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1 Introduction

In practice, decision-makers face an abundance of candidate models to produce predictions
and, starting with Diebold and Mariano (1995) and West (1996), the literature has proposed a
variety of forecast comparison tests to guide forecasters in choosing the model. However, usually,
no single model emerges as the best overall; typically forecasting performances are prone to
instabilities or depend on the sample. One possible explanation is that the economic mechanisms
that generate the data are unstable such that a given model is better in some periods and worse in
others, resulting in a relative forecasting performance that is state-dependent, or, more generally,
non-linear.

We, therefore, propose a new forecast comparison test that has power against the alternative of
state dependence in competing models’ relative forecasting performance. The state dependence is
assumed to take the parametric form of a threshold model, i.e. the relative forecasting performance
is a nonlinear function of an economic observable and a respective threshold. Importantly, we
allow the value of the threshold to be unknown and estimated alongside the testing procedure.
Existing tests either focus on constant relative out-of-sample performance (Giacomini and White,
2006) or use non-parametric techniques to detect time-varying deviations from equal performance
(Giacomini and Rossi, 2010; Amisano and Giacomini, 2007); both approaches may lack power
against the alternative of parametric state dependence.

Our paper is the first to model state dependence in the form of a threshold model directly
on the relative forecasting performance. While Hansen’s (1996) test detects non-linearities in-
sample, our test instead addresses forecasters’ need to test whether the out-of-sample forecasting
performance of competing models is equal against the alternative that it might be unequal and
state-dependent. Testing in the presence of an unknown threshold requires non-standard statistics,
since the nuisance parameter (the threshold) is present only under the alternative; therefore, the
standard Wald, Likelihood ratio, and Lagrange multiplier tests do not have the usual asymptotic
chi-square distribution (Davies, 1977, 1987). While in some cases there might be an economic
justification for selecting a specific threshold value and treat it as known, this is not generally
the case, and allowing for an unknown threshold makes our approach broadly applicable. In
detail, differently from Hansen (1996): (i) we apply the threshold model to the relative predictive
performance, measured by the forecast loss differential, and (ii) we test for a zero expected
forecast performance differential, while Hansen (1996) leaves the expected value unspecified
under the null hypothesis. Consequently, under the alternative, we jointly test whether the
out-of-sample average relative forecasting performance is different from zero as well as whether
it is state-dependent.

The are several reasons why we apply a threshold model on the loss differentials instead of on
the variable that is forecasted directly. First, our approach allows the forecaster to impose the null
hypothesis directly on the object of interest, namely the loss differential. Second, the procedure
applies to both the case when the forecast model is known as well as the case when it is not
known. The latter case is important when considering survey forecasts, e.g. when comparing
the widely used Survey of Professional Forecasters (SPF) or Greenbook projections. Third, in
some cases, to produce forecasts with a threshold model the indicator variable might have to be
predicted as well, which complicates the forecasting procedure and might make the threshold

1



model unattractive.
Our paper contributes to the recent literature on forecast comparison tests (Diebold and

Mariano, 1995; West, 1996; Clark and McCracken, 2001; Clark and West, 2006, 2007; Giacomini
and White, 2006; Giacomini and Rossi, 2010). In particular, Giacomini and White (2006) (GW
henceforth) showed the validity of the asymptotic Normal distribution for the out-of-sample
equal predictive ability test proposed by Diebold and Mariano (1995) (DM henceforth) when
the underlying forecasting models are estimated using a rolling window estimation scheme and
the data satisfies some mixing properties.1 Following their framework, our testing procedure
similarly relies on a rolling window estimation scheme to preserve the parameter estimation error
asymptotically. Hence, we compare forecasting methods rather than forecasting models. However,
while GW focus on the null hypothesis of an equal out-of-sample predictive ability, on average,
unconditionally or conditionally on economic variables, our test allows for state dependence of
the conditioning variables, i.e. we test for deviations from the null hypothesis in sub-samples
identified by state variables, and therefore our approach is more general. Importantly, we do not
require the conditioning variable itself to explain the relative forecasting performance but only
to indicate the state, i.e. the magnitude of the superior predictive ability within a regime can
be independent of the conditioning variable. Our paper is also related to Giacomini and Rossi
(2010), who allow the forecast performance to be prone to instabilities, using a non-parametric
time-variation approach based on the rolling window estimation of a local GW test. As a result,
their test has good power against smooth and persistent changes but, as we show, it might lack
power against the discrete and weakly dependent switches of a threshold model.

We demonstrate the usefulness of our methodology in comparing models that predict U.S.
equity premia from 1940 to 2017. As noted in Paye and Timmermann (1995) and Rapach and
Wohar (2006), financial return predictability is typically time-varying and appears only in sub-
samples.2 Instabilities in forecasting performances in other financial variables are widespread as
well: Paye and Timmermann (2006), for instance, cannot reject the presence of structural breaks in
stock return predictive regressions and Rossi (2006, 2013) finds similar results for exchange rate
returns. As summarized in Timmermann (2008), “... there appear to be pockets in time where
there is modest evidence of local predictability; (...) the best forecasting method can be expected
to vary over time, and there are likely to be periods of model breakdown where no approach
seems to work”.

We indeed find evidence of state dependence in stock market return predictability and show
the usefulness of our test statistic for detecting pockets of predictability. Furthermore, our
approach can shed light on which factors create such pockets of predictability, which so far, have
been unknown. More in detail, our benchmark model is an in-sample mean, re-estimated in real-
time in rolling windows, whereas the competitor models use the financial variables from Goyal
and Welch’s (2008) comprehensive dataset of predictors. We find evidence of state dependence
in the relative forecasting performance, where the state dependence is a function of uncertainty,
measured by stock market volatility: in periods of high stock market volatility, the economic
model tends to underperform relative to the model with financial predictors. However, in periods
of low stock market volatility, economic models using either long-term government bond yields

1Hereafter, we refer to the DM test under the conditions of Giacomini and White (2006) as the GW test.
2See Goyal and Welch (2003, 2008) for a related discussion.
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or the spread as predictors lead to small, positive forecast improvements. On the other hand, the
GW and Fluctuation tests cannot reject the null hypothesis of equal forecasting ability and would
fail to uncover such pockets of predictability.3

The paper is organized as follows. Section 2 formalizes our null hypothesis, introduces our
test statistics, and describes the challenges that arise when testing for state dependence in relative
forecasting performance. Section 3 evaluates size and power of our proposed procedure in finite
samples via Monte Carlo simulations, and Section 4 investigates the existence of pockets of
predictability in financial data. Section 5 concludes.

2 Testing for State-Dependence: Methodology

We first describe the model and the null hypothesis. Then, we introduce the necessary notation,
the technical assumptions, and the test statistic in Section 2.2.

2.1 The General Framework

Let f̂ (1)t+h|t(At, At−1, ..., At−R+1; β̂
(1)
t,R) and f̂ (2)t+h|t(At, At−1, ..., At−R+1; β̂

(2)
t,R) denote two measurable

functions, which provide the forecasts of two competing models, labeled (1) and (2), where t
denotes the forecast origin, h denotes the forecast horizon, and the vector of stochastic processes
At = (Yt, Zt) contains the variable of interest Yt and the column vector of predictors Zt. In turn,
β̂
(i)
t,R denotes the vector of estimated parameters at time t of model (i) using a rolling window

estimation scheme of size R ≤ R̄ < ∞ and data At, ..., At−R+1.4 Henceforth, we simply write f̂ (1)t+h|t

and f̂ (2)t+h|t. Importantly, note that the function f̂ (i)t+h|t can denote either a point or a density forecast.

Let Lt+h|t
(
Yt+h, f̂ (i)t+h|t

)
denote a loss function, which evaluates the prediction f̂ (i)t+h|t of Yt+h.

The loss functions we allow for are quite general and encompass the Mean Squared Forecast
Error (MSFE), asymmetric losses (such as the lin-lin loss), as well as the log score and Continuous
Rank Probability Score (CRPS) for density forecasts. We define the loss differential as

∆Lt+h|t ≡ Lt+h|t
(
Yt+h, f̂ (1)t+h|t

)
− Lt+h|t

(
Yt+h, f̂ (2)t+h|t

)
. (1)

Note that the loss differential is a function of the estimated parameters β̂
(i)
t,R and the rolling

window size R. As we assume the parameters are estimated over a rolling and finite window
size, the loss differential compares forecasting methods rather than forecasting models.

We allow the loss differential to evolve over time according to a nonlinear model (Teräsvirta,
2006):

∆Lt+h|t = Ψ(Xt, St; ϕ) + ut+h, (2)

where Xt and St are explanatory variables, ϕ is a vector of parameters, ut is an error term and Ψ
is allowed to be a nonlinear function. The nonlinear model in equation (2) encompasses several
interesting cases for Ψ(Xt, St; ϕ) = X′tµ+ X′tθ ·G(St; γ). In particular, it includes threshold models
(Tong, 1990), where G (St; γ) = 1 (St ≥ γ). In the latter, the parameter changes if St is above the

3Note that the forecasting gains using the financial predictors are small and that any large deviations from equal
predictive ability in favor of the economic models would imply strong violations of the rational expectations hypothesis.

4The window size R is assumed to be the same across the two models for notational convenience only.
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threshold γ. This is the model we consider in detail in our paper. Section 2.6 provides a discussion
of Markov-switching as well as exponential and logistic Smooth Transition Autoregressive Models
(STAR) models, which are alternative ways to model nonlinearities.

That is, we aim at testing two forecasting models’ equal predictive ability while being able to
detect possible additive nonlinearities in the form of a threshold model. For this purpose, we let
the loss differential depend on a vector of economic observables Xt, a threshold γ and a threshold
indicator variable St, such that:

∆Lt+h|t = X′tµ + X′tθ · 1(St ≤ γ) + ut+h. (3)

In eq. (3), µ and θ denote the parameters of interest, the vector Xt is a k1 dimensional column
vector that denotes economic observables and a constant, St denotes the economic observable that
introduces the state dependence, γ denotes the unknown threshold, 1(·) denotes the indicator
function and ut is the error term.5 In Appendix A we discuss the possibility of several candidate
variables for St and how to extend the testing procedure to account for that. For the remainder,
St is assumed to be a scalar. Potential serial correlation can be accounted for by including lags
of ∆Lt+h|t, which are allowed, but not required, to also be a function of the threshold indicator.
St is a stochastic process and assumed to be continuous. The timing t of Xt and St is merely a
notational convention, and both variables are allowed to represent economic observables that
realize in t + h.

Our null hypothesis of equal predictive ability at each point in time is:

E
(
∆Lt+h|t

)
= 0 ∀t, (4)

versus the alternative
E
(
∆Lt+h|t|Xt, St

)
= X′tµ + X′tθ · 1(St ≤ γ). (5)

Under eq. (3), the null and alternative hypothess involve µ and θ and become H0 : µ = θ = 0
and HA : µ 6= 0, θ 6= 0 respectively. Note that the null hypothesis defined in eq. (4) holds
conditionally on Xt and St, and, therefore, by the law of iterated expectations, also unconditionally.
Our test has power against either µ or θ or both jointly deviating from zero under the alternative,
i.e. either a constant non-equal predictive ability or a state-dependent (or nonlinear) predictive
ability or both.6 Importantly, we allow the nuisance parameter γ to be unknown. Therefore,
testing for the null hypothesis described in equation (4) is subject to the problem of a nuisance
parameter that is present only under the alternative, which makes standard asymptotic inference
invalid (Davies, 1977, 1987; Hansen, 1996).

Before describing our proposed test statistics, we want to emphasize two points. First, although
the assumption of an unknown γ comes at the cost of non-standard inference, it brings the large
benefit that it allows the researcher to test over a range of threshold values, instead of having to
choose an arbitrary value. This is particularly important in practice because an ad-hoc choice
for γ can be detrimental to the power of detecting state dependence. In practice, we recommend

5Both Xt and St can also contain variables realized at t + h, depending on the specific economic relationship
considered.

6Note that the case of µ = θ 6= 0 is a valid alternative and merely represents the joint presence of a non-equal and
nonlinear non-equal predictive ability.
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to formulate γ in terms of the empirical distribution function Ξn(·) of Ξt such that the indicator
becomes 1

(
Ξn(St) < γ

)
, with γ ∈ Γ = [0, 1] and Ξ−1

n (γ) provides the threshold in units of St

(Hansen, 1996). This is particularly useful when implementing the model in statistical programs,
as it allows formulating a unit-free grid for γ. Following Hansen (1996) and others, we restrict γ

to be away from the boundaries and choose, for instance, Γ = [0.15, 0.85].
Second, we want to introduce the following specification of (3), which is of particular interest

in the forecast comparison case, as it specifies state dependence that is a function solely of St and
does not depend on any additional observables Xt:

∆Lt+h|t = µ + θ · 1(St ≤ γ) + ut+h. (6)

The specification in eq. (6) is of special interest as it encompasses the standard Diebold and
Mariano (1995) and unconditional Giacomini and White (2006) tests for equal predictive ability as
special cases, and, unlike the latter, is capable of detecting periods of unequal performance that
depend on St.

2.2 Test Statistics and Assumptions

The threshold value, γ, is an element of the compact set Γ. Let Qt(γ) be a k dimensional column
vector that contains the explanatory variables of the threshold model as described in equation

(3), i.e. Qt(γ) =
[

X′t,
(
Xt · 1(St ≤ γ)

)′]′, and let Qt = supγ∈Γ |Qt(γ)|. Let ψ̂(γ) =
[
µ̂(γ)′, θ̂(γ)′

]′
denote the vector of OLS parameter estimates under the alternative, and let ût+h = ∆Lt+h|t −
Qt(γ)′ψ̂(γ) denote the error term under the alternative. The score under the alternative is then
given by ŝt+h(γ) = Qt(γ)ût+h(γ). Let Hr denote a restriction matrix that corresponds to the
null hypothesis defined in eq. (4). For instance, for the model described in eq. (6) we have that
Hr = I2, where I2 is a two-dimensional identity matrix. R denotes the rolling window estimation
size, h the forecast horizon, T the total sample size, and P = T− R− h denotes the out-of-sample
size, i.e. the number of observations of ∆Lt+h|t. Let V̂P(γ) =

1
P ∑T−h

t=R ŝt+h(γ)ŝt+h(γ)
′ denote the

variance-covariance matrix of the score, let V(γ) = E
(
st+h (γ) st+h (γ)

′) be finite and positive
definite for st+h (γ) = Qt(γ)ut+h, and let V̂∗P (γ) = MP(γ, γ)−1V̂P(γ)MP(γ, γ)−1 be the robust
estimator of the variance-covariance matrix of ψ̂, with MP(γ, γ) = 1

P ∑T−h
t=R Qt(γ)Qt(γ)′, and

M(γ1, γ2) = E
(
Qt(γ1)Qt(γ2)′

)
.

We consider the following test statistics, based on Hansen (1996) and Andrews and Ploberger
(1994), which we collectively refer to as the DMNL test:

DMNL: gΓ(WP) =


supγ∈Γ WP(γ) (“sup-W”)∫

Γ WP(γ)dw(γ) (“ave-W”)
ln
( ∫

Γ exp( 1
2WP(γ))dw(γ)

)
(“exp-W”)

(7)

where w(γ) is a weighting function7 over γ ∈ Γ, ln(·) denotes the natural logarithm and WP(γ)

is defined as
WP(γ) = Pψ̂(γ)′Hr

[
H′rV̂

∗
P (γ)Hr

]−1H′rψ̂(γ). (8)

Henceforth, we let gΓ
(
WP(γ)

)
denote either of the three above mentioned functions, i.e. sup-W, exp-W,

7Throughout the paper we use an equal weighting, i.e. w(γ) = γ.
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and ave-W. We derive the limiting distribution of DMNL under the following assumptions:

Assumption A1 (i) (At, Xt, St) is strictly stationary and absolutely regular with mixing coefficients
η(m) = O(m−δ) for some δ > v/(v− 1) and v > 1. (ii) The estimation window size (R) is finite and the
estimation scheme is a rolling window estimation.

Assumption A2 For r > v > 1, E|Qt|4r < ∞, E|ut|4r < ∞, and infγ∈Γ det
(

M(γ, γ)
)
> 0.

Assumption A3 Let r > v and let St have a density function g(St) such that sups∈R g(s) = ḡ < ∞.

Assumption A4 f (i)t+h|t(.) is a measurable function of leads and lags of At, for i = 1, 2.

A1 limits the dependence and time-variation allowed in the loss differential under the null. A2
ensures that the explanatory variables in (3) have at least 4r + ε, ε > 0, finite moments and that
the variance-covariance matrix of Xt and St is non-singular for all γ. In A3, we follow Theorem 3
of Hansen (1996) and assume that the density function of St is bounded. A4 is an assumption on
the functional form of the point forecast itself, and ensures measurability of ∆Lt+h|h.

2.3 Point Forecasts

In the case of point forecasts, the asymptotic distribution in eq. (7) can be described as follows.

Proposition 1 (Point forecast comparison) Let gΓ(Wp) be either supγ∈Γ WP(γ),
∫

Γ WP(γ)dw(γ) or

ln
( ∫

Γ exp( 1
2WP(γ))dw(γ)

)
, where Γ is compact and WP(γ) = Pψ̂(γ)′Hr

[
H′rV̂∗P (γ)Hr

]−1H′rψ̂(γ), and

ψ̂ (γ) =
[
µ̂ (γ)′ , θ̂ (γ)′

]′
is estimated from eq. (3). Then, under A1 to A4 and H0 defined in eq. (4):

E
(
∆Lt+h|t

)
= 0 for all t = R + h, ..., T and

lim
P→∞

gΓ
(
WP(γ)

)
→
d

gΓ
(
χ2(γ)

)
, (9)

where χ2(γ) is a chi-square distribution with degrees of freedom rank(Hr), and gΓ
(
χ2(γ)

)
can be

completely characterized by its covariance kernel K(γ1, γ2). The test rejects H0 defined in eq. (4) when
gΓ
(
WP(γ)

)
> φα, where φα is the critical value (for a nominal size of α) that can be simulated according

to Algorithm 1 below.

Proof of Proposition 1. According to Theorem 3.49 in White (2001), if At is α-mixing (or strong
mixing) with coefficients of size −δ, δ > 0, so is any measurable function of a finite number of
leads and lags of At. Under A1(i), δ > ν/ (ν− 1) and ν > 1, such that δ > 0, and as absolute
regularity implies α-mixing, A1(i) implies that any measurable function of a finite number of leads
and lags of At is absolutely regular. By A1(ii) and A4, ∆Lt+h|t and Xt are measurable functions of
a finite number of leads and lags of At, and thus, under A1(i), they are absolutely regular with
coefficients of size −δ. Consequently, (∆Lt+h|t, Xt) is strictly stationary and absolutely regular
with mixing coefficients η (m) = O

(
m−δ

)
for some δ > ν/ (ν− 1) and ν > 1, and thus satisfying

assumption 1(i) in Hansen (1996). Further, A2 implies that assumptions 1(ii)-(iii) in Hansen (1996)
hold. Thus, under A1 to A4, the result follows from Theorem 3 of Hansen (1996).
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2.4 Density Forecasts

In the case of density forecasts, let f̂ (i)t+h|t(Yt+h; At, At−1, ..., At−R+1, β̂
(i)
t,R) denote the h-step-ahead

predictive density at t, with i = 1, 2, and Lt+h|t(Yt+h, f (i)t+h|t) denote the loss function. For example,

the log score case implies Lt+h|t(Yt+h, f (i)t+h|t) = log
(

f (i)t+h|t (Yt+h)
)

and ∆Lt+h|t ≡ log
(

f (1)t+h|t (Yt+h)
)
−

log
(

f (2)t+h|t (Yt+h)
)
.8 Furthermore, let f̂ (i)t+h|t (Yt+h) denote the estimate of f (i)t+h|t (Yt+h). For density

forecasts, we specify the following additional assumption.

Assumption A5 f (i)t+h|t is a measurable function of leads and lags of At, for i = 1, 2.

A5 ensures that ∆Lt+h|t is a measurable function of At, and refers to the functional form of the
density itself. Then, the asymptotic distribution of the DMNL test of equal forecasting performance
in eq. (7) for density forecasts can be described as follows.

Proposition 2 (Density forecast comparison) Let gΓ(Wp) be either supγ∈Γ WP(γ),
∫

Γ WP(γ)dw(γ) or

ln
( ∫

Γ exp( 1
2WP(γ))dw(γ)

)
, where Γ is compact and WP(γ) = Pψ̂(γ)′Hr

[
H′rV̂∗P (γ)Hr

]−1H′rψ̂(γ), and

ψ̂ (γ) =
[
µ̂ (γ)′ , θ̂ (γ)′

]′
is estimated from eq. (3). Then, under A1 to A3, A5, and H0 defined in eq. (4):

E
(
∆Lt+h|t

)
= 0 for all t = R + h, ..., T and

lim
P→∞

gΓ (WP)→
d

gΓ
(
χ2 (γ)

)
. (10)

As in Proposition 1, χ2(γ) is a chi-square distribution with degrees of freedom rank(Hr), and gΓ
(
χ2(γ)

)
can be completely characterized by its covariance kernel K(γ1, γ2). The test rejects H0 defined eq. (4) when
gΓ
(
WP(γ)

)
> φα, where φα is the critical value (for a nominal size of α) that can be simulated according

Algorithm 1 described below.

Proof of Proposition 2. According to Theorem 3.49 in White (2001), if At is α-mixing (or strong
mixing) with coefficients of size −δ, δ > 0, so is any measurable function of a finite number of
leads and lags of At. Under A1(i), δ > ν/ (ν− 1) and ν > 1, such that δ > 0, and as absolute
regularity implies α-mixing, A1(i) implies that any measurable function of a finite number of leads
and lags of At is absolutely regular. By A1(ii) and A5, ∆Lt+h|t and Xt are measurable functions of
a finite number of leads and lags of At, and thus under A1(i) they are absolutely regular with
coefficients of size −δ. Consequently, (∆Lt+h|t, Xt) is strictly stationary and absolutely regular
with mixing coefficients η (m) = O

(
m−δ

)
for some δ > ν/ (ν− 1) and ν > 1, and thus satisfying

assumption 1(i) in Hansen (1996). Further, A2 implies that assumptions 1(ii)-(iii) in Hansen (1996)
hold. Thus, under A1 to A3, and A5, the result follows from Theorem 3 of Hansen (1996).

Potential serial correlation in the error term in eq. (3), i.e. in ut+h, can be controlled for by either
including lags of ∆Lt+h|t or by explicitly modeling the time dependence in ut+h.

8“log(.)” here denotes the natural logarithm.
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2.5 Practial Implementation

The asymptotic distribution in eq. (24) is not nuisance parameter free and cannot be tabulated
except for special cases.9 Therefore, we follow Hansen (1996) to propose an algorithm that can be
used to simulate the critical values and which we report here for the readers’ convenience.

Simulation Algorithm 1 (Hansen, 1996) Let ŝt+h(γ), M(γ, γ), V̂∗P (γ), and Hr be as defined in
Section 2.2. Then, for each j = 1, ..., J do the following steps:

1. Draw a set of standard Normal random variates {vtj}P
t=1;

(a) Calculate λ̂
j
P(γ) =

1√
P ∑T−h

t=R ŝt+h(γ)vtj;

(b) Using λ̂
j
P(γ), calculate W j

P(γ) = λ̂
j
P(γ)

′M(γ, γ)−1Hr
[
H′rV̂∗P (γ)Hr

]−1H′r M(γ, γ)−1λ̂
j
P(γ);

(c) Repeat (a)-(b) for all γ ∈ Γ;

2. Compute W j
P = gΓ

(
W j

P(γ)
)
.

After J iterations, we obtain a set of {W j
P}

J
j=1 draws from the asymptotic distribution, which we

can use to construct critical values and p-values. In particular, the approximate p-value is given
by p̂(J) = 1

J ∑J
j=1 1(WP > W j

P), where WP denotes the value of the test statistic computed using
the actual data.

2.6 State Dependence via Markov Switching and STAR Models

An alternative modeling approach for state dependence are Markov switching models (Hamilton,
1989). Differently from the threshold model, the regime changes in the Markov switching model
depend upon an unobserved (latent) Markov chain, St. Testing in the presence of Markov
switching also requires non-standard statistics as it is subject to two problems. The first problem
is again the presence of nuisance parameters that are only identified under the alternative; in
this case, the state-to-state transition probabilities and the coefficients that switch. The second
problem is that, under the null, the score with respect to the restricted parameters is identically
zero, which violates the regularity conditions that are imposed to derive the asymptotic chi-square
distribution of the finite dimensional LR (Wald, LM) statistic by a first-order approximation.
Therefore, the procedure proposed in Hansen (1996), which deals with a nuisance parameter
present only under the alternative, does not readily apply to the case of Markov switching models.
Instead, Hansen (1992); Garcia (1998); Cho and White (2007); Carrasco et al. (2014a) and Qu and
Zhuo (2017) provide a variety of solutions that address both problems.

We propose a test for equal predictive ability in the presence of Markov switching based on
Carrasco et al. (2014) in Appendix B and investigate its size properties as well. However, the
test, like all the tests for Markov switching listed above, relies crucially on a correctly specified
distribution under the null hypothesis.10 A misspecified likelihood under the null will generally
lead to size distortions. For instance, consider the case where the true but unknown distribution
is a Student’s t with no Markov switching. The researcher assumes a Gaussian distribution with

9See Hansen (1996) for a discussion.
10Under the assumption of normality, the power of the test of Carrasco et al. (2014a) relies on serial correlation in

the error terms, instead of other deviations from the distribution specified under the null.
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no Markov switching under the null and a Markov switching model with regime dependent,
conditional Gaussian distributions under the alternative. Then, despite the absence of Markov
switching in the data generating process, the mixture property of the Markov switching model
under the alternative may approximate the Student’s t distribution better than the Gaussian
model under the null hypothesis. Unreported results show that this leads to an over-rejection of
the null hypothesis of no Markov switching.

While the assumption of Normality may be justified when applying tests for Markov switching
models directly on economic observables, the distribution of a loss differential is generally
unknown and may exhibit fatter tails than a Normal distribution (e.g. when using a quadratic loss).
Consequently, the above-described problem is more severe in the case of forecast comparisons,
and testing for Markov switching in this framework may be very sensitive to the choice of the
parametric distribution. In contrast, and as outlined in Section 2.2, threshold models do not rely
as heavily on the parametric assumptions on the error terms ut, and testing is, therefore, more
robust in practice.

Another popular non-linear model is the Smooth Transition Autoregressive (STAR) Model,
using either a logistic or an exponential function. Luukkonen et al. (1988), Teräsvirta (1994)
and Granger and Teräsvirta (1993), among others, have proposed testing procedures to test for
linearity in the STAR model. However, since their testing procedures also rely on the assumption
of Normality, they will suffer from a similar problem as Markov Switching models in the case of
comparing forecasting performances.

3 Monte Carlo Simulation Analysis

We generate data according to two data generating processes (DGPs), and then simulate a point
and also a density forecast comparison for each of the two DGPs. In particular, we consider the
case of non-nested forecasting models under DGP1 and the case of nested forecasting models
under DGP2. The two point forecast comparisons, applied to the data generated by DGP1 and
DGP2 respectively, are labeled PF1 and PF2. The two density forecast comparisons, applied to
the data generated by DGP1 and DGP2 respectively, are labeled DF1 and DF2. In both cases,
the forecast horizon is one (h=1), and the number of Monte Carlo replications is 5,000. The total
sample size, the rolling window estimation size, and the out-of-sample size are denoted by T, R
and P respectively.

Point Forecast Comparison 1 (PF1):
The underlying data for PF1 is generated by

yt+h = ν + δ1zt,1 + δ2zt,2 + et+h, (11)

where ν = δ1 = δ2 = 1, et ∼iid N(0, 1), zt,1 ∼iid N(0, 1) and zt,2 ∼iid N(0, 1). The parameter
vector β̂

(j)
t = [ν̂t,j, δ̂t,j] denotes the OLS estimator β̂

(j)
t =

(
∑t

i=t−R+1 z(j)′

i−hz(j)
i−h

)−1
∑t

i=t−R+1 z(j)′

i−hyi,

where z(j)
t = [1, zt,j].The two point forecasts, both of which are misspecified, are denoted by:

f̂ (1)t+h|t = z(1)t β̂
(1)
t , and f̂ (2)t+h|t = z(2)t β̂

(2)
t . As the misspecification of the two models is symmetric, it

is straightforward to show that they have the same predictive ability in expectation. That is, the
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loss differential, given by

∆Lt+h|t =
(
yt+h − f̂ (1)t+h|t)

2 − (yt+1 − f̂ (2)t+h|t
)2, (12)

is zero in expectation: E(∆Lt+h|t) = 0 for all t = R + h, ..., T.

Point Forecast Comparison 2 (PF2):
The underlying data for PF1 is generated by

yt = β + et, (13)

with et ∼iid N(0, 1) and β a constant parameter. Let β̂t =
1
R ∑t

i=t−R+1 yi denote the OLS estimate
of β. The two point forecasts are f̂ (1)t+h|t = 0, and f̂ (2)t+h|t = β̂t respectively. For β = 1√

R
, the expected

squared forecast error difference is zero in expectation, i.e. the loss differential

∆Lt+h|t =
(
yt+h − f̂ (1)t+h|t)

2 − (yt+h − f̂ (2)t+h|t
)2, (14)

is zero in expectation: E(∆Lt+h|t) = 0 for all t = R + h, ..., T.

Density Forecast Comparison 1 (DF1):
The data for DF1 is generated by the process in eq. (11). The two competing density forecasts
are both based on a normal density, given by φ(x|τ, σ2), where x denotes the value at which the
density is evaluated, τ denotes the conditional mean forecasts, and σ2 the conditional variance
forecast.11 The two conditional means of the normal densities are the same as the point forecasts in
PF1, i.e. τ̂

(1)
t+h|t = z(1)t β̂

(1)
t , and τ̂

(2)
t+h|t = z(2)t β̂

(2)
t , with β̂

(j)
t =

(
∑t

i=t−R+1 z(j)′

i−hz(j)
i−h

)−1
∑t

i=t−R+1 z(j)′

i−hyi

and z(j)
t = [1, zt,j]. In turn, the variance forecasts is based on the in-sample estimate of the

error variance: σ̂2(j)

t+h|t =
1
R ∑t

i=t−R+1
(
yi − z(j)

i−h β̂
(j)
t
)2. The two density forecasts, both of which are

misspecified, are denoted by: f̂ (1)t+h|t = φ
(
yt+h

∣∣τ̂(1)
t+h|t, σ̂2(1)

t+h|t
)
, and f̂ (2)t+h|t = φ

(
yt+h

∣∣τ̂(2)
t+h|t, σ̂2(2)

t+h|t
)
. The

loss differential is then given by

∆Lt+h|t = log
(

f̂ (1)t+h|t(yt+h)

)
− log

(
f̂ (2)t+h|t(yt+h)

)
, (15)

and is zero in expectation: E(∆Lt+h|t) = 0 for all t = R + h, ..., T.

Density Forecast Comparison 2 (DF2):
The data for DF2 is generated by the process in eq. (13). The two competing density forecasts
are again both based on a normal density. The two conditional means of the normal densities
are the same as the point forecasts in PF2, i.e. τ̂

(1)
t+h|t = 0, and τ̂

(2)
t+h|t = β̂t, with β̂t =

1
R ∑t

i=t−R+1 yi.

In turn, the variance forecasts is based on the in-sample estimate of the error variance: σ̂2(1)
t+h|t =

1
R ∑t

i=t−R+1 y2
i and σ̂2(2)

t+h|t =
1
R ∑t

i=t−R+1
(
yi − β̂t

)2. The two density forecasts, both of which are

misspecified, are denoted by: f̂ (1)t+h|t = φ
(
yt+1

∣∣τ̂(1)
t+h|t, σ̂2(1)

t+h|t
)
, and f̂ (2)t+h|t = φ

(
yt+1

∣∣τ̂(2)
t+h|t, σ̂2(2)

t+h|t
)
.

11We deviate from the standard notation of µ for the mean of a Normal density to not confuse the reader with the µ
defined in eq. (3).
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Then, the loss differential is given by

∆Lt+h|t = log
(

f̂ (1)t+h|t(yt+1)

)
− log

(
f̂ (2)t+h|t(yt+1)

)
, (16)

and is zero in expectation: E(∆Lt+h|t) = 0 for all t = R + h, ..., T.

3.1 Size Results

We generate time series of ∆Lt+h|t as described in (12), (14), (15) and (16) for several values of R
and P: R = [25, 50, 100] and P = [50, 100, 200, 1000]. Then, we estimate the following model on
the loss differential:

∆Lt+h|t = µ + θ · 1{St ≤ γ}+ ut, (17)

where St ∼iid N(0, 1) and we treat γ as unknown.
Table 1 shows the point forecast results for the null hypothesis defined in eq. (4) for the three

different test statistics: sup-W, exp-W and ave-W. Overall, the ave-W has the best size properties
in the Monte Carlo study and delivers size results that are good for P > 50 and R > 25 for both
the nested and the non-nested cases.

Table 1: Size Results for Threshold in Mean Model — Point Forecasts

Panel A. ave-W

PF1 PF2

Size 5 % Size 10 % Size 5 % Size 10 %
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.088 0.078 0.064 0.065 0.161 0.142 0.127 0.119 0.059 0.046 0.035 0.028 0.116 0.086 0.076 0.066
50 0.072 0.065 0.062 0.052 0.137 0.129 0.120 0.116 0.069 0.049 0.039 0.028 0.133 0.099 0.088 0.067
100 0.074 0.060 0.053 0.052 0.143 0.118 0.110 0.113 0.077 0.059 0.044 0.032 0.147 0.108 0.091 0.068

Panel B. exp-W

PF1 PF2

Size 5 % Size 10 % Size 5 % Size 10 %
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.106 0.079 0.064 0.061 0.181 0.148 0.124 0.117 0.089 0.051 0.044 0.036 0.150 0.096 0.087 0.075
50 0.093 0.069 0.063 0.054 0.163 0.133 0.123 0.114 0.101 0.062 0.044 0.032 0.169 0.119 0.093 0.074
100 0.093 0.067 0.057 0.053 0.168 0.125 0.118 0.108 0.109 0.065 0.049 0.034 0.187 0.124 0.097 0.078

Panel C. sup-W

PF1 PF2

Size 5 % Size 10 % Size 5 % Size 10 %
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.125 0.090 0.070 0.059 0.208 0.166 0.137 0.111 0.119 0.064 0.057 0.042 0.197 0.122 0.107 0.086
50 0.114 0.083 0.070 0.060 0.193 0.155 0.127 0.114 0.133 0.077 0.056 0.039 0.214 0.143 0.108 0.086
100 0.120 0.077 0.067 0.055 0.201 0.149 0.124 0.110 0.143 0.086 0.055 0.043 0.224 0.152 0.116 0.087

Note: The table displays empirical rejection frequencies of the null hypothesis H0 : µ = θ = 0 for the DMNL test
for point forecasts evaluated with the MSFE loss function. Size 5% and 10% denote the nominal size. R denotes
the in-sample parameter estimation window. P denotes the out-of-sample evaluation size. Panel A to C show the
results for the three DMNL tests: the sup-W, exp-W and ave-W. The results are based on 5,000 MC replications.
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The results of the exp-W test in Table 1 are similar to the ave-W; however, size distortions are
slightly bigger in small samples than in the ave-W case. While the sup-W test works well in
large samples (P > 100), it somewhat over-rejects in smaller samples. In the case of PF2 and for
small samples, the under-rejections are not too surprising and mirror the results in Giacomini
and White (2006)12.

A similar picture emerges when looking at the results for density forecasts, given in Table 2.
In particular, the empirical rejection frequencies are close to the nominal size for the ave-W and
the exp-W test even for moderate sample sizes, such as P > 50 and R > 25. Again, there is a
slight under-rejection for the case of nested models for large samples.

Table 2: Size Results for Threshold in Mean Model — Density Forecasts

Panel A. ave-W

DF1 DF2

Size 5 % Size 10 % Size 5 % Size 10 %
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.071 0.045 0.028 0.024 0.134 0.087 0.069 0.057 0.071 0.045 0.040 0.039 0.135 0.085 0.081 0.092
50 0.084 0.061 0.044 0.041 0.153 0.118 0.088 0.080 0.078 0.049 0.036 0.025 0.149 0.102 0.081 0.068
100 0.077 0.068 0.053 0.045 0.145 0.126 0.104 0.095 0.081 0.054 0.045 0.028 0.148 0.111 0.089 0.065

Panel B. exp-W

DF1 DF2

Size 5 % Size 10 % Size 5 % Size 10 %
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.105 0.058 0.039 0.030 0.170 0.109 0.083 0.064 0.127 0.070 0.057 0.041 0.193 0.123 0.102 0.091
50 0.114 0.073 0.053 0.044 0.188 0.128 0.101 0.088 0.124 0.067 0.050 0.034 0.195 0.127 0.099 0.076
100 0.104 0.080 0.058 0.048 0.180 0.136 0.112 0.096 0.122 0.074 0.055 0.033 0.189 0.134 0.105 0.077

Panel C. sup-W

DF1 DF2

Size 5 % Size 10 % Size 5 % Size 10 %
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.133 0.080 0.054 0.040 0.214 0.146 0.107 0.081 0.167 0.098 0.074 0.046 0.247 0.165 0.133 0.090
50 0.145 0.089 0.066 0.049 0.231 0.154 0.122 0.102 0.159 0.099 0.068 0.042 0.240 0.164 0.123 0.091
100 0.139 0.097 0.069 0.052 0.221 0.160 0.130 0.106 0.158 0.094 0.069 0.043 0.234 0.162 0.124 0.090

Note: The table displays empirical rejection frequencies of the null hypothesis H0 : µ = θ = 0 for the DMNL test for
density forecasts evaluated with the log score. Size 5% and 10% denote the nominal size. R denotes the in-sample
parameter estimation window. P denotes the out-of-sample evaluation size. Panel A to C show the results for the
three DMNL tests: the sup-W, exp-W and ave-W. The results are based on 5,000 MC replications.

3.2 Power Results

In order to assess power, we specify three different alternatives for the loss differential defined in
equations (12) and (14). The first alternative investigates the power of the proposed test statistics
for detecting state dependence. The second alternative investigates the empirical rejection
frequency when both µ 6= 0 and θ 6= 0. The third alternative investigates power against a constant
deviation from the null of equal predictive ability, i.e. power to detect µ 6= 0.

12Results are not reported here.
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In order to conduct the power analysis we proceed as follows. Let ∆L(0)
t+h|t be the loss

differential obtained from one Monte Carlo draw of either (12) or (14), normalized by its sample
standard deviation (to ensure that the magnitude of the alternative is constant relative to the
variation in ∆Lt+h|t). For all simulations we used St ∼i.i.d. N(0, 1) and γ = 0. In particular, we
define the loss differential under the first alternative, Alternative (1), as

∆L(1)

t+h|t(c) = ∆L(0)
t+h|t + µc + θc · 1(st ≤ γ), (18)

where the st are realizations of the stochastic process St, and c = 1, 2, ..., 14 such that µ1 = 0, µ2 =

0.085, µ2 = 0.170, ..., µ14 = 1.10, and θc = −2µc. Note that γ = 0 implies that E(St ≤ γ) = 1
2 .

Therefore, it follows that Et∆L(1)

t+1|t = µc + E(St ≤ γ)θc = µc − 1
2 2µc = 0, i.e. the overall sample

has a zero mean and the magnitude of the regime switching coefficient is 0.17 times the standard
deviation of ∆L(0)

t+h|t, and so forth. In the case where c = 1, µ1 = θ1 = 0 implies that the joint null,
defined in equation (4), holds.

For Alternative (2), the values of µc are unchanged but θi = −µi, which implies that
Et∆Lt+h|t 6= 0. In other words, Alternative (2) is a case where both state dependence and a
constant deviation are present:

∆L(2)

t+h|t(c) = ∆L(0)
t+h|t + µc + θc · 1(st ≤ γ). (19)

Alternative (3) considers constant deviation from the null hypothesis, i.e. θc = 0 ∀c:

∆L(3)

t+h|t(c) = ∆L(0)
t+h|t + µc, (20)

with µ1 = 0, µ2 = 0.085, µ2 = 0.170, ..., µ14 = 1.
Note that the st are re-drawn for each Monte Carlo iteration of each alternative; we suppressed

the respective subscripts for notational convenience.
We then estimate the model in eq. (6), treating γ as unknown, and we test the null hypothesis

defined in eq. (4) using the DMNL test defined in eq. (7). Figures 1 to 3 show the size-adjusted
power results for the three different alternatives, defined in equations (18) to (20) for PF1.13 We
compare its performance with the Diebold and Mariano (1995) (DM) and the Giacomini and Rossi
(2010) Fluctuation test. Figure 1 shows results for Alternative (1), i.e. state dependence without a
constant deviation. As we can see, size-adjusted power increases quickly with the magnitude of
the alternative for the sup-W, ave-W, and exp-W test. In turn, the DM and Fluctuation tests have
no power to detect the lack of equal predictive ability arising from the state dependence in the
relative forecasting performance, and their power remains flat around the nominal size.14

Figure 2 shows results for Alternative (2), i.e. the case of a constant deviation and state
dependence. The sup-W, ave-W, and exp-W tests show again good size-adjusted power properties,
and due to the presence of a constant deviation, the DM and Fluctuation rejection frequencies
also increase as a function of the alternative’s magnitude.

Figure 3 shows results for Alternative (3), i.e. a constant deviation without state-dependence.
As expected, the DM test tends to be the most powerful test in this scenario; however, the

13Results for PF1, DF1 and DF2 are shown in Appendix C.
14Note that the Fluctuation test might have better power in cases where St is a persistent variable.
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size-adjusted power of the sup-W, ave-W, and exp-W is very similar to that of the DM test.

Figure 1: Size-Adjusted Power Results for PF1, Alternative (1): State Dependence

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (1) for point forecasts evaluated with the MSFE loss function. The x-axis
displays the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter
estimation window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display
the sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation
test by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure 2: Size-Adjusted Power Results for PF1, Alternative (2): State Dependence and Constant
Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (2) for point forecasts evaluated with the MSFE loss function. The x-axis
displays the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter
estimation window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display
the sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation
test by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure 3: Size-Adjusted Power Results for PF1, Alternative (3): Constant Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (3) for point forecasts evaluated with the MSFE loss function. The x-axis
displays the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter
estimation window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display
the sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation
test by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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4 Empirical Application: Uncovering Pockets of Predictability in Eq-
uity Premia

Financial return predictability is typically time-varying and elusive. As noted by Paye and
Timmermann (1995), Rapach and Wohar (2006); Rapach and Zhou (2010), the predictability of
stock market returns appears only when focusing on special sub-samples; Goyal and Welch
(2003, 2008) similarly find that predictors that successfully forecast equity premia, U.S. returns
or dividend price ratios typically change over time. Instabilities are widespread: Paye and
Timmermann (2006), for example, cannot reject the presence of structural breaks in stock return
predictive regressions in several countries and Rossi (2006, 2013) finds similar results for exchange
rate returns. As summarized in Timmermann (2008), “... there appear to be pockets in time where
there is modest evidence of local predictability; (...) the best forecasting method can be expected
to vary over time, and there are likely to be periods of model breakdown where no approach
seems to work”. It is then inevitable that one must confront instabilities when evaluating financial
models’ predictive ability in an attempt to track their ”local” forecasting performance.

As discussed in Timmermann (2008) and Paye and Timmermann (2006), the predictability of
equity premia could be caused by market inefficiencies. If that is the case, then rational investors
will take the opportunity to trade and make profits. However, if a large number of investors
engage in taking advantage of the predictability, their behavior will eventually eliminate the
predictability altogether. This implies the existence of short windows of time in which equity
premia are predictable, but eventually disappear.

In what follows, we attempt to uncover pockets of predictability in U.S. equity premia out-of-
sample. We use several of the economic predictors considered in Goyal and Welch (2008): the
book to market ratio (calculated as the ratio of the book value and the market value of the Dow
Jones Industrial Average and labeled "BookToMarket"); the consumption, wealth and income ratio
proposed by Lettau and Ludvigson (2001) labeled "CAY"); the default yield spread (calculated
as the difference between BAA and AAA-rated corporate bond yields and labeled "DFY"); the
investment to capital ratio (labeled "Inv/K"); the long term government bond yield (labeled
"LongYield"); and the term spread (calculated as the difference between the long term yield on
government bonds and the Treasury bill and labeled "Spread").15 Thus, the economic models are
as follows:

Et−1rt = ν + δzt−1,

where zt−1 is the lagged economic predictor and ν is the intercept. All models are estimated in a
window of past twenty years of data, producing a series of rolling one-year-ahead out-of-sample
forecasts. As the benchmark model, we focus on the historical mean, also calculated using a
rolling window of past returns over the previous twenty years.

We estimate the ”local” forecasting performance using the nonlinear model in the loss
differences, where the loss difference is the difference in the squared out-of-sample forecast errors
of the benchmark minus that of the economic model:

Et∆Lt+1|t = µ + θ · 1 (st ≤ γ) , (21)

15The data are from A. Goyal’s website: http://www.hec.unil.ch/agoyal/
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where st is the S&P 500’s variance, a frequently used proxy for uncertainty in financial markets,
computed as the sum of squared daily returns of the S&P 500 and taken from Goyal and Welch
(2008). When the loss differential is positive, the economic model is better than the benchmark
(the historical mean). The idea, formalized in equation (21), is to capture Timmermann’s 2008
”pockets of predictability”, where the pockets of predictability depend on the volatility of returns
and, hence, on the uncertainty in financial markets. That is, the relative performance of the
models’ changes over time depending on whether the volatility of returns is higher (or lower)
than an unknown threshold value.

Table 3 reports the results. For each predictor, listed in the first column, we report the p-values
for the sup-W, ave-W, and exp-W test. In addition, we report the test statistics of the Diebold
and Mariano (1995)/Giacomini and White (2006) (DM/GW) test and Fluctuation test, as well as
the in-sample and out-of-sample sizes. For the two cases where the DMNL test rejects the null
hypothesis of equal performance, we report the estimated parameters of the model defined in
equation (21) in Table 4. In addition, Table 4 reports the results of t-tests on the parameters, the
result of a Wald test on the sum of the parameters, the estimated threshold parameter, and the
frequencies of the regimes.

Overall, our results show evidence of pockets of predictability when forecasting using two
predictors: the long yield and the spread. In both cases, the estimate of ν is negative, indicating
that loss difference is negative when the volatility of the returns is higher than the threshold value,
in which case the benchmark has a better predictive ability than the economic model. However,
when the return volatility is sufficiently small, the loss difference becomes positive. That is, the
long yield and the spread are capable of predicting the returns when the volatility is small, while
the opposite is true when volatility is high.

Notice that in none of these cases the DM/GW finds that the model with the economic
predictor is significantly different than the benchmark. This is because our proposed test is more
powerful to detect pockets of predictability when there are instabilities associated with nonlinear
behavior. Notice that the Giacomini and Rossi (2010) Fluctuation test statistic is never bigger than
the critical value either; hence, even though the Fluctuation test is robust to instabilities in the
relative forecasting performance, nevertheless it is less powerful than the test proposed in this
paper and, in these data, never finds evidence that the predictive ability appears sporadically over
time.

For the predictors for which we found that the economic model performs sometimes better
than the benchmark, i.e. the long yield and the spread, Figure 4 reports the loss differences
(∆Lt+1|t) over time, together with the stock market variance zt that triggers the regime switching.
Shaded areas depict periods where the benchmark has a lower squared forecast error than the
economic model.16 Periods that are not shaded indicate times in which the economic model
performs better than the benchmark. The figure shows that, for both predictors, there are several
pockets of predictability, where the model predicts slightly better than the benchmark. Further,
these pockets persist for several periods and are interrupted by periods where the economic
model performs much worse than the benchmark, causing the average performance of the model
to be poor over the entire sample. The pockets of predictability, hence, correspond to tranquil
times, where the forecast improvements of the economic models relative to the benchmark are

16That is, the loss difference is negative.
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small in magnitude; the overall poor forecasting performance of the models is associated with
highly volatile times.

An interesting implication of our empirical findings, thus, is the following: since volatility
in financial markets indicates uncertainty, periods of low uncertainty are associated with eco-
nomic predictability. Periods of high uncertainty, instead, associated with economic predictors
performing substantially poorly: in fact, so poorly that any gain previously achieved is washed
away.

Our results are linked with the recent financial literature that explains the existence of time-
varying risk premia with disaster risk, in particular Barro (2006). In his paper, Barro (2006) explains
the equity premium using the probability of a rare disaster. On the empirical side, Berkman et al.
(2011) have shown that crisis indices, which proxy for perceived disaster probability, impact stock
market returns, and are positively correlated with earning-price ratios and the dividend yield.
Our paper also relates equity premia predictability to risk and uncertainty, but does so from a
completely different point of view, namely using a non-linear model directly capturing changes
in out-of-sample predictive ability over time related to switches in the volatility of equity premia
themselves.

Interestingly, our result that the predictability is present in low-volatility scenarios is remi-
niscent of Ismailov and Rossi (2018), who found, in the very different context of international
markets, that exchange rate returns are more predictable by economic models in times of low
exchange rate uncertainty. In our analysis, what matters for predicting the equity premium is
uncertainty in stock markets, which we measure by the volatility in the S&P 500. Farmer et al.
(2019) also aims at investigating the presence of pockets of in-sample predictability in U.S. equity
returns. Farmer et al. (2019) find evidence of pockets of predictability in equity returns in both
the early-2000s and the mid-2010s; they also find evidence of predictability for the Treasury bill
rate in both late-2000s and the mid-2010s. Although their methodology is very different, as they
employ a time-varying parameter model estimated non-parametrically while we model directly
the forecast loss differential, their results are similar to ours. Our results, however, differ from
Rapach et al. (2010), who found that return predictability is correlated with the business cycle,
and more similar to Farmer et al. (2019), who found only a weak link between the two. Our
results suggest instead that return predictability is correlated with the volatility of the financial
cycle, a proxy for uncertainty.

Finally, note that, in this paper, we focus on detecting ‘pockets of predictability’ in historical
data and linking it to the time-variation in an economic threshold variable. This does not
necessarily imply that it is possible to detect pockets of predictability in real-time. For readers
interested in the latter, Inoue and Rossi (2015) and Harvey et al. (2020) propose real-time
monitoring procedures to detect structural changes. They suggest sequentially repeating t-tests
over short time periods and control the overall rejection rates. For example, in their application to
predictive regressions, Harvey et al. (2020) find that the one-month ahead equity premium had
been predictable at several points in time and that such episodes could have been detected in
real-time by their methodology.
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Figure 4: Delta losses and threshold variable

(a) Long Yield as Predictor

(b) Spread as Predictor

Note: The figure shows the estimated ∆Lt+1|t (solid line) together with the stock market uncertainty measure st (dashed
line), which triggers the regime switching. Non-shaded areas indicate periods where the economic model performed
better than the benchmark, i.e. they show the pockets of predictability.
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Table 3: Testing for State Dependence: Empirical Results

Variable Name DMNL p-values Alternative Statistics Sample Sizes

sup-W ave-W exp-W DM/GW Fluct. R P
DFY 0.327 0.538 0.410 0.522 1.322 20 79
Inflation 0.320 0.270 0.283 −1.055 1.293 20 84
Stock Var 0.524 0.624 0.646 −1.097 1.554 20 113
LongYield 0.048 0.069 0.050 −1.347 0.932 20 79
Spread 0.025 0.098 0.038 −1.351 0.451 20 78
T-bill 0.122 0.063 0.077 −1.528 0.536 20 78
BookToMkt 0.790 0.778 0.791 −0.510 1.135 20 77
InvtoK 0.773 0.742 0.741 0.138 2.583 20 51
CAY 0.593 0.591 0.605 −0.348 1.314 20 53

Note: The critical value for the one-sided DM-GW test at the 5% significance level is 1.64. The one-sided
Fluctuation test is implemented using a window size equal to one-third of the out-of-sample portion of
the sample; its critical value at the 5% significance level is 2.770 (see Giacomini and Rossi (2010), Table 1).
The columns R and P show the in-sample and out-of-sample size respectively. Bold numbers indicate
significance at the 10% level.

Table 4: Model Results given the Presence of State Dependence

Variable Name Parameter Estimates Parameter Tests Regime Characteristics

µ̂ θ̂ µ̂ + θ̂ γ̂ µ̂ = 0 θ̂ = 0 µ̂ + θ̂ = 0 s̄ P(st < γ̂)
LongYield −0.023 0.025 0.002 0.029 −3.033 2.748 0.551 0.025 0.215
Spread −0.007 0.017 0.010 0.008 −2.141 2.978 4.629 0.024 0.821

Note: The columns µ̂, θ̂, µ̂ + θ̂, and γ̂ show the parameter estimates associated the largest test statistic WP(γ). The columns
µ̂ = 0, θ̂ = 0, and µ̂ + θ̂ = 0 show the values of the statistic when using a t-test or a Wald test respectively, for testing the
hypothesis that the parameters, or their sum, are equal to zero. The critical values of a Wald test, with one restriction, at the 5%
and 10% level are 2.706 and 3.842. Bold numbers indicate a rejection at the 10% level. The column s̄ shows the average value of
the conditioning variable st, and P(st < γ̂) shows the relative frequency of being in the regime where both µ and θ are present.
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5 Conclusion

We propose a forecast comparison test robust to state dependence, where the states are a function
of economic observables and allow the threshold that indicates switching between the states to be
unknown. Due to the unidentified nuisance parameter under the null, the asymptotic distribution
is non-standard and cannot be tabulated in general. However, the asymptotic distribution can
be simulated with negligible computational costs. The testing framework assumes that the
parameters of the competing forecasting models are estimated using a rolling window scheme,
i.e. we compare forecasting methods rather than forecasting models, and we allow for nested and
non-nested models. Results from a Monte Carlo study indicate good size and power properties
of the test statistics for moderate sample sizes.

In an empirical application, we document the existence of state dependence in the relative
forecasting performance in models that predict stock returns. In particular, simpler models
perform better during times of high uncertainty, measured by stock market volatility, whereas
models with the spread or long-run yield as predictors have a better forecasting performance
during times of low volatility. Hence, our results link predictability in returns to low uncertainty,
and have important implications for models of “tail events” or “rare disasters”. Existing tests,
such as the GW and Fluctuation test, cannot detect these “pockets of predictability” as they lack
power against state dependence.
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A The Case of Multiple Threshold Variables

For now, we have treated the threshold variable St as known, and only the threshold γ as
unknown. As noted by Hansen (1996), in practice, the researcher might have several potential
threshold variables St at hand and needs to decide which variable to include. This case can be
naturally accommodated in the framework described above and we sketch the procedure in the
following.

Let D denote a finite set of index numbers, from 1 to d̄, for candidate threshold variables, such
that St(d), d ∈ D, denotes the candidate threshold variable indexed by d. Eq. (3) then becomes

∆Lt+h|t = X′tµ + X′tθ · 1(St(d) ≤ γ) + ut+h. (22)

Conditional on a value (γ, d) ∈ (Γ x D), the estimation of eq. (22) is analogue to that in the
model described in eq. (3). Further, and to simplify notation, let all terms of Section 2.2 that are a
function of γ be defined analogously as a function of (γ, d). Further, let

DMNL
Γ,D : gΓ,D(Wp) =


supd∈D supγ∈Γ WP(γ, d)
1
D ∑D

∫
Γ WP(γ, d)dw(γ, d)

ln
( 1

D ∑D
∫

Γ exp( 1
2WP(γ, d))dw(γ, d)

) (23)

denote the statistic that takes the supremum over both γ ∈ Γ and d ∈ D. It is straightforward
to show that the test statistic in eq. (23) has as an asymptotic distribution for point and density
forecasts that is analogue to that derived in Proposition 1 and Proposition 2. We now state
the necessary assumptions and then the corollary that accommodates the case of testing for a
threshold model when there is more than one candidate threshold variable.

Assumption A.A1 (i) For all d ∈ D, where D is a finite set of index numbers, (At, Xt, St(d)) is strictly
stationary and absolutely regular with mixing coefficients η(m) = O(m−δ) for some δ > v/(v − 1)
and v > 1. (ii) The estimation window size (R) is finite and the estimation scheme is a rolling window
estimation.

Assumption A.A2 For r > v > 1, E|Qt|4r < ∞, E|ut|4r < ∞, infd∈D infγ∈Γ det
(

M(γ, γ, d, d)
)
> 0.

Assumption A.A3 Let r > v and let St have a density function g(St) such that sups∈Rd̄ g(s) = ḡ < ∞.

Assumption A.A4 f (i)t+h|t (.) is a measurable function of leads and lags of At, for i = 1, 2.

Corollary 1 Let gΓ,D(Wp) be one of the statistics defined in eq. (23) . Then, under A.A1 to A.A4 and H0

defined in eq. (4): E
(
∆Lt+h|t

)
= 0 for all t = R + h, ..., T, we have

lim
P→∞

gΓ,D
(
WP(γ, d)

)
→ gΓ,D

(
χ2(γ, d)

)
, (24)

where χ2(γ) is a chi-square distribution with degrees of freedom rank(Hr), and gΓ,D
(
χ2(γ, d)

)
can be

completely characterized by its covariance kernel K(γ1, γ2, d1, d2).

Given A.A1 to A.A4, the proof of Corollary 1 follows from Proposition 1. The algorithm to
simulate the critical values is similar to the algorithm described in Section 2.5, and is given below.
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Simulation Algorithm 2. For each j = 1, ..., J, do the following steps:

1. Draw a set of standard Normal random variates {vtj}P
t=1;

(a) Select a threshold variable St(d), d ∈ D.

i. Calculate λ̂
j
P(γ, d) = 1√

P ∑T−h
t=R ŝt+h(γ, d)vtj;

ii. Using λ̂
j
P(γ, d), calculate:

W j
P(γ, d) = λ̂

j
P(γ, d)′M(γ, γ, d, d)−1Hr

[
H′rV̂∗P (γ, d)Hr

]−1H′r M(γ, γ, d, d)−1λ̂
j
P(γ, d);

iii. Repeat (i)-(ii) for all γ ∈ Γ;

(b) Repeat (a) for all d ∈ D;

2. Compute W j
P = gΓ

(
W j

P(γ, d)
)
.

After J iterations, we obtain a set of {W j
P}

J
j=1 draws from the asymptotic distribution, which we

can use to construct critical values and p-values. In particular, the approximate p-value is given
by p̂(J) = 1

J ∑J
j=1 1(WP > W j

P), where WP denotes the value of the test statistic computed using
the actual data.

B Forecast Comparison under Markov Switching

In this section, we discuss a test for equal predictive ability in the presence of Markov switching
changes in the relative forecasting performance. The test is inspired by Carrasco et al. (2014a)
(CHP hereafter).

The loss differential is modeled as:

∆Lt+h|t = µ + µt + ut+h, (25)

where µt = µSSt, St is a stationary geometric ergodic two-state univariate first-order Markov
chain, µS is the magnitude of the change and ut+h is mean zero and satisfies assumption A6
below, let θ ≡

{
µ, σ2}, and let θ0 ≡

{
µ0, σ2

0
}

denote the parameters under the null, where µ0 is a
parameter of interest and σ2

0 > 0 is left unspecified.
Our null hypothesis is described in eq. (4), and is such that H0 : Et

(
∆Lt+h|t

)
= 0. Under

the model in eq. (25), the null hypothesis can be reparameterized as: µ = µS = 0. Our null
hypothesis is different from CHP in two ways: the first is that the latter only test µS = 0; the
second is that our objective is to test the forecast loss differential, that depends on the estimates
of the forecasting models’ parameters. Under the alternative, Et

(
∆Lt+h|t

)
6= 0, which again can

be caused by either Markov switching or constant and unequal forecast performance.
To derive the asymptotic distribution of the test, we require the following additional assump-

tions:

Assumption B1 The latent variable µt is defined as µt = µSSt, where µS is a finite scalar constant, St is
a stationary geometric ergodic finite-state univariate first-order Markov chain with var(St) = 1 and covari-
ance cov (St, St−i) = ρi, ρ 6= 0 and−1 < ρ < 1. Furthermore, µt is strongly exogenous to At, t = 1, ..., T,
such that the joint likelihood of A1, ..., AT, µ1, ..., µT factorizes as ΠT

t=1 f (A1, ..., AT; θ) q (µt|µt−1, ..., µ1; ρ)

and the values of µt + µ belong to some compact set containing µ.
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Assumption B2 Let the conditional log-density of ∆Lt+h|t be Normal and be denoted by `t under the
null hypothesis. Let N0 be a neighborhood around θ0, where θ0 is an interior point of N0; the information
matrix I (θ0) = E0

(
||`(1)t (θ0) `

(1)
t (θ0)

′ ||20
)

is nonsingular.

For convenience, we maintain Assumption A1. Assumption B1 specifies the behavior of the time
variation and it requires that, under the null, the distribution of the data At and that of ηt are
mutually independent. Assumption B2 makes a convenient distributional assumption which
implies that the asymptotic distribution of our test statistic is the same as in CHP — for details
see the proof of Proposition 3.
The following proposition provides the result of our test of equal predictive ability in the presence
of Markov switching alternatives.

Proposition 3 Let DMNL: g(TSP) = supρ∈[ρ,ρ] TSP(ρ), and TSP(ρ) = 1
2

(
max

(
0, Γ∗P(ρ)√

ξ̂(ρ)′ ξ̂(ρ)

))2

,

where Γ∗P (ρ) = P−1/2 ∑
t

η∗t

(
ρ, θ̂0

)
, and

η∗t (ρ, θ) =
1
2

{[
`
(2)
t (θ) + `

(1)
t (θ) `

(1)
t (θ)′

]
+ 2 ∑

τ<t
ρ(t−τ)`

(1)
t (θ) `

(1)
τ (θ)′

}
.

ξ̂ (ρ) is the residual of a regression of ηt

(
ρ, θ̂0

)
on `

(1)
t

(
θ̂0

)
and θ̂0 is the constrained ML estimator of θ

under the null. Then, under A1, B1, B2 and H0 defined in eq. (4): E
(
∆Lt+h|t

)
= 0 for all t = R + h, ..., T:

g(TSP) = sup
ρ∈[ρ,ρ]

TSP(ρ)→
d

sup
ρ∈[ρ,ρ]

1
2
(

max (0, K)
)2, (26)

where K = sign (ρ)
√

1− ρ2 ∑∞
i=0 ρiZi, where sign (ρ) = 1 if ρ > 0, zero if ρ = 0 and equal to −1

if ρ < 0, and Zi are iid standard Normal variables. The DMNL test rejects H0 defined in eq. 4 when
gΓ (TSP) > φα, where φα is the critical value (for a nominal size of α) in Table B.1 below, where either
ρ = −0.7, ρ = 0.7 or ρ = −0.98, ρ = 0.98.

Proof of Proposition 3. From a similar argument as that in the proof of Proposition 1, since the
forecast errors vt+h(β̂t,R) are measurable functions of leads and lags of At, under A1(i) they are
absolutely regular with coefficients of size −δ. Consequently, ∆Lt+h|t is strictly stationary and
absolutely regular with mixing coefficients η (m) = O

(
m−δ

)
for some δ > ν/ (ν− 1) and ν > 1.

Under Assumptions A1, B1 and B2, the assumptions in CHP hold. In particular, let cov() denote
the covariance and let

d∗ (ρ) ≡ d∗ (ρ, θ0) = I (θ0)
−1 cov

(
η∗t (ρ, θ0) , `(1)t (θ0)

)
= I (θ0)

−1 cov
(

η∗t (ρ, θ0) ,
(

`
(1)
µ,t (θ0) `

(1)
σ2,t (θ0)

))
= I (θ0)

−1
(

cov
(

η∗t (ρ, θ0) , `(1)µ,t (θ0)
)

, cov
(

η∗t (ρ, θ0) , `(1)
σ2,t (θ0)

) )
.

Under normality, η∗t (ρ, θ) = 1
2σ4

[(
u2

t+h − σ2)+ 2 ∑τ<t ρ(t−τ)ut+huτ+h

]
and `

(1)
µ,t (θ0) = ut+h/σ2

0 ;

therefore, cov
(

η∗t (ρ, θ0) , `(1)µ,t (θ0)
)

= 0. Furthermore, because of the Normality assumption,

the matrix I (θ0)
−1 is block diagonal. Thus, the first element of the vector d∗ (ρ) equals
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zero. This implies that d∗ (ρ)′ `(1)t

(
θ̂0

)
= 0 since (i) we just showed that the first element

of d∗ (ρ) is zero; and (ii) the second element of `
(1)
t

(
θ̂0

)
= 0 because this component of

the score is evaluated at the constrained MLE of σ2. Thus, Γ∗P (ρ) = P−1/2 ∑t η∗t

(
ρ, θ̂0

)
=

P−1/2 ∑t

(
η∗t

(
ρ, θ̂0

)
− d∗ (ρ)′ `(1)t

(
θ̂0

))
, as d∗ (ρ)′ `(1)t

(
θ̂0

)
= 0. Consequently, the arguments of

Lemma C.1 of Carrasco et al. (2014b) apply to eq. (26), and the results follow from Theorem 3.1
of Carrasco et al. (2014a).

Table B.1: Critical Values (φα)

α ρ ∈ [−0.7, 0.7] ρ ∈ [−0.98, 0.98]

1% 3.96 4.52
5% 2.45 2.99
10% 1.82 2.32

Note: The critical values are taken from table

A-I of Carrasco et al. (2014b).

Table B.2 reports size results for the test g(TSP) using the data generated according to PF1 and
PF2 as considered in Section 3. The table shows that the test tends to over-reject in small samples
(P< 200, R < 25), but is well-sized for larger sample sizes. As before, large sample results for the
nested model case of PF2 are slightly undersized.

Table B.2: Size Results for Forecast Comparison Markov Switching Test

PF1 PF2

Size 5 % Size 10 % Size 5 % Size 10 %
R/P 50 100 200 1000 50 100 200 1000 50 100 200 1000 50 100 200 1000

25 0.159 0.135 0.083 0.067 0.232 0.195 0.154 0.118 0.116 0.091 0.071 0.045 0.154 0.134 0.102 0.086
50 0.138 0.129 0.088 0.055 0.211 0.184 0.137 0.104 0.106 0.093 0.067 0.035 0.168 0.140 0.114 0.061
100 0.148 0.117 0.092 0.059 0.203 0.169 0.153 0.118 0.121 0.100 0.049 0.038 0.175 0.142 0.095 0.074

Note: The table displays empirical rejection frequencies of the null hypothesis H0 : µ = µS = 0 for the DMCHP

test. Size 5% and 10% denote the nominal size. R denotes the in-sample parameter estimation window. P denotes
the out-of-sample evaluation size. DGP1 and DGP2 are based on Section 3. The results are based on 1,000 MC
replications and using the critical values of Table B.1 with ρ ∈ [−0.98, 0.98].

For a model that includes autoregressive components the distribution depends on the autoregres-
sive component and can be derived from the asymptotic distribution of supρ∈[ρ,ρ̄] vT(θ0, ρ). For
an AR(1), similar to Carrasco et al. (2014a), the critical values can be simulated from:√

1− ρ2
∣∣1− ρφ

∣∣∣∣ρ− φ
∣∣ [ ∞

∑
i=0

ρiZi −
(1− φ2)

(1− φρ) ∑
i=0

φiZi

]
. (27)
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C Additional Monte Carlo Results: PF1, DF1 and DF2

C.1 Point Forecast Comparison 2

Figure C.1: Size-Adjusted Power Results for PF2, Alternative (1): State Dependence

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (1) for point forecasts evaluated with the MSFE loss function. The x-axis
displays the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter
estimation window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display
the sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation
test by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure C.2: Size-Adjusted Power Results for PF2, Alternative (2): State Dependence and Constant
Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (2) for point forecasts evaluated with the MSFE loss function. The x-axis
displays the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter
estimation window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display
the sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation
test by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure C.3: Size-Adjusted Power Results for PF2, Alternative (3): Constant Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (3) for point forecasts evaluated with the MSFE loss function. The x-axis
displays the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter
estimation window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display
the sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation
test by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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C.2 Density Forecast Comparison 1

Figure C.4: Size-Adjusted Power Results for DF1, Alternative (1): State Dependence

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (1) for density forecasts evaluated with the log score. The x-axis displays
the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter estimation
window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display the
sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation test
by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure C.5: Size-Adjusted Power Results for DF1, Alternative (2): State Dependence and Constant
Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (2) for density forecasts evaluated with the log score. The x-axis displays
the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter estimation
window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display the
sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation test
by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure C.6: Size-Adjusted Power Results for DF1, Alternative (3): Constant Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (3) for density forecasts evaluated with the log score. The x-axis displays
the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter estimation
window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display the
sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation test
by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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C.3 Density Forecast Comparison 2

Figure C.7: Size-Adjusted Power Results for DF2, Alternative (1): State Dependence

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (1) for density forecasts evaluated with the log score. The x-axis displays
the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter estimation
window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display the
sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation test
by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure C.8: Size-Adjusted Power Results for DF2, Alternative (2): State Dependence and Constant
Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (2) for density forecasts evaluated with the log score. The x-axis displays
the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter estimation
window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display the
sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation test
by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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Figure C.9: Size-Adjusted Power Results for DF2, Alternative (3): Constant Deviation

(a) P = 50, R = 25 (b) P = 100, R = 25 (c) P = 200, R = 25

(d) P = 50, R = 50 (e) P = 100, R = 50 (f) P = 200, R = 50

(g) P = 50, R = 100 (h) P = 100, R = 100 (i) P = 200, R = 100

Note: On the y-axis the figures displays size-adjusted empirical rejection frequencies of the null hypothesis H0 : µ =
θ = 0 for the DMNL test under Alternative (3) for density forecasts evaluated with the log score. The x-axis displays
the magnitude of the alternative in units of c. The nominal size is 5%. R denotes the in-sample parameter estimation
window. P denotes the out-of-sample evaluation size. The solid lines with markers “o”, “x” and “+” display the
sup-W, the exp-W, and the ave-W test results respectively. The dashed line displays the results of the Fluctuation test
by Giacomini and Rossi (2010) and the solid line displays the results of the GW test. The nominal level is 5%. The
results are based on 3,000 MC replications.
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