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1 Introduction

The investigation of structural change in econometric models has received increasing atten-

tion in the literature over the past couple of decades. This development is not surprising.

Assuming, wrongly, that the model structure remains fixed over time has clear adverse im-

plications, such as inconsistency of parameter estimators and associated test-statistics, and

major forecast failures.

Various methods have been proposed to identify and handle structural change. In the

early contributions, changes were supposed to be deterministic, to occur rarely, and to be

abrupt. A number of tests for the presence of parameter breaks of that form exist in the

literature, starting with the ground-breaking work of Chow (1960), who assumed knowledge

of the point in time at which the structural change occurred. The usual fix was the inclusion of

proper dummy variables as additional explanatory variables. Other tests relax the underlying

assumptions, e.g., Brown, Durbin, and Evans (1974), Ploberger and Kramer (1992) and many

others. In this context, it is worth noting that little is being said about the cause of structural

breaks in either statistical or economic terms. The work by Kapetanios and Tzavalis (2010)

provides a possible avenue for modelling structural breaks and, thus, addresses partially this

issue.

A more recent strand of the literature takes an alternative approach and allows the coeffi-

cients of parametric models to evolve randomly over time. Evolution can be either discrete, as

in Markov Switching models (e.g., Hamilton (1989)) or threshold models (e.g., Tong (1990)),

or continuous. In turn, continuous parameter evolution can be driven either by observable

variables, as in smooth transition models (e.g., Terasvirta (1998)), or by unobservable shocks

combined with time series models for the parameters, as in random coefficient models (e.g.,

Nyblom (1989)).

Even more recently, there has been a growing interest in random coefficient models that

also allow for stochastic volatility, e.g., Cogley and Sargent (2005) or Primiceri (2005), who

study the question of whether it was changes in coefficients or in the variance of shocks - policy

or otherwise - that gave rise to the period of macroeconomic calmness (”Great Moderation”)

after 1985. In these papers, and a vast amount of subsequent work, parameters typically

evolve as random walks or autoregressive processes.

Yet another strand of the vast structural change literature returns to the assumption of

deterministic breaks but allows for a smooth evolution of the parameters. Such modelling at-

tempts have a long pedigree in statistics, starting with the work of Priestley (1965). Priestley’s

paper suggested that processes may have time-varying spectral densities which change slowly

over time. The context of such modelling is nonparametric and has, more recently, been fol-
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lowed up by Robinson (1989), Robinson (1991), Dahlhaus (1997), Chen and Hong (2012) and

others, some of whom refer to such processes as locally stationary processes. This approach,

while popular in statistics, has not really been influential in applied macroeconometrics where,

as mentioned, random coefficient models dominate. Kapetanios and Yates (2008) is an excep-

tion, using this type of models to revisit the study of the evolution of inflation persistence, in

Cogley and Sargent (2005).

Finally, it is worth noting the work of Muller and Watson (2008) and Muller and Petalas

(2010), who also examine structural change and consider both deterministic and stochastic

time-varying parameters. While both approaches can be used for the same modelling pur-

poses, the underlying models have very distinct properties. Building on this work, Giraitis,

Kapetanios, and Yates (2014) (GKY) have developed a framework for the estimation of ran-

dom coefficient models using kernel methods. They have provided theoretical, Monte Carlo

and empirical results that justify their estimation method and showed that it performs very

well in small samples and has trivial computational cost.

Turning now to instrumental variable (IV) regression, it is clearly a major tool for the

econometric analysis of many economic phenomena. However, a usual assumption made

when carrying out IV regression on time series, or panel, data is that the entertained model is

constant over time, implying that the parameter vector to be estimated does not change during

the sample period used for estimation. This assumption is both crucial for the properties of

IV regression and likely to be suspect in many cases. For example, the impact of education

on GDP growth, or of banks’ size on their profits, can change over time as a consequence

of technological progress. Or the effects of a real forcing variable on inflation can depend

on the business cycle phase. Moreover, the relationship between endogenous variables and

instruments can also change over time. For example, an autoregressive model that links the

current value of a real variable to its past values (the instruments) can exhibit instability over

time. Finally, the endogeneity status of a variable could be also time-varying. Consider, for

example, a regression of inflation on a short term interest rate over a sample where the central

bank switched from exchange rate pegging to inflation targeting.

The problem of modifying IV regression to account for the possible presence of structural

change has received limited attention in the literature. Hall, Han, and Boldea (2012) have

developed inferential and estimation theory for regressions with endogenous regressors by

extending the structural break framework of Bai and Perron (1998). In further work, Boldea

and Hall (2013) and Antoine and Boldea (2018) have addressed a variety of other issues

associated with this problem. While this work is useful, the structural break framework

may be considered restrictive, in light of the above review of time-varying models. On the
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other hand, specific parametric assumptions on the model driving parameter evolution can

be restrictive as well. A major contribution that partially resolves this issue is that of Chen

(2015) who extends the deterministic locally stationary framework discussed above to the IV

case. However, the deterministic nature of the assumed structural change remains an issue

for economic and financial data.

Therefore, in this paper we propose non-parametric, kernel-based, estimation and infer-

ential theory for time-varying IV regression, with either deterministic or random coefficients,

extending the framework of GKY. We derive asymptotic distributions for time-varying IV

(TV-IV) estimators, which turn out to be asymptotically equivalent but can differ in finite

samples.

We also derive the asymptotic distribution of a time-varying version of the Hausman

exogeneity test, which compares time-varying OLS and IV estimators, possibly also allowing

for changes in the endogeneity status of the regressors over time. Besides a local Hausman

test, we develop a uniform test for exogeneity with nice asymptotic properties.

As it is well known that IV estimators can have unpleasant finite sample properties, we

evaluate bias and variance related measures for our time-varying IV estimators in an extensive

Monte Carlo study, also in comparison with time-varying OLS. The results are rather encour-

aging, and can be also used to provide indications on the choice of the kernel bandwidth for

empirical applications.

Finally, to illustrate in practice the use of time-varying IV, we estimate a simple Phillips

curve for the USA, using unemployment as a forcing variable for inflation, as this topic has

attracted quite a lot of attention in the academic literature (see, e.g., Stock and Watson

(1989)) and it is also at the center of the policy debate, to understand whether decreases in

the unemployment rate will eventually increase inflation and therefore require a tightening

in monetary conditions. Interestingly, we find substantial fluctuations in the coefficient of

unemployment, which remains negative over the entire sample but less so in the recent period,

and statistically significant only since the early ’90s. Moreover, the time-varying Hausman

test suggests that unemployment was endogenous until the end of the 1970s and for a few

years around 2000, while exogeneity is not rejected in the most recent period.

The rest of the paper is structured as follows. Section 2 describes our time-varying IV

methods and derives the theoretical results. Section 3 discusses the Monte Carlo results.

Section 4 presents the empirical application. Section 5 summarizes the main results and

concludes. All proofs are relegated to an Appendix and an Online Supplement.
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2 Theory

GKY introduced a non-parametric time-varying OLS estimation method that can be applied

to a wide set of models, as it boils down to a kernel based generalisation of a rolling window.

The main innovation of their work is to show the asymptotic validity of the estimation and the

provision of confidence bands for the estimators in the presence of time-varying coefficients,

which evolve as persistent stochastic processes. We would like to provide similar results in

the IV regression context.

Let us consider the following model for univariate variable, yt:

yt = x′tβt + ut, t = 1, ..., T (1)

xt = Ψ′tzt + vt, (2)

where xt = (x1,t, .., xp,t)
′ is a p × 1 vector of random variables, βt = (β1,t, .., βp,t)

′ is a p × 1

parameter vector, ut is a 1× 1 noise. Subsequently, in (2), zt = (z1,t, ..., zn,t)
′ is a n× 1 vector

of random variables, Ψ′t = (ψ`k,t) is a p× n parameter matrix and vt = (v1,t, .., vp,t)
′ is a p× 1

noise vector.

As in the standard IV setting, we assume that endogenous variables xt are correlated with

ut but there exist exogenous instruments zt, uncorrelated with ut and vt:

Eztut = 0, Eztv
′
t = 0, t ≥ 1. (3)

In this paper we discuss the IV setting (1)-(2) with time varying parameters βt and Ψ′t

whose elements are either smoothly varying deterministic functions as in Assumption 2 or

smoothly varying persistent stochastic processes as in Assumption 3.1 In addition, we assume

that the elements z`,tzk,t of ztz
′
t, elements z`,tvk,t of ztv

′
t and elements z`,tuk,t of ztut are α-mixing

variables as specified in Assumption 1 below.

The objective of this paper is to construct consistent estimators of βt and Ψt and derive

asymptotic normality for the estimator of βt.

Our main estimator of βt is a kernel type estimate

β̃1,t =
( T∑
j=1

bH,|j−t|Ψ̂
′
jzjx

′
j

)−1( T∑
j=1

bH,|j−t|Ψ̂
′
jzjyj

)
(4)

1Of course, if the coefficients are actually constant then the time varying estimator we propose is still
consistent albeit inefficient. Similarly, if some variables are actually exogenous then estimation using the IV
estimator is again consistent but inefficient.
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computed with kernel weights bH,|j−t| and bandwidth parameter H defined below in (6) where

Ψ̂j is a consistent estimate of Ψj. In our case, Ψ̂t is just the kernel OLS estimator

Ψ̂t =
( T∑
j=1

bL,|j−t|zjz
′
j

)−1( T∑
j=1

bL,|j−t|zjx
′
j

)
. (5)

The bandwidth L used in (5) can be different from H, used for (4).

We consider the estimators (4) and (5) with kernel weights

bH,|j−t| = K(
|j − t|
H

) (6)

where H →∞, H = o(T ) is the bandwidth parameter and K(x), x ∈ (0, a) is a non-negative

continuous function with a finite or infinite support such that for some C > 0 and ν > 3,

K(x) ≤ C(1 + xν)−1, |(d/dx)K(x)| ≤ C(1 + xν)−1, x ∈ (0, a). (7)

Standard examples of functions satisfying (7) are K(x) = I(0 ≤ x ≤ 1), K(x) ≤ C(1 + xν)−1

with ν > 3 and K(x) = exp(−cxα) with c > 0 and α > 0.

In addition to β̃1,t, we study the estimator

β̃2,t =
( T∑
j=1

bH,|j−t|Ψ̂
′
tzjx

′
j

)−1( T∑
j=1

bH,|j−t|Ψ̂
′
tzjyj

)
, (8)

which, for n = p, and if Ψ̂t is full rank, further simplifies asymptotically to

( T∑
j=1

bH,|j−t|zjx
′
j

)−1( T∑
j=1

bH,|j−t|zjyj

)
(9)

The estimators β̃1,t and β̃2,t are asymptotically equivalent. There are other possible estimators

such as

β̃t =
(( T∑

j=1

bH,|j−t|xjz
′
j

)( T∑
j=1

bH,|j−t|zjz
′
j

)−1( T∑
j=1

bH,|j−t|zjx
′
j

))−1

×
( T∑
j=1

bH,|j−t|xjz
′
j

)( T∑
j=1

bH,|j−t|zjz
′
j

)−1( T∑
j=1

bH,|j−t|zjyj
)

which is intuitive, in that it extends the standard IV estimator, based on covariances between
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regressors and instruments, to the time varying case. In the just-identified case β̃t asymptot-

ically coincides with β̃1,t, if H = L is imposed. Another potential estimator is the two-stage

least square estimator (2SLS) used by Chen (2015):

β̃3,t =
( T∑
j=1

bH,|j−t|Ψ̂
′
jzjz

′
jΨ̂j

)−1( T∑
j=1

bH,|j−t|Ψ̂
′
jzjyj

)
(10)

which is frequently used in applied work. Both β̃t and β̃3,t are asymptotically equivalent to

β̃1,t and β̃2,t. Neither will be considered further in detail, in this paper. However, we include

some comments on β̃3,t in Lemma 2 and in the context of Theorem 4 showing that β̃1,t might

be preferable with respect to the 2SLS estimate β̃3,t.

We focus mainly on β̃1,t for theoretical tractability. We note these different estimators to

illustrate the possibilities for different procedures that arise from considering a time varying

setting, as well as to emphasise that, in small samples, there may be materially important

choices to make, as we explore in our Monte Carlo study, where we compare the finite sample

performance of our estimators to that of the OLS estimator given by

β̂t =
( T∑
j=1

bH,|j−t|xjx
′
j

)−1( T∑
j=1

bH,|j−t|xjyj

)
. (11)

Next, we outline assumptions on zt, vt and ut and time-varying parameters βt and Ψt.

Assumption 1 Elements of zt, vt and ut have the following properties.

(i) There exists θ > 8 such that uniformly over ` and t,

E|z`,t|θ, E|v`,t|θ, E|ut|θ ≤ C <∞. (12)

(ii) For any (`, k), (z`,tzk,t −Ez`,tzk,t), (z`,tvk,t), (z`,tut), (vk,t) and (ut) are α-mixing (but not

necessarily stationary) processes with mixing coefficients αk such that for some 0 < φ < 1 and

c > 0,

αk ≤ cφk, k ≥ 1. (13)

(iii) The matrices Σzz,t = E[ztz
′
t] and Σvv,t = E[vtv

′
t] are such that maxt≥1 ||Σ−1

zz,t||sp < ∞,

maxt≥1 ||Σ−1
vv,t||sp <∞.

We denote by ||A||sp and ||A|| the spectral and Frobenius norm of matrix A, respectively.

We assume that βt = βT,t and Ψt = ΨT,t are triangular arrays of vectors and matrices whose

elements (β`,t) and (ψ`k,t) satisfy either Assumption 2 or Assumption 3.
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Assumption 2 (ψ`k,t) and (β`,t) are non-random sequences of real numbers uniformly bounded

in t and satisfy the smoothness condition

|β`,t − β`,s| ≤ C
|t− s|
T

, |ψ`k,t − ψ`k,s| ≤ C
|t− s|
T

, t, s,= 1, ..., T (14)

where the positive constant, C, does not depend on `, k, t, s and T .

Assumption 3 (ψ`k,t) and (β`,t) are random processes that satisfy the smoothness condition

|β`,t − β`,s| ≤ (
|t− s|
T

)1/2r`,ts, |ψ`k,t − ψ`k,s| ≤ (
|t− s|
T

)1/2q`k,ts, t, s,= 1, ..., T (15)

and the distribution of variables X = β`,t, r`,ts, ψ`k,t, q`k,ts has a thin tail:

P (|X| ≥ ω) ≤ exp(−c0|ω|α), ω > 0 (16)

for some c0 > 0, α > 0 that do not depend on `, k, t, s and T .

For example, a triangular array of deterministic parameters β`,t = g`(t/T ), t = 1, ..., T where

g`(x), x ∈ [0, 1] have bounded derivatives, satisfy Assumption 2. In turn, we can specify an

array of random processes as β`,t = T−1/2u`,t, t = 1, ..., T where u`,t are random walk processes

with u`,t − u`,t−1 ∼ NIID(0, 1), satisfying Assumption 3. Many other examples of allowable

processes are provided in Giraitis, Kapetanios, and Yates (2014), as well as Section 2.4 of

Giraitis, Kapetanios, and Yates (2018). In particular, time varying parameter processes can

include deterministic and stochastic components, β`,t = T−1/2u`,t + g`(t/T ) and u`,t may be

a general unit root process rather than random walk. For example, β`,t = T−1/2u`,t satisfies

Assumption 3 if u`,t is a unit root process, ωt = u`,t − u`,t−1 is stationary mixing and has

a thin tail distribution. Then r`,ts = (T/(t − s))1/2(β`,t − β`,s) satisfies P (|r`,ts| ≥ x) =

P ((t − s)−1/2|
∑t−s

j=1 ωj| ≥ x) and has thin tail distribution, see Lemma 1 in Dendramis,

Giraitis, and Kapetanios (2018).

Next, we assume that the bandwidth parameters H, and L satisfy

c1T
1/(θ/4−1)+δ ≤ H, L ≤ c2T

1−δ (17)

where θ > 8 is as in Assumption 1, c1, c2 > 0 and δ > 0 is arbitrarily small.

Denote

rT,H =

√
log T

H
+
H

T
, r̄T,H,α =

√
log T

H
+ (

H

T
)1/2 log2/α T. (18)
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In the next theorem we establish a uniform consistency rate of estimates Ψ̂t and β̃1,t.

Remarkably, besides the standard IV assumptions Eztut = 0 and Eztv
′
t = 0 it allows (ut),

(vt), (ztut), (ztv
′
t) to be serially correlated sequences.

Theorem 1 Suppose zt, ut and vt satisfy Assumption 1 and Ψt satisfies either Assumption 2

or Assumption 3.

(i) Then, as T →∞, the estimator Ψ̂t computed with L, satisfying (17), has the property that

max
t=1,...,T

||Ψ̂t −Ψt|| =

{
Op(rT,L) if (Ψt) satisfies Assumption 2, (19)

Op(r̄T,L,α) if (Ψt) satisfies Assumption 3. (20)

(ii) Suppose that the estimator β̃1,t computed with the bandwidth H uses the estimator Ψ̂t

computed with the bandwidth L and both H,L satisfy (17). Assume that ΣΨzzΨ,t := Ψ′tΣzz,tΨt

has the property

max
t=1,...,T

||Σ−1
ΨzzΨ,t||sp ≤ ν <∞ a.s. (21)

where ν does not depend on T . Then,

max
t=1,...,T

||β̃1,t − βt|| =

{
Op(rT,H + rT,L) if (βt,Ψt) satisfy Assumption 2,(22)

Op(r̄T,H,α log1/α T + r̄T,L,α) if (βt,Ψt) satisfy Assumption 3.(23)

To analyze the asymptotic properties of the estimates β̃1,t and β̃2,t, we impose the following

assumptions on bandwidth parameters L ≥ H used in Ψ̂t, β̃1,t and β̃2,t. They guarantee that

rT,L = oP (H−1/2), r̄T,L,α = oP (H−1/2).

Assumption 4 The estimator Ψ̂t is computed with bandwidth L and β̃1,t and β̃2,t with band-

width H, which have the following properties.

If (βt,Ψt) satisfy Assumption 2, then H = o(L/ log T ), L = o(T 2/3).

If (βt,Ψt) satisfy Assumption 3, then H = o(L/(log T )max(1,4/α)), L = o(T 1/2).

Lemma 2 establishes the main term of the time-varying IV estimator β̃1,t and its equiva-

lence to β̃2,t and to the 2SLS estimator β̃3,t. Theorem 3 analyses convergence properties and

asymptotic distribution of the IV estimator β̃1,t. The proofs are reported in the Appendix.

Lemma 2 Suppose that the assumptions of Theorem 1(ii) are satisfied and Assumption 4

8



holds. Then, for any sequence t = tT ∈ 1, ..., T , as T →∞,

β̃1,t − βt =
( T∑
j=1

bH,|j−t|ΣΨzzΨ,j

)−1(
Ψ′t

T∑
j=1

bH,|j−t|zjuj

)
+ oP (H−1/2), (24)

β̃1,t − β̃2,t = op(H
−1/2), β̃1,t − β̃3,t = op(H

−1/2). (25)

To obtain the asymptotic normality of β̃1,t we will use the result (24). We assume for

simplicity that the variables zjuj are uncorrelated

E[zjujz
′
kuk] = 0, k 6= j (26)

and impose on the terms of (24) two additional standard assumptions: as T →∞,

K−1
t

T∑
j=1

bH,|j−t|ΣΨzzΨ,j →p ΣΨzzΨ,t, (27)

K
−1/2
2,t

T∑
j=1

bH,|j−t|zjuj →D N (0,Σzu,t) (28)

where Kt =
∑T

j=1 bH,|j−t|, K2,t =
∑T

j=1 b
2
H,|j−t| and Σzu,t = var(ztut) is the variance-covariance

matrix of ztut (which may vary with t). Convergence (27) holds under additional smoothness

conditions on the change of var(zt) similar to those in Assumption 2. Convergence (28) is

achieved by imposing standard additional mixing or martingale difference type assumptions

on the n×1 vector ztut. For the sake of brevity, we do not provide a more detailed analysis of

these convergence relations and the underlying assumptions, but refer the reader to previous

work and in particular Giraitis, Kapetanios, and Yates (2014), as well as Theorems 2.2 and

2.3 of Giraitis, Kapetanios, and Yates (2018) and their associated proofs. Denote ΣΨzuΨ,t =

Ψ′tΣzu,tΨt.

Theorem 3 Let assumptions of Theorem 1(ii) be satisfied and Assumption 4, (26), (27)

and (28) hold. Then, for any sequence t = tT ∈ 1, ..., T , β̃1,t has the following asymptotic

properties.

(i) If (βt,Ψt) are deterministic and satisfy Assumption 2, then

Kt

K
1/2
2,t

ΣΨzzΨ,t(β̃1,t − βt)→D N (0,ΣΨzuΨ,t). (29)

9



(ii) If (βt,Ψt) are random, satisfy Assumption 3, n = p, and Ψt are invertible, then

Kt

K
1/2
2,t

Ψ−1
t ΣΨzzΨ,t(β̃1,t − βt)→D N (0,Σzu,t). (30)

The normal approximations of Theorem 3 follow from the approximation (24) of Lemma 2

using (27) and (28). Note that we only report a straightforward asymptotic result for the case

n = p. Of course, convergence occurs for the more general case but then Ψt is not square, and

therefore, not invertible, and appears in the limiting distribution, making inference complex.

The above inference results can be operationalised by replacing unknown quantities with their

time varying estimates.

In her original work, Chen (2015) has introduced the idea of IV estimation and inference

for parameter stability in a time-varying setting. We refer to Chen’s paper for the background

literature and intuition behind the IV estimates. For deterministic parameters the main nov-

elty of our work is establishing uniform consistency rates under similar assumptions to Chen

(2015). However, we focus on estimation of the path of parameters βt, Ψt, t = 1, ..., T under

conditions on their increments rather then estimating functions β(t/T ), Ψt(t/T ). Imposing

smoothness conditions on βt, Chen (2015) obtains a slightly better optimal rate o(T 2/5) in

normal approximation than ours, o(T 1/3). Differently from Chen’s work, for simplicity, we

present asymptotic distribution only in the case of uncorrelated noise zjuj.

Our paper develops further the ideas of Chen (2015) by showing that time varying IV

estimation and inference can be applied to a large class of observables yt, xt and instrumental

variables zt. Our setting allows for stochastic time-varying persistent parameters βt, Ψt that

may be dependent on (xt, zt) and the noise (ut, vt). Consequently, a wide class of (non)

stationary processes yt and xt can be sufficiently well approximated by Ψ′tzt, xtβ
′
t so that

residual noises ut and vt can be expected to be standard mixing processes. Methodologically,

this justifies the use of IV estimation and the Hausman test we develop and present below,

in empirical work when it is not realistic to impose multiple restrictions on ut, vt and on

yt − ut, xt − vt. Such restrictions are not required in our work, except for the Hausman test

where, under the null hypothesis, we assume independence of (ut) from (yt − ut, xt − vt).

By introducing such an assumption we aim at simplifying the derivation of the asymptotic

distribution of the Hausman type test, which makes it attractive for empirical work. We

develop a local test for exogeneity at the point t and a uniform test for exogeneity over period

(T0, T1].

In Theorem 4 we obtain an asymptotic approximation for the OLS estimator β̂t, which

is used for the time-varying version of the Hausman test. In the first part of the theorem,
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we derive a generic approximation for β̂t − β̃1,t that is valid irrespectively of whether xj is

exogenous or endogenous, i.e. when Evjuj 6= 0 or Evjuj = 0. In the second part of the theorem

we derive asymptotic normality for the difference β̂t − β̃1,t of the OLS and IV estimates β̂t

and β̃1,t when xt are exogenous variables. For simplicity, we assume that the variables uj are

independent.

Assumption 5 (i) (ut) are independent random variables, Eut = 0, Eu2
t = σ2

u,t,

(ii) (ut) and (xt, xt − vt) are mutually independent,

(iii) the elements of Σvv,t and σ2
u,t satisfy Assumption 2, σ2

u,t + σ−2
u,t is bounded,

(iv) for endogenous xj, E[vjuj] satisfies Assumption 2.

The next theorem focuses on testing for xt being exogenous, in settings relevant to applied

work. It allows unrestricted mutual dependence of {βt, Ψt, xt, vt}.
Set Sxx,t = K−1

t

∑T
j=1 bH,|j−t|xjx

′
j, Sx̂x̂,t = K−1

t

∑T
j=1 bH,|j−t|x̂jx̂

′
j, x̂j = Ψ̂jzj, Σxx,t = Ψ′tE[ztz

′]Ψt+

E[vtv
′
t]. Denote

VT,t = (Sx̂x̂,t)
1/2(Sxx,t)

1/2(β̂t − β̃1,t), (31)

HT0,T1 =
1√

T1 − T0

T1∑
t=T0+1

KtK
−1
T σ−1

u,tΣ
−1/2
vv,t VT,t, 0 ≤ T0 < T1 ≤ T. (32)

The Hausman type statistic VT,t can be used for testing the null hypothesis H0 : E[vtut] = 0

that xj is exogenous at time t while HT0,T1 tests the global null hypothesis H0 : E[vtut] =

0, t = T0 + 1, ..., T1 that xj is exogenous over the period t ∈ (T0, T1].

Theorem 4 Let Assumption 1 hold, (βt,Ψt) satisfy either Assumption 2 or Assumption 3, L

satisfy (17) and

c1T
e ≤ H ≤ c2T

1−e (33)

for some small 0 < e < 1 and c1, c2 > 0

Then, for any sequence t = tT ∈ 1, ..., T , the following holds.

(i) For endogenous xj, under Assumption 5 (iii)-(iv):

VT,t = (1− Σvv,tΣ
−1
xx,t)

1/2E[vtut] + op(1). (34)

(ii) For exogenous xj, assume that (uj) satisfy Assumption 5, H = o(T 2/3) if Assumption

11



2 holds and H = o(T 1/2) if Assumption 3 holds. Then

KtK
−1/2
2,t σ−1

u,tΣ
−1/2
vv,t VT,t →D N (0, I). (35)

If in addition T̃ = T1 − T0, H are such that H = o(T̃ ), H = o(T/T̃ 1/2) if Assumption 2

holds and H = o(T/T̃ ) if Assumption 3 holds, then

HT0,T1 →D N (0, I). (36)

For endogenous xt, when E[vtut] 6= 0, the local statistic at time t diverges at the rate
√
H

while the statistic over period (T0, T1] at the rate
√
T1 − T0 >

√
H. For (T0, T1] = [1, T ],

(36) requires H = o(T 1/2) under Assumption 2. If parameters are stochastic, (36) requires

T1 − T0 = o(T ).

Properties (35) and (36) remain valid for VT,t, HT0,T1 with β̃1,t replaced by the 2SLS

estimator β̃3,t, if Assumption 4 on H,L is also imposed. Hence, when testing for xj being

exogenous, the use of β̃1,t has some theoretical advantages. The proof of Theorem 4 is relegated

to an Online Supplement.

A common formulation of the Hausman (1978) test is as a quadratic form in the difference

between the (time-varying in our case) OLS and IV estimators. Theorem 4 can be used to

derive the (pointwise and uniform) asymptotic distribution of this version of the time-varying

Hausman test. In particular, if Σ−1
v,t exists, then (35) implies that

K2
t

K2,t

V ′T,tΣ̂
−1
v̂v̂,tVT,tσ̂

−2
û,t →D χ2

p, (37)

because the estimate Σ̂v̂v̂,t := K−1
t

∑T
j=1 bH,|j−t|v̂j v̂

′
j and σ̂2

û,t := K−1
t

∑T
j=1 bH,|j−t|û

2
j based on

residuals ûj = yj − x′jβ̃1,j, v̂j = xj − Ψ̂′jxj have the property Σ̂v̂v̂,t →p Σvv,t, σ̂
2
û,t →p σ

2
u,t.

The correspondingly modified statistic HT0,T1 has property

H′T0,T1HT0,T1 →D χ2
p. (38)

Of course, all the usual statistics related to IV estimation can be generalised to the time-

varying case. For example, a time-varying version of the J-test statistic is given by

Jt =
Kt

K2,t

1

σ̂2
t̂

( T∑
j=1

bH,|j−t|z
′
jûj
)( T∑

j=1

bH,|j−t|zjz
′
j

)−1( T∑
j=1

bH,|j−t|zjûj
)
. (39)
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It can be easily shown that, for each t, Jt follows asymptotically a χ2
p distribution, under the

null hypothesis of valid overidentifying restrictions. Obtaining a test for exogeneity based

on maxt∈[T0,T1] |VT,t| in line with Chen and Hong (2012) test for parameter stability is an

interesting open problem.

3 Monte Carlo study

In this Section we evaluate the finite sample performance of the time-varying IV estimators

β̃1,t, β̃2,t, the OLS estimator β̂t and the time-varying Hausman test.

As data generating process (DGP), we consider model (1) and (2). Our baseline case is

the exactly identified model, i.e. n = p = 1:

yt = βtxt + ut, xt = ψtzt + vt, t = 1, ..., T. (40)

We introduce correlation between ut and vt by specifying them as

ut = se1,t + (1− s)e2,t, vt = se1,t + (1− s)e3,t, (41)

where s = 0, 0.2, 0.5 and (e1,t), (e2,t) and (e3,t) are mutually independent NIID(0, 1) se-

quences.

The parameters βt = T−1/2ξ1,t , ψt = T−1/2ξ2,t, t = 1, ..., T are generated as two indepen-

dent rescaled random walks, such that ξ`,t − ξ`,t−1 ∼ NIID(0, 1) for ` = 1, 2. This implies

that both the structural and the reduced form regressions have time-varying coefficients. We

assume that (zt) is a sequence of standard normal i.i.d. random variables independent of (ψt),

(ut) and (vt). Exogeneity of xt is implied by s = 0, while for s = 0.2, 0.5, xt is endogenous. The

magnitude of s provides a means for controlling the extent of endogeneity. We also consider

the same set of experiments for an overidentified case where

yt = βtxt + ut, xt = ψ1,tz1,t + ψ2,tz2,t + vt, t = 1, ..., T, (42)

where (ψ1,t) and (z1,t) have the same specification as (ψt) and (zt), ψ2,t = T−1/2ξ3,t, t = 1, ..., T ,

where ξ3,t − ξ3,t−1 ∼ NIID(0, 1), and (z2,t) is a sequence of standard normal i.i.d. random

variables.

We consider three estimators of β: time-varying β̂t (OLS), time-varying β̃1,t and β̃2,t (IV).

They are computed using the Gaussian kernel K(x) = exp(−x2/2) with a variety of bandwidth

values H for estimation of βt and L for ψt. Specifically, we set H = T h1 and L = T h2
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with h1, h2 = 0.4 and 0.5. In an appendix we also report results for 0.7. Lower values for

the bandwidth increase robustness of estimates to parameter changes but decrease efficiency,

and it is interesting to evaluate the trade-off. Further, we consider four sample sizes: T =

100, 200, 400, 1000.

Next, we proceed with a detailed Monte Carlo analysis, based on 1000 Monte Carlo replica-

tions. To assess the performance of our estimators, we use a variety of performance indicators

that are of relevance for IV regression, where estimator variances may not be finite in small

samples. We consider the following measures of performance: average over all the replications

of the median deviation and of the absolute median deviation

p−1

p∑
r=1

medt=1,...,T (β̃r,t − βr,t), p−1

p∑
r=1

medt=1,...,T |β̃r,t − βr,t|, p = 1000,

average over all the periods of the interdecile range and of the 95% coverage rates

T−1
∑T

t=1(β̃t,90% − β̃t,10%), T−1
∑T

t=1 covert,

where β̃t,x% denotes the x-th quantile of the empirical distribution of β̃t obtained via Monte

Carlo simulations and covert is the estimated probability that βt lies in the interval (β̃t −
1.96 ∗ std(β̃t), β̃t + 1.96 ∗ std(β̃t) where std(β̃t) is computed using results from the asymptotic

distribution of β̃t. Tables 1-6 report values of these four measures of performance for all

experiments. The first three tables relate to the exactly identified case, while the last three

present results for the overidentified case.

For the Hausman test, comparing β̂t and β̃1,t, Table 7 reports rejection probabilities for

the just-identified case for the middle point t = T/2 which is representative as in the DGP

there are no changes of endogeneity status. Table 8 focuses instead on the global Hausman

test (calculated over the interval (T0, T1) = (5, T − 5)) for the just-identified case.

Based on Tables 1-3, a number of comments can be made. First, starting with Table 1

where xt is exogenous (s = 0), the median deviations of all the three estimators are very

similar and all close to zero. In terms of median absolute deviations, β̂t is the best performer

(as it is indeed best in this context) while β̃1,t and β̃2,t are comparable. In all cases the reported

values are rather small and decrease when the sample size T increases. About the bandwidth

parameters H = T h1 , L = T h2 , typically values around 0.5 for both h1 and h2 yield the lowest

values of criteria. However, the differences of those values are rather small unless T is very

large (T = 1000). Moving to the interdecile range, for β̂t the key parameters are H = T h1

and T (as β̂t does not depend on L). Higher values of h1 generally shorten the ranges, while
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T has little effect. The effects of H = T h1 and T on β̃2,t are similar to those on β̂t, as β̃2,t

does not dependent on ψt when n = p = 1. However, the interdecile ranges are systematically

larger for β̃2,t than for β̂t, which is expected with β̂t being appropriate in this context. For

β̃1,t, it turns out that L = T h2 matters more than H = T h1 , and larger values for h2 shorten

the interdecile range substantially, for any value of h1. However, the coverage ranges also

diminish substantially when h2 increases, so that intermediate values 0.5 for h1 and h2 appear

as a reasonable choice. A similar comment also applies for β̃2,t and β̂t, as in their case the

coverage rates decrease when H = T h1 increases.

Second, the effects of endogeneity on the time-varying OLS estimator β̂t are substantial,

the more so the stronger the correlation of xt with the error term. From Tables 2 (s = 0.2)

and 3 (s = 0.5), the median deviation of β̂t increases substantially, while that of β̃1,t and β̃2,t

is much less affected. A similar comment applies for the absolute median deviation and the

coverage rates, while the interdecile ranges are not substantially affected. These results stress

the importance of using a time-varying IV estimator in the presence of endogeneity.

Moving on to the overidentified case, presented in Tables 4-6, we see that our main conclu-

sions remain largely unaffected. One clear difference is that coverage rates worsen somewhat,

compared to the exactly identified case.

Table 7 reports size and power of the time-varying Hausman test for the just-identified

case, constructed using β̃1,t, for various values of H = T h1 and L = T h2 . From the panel with

s = 0, where the null hypothesis of exogeneity is valid and the size of the test is reported, it

turns out that size distortions can be sizable, even for very large T. However, intermediate

values of h1 and h2 reduce the size distortions, with actual size close to the nominal one when

h1 = 0.4, h2 = 0.5. In terms of power, it increases with s and with T , but it remains rather

low when h1 = 0.4, h2 = 0.5. Finally, in Table 8 we present the size and power for the global

Hausman test setting T0 = 5 and T1 = T − 5. Clearly, it seems to behave as expected both

under the null and the alternative hypothesis2.

4 Empirical Application

In this section we illustrate the use of time-varying IV with an empirical application. We

estimate a version of the traditional Phillips curve that links inflation to unemployment,

2We have also computed simulations for higher values of the bandwidth parameters. The results are
reported in the Online Supplement, where Tables 9-14 are the counterpart of Tables 1-6, and Tables 15-16 of
Tables 7-8. In general, the results are as expected, in the sense that the average median deviation is higher
and the coverage rate lower, while the decile range is lower. Hence, we get more efficiency but also more bias.
For the time-varying Hausman test, in general the size distortions increase, while for the uniform Hausman
test the size gets closer to nominal but the power decreases.
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based on the idea that lower unemployment leads to higher wages, costs, prices and hence

inflation. The main goal is to understand whether unemployment is indeed significant, it is

endogenous, and there were changes in these two features over time.

We use monthly data for the USA over the period 1959-2013 and, due to their high

persistence, we use the change in inflation (∆π) as dependent variable and the change in

unemployment (∆u) as explanatory variable (together with one lag of the change in inflation).

Our instruments are four lags of the change in unemployment and one lag of the change in

inflation. The model is:

∆πt = c+ γ∆πt−1 + α∆ut + et, (43)

where et is a white noise error term.

We compare the results of time-varying OLS and IV estimation. As time-varying IV

estimators, we report results for β̃1,t with a Gaussian kernel, and H = L = T 0.7 in order

to estimate the parameters in each time period with a large enough number of observations

(about 90).

Before proceeding, it is worth noting that an LM test for serial correlation with 4 lags

fails to reject the null hypothesis that there is no serial correlation in the residuals of the

time-varying IV model. Figure 1 provides the results for this model. The upper panel of

Figure 1 graphs γ̂t and γ̃1,t, with the associated 90% confidence bands. It turns out that the

estimators are similar and feature a substantial amount of time-variation. The estimated γ

parameter is in the interval [0, 0.5], it increases steadily from the ’60s until the mid ’80s, then

decreases until the late ’90s and then increases again. Moreover, the estimated parameter is

statistically significant in all the periods after the early ’70s. The average value over time for

γ̂t is 0.28, which is comparable to the full sample constant parameter OLS value, about 0.36.

The middle panel of Figure 1 graphs α̂t and α̃1,t, with the associated asymptotic 90%

confidence bands. The time-varying IV estimator is now quite different from the time-varying

OLS, α̂t. Specifically, α̃1,t returns lower values for α in each time period, in the interval

[−1.2,−0.4] versus [−0.4, 0] for α̂t. The average values over time for α̂t and α̃1,t are about

−0.15 and −0.71 respectively, which are comparable to the full sample constant parameters

OLS and TSLS values, about −0.18 and −0.93, respectively. Naturally, the confidence inter-

vals are larger for time-varying IV than for time-varying OLS. Yet, the TV-IV estimator for

α is statistically significant over most of the sample period, while TV-OLS only from the late

’70s to the late ’80s. Interestingly from an economic point of view, both time-varying OLS

and IV indicate that α is no longer statistically significant in the most recent period, so that

the continued decreases in the unemployment rate should not lead to a pick-up in inflation

(which indeed is what happened).
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The lower panel of Figure 1 graphs the p-value of the time-varying Hausman test. Taking

0.10 as the significance level, the test rejects the null hypothesis of exogeneity from the mid-60s

until the late ’70s. Probability values again decline considerably for a few years around 2000.

From the upper panel of Figure 1, these are indeed the periods when the time-varying OLS

and IV estimators for α deviate most. However, from the Monte Carlo experiment we know

that the finite sample power of the Hausman test is rather limited, so that exogeneity is likely

absent for longer periods, although we also note that for the choice of bandwidth we consider,

the size of the test is also likely to suffer. The global Hausman test rejects exogeneity at the

5% level, the p-value is 0.013.

Given the above, as a robustness check, we repeat the analysis using H = L = T 0.5, which

were the preferred values from the Monte Carlo analysis, even if in our empirical application

this value for the bandwidth brings down the number of effective observations to estimate

the parameters in each time period from about 90 to 25 and hence we expect a substantial

increase in uncertainty. The results, reported in Figure 2, are indeed similar to those discussed

above except that, as expected, there is a substantial increase in the uncertainty around the

time-varying IV estimator, which makes the Hausman test reject in even fewer time periods

than before. Yet, the global test still rejects, the p-value is 0.026.

As an additional robustness check, we now estimate a forward looking (New-Keynesian)

Phillips curve, along the lines of Gali and Gertler (2008) . The New-Keynesian Phillips curve

is specified as:

∆πt = c+ ρ∆πet+1 + γ∆πt−1 + α∆ut + vt, (44)

which can be also written as

∆πt = c+ ρ∆πt+1 + γ∆πt−1 + α∆ut + εt, (45)

where εt = ρ(∆πet+1 − ∆πt+1) + vt, ∆πet+1 is the optimal one-step ahead forecast of ∆πt+1

made in period t, and vt is an i.i.d. error, uncorrelated at all leads and lags with the forecast

error (∆πt − ∆πet ). It is clear that ∆πt+1 is correlated with the error term εt, the more

so the less good is the forecast, so that IV is needed. We experiment with the same time-

varying IV estimator as above, using four lags of the change in unemployment and inflation

as instruments, a Gaussian kernel, and H = L = T 0.7. For comparison, we also compute the

time-varying OLS estimator.

Figure 3 reports the alternative estimators for, respectively, γ, α and ρ. Looking at the

first panel of Figure 3, the time-varying OLS estimator for γ is pretty similar to that reported

in Figure 1, both in terms of temporal evolution and of values (note that the scales of the two
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figures are different). The time-varying IV estimator is also pretty similar, except for a period

around the mid 70s. It has also a larger variability than in the backward looking case, such

that the time-varying OLS confidence intervals are always within those for the time-varying

IV. This finding is also true for ρ, see third panel of Figure 3. The same panel of Figure

3 also shows that the time-varying OLS estimator for ρ is statistically significant, while the

time-varying IV estimator does not indicate significance of ρ, while it pointed to statistical

significance of γ, at least since the mid ’70s (see upper panel of Figure 3).

In terms of the coefficient of the change in unemployment, α, according to the second

panel of Figure 3 it is close to zero when estimated by time-varying OLS, and never statisti-

cally significant, except for a short period in the early ’80s. The time-varying IV estimator

instead suggests substantially negative values for α but, due to the increased variability of

the estimator, only significantly different from zero until the late ’70s. Taking again a 10%

significant value, the time-varying Hausman test, reported in the lowest panel of Figure 3,

rejects exogeneity until the late ’70s and again around the mid 90’s. The p-value of the global

Hausman test is however larger than for the backward looking specifications, 0.155.

In summary, this simple but economically interesting empirical application highlights the

relevance of allowing for parameter time variation in an IV setting. In particular, there is a

varying but sizable impact of the change of unemployment on the change of inflation, though

the estimated parameter shrinks substantially in the final part of the sample, till it becomes

not statistically significant. The exogeneity status of unemployment seems to also vary over

time according to the time-varying Hausman test, and exogeneity is clearly rejected at the

10% level in the ’70s.

5 Conclusions

Instrumental variable regression is extensively applied in econometric studies but the param-

eters are typically assumed stable over time (or across units). However, the vast literature on

structural change has highlighted that parameter instability is diffuse. Hence, in this paper we

introduce time-varying IV estimators, taking a non-parametric approach in order to remain

as agnostic as possible on the type of parameter evolution.

We derive asymptotic distributions for two time-varying, kernel based, IV estimators,

which turn out to be asymptotically equivalent. We also derive the asymptotic distribution

of time-varying and uniform versions of the Hausman exogeneity test, which compares time-

varying OLS and IV estimators, possibly also allowing for changes in the endogeneity status

of the regressors over time.

18



Next, we evaluate the finite sample properties of the alternative estimators and size and

power of the time-varying and uniform Hausman tests in an extensive Monte Carlo study. The

results show that the finite sample bias of the estimators is small, the variability limited and

the capacity to recover the temporal evolution of the parameters substantial. However, the

time-varying Hausman test has rather low power, while the uniform Hausman test performs

better, for the same extent of endogeneity.

Finally, to illustrate in practice the use of time-varying IV, we estimate a simple Phillips

Curve for the USA, using unemployment as a forcing variable for inflation. We find substantial

fluctuations in the coefficient of unemployment, which remains negative over the entire sample

but less so in the most recent period. Moreover, the time-varying Hausman test suggests that

unemployment was endogenous until the end of the ’70s and for a few years around 2000,

while exogeneity cannot be rejected in the most recent period and indeed the time-varying IV

estimators get closer to time-varying OLS.

References

Antoine, B., and O. Boldea (2018): “Efficient inference with time-varying information

and the New Keynesian Phillips curve,” Journal of Econometrics, 204(3), 268–300.

Bai, J., and P. Perron (1998): “Estimating and testing linear models with multiple struc-

tural changes,” Econometrica, 66(1), 47–78.

Boldea, O., and A. R. Hall (2013): “Estimation and Inference in Unstable Nonlinear

Least Squares Models,” Journal of Econometrics, 172, 158–167.

Brown, R. L., J. Durbin, and J. M. Evans (1974): “Techniques for testing the constancy

of regression relationships over time,” Journal of the Royal Statistical Association, Series

A, 138, 149–163.

Chen, B. (2015): “Modeling and testing smooth structural changes with endogenous regres-

sors,” Journal of Econometrics, 185, 196–215.

Chen, B., and Y. Hong (2012): “Testing for Smooth Structural Changes in Time Series

Models via Nonparametric Regression,” Econometrica, 80(3), 1157–1183.

Chow, A. (1960): “Tests of equality between sets of coefficients in two linear regressions,”

Econometrica, 28, 591–605.

19



Cogley, T., and T. J. Sargent (2005): “Drifts and volatilities: monetary policies and

outcomes in the post WWII US,” Review of Economic Dynamics, 8, 262–302.

Dahlhaus, R. (1997): “Fitting time series models to nonstationary processes,” Annals of

Statistics, 25, 1–37.

Dendramis, Y., L. Giraitis, and G. Kapetanios (2018): “Estimation of time-varying

covaraince matrices for large data sets,” Preprint.

Gali, J., and M. Gertler (2008): “Inflation Dynamics: A structural econometric ap-

proach,” Journal of Monetary Economics, 44, 195–222.

Giraitis, L., G. Kapetanios, and T. Yates (2014): “Inference on stochastic time-varying

coefficient models,” Journal of Econometrics, 179, 46–65.

(2018): “Inference on multivariate heteroscedastic time varying random coefficient

models,” Journal of Time Series Analysis, 39(2), 129–149.

Hall, A. R., S. Han, and O. Boldea (2012): “Inference regarding multiple structural

changes in linear models with endogenous regressors,” Journal of Econometrics, 170, 281–

302.

Hamilton, J. D. (1989): “A new approach to the economic analysis of nonstationary time

series and the business cycle,” Econometrica, 57(2), 357–384.

Kapetanios, G., and E. Tzavalis (2010): “Modeling structural breaks in economic rela-

tionships using large shocks,” Journal of Economic Dynamics and Control, 34, 417–436.

Kapetanios, G., and T. Yates (2008): “An analysis of inflation persistence and the Great

Moderation using a model of deterministic structural change,” Mimeo, Bank of England.

Muller, U. K., and P. M. Petalas (2010): “Efficient estimation of the parameter path

in unstable time series models,” Review of Economic Studies, 77, 1508–1539.

Muller, U. K., and M. W. Watson (2008): “Testing models of low-frequency variability,”

Econometrica, 76, 979–1016.

Nyblom, J. (1989): “Testing for constancy of parameters over time,” Journal of the American

Statistical Association, 72, 223–230.

Ploberger, W., and W. Kramer (1992): “The CUSUM test with OLS residuals,” Econo-

metrica, 60, 271–285.

20



Priestley, M. (1965): “Evolutionary spectra and nonstationary processes,” Journal of Royal

Statistical Society, Series B, 27, 204–237.

Primiceri, G. (2005): “Time varying structural vector autoregressions and monetary policy,”

Review of Economic Studies, 72, 821–852.

Robinson, P. M. (1989): “Nonparametric estimation of time varying parameters,” in Eco-

nomic Structural Change: Analysis and Forecasting, ed. by P. Hackl, pp. 253–264. Springer

Berlin.

(1991): “Time varying nonlinear regression,” in Economic Structural Change: Anal-

ysis and Forecasting, ed. by P. Hackl, pp. 179–190. Springer Berlin.

Stock, J., and M. Watson (1989): “Phillips Curve Inflation Forecasts,” in Understanding

Inflation and the Implications for Monetary Policy, a Phillips Curve Retrospective, ed. by

F. R. B. of Boston. Federal Reserve Bank of Boston.

Terasvirta, T. (1998): “Modelling economic relationships with smooth transition regres-

sions,” in Handbook of Applied Economic Statistics, ed. by A. Ullah, and D. E. A. Giles, pp.

507–552. Marcel Dekker.

Tong, H. (1990): Non-linear Time Series: A Dynamical System Approach. Oxford University

Press.

21



Figure 1: Empirical results for model (43). The first two panels graph OLS and IV estimates
of γ and α respectively. The third panel graphs the p-value of the time-varying Hausman test.
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Figure 2: Robustness check for model (43) using H = L = T 0.5. The first two panels graph
OLS and IV estimates of γ and α respectively. The third panel graphs the p-value of the
time-varying Hausman test.
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Figure 3: Empirical results for model (45). The first three panels graph OLS and IV estimates
of γ, α and ρ respectively. The fourth panel graphs the p-value of the time-varying Hausman
test.
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Table 1: Performance of estimators β̂t, β̃1,t and β̃2,t for the model (40)-(41) with exogenous
xt: s = 0, H = T h1 , L = T h2 .

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.4 100 -0.000 0.000 -0.001 0.200 0.296 0.347 1.353 1.766 2.656 0.815 0.899 0.956

0.4 200 0.003 -0.004 -0.002 0.168 0.260 0.298 1.382 1.728 2.424 0.830 0.910 0.964
0.4 400 0.004 0.003 0.003 0.141 0.219 0.244 1.368 1.676 2.166 0.834 0.907 0.966
0.4 1000 0.001 -0.000 -0.001 0.112 0.177 0.193 1.382 1.633 1.957 0.850 0.913 0.969
0.5 100 0.001 0.004 0.002 0.198 0.267 0.344 1.361 1.414 2.691 0.821 0.830 0.958
0.5 200 -0.001 -0.000 -0.001 0.167 0.231 0.294 1.367 1.442 2.429 0.832 0.828 0.963
0.5 400 0.000 0.002 0.004 0.142 0.197 0.248 1.376 1.441 2.203 0.836 0.826 0.968
0.5 1000 -0.001 0.002 0.002 0.113 0.159 0.195 1.405 1.455 2.016 0.852 0.818 0.972

0.5 0.4 100 -0.000 0.000 -0.000 0.201 0.322 0.333 1.186 2.202 2.474 0.731 0.937 0.924
0.4 200 -0.000 -0.005 -0.005 0.168 0.274 0.272 1.246 2.060 2.228 0.734 0.946 0.922
0.4 400 0.000 -0.001 -0.001 0.143 0.233 0.227 1.293 1.926 1.943 0.730 0.953 0.930
0.4 1000 -0.001 -0.001 -0.000 0.115 0.192 0.182 1.289 1.830 1.768 0.727 0.959 0.930
0.5 100 -0.001 -0.001 0.001 0.199 0.287 0.329 1.213 1.555 2.468 0.737 0.855 0.926
0.5 200 0.000 -0.000 0.000 0.169 0.247 0.281 1.247 1.516 2.216 0.731 0.852 0.926
0.5 400 0.001 0.001 0.000 0.143 0.205 0.225 1.339 1.531 1.941 0.725 0.839 0.926
0.5 1000 0.000 -0.000 -0.001 0.115 0.165 0.179 1.296 1.478 1.760 0.722 0.836 0.928

Table 2: Performance of estimators β̂t, β̃1,t and β̃2,t for the model (40)-(41) with s = 0.2.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.4 100 0.018 -0.001 -0.003 0.174 0.199 0.208 1.280 1.354 1.455 0.760 0.806 0.839

0.4 200 0.019 0.003 0.001 0.145 0.167 0.173 1.322 1.386 1.452 0.775 0.818 0.843
0.4 400 0.020 0.001 -0.001 0.123 0.142 0.146 1.363 1.416 1.467 0.777 0.820 0.841
0.4 1000 0.021 0.003 0.002 0.098 0.113 0.115 1.376 1.415 1.444 0.794 0.833 0.849
0.5 100 0.021 0.004 0.002 0.174 0.203 0.209 1.328 1.224 1.508 0.765 0.715 0.844
0.5 200 0.020 0.005 0.003 0.144 0.171 0.171 1.313 1.252 1.435 0.773 0.698 0.842
0.5 400 0.020 0.002 -0.000 0.123 0.147 0.144 1.360 1.328 1.453 0.776 0.690 0.837
0.5 1000 0.020 0.002 0.001 0.098 0.119 0.115 1.391 1.353 1.460 0.793 0.690 0.849

0.5 0.4 100 0.020 -0.002 -0.002 0.185 0.206 0.216 1.162 1.423 1.319 0.655 0.829 0.765
0.4 200 0.019 0.002 0.001 0.156 0.174 0.182 1.249 1.458 1.364 0.652 0.836 0.757
0.4 400 0.020 0.001 0.001 0.134 0.144 0.150 1.253 1.407 1.327 0.642 0.838 0.740
0.4 1000 0.021 -0.000 -0.001 0.108 0.116 0.121 1.310 1.433 1.361 0.635 0.855 0.729
0.5 100 0.020 0.002 0.002 0.184 0.209 0.215 1.157 1.214 1.324 0.654 0.723 0.766
0.5 200 0.021 0.004 0.003 0.158 0.176 0.180 1.245 1.287 1.356 0.648 0.717 0.753
0.5 400 0.021 0.001 0.000 0.134 0.150 0.152 1.305 1.330 1.368 0.642 0.711 0.744
0.5 1000 0.020 0.001 0.001 0.108 0.119 0.120 1.314 1.336 1.355 0.626 0.697 0.722
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Table 3: Performance of estimators β̂t, β̃1,t and β̃2,t for the model (40)-(41) with s = 0.5.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.4 100 0.143 0.034 0.022 0.203 0.187 0.193 1.286 1.326 1.408 0.631 0.771 0.807

0.4 200 0.141 0.022 0.012 0.182 0.157 0.161 1.323 1.355 1.407 0.603 0.783 0.813
0.4 400 0.145 0.019 0.011 0.170 0.133 0.135 1.362 1.377 1.412 0.557 0.792 0.817
0.4 1000 0.141 0.012 0.007 0.155 0.105 0.106 1.381 1.402 1.422 0.497 0.806 0.824
0.5 100 0.147 0.043 0.026 0.203 0.199 0.195 1.320 1.200 1.460 0.631 0.659 0.812
0.5 200 0.148 0.030 0.014 0.186 0.168 0.163 1.314 1.248 1.417 0.602 0.663 0.818
0.5 400 0.141 0.023 0.012 0.168 0.143 0.134 1.365 1.310 1.427 0.558 0.649 0.813
0.5 1000 0.139 0.014 0.005 0.154 0.114 0.106 1.408 1.365 1.448 0.497 0.646 0.822

0.5 0.4 100 0.149 0.024 0.017 0.221 0.196 0.208 1.135 1.360 1.267 0.515 0.795 0.724
0.4 200 0.151 0.017 0.013 0.201 0.163 0.172 1.238 1.380 1.299 0.467 0.808 0.718
0.4 400 0.147 0.009 0.006 0.185 0.136 0.146 1.324 1.440 1.372 0.417 0.815 0.706
0.4 1000 0.148 0.006 0.004 0.171 0.107 0.116 1.320 1.407 1.345 0.334 0.827 0.689
0.5 100 0.147 0.020 0.010 0.220 0.201 0.207 1.144 1.183 1.273 0.514 0.681 0.728
0.5 200 0.147 0.017 0.011 0.199 0.170 0.173 1.244 1.252 1.299 0.473 0.676 0.716
0.5 400 0.150 0.011 0.006 0.186 0.145 0.146 1.270 1.280 1.311 0.414 0.674 0.707
0.5 1000 0.144 0.007 0.004 0.168 0.115 0.115 1.289 1.297 1.314 0.338 0.659 0.684

Table 4: Performance of estimators β̂t, β̃1,t and β̃2,t in the overidentified case for the model
(41)-(42) with exogenous xt, s = 0, H = T h1 , L = T h2 .

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.4 100 -0.001 0.000 0.001 0.181 0.215 0.228 1.316 1.414 1.538 0.788 0.839 0.872

0.4 200 -0.001 0.000 0.001 0.154 0.185 0.193 1.359 1.444 1.540 0.802 0.849 0.876
0.4 400 0.001 0.001 0.001 0.128 0.154 0.160 1.366 1.442 1.505 0.804 0.847 0.869
0.4 1000 0.001 0.001 0.001 0.101 0.124 0.127 1.378 1.436 1.474 0.820 0.858 0.876
0.5 100 0.001 0.003 0.003 0.185 0.217 0.233 1.332 1.231 1.568 0.785 0.744 0.871
0.5 200 -0.001 -0.000 -0.001 0.153 0.184 0.195 1.316 1.265 1.512 0.797 0.745 0.872
0.5 400 -0.001 0.001 0.000 0.128 0.156 0.163 1.337 1.303 1.478 0.806 0.743 0.875
0.5 1000 -0.001 0.001 0.000 0.101 0.124 0.127 1.380 1.352 1.479 0.819 0.734 0.875

0.5 0.4 100 -0.007 -0.005 -0.006 0.190 0.229 0.233 1.182 1.506 1.393 0.682 0.857 0.804
0.4 200 0.000 -0.000 0.000 0.159 0.189 0.190 1.270 1.509 1.408 0.684 0.866 0.794
0.4 400 -0.001 0.001 -0.000 0.136 0.160 0.162 1.287 1.470 1.383 0.676 0.869 0.784
0.4 1000 0.001 0.001 0.000 0.110 0.127 0.129 1.297 1.441 1.363 0.669 0.878 0.769
0.5 100 -0.001 -0.007 -0.006 0.191 0.221 0.232 1.172 1.250 1.386 0.685 0.762 0.806
0.5 200 0.003 0.004 0.004 0.159 0.184 0.190 1.245 1.312 1.392 0.683 0.758 0.795
0.5 400 -0.001 -0.000 -0.001 0.136 0.158 0.162 1.293 1.329 1.377 0.677 0.754 0.787
0.5 1000 -0.001 -0.000 -0.000 0.109 0.127 0.128 1.288 1.325 1.355 0.670 0.745 0.770
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Table 5: Performance of estimators β̂t, β̃1,t and β̃2,t in the overidentified case for the model
(41) - (42) with s = 0.2.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.4 100 0.032 0.008 0.002 0.192 0.272 0.314 1.356 1.677 2.490 0.808 0.883 0.943

0.4 200 0.032 0.003 0.000 0.162 0.230 0.257 1.362 1.640 2.180 0.810 0.885 0.948
0.4 400 0.029 -0.002 -0.003 0.137 0.196 0.216 1.339 1.586 1.985 0.820 0.891 0.953
0.4 1000 0.033 0.004 0.002 0.111 0.159 0.171 1.366 1.576 1.843 0.828 0.895 0.959
0.5 100 0.031 0.004 -0.001 0.193 0.252 0.309 1.351 1.335 2.497 0.802 0.808 0.950
0.5 200 0.032 0.007 0.002 0.163 0.215 0.260 1.332 1.370 2.135 0.814 0.793 0.953
0.5 400 0.031 0.006 0.003 0.137 0.182 0.214 1.386 1.431 2.018 0.817 0.790 0.952
0.5 1000 0.033 0.006 0.003 0.112 0.149 0.173 1.388 1.415 1.853 0.830 0.790 0.965

0.5 0.4 100 0.030 0.004 0.004 0.197 0.288 0.302 1.192 2.022 2.156 0.708 0.917 0.898
0.4 200 0.031 -0.000 -0.002 0.169 0.245 0.249 1.256 1.900 1.981 0.703 0.927 0.905
0.4 400 0.030 0.000 0.000 0.143 0.209 0.211 1.292 1.817 1.819 0.702 0.935 0.905
0.4 1000 0.032 0.001 -0.000 0.116 0.168 0.165 1.341 1.750 1.683 0.690 0.945 0.907
0.5 100 0.029 0.001 0.000 0.198 0.265 0.301 1.163 1.439 2.152 0.711 0.827 0.905
0.5 200 0.034 0.009 0.007 0.169 0.233 0.258 1.268 1.489 2.021 0.709 0.819 0.909
0.5 400 0.033 0.004 0.002 0.143 0.190 0.206 1.286 1.451 1.778 0.701 0.809 0.908
0.5 1000 0.032 0.000 -0.001 0.116 0.152 0.161 1.324 1.453 1.665 0.688 0.799 0.906

Table 6: Performance of estimators β̂t, β̃1,t and β̃2,t in the overidentified case for the model
(41)-(42) with s = 0.5.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.4 100 0.249 0.040 0.020 0.279 0.253 0.283 1.331 1.594 2.267 0.581 0.856 0.934

0.4 200 0.249 0.033 0.017 0.267 0.212 0.234 1.371 1.565 2.043 0.527 0.862 0.940
0.4 400 0.253 0.024 0.010 0.264 0.181 0.196 1.357 1.523 1.865 0.452 0.866 0.943
0.4 1000 0.246 0.015 0.005 0.252 0.144 0.153 1.375 1.524 1.734 0.365 0.872 0.951
0.5 100 0.245 0.052 0.023 0.276 0.245 0.281 1.327 1.298 2.184 0.579 0.750 0.931
0.5 200 0.249 0.043 0.017 0.267 0.206 0.235 1.380 1.371 2.034 0.525 0.754 0.939
0.5 400 0.248 0.034 0.014 0.260 0.176 0.195 1.381 1.386 1.870 0.455 0.747 0.942
0.5 1000 0.254 0.023 0.006 0.260 0.143 0.157 1.388 1.375 1.754 0.356 0.748 0.954

0.5 0.4 100 0.255 0.032 0.027 0.290 0.268 0.284 1.228 1.905 2.108 0.468 0.901 0.885
0.4 200 0.243 0.013 0.002 0.270 0.223 0.231 1.264 1.790 1.809 0.409 0.909 0.876
0.4 400 0.252 0.015 0.010 0.270 0.190 0.194 1.305 1.707 1.710 0.324 0.916 0.889
0.4 1000 0.263 0.009 0.004 0.274 0.157 0.157 1.340 1.692 1.635 0.221 0.935 0.893
0.5 100 0.248 0.031 0.013 0.287 0.257 0.285 1.172 1.371 2.044 0.472 0.782 0.882
0.5 200 0.254 0.023 0.012 0.279 0.214 0.234 1.265 1.413 1.838 0.398 0.790 0.889
0.5 400 0.250 0.011 0.002 0.269 0.180 0.195 1.309 1.419 1.715 0.326 0.778 0.887
0.5 1000 0.256 0.011 0.004 0.267 0.146 0.154 1.344 1.422 1.603 0.228 0.768 0.892
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Table 7: Rejection frequencies for the local Hausman test at t = T/2. Model: (40)-(41)

s h1 h2 T = 100 T = 200 T = 400 T = 1000
0 0.4 0.4 0.011 0.014 0.013 0.007

0.4 0.5 0.039 0.031 0.046 0.059
0.5 0.4 0.113 0.142 0.157 0.167
0.5 0.5 0.013 0.021 0.014 0.022

0.2 0.4 0.4 0.018 0.017 0.022 0.024
0.4 0.5 0.071 0.070 0.084 0.075
0.5 0.4 0.162 0.175 0.199 0.213
0.5 0.5 0.023 0.023 0.026 0.039

0.5 0.4 0.4 0.126 0.163 0.313 0.415
0.4 0.5 0.148 0.204 0.247 0.384
0.5 0.4 0.290 0.358 0.416 0.509
0.5 0.5 0.197 0.319 0.457 0.618

Table 8: Rejection frequencies for the global Hausman test. Model: (40)-(41)

s h1 h2 T = 100 T = 200 T = 400 T = 1000
0 0.4 0.4 0.020 0.020 0.020 0.020

0.4 0.5 0.022 0.018 0.026 0.022
0.5 0.4 0.036 0.028 0.024 0.028
0.5 0.5 0.016 0.020 0.016 0.020

0.2 0.4 0.4 0.028 0.042 0.054 0.150
0.4 0.5 0.034 0.052 0.078 0.140
0.5 0.4 0.044 0.052 0.074 0.148
0.5 0.5 0.028 0.032 0.060 0.144

0.5 0.4 0.4 0.574 0.846 0.966 1.000
0.4 0.5 0.518 0.832 0.966 1.000
0.5 0.4 0.458 0.694 0.890 0.966
0.5 0.5 0.528 0.828 0.942 0.998
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Appendix

The proofs of the Theorem 1 and Lemma 2 exploit a number of additional results, presented

after the proofs. The proof of Theorem 4 is reported in the Online Supplement.

Proof of theorems

Proof of Theorem 1. (i) We start with the proof of (19)-(20). By (2), xt = Ψ′jzt + vt.

Hence3

Ψ̂t =
( T∑
j=1

bH,|j−t|zjz
′
j

)−1( T∑
j=1

bH,|j−t|zjx
′
j

)
=
( T∑
j=1

bH,|j−t|zjz
′
j

)−1( T∑
j=1

bH,|j−t|zjz
′
jΨj +

T∑
j=1

bH,|j−t|zjv
′
j

)
= Ψt + S−1

zz,t(∆t + Szv,t)

where

Szz,t = K−1
t

T∑
j=1

bH,|j−t|zjz
′
j, ∆t = K−1

t

T∑
j=1

bH,|j−t|zjz
′
j(Ψj−Ψt), Szv,t = K−1

t

T∑
j=1

bH,|j−t|zjv
′
j.

Using the following property of spectral and Frobenius norms, ||AB|| ≤ ||A||sp||B||, it follows

max
t=1,...,T

||Ψ̂t −Ψt|| ≤ max
t=1,...,T

||S−1
zz,t||sp( max

t=1,...,T
||∆t||+ max

t=1,...,T
||Szv,t||). (46)

We will show that

max
t=1,...,T

||S−1
zz,t||sp = Op(1), (47)

max
t=1,...,T

||∆t|| = Op(H/T ) if Ψt satisfies Assumption 2, (48)

max
t=1,...,T

||∆t|| = Op((H/T )1/2 log2/α T ) if Ψt satisfies Assumption 3, (49)

max
t=1,...,T

||Szv,t|| = Op(H
−1/2 log1/2 T ). (50)

These bounds together with (46) prove (19)-(20).

3In the proofs we use the generic notation H for the bandwidth for simplicity, only introducing the notation
L when the two bandwidths interact.
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Proof of (47). Write

Szz,t = K−1
t

T∑
j=1

bH,|j−t|E[zjz
′
j] +K−1

t

T∑
j=1

bH,|j−t|(zjz
′
j − E[zjz

′
j]) =: S

(1)
zz,t + S

(2)
zz,t.

Rewrite Szz,t as

Szz,t = S
(1)
zz,t(1 + ∆̃t), ∆̃t = S

(1)−1
zz,t (Szz,t − S(1)

zz,t).

If ||∆̃−1
t ||sp < 1, then

||S−1
zz,t||sp ≤ ||(S

(1)
zz,t)

−1||sp||(1 + ∆̃t)
−1||sp ≤ ||(S(1)

zz,t)
−1||sp(1− ||∆̃t||sp)−1 (51)

≤ max
t=1,...,T

||(S(1)
zz,t)

−1||sp(1− max
t=1,...,T

||∆̃t||sp)−1.

We will show that

max
t=1,...,T

||(S(1)
zz,t)

−1||sp = Op(1), (52)

max
t=1,...,T

||∆̃t||sp = op(1) (53)

which together with (51) imply (47): maxt=1,...,T ||(S(1)
zz,t)

−1||sp = Op(1).

To prove (52), recall that by Assumption 1(iii), there exists ν > 0 such that for all t ≥ 1,

a′Σzz,ta ≥ 1/ν > 0.

Thus, for any 1× n vector a = (a1, ..., ap)
′ such that ||a||2 = 1,

min
||a||=1

a′S
(1)
zz,ta = min

||a||=1

(
K−1
t

T∑
j=1

bH,|j−t|a
′Σzz,ja

)
≥ ν−1(K−1

t

T∑
j=1

bH,|j−t|) = 1/ν > 0.

Hence, the smallest eigenvalue of S
(1)
zz,t is not smaller than 1/ν > 0 which yields (52).

To show (53), bound

||∆̃t||sp ≤ ||(S(1)
zz,t)

−1||sp||Szz,t − S(1)
zz,t||.

In view of (52), to verify (53), it suffices to show that

max
t=1,...,T

||Szz,t − S(1)
zz,t|| = oP (1).
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By Assumption 1(ii), the (s, k)-th component ω`k,j = z`,jzk,j − Ez`,jzk,j of zjz
′ is α-mixing

and by (12), for θ′ = θ/2, E|z`,jzk,j|θ
′ ≤ C < ∞ uniformly over j. By assumption (17),

c1T
1/(θ′/2−1)+δ ≤ H, L ≤ c2T

1−δ. Hence, Lemma 5(i) implies (53):

max
t=1,...,T

||Szz,t − S(1)
zz,t|| = Op(H

−1/2 log1/2 T ) = op(1). (54)

Proof of (48). A typical element of ∆t consists of a linear combination of sums

st := K−1
t

T∑
j=1

bH,|j−t|ω`k,j(ψkm,j − ψkm,t)

where ω`k,j − Eω`k,j is an α-mixing sequence and E|ω`k,j|θ/2 ≤ C <∞ for all j.

Suppose that Ψt satisfies Assumption 2. Then |ψkm,j − ψkm,t| ≤ C(|j − t|/T ) and (90) of

Lemma 5(ii) implies the bound (48): maxt=1,...,T |st| = Op

(
H/T

)
.

Suppose that Ψt satisfies Assumption 3. Then |ψkm,j − ψkm,t| ≤ (|j − t|/T )1/2vkm,jt and (92)

of Lemma 5(iii) implies (49): maxt=1,...,T |st| = Op

(
(H/T )1/2(log T )2/α

)
.

Proof of (50). The (`, k)-th element of the n× p matrix Szv,t is

s̃t := K−1
t

T∑
j=1

bH,|j−t|z`,jvk,j

where by (3), Ez`,jvk,j = 0. Moreover, by Assumption 1, the sequence (z`,jvk,j) is α-mixing

and |z`,jvk,j|θ/2 ≤ C < ∞, uniformly in j. Thus, the same argument as in the proof of (54)

implies (50):

max
t=1,...,T

|s̃t| = O(H−1/2 log1/2 T ).

(ii) Next we prove (22)-(23). By definition (1), yj = x′jβj + uj = x′jβt + x′j(βj − βt) + uj.

Denote x̂j = Ψ̂′jzj. Then,

β̃1,t =
( T∑
j=1

bH,|j−t|x̂jx
′
j

)−1( T∑
j=1

bH,|j−t|x̂jy
′
j

)
=
( T∑
j=1

bH,|j−t|x̂jx
′
j

)−1( T∑
j=1

bH,|j−t|x̂j[x
′
jβj + uj]

)
= βt + S−1

x̂x,t(∆
(1)
t + Sx̂x,t) (55)
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where Sx̂x,t = K−1
t

∑T
j=1 bH,|j−t|x̂jx

′
j,

∆
(1)
t = K−1

t

T∑
j=1

bH,|j−t|Ψ̂
′
jzjx

′
j(βj − βt), Sx̂x,t = K−1

t

T∑
j=1

bH,|j−t|x̂juj.

Then,

||β̃1,t − βt|| ≤ ||S−1
x̂x,t||

−1
sp (||∆(1)

t ||+ ||Sx̂u,t||), (56)

||β̃1,t − βt − S−1
x̂x,tSx̂u,t|| ≤ ||S

−1
x̂x,t||

−1
sp ||∆

(1)
t ||. (57)

If Assumption 2 holds, set δ∗T,H = (H/T ), ν = 0, dT,H = rT,H . If Assumption 3 holds, set

δ∗T,H = (H/T )1/2 log3/α T , ν = 1, dT,H = r̄T,H,α. We will show that

max
t=1,...,T

||S−1
x̂x,t||

−1
sp = Op(1), (58)

max
t=1,...,T

||∆(1)
t || = Op(δ

∗
T,H), (59)

max
t=1,...,T

||S−1
x̂u,t||

−1
sp = Op

(
(log1/α T )νdT,H + dT,L

)
. (60)

This together with (56) proves (22)-(23).

For notational simplicity we prove (58)-(60) in the scalar case when p = 1 and n = 1.

(The case p > 1, n > 1 reduces to the analysis of a finite number of similar sums of scalar

variables.)

We start with the proof of (58). Denote Mt = K−1
t

∑T
j=1 bH,|j−t|Ψ

′
jE[zjz

′
j]Ψj. We will show

that

max
t=1,...,T

||M−1
t ||sp = Op(1), (61)

max
t=1,...,T

||Sx̂x,t −Mt|| = OP (log−1 T ) = op(1) (62)

which implies (58) using the same argument as in the proof of (47).

Using x′j = z′jΨj + v′j, write

Ψ̂′jzjx
′
j = (Ψ̂′j −Ψ′j)zjx

′
j + Ψ′jzjx

′
j = (Ψ̂′j −Ψ′j)zjx

′
j + Ψ′jzjz

′
jΨj + Ψ′jzjv

′
j

= Ψ′jE[zjz
′
j]Ψj + Ψ′j(zjz

′
j − E[zjz

′
j])Ψj + Ψ′jzjv

′
j + (Ψ̂′j −Ψ′j)zjz

′
jΨj + (Ψ̂′j −Ψ′j)zjv

′
j

=: g
(1)
t + ...+ g

(5)
t . (63)
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Then,

Sx̂x,t = K−1
t

T∑
j=1

bH,|j−t|g
(1)
t + ...+K−1

t

T∑
j=1

bH,|j−t|g
(5)
t

=: Mt + S
(2)
t + S

(3)
t + S

(4)
t + S

(5)
t . (64)

Sx̂x,t −Mt = S
(2)
t + S

(3)
t + S

(4)
t + S

(5)
t .

Observe, ΣΨzzΨ,j satisfies assumption (21). Thus, (61) follows using the same argument as in

the proof of (52).

To prove (62), recall that zt and vt satisfy Assumption 1. Note that

||Sx̂x,t −Mt|| ≤ ||S(2)
t ||+ ...+ ||S(5)

t ||.

a) Suppose that Ψt satisfies Assumption 2. Then, using (91), we obtain

max
t=1,...,T

(||S(2)
t ||+ ||S

(3)
t ||) = OP

(
HT−1 +H−1/2 log1/2 T

)
= Op(rT,H).

In addition,

max
t=1,...,T

(||S(4)
t ||+ ||S

(5)
t ||) ≤ ( max

j=1,...,T
||Ψ̂j −Ψj||)( max

j=1,...,T
||Ψj||)rT , (65)

rT = maxt=1,...,T K
−1
t

∑T
t=1 bH,|j−t|(|zjz′j|+ |zjv′j|) = Op(1)

where rt = Op(1) by (89) and maxj=1,...,T ||Ψ̂j −Ψj|| satisfies (19)-(20) with the bandwidth L.

Under Assumption 2, maxj=1,...,T ||Ψj|| = O(1), so we obtain

max
t=1,...,T

(||S(4)
t ||+ ||S

(5)
t ||) = Op(1) max

j=1,...,T
||Ψ̂′j −Ψ′j|| = Op(rT,L). (66)

This yields

max
t=1,...,T

||Sx̂x,t −Mt|| = Op

(
rT,H + rT,L

)
= Op(log−1 T ) (67)

which verifies (62).

b) Suppose that Ψt satisfies Assumption 3. Then using (93), we obtain

max
t=1,...,T

(||S(2)
t ||+ ||S

(3)
t ||) = Op(r̄T,H,α log1/α T ).
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while (65), (20), (94) and (89 ) imply

max
t=1,...,T

(||S(4)
t ||+ ||S

(5)
t ||) = OP (r̄T,L,α log1/α T ). (68)

This yields

max
t=1,...,T

||Sx̂x,t −Mt|| = Op

(
{r̄T,H,α + r̄T,L,α} log1/α T

)
= Op(log−1 T ) (69)

under (17) which verifies (62) and completes the proof of (58).

Proof of (59). Bound

max
t=1,...,T

||∆(1)
t || ≤ ( max

t=1,...,T
||Ψ̂j||) sT , sT := max

t=1,...,T
K−1
t

T∑
j=1

bH,|j−t|||zjx′j(βj − βt)||. (70)

By Theorem 1(i), maxt=1,...,T ||Ψ̂j −Ψj|| = op(1). Thus,

max
t=1,...,T

||Ψ̂j|| = max
t=1,...,T

||Ψ̂j −Ψj||+ max
t=1,...,T

||Ψj|| = op(1) + max
t=1,...,T

||Ψj||. (71)

To bound sT , we use equation (2) for xt to obtain ||xj|| ≤ ||Ψj|| ||zj|| + ||vj|| ≤ (||Ψj|| +
1)(||zj||+ ||vj||). Thus,

sT := max
t=1,...,T

(||Ψj||+ 1)sT∗, s∗T = max
t=1,...,T

K−1
t

T∑
j=1

bH,|j−t|(||zj||+ ||vj||)||βj − βt)||.

To bound s∗T , we apply Lemma 5 with θ replaced by θ/2.

Let Assumption 2 hold. Then maxt=1,...,T ||Ψj|| = O(1) and (90) implies s∗T = Op(H/T ).

Hence,

max
t=1,...,T

||∆(1)
t || = Op(H/T ). (72)

Let Assumption 3 hold. Then by (94), maxt=1,...,T ||Ψj|| = Op(log1/α T ) and (92) implies

s∗T = Op

(
(H/T )1/2 log2/α T

)
. Hence,

max
t=1,...,T

||∆(1)
t || = Op

(
(H/T )1/2 log3/α T

)
. (73)

This proves (59).
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Proof of (60). Bound

||Sx̂u,t|| ≤ ||Sx̂u,t − Sx−v,u,t||+ ||Sx−v,u,t||.

We will show that

max
j=1,...,T

||Sx̂u,t − Sx−v,u,t|| = Op(dT,L), (74)

max
j=1,...,T

||Sx−v,u,t|| = Op

(
(log1/α T )νdT,H

)
. (75)

To prove (74), bound

||Sx̂u,t − Sx−v,u,t|| ≤ K−1
t ||

T∑
j=1

bH,|j−t|(Ψ̂
′
j −Ψj

′)zjuj||

≤ ( max
j=1,...,T

||Ψ̂j −Ψj||)qT,t, qT,t = K−1
t

T∑
j=1

bH,|j−t|||zjuj||.

By Theorem 1, maxj=1,...,T ||Ψ̂j − Ψj|| = Op(dT,L). Under assumption of lemma, by (89) of

Lemma 5 maxt=1,...,T qT,t = Op(1). This proves (74).

Recall Sx−v,u,t = K−1
t

∑T
j=1 bH,|j−t|Ψj

′zjuj. Thus, (75) follows using (91) and (93) of

Lemma 5. This completes the proof of the theorem. �

Proof of Lemma 2. Let Mt be as in (61). Then

||β̃1,t − βt −M−1
t ΨtSzu,t|| ≤ ||β̃1,t − βt − S−1

x̂x,tSx̂u,t||+ ||S
−1
x̂x,tSx̂u,t −M

−1
t ΨtSzu,t||. (76)

We will show that

||β̃1,t − βt − S−1
x̂x,tSx̂u,t|| = Op

(
(H/T )γ

)
, (77)

||S−1
x̂x,tSx̂u,t −M

−1
t ΨtSzu,t|| = Op

(
(H/T )γ + dT,L

)
(78)

where γ = 1, dT,L = rT,L if Assumption 2 holds; γ = 1/2, dT,L = r̄T,L if Assumption 3 holds.

So, (76)-(78) prove (24) since under Assumption 4, (H/T )γ + dT,L = o(H−1/2).

Proof (77). By (57) and (58),

max
t=1,...,T

||β̃1,t − βt − S−1
x̂x,tSx̂u,t|| ≤ ||S

−1
x̂x,t||

−1
sp ||∆

(1)
t || = Op(1)||∆(1)

t || (79)
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with ∆
(1)
t as in (55). We have ||∆(1)

t || = K−1
t

∑T
j=1 bH,|j−t|||Ψ̂j|| ||zjx′j(βj − βt)||. Bound

||Ψ̂j|| ≤ ||Ψ̂j −Ψj||+ ||Ψj|| ≤ (||Ψ̂j −Ψj||+ 1)(||Ψj||+ 1). (80)

Then,

||∆(1)
t || ≤ (H/T )γ ( max

j=1,...,T
(||Ψ̂j −Ψj||+ 1)) rT,t,

rT,t = K−1
t

T∑
j=1

bH,|j−t|(||Ψj||+ 1) ||zjx′j(βj − βt)(T/H)1/2||.

By Theorem 1, maxj=1,...,T ||Ψ̂j −Ψj|| = op(1). Under assumptions of lemma,

maxj=1,...,T E[(||Ψj|| + 1)||zjx′j(βj − βt)(T/H)1/2||] = O(1). This implies ErT,t = Op(1) and

rT,t = Op(1) which proves (77).

Proof (78). Bound

||S−1
x̂x,tSx̂u,t −M

−1
t ΨtSzu,t|| ≤ ||S−1

x̂x,t(Sx̂u,t −ΨtSzu,t)||+ ||(S−1
x̂x,t −M

−1
t )ΨtSzu,t|| (81)

≤ ||S−1
x̂x,t||sp||Sx̂u,t −ΨtSzu,t||+ ||S−1

x̂x,t −M
−1
t || ||Ψt|| ||Szu,t||.

By (57), ||S−1
x̂x,t||sp = Op(1). We will show

||Sx̂u,t −ΨtSzu,t|| = Op(dT,L), (82)

||S−1
x̂x,t −M

−1
t || ||Ψt|| ||Szu,t|| = op(H

−1/2). (83)

which proves (78).

First we prove (82). Bound

||Sx̂u,t −ΨtSzu,t|| ≤ ||Sx̂u,t − Sx−v,u,t||+ ||Sx−v,u,t −ΨtSzu,t||.

By (74), maxj=1,...,T ||Sx̂u,t − Sx−v,u,t|| = Op(dT,L).

Next, bound

||Sx−v,u,t −ΨtSzu,t|| ≤ (H/T )γ rT,t, rT,t = K−1
t

T∑
j=1

bH,|j−t|(T/H)γ||Ψj −Ψt|| ||zjuj||.

Under assumptions of lemma, maxj=1,...,T E
[
(T/H)γ||Ψj − Ψt|| ||zjuj||

]
= O(1). This implies

ErT,t = Op(1) and rT,t = Op(1) which proves ||Sx−v,u,t−ΨtSzu,t|| = op((H/T )γ) and completes

the proof of (82).
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To prove (83), notice that under assumptions of lemma, E||Ψt|| = O(1) and thus ||Ψt|| =
Op(1), while by (88) of Lemma 5, ||Szu,t|| = Op(H

−1/2 log1/2 T ). By (58), (61) and (62),

||S−1
x̂x,t −M

−1
t || ≤ ||S−1

x̂x,t|| ||Sx̂x,t −Mt|| ||M−1
t || = Op(log−1 T ) = op(log−1/2 T )

which implies (83): ||S−1
x̂x,t −M

−1
t || ||Ψt|| ||Szu,t|| = op(H

−1/2). This proves (24).

Proof of (25). By Theorem 1, when L satisfies Assumption 4 the estimate Ψ̂j of Ψj has

property maxj=1,...,T ||Ψ̂j −Ψj|| = op(H
−1/2). This, combined with the arguments used in the

proof of (24) implies that besides β̃1,t the estimates β̃2,t and β̃3,t also satisfy (24) which yields

(25). This completes the proof of the lemma.

�

Auxiliary results

In this section we obtain uniform bounds for sums H−1
∑T

k=1 bH,|t−k|(ξk − Eξk),

νT,H,t = H−1

T∑
k=1

bH,|t−k|gk(ξk − Eξk), ∆T,H,t = H−1

T∑
k=1

bH,|t−k|
∣∣(gk − gt)ξk∣∣,

where ξk −Eξk is an α-mixing (but not necessarily stationary) univariate sequence satisfying

(13) and such that

max
k≥1

E|ξk|θ ≤ c <∞ for some θ > 4. (84)

Univariate variables gt are specified below. Weights bH,|t−k| are as in (6) and computed with

bandwidth H such that for some c0 > 0 and δ > 0,

c0T
1/(θ/2−1)+δ ≤ H = o(T ). (85)

Condition (84) implies that for some c > 0, for all k ≥ 1,

P (|ξk| ≥ x) ≤ c|x|−θ, x > 0. (86)

We shall write (xkt) ∈ E(α), α > 0 to denote that

P (|xkt| ≥ x) ≤ c0 exp(−c1|x|α), x > 0 (87)

where c0, c1 > 0 do not depend on k, t.

Lemma 5 Let (ξj) be an α-mixing sequence satisfying (84) and (85) holds.
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(i) Then,

maxt=1,...,T

∣∣H−1
∑T

k=1 bH,|t−k|(ξk − Eξk)
∣∣ = OP

(
H−1/2

√
log T

)
, (88)

maxt=1,...,T H
−1
∑T

k=1 bH,|t−k||ξk| = Op(1). (89)

(ii) Let |gk − gt| ≤ C|k − j|/T for k, t = 1, ..., T where C does not depend on k, t, T . Then,

max
1≤t≤T

|∆T,H,t| = OP (H/T ), (90)

max
1≤t≤T

|νT,H,t| = OP

(
(H/T ) +H−1/2

√
log T

)
. (91)

(iii) Let |(gt−gk)| ≤
(
|t−k|/T )1/2vkt for t, k = 1, ..., T and (vkt) ∈ E(α), (ht) ∈ E(α), α > 0.

Then,

max
1≤t≤T

|∆T,H,t| = OP

(√
H/T (log T )2/α

)
, (92)

max
1≤t≤T

|νT,H,t| = OP

(
{
√
H/T (log T )2/α +H−1/2

√
log T}(log T )1/α

)
. (93)

(iv) Let (gt) ∈ E(α), α > 0. Then,

max
1≤t≤T

|gt| = OP

(
log1/α T

)
. (94)

Proof. (i) Corollary 7(b) of Dendramis, Giraitis and Kapetanios (2018) (DGK) implies that

for any ε > 0,

max
1≤t≤T

∣∣H−1

T∑
k=1

bH,|t−k|(ξk − Eξk)
∣∣ = OP

(
H−1/2

√
log T + (HT )1/θHε−1

)
. (95)

Under Assumption (85), for sufficiently small ε > 0, it holds (HT )1/θHε−1 ≤ H−1/2 which

together with (95) proves (88).

The bound (89) is shown in Corollary 8(b) in DGK.

(ii)-(iii): (90) and (92) are shown in Corollary 10 (b) in DGK.

To show (91) and (93), write

νT,H,t = H−1
∑T

k=1 bH,|t−k|gk(ξk − Eξk)

= H−1
∑T

k=1 bH,|t−k|(gk − gt)(ξk − Eξk) + gtH
−1
∑T

k=1 bH,|t−k|(ξk − Eξk)

=: ∆̃T,H,t + gtvT,H,t.
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Hence,

max
t=1,...,T

|νT,H,t| ≤ max
t=1,...,T

|∆̃T,H,t|+ max
t=1,...,T

|gt| max
t=1,...,T

|vT,H,t|.

Then (91) follows applying to maxt=1,...,T |∆̃T,H,t| the bound (90) and using maxt≥1 |gt| ≤ C

and (i). In turn, (93) follows using (92), (iv) and (i).

(iv) is shown in Lemma A.3 (v) in DGK. �
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Proofs for Hausman test

Proof of Theorem 4. (i) Denote VT,t = Vt = S
1/2
x̂,x̂,tS

1/2
xx,t(β̂t − β̃t) where, for ease of notation,

β̃t = β̃1,t. Write

β̂t − β̃t = (β̂t − βt)− (β̃t − βt) = S−1
xx,tSxu,t − S−1

x̂x,tSx̂u,t +Rt, (A.1)

Rt = K−1
t

T∑
j=1

bH,|j−t|ωt, ωt = S−1
xx,txjx

′
j(βj − βt)− S−1

x̂x̂,tx̂jx
′
j(βj − βt).

Thus,

Vt = V1,t + V2,t, (A.2)

V1,t = S
1/2
x̂,x̂,tS

1/2
xx,t{S−1

xx,tSxu,t − S−1
x̂x,tSx̂u,t},

V2,t = S
1/2
x̂,x̂,tS

1/2
xx,tRt.

From (A.40),

||V2,t|| = O((H/T )γ) = op(1).

Similar arguments as those used in the proofs of Lemma 8 and 9 imply

||V1,t − Σ
1/2
x−v,x−v,tΣ

−1/2
xx,t E[vtut]|| = op(1)

1



which yields

Vt = Σ
1/2
x−v,x−v,tΣ

−1/2
xx,t E[vtut] + op(1) = (1− Σvv,tΣ

−1
xx,t)

1/2E[vtut] + op(1).

This proves (34) of (i).

(ii) We split Vt into the main term and the remainder:

σ−1
t Σ−1

vv,tKtK
−1/2
2,t Vt = Ut + rt, (A.3)

Ut = σ−1
t Σ−1

vv,tKtK
−1/2
2,t V1,t,

rt = σ−1
t Σ−1

vv,tKtK
−1/2
2,t V2,t.

From (A.40) and KtK
−1/2
2,t = O(H1/2) it follows

||rt|| ≤ KtK
−1/2
2,t ||Σ−1

vv,t|| ||V2,t|| ≤ CH1/2||V2,t|| = O(H1/2(H/T )1/2) = op(1)

under assumptions of theorem imposed on H.

It remains to show that

Ut → N (0, I), (A.4)

which proves (35).

Proof of (A.4). Recall notation Σvv,t = E[vtv
′
t], Σzz,t = E[ztz

′
t], Σx−v,x−v,t = Ψ′tE[ztz

′
t]Ψt,

Σxx,t = Ψ′tE[ztz
′
t]Ψt + Σv,v,t. Set

L1,t = S
1/2
x̂x̂,tS

−1/2
xx,t , L2,t = S

1/2
x̂x̂,tS

1/2
xx,tS

−1
x̂x̂,t, Lt = Σ

1/2
x−v,x−v,tΣ

−1/2
xx,t , Bt = σ−1

t Σ−1
vv,t. (A.5)

Write

Ut = BtK
−1/2
2,t

T∑
j=1

bH,|j−t|dt,juj, dt,j = L1,txj − L2,tx̂j. (A.6)

We approximate Ut by

U∗t = BtK
−1/2
2,t

T∑
j=1

bH,|j−t|pt,juj, pt,j = Ltxj − L−1
t Ψ′jzj. (A.7)
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We will show

||Ut − U∗t || = op(1), (A.8)

U∗t →D N (0, I) (A.9)

which proves (A.4).

We start with the proof of (A.8). By assumption of theorem, ||Bt|| = Op(1). Therefore

||Ut − U∗t || ≤ O(1)||K−1/2
2,t

T∑
j=1

bH,|j−t|vt,juj||, vt,j = dt,j − pt,j.

Since uj are independent of wt,j, we can estimate ||Ut − U∗t || using Lemma 6. Bound

||vt,j|| ≤ ||(L1,t − Lt)xj||+ ||(L2,t − L−1
t )x̂j||+ ||L−1

t (Ψ̂j −Ψj)zj|| (A.10)

≤ ||L1,t − Lt|| ||xj||+ ||L2,t − L−1
t ||(||Ψ̂j −Ψj||+ ||Ψj||)||zj||+ ||L−1

t (Ψ̂j −Ψj)|| ||zj||.

This together with (A.50) and (A.51) Lemma 9 and Theorem 1 allows to bound

||vt,j|| ≤ A0
T rt,j (A.11)

where A0
T = op(1), AT does not depend on j, and maxj=1,...,T Er

2
t,j = O(1). Thus by Lemma 6,

||Ut − U∗t ||2 = Op(A
0 2
T )O

(
K−1

2,t

T∑
j=1

b2
H,|j−t|Er

2
t,j

)
= Op(A

0 2
T ) = op(1).

This proves (A.8).

Next we show (A.9). In view of the Cramér-Wold theorem, it suffices to prove that for any

p× 1 vector b, it holds

b′U∗t → N (0, ||b||2). (A.12)

Set kt = b′Bt. Then ktpt,j is a 1× 1 random variable, and (ktpt,j)
2 = ktpt,jp

′
t,jk
′
t. Write

b′U∗t = K
−1/2
2,t

T∑
j=1

bH,|j−t|bH,|j−t|ktpt,juj.

Notice that ut is a martingale difference sequence with respect to the sigma field Ft =

σ(us, xs, xs − vs : s ≤ t). So, by the standard argument of the central limit theorem for

3



martingale differences, the normal approximation (A.12) holds if for some δ > 0,

K−1
2,t

∑T
j=1 b

2
H,|j−t| (ktpt,j)

2Eu2
j →p ||b||2, (A.13)

K
−(2+δ)/2
2,t

∑T
j=1

∣∣∣bH,|j−t|ktpt,j∣∣∣2+δ

= op(1). (A.14)

Denote by jT,t the l.h.s. of (A.13). Using notation S
(2)
xy,t = K−1

2,t

∑T
j=1 b

2
H,|j−t|xjy

′
jσ

2
u,j, write

jT,t = K−1
2,t

T∑
j=1

b2
H,|j−t|ktpt,jp

′
t,jk
′
tσ

2
u,j (A.15)

= ktFT,tk
′
t, FT,t = LtS

(2)
xx,tLt + L−1

t S
(2)
x−v,x−v,tL

−1
t − LtS

(2)
x,x−v,tL

−1
t − L−1

t S
(2)
x−v,x,tLt.

Denote

F ∗T,t = LtΣxx,tLt + L−1
t Σx−v,x−v,tL

−1
t − LtΣx−v,x−v,tL

−1
t − L−1

t Σx−v,x−v,tLt.

Notice that

F ∗T,t = Σx,x,t − Σx−v,x−v,t = Σvv,t, ktF
∗
T,tk

′
tσ

2
u,t = ||b||2,

||kt(FT,t − F ∗T,t)k′t|| = 3||kt||2(||Lt||2 + ||L−1
t ||2)

(
||S(2)

xx,t − Σxx,t||

+ ||Σx−v,x−v,t||+ ||S(2)
x−v,x−v,t − Σx−v,x−v,t||

+ ||S(2)
x,x−v,t − Σx−v,x−v,t||+ ||S(2)

x−v,x,t − Σx−v,x−v,t||
)

= op(1)

by (A.48) and (A.49) Lemma 9. This proves (A.13).

Similar arguments can be used to verify (A.14). This proves Theorem 4(ii).

(iii) By (A.2), Vt = V1,t + V2,t. Write

HT0,T1 = U∗T + r∗T , (A.16)

U∗T = T̃−1/2
∑T1

t=T0+1KtK
−1
T BtV1,t, (A.17)

r∗T = T̃−1/2
∑T1

t=T0+1KtK
−1
T BtV2,t.

We will approximate U∗t by

IT = T̃−1/2

T1∑
j=T0+1

wjuj, wj = ζ1,jxj − ζ2,j(xj − vj) (A.18)

where ζ1,t = BtLt and ζ2,t = BtL
−1
t . We will prove the asymptotic normality for IT and show

4



that r∗T is a negligible term.

The following three relations together with (A.16) imply the claim (36) of Theorem 4 (iii):

||r∗T || = op(1), (A.19)

||U∗T − IT || = op(1), (A.20)

IT →D N (0, I). (A.21)

Proof of (A.19). From (A.40),

||V2,t|| ≤ (H/T )γAT qt (A.22)

where At = Op(1), maxt=1,...,T E||qt||2 = O(1) and γ = 1 if Assumption 2 holds, γ = 1/2 if

Assumption 3 holds. From (A.22), KtK
−1
T = O(1) and assumption maxt=1,...,T ||Σ−1

vv,t|| = O(1)

it follows

||r∗T || ≤ CT̃−1/2

T1∑
t=T0+1

||Σ−1
vv,t|| ||V2,t|| ≤ CT̃−1/2

T1∑
t=T0+1

||V2,t|| =

≤ C(H/T )γAT T̃
−1/2

T1∑
t=T0+1

||qt|| = Op

(
(H/T )γT̃ 1/2

)
= op(1)

because

E
[
T̃−1

T1∑
t=T0+1

||qt||
]

= T̃−1

T1∑
t=T0+1

E||qt|| = O(1)

and (H/T )γT̃ 1/2 = o(1) under assumptions on H, T̃ in (iii). This completes the proof of

(A.19).

Proof of (A.20). Recall that

U∗T = T̃−1/2

T∑
j=1

wT,juj, wT,j =

T1∑
t=T0+1

K−1
T bH,|t−j|Btdt,j (A.23)

IT = T̃−1/2

T1∑
j=T0+1

wjuj, wj = ζ1,jxj − ζ2,j(xj − vj), (A.24)

where dt,j are defined as in (A.6).
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To approximate wT,j by wj, define

w
(1)
T,j =

T1∑
t=T0+1

K−1
T bH,|t−j|Btpt,j

where pt,j are the same as in (A.7). Write [1, ..., T ] = JT ∪ J cT where JT = (T0, T1], J cT =

[1, T0] ∪ [T − 1 + 1, T ]. Set K∗j =
∑T1

t=T0+1 bH,|t−j|. For j = 1, ..., T , write

wT,j − wj = {wT,j − w(1)
T,j}+ {w(1)

T,jI(j ∈ J cT )}

+ {(w(1)
T,j −K

∗
jK
−1
T wj)I(j ∈ JT )}+ {(K∗jK−1

T − 1)wjI(j ∈ JT )}

=: d
(1)
T,j + d

(2)
T,j + d

(3)
T,j + d

(4)
T,j.

To prove (A.20), it suffices to show for i = 1, .., 4,

||T̃−1/2

T∑
j=1

d
(i)
T,j|| = op(1). (A.25)

Below we denote by A0
T , AT generic random variables that have property A0

T = oP (1), AT =

Op(1) and do not depend on j. We shall show that

||d(1)
T,j|| ≤ A0

T r
(1)
T,j, T̃−1

T∑
j=1

Er
(1) 2
T,j = O(1), (A.26)

||d(2)
T,j|| ≤ AT r

(2)
T,j, T̃−1

T∑
j=1

Er
(2) 2
T,j = o(1), (A.27)

||d(3)
T,j|| ≤ A0

T r
(3)
T,j, T̃−1

T∑
j=1

Er
(3) 2
T,j = O(1), (A.28)

||d(4)
T,j|| ≤ AT r

(4)
T,j, T̃−1

T∑
j=1

Er
(4) 2
T,j = o(1). (A.29)

By assumption, (uj) is a sequence of independent variables which is mutually independent of

d
(i)
T,j, i = 1, ..., 4. Hence, by Lemma 6 and (A.26),

||T̃−1/2

T∑
j=1

d
(1)
T,j||

2 = Op

(
A0 2
T

)
Op

(
T̃−1

T∑
j=1

Er
(1) 2
T,j

)
= op(1)

which proves (A.25) for i = 1. For i = 2, 3, 4, (A.25) follows from (A.27) -(A.29) using

Lemma 6.
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Proof of (A.26). Set mT = maxt=1,...,T ||Bt||. Then

||d(1)
T,j|| = ||wT,j − w

(1)
T,j|| ≤ mT

T1∑
t=T0+1

K−1
T bH,|j−t|||dt,j − pt,j||.

Under assumptions of theorem, mT = Op(1). By (A.11),

||dt,j − pt,j|| ≤ A0
T rt,j,

where A0
T = op(1), A0

T does not depend on t, j and maxt,j=1,...,T Er
2
t,j = O(1). Hence

||d(1)
T,j|| ≤ A0

T r
(1)
T,j, r

(1)
T,j =

T1∑
t=T0+1

K−1
T bH,|j−t|rt,j.

Together with (A.36) of Lemma 7, this implies

T̃−1

T∑
j=1

Er
(1) 2
T,j ≤ T̃−1

T∑
j=1

( T1∑
t=T0+1

K−1
T b2

H,|j−t|
)2

( max
t,j=1,...,T

Er2
t,j) = O(1)

which verifies (A.26).

Proof of (A.27). We have

||d(2)
T,j|| = ||w

(1)
T,jI(j ∈ J cT )|| ≤ I(j ∈ J cT )mT

T1∑
t=T0+1

K−1
T bH,|j−t|||pt,j||.

From definition of pt,j, using (A.50) Lemma 9, it follows that

||pt,j|| ≤ AT rt,j,

where AT = Op(1) does not depend on t, j and maxt,j=1,...,T Er
2
t,j = O(1). This yields

||d(2)
T,j|| ≤ AT r

(2)
T,j, r

(2)
T,j = I(j ∈ J cT )

T1∑
t=T0+1

K−1
T bH,|j−t|rt,j.

Together with (A.37) of Lemma 7, this implies

T̃−1

T∑
j=1

Er
(2) 2
T,j ≤ T̃−1

∑
j∈Jc

T

( T1∑
t=T0+1

K−1
T b2

H,|j−t|
)2

( max
t,j=1,...,T

Er2
t,j) = o(1)
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which verifies (A.27).

Proof of (A.28). From equality

w
(1)
T,j = (

T1∑
t=T0+1

K−1
T bH,|j−t|ζ1,t)xj − (

T1∑
t=T0+1

K−1
T bH,|j−t|ζ2,t)(xj − vj).

and definition of K∗j it follows

w
(1)
T,j −K

−1
T K∗jwj = c1,T,jxj − c2,T,j(xj − vj), (A.30)

c1,T,j =

T1∑
t=T0+1

K−1
T bH,|j−t|(ζ1,t − ζ1,j),

c2,T,j =
∑T1

t=T0+1K
−1
T bH,|j−t|(ζ2,t − ζ2,j).

By (A.52) of Lemma 9, for i = 1, 2, we can bound

||c1,T,jxj|| ≤ A0
T rT,j, ||c2,T,j(xj − vj)|| ≤ A0

T rT,j

where A0
T = oP (1) does not depend on j, and maxj=T0+1,...,T1 Er

2
T,j = O(1). Then

||d(3)
T,j|| = ||(w

(1)
T,j −K

−1
T K∗jwj)I(j ∈ JT )|| ≤ AT r

(4)
T,j, r

(4)
T,j = I(j ∈ JT )

T1∑
t=T0+1

K−1
T bH,|j−t|rT,j.

This implies

T̃−1
∑
j∈JT

Er
(4) 2
T,j ≤ T̃−1

T1∑
j=T0+1

( T1∑
t=T0+1

K−1
T b2

H,|j−t|
)2

( max
t,j=1,...,T

Er2
T,j) = O(1)

which verifies (A.28).

Proof of (A.29). Using (A.50) Lemma 9, we can bound ||wj|| ≤ AT rj where AT = OP (1) does

not depend on j, and maxj=T0+1,...,T1 Er
2
j = O(1). Then

||d(4)
T,j|| = ||(K

−1
T K∗j − 1)wj)I(j ∈ JT )|| ≤ A0

T r
(4)
T,j, r

(4)
T,j = I(j ∈ JT )|K−1

T K∗j − 1|rj.

This implies

T̃−1
∑
j∈JT

Er
(4) 2
T,j ≤ T̃−1

T1∑
j=T0+1

|K∗jK−1
T − 1|2( max

j=1,...,T
Er2

T,j) = o(1)
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by (A.38) of Lemma 7. This verifies (A.29).

Proof of (A.19). By the same argument as in the proof of (A.12), it suffices to show that for

any p× 1 vector b, it holds

b′IT → N (0, ||b||2). (A.31)

By the central limit theorem for martingale differences, it suffices to show that for some δ > 0,

jT = T̃−1
∑T1

j=T0+1 ||b′(ζ1,jxj − ζ2,j(xj − vj))||2Eu2
j →p ||b||2, (A.32)

j∗T = T̃−(2+δ)/2
∑T

j=1 ||b′(ζ1,jxj − ζ2,j(xj − vj))||2+δ = op(1). (A.33)

Write

jT = b′
[
T̃−1

T1∑
j=T0+1

σ2
u,j

(
ζ1,jxjx

′
jζ
′
1,j + ζ2,j(xj − vj)(xj − vj)′ζ ′2,j

− ζ1,jxj(xj − vj)′ζ ′2,j − ζ2,j(xj − vj)x′jζ ′2,j
)]
b.

We approximate it by

j̃T = b′
[
T̃−1

T1∑
j=T0+1

σ2
u,j

(
ζ1,jΣxx,jζ

′
1,j + ζ2,jΣx−v,x−v,jζ

′
2,j

− ζ1,jΣx−v,x−v,jζ
′
2,j − ζ2,jΣx−v,x−v,jζ

′
2,j

)]
b

= b′
[
T̃−1

T1∑
j=T0+1

I
]

= ||b||2.

To prove (A.32), it suffices to show

jt − j̃T = op(1).

This can be done by summation by parts, using properties (A.53) of ζ1,j, ζ2,j and the bounds

E||k−1/2
∑T0+k

j=T0+1(zjz
′
j − E[zjz

′
j])||2 = O(1), E||k−1/2

∑T0+k
j=T0+1(vjv

′
j − E[vjv

′
j])||2 = O(1) that

hold under Assumption 1.

Condition (A.33) can be verified using similar arguments. This proves (A.19) and completes

the proof of the theorem. �
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Technical lemmas

In the next lemma we consider the sum

ST,t =
T∑
j=1

wT,juj

where (wT,j) are random p × 1 vectors and (ut) are scalar zero mean random variables such

that

max
k=1,...,T

T−1

T∑
j=1

∣∣E[ukuj]
∣∣ = O(1).

We suppose that t = tT ∈ [1, ...T ] may vary with T .

Lemma 6 Suppose (uj) is independent of (wT,j). Assume we can bound

||wT,j|| ≤ AT qT,j, j = 1, ..., T (A.34)

where AT does not depend on j and Eq2
T,j <∞. Then, as T →∞,

||ST,t||2 = Op(A
2
T )OP (

∑T
j=1Eq

2
T,j). (A.35)

Proof. Write ST,t = AT (A−1
T ST,t). We will show that E||A−1

T ST,t||2 = O(
∑T

j=1Eq
2
T,j) which

implies ||A−1
T ST,t||2 = Op

(∑T
j=1Eq

2
T,j

)
and proves (A.35). We have

E||A−1
T ST,t||

2 ≤
T∑

k,j=1

E
[
A−2
T ||wT,k|| ||wT,j||

]∣∣E[ujus]
∣∣.

By (A.34),

E[A−2
T ||wT,k|| ||wT,j||] ≤ E[qT,kqT,j] ≤ E[q2

T,k + q2
T,j].

So,

E||A−1
T ST,t||

2 ≤ 2
T∑

j,k=1

Eq2
T,j|E[ujuk]|

≤ 2(
T∑
j=1

Eq2
T,j)( max

j=1,...,T

T∑
k=1

|E[ujuk]|) = O(
T∑
j=1

Eq2
T,j)

which completes the proof. �
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Lemma 7 Under Assumptions of Theorem 4,

τ1,T = T̃−1

T∑
j=1

(

T1∑
t=T0+1

K−1
T bH,|j−t|)

2 = O(1), (A.36)

τ2,T = T̃−1[

T0∑
j=1

...+
T∑

j=T1+1

](

T1∑
t=T0+1

K−1
T bH,|j−t|)

2 = o(1), (A.37)

τ3,T = T̃−1

T1∑
j=T0

|K∗jK−1
T − 1| = o(1). (A.38)

Proof. Recall that K−1
T = O(H−1). Then,

τ1,T = T̃−1

T1∑
t=T0+1

{K−2
T

T∑
j=1

bH,|j−t|[
T∑
s=1

bH,|j−s|]} ≤ T̃−1

T1∑
t=T0+1

C = O(1). (A.39)

Next we evaluate τ2,T . Let v be a large number. Then

τ2,T ≤ T̃−1[

T0∑
j=1

+
T∑

j=T1+1

]
[
(

T1∑
t=T0+1: |t−j|≥vH

K−1
T bH,|j−t|)

2 + (

T1∑
t=T0+1: |t−j|<vH

K−1
T bH,|j−t|)

2
]

= s1,T + s2,T .

Similarly as in (A.39) it follows

s1,T ≤ CH−1

∞∑
s=vH

bH,s ≤ δv → 0, v →∞.

On the other hand, for any fixed v,

s2,T ≤ CT̃−1[

T0∑
j=T0−cH

...+

T1+vH∑
j=T1+1

]1 ≤ CvHT̃−1 → 0

because, by assumption, H = o(T̃ ).

Finally, (A.38) follows, noting that maxj=T0+1,...,T1 |K∗jK−1
T | = O(1) and

max
j=T0+vH,...,T1

|K∗jK−1
T − 1| → 0 as H, v →∞

and noting that H = o(T̃ ). �
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Lemma 8 Let assumptions of Theorem 4 be satisfied. Denote γ = 1 and γ = 1/2 if βt

satisfies Assumption 2 and Assumption 3, respectively. Then V2,T in (A.2) has property:

||V2,t|| ≤ (H/T )γAT qt = Op((H/T )γ) (A.40)

where AT does not depend on t,

AT = OP (1), max
t=1,...,T

Eqt = O(1). (A.41)

Proof. We have

||V2,t| ≤ ||S1/2
x̂,x̂,t||sp||S

1/2
xx,t||sp||Rt|| = ||Sx̂,x̂,t||1/2sp ||Sxx,t||1/2sp ||Rt||.

We will show that

||Rt|| ≤ (H/T )γA1,T q1,t, ||Sxx,t||1/2|| ≤ A2,T q2,t, (A.42)

max
j=1,...,T

E||Sxx,t||2 = O(1),

where Ai,T = Op(1), maxt=1,...,T E|qi,t|2 = O(1), for i = 1, 2. Then

||V2,t| ≤ ||Sx̂x̂,t||1/2||Sxx,t||1/2||Rt||

≤ (H/T )AT qt, AT = A1,TA2,T , qt = q
1/2
2,t ||Sxx,t||1/2q1,t.

Clearly, AT = Op(1), while

max
t=1,...,T

Eq2
t ≤ max

t=1,...,T

(
Eq2

1,t + ||Sxx,t||2 + Eq2
2,t

)
= O(1).

This proves (A.40). �

Proof of (A.42). Recall x̂j = Ψ̂jzj. Using the bound

||Ψ̂j|| ≤ ||Ψ̂j −Ψj||+ ||Ψj|| ≤ (||Ψ̂j −Ψj||+ 1)(1 + ||Ψj||), (A.43)

we can bound ωt in (A.1) as

|ωt| ≤ A1,tνt, A1,T = max
j=1,...,T

(||S−1
xx,t||+ ||S−1

x̂x̂,t||+ ||Ψ̂j −Ψj||+ 1),

νt = (H/T )γ||xj||2||(βj − βt)(T/H)γ||+ (1 + ||Ψj||)||x′j(βj − βt)(T/H)γ||.

12



Then

Rt ≤ (H/T )γA1,T q1,t, q1,t = K−1
t

T∑
j=1

bH,|j−t|νt.

(A.45) and Theorem 1 imply A1,T = Op(1). On the other hand,

Eq2
1,t ≤ E(K−1

t

T∑
j=1

bH,|j−t|ν
2
j )2 (A.44)

≤ ( max
j=1,...,T

Eν4
j )(K−1

t

T∑
j=1

bH,|j−t|) = max
j=1,...,T

Eν4
j = O(1)

because under assumptions of lemma, uniformly in j, t,

Eν2
j ≤ E||xj||4 + 2E||(βj − βt)(T/H)γ||2 + E(1 + ||Ψj||)2 + E||xj||2 ≤ C.

This proves (A.42) for Rt.

To verify (A.42) for ||Sx̂x̂,t||, notice that by (A.43),

||x̂jx̂′j|| ≤ ||Ψ̂j||2||zj||2 ≤ (||Ψ̂j −Ψj||+ 1)2(1 + ||Ψj||)2||zj||2.

Therefore,

||Sx̂x̂,t|| = K−1
t

T∑
j=1

bH,|j−t|||x̂jx̂′j|| ≤ A2,T q2,T ,

A2,T = max
j=1,...,T

(||Ψ̂j −Ψj||+ 1)2, q2,T = K−1
t

T∑
j=1

bH,|j−t|(1 + ||Ψj||)2||zj||2.

Again, A2,T = Op(1) by Theorem 1 while maxj=1,...,T Eq2,T = O(1) follows using the same

argument as in the proof of (A.44).

Finally, as in (A.44), we obtain

max
j=1,...,T

E||Sxx,t||2 ≤ max
j=1,...,T

E(K−1
t

T∑
j=1

bH,|j−t|||xj||2)2 = O(1).

This completes the proof of (A.42) and (A.40). �

In Lemma 9 we consider bounds for random variables L1,t, L2,t, Lt, S
(2)
xx,t, c1,T,j, c2,T,j indexed

by j = 1, ..., T defined in (A.5), (A.15) and (A.30). We denote by A0
T = oP (1), AT = Op(1)
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generic random variables that not depend on t = 1, ...., T and by rj = rT,t random variables

such that maxt=1,...,T Er
2
t = O(1).

Lemma 9 Let Assumption 1 holds, (βt,Ψt) satisfy either Assumption 2 or Assumption 3.

Assume that H satisfies (33) and L satisfies (17). Then, for t ∈ {1, ..., T},

max
t=1,...,T

||S−1
xx,t|| = Op(1), max

t=1,...,T
||S−1

x̂x̂,t|| = Op(1), (A.45)

||Sxx,t|| ≤ AT rt, ||Sx̂x̂,t|| ≤ AT rt, (A.46)

||Sxx,t − Σxx,t|| ≤ A0
T rt, ||Sx̂x̂,t − Σx−v,x−v,t|| ≤ A0

T rt, (A.47)

||S(2)
xx,t − Σxx,t|| ≤ A0

T rt, ||S(2)
x−v,x−v,t − Σx−v,x−v,t|| ≤ A0

T rt, (A.48)

||S(2)
x,x−v,t − Σx−v,x−v,t|| ≤ A0

T rt, ||S(2)
x−v,x,t − Σx−v,x−v,t|| ≤ A0

T rt, (A.49)

||L1,t|| ≤ AT rt, ||L2,t|| ≤ AT rt, ||Lt|| ≤ AT rt, ||L−1
t || ≤ AT rt, (A.50)

||L1,t − Lt|| ≤ A0
T rt, ||L2,t − L−1

t || ≤ A0
T rt, (A.51)

||c1,T,j|| ≤ A0
T rj, ||c2,T,j|| ≤ A0

T rj, (A.52)

||(T/H)γ(Lj − Lj−1)|| ≤ AT rj, ||(T/H)γ(L−1
j − L−1

j−1)|| ≤ A0
T rj, (A.53)

where γ = 1 if Assumption 2 holds, γ = 1/2 if Assumption 3 holds.

Proof.

Proof of (A.45). To bound ||S−1
xx,t||, denote VT,t = K−1

t

∑T
j=1 b|j−t|(Ψ

′
jΣzz,tΨj + Σvv,j) where

Σzz,j = E[zjz
′
j], Σvv,j = E[vjv

′
j]. Proof of (57) shows that to verify (A.45) it suffices to show

that

max
t=1,...,T

||V−1
T,t ||sp = Op(1), (A.54)

max
t=1,...,T

||Sxx,t − VT,t||sp = op(1). (A.55)

To prove (A.54), notice that Σzz,t is semi positive definite, and Σvv,j is positive definite. By

Assumption 1(iii), there exists ν > 0 such that a′Σvv,ja ≥ ν for j ≥ 1, ||a|| = 1. Thus, for

||a|| = 1,

a′(Ψ′jΣzz,jΨj + Σvv,j)a = (Ψja)′Σzz,j(Ψja) + a′Σvv,ja ≥ a′Σvv,ja ≥ ν.

This implies

a′VT,L,ta =
(
K−1
t

T∑
j=1

bH,|j−t|a
′(Ψ′jΣzz,jΨj + Σvv,j)a

)
≥ νK−1

t

T∑
j=1

bH,|j−t| = ν > 0

14



which proves (A.54).

(A.55) can be obtained using similar argument as in the proof of (58). This proves (A.45) for

||S−1
xx,t||. The claim for ||S−1

x̂x̂,t|| can be shown as in the proof of (58).

Proof of (A.46) follows from (A.47) noting that ||Σxx,t||| ≤ AT , ||Σx−v,x−v,t|| ≤ AT .

Proof of (A.47)-(A.49) follows using similar argument as in the proof of (62).

Proof of(A.50) follows using (A.45), (A.46) and Assumption 1.

Proof of (A.51). We will show that ||L1,t − Lt|| ≤ A0
T rt. Notice that

||S1/2
x̂x̂,t − Σ

1/2
x−v,x−v|| = ||(S

1/2
x̂x̂,t − Σ

1/2
x−v,x−v)(S

1/2
x̂x̂,t + Σ

1/2
x−v,x−v)(S

1/2
x̂x̂,t + Σ

1/2
x−v,x−v)

−1/2||

≤ ||Sx̂x̂,t − Σx−v,x−v|| ||(S1/2
x̂x̂,t + Σ

1/2
x−v,x−v)

−1/2|| ≤ A0rt

by (A.47), noting that

||(S1/2
x̂x̂,t + Σ

1/2
x−v,x−v)

−1/2||sp = ||(S1/2
x̂x̂,t + Σ

1/2
x−v,x−v)||−1/2

sp ≤ AT

by (A.45). Similarly it follows that ||S1/2
xx,t − Σ

1/2
xx,t|| ≤ A0

T rt, while (A.45)-(A.46) imply

||S−1/2
xx,t || ≤ AT , ||S1/2

x̂x̂,t|| ≤ AT rt. Combining these bounds implies the first claim in (A.51).

The proof of the second claim is similar.

Proof of (A.52)-(A.53) follows using similar argument as in the proof of (59) using properties

of Lt. This completes the proof of the lemma. �

15



Additional tables. Monte Carlo results for higher band-

width

In this Appendix we provide further Monte Carlo results for a higher values of the bandwidth

parameters H and L.
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Table 9: Performance of estimators β̂t, β̃1,t and β̃2,t for the model (40)-(41) with exogenous
xt: s = 0, H = T h1 , L = T h2 .

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.7 100 0.001 -0.011 -0.001 0.198 0.287 0.347 1.371 0.850 2.701 0.816 0.629 0.960

200 0.001 -0.004 0.005 0.167 0.256 0.293 1.387 0.926 2.457 0.831 0.571 0.963
400 -0.002 -0.003 0.001 0.139 0.234 0.238 1.359 0.981 2.136 0.836 0.515 0.964
1000 -0.000 -0.004 -0.000 0.112 0.202 0.195 1.374 1.077 1.957 0.850 0.469 0.971

0.5 0.7 100 -0.002 -0.008 0.002 0.199 0.297 0.331 1.180 0.834 2.392 0.733 0.648 0.922
200 0.000 -0.002 0.002 0.168 0.263 0.270 1.269 0.907 2.065 0.731 0.584 0.922
400 -0.001 0.002 0.001 0.142 0.236 0.228 1.323 1.004 1.998 0.730 0.540 0.924
1000 -0.000 0.004 0.001 0.114 0.205 0.178 1.293 1.050 1.702 0.726 0.479 0.925

0.7 0.4 100 0.002 -0.001 -0.007 0.245 0.354 0.365 0.772 2.720 2.011 0.502 0.961 0.816
0.4 200 -0.000 0.001 0.003 0.224 0.295 0.317 0.858 2.420 1.858 0.440 0.965 0.783
0.4 400 -0.002 -0.001 -0.010 0.204 0.242 0.269 0.944 2.118 1.487 0.381 0.964 0.742
0.4 1000 -0.002 -0.000 -0.004 0.179 0.195 0.231 1.045 1.981 1.410 0.322 0.971 0.711
0.5 100 -0.002 0.001 0.001 0.246 0.326 0.357 0.761 2.188 2.000 0.494 0.909 0.804
0.5 200 0.001 0.000 0.001 0.221 0.266 0.302 0.861 1.983 1.618 0.439 0.906 0.772
0.5 400 -0.002 0.001 -0.004 0.202 0.224 0.270 0.976 1.870 1.596 0.387 0.914 0.749
0.5 1000 0.001 -0.001 -0.000 0.178 0.176 0.226 1.084 1.727 1.397 0.323 0.916 0.713
0.7 100 0.000 0.010 0.008 0.242 0.314 0.355 0.747 0.958 2.036 0.507 0.704 0.822
0.7 200 -0.003 -0.007 -0.010 0.225 0.281 0.307 0.868 0.991 1.684 0.432 0.626 0.770
0.7 400 0.001 -0.003 -0.004 0.202 0.252 0.272 0.980 1.050 1.525 0.382 0.572 0.739
0.7 1000 -0.001 0.002 0.002 0.178 0.215 0.232 1.063 1.120 1.448 0.325 0.518 0.732

Table 10: Performance of estimators β̂t, β̃1,t and β̃2,t for the model (40)-(41) with s = 0.2.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.7 100 0.021 0.003 0.003 0.175 0.256 0.211 1.307 0.754 1.484 0.764 0.470 0.845

200 0.019 0.005 0.001 0.147 0.236 0.176 1.326 0.847 1.468 0.775 0.413 0.847
400 0.021 0.005 0.002 0.124 0.211 0.147 1.344 0.961 1.451 0.781 0.369 0.844
1000 0.021 0.004 0.002 0.098 0.186 0.115 1.356 1.061 1.432 0.794 0.308 0.852

0.5 0.7 100 0.021 0.008 0.004 0.186 0.260 0.214 1.161 0.751 1.317 0.651 0.472 0.760
200 0.023 0.005 0.003 0.157 0.232 0.182 1.229 0.846 1.331 0.650 0.427 0.753
400 0.022 0.006 0.003 0.135 0.213 0.153 1.283 0.954 1.354 0.641 0.370 0.738
1000 0.021 -0.000 0.000 0.108 0.187 0.119 1.328 1.068 1.370 0.631 0.311 0.727

0.7 0.4 100 0.015 -0.003 -0.006 0.238 0.224 0.261 0.756 1.613 0.946 0.422 0.877 0.590
0.4 200 0.018 0.001 -0.004 0.223 0.183 0.237 0.862 1.571 0.977 0.351 0.881 0.508
0.4 400 0.018 -0.001 -0.001 0.201 0.155 0.211 0.958 1.523 1.044 0.314 0.889 0.459
0.4 1000 0.021 0.001 0.002 0.178 0.121 0.185 1.057 1.490 1.110 0.257 0.897 0.387
0.5 100 0.023 0.004 0.006 0.243 0.225 0.262 0.738 1.341 0.917 0.414 0.772 0.581
0.5 200 0.021 -0.002 0.001 0.221 0.189 0.237 0.860 1.387 0.985 0.362 0.780 0.521
0.5 400 0.022 0.002 0.002 0.201 0.157 0.211 0.951 1.363 1.030 0.310 0.764 0.450
0.5 1000 0.021 0.001 0.002 0.180 0.124 0.185 1.080 1.399 1.126 0.254 0.762 0.381
0.7 100 0.023 0.003 0.002 0.240 0.259 0.263 0.741 0.762 0.906 0.416 0.523 0.587
0.7 200 0.021 0.001 0.002 0.222 0.238 0.237 0.854 0.868 0.986 0.357 0.453 0.518
0.7 400 0.021 -0.004 -0.004 0.198 0.211 0.210 0.940 0.945 1.020 0.316 0.403 0.459
0.7 1000 0.019 -0.002 -0.001 0.180 0.191 0.187 1.087 1.085 1.142 0.252 0.330 0.380
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Table 11: Performance of estimators β̂t, β̃1,t and β̃2,t for the model (40)-(41) with s = 0.5.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.7 100 0.148 0.040 0.024 0.206 0.257 0.196 1.303 0.744 1.419 0.625 0.415 0.808

200 0.144 0.028 0.015 0.184 0.236 0.162 1.335 0.840 1.422 0.604 0.363 0.817
400 0.145 0.022 0.012 0.171 0.210 0.135 1.366 0.955 1.418 0.557 0.331 0.817
1000 0.143 0.015 0.007 0.157 0.186 0.107 1.380 1.055 1.417 0.491 0.276 0.822

0.5 0.7 100 0.147 0.022 0.016 0.218 0.255 0.207 1.177 0.756 1.292 0.518 0.437 0.729
200 0.141 0.016 0.007 0.195 0.234 0.171 1.232 0.835 1.305 0.477 0.374 0.709
400 0.148 0.013 0.007 0.184 0.211 0.144 1.283 0.958 1.328 0.415 0.334 0.707
1000 0.148 0.008 0.004 0.171 0.187 0.116 1.301 1.031 1.325 0.334 0.283 0.691

0.7 0.4 100 0.143 0.011 0.008 0.269 0.206 0.256 0.773 1.530 0.912 0.329 0.847 0.539
0.4 200 0.138 0.004 0.004 0.250 0.170 0.230 0.865 1.487 0.963 0.275 0.853 0.473
0.4 400 0.142 0.004 0.005 0.236 0.143 0.209 0.956 1.473 1.009 0.219 0.867 0.416
0.4 1000 0.144 0.002 0.002 0.220 0.112 0.185 1.060 1.439 1.104 0.164 0.872 0.347
0.5 100 0.138 0.006 0.004 0.266 0.212 0.255 0.763 1.281 0.911 0.332 0.739 0.541
0.5 200 0.137 0.002 0.000 0.250 0.179 0.234 0.880 1.339 0.973 0.270 0.737 0.467
0.5 400 0.145 0.004 0.002 0.237 0.151 0.211 0.964 1.366 1.036 0.221 0.744 0.426
0.5 1000 0.139 -0.000 -0.003 0.218 0.121 0.185 1.056 1.367 1.097 0.165 0.732 0.347
0.7 100 0.148 0.014 0.011 0.270 0.259 0.260 0.766 0.771 0.940 0.330 0.477 0.546
0.7 200 0.147 0.011 0.007 0.255 0.237 0.235 0.828 0.820 0.937 0.264 0.410 0.476
0.7 400 0.140 0.005 0.003 0.233 0.211 0.208 0.964 0.953 1.024 0.221 0.361 0.412
0.7 1000 0.143 0.001 0.001 0.217 0.187 0.183 1.085 1.070 1.122 0.165 0.300 0.349

Table 12: Performance of estimators β̂t, β̃1,t and β̃2,t in the overidentified case for the model
(41)-(42) with exogenous xt: s = 0, H = T h1 , L = T h2 .

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.7 100 0.003 0.006 0.006 0.182 0.259 0.228 1.339 0.775 1.578 0.785 0.510 0.869

200 -0.001 -0.001 -0.002 0.152 0.234 0.194 1.328 0.850 1.502 0.798 0.457 0.871
400 -0.000 -0.000 0.001 0.127 0.211 0.159 1.357 0.954 1.484 0.803 0.402 0.869
1000 -0.000 -0.001 -0.000 0.101 0.187 0.128 1.351 1.043 1.450 0.824 0.352 0.877

0.5 0.7 100 -0.000 0.005 0.005 0.188 0.257 0.229 1.147 0.759 1.353 0.691 0.534 0.811
200 -0.003 -0.002 -0.001 0.161 0.238 0.195 1.236 0.848 1.377 0.681 0.464 0.795
400 0.001 0.001 0.001 0.136 0.212 0.163 1.306 0.978 1.404 0.675 0.425 0.783
1000 -0.000 0.000 0.001 0.109 0.190 0.128 1.339 1.080 1.400 0.673 0.356 0.772

0.7 0.4 100 0.004 0.006 0.008 0.245 0.249 0.275 0.749 1.733 0.946 0.439 0.902 0.632
0.4 200 0.001 -0.001 0.001 0.222 0.205 0.244 0.863 1.665 1.017 0.385 0.907 0.568
0.4 400 -0.002 0.000 -0.001 0.201 0.170 0.215 0.926 1.542 1.020 0.337 0.908 0.505
0.4 1000 0.001 0.000 -0.000 0.178 0.132 0.187 1.034 1.498 1.081 0.275 0.916 0.418
0.5 100 0.003 0.001 0.004 0.242 0.236 0.274 0.742 1.384 0.954 0.442 0.812 0.625
0.5 200 0.002 0.003 0.003 0.220 0.198 0.239 0.856 1.413 1.004 0.386 0.820 0.571
0.5 400 0.000 -0.001 -0.001 0.199 0.165 0.212 0.925 1.380 1.019 0.336 0.804 0.502
0.5 1000 0.000 -0.000 -0.000 0.178 0.133 0.188 1.045 1.388 1.092 0.279 0.809 0.434
0.7 100 -0.006 -0.007 -0.007 0.240 0.264 0.267 0.754 0.785 0.947 0.443 0.566 0.630
0.7 200 0.001 0.002 0.001 0.219 0.240 0.239 0.848 0.863 0.980 0.389 0.509 0.573
0.7 400 -0.003 -0.002 -0.002 0.201 0.217 0.216 0.966 0.971 1.053 0.336 0.444 0.501
0.7 1000 -0.001 -0.001 -0.001 0.176 0.189 0.186 1.053 1.053 1.103 0.279 0.379 0.430
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Table 13: Performance of estimators β̂t, β̃1,t and β̃2,t in the overidentified case for the model
(41)-(42) with s = 0.2.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.7 100 0.033 0.010 0.001 0.196 0.283 0.320 1.335 0.796 2.526 0.801 0.584 0.946

200 0.029 0.000 0.004 0.162 0.251 0.254 1.344 0.877 2.197 0.812 0.525 0.947
400 0.035 0.010 0.007 0.138 0.228 0.215 1.370 0.984 1.998 0.813 0.482 0.953
1000 0.033 0.005 0.002 0.111 0.199 0.174 1.358 1.058 1.841 0.830 0.428 0.962

0.5 0.7 100 0.033 0.002 0.001 0.198 0.288 0.300 1.222 0.812 2.223 0.705 0.597 0.902
200 0.033 0.011 0.008 0.168 0.256 0.248 1.231 0.862 1.899 0.702 0.538 0.903
400 0.032 0.006 0.006 0.144 0.232 0.209 1.310 0.992 1.873 0.698 0.491 0.904
1000 0.031 0.002 0.002 0.115 0.201 0.160 1.297 1.052 1.650 0.689 0.423 0.904

0.7 0.4 100 0.026 -0.001 -0.004 0.246 0.308 0.338 0.768 2.440 1.773 0.467 0.943 0.768
0.4 200 0.032 0.001 0.003 0.224 0.256 0.295 0.848 2.139 1.569 0.408 0.947 0.737
0.4 400 0.030 0.002 -0.002 0.204 0.213 0.257 0.936 1.961 1.403 0.359 0.953 0.705
0.4 1000 0.032 0.001 0.002 0.180 0.171 0.221 1.026 1.816 1.312 0.304 0.960 0.690
0.5 100 0.034 -0.001 -0.000 0.244 0.296 0.337 0.757 2.009 1.835 0.480 0.894 0.778
0.5 200 0.034 0.003 0.006 0.224 0.249 0.295 0.854 1.920 1.585 0.416 0.891 0.738
0.5 400 0.033 0.002 -0.004 0.204 0.209 0.260 0.944 1.766 1.381 0.363 0.891 0.718
0.5 1000 0.034 0.002 0.005 0.183 0.163 0.223 1.047 1.618 1.350 0.296 0.889 0.679
0.7 100 0.034 0.006 0.004 0.248 0.302 0.340 0.763 0.881 1.902 0.469 0.650 0.780
0.7 200 0.030 -0.002 -0.005 0.225 0.269 0.293 0.866 0.947 1.624 0.406 0.575 0.726
0.7 400 0.035 0.004 0.003 0.204 0.241 0.259 0.958 1.014 1.455 0.359 0.520 0.710
0.7 1000 0.032 0.001 0.002 0.181 0.210 0.222 1.050 1.074 1.331 0.300 0.461 0.695

Table 14: Performance of estimators β̂t, β̃1,t and β̃2,t in the overidentified case for the model
(41)-(42) with s = 0.5.

h1 h2 T Median Deviation Abs. Median Deviation Decile Range Coverage Range

β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t β̂t β̃1,t β̃2,t
0.4 0.7 100 0.246 0.051 0.029 0.278 0.278 0.280 1.328 0.761 2.232 0.579 0.525 0.930

200 0.242 0.039 0.012 0.262 0.251 0.231 1.348 0.861 2.015 0.533 0.469 0.935
400 0.245 0.032 0.011 0.257 0.228 0.193 1.372 0.967 1.868 0.459 0.427 0.940
1000 0.247 0.028 0.008 0.253 0.199 0.152 1.383 1.073 1.731 0.363 0.368 0.949

0.5 0.7 100 0.248 0.031 0.014 0.288 0.286 0.284 1.195 0.797 1.983 0.474 0.550 0.881
200 0.250 0.033 0.012 0.274 0.254 0.234 1.280 0.887 1.854 0.405 0.491 0.886
400 0.250 0.018 0.012 0.268 0.226 0.193 1.309 0.943 1.706 0.324 0.445 0.884
1000 0.251 0.011 0.004 0.263 0.201 0.152 1.327 1.051 1.568 0.231 0.383 0.882

0.7 0.4 100 0.238 0.027 0.013 0.318 0.283 0.329 0.764 2.192 1.595 0.313 0.927 0.737
0.4 200 0.240 0.020 0.006 0.304 0.236 0.288 0.863 2.013 1.482 0.250 0.934 0.707
0.4 400 0.238 0.009 0.004 0.292 0.193 0.255 0.978 1.859 1.387 0.193 0.940 0.686
0.4 1000 0.241 0.008 0.001 0.284 0.155 0.219 1.091 1.774 1.335 0.132 0.951 0.652
0.5 100 0.247 0.019 0.013 0.321 0.280 0.325 0.772 1.921 1.699 0.312 0.863 0.746
0.5 200 0.235 0.012 0.005 0.301 0.231 0.283 0.856 1.768 1.462 0.252 0.870 0.708
0.5 400 0.235 0.005 -0.003 0.290 0.193 0.253 0.965 1.649 1.355 0.195 0.871 0.680
0.5 1000 0.246 0.005 0.003 0.285 0.155 0.217 1.077 1.551 1.300 0.132 0.878 0.669
0.7 100 0.235 0.000 -0.009 0.315 0.296 0.326 0.781 0.885 1.645 0.322 0.609 0.742
0.7 200 0.245 0.013 0.010 0.306 0.263 0.285 0.835 0.905 1.465 0.243 0.539 0.706
0.7 400 0.233 0.003 -0.000 0.289 0.235 0.254 0.960 0.988 1.373 0.193 0.479 0.669
0.7 1000 0.245 0.003 0.002 0.286 0.205 0.218 1.080 1.077 1.363 0.131 0.421 0.654
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Table 15: Rejection frequencies for the local Hausman test at t = T/2. Model: (40)-(41)

s h1 h2 T = 100 T = 200 T = 400 T = 1000
0 0.4 0.7 0.129 0.159 0.178 0.202

0.5 0.7 0.107 0.177 0.181 0.205
0.7 0.4 0.316 0.333 0.376 0.434
0.7 0.5 0.267 0.305 0.316 0.428
0.7 0.7 0.022 0.039 0.059 0.067

0.2 0.4 0.7 0.181 0.225 0.257 0.269
0.5 0.7 0.147 0.222 0.238 0.287
0.7 0.4 0.363 0.428 0.431 0.528
0.7 0.5 0.279 0.347 0.435 0.505
0.7 0.7 0.044 0.065 0.079 0.125

0.5 0.4 0.7 0.280 0.320 0.346 0.401
0.5 0.7 0.258 0.343 0.428 0.510
0.7 0.4 0.443 0.470 0.497 0.551
0.7 0.5 0.430 0.519 0.568 0.627
0.7 0.7 0.336 0.562 0.725 0.841

Table 16: Rejection frequencies for the global Hausman test. Model: (40)-(41)

s h1 h2 T = 100 T = 200 T = 400 T = 1000
0 0.4 0.7 0.054 0.066 0.064 0.126

0.5 0.7 0.026 0.052 0.058 0.092
0.7 0.4 0.060 0.100 0.134 0.122
0.7 0.5 0.056 0.066 0.084 0.088
0.7 0.7 0.010 0.026 0.026 0.058

0.2 0.4 0.7 0.078 0.080 0.116 0.196
0.5 0.7 0.038 0.072 0.112 0.178
0.7 0.4 0.142 0.156 0.204 0.234
0.7 0.5 0.082 0.094 0.166 0.200
0.7 0.7 0.026 0.058 0.084 0.160

0.5 0.4 0.7 0.460 0.730 0.912 0.996
0.5 0.7 0.426 0.762 0.936 0.990
0.7 0.4 0.380 0.532 0.680 0.820
0.7 0.5 0.338 0.550 0.726 0.840
0.7 0.7 0.426 0.700 0.878 0.984
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