to-Asset 

Failure 
Probability 

Gross 
Profitability 

Momentum 
(12m) 

Net 
Operating 

Asset 

Net 
Stock 
Issues 

O-Score ROA 

MF-LOW 1.186 2.636 -1.054 -0.144 -0.083 -2.667 -2.787 -1.009 -0.598 -1.425 -3.226 
 [1.63] [2.94] [-3.16] [-0.31] [-0.12] [-3.01] [-1.23] [-1.95] [-1.88] [-2.90] [-2.56] 

MF-HIGH 1.382 2.698 -0.014 -0.339 -0.677 -1.587 -6.519 -1.639 -0.079 -0.512 -2.567 
 [2.87] [4.21] [-0.03] [-0.84] [-0.90] [-1.74] [-3.26] [-3.88] [-0.23] [-0.84] [-2.44] 

HF-LOW -0.217 -0.636 0.313 0.214 0.149 0.890 0.675 -0.263 0.022 0.434 0.977 
 [-1.36] [-2.07] [2.42] [1.42] [0.48] [3.94] [0.83] [-1.44] [0.16] [2.10] [2.81] 

HF-HIGH 0.155 0.086 -0.233 -0.091 0.189 -0.195 0.660 0.417 -0.094 -0.262 -0.144 
 [1.32] [0.57] [-1.73] [-0.90] [1.13] [-0.80] [1.81] [3.55] [-0.81] [-1.43] [-0.64] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

N 276 276 276 276 276 276 276 276 276 276 276 

Adj R2 27.3% 17.1% 74.6% 5.9% 29.0% 12.6% 10.9% 19.2% 64.2% 40.7% 37.0% 
 

Panel B: Low-Frequency Returns 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Anomaly Total 
Accruals 

Asset 
Growth 

Composite 
Equity 
Issue 

Investment-
to-Asset 

Failure 
Probability 

Gross 
Profitability 

Momentum 
(12m) 

Net 
Operating 

Asset 

Net 
Stock 
Issues 

O-Score ROA 

MF-LOW 1.464 2.008 -2.217 -0.394 -1.042 -2.815 -3.649 -1.238 -1.570 -1.748 -3.493 
 

[2.31] [2.83] [-3.28] [-1.06] [-2.11] [-3.60] [-2.06] [-2.75] [-3.40] [-4.14] [-3.15] 
MF-HIGH -0.416 -0.520 0.405 0.034 0.242 0.234 0.108 -0.216 0.235 0.448 0.765 

 
[-1.96] [-1.62] [1.71] [0.33] [0.91] [0.85] [0.20] [-1.13] [1.40] [1.66] [1.51] 

HF-LOW -0.334 -0.426 0.558 0.281 0.284 0.791 1.166 -0.289 0.279 0.256 1.192 
 

[-2.26] [-1.86] [2.58] [2.06] [1.35] [4.39] [2.13] [-2.32] [1.65] [1.53] [4.12] 
HF-HIGH 0.006 0.003 -0.013 -0.004 -0.015 -0.009 0.023 0.024 -0.008 -0.021 -0.015 

 
[0.13] [0.05] [-0.25] [-0.16] [-0.32] [-0.17] [0.21] [0.48] [-0.22] [-0.47] [-0.18] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
N 276 276 276 276 276 276 276 276 276 276 276 

Adj R2 17.1% 20.8% 28.3% 13.1% 14.3% 23.6% 23.9% 31.1% 27.3% 23.0% 22.6% 

 

Panel C: High-Frequency Returns 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Anomaly 
Total 

Accruals 
Asset 

Growth 

Composite 
Equity 
Issue 

Investment-
to-Asset 

Failure 
Probability 

Gross 
Profitability 

Momentum 
(12m) 

Net 
Operating 

Asset 

Net 
Stock 
Issues 

O-Score ROA 

MF-LOW -0.278 0.628 1.164 0.250 0.959 0.147 0.170 0.228 0.973 0.323 0.266 
 

[-0.57] [1.07] [2.09] [0.83] [1.73] [0.34] [0.13] [0.53] [2.30] [0.74] [0.28] 
MF-HIGH 1.798 3.218 -0.419 -0.373 -0.918 -1.821 -6.303 -1.423 -0.314 -0.960 -3.332 

 
[3.71] [5.43] [-0.81] [-1.01] [-1.29] [-2.09] [-3.71] [-3.06] [-0.87] [-1.64] [-3.12] 

HF-LOW 0.117 -0.210 -0.245 -0.067 -0.135 0.099 -0.140 0.026 -0.256 0.177 -0.216 
 

[0.81] [-0.86] [-1.30] [-0.91] [-0.51] [0.59] [-0.36] [0.18] [-1.77] [1.11] [-0.70] 
HF-HIGH 0.149 0.083 -0.220 -0.088 0.204 -0.186 0.631 0.393 -0.086 -0.241 -0.129 

 
[1.21] [0.54] [-1.48] [-0.90] [1.21] [-0.81] [2.01] [3.45] [-0.74] [-1.24] [-0.59] 

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
N 276 276 276 276 276 276 276 276 276 276 276 

Adj R2 20.2% 13.8% 63.3% 4.6% 23.4% 8.3% 7.6% 11.2% 55.4% 34.1% 28.3% 
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Table I4: Passive Fund Flows and Mispricing 
The table examines the flow-return relation between passive funds and two composite anomalies, SYY and NINV. SYY is the return of the long-minus-short strategy 
based on eleven anomalies documented in Stambaugh, Yu, and Yuan (2012). NINV is the return of the long-minus-short strategy using seven anomalies in SYY that 
are unrelated to corporate investments. Passive funds are identified by names, following Appel, Gormley, and Keim (2016). t-statistics are calculated based on 
Newey-West standard errors. The sample period is 1994–2016. 

  (1) (2)   (3) (4) 
 FREQ = LOW  FREQ = HIGH 

Variables SYY-LOW NINV-LOW   SYY-HIGH NINV-HIGH 

Passive-FREQ 0.268 [0.53] 0.214 [0.31]  -0.176 [-0.63] -0.290 [-0.96] 

Active-FREQ -2.945 [-3.37] -3.960 [-3.60]  -2.050 [-3.05] -2.636 [-2.73] 

HF-FREQ 0.836 [3.86] 1.138 [3.63]  0.174 [1.15] 0.075 [0.38] 

Controls Yes Yes   Yes Yes 

N 276 276  276 276 

Adj R2 32.3% 31.0%   26.8% 15.4% 
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Table I5: Fund Flows Controlling Past Returns and Turnover 
This table re-estimates the main results of Table 2, using fund flows orthogonalized from past market returns and turnover. Both MF and HF at month t, the 
percentage flows of active mutual funds and hedge funds, are regressed on MKTRF at t-1 and Turnover at t-1. Then, the residuals of the regressions are decomposed 
into low- and high-frequency components. The dependent variables are the long-minus-short returns at month t of two composite anomalies, SYY and NINV, and 
their respective low- and high-frequency component returns. SYY is the return of the long-minus-short strategy based on eleven anomalies documented in 
Stambaugh, Yu, and Yuan (2012). NINV is the return of the long-minus-short strategy using seven anomalies in SYY that are unrelated to corporate investments. 
The first column of each model shows the coefficient of each variable and the corresponding t value, and the second column reports the semi-partial R2 (PR2) and 
the ratio of each PR2 to the sum of all PR2. The PR2 is estimated from the difference between a R2 of the full model that includes all explanatory variables and a R2 
of the reduced model that excludes the variable of interest. t-statistics are calculated based on Newey-West standard errors with 13 lags. The sample period is 
1994–2016. 

  (1) (2)   (3) (4) 

Anomaly SYY-LOW NINV-LOW  SYY-HIGH NINV-HIGH 

  Beta 
PR2 /  

(% of ttl PR2) 
Beta 

PR2 /  
(% of ttl PR2) 

  Beta 
PR2 /  

(% of ttl PR2) 
Beta 

PR2 /  
(% of ttl PR2) 

MF-FREQ -2.657 8.7% -3.692 10.3%  -1.342 0.9% -1.435 0.7% 
 [-2.90] (23%) [-3.32] (27%)  [-2.05] (5%) [-1.49] (6%) 

HF-REQ 0.810 10.3% 1.123 12.1%  0.277 0.6% 0.234 0.3% 
 [3.65] (28%) [3.87] (32%)  [1.80] (3%) [1.20] (2%) 

MKTRF -0.122 4.6% -0.162 5.0%  -0.311 8.3% -0.252 3.6% 
 [-3.32] (12%) [-3.43] (13%)  [-3.69] (46%) [-2.40] (32%) 

Amihud 0.509 11.0% 0.543 7.7%  -0.170 0.3% -0.161 0.2% 
 [3.05] (29%) [2.65] (20%)  [-1.21] (2%) [-0.90] (2%) 

Turnover 0.020 0.2% 0.019 0.1%  -0.053 0.4% -0.055 0.3% 
 [0.41] (1%) [0.28] (0%)  [-1.14] (2%) [-0.94] (2%) 

HML 0.104 1.7% 0.129 1.6%  0.131 0.8% 0.066 0.1% 
 [1.85] (5%) [1.87] (4%)  [0.95] (4%) [0.36] (1%) 

SMB 0.031 0.2% 0.030 0.1%  -0.349 6.5% -0.413 6.0% 
 [0.74] (0%) [0.59] (0%)  [-6.57] (36%) [-5.75] (53%) 

N 276   276     276   276   

R2 34.3% (100%) 33.3% (100%)   28.6% (100%) 17.1% (100%) 
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Table I6: The Impact of Frictions Using SYY Anomaly Returns 
This table re-estimates the results of Tables 6 to 11, using SYY anomaly. The dependent variables are the low- and high-frequency components of SYY anomaly, and the 
main independent variables are the low- and high-frequency fund flows, and their interaction with various friction variables. SYY is the return of the long-minus-short 
strategy based on eleven anomalies documented in Stambaugh, Yu, and Yuan (2012). Each panel corresponds to Panel B of Tables 6–11. t-statistics are calculated based 
on Newey-West standard errors. The sample period is 1994–2016. 

Panel A: Aggregate Risk (Table 6) 

      NBER Recession   VIX   Financial Uncertainty Index 
(JLN) 

  Economic Uncertainty 
Index (BEX) 

  

   (1) (2)  (3) (4)  (5) (6)  (7) (8)  

      FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   

 MF-FREQ  -2.348 -2.222  -2.415 -1.321  -1.162 -1.170  -2.193 -1.848  

   [-2.59] [-2.84]  [-2.13] [-1.47]  [-1.13] [-1.23]  [-1.75] [-1.35]  

 MF-FREQ × D  -11.625 2.168  -0.469 -1.538  -1.444 -1.800  -1.328 -0.927  

   [-10.17] [1.09]  [-0.27] [-0.77]  [-0.76] [-0.90]  [-0.63] [-0.35]  

 HF-FREQ  0.621 0.160  0.151 0.162  0.073 0.216  0.227 0.601  

   [1.87] [0.86]  [0.55] [0.41]  [0.23] [0.82]  [0.76] [1.91]  

 HF-FREQ × D  1.358 0.316  0.985 -0.025  1.033 -0.132  0.881 -0.534  

   [4.11] [0.70]  [3.10] [-0.05]  [2.96] [-0.40]  [2.75] [-1.06]  

  Controls   Yes Yes   Yes Yes   Yes Yes   Yes Yes   
 N  276 276  276 276  276 276  254 254  

  Adj R2   39.0% 26.5%   34.3% 25.9%   36.2% 26.1%   36.6% 26.4%   

 

Panel B: Leverage (Table 7) 
      TED Spread   Risk Aversion (BEX)   

   (1) (2)  (3) (4)  

      FREQ = LOW FREQ = HIGH   FREQ = LOW FREQ = HIGH   
 MF-FREQ  -2.813 -1.048  -3.161 -1.938  

   [-2.70] [-0.91]  [-2.39] [-2.12]  

 MF-FREQ × D  0.096 -2.254  0.180 -0.546  

   [0.05] [-1.11]  [0.10] [-0.30]  

 HF-FREQ  0.436 0.371  0.352 0.362  

   [1.15] [1.15]  [1.00] [1.16]  

 HF-FREQ × D  0.619 -0.378  0.775 -0.128  

   [1.43] [-0.88]  [2.15] [-0.30]  

  Controls   Yes Yes   Yes Yes   
 N  276 276  254 254  

  Adj R2   36.4% 26.9%   37.4% 26.2%   

 
Panel C: Fund Leverage (Table 8) 

      (1)   (2)   

      FREQ = LOW   FREQ = HIGH   

 MF-FREQ  -2.767 [-3.26]  -2.106 [-3.04]  

 HFUnLev-FREQ  1.071 [3.34]  -0.075 [-0.33]  

 HFLev-FREQ  -0.228 [-0.57]  0.265 [1.29]  

  Controls   Yes   Yes   
 N  276  276  

  Adj R2   36.9%   26.7%   
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Panel D: Market Liquidity (Table 9) 
      Amihud   Aggregate Liquidity (PS)   PV-Level (Sadka)   Noise (HPW)   

   (1) (2)  (3) (4)  (5) (6)  (7) (8)  

      FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   FREQ=LOW FREQ=HIGH   
 MF-FREQ  -2.551 -0.981  -2.341 -3.183  -2.061 -1.177  -1.411 -2.329  

   [-3.25] [-0.63]  [-2.29] [-3.09]  [-1.95] [-0.80]  [-1.11] [-1.47]  

 MF-FREQ × ILLIQ  -0.253 -1.719  -0.691 1.628  -0.723 -2.333  -1.900 0.389  

   [-0.28] [-0.73]  [-0.63] [0.81]  [-0.41] [-0.82]  [-1.18] [0.16]  

 HF-FREQ  0.319 -0.167  0.551 0.568  0.098 0.395  0.181 0.159  

   [1.03] [-0.59]  [2.05] [2.25]  [0.36] [1.22]  [0.50] [0.62]  

 HF-FREQ × ILLIQ  0.728 0.532  0.393 -0.697  0.989 -0.163  0.861 0.062  

   [2.16] [1.55]  [1.90] [-1.96]  [3.03] [-0.38]  [2.48] [0.20]  

  Controls   Yes Yes   Yes Yes   Yes Yes   Yes Yes   
 N  276 276  276 276  228 228  276 276  

  Adj R2   33.1% 26.3%   31.8% 26.6%   34.3% 27.6%   33.2% 25.9%   

 
Panel E: Hedge-Fund Liquidity (Table 10) 

      (1)   (2)   

      FREQ = LOW   FREQ = HIGH   

 MF-FREQ  -2.977 [-3.49]  -2.243 [-3.14]  

 HFBelow-FREQ  -0.481 [-3.13]  0.018 [0.08]  

 HFAbove-FREQ  1.286 [4.90]  0.176 [1.67]  

  Controls   Yes   Yes   
 N  276  276  

  Adj R2   45.3%   27.0%   

 
Panel F: Exogenous Shocks to Frictions (Table 11) 

      Financial Crisis   Decimalization   

   (1) (2)  (3) (4)  

      FREQ = LOW FREQ = HIGH   FREQ = LOW FREQ = HIGH   
 MF-FREQ  -2.298 -2.492  -2.007 -1.555  

   [-2.61] [-3.18]  [-2.89] [-2.21]  

 MF-FREQ × SHOCK  -12.583 3.926  7.717 -26.695  

   [-12.39] [2.19]  [2.55] [-6.70]  

 HF-FREQ  0.690 0.213  0.597 0.239  

   [2.03] [1.15]  [2.97] [1.61]  

 HF-FREQ × SHOCK  1.166 0.173  -1.934 4.267  

   [3.98] [0.43]  [-7.04] [2.86]  

  Controls   Yes Yes   Yes Yes   
 N  276 276  276 276  

  Adj R2   42.1% 27.0%   46.6% 33.3%   
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Table I7: Anomaly Turnover, Mispricing, and Fund Flows 
This table re-estimates the main results of Table 2 controlling for anomalies in Novy-Marx and Velikov (2016). The dependent variables are the low- and high-
frequency components of the long-minus-short returns at month t of two composite anomalies, SYY and NINV. The main independent variables are the low- 
and high-frequency fund flows at month t. Low TO is the average anomaly returns of the low-turnover anomaly strategies of Novy-Marx and Velikov (2016), 
which require rebalancing less than once per year. High TO is the average anomaly returns across their medium- and high-turnover strategies, which require 
rebalancing one or more per year. The first column of each model shows the coefficients and the corresponding t values, and the second column report the 
semi-partial R2 (PR2). The PR2 is estimated from the difference between a R2 of the full model that includes all explanatory variables and a R2 of the reduced 
model that excludes the variable of interest. t-statistics are calculated based on Newey-West standard errors with 13 lags. The sample period is 1994–2016. 

  (1) (2)   (3) (4) 
 FREQ = LOW  FREQ = HIGH 

Anomaly SYY-LOW NINV-LOW   SYY-HIGH NINV-HIGH 
  Beta PR2 Beta PR2   Beta PR2 Beta PR2 

MF-FREQ -2.445 8.0% -3.411 9.6%  -2.275 2.5% -2.791 2.5% 
 [-2.91]  [-3.34]   [-4.17]  [-3.93]  

HF-FREQ 0.771 9.4% 1.079 11.3%  0.271 0.6% 0.199 0.2% 
 [3.32]  [3.48]   [1.84]  [1.18]  

MKTRF -0.038 0.3% -0.063 0.6%  -0.016 0.0% 0.140 0.8% 
 [-1.72]  [-2.24]   [-0.30]  [1.99]  

Amihud 0.468 9.1% 0.503 6.4%  -0.233 0.6% -0.226 0.4% 
 [2.93]  [2.51]   [-1.55]  [-1.41]  

Turnover -0.035 0.4% -0.055 0.6%  0.047 0.2% 0.066 0.3% 
 [-0.59]  [-0.65]   [0.95]  [1.15]  

Low TO 0.062 0.9% 0.048 0.3%  0.085 0.5% 0.061 0.2% 
 [2.41]  [1.32]   [2.21]  [1.12]  

High TO 0.046 2.1% 0.065 2.6%  0.256 18.6% 0.340 21.6% 
 [2.87]  [2.76]   [8.25]  [7.95]  

N 276 276   276 276 
R2 37.9% 36.3%   48.4% 41.7% 
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